
Marcelo Arenas, Pablo Barceló, Leonid Libkin,
Wim Martens, Andreas Pieris

Database Theory
Querying Data

(Preliminary Version)

August 19, 2022

Santiago Paris
Bayreuth Edinburgh

Contents

1 Introduction . 1

2 Background . 5

Part I The Relational Model: The Classics

3 First-Order Logic . 25

4 Relational Algebra . 33

5 Relational Algebra and SQL . 41

6 Equivalence of Logic and Algebra . 49

7 First-Order Query Evaluation . 53

8 Static Analysis . 59

9 Homomorphisms . 65

10 Functional Dependencies . 69

11 Inclusion Dependencies . 77

Exercises . 87

Bibliographic Comments . 89

Part II Conjunctive Queries

12 Syntax and Semantics . 93

VI Contents

13 Homomorphisms and Expressiveness . 101

14 Query Evaluation . 109

15 Containment and Equivalence . 117

16 Minimization . 123

17 Containment Under Integrity Constraints 131

Exercises . 141

Bibliographic Comments . 145

Part III Fast Conjunctive Query Evaluation

18 Acyclicity of Conjunctive Queries . 151

19 E�ciently Evaluating Boolean ACQs . 159

20 E�ciently Evaluating General ACQs . 167

21 Treewidth . 171

22 Generalized Hypertreewidth . 183

23 The Necessity of Bounded Treewidth . 191

24 Approximations of Conjunctive Queries . 199

25 Bounding the Join Size . 207

26 Worst-Case Optimal Join Algorithms . 223

27 Leapfrog Triejoin . 231

Exercises . 245

Bibliographic Comments . 247

Part IV Expressive Languages

28 Unions of Conjunctive Queries . 251

29 Static Analysis of Unions of Conjunctive Queries 261

Contents VII

30 Unions of Conjunctive Queries with Inequalities 271

31 The Limits of First-Order Queries: Recursion 283

32 The Limits of First-Order Queries: Counting 289

33 Adding Aggregates and Grouping . 297

34 Aggregates, Grouping, and Locality . 307

35 Adding Recursion: Datalog . 319

36 Expressiveness of Datalog Queries . 329

37 Datalog Query Evaluation . 337

38 Static Analysis of Datalog Queries . 345

Exercises . 357

Bibliographic Comments . 363

Part V Uncertainty

39 Incomplete Databases . 367

40 Computing Certain Answers . 377

41 Probabilistic Databases . 387

42 Inconsistent Databases . 397

43 Knowledge-Enriched Databases . 407

Exercises . 409

Bibliographic Comments . 413

Part VI Query Answering Paradigms

44 Bag Semantics . 417

45 Incremental Maintenance of Queries . 419

46 Provenance Computation . 421

VIII Contents

47 Top-k Algorithms . 423

48 Distributed Evaluation with One Round 425

49 Enumeration and Constant Delay . 427

Exercises . 429

Bibliographic Comments . 431

Part VII Mappings and Views

50 Query Answering using Views . 435

51 Determinacy and Rewriting . 437

52 Mappings and Data Exchange . 439

53 Query Answering for Data Exchange . 441

54 Ontology-Based Data Access . 443

Exercises . 445

Bibliographic Comments . 447

Background for Tree- and Graph-Structured Data

55 Background For Tree and Graph Structured Data 451

Part VIII Tree-Structured Data

56 Data Model . 465

57 First-Order Logic over Trees . 475

58 XPath . 481

59 Expressiveness of XPath . 487

60 Static Analysis of XPath . 493

61 Tree Pattern Queries . 497

62 Tree Pattern Query Containment and Equivalence 503

Contents IX

63 Tree Pattern Query Minimization . 511

Exercises . 517

Bibliographic Comments . 519

Part IX Expressive Languages for Tree-Structured Data

64 Monadic Second Order Logic . 525

65 Tree Automata . 529

66 Monadic Datalog . 537

67 Schemas for XML . 539

68 Static Analysis Under Schema Constraints 549

69 Data Trees . 557

70 Static Analysis on Data Trees . 559

Exercises . 561

Bibliographic Comments . 563

Part X Graph-Structured Data

71 Data Model and Queries . 569

72 Graph Query Evaluation . 575

73 Containment . 579

74 Querying Property Graphs . 585

75 RDF and SPARQL . 591

Exercises . 593

Bibliographic Comments . 595

Part XI Appendix: Theory of Computation

X Contents

Big-O Notation . 603

Turing Machines and Complexity Classes . 605

Input Encodings . 615

Tiling Problems . 619

Formal Languages . 627

1

Introduction

This is a very preliminary partial release of the upcoming book “Database
Theory”, which will be about the foundational and mathematical principles
of databases in their various forms. The early parts focus on an overview of
the relational model, and on processing some of the most commonly occurring
relational queries. Later parts focus on additional aspects of the relational
model and will cover tree-structured and graph-structured data as well.

The general philosophy of the book is the following:

• We planned the book such that large parts of it are suitable for teaching.
A chapter roughly corresponds to the contents of a single lecture.

• For the ease of teaching and understanding the material, we sometimes cut
corners intentionally. If we want to give the reader a relatively quick insight
of a particular result, this sometimes means that we present a weaker form
of the result than the most general result known in the literature.

We have been teaching from this book ourselves, but the present version
will undoubtedly still have errors. If you find any errors in the book, or places
that you find particularly unclear, please let us know through the repository:
https://github.com/pdm-book/community. The new versions of the book,
including corrections, will be published in this repository.

What is Planned

The finished book will consist of the following parts:

(I) The Relational Model: The Classics

(II) Conjunctive Queries

(III) Fast Conjunctive Query Evaluation

https://github.com/pdm-book/community

2 1 Introduction

• Includes material on acyclic queries, treewidth and hypertreewidth,
and worst-case optimal join algorithms.

(IV) Expressive Languages

• Includes material on adding features found in most commonly used
query languages: union, negation, aggregates, and recursion.

(V) Uncertainty

• Includes material on incomplete information, probabilistic databases,
consistent query answering, and query answering in the presence of
ontologies.

(VI) Query Answering Paradigms

• Includes material on bag semantics, incremental maintenance, prove-
nance, top-k queries, distributed evaluation, and constant delay
query evaluation.

(VII) Mappings and Views

• Includes material on determinacy, data exchange, and ontology-
based data access.

(VIII) Tree-Structured Data

• Includes material on first-order logic on trees, XPath, and tree pat-
tern queries, and their evaluation- and static analysis problems.

(IX) Expressive Languages for Tree-Structured Data

• Includes material on MSO, tree automata, monadic datalog, schema
languages, and their static analysis.

(X) Graph-Structured Data

• Includes material on various types of graph queries, their evaluation
and containment, property graphs, RDF, and SPARQL.

We will continue to release parts, not necessarily in the order presented here.
Furthermore, the ordering and contents of the chapters is preliminary and
may change in future versions.

What is Still Missing, Even From Released Parts

Let’s start by saying what is mainly there: in every chapter that we release,
we believe that the technical content is relatively stable. For every part that
we have released, two things still need work though:

1 Introduction 3

Exercises. We have generated some initial ideas for exercises, but we are
aware that the exercises for the currently released parts still need work.
In fact, we are open to exercise suggestions.

Bibliography. We plan to accompany each part with references and a bibli-
ographic discussion. These are not implemented yet, even for Parts I–IV.

Proofreaders

The present version has benefited from valuable comments of (in alphabetical
order): Antoine Amarilli, Johannes Doleschal, Matthias Niewerth, Thomas
Schwentick, Jef Wijsen

2

Background

In this chapter, we introduce the mathematical concepts and terminology that
will be used throughout the book. These include:

• the relational model,

• queries and query languages, and

• computational problems central in the study of principles of databases.

Basic Notions and Notation

We begin with a brief discussion of the very basic mathematical notions and
notation that we are going to use in this book.

Sets

A set contains a finite or infinite number of elements (e.g., numbers, symbols,
other sets), without repetition or respect to order. The elements in a set S are
the members of S. We use the symbols 2 and 62 to denote set membership and
nonmemberhip, respectively. For a finite set S, we write |S| for its cardinality,
that is, the number of elements in it. The set without elements is called the
empty set, written as ;.

Given two (finite or infinite) sets S and T , we write:

• S [T for their union {a | a 2 S or a 2 T},
• S \ T for their intersection {a | a 2 S and a 2 T}, and
• S � T for their di↵erence {a | a 2 S and a 62 T}.

We further say that

• S is equal to T , written S = T , when x 2 S if and only if x 2 T ,

6 2 Background

• S is a subset of T , written S ✓ T , when x 2 S implies x 2 T , and

• S is a proper (or strict) subset of T , written S (T , if S ✓ T and S 6= T .

We write P(S) for the powerset of S, that is, the set consisting of all the
subsets of S. Analogously, we write Pfin(S) for the finite powerset of S, namely
the set consisting of all the finite subsets of S.

We write N for the set {0, 1, 2, . . .} of natural numbers. For i, j 2 N, we
denote by [i, j] the set {k 2 N | i  k and k  j}. We simply write [i] for [1, i].
We write Q for the set of rational numbers and Q�0 for the set of nonnegative
rational numbers.

Sequences and Tuples

A sequence of elements is a list of these elements in some order. We typically
identify a sequence by writing the list within parentheses. Recall that in a
set the order does not matter, but in a sequence it does. Hence, the sequence
(1, 2, 3) is not the same as (3, 2, 1). Similarly, repetition does not matter in a
set, but is does matter in a sequence. Thus, the sequence (1, 1, 2, 3) is di↵erent
than (1, 2, 3), while the set {1, 1, 2, 3} is the same as {1, 2, 3}. Finite sequences
are called tuples. A sequence with k 2 N elements is a tuple of arity k, called
k-ary tuple (or simply k-tuple). Note that when k = 0 we get the empty tuple
(). We often abbreviate a k-ary tuple (a1, . . . , ak) as ā. Moreover, for a k-ary
tuple ā, we usually assume that its elements are (a1, . . . , ak). We say that
ā = (a1, . . . , ak) has the positions 1, . . . , k and that an element b occurs at
position i if b = ai. For example, 1 occurs at positions 1 and 3 in the tuple
(1, 2, 1, 4). Conversely, ā mentions a if a 2 {a1, . . . , ak}.

For two sets S, T , we write S⇥T for the set of all pairs (a, b), where a 2 S
and b 2 T , called the Cartesian product or cross product of S and T . We can
also define the Cartesian product of k � 1 sets S1, . . . , Sk, known as the k-fold
Cartesian product, which is the set of all tuples (a1, . . . , ak), where ai 2 Si for
each i 2 [k]. For the k-fold Cartesian product of a set S with itself we write

Sk = S ⇥ · · ·⇥ S| {z }
k

.

A k-ary mathematical relation is a set of k-ary tuples. Let T be a binary
mathematical relation and let S = {a | there exists b such that (a, b) 2 T or
(b, a) 2 T}. We say that

• T is transitive if, for all a, b, c 2 S, we have that (a, b) 2 T and (b, c) 2 T
implies that (a, c) 2 T ;

• T is reflexive if (a, a) 2 T for every a 2 S;

• T is antisymmetric if, for all a, b 2 S, we have that (a, b) 2 T and (b, a) 2 T
implies that a = b;

• T is total, if, for all a, b 2 S, we have that (a, b) 2 T or (b, a) 2 T ;

2 Background 7

• T is a partial order if it is transitive, reflexive, and antisymmetric; and

• T is a total order if it is a partial order and total.

We also define the following standard operations on T .

• The transitive closure of T , denoted by T+, is defined as {(a, b) | (a, b) 2 T
or there exist a1, . . . , an such that n � 1, (a, a1) 2 T , (an, b) 2 T and
(ai, ai+1) 2 T for every i 2 [n� 1]}.

• The reflexive transitive closure of T , denoted by T ⇤, is defined as T+ [
{(a, a) | a 2 S}.

Finally, we say that T is a successor relation if

• for every a 2 S, there exists at most one b 2 S such that (a, b) 2 T , and

• T ⇤ is a total order.

Functions

Consider two (finite or infinite) sets S and T . A function f from S to T ,
written f : S ! T , is a mapping from (all or some) elements of S to elements
of T , i.e., for every a 2 S, either f(a) 2 T , in which case we say f is defined
on a, or f(a) is undefined, such that the following holds: for every a, b 2 S on
which f is defined, a = b implies f(a) = f(b). We call f total if it is defined
on every element of S; otherwise, it is called partial. By default, we assume
functions to be total. When a function f is partial, we explicitly say this, and
write Dom(f) for the set of elements from S on which f is defined.

We say that a function f : S ! T is

• injective (or one-to-one) if a 6= b implies f(a) 6= f(b) for every a, b 2 S,

• surjective (or onto) if, for every b 2 T , there is a 2 S such that f(a) = b,

• bijective (or one-to-one correspondence) if it is injective and surjective.

A useful notion is that of composition of functions. Given two functions
f : S ! T and g : T ! U , the composition of f and g, denoted g � f ,
is the function from S to U defined as follows: g � f(a) = g(f(a)) for every
a 2 S. Another useful notion is that of union of functions. Given two functions
f : S ! T and g : S0 ! T 0 with f(a) = g(a) for every a 2 S \ S0, the union
of f and g, denoted f [g, is the function from S [S0 to T [T 0 defined as
follows: f [g(a) = f(a) for every a 2 S, and f [g(a) = g(a) for every a 2 S0.

Given a function f : S ! T , for brevity, we will use the same letter f to
denote extensions of f on more complex objects (such as tuples of elements of
S, sets of elements of S, etc.). More precisely, if ā = (a1, . . . , ak) 2 Sk, then
f(ā) = (f(a1), . . . , f(ak)). If R ✓ S, then f(R) = {f(a) | a 2 R}. Notice that
this convention also extends further, e.g., to sets of sets of tuples.

8 2 Background

Graphs and Trees

A graph is a pair (V,E), where V is a finite set of nodes, and E is a finite set
of edges. We distinguish between directed and undirected graphs, which only
di↵er in the way their set E of edges is defined:

• In directed graphs we have that E ✓ V ⇥ V .

• In undirected graphs we have that E ✓ {S ✓ V | |S| = 1 or |S| = 2}.

In simple words, in directed graphs edges are pairs of nodes, and the order in
which the nodes are given indicates the direction of the edge, that is, (u, v) is
an edge from u to v, whereas (v, u) is an edge from v to u. In undirected graphs,
edges are simply subsets of V of cardinality 2, and the order in which the nodes
are given does not matter, i.e., {u, v} and {v, u} is the same (undirected) edge
between the nodes u and v.

A graph G1 = (V1, E1) is a subgraph of a graph G2 = (V2, E2) if V1 ✓ V2

and E1 ✓ E2. Moreover, if both G1 and G2 are directed graphs, then G1 is
the subgraph of G2 induced by V1 if E1 = E2 \ (V1 ⇥ V1), and if both G1

and G2 are undirected graphs, then G1 is the subgraph of G2 induced by V1 if
E1 = E2 \ {S ✓ V1 | |S| = 1 or |S| = 2}.

An undirected path in a (directed or undirected) graph G = (V,E) is a
non-empty sequence of nodes ⇡ = u0u1 · · ·uk for k � 0, where

• if G is a directed graph, then (ui�1, ui) 2 E or (ui, ui�1) 2 E for every
i 2 [k], and

• if G is an undirected graph, then {ui�1, ui} 2 E for every i 2 [k].

We say that ⇡ is path from u0 to uk and has length k. (The path of length zero
is from u0 to u0.) A graph is connected if, for every pair of nodes u, v 2 V ,
there is an undirected path from u to v.

A path in a directed graph G = (V,E) is a non-empty sequence of nodes
⇡ = u0u1 · · ·uk for k � 0, where (ui�1, ui) 2 E for every i 2 [k]. Similar to
undirected paths, we call ⇡ is a path from u0 to uk and its length is k.

A connected directed graph T = (V,E) is a tree if

• for every node u, there is at most one node v with (v, u) 2 E, called the
parent of u, and

• there is exactly one node u, called the root of T , without a parent.

The notions of subtree and induced subtree are naturally derived from the
notions of subgraph and induced subgraph. Moreover, if v is the parent of u
in a tree T , then u is called a child of v, and if v does not have any children,
then v is called a leaf of T . Finally, if there exists a path from v to u in T ,
then v is said to be an ancestor of u, and u is said to be a descendant of v.

2 Background 9

It is common in Computer Science (unlike other fields such as Biology) to
graphically depict trees with their root on top and the edges directed down-
wards. Therefore, even if we deal with directed trees, we may omit the direc-
tion of the edges in figures, which is typically specified via an arrow.

The Relational Model

To define tables in real-life databases, for example, by the create table state-
ments of SQL, one needs to specify their names and names of their attributes.
Therefore, to model databases, we need two disjoint sets

Rel of relation names and Att of attribute names.

We assume that these sets are countably infinite in order to ensure that we
never run out of ways to name new tables and their attributes. In practice, of
course, these sets are finite but extremely large: they are strings that can be
so large that one never really runs out of names. Theoretically, we model this
by assuming that these sets are countably infinite.

In create table declarations, one specifies types of attributes as well, for
example, integer, Boolean, string. In the study of the theoretical foundations
of databases, one typically does not make this distinction, and assumes that
all elements populating databases come from another countably infinite set

Const of values.

This simplifying assumption does not a↵ect the various results on the com-
plexity of query evaluation, expressiveness of languages, equivalence of queries,
and many other subjects studied in this book. At the same time, it brings the
setting closer to that of mathematical logic, allowing us to borrow many tools
from it. It also allows us to significantly streamline notations.

The Named and Unnamed Perspective

There exist two standard perspectives from which databases can be defined,
called the named and the unnamed perspectives. While the named perspective
is closer to how databases appear in database management systems, and there-
fore more natural when giving examples, the unnamed perspective provides
a clean mathematical model that is easier to use for studying the principles
of databases. Importantly, the modeling power of those two perspectives is
exactly the same, which allows us to go back and forth between the two.

Named Perspective. Under the named perspective, attribute names are
viewed as an explicit part of a database. More precisely, a database tuple
is a function t : U ! Const, where U = {A1, . . . , Ak} is a finite subset
of Att. The sort of t is U , and its arity is the cardinality |U | of U ; we

10 2 Background

say that t is k-ary if |U | = k. We usually do not use the function nota-
tion for database tuples in the named perspective, and denote them as
t = (A1 : a1, . . . , Ak : ak), meaning that t(Ai) = ai for every i 2 [k]. No-
tice that, according to this notation, (A1 : a1, A2 : a2) and (A2 : a2, A1 : a1)
represent the same function t. A relation instance in the named perspec-
tive is a finite set S of database tuples of the same sort U , which we
also call the sort of the relation instance S and denote by sort(S). By
nRI (for named relational instances) we denote the set of all such relation
instances. A possibly infinite relation instance in the named perspective
is defined as the notion of relation instance, but without forcing it to be
finite. We write nRI1 for the set of all possibly infinite relation instances
in the named perspective.

Database systems usually use a database schema that associates attribute
names to relation names. This can be formalized as follows.

Definition 2.1: Named Database Schema

A named (database) schema is a partial function

S : Rel! Pfin(Att)

such that Dom(S) is finite. For R 2 Dom(S), the sort of R under S
is the set S(R). The arity of R under S, denoted arS(R), is |S(R)|.

In other words, a named database schema S provides a finite set of re-
lation names, together with their (finitely many) attribute names. These
attribute names form the sort of the relation names under S, and their
number specifies the arity of the relation names under S. For arities 1, 2,
and 3, we speak of unary, binary, and ternary relation names, respectively.
We now introduce the notion of database instance of a named schema.

Definition 2.2: Database Instance (The Named Case)

A database instance D of a named schema S is a function

D : Dom(S)! nRI

such that sort(D(R)) = S(R), for every R 2 Dom(S).

We can also talk about possibly infinite database instances. Formally, a
possibly infinite database instance D of a named schema S is a function

D : Dom(S)! nRI1

such that sort(D(R)) = S(R), for every R 2 Dom(S). This means that D
is either finite as in Definition 2.2, where each relation name of Dom(S) is

2 Background 11

mapped to a finite relation instance, or infinite in the sense that at least
one relation name of Dom(S) is mapped to an infinite relation instance.
Infinite database instances are obviously not a real-life concept, and we are
not interested in studying them per se. Having said that, they are a very
useful mathematical tool as they allow us to prove some results in a more
elegant way. In other words, infinite database instances are considered for
purely technical reasons, which will be revealed later in the book.

To avoid heavy notation, and because the name S of a schema is often not
important, we usually provide schema information without explicitly using
the symbol S. We write R[A1, . . . , Ak] instead of S(R) = {A1, . . . , Ak} for
the schema S in question. For example, we write

City[city_id, name, country]

to refer to a relation name City with attribute names city_id, name, and
country. Likewise, we write ar(R) instead of arS(R). We may even write
R[k] to indicate that the arity of R under the schema in question is k.

Unnamed Perspective. Under the unnamed perspective, a database tuple
is an element of Constk for some k 2 N. We denote such tuples using low-
ercase letters from the beginning of the alphabet, that is, as (a1, . . . , ak),
(b1, . . . , bk), etc., or even more succinctly as ā, b̄, etc. A relation instance
in the unnamed perspective is a finite set S of database tuples of the same
arity k. We say that k is the arity of S, denoted by ar(S). By uRI (for un-
named relation instances) we denote the set of all such relation instances.
A possibly infinite relation instance in the unnamed perspective is defined
as the notion of relation instance, but without forcing it to be finite. We
write uRI1 for the set of all possibly infinite relation instances in the
unnamed perspective. The notion of unnamed database schema follows.

Definition 2.3: Unnamed Database Schema

An unnamed (database) schema is a partial function

S : Rel! N

such that Dom(S) is finite. For a relation name R 2 Dom(S), the
arity of R under S, denoted arS(R), is defined as S(R).

In simple words, an unnamed databases schema S provides a finite set of
relation names from Rel, together with their arity. We proceed to introduce
the notion of database instance of an unnamed database schema.

Definition 2.4: Database Instance (The Unnamed Case)

A database instance D of an unnamed schema S is a function

12 2 Background

D : Dom(S)! uRI

such that ar(D(R)) = arS(R), for every R 2 Dom(S).

Analogously, a possibly infinite database instance D of an unnamed schema
S is defined as a function of the form

D : Dom(S)! uRI1

such that ar(D(R)) = arS(R), for every R 2 Dom(S). Recall that infinite
database instances are considered for purely technical reasons. As in the
named perspective, in order to avoid heavy notation, we write ar(R) in-
stead of arS(R) for the arity of R under S. We may even write R[k] to
indicate that the arity of R under the schema in question is k.

For a (named or unnamed) schema S, we write Inst(S) for the set of all
database instances of S. Notice that Inst(S) does not contain infinite database
instances. We also need the crucial notion of the active domain of a (possibly
infinite) database instance, which is, roughly speaking, the set of constants
that occur in it. Under the named perspective, we say that a database tuple
t : U ! Const mentions a constant a 2 Const if there exists A 2 U such that
t(A) = a. Under the unnamed perspective, a database tuple (a1, . . . , ak) 2
Constk mentions a 2 Const if there exists i 2 [k] such that ai = a. The active
domain of a (possibly infinite) database instance D of S is defined as the set

{a 2 Const | there exists R 2 Dom(S) such that

D(R) contains a database tuple that mentions a}.

Henceforth, for brevity, we simply refer to the domain instead of the active
domain of D, and denote it Dom(D). Let us stress that this simplification
leads to a clash of terminology. Indeed, given a function f : S ! T , the set S
is typically called the domain of f . Therefore, since D is formally defined as
a function, one may think that the domain of D is the domain of D seen as a
function, which is a finite set of relation names. We will never use the term
domain, and the notation Dom(D), to refer to the domain of the function D.

Simplified Terminology and Notation

We will refer to a (possibly infinite) database instance as a (possibly infinite)
database, to a relation instance as a relation, and to a database tuple as a
tuple. By abuse of terminology, we will also refer to a mathematical relation
as a relation, but it will always be clear from the context whether we mean a
relation instance or a mathematical relation.

In both the named and the unnamed perspectives, we will write RD
i instead

of D(Ri). When it is clear from the context, we shall omit the superscript D,

2 Background 13

and simply write Ri instead of RD
i . This means that we will e↵ectively use the

same notation for relation names and for relation instances. This is a common
practice that is used to simplify notation, and it will never lead to confusion;
when the instance is important, we will make it explicit.

Although database schemas are formally defined as partial functions, with
their domain being a finite subset of Rel, it is often convenient to treat them as
sets of relation names. Thus, we will usually treat a schema S as the finite set
Dom(S). This means that whenever we write S = {R1, . . . , Rn}, we actually
mean that Dom(S) = {R1, . . . , Rn}. In the unnamed case, we may also write

S = {R1[k1], . . . , Rn[kn]}

for the fact that Dom(S) = {R1, . . . , Rn} and S(Ri) = ki, for each i 2 [n].
Having this notation for schemas, we can then take, e.g., the union S1 [S2 of
two schemas S1 and S2 (providing that Dom(S1) and Dom(S2) are disjoint).

Analogously, databases can be seen as sets, in particular, as sets of facts. In
the unnamed perspective, for a k-ary relation name R, and a tuple ā 2 Constk,
we call R(ā) a fact. Since a fact is always a statement about a single tuple, we
simplify the notation R((a1, . . . , ak)) to R(a1, . . . , ak). We will usually treat a
(possibly infinite) database D of an unnamed schema S as the set of facts

�
R(ā) | R 2 S and ā 2 RD

.

For example, we can write D = {R1(a, b), R1(b, c), R2(a, c, d)} as a shorthand
for RD

1 = {(a, b), (b, c)} and RD
2 = {(a, c, d)}. Note that the active domain of

D is precisely the set of constants occurring in {R(ā) | R 2 S and ā 2 RD}.

Named versus Unnamed Perspective

There is clearly a close connection between the two perspectives, which is
not surprising since both are mathematical abstractions of the same concept.
A (possibly infinite) database of a named schema can be transformed into a
semantically equivalent one of an unnamed schema, and vice versa. By seman-
tically equivalent, we mean databases that are essentially the same modulo
representation details. It is instructive to properly formalize this connection,
which will be used throughout the book. We do this for databases, but the
exact same constructions work also for possibly infinite databases.

From Named to Unnamed. Consider a named schema S, and assume that
there is an ordering l on the set of relation-attribute pairs {(R,A) | R 2
Dom(S) and A 2 S(R)}. We define the unnamed schema S0 : Rel! N as
follows: Dom(S0) = Dom(S), and S0(R) = arS(R) for every R 2 Dom(S).
Moreover, for every database D of S, a semantically equivalent database
D0 : Dom(S0)! uRI of S0 is defined as follows: for every R 2 Dom(S0),

D0(R) = {(a1, . . . , ak) | (A1 : a1, . . . , Ak : ak) 2 D(R)

such that (R,A1)l (R,A2)l · · ·l (R,Ak)} .

14 2 Background

From Unnamed to Named. Consider an unnamed database schema S. We
assume that Att contains an attribute name #i for each i � 1. We define
the named schema S0 : Rel ! Pfin(Att) as follows: Dom(S0) = Dom(S),
and S0(R) = {#1, . . . ,#arS(R)} for everyR 2 Dom(S). Moreover, for every
database D of S, a semantically equivalent database D0 : Dom(S0)! nRI
of S0 is defined as follows: for every R 2 Dom(S0),

D0(R) = {(#1 : a1, . . . ,#k : ak) | (a1, . . . , ak) 2 D(R)} .1

Since the above connection between the two perspectives is useful in many
places in the book, we assume from now on that, whenever a named database
schema is used, the ordering l on relation-attribute pairs is available.

The unnamed perspective is usually mathematically more elegant, while
the named perspective is closer to practice. Therefore, we often define notions
in the book using the unnamed perspective, but illustrate them with examples
using the named perspective. When we do so, we use the following convention.
When we denote a relation name as R[A,B, . . .] of a named database schema
S in an example, we assume that the ordering of attributes in S is consistent
with how we write it in the example, that is, (R,A)l (R,B), etc. This allows
us to easily switch between the named and unnamed perspective in examples,
e.g., by being able to say that the “first” attribute of R is A.

Queries and Query Languages

Queries will appear throughout the book as both semantic and syntactic ob-
jects. As a semantic object, a query q over a schema S is a function that maps
databases of S to finite sets of tuples of the same arity over Const.

Definition 2.5: Queries and Query Languages

Consider a database schema S. A query of arity k � 0 (or simply a k-ary
query) over S is a function of the form

q : Inst(S)! Pfin(Const
k).

A query language is a set of queries.

An important subject, which will be considered in the book, is to classify
query languages according to their expressive power. Two query languages L1

and L2 are equally expressive if L1 = L2. Furthermore, L1 is more expressive
than L2 if L2 ✓ L1, and L1 is strictly more expressive than L2 if L2 (L1.

1 Notice that under the assumption that (R,#i)l(R,#i+1) for every relation name
R 2 S and i 2 [S(R)� 1], one can translate a database D from the unnamed
perspective to the named perspective and back, and obtain D again.

2 Background 15

Of course, queries as semantic objects must be given in some syntax. The
syntax of queries could be SQL, relational algebra, first-order logic, and Data-
log, to name a few. We proceed to explain some of our notational conventions
for queries. For the sake of the discussion, we focus on query languages that
are based on logic. To this end, we assume a countably infinite set

Var of variables,

disjoint from Const, Rel, and Att. If ' is a logical formula and x̄ = (x1, . . . , xk) 2
Vark is a tuple of variables, we will denote queries as '(x̄). We will also use a
letter such as q to refer to the entire query, that is, q = '(x̄). The purpose of
x̄ is to make clear what is the output of the query; we will also write q(x̄) to
emphasise that q has the output tuple x̄. More precisely, we will always define
for a database D and tuple ā = (a1, . . . , ak) 2 Constk whether D satisfies '
using the values ā, denoted by D |= '(ā). Then, with the syntactic object
q = '(x̄), we associate a semantic object that produces an output, i.e., a set
of k-ary tuples over Const, for each database D, defined as:

q(D) = {ā 2 Constk | D |= '(ā)} .

This semantic object will always be a query in the sense of Definition 2.5. In
other words, we will use the letter q to refer to both

• the syntactic object denoting a query (for example, a logical formula to-
gether with an output tuple), and

• the query itself (i.e., the function that maps databases to finite sets of
tuples of the same arity over Const).

A query of arity 0 is called Boolean. In this case, there are only two possible
outputs: either the singleton set {()} containing the empty tuple, or the empty
set {}. We interpret {()} as the Boolean value true, and {} as false. For
readability, we write q(D) = true in place of q(D) = {()}, and q(D) = false
in place of q(D) = {}. When denoting Boolean queries, we will often omit the
empty tuple () from the notation, i.e., write q = ' instead of q = '().

Next, we introduce relational atoms, which will be useful throughout the
book and, in particular, for defining the syntax of query languages that are
based on logic. When R is a k-ary relation name and ū 2 (Const [Var)k,
R(ū) is a relational atom. Observe that the only di↵erence between a fact
and a relational atom is that the former mentions only constants, whereas the
latter can mention both constants and variables. As for facts, since a relational
atom is always a statement about a single tuple, we simply write R(u1, . . . , uk)
instead of R((u1, . . . , uk)). Given a set of atoms S, we write Dom(S) for the set
of constants and variables in S. For example, Dom({R(a, x, b), R(x, a, y)}) =
{a, b, x, y}. We also write RS for the set of tuples {ū | R(ū) 2 S}.

16 2 Background

Key Problems: Query Evaluation and Query Analysis

Much of what we do in databases boils down to running queries on a database,
or statically analyzing queries. The latter is the basis of query optimization:
we need to be able to reason about queries, and to be able to replace a query
with a better behaved one that has the same output. We proceed to introduce
the main algorithmic problems associated with the above tasks. In their most
common form, they are parameterized by a query language L.

Query Evaluation

We start with the query evaluation problem, or simply the evaluation problem,
that has the following form:

Problem: L-Evaluation

Input: A query q from L, a database D, a tuple ā over Const
Output: true if ā 2 q(D), and false otherwise

Note that the evaluation problem is presented as a decision problem, that
is, a problem whose output is either true or false. Although in practice the
goal is to compute the output of q on D, in the study of the principles of
databases we are mainly interested in understanding the inherent complexity
of a query language. This can be achieved by studying the complexity of the
decision version of the evaluation problem, which in turn allows us to employ
well established tools from complexity theory such as the standard complexity
classes that can be found in Appendix B.

The complexity of the problem as stated above is referred to as combined
complexity of query evaluation. The term combined reflects the fact that both
the query q and the database D are part of the input.

Very often we shall deal with a di↵erent kind of complexity of query evalu-
ation, where the query q is fixed. This is referred to as data complexity since we
measure the complexity only in terms of the size of the database D, which in
practice, almost invariably, is much bigger than the size of the query q. More
precisely, when we talk about data complexity, we are actually interested in
the complexity of the problem q-Evaluation for some query q:

Problem: q-Evaluation

Input: A database D, and a tuple ā over Const
Output: true if ā 2 q(D), and false otherwise

Thus, when we talk about the data complexity of L-Evaluation, we actually
refer to a family of problems, one for each query q from L. Nonetheless, we

2 Background 17

shall apply the standard notions of complexity theory, such as membership in a
complexity class, or hardness and completeness for a class, to data complexity.
We proceed to precisely explain what we mean by that.

Definition 2.6: Data Complexity

Let L be a query language, and C a complexity class. L-Evaluation is

• in C in data complexity if, for every q from L, q-Evaluation is in C,
• C-hard in data complexity if there exists a query q from L such that
q-Evaluation is C-hard, and

• C-complete in data complexity if L-Evaluation is in C in data com-
plexity, and C-hard in data complexity.

To reiterate, as we shall use these concepts many times in this book:

Combined Complexity of query evaluation refers to the complexity of the
L-Evaluation problem when all of q, D, and ā are inputs, and

Data Complexity refers to the complexity of L-Evaluation when its input
consists only of D and ā, whereas q is fixed. In other words, it refers to the
complexity of the family of problems {q-Evaluation | q is a query from L}
in the sense of Definition 2.6.

Query Containment and Equivalence

The basis of static analysis of queries is the containment problem. We say that
a query q is contained in a query q0, written as q ✓ q0, if q(D) ✓ q0(D) for
every database D; note that since queries return sets of tuples, the notion of
subset is applicable to query outputs. This is the most basic task of reasoning
about queries; note that containment is one part of equivalence. Indeed, q is
equivalent to q0, denoted q ⌘ q0, if q ✓ q0 and q0 ✓ q. The equivalence problem
is the most basic one in query optimization, whose goal is to transform a query
q into an equivalent, and more e�cient, query q0.

In relation to containment and equivalence, we consider the following de-
cision problems, again parameterized by a query language L.

Problem: L-Containment

Input: Two queries q and q0 from L
Output: true if q ✓ q0, and false otherwise

18 2 Background

Problem: L-Equivalence

Input: Two queries q and q0 from L
Output: true if q ⌘ q0, and false otherwise

Observe that for the previous problems, the input consists of two queries.
Typically, queries are much smaller objects than databases. Therefore, for
the containment and equivalence problems, we shall in general tolerate higher
complexity than for query evaluation; even intractable complexity will often
be reasonable, given the small size of the input.

Computational Complexity Analysis

We will use two di↵erent cost models for analyzing the computational com-
plexity of algorithmic problems such as the ones introduced above.

Turing Machine models are typically associated with complexity classes
such as PTime, NP, PSpace, Space(log n), ⇧p

2 , etc.

Random-Access Machine models are usually used for analyzing the run-
time of e�cient algorithms. For instance, if we say that n numbers can
be sorted in time O(n log n), then the intended underlying computational
model is a random-access machine model.

Throughout the book, we will assume the Turing Machine model for analyzing
the complexity of problems in terms of complexity classes, whereas we will
assume random-access models when it comes to proving that algorithms have
low complexity. The di↵erence between the two will always be clear in the
formal statement, where we will always either

• refer to a concrete complexity class, such as PTime, NLogSpace, or
DLogSpace,2 in which case we assume Turing Machines, or

• say that the problem “is solvable in” time or space O(f(n)) for some
function f , in which case we assume a random access machine model.

Size of the Input

The complexity of algorithms is always analyzed in terms of the size of their
input. To this end, we define the size kok of syntactic objects o that we will
consider for complexity analysis. In particular:

2 In this book, we usually denote complexity classes in small caps, see Appendix B.
Exceptions to this convention are well-known complexity classes for which fonts
are irrelevant, such as ⇧p

2 and #P.

2 Background 19

• k;k = k()k = 1.

• kuk = 1 for each u 2 Const [Var.

• For a nonempty set S = {e1, . . . , en}, we define kSk =
Pn

i=1 keik.
• For a tuple ū = (u1, . . . , uk) or a relational atom R(ū) = R(u1, . . . , uk)

with k � 1, we define kūk = kR(ū)k =
Pk

i=1 kuik.

Hence, if D is a nonempty database instance of schema {R1, . . . , Rn}, then

kDk =
nX

i=1

�
|D(Ri)| · (ar(Ri))

�
,

assuming that the arities of R1, . . . , Rn are nonzero.
The size kqk of a query q will depend on the formalisms that we will use

throughout the book for representing q, such as first-order logic or Datalog.
This means that the size of a query specified using first-order logic will be
defined di↵erently than the size of a query specified in Datalog, because the
sizes of the associated first-order formula or Datalog program will be di↵erent.
Throughout the book, we will therefore define the size of queries at the point
where we define the class of queries in question.

Turing Machines and random-access machines perceive their inputs di↵er-
ently. Whereas a random-access machine can store a natural number n 2 N
in a single register, a Turing Machine will store n as a word of O(log n) sym-
bols from its finite alphabet. In Appendix C, we discuss how databases and
queries are encoded for Turing Machines. For instance, storing a database D
on a Turing Machine costs space O(kDk · log kDk). Intuitively, the encoding
uses O(kDk) many constants, and we need O(log kDk) space to encode each
such constant using the Turing Machine’s finite alphabet.

Since it is well known that the random access model and the Turing Ma-
chine model are equally e�cient as long as polynomial di↵erences do not mat-
ter, we sometimes do a random-access-style analysis for easier presentation,
even if the underlying computational model is a Turing Machine.

Further Background Reading

Should the reader find herself/himself in a situation “that she/he does not
have the prerequisites for reading the prerequisites” [18], rather than being
discouraged she/he is advised to continue with the main material, as it is
still very likely to be understood completely or almost completely. Should the
latter happen, the prerequisites can be supplemented by information from
many standard sources, some of which are listed below.

The book [1] covers the basics of database theory, while many database
systems texts cover design, querying, and building real-life databases, for ex-
ample, [16, 24, 27]. The basic mathematical background needed is covered in a

20 2 Background

standard undergraduate “discrete mathematics for computer science” course;
moreover, a good source for this material is the book [26]. For additional in-
formation about computability theory, we provide a primer in Appendix B.
Furthermore, we refer the reader to [19, 21, 28]; standard texts on complexity
theory are [2, 23, 32]. For the foundations of finite model theory and descrip-
tive complexity, the reader is referred to [17, 20, 22].

2 Background 21

Table of Notation

Hard table:

Symbol(s) Meaning

Rel set of relation names
Att set of attribute names

Const set of values that can appear in a database
Var set of variables

Soft table (we may violate this convention, but try to do it only rarely):

Symbol(s) Usual meaning

D database
R,S, . . . relation names
S sometimes a set
A,B, . . . attribute names
U, V, . . . sets of attribute names
S database schema
x, y, z, . . . variables
a, b, c, . . . constants
u, v, . . . variables or constants

Aq set of atoms of a CQ q

Part I

The Relational Model: The Classics

3

First-Order Logic

Database query languages are either declarative or procedural. In a declara-
tive language, one provides a specification of what a query result should be,
typically by means of logical formulae (sometimes presented in a specialized
programming syntax). In the case of relational databases, such languages are
usually based on first-order logic, which often appears in the literature under
the name relational calculus. In a procedural language, on the other hand, one
specifies how the data is manipulated to produce the desired result. The most
commonly used one for relational databases is relational algebra. We present
these languages next, starting with first-order logic.

Syntax of First-Order Logic

Recall that a schema S can be seen as a finite set of relation names, and
each relation name of S has an arity under S. Recall also that we assume a
countably infinite set of values Const called constants, and a countably infinite
set of variables Var. Constants will be typically denoted by a, b, c, . . ., and
variables by x, y, z, . . . (possibly with subscripts and superscripts). Constants
and variables are called terms. Formulae of first-order logic are inductively
defined using terms, conjunction (^), disjunction (_), negation (¬), existential
quantification (9), and universal quantification (8).

Definition 3.1: Syntax of First-Order Logic

We define formulae of first-order logic (FO) over a schema S as follows:

• If a is a constant from Const, and x, y are variables from Var, then
x = a and x = y are atomic formulae.

• If u1, . . . , uk are terms (not necessarily distinct), and R is a k-ary
relation name from S, then R(u1, . . . , uk) is an atomic formula.

26 3 First-Order Logic

• If '1 and '2 are formulae, then ('1 ^'2), ('1 _'2), and (¬'1) are
formulae.

• If ' is a formula and x 2 Var, then (9x') and (8x') are formulae.

The size k'k of ' is defined to be the total number of occurrences con-
stants, variables, and symbols from {^,_,¬,=, 9, 8} occurring in '. For ex-
ample, the size of (x = a _ x = b) is seven.

Formulae of the form x = a and x = y are called equational atoms. Fur-
thermore, as already mentioned in Chapter 2, formulae of the form R(ū) are
called relational atoms. Note that we allow repetition of variables in relational
atoms, for example, we may write R(x, x, y). We shall use the standard short-
hand ('!) for ((¬')_) and ('$) for (('!)^(! ')). To reduce
notational clutter, we will often omit the outermost brackets of formulae.

A crucial notion is that of free variables of a formula, which are essentially
the variables in a formula that are not quantified. Given an FO formula ',
the set of free variables of ', denoted FV('), is inductively defined as follows:

• FV(x = y) = {x, y}.
• FV(x = a) = {x}.
• FV(R(u1, . . . , uk)) = {u1, . . . , uk} \ Var.

• FV('1 _ '2) = FV('1 ^ '2) = FV('1) [FV('2).

• FV(¬') = FV(').

• FV(9x') = FV(8x') = FV(')� {x}.

If x 2 FV('), we call it a free variable (of '); otherwise, x is called bound.
An FO formula ' without free variables is called a sentence.

Example 3.2: First-Order Formulae

Consider the following (named) database schema:

Person [pid, pname, cid]

Profession [pid, prname]

City [cid, cname, country]

The Person relation stores internal person IDs (pid), names (pname),
and the ID of their city of birth (cid). The Profession relation contains
the professions of persons by storing their person ID (pid) and profession
name (prname). Finally, City contains a bit of geographic information by
storing IDs (cid) and names (cname) of cities, together with the country
they are located in (country). In what follows, we give some examples
of FO formulae over this schema. Consider first the FO formula:

3 First-Order Logic 27

9y9z9u19u2

�
Person(x, y, z)^

Profession(x, u1) ^ Profession(x, u2) ^ ¬(u1 = u2)
�
. (3.1)

This formula has one free variable, that is, x. Consider now the formula

9z
�
Person(x, y, z) ^ 8r8s (¬City(z, r, s))

�
. (3.2)

The free variables of this formula are x, y. Finally, consider the formula

9x9z
�
Person(x, y, z)^

(Profession(x, ‘author’) _ Profession(x, ‘actor’))
�
. (3.3)

This formula has one free variable, that is, y.

Semantics of First-Order Logic

Given a databaseD of a schema S, we inductively define the notion of satisfac-
tion of a formula ' over S in D with respect to an assignment ⌘ for ' over D.
Such an assignment is a function from FV(') to Dom(D)[Dom(') ✓ Const,
where Dom(') is the set of constants mentioned in '. For example, for the
formula R(x, y, a), ⌘ is the function {x, y}! Dom(D)[{a}. In the following
definition (and also later in the book), we write ⌘[x/u], for a variable x and
term u, for the assignment that modifies ⌘ by setting ⌘(x) = u. Furthermore,
to avoid heavy notation, we extend ⌘ to be the identity on Const.

Definition 3.3: Semantics of First-Order Logic

Given a databaseD of a schema S, a formula ' over S, and an assignment
⌘ for ' over D, we inductively define when ' is satisfied in D under ⌘,
written (D, ⌘) |= ', as follows:

• If ' is x = y, then (D, ⌘) |= ' if ⌘(x) = ⌘(y).

• If ' is x = a, then (D, ⌘) |= ' if ⌘(x) = a.

• If ' is R(u1, . . . , uk), then (D, ⌘) |= ' if R(⌘(u1), . . . , ⌘(uk)) 2 D.

• If ' = '1 ^ '2, then (D, ⌘) |= ' if (D, ⌘) |= '1 and (D, ⌘) |= '2.

• If ' = '1 _ '2, then (D, ⌘) |= ' if (D, ⌘) |= '1 or (D, ⌘) |= '2.

• If ' = ¬ , then (D, ⌘) |= ' if (D, ⌘) |= does not hold.

• If ' = 9x , then (D, ⌘) |= ' if (D, ⌘[x/a]) |= for some constant
a 2 Dom(D) [Dom(').

• If ' = 8x , then (D, ⌘) |= ' if (D, ⌘[x/a]) |= for each constant
a 2 Dom(D) [Dom(').

28 3 First-Order Logic

An assignment ⌘ for a sentence ' has an empty domain (since the domain
of ⌘ is FV(')), and thus it is unique. For this unique ⌘, it is either the case
that (D, ⌘) |= ' or not. If the former is true, then we simply write D |= ' and
say that D satisfies '.

Example 3.4: Semantics of First-Order Formulae

We provide an intuitive description of the semantic meaning of the for-
mulae given in Example 3.2:

• Formula (3.1) is satisfied by all x such that x is the ID of a person
with two di↵erent professions.

• Formula (3.2) is satisfied by all x, y such that x and y are the ID and
name of persons for which their city of birth is not in the database.

• Formula (3.3) is satisfied by all y such that y is the name of a person
who is an author or an actor.

It is crucial to say that the semantics of FO are defined in a way that is well-
suited for database applications, but slightly departs from the logic literature.
In particular, the range of quantifiers is the set of constants Dom(D)[Dom(')
(see the last two items of Definition 3.3), whereas in the standard definition is
the set of values Const. This is why ⌘ associates elements of Dom(D)[Dom(')
to variables, while in the standard definition one would allow ⌘ to associate
arbitrary elements of Const to variables. The set Dom(D)[Dom(') is called
the active domain of D and '. Therefore, Definition 3.3 actually defines the so-
called active domain semantics, which is standard in the database literature.
The importance of the active domain semantics is revealed below where we
use FO to define database queries.

Notational Conventions

We introduce some notational conventions concerning FO formulae that would
significantly improve readability:

• Since conjunction is associative, we will omit brackets in long conjunctions
and write, for example, x1^x2^x3^x4 instead of ((x1^x2)^x3)^x4. We
follow the same convention for disjunction. We also omit brackets within
sequences of quantifiers.

• We often write 9x̄' for 9x19x2 . . . 9xm ', where x̄ = (x1, . . . , xm), and
likewise for universal quantifiers 8x̄.

• We assume that ¬ binds the strongest, followed by ^, then _, and fi-
nally quantifiers. For example, by 9x¬R(x) ^ S(x) we mean the formula
9x ((¬R(x)) ^ S(x)). We will, however, add brackets to formulae when

3 First-Order Logic 29

we feel that it improves their readability. Notice that this precedence of
operators also influences the range of variables; e.g., by 8xR(x)^S(x) we
mean the formula 8x (R(x) ^ S(x)), as opposed to (8xR(x)) ^ S(x).

• Finally, we write x 6= y instead of ¬(x = y), and likewise for (x = a).

Equivalences

In the way FO is defined in Definition 3.1, some constructors are redundant.
For instance, we know by De Morgan’s laws that ¬(' _) is equivalent to
¬'^¬ , and ¬('^) is equivalent to ¬'_¬ . Furthermore, the formula ¬8x'
is equivalent to 9x¬' and ¬9x' is equivalent to 8x¬'. These equivalences
mean that the full set of Boolean connectives and quantifiers is not necessary
to define all of FO. For example, one can just use _,¬, and 9, or ^,¬, and 9,
and this will capture the full expressive power of FO. This is useful for proofs
that proceed by induction on the structure of FO formulae.

For some proofs in Part I of the book it will be convenient to assume
that constants do not appear in relational atoms. We can always rewrite FO
formulae to such a form via equalities, at the expense of a linear blow-up. For
instance, we can write R(x, a, b) as 9xa9xb R(x, xa, xb) ^ (xa = a) ^ (xb = b).

First-Order Queries

Recall that a k-ary query q produces a finite set of k-ary tuples q(D) ✓ Constk,
for every database D. FO formulae can be used to define database queries. In
order to do this, we specify together with the formula ' a tuple x̄ of variables
that indicates how the output of the query is formed. As a simple example,
consider an atomic formula ' = R(x, y) and the tuple (x, y). Then the query
'(x, y) would return the entire relation R from the database. Notice that the
query is actually R(x, y)(x, y), where the first occurrence of (x, y) is part of the
relational atom R(x, y), and the second occurrence specifies how the output
of the query is formed. To consider a few other examples, if ' = R(x, y), then
the query '(x, x, y) returns all tuples (a, a, b) such that (a, b) is in the relation
R. Finally, if ' = R(x, x), then the query '(x) returns all tuples (a) such that
(a, a) is in the relation R. The definition of FO queries follows.

Definition 3.5: First-Order Queries

A first-order query over a schema S is an expression of the form '(x̄),
where ' is an FO formula over S, and x̄ is a tuple of free variables of '
such that each free variable of ' occurs in x̄ at least once.

For a first-order query q = '(x̄), we define its size kqk as k'k+ kx̄k.

30 3 First-Order Logic

Let '(x̄) be an FO query over S. Given a database D of S, and a tuple
ā of elements from Const, we say that D satisfies the query '(x̄) using the
values ā, denoted by D |= '(ā), if there exists an assignment ⌘ for ' over D
such that ⌘(x̄) = ā and (D, ⌘) |= '. Having this notion in place, we can now
define what is the output of an FO query on a database.

Definition 3.6: Evaluation of First-Order Queries

Given a database D of a schema S, and an FO query q = '(x1, . . . , xk)
over S, where k � 0, the output of q on D is defined as the set of tuples

q(D) = {ā 2 Constk | D |= '(ā)}.

It is clear that q(D) 2 P(Constk). However, to be able to say that q defines
a k-ary query over S in the sense of Definition 2.5, we need to ensure that
q(D) 2 Pfin(Const

k), i.e., the output of q on D is finite. This is guaranteed by
the following result, which is an immediate consequence of the active domain
semantics of FO (see Definition 3.3).

Proposition 3.7

Given a database D of a schema S, and an FO query q = '(x1, . . . , xk)
over S, where k � 0, it holds that

q(D) = {ā 2 (Dom(D) [Dom('))k | D |= '(ā)}.

Since, by definition, the set of values Dom(D) [Dom(') is finite, Propo-
sition 3.7 implies that q(D) 2 Pfin(Const

k), and thus, q defines a k-ary query
over S in the sense of Definition 2.5.

Before we proceed further, let us stress that if we adopt the standard
semantics of FO from logic textbooks, which uses assignments ⌘ that associate
arbitrary elements of Const to variables, then there is no guarantee that q(D)
is finite. Consider, for example, the query q = '(x) with ' = ¬R(x), and the
database D = {R(a), P (b)}. Under the standard FO semantics, the output of
q on D would be the set {(c) | c 2 Const � {a}}, and thus infinite. On the
other hand, under the active domain semantics we have that q(D) = {(b)}.

Example 3.8: Evaluation of First Order Queries

A database D of the schema in Example 3.2 is depicted in Figure 3.1.
We proceed to evaluate the FO queries obtained from the FO formulae
given in Example 3.2 on D:

• Let q1 be the query '1(x), where '1 is the formula (3.1). Then

q1(D) = {(‘1’), (‘3’), (‘4’)}.

3 First-Order Logic 31

Person

pid pname cid

1 Aretha MPH
2 Billie BLT
3 Bob DLT
4 Freddie ST

City

cid cname country

MPH Memphis United States
DLT Duluth United States
ST Stone Town Tanzania

Profession

pid prname

1 singer
1 songwriter
1 actor
2 singer
3 singer
3 songwriter
3 author
4 singer
4 songwriter

Fig. 3.1: A database of the schema in Example 3.2.

• Let q2 be the query '2(x, y), where '2 is the formula (3.2). Then

q2(D) = {(‘2’, ‘Billie’)}.

• Let q3 be the query '3(y), where '3 is the formula (3.3). Then

q3(D) = {(‘Aretha’), (‘Bob’)}.

Boolean First-Order Queries

FO sentences, that is, FO formulae without free variables, are used to define
Boolean queries, i.e., queries that return true or false, and hence the name
Boolean FO queries. By definition, the output of a query q on a database
D corresponds to a set of tuples, and thus, Boolean FO queries will be no
exception to this. We consider such queries to be of the form q = '(), where
' is an FO sentence, and () denotes the empty tuple. There are two cases:

• either q(D) consists of the empty tuple, that is, q(D) = {()}, which hap-
pens precisely when D |= ', or

• q(D) is the empty set, which happens precisely when D |= ¬'.

By convention, we write q(D) = true if D |= ', and q(D) = false otherwise.

4

Relational Algebra

Queries expressed in FO are declarative and tell us what the output of a query
should be. In this chapter, we introduce relational algebra, abbreviated RA,
which contrasts itself with FO because it is procedural, i.e., it specifies how
the output of queries can be obtained via a sequence of operations on the
data. Relational algebra is of significant practical importance in databases,
since database systems typically use relational-algebra-like representations of
queries to do query optimization, that is, to discover methods in which a given
query can be evaluated e�ciently.

We present relational algebra in its most elementary form, in both the un-
named and the named perspective. The following table gives a quick overview
of the operators in the unnamed and named relational algebra.

(Unnamed) RA Named RA
Operator Name Symbol Symbol

selection �✓ �✓
projection ⇡↵ ⇡↵

Cartesian product ⇥
rename ⇢
union [[

di↵erence � �
join on✓ on

We explain these operators and their semantics next, in the definitions of the
unnamed and named RA. Since we will usually be working with the unnamed
perspective in this book, we will often abbreviate “unnamed RA” as “RA”.

Syntax of the Unnamed Relational Algebra

Under the unnamed perspective, RA consists of five primitive operations: se-
lection, projection, Cartesian product, union, and di↵erence. Before giving the

34 4 Relational Algebra

formal definitions of those operations, we first introduce conditions over sets
of integers, which are needed for defining the selection operation. A condition
✓ over {1, . . . , k}, for some k � 0, is a Boolean combination of statements of
the form i

.
= j, i

.
= a, i 6 .= j, and i 6 .= a, where for a 2 Const and i, j 2 [k].

Intuitively, a condition i
.
= j is used to indicate that in a tuple the values of

the i-th attribute and the j-th attribute must be the same, while i 6 .= j is used
to indicate that these values must be di↵erent. Moreover, a condition i

.
= a

is used to indicate that in a tuple the value of the i-th attribute must be the
constant a, while i 6 .= a is used to indicate that this value must be di↵erent
than a. Let us clarify that we use the symbols

.
= and 6 .=, instead of = and 6=,

to avoid writing statements such as “1 = 2”, which are likely to confuse the
reader. Notice that by using De Morgan’s laws to propagate negation, we can
define conditions as positive Boolean combinations of statements i

.
= j and

i 6 .= j, i.e., Boolean combinations using only conjunction ^ and disjunction _.
For example, ¬

�
(1

.
= 2) _ (2 6 .= 3)

�
is equivalent to (1 6 .= 2) ^ (2

.
= 3).

Definition 4.1: Syntax of Unnamed Relational Algebra

We inductively define RA expressions over a schema S, and their asso-
ciated arities, as follows:

Base Expressions. If R is a k-ary relation name from S, then R is an
atomic RA expression over S of arity k. If a 2 Const, then {a} is an
RA expression over S of arity 1.

Selection. If e is an RA expression over S of arity k � 0 and ✓ is a
condition over [k], then �✓(e) is an RA expression over S of arity k.

Projection. If e is an RA expression over S of arity k � 0 and ↵ =
(i1, . . . , im), for m � 0, is a list of numbers from [k], then ⇡↵(e) is
an RA expression over S of arity m.

Cartesian Product. If e1, e2 are RA expressions over S of arity k � 0
and m � 0, respectively, then their Cartesian product (e1⇥ e2) is an
RA expression over S of arity k +m.

Union. If e1, e2 are RA expressions over S of the same arity k � 0, then
their union (e1 [e2) is an RA expression over S of arity k.

Di↵erence. If e1, e2 are RA expressions over S of the same arity k � 0,
then their di↵erence (e1 � e2) is an RA expression over S of arity k.

The size kek of an RA expression e is the total number of occurrences of rela-
tion names, constants, natural numbers, and symbols from {�,⇡,⇥,[,�,^,_,¬,
.
=, 6 .=} in e. For instance, the size of �1 .=2(⇡(1,2)(R)) is eight.

Notice that in the definition of the projection operation, we allow m to be
0, in which case the list of integers ↵ = (i1, . . . , im) is the empty list (). This
is useful for expressing Boolean queries.

4 Relational Algebra 35

Semantics of Unnamed Relational Algebra

We proceed to define the semantics of RA expressions. We first need to define
the operation of projection over tuples. For a tuple ā = (a1, . . . , ak) 2 Constk,
and a list ↵ = (i1, . . . , im) of numbers from [k], the projection ⇡↵(ā) is defined
as the tuple (ai1 , ai2 , . . . , aim).1 Here are some simple examples:

⇡(1,3)(a, b, c, d) = (a, c) ⇡(1,3,3)(a, b, c, d) = (a, c, c) ⇡()(a, b, c, d) = ().

We also need the notion of satisfaction of conditions over tuples. We in-
ductively define when a tuple ā satisfies the condition ✓, denoted ā |= ✓:

ā |= i
.
= j if ai = aj ā |= i

.
= a if ai = a

ā |= i 6 .= j if ai 6= aj ā |= i 6 .= a if ai 6= a

ā |= ✓ ^ ✓0 if ā |= ✓ and ā |= ✓0 ā |= ✓ _ ✓0 if ā |= ✓ or ā |= ✓0

ā |= ¬✓ if ā |= ✓ does not hold

We are now ready to define the semantics of RA expressions.

Definition 4.2: Semantics of Unnamed RA Expressions

Let D be a database of a schema S, and e an RA expression over S. We
inductively define the output e(D) of e on D as follows:

• If e = R, where R is a relation name from S, then e(D) = RD.

• If e = {a}, for a 2 Const, then e(D) = {a}.
• If e = �✓(e1), where e1 is an RA expression of arity k � 0 and ✓ is a
condition over [k], then e(D) = {ā | ā 2 e1(D) and ā |= ✓}.

• If e = ⇡↵(e1), where e1 is an RA expression of arity k � 0 and
↵ = (i1, . . . , im), for m � 0, is a list of numbers from [k], then e(D)
is the m-ary relation {⇡↵(ā) | ā 2 e1(D)}.

• If e = (e1 ⇥ e2), where e1 and e2 are RA expressions of arity k � 0
and ` � 0, respectively, then e(D) = e1(D)⇥ e2(D).

• If e = (e1 [e2), where e1 and e2 are RA expressions of the same
arity k � 0, then e(D) = e1(D) [e2(D).

• If e = (e1 � e2), where e1 and e2 are RA expressions of the same
arity k � 0, then e(D) = e1(D)� e2(D).

We sometimes use derived operations, one of them of special importance:

1 The projection ⇡↵(ū), where ū is tuple from (Const[Var)k, is defined in the same
way. For example, ⇡(1,3)(a, x, y, d) = (a, y) and ⇡(1,3,3)(a, x, y, d) = (a, y, y). We
are going to apply the projection operator over tuples of constants and variables
in subsequent chapters such as Chapters 10 and 11.

36 4 Relational Algebra

Join. Given a k-ary RA expression e1, an m-ary RA expression e2, and a
condition ✓ over {1, . . . , k+m}, the ✓-join of e1 and e2 is denoted e1 on✓ e2.
Its output on a database D is defined as

(e1 on✓ e2)(D) = �✓(e1(D)⇥ e2(D)) .

We note that RA expressions readily define queries on databases. Indeed,
if e is a RA expression, then the output of e on a database D is e(D). In the
remainder of the book, we will therefore sometimes also refer to e as a query.

Example 4.3: Unnamed RA Queries

Consider again the (named) database schema:

Person [pid, pname, cid]

Profession [pid, prname]

City [cid, cname, country]

The RA expression

⇡(1)
�
�5 6 .=7

�
(Person on1

.
=4 Profession) on1

.
=6 Profession

��

returns the IDs of persons with at least two professions. The expression

⇡(1,2)(Person)� ⇡(1,2)
�
Person on3

.
=4 City

�

returns the ID and name of persons whose city of birth does not appear
in the database. Finally, the expression

⇡(2)
�
�(5 .=‘author’)_(5

.
=‘actor’)(Person on1

.
=4 Profession)

�

returns the names of persons that are author or actors.

Syntax of the Named Relational Algebra

Under the named perspective, the presentation changes a bit. Before giving
the formal definition, let us first note that the notion of condition, needed for
defining the selection operation, is now over a set of attributes, and not a set
of integers as in the case of unnamed RA. More precisely, a condition ✓ over a
set of attributes U ✓ Att is a Boolean combination of statements of the form
A

.
= B, A

.
= a, A 6 .= B, and A 6 .= a, where a 2 Const and A,B 2 U .

Definition 4.4: Syntax of Named Relational Algebra

We inductively define named RA expressions over a schema S, and their
associated sorts, as follows:

4 Relational Algebra 37

Base Expressions. IfR 2 S, thenR is an atomic named RA expression
over S of sort S(R). If a 2 Const and A 2 Att, then {(A : a)} is a
named RA expression of sort {A}.

Selection. If e is a named RA expression of sort U and ✓ is a condition
over U , then �✓(e) is a named RA expression of sort U .

Projection. If e is a named RA expression of sort U and ↵ ✓ U , then
⇡↵(e) is a named RA expression of sort ↵.

Join. If e1, e2 are named RA expressions of sort U1 and U2, respectively,
then their join (e1 on e2) is a named RA expression of sort U1 [U2.

Rename. If e is a named RA expression of sort U , then ⇢A!B(e), where
A 2 U and B 2 Att � U , is a named RA expression of sort (U �
{A}) [{B}.

Union. If e1, e2 are named RA expressions of the same sort U , then
their union (e1 [e2) is a named RA expression of sort U .

Di↵erence. If e1, e2 are named RA expressions of the same sort U , then
their di↵erence (e1 � e2) is a named RA expression of sort U .

The size kek of a named RA expression e is the total number of occur-
rences of relation names, constants, attribute names, and symbols from
{�,⇡,on, ⇢,[,�,^,_,¬, .=, 6 .=} in e. For instance, the size of �A .

=B(⇡(A,B)(R))
is eight.

Notice in the definition of the projection operation the contrast with the
unnamed perspective, where ↵ is a list of numbers with repetitions.

Semantics of the Named Relational Algebra

The semantics of named RA expressions is defined similarly to the unnamed
case, with the main di↵erence that e(D) is now a named relation instance.
Therefore, we only discuss rename and join, and leave the others as exercises.

Rename. If e = ⇢A!B(e1), where e1 is a named RA expression of sort U ,
A 2 U , and B 2 Att� U , then e(D) is the relation

{t | t(B) = t1(A) and t(C) = t1(C) for t1 2 e1(D) and C 2 U � {A}}.

Note that renaming does not change the data at all, it only changes names
of attributes. Nonetheless, this operation is necessary under the named
perspective. For instance, consider two relations, R and S, the former with
a single attribute A and the latter with a single attribute B. Suppose we
want to find their union in relational algebra. The problem is that the
union is only defined if the sorts of R and S are the same, which is not
the case. To take their union, we can therefore rename the attribute of S
to be A, and complete the task by writing the expression

�
R[⇢B!A(S)

�
.

38 4 Relational Algebra

Join. The other new primitive operator in the named perpective is join (also
known in the literature as natural join). It is simply a join of two relations
on the condition that their common attributes are the same. Formally, if
e = e1 on e2, where e1 and e2 are named RA expressions of sorts U1 and
U2, then e(D) is the set of tuples t such that

t(A) =

8
><

>:

t1(A) if A 2 U1,

t2(A) if A 2 U2 � U1,

where t1 2 e1(D), t2 2 e2(D), and t1(A) = t2(A) for all A 2 U1 \ U2. To
give an example, consider the relations R[A,B] and S[B,C]. Their join
R on S has attributes A,B,C, and consists of triples (a, b, c) such that
R(a, b) and S(b, c) are both facts in the database. Notice that, if R and S
have no common attributes, their join is their Cartesian product. For this
reason, we do not have the operator ⇥ in the named RA.

Similarly to the unnamed perspective, we can interpret named RA expres-
sions e as queries over databases D. However, since queries return tuples in
Constk according to Definition 2.5, and since e(D) is a named relation in-
stance, we still need to explain how we go from e(D) to a finite set of tuples
over Const. To this end, we will assume that the order l that we introduced in
Chapter 2 for translating between databases from the named to the unnamed
perspective, is also an order on Att, i.e., we assume that it is an oder on the
set Att [(Rel⇥ Att).2 We can now associate to e a query qe by defining that,
on database D, the output of qe on D is the set

qe(D) = {(a1, . . . , ak) | (A1 : a1, . . . , Ak : ak) 2 e(D)

such that A1 lA2 l · · ·lAk} .

In the remainder of the book, we will usually not formally distinguish between
the RA expression e and the query qe. In particular, if we talk about the query
e, then we mean the query qe that we just defined.

Example 4.5: Named RA Queries

We provide named RA versions for the expressions given in Example 4.3.
The expression

⇡{pid}
�
�prname 6 .=prname2

�
(Person on
Profession) on ⇢prname!prname2(Profession)

��

returns the IDs of persons with at least two professions. The expression

2 We can assume that A l (R,B) for all A,B 2 Att and R 2 Rel, although this is
inconsequential.

4 Relational Algebra 39

⇡{pid,pname}(Person)� ⇡{pid,pname}
�
Person on City

�

returns the ID and name of persons whose city of birth does not appear
in the database. Finally, the expression

⇡{pname}
�
�(prname

.
=‘author’)_(prname

.
=‘actor’)(Person on Profession)

�

returns the names of persons that are authors or actors.

Expressiveness of Named and Unnamed RA

We often use named RA in examples since it is closer to how we think about
real-life databases. On the other hand, many results are easier to state and
prove in unnamed RA. This comes at no cost since, as we discuss below, every
named RA query can be expressed in unnamed RA, and vice versa.

Let f be the function that converts a database D from the named to the
unnamed perspective, as presented in Chapter 2. Recall that this converts
each tuple t = (A1 : a1, . . . , Ak : ak) in D(R), for a relation name R of sort
{A1, . . . , Ak} (with (R,A1) l · · · l (R,Ak)), into a tuple t0 = (a1, . . . , ak) in
f(D)(R). Let qn be a named RA query, qu an unnamed RA query, and S a
named database schema. We say that qn is equivalent to qu under S if, for
every database D of S, we have that qn(D) = qu(f(D)).

Note that two queries can be equivalent under one schema but not equiva-
lent under another one. This is unavoidable since the order inside an unnamed
tuple depends on the names of the attributes (the order is defined by l). For
instance, if R is a binary relation name, then ⇡(1)(R) is equivalent to ⇡{B}(R)
over S1 = {R(B,C)} but not over S2 = {R(A,B)}.

The following theorem establishes that each named RA query can be trans-
lated into an equivalent unnamed RA query. We leave the statement of the
reverse direction and its proof as an exercise.

Theorem 4.6

Consider a named database schema S, and a named RA query qn. There
exists an unnamed RA query qu that is equivalent to qn under S.

Proof. We prove this by induction on the structure of qn. Assume that qn has
sort {A1, . . . , Ak} with A1 l · · · l Ak, where l is the ordering we used in
the definition of named RA queries. We proceed to explain how to obtain an
unnamed RA query qu that is equivalent to qn, which means that the i-th
attribute in the output of qu corresponds to the Ai-attribute in the output of
qn. In the remainder of the proof, whenever we write a set of attributes as a
set {A1, . . . , Ak}, we assume that A1 l · · ·lAk. The base cases are:

40 4 Relational Algebra

• If qn = R, for a relation name R 2 S of sort {A1, . . . , Ak}, then qu = R.

• If qn = {(A : a)}, then qu = {a}.

For the inductive step, assume that q0
n
and q00

n
are named RA expressions of

sort U 0 = {A0
1, . . . , A

0
k} and U 00 = {A00

1 , . . . , A
00
` }, respectively, and assume that

they are equivalent to the unnamed RA expressions q0
u
and q00

u
, respectively.

• Let qn = �✓(q0n). Then qu = �✓0(q0u), where ✓
0 is the condition that is

obtained from ✓ by replacing each occurrence of attribute A0
i with i, for

every i 2 [k]. For example, if ✓ is the condition (A0
1

.
= A0

3) ^ (A0
2 6

.
= b),

then ✓0 is the condition (1
.
= 3) ^ (2 6 .= b).

• Let qn = ⇡↵(q0n) and ↵ ✓ U 0. Then qu = ⇡↵0(q0
u
), where ↵0 is the list of all

i 2 [k] with A0
i 2 ↵.

• Let qn = (q0
n
on q00

n
). Then qu = ⇡↵ (q0u on✓ q00

u
), where ✓ is the conjunction

of all conditions i = j such that A0
i = A00

j , for i 2 [k] and j 2 [`]. To define
↵, let {A1, . . . , Am} = U 0 [U 00 and let g : [m]! [k + `] be such that

g(i) =

8
><

>:

j if Ai = A0
j ,

k + j if Ai = A00
j and A00

j 2 U 00 � U 0 .

We now define ↵ = (g(1), . . . , g(m)). Therefore, ✓ allows us to mimic the
natural join on q0

n
and q00

n
, while ⇡↵ is used for getting rid of redundant

attributes and putting the attributes in an ordering that conforms to l.

• Let qn = ⇢A!B(q0n), where A = A0
i for some i 2 [k]. Let j = |{i | A0

ilB}|.
Then qu = ⇡↵(q0u), where ↵ is obtained from (1, . . . , k) by deleting i and
reinserting it right after j if j > 0, and at the beginning of the list if j = 0.

• Finally, if qn = q0
n
[q00

n
, then qu = q0

u
[q00

u
, where q0

u
and q00

u
are the unnamed

RA expressions that are obtained by the induction hypothesis for q0
n
and

q00
n
, respectively. The case when qn = q0

n
� q00

n
is analogous. ut

5

Relational Algebra and SQL

In this chapter, we shed light on the relationship between relational algebra
and SQL, the dominant query language in the relational database world. It is
a complex language (the full descriptions takes many hundreds of pages), and
thus here we focus our attention on its core fragment.

A Core of SQL

We assume that the reader by virtue of being interested in the principles of
databases has some basic familiarity with relational databases and thus, by
necessity, with SQL. Of course SQL is a language with a multitude of features,
but its very core captures relational algebra queries. For now, we concentrate
on that core part of the language and demonstrate its correspondence with
relational algebra. The set of queries we consider are of the form

Q1, Q2 := SELECT [DISTINCT] <select list>
FROM <from list>
WHERE <condition>

| Q1 UNION Q2

| Q1 EXCEPT Q2

The from list provides the list of relation names and subqueries used in
the query, and also their aliases. For example, we can put R AS R1 on the list,
in which case R1 is used as a new name for R. This could be used to shorten
the name, e.g.,

RelationWithAVeryLongName AS ShortName

or to use the same relation more than once, in which case di↵erent aliases are
needed. We can also put Q AS Name on the list, in which case the subquery Q

42 5 Relational Algebra and SQL

is evaluated and the result of it, which is a relation, is given the name Name.
We shall do both in the examples very soon.

The select list containts constants or attributes of relation names men-
tioned in from list. For example, if we had R AS R1 in from list and R has
an attribute A, we can have a reference to R1.A in select list. Likewise, if
from list contained Q AS Name and the output of Q contained attribute B,
we can refer to Name.B. Constants can be output as well, e.g., for example, 5
AS C will output the constant 5 as value of attribute C.

The keyword DISTINCT is to instruct the query to perform duplicate elim-
ination. In general, SQL tables and query results are allowed to contain du-
plicates. For example, in a database containing two facts, R(a, b) and R(a, c),
projecting on the first column would result in two copies of a. We shall discuss
duplicates in Chapter 44. In this chapter, we will always assume that SQL
queries only return sets, and omit DISTINCT from queries used in examples.

As conditions in this basic fragment we shall consider:

• equalities between attributes, e.g., R.A = S.B,

• equalities between attributes and constants, e.g., Person.name = ’John’,

• complex conditions built from these basic ones by using AND, OR, and NOT.

Example 5.1: SQL Queries

Consider the FO query '1(x), where '1 is the FO formula (3.1). This
can be written as the SQL query

SELECT P.pid
FROM Person AS P, Profession AS Pr1, Profession AS Pr2
WHERE P.pid = Pr1.pid
AND P.pid = Pr2.pid
AND NOT (Pr1.prname = Pr2.prname)

The formula '1 mentions the relation name Person once, and the rela-
tion name Profession twice, and so does the above SQL query in the
FROM clause (assigning di↵erent names to di↵erent occurrences, to avoid
ambiguity). The first two conditions in the WHERE clause capture the use
of the same variable x in three atomic subformulae of '1, whereas the
last condition corresponds to the subformula ¬(u1 = u2).

This query could alternatively be written as

SELECT T.id
FROM (SELECT P.pid AS id,

Pr1.prname AS prof1,
Pr2.prname AS prof2

FROM Person AS P, Profession AS Pr1, Profession AS Pr2

5 Relational Algebra and SQL 43

WHERE P.pid = Pr1.pid AND P.pid = Pr2.pid) AS T
WHERE NOT (T.prof1 = T.prof2)

that has a subquery in FROM.
Consider now the query '2(x, y), where '2 is the FO formula (3.2),

which asks for IDs and names of people whose cities of birth were not
recorded in the City relation. This can be expressed as the SQL query:

SELECT Person.pid, Person.pname
FROM Person
EXCEPT

SELECT Person.pid, Person.pname
FROM Person, City
WHERE Person.cid = City.cid

The first subquery asks for all people, the second subquery for those that
have a city of birth recorded, and EXCEPT is their di↵erence. This query
returns people as pairs, consisting of their ID and their name.

Core SQL to Relational Algebra

This section gives an intuition as to what happens when an SQL query is
executed on a DBMS. A declarative query is translated into a procedural
query to be executed. The real translation of SQL into RA is significantly
more complex and, of course, captures many more features of SQL (and thus,
the algebra implemented in DBMSs goes beyond the algebra we consider here).
Nonetheless, the translation we outline presents the key ideas of the real-life
translation.

Assume that we start with the query

SELECT ↵1 AS B1, . . . , ↵n AS Bn
FROM Q1 AS S1, . . . , Qm AS Sm
WHERE condition

where all relation names and subqueries in FROM have been renamed so they
are di↵erent, and each ↵i is of the form Sj .Ap, that is, one of the attributes
of the relation names in the FROM clause. Let ⇢⇢⇢i be the sequence of renaming
operators that rename each attribute A of the output of Qi to Si.A. Let ⇢⇢⇢out
be the sequence of renaming operators that forms the output, i.e., it renames
each ↵i as Bi. Then, the translated query in relational algebra follows:

⇢⇢⇢out

⇡{↵1,...,↵n}

✓
�condition

⇣
⇢⇢⇢1
�
Q0

1

�
on · · · on ⇢⇢⇢m

�
Q0

m

�⌘◆
!

,

where each Q0
i is the translation of Qi into relational algebra. When Qi is a

relation R in the database, then Q0
i = R.

44 5 Relational Algebra and SQL

Essentially the FROM defines the join, WHERE provides the condition for
selection, and SELECT is the final projection (hence, some clash of the naming
conventions in SQL and RA).

The translation is then supplemented by translating UNION to RA’s union
[and EXCEPT to RA’s di↵erence �.

Relational Algebra to Core SQL

We now show that (named) relational algebra queries can always be written as
Core SQL queries. Let e be a named RA expression. We inductively translate
e into an equivalent SQL query Qe as follows.

Base Expressions. If e = R, and R has attributes A1, . . . , An, then Qe is

SELECT R.A1 AS A1, . . . , R.An AS An FROM R AS R

Of course in real SQL one can omit AS R and also use shorthand * for listing
all attributes, but here we keep the complete notation for the inductive
construction.

If e = {(A : a)}, then Qe is simply

SELECT a AS A

For the induction, we will assume that we can write all queries Qe with a
SELECT statement of the form

SELECT X1 AS A1, . . . , Xn AS An

where

• each Xi is either a constant a or of the form Q.A or R.A for a query or a
relation in FROM, and

• all attribute names Ai for i 2 [n] are di↵erent

and a FROM statement that, if present, is of the form

FROM Q1 AS T1, . . . , Qm AS Tm

where each Qi is either a subquery or a relation name, and all the names Tj
for j 2 [m] are di↵erent, and also di↵erent from names of relations in the
database.

Selection and Projection. Assume that e is translated into

5 Relational Algebra and SQL 45

SELECT X1 AS A1, . . . , Xn AS An
FROM Q1 AS T1, . . . , Qm AS Tm
WHERE condition

• Then, �✓(e) is translated into

SELECT X1 AS A1, . . . , Xn AS An
FROM Q1 AS T1, . . . , Qm AS Tm
WHERE condition AND C✓

where C✓ expresses the condition ✓ in SQL syntax, but uses the
names Xi instead of Ai due to the ordering in which SQL applies
aliases. For instance, if ✓ is (A1

.
= A2) ^ ¬(A3

.
= 1) then C✓ is

(X1 = X2) AND NOT (X3 = 1).
To illustrate this with an example, consider the relation R[A,B] and
the query Qe given as

SELECT R.A AS A, R.B AS C, 5 AS D
FROM R AS R
WHERE R.A = R.B

and assume that ✓ is (A
.
= 3) _ ¬(C .

= D). Then �✓(e) is translated
into

SELECT R.A AS A, R.B AS C, 5 AS D
FROM R AS R
WHERE R.A = R.B AND ((R.A = 3) OR NOT (R.B = 5))

• Furthermore, ⇡↵(e) is translated into

SELECT Xi1 AS Ai1 , . . . , Xik AS Aik
FROM Q1 AS T1, . . . , Qm AS Tm
WHERE condition

where Ai1 , . . . , Aik are the elements from the set ↵.

Rename. Assume now that e is translated into

SELECT . . . , Qi.Aj AS A, . . .
FROM Q1 AS T1, . . . , Qm AS Tm
WHERE condition

Then, ⇢A!B(e) is translated into

SELECT . . . , Qi.Aj AS B, . . .
FROM Q1 AS T1, . . . , Qm AS Tm
WHERE condition

Join. Assume now that we have expressions e1 and e2 that are translated
into queries Qe1 and Qe2 , respectively. Then their natural join e1 on e2 is
translated into

46 5 Relational Algebra and SQL

SELECT T1.⇤ AS Ā, {T2.C | C 2 sort(Qe2)� sort(Qe1)} AS B̄
FROM Qe1 AS T1, Qe2 AS T2
WHERE T1.X1 = T2.X1 AND · · · AND T1.Xk = T2.Xk

where X1, . . . , Xk are the attributes in sort(Qe1) \ sort(Qe2) and T1.⇤
abbreviates the list of all attributes of Qe1 , with each of them assigned a
name from the tuple Ā. That is, all attributes of Qe1 are in the output,
together with attributes of Qe2 that do not occur in Qe1 , appropriately
renamed, but only if the common attributes of Qe1 and Qe2 are equal.
Let us illustrate this case with an example. Consider the relation names
R[A,B,D], S[B,C], T [A,C,D], and the two queries

Qe1 = SELECT R.A AS A, S1.C AS C, R.D AS D
FROM R AS R, S AS S1
WHERE R.B = S1.B

and

Qe2 = SELECT T.A AS A, S2.B AS B, T.D AS D
FROM S AS S2, T AS T
WHERE S2.C = T.C

Then, their join, having attributes A,B,C,D, is given by

SELECT T1.A AS A, T2.B AS B, T1.C AS C, T1.D AS D,
FROM Qe1 AS T1, Qe2 AS T2
WHERE T1.A = T2.A AND T1.D = T2.D

Notice that we have ordered the attributes of the resulting query alpha-
betically, slightly deviating from the construction.

Di↵erence. If e = e1 � e2, then Qe is

(Qe1) EXCEPT (Qe2)

Union. Finally, if e = e1 [e2, then Qe is

(Qe1) UNION (Qe2)

This completes the translation from (named) RA to Core SQL.

Other SQL Features Captured by RA

A very important feature of SQL is using subqueries. We have seen them in
FROM, but they can be used in conditions in WHERE as well. They are very
convenient for a declarative presentation of queries (although from the point

5 Relational Algebra and SQL 47

of view of expressiveness of the language, they can be omitted). Consider, for
example, the query that computes the di↵erence of two relations R and S
with one attribute A. We could use EXCEPT, but using subqueries we can also
write

SELECT R.A
FROM R
WHERE R.A NOT IN (SELECT S.A FROM S)

saying that we need to return elements of R that are not present in S, or

SELECT R.A
FROM R
WHERE NOT EXISTS (SELECT S.A FROM S WHERE S.A = R.A)

which asks for elements a of R such that there is no b in S satisfying a = b.
Both queries express the di↵erence.

Example 5.2: Subqueries in SQL

Consider the query '(x, y), where ' is the FO formula (3.2), which asks
for IDs and names of people whose cities of birth were not recorded in
the City relation. This can also be written as the SQL query:

SELECT P.pid, P.pname
FROM Person AS P
WHERE P.cid NOT IN (SELECT City.cid FROM City)

The above two forms of subqueries, using IN and EXISTS, potentially with
negation NOT, correspond to adding the following two types of selection con-
ditions to RA, which, nevertheless, do not increase the expressiveness of RA;
see Exercise 1.5:

• ā 2 e, where ā is a tuple of terms and e is an expression, checking whether
ā belongs to the result of the evaluation of e, and

• empty(e), checking if the result of the evaluation of e is empty.

Such an addition does not increase expressiveness (Exercise 1.6) but makes
writing queries easier.

Other SQL Features Not Captured by RA

Bag Semantics. As mentioned already, SQL’s data model is based on bags,
i.e., the same tuple may occur multiple times in a database or output of a

48 5 Relational Algebra and SQL

query. Here we tacitly assumed that all relations are sets and each SELECT
is followed by DISTINCT to ensure that duplicates are eliminated. To see
how RA operations change in the presence of duplicates, see Chapter 44.

Grouping and Aggregation. An extremely common feature of SQL queries
is the use of aggregation and grouping. Aggregation allows numerical func-
tions to be applied to entire columns, for example, to find the total salary
of all employees in a company. Grouping allows such columns to be split
according to a value of some attribute; an example of this is a query that
returns the total salary of each department in a company. These features
will be discussed in more detail in Chapter 33.

Nulls. SQL databases permit missing values in tuples. To handle this, they
allow a special element null to be placed as a value. The handling of nulls
is very di↵erent though from the handling of values from Const, and even
the notion of query output changes in this case. These issues are discussed
in detail in Chapters 39 and 40.

Types. In SQL databases, attributes must be typed, i.e., all values in a col-
umn must have the same type. There are standard types such as numbers
(integers, floats), strings of various length, fixed or varying, date, time,
and many others. With the exception of the consideration of arithmetic
operations (Chapter 33), this is a subject that we do study in this book.

6

Equivalence of Logic and Algebra

In this chapter, we prove that the declarative query language based on FO,
and the procedural query language RA have the same expressive power, which
is a fundamental result of relational database theory. Recall that we focus on
the unnamed version of RA for reasons that we explained earlier.

Theorem 6.1

The languages of RA queries and of FO queries are equally expressive.

The proof of Theorem 6.1 boils down to showing that, for a schema S, the
following statements hold:

(a) For every RA expression e over S, there exists an FO query qe such that
qe(D) = e(D), for every database D of S.

(b) For every FO query q over S, there exists an RA expression eq such that
eq(D) = q(D), for every database D of S.

In the proof of the above, we need a mechanism that allows us to substitute
variables in formulae. For an FO formula ' and variables {x1, . . . , xn}, we
denote by '[x1/y1, . . . , xn/yn] the formula obtained from ' by simultaneously
replacing each xi with yi. We also use the notation 9{x1, . . . , xn}' for a set
of variables {x1, . . . , xn} as an abbreviation for 9x1 · · · 9xn'. Notice that the
ordering of quantification is irrelevant for the semantics of this formula.

From RA to FO

We first show (a) by induction on the structure of e. The base cases are:

• If e = R for R 2 Dom(S), then the FO query is 'e(x1, . . . , xar(R)), where

50 6 Equivalence of Logic and Algebra

'e = R(x1, . . . , xar(R))

with all the variables x1, . . . , xar(R) being di↵erent.

• If e is {a} with a 2 Const, then the FO query is 'e(x), where

'e = (x = a).

We now proceed with the induction step. Assume that e and e0 are RA
expressions over S for which we have equivalent FO queries 'e(x1, . . . , xk) and
'e0(y1, . . . , y`), respectively. By renaming variables, we can assume, without
loss of generality, that {x1, . . . , xk} and {y1, . . . , y`} are disjoint.

• Let ✓ be a condition over {1, . . . , k}. Taking x̄ = (x1, . . . , xk), we induc-
tively define the formula ✓[x̄] as follows:

– if ✓ is i
.
= j, i

.
= a, i 6 .= j, or i 6 .= a, then ✓[x̄] is xi = xj , xi = a,

xi 6= xj , or xi 6= a, respectively,

– if ✓ = ✓1 ^ ✓2, then ✓[x̄] = ✓1[x̄] ^ ✓2[x̄],
– if ✓ = ✓1 _ ✓2, then ✓[x̄] = ✓1[x̄] _ ✓2[x̄], and
– if ✓ = ¬✓1, then ✓[x̄] = ¬✓1[x̄].

Then, the FO query equivalent to �✓(e) is '�✓(e)(x̄) = 'e(x̄) ^ ✓[x̄].
• Let ↵ = (i1, . . . , ip) be a list of numbers from {1, . . . , k}. The FO query
equivalent to ⇡↵(e) is '⇡↵(e)(xi1 , . . . , xip), where '⇡↵(e) is the formula

9({x1, . . . , xn}� {xi1 , . . . , xip}) 'e.

Notice that, if ↵ has repetitions, then (xi1 , . . . , xip) has repeated variables.
For example, if e = R, where R is binary, and ↵ = (1, 1), then the FO
query is 'e(x1, x1) with 'e = 9x2 R(x1, x2).

• The FO query equivalent to e ⇥ e0 is 'e⇥e0(x1, . . . , xk, y1, . . . , y`), where
'e⇥e0 is the formula

'e ^ 'e0 .

• Let e [e0 be an RA expression, which is only well-defined if k = `. The
equivalent FO query is 'e[e0(x1, . . . , xk), where 'e[e0 is

'e _ ('e0 [y1/x1, . . . , yk/xk]).

• Let e � e0 be an RA expression, which is only well-defined if k = `. The
equivalent FO query is 'e�e0(x1, . . . , xk), where 'e�e0 is

'e ^ ¬('e0 [y1/x1, . . . , yk/xk]).

We leave the verification of the construction, that is, the inductive proof of
the equivalence of e and 'e(x̄), to the reader. This concludes part (a).

6 Equivalence of Logic and Algebra 51

From FO to RA

For proving (b), we assume that relational atoms do not mention constants,
which we observed in Chapter 3 is always possible. We also consider a slight
generalization of FO queries that will simplify the induction: '(x1, . . . , xn)
is an FO query even if the free variables of ' are a subset of {x1, . . . , xn}.
The semantics of such a query '(x1, . . . , xn) is the usual semantics of the FO
query '0(x1, . . . , xn), where '0 is the formula '^ (x1 = x1)^ · · ·^ (xn = xn).

Let q be an FO query of the form '(x1, . . . , xn). We can assume, without
loss of generality, that ' is in prenex normal form, that is, of the form

Qk · · ·Q1 'qf ,

where

• each Qj is of the form 9yj or ¬9yj ,
• 'qf is quantifier-free and has (free) variables y1, . . . , ym,

• {x1, . . . , xn} = {yk+1, . . . , ym}, and
• 'qf only uses the Boolean operators _ and ¬.

Let Dom(') = {a1, . . . , a`}. First, we build an RA expression Adom for
the active domain, that is,

Adom =
[̀

i=1

{ai} [
[

R[n]2S

�
⇡1(R) [· · · [⇡n(R)

�
.

In the following, we denote by Adomi, for i 2 N, the i-fold Cartesian product

Adom⇥ · · ·⇥Adom| {z }
i

.

We construct for each subformula of ' an RA query e . The induction
hypothesis consists of two parts.

(1) For each subformula of 'qf , the expression e has arity m and is equiv-
alent to the FO query (y1, . . . , ym).

(2) For all the other subformulae of ', it holds that = Qj · · ·Q1 'qf , for
j 2 [k], FV() = {yj+1, . . . , ym}, and the expression e , which has arity
m� j, is equivalent to the FO query Qj · · ·Q1 'qf(yj+1, . . . , ym).

The inductive construction defines the expression

52 6 Equivalence of Logic and Algebra

e =

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

⇡1,...,m(�i1=m+1,...,ij=m+j(Adomm ⇥R)) if is R(yi1 , . . . , yij)

�i .=j(Adomm) if is yi = yj
�i .=a(Adomm) if is yi = a

e 1 [e 2 if is (1 _ 2)

Adomm � e 0 if is ¬ 0, and

 is a subformula of 'qf

⇡2,...,m�j+1(e 0) if is 9yj 0 and Qj = 9yj
Adomm�j � ⇡2,...,m�j+1(e 0) if is ¬9yj 0

We leave the proof that the inductive construction gives an expression that is
equivalent to '(yk+1, . . . , ym) to the reader. To obtain an expression equivalent
to '(x1, . . . , xn), observe that xi 2 {yk+1, . . . , ym} for every i 2 [n]. Therefore,
there exists a function f : [n]! [m� k] such that xi = yf(i) for every i 2 [n].
This means that the expression ⇡(f(1),...,f(n))e' is equivalent to '(x1, . . . , xn).

7

First-Order Query Evaluation

In this chapter, we study the complexity of evaluating first-order queries, that
is, FO-Evaluation. Recall that this is the problem of checking whether ā 2 q(D)
for an FO query q, a database D, and a tuple ā over Const.

Combined Complexity

We first concentrate on the combined complexity of the problem, that is, when
the input consists of the query q, the database D, and the tuple ā.

Theorem 7.1

FO-Evaluation is PSpace-complete.

Proof. For simplicity, we consider the case where the query does not use con-
stant values and leave the extension to arbitrary FO queries as an exercise.
We start with the upper bound. Consider an FO query q = '(x̄) without
constants, a database D, and a tuple ā. First, we observe that, if ā contains
values a01, . . . , a

0
` that are not in Dom(D), we can replace them with arbi-

trary elements a001 , . . . , a
00
` in Const � Dom(D) that can be represented using

O(kDk) many bits. We can also assume that the tuples x̄ = (x1, . . . , xn)
and ā = (a1, . . . , am) are compatible, that is, they have the same length (i.e.,
n = m), and xi = xj implies ai = aj for every i, j 2 [n]. Indeed, if x̄ and ā
are not compatible, which can be easily checked using logarithmic space, then
ā 62 q(D) holds trivially. We can also assume that ' uses only ¬, _, and 9
(see Exercise 1.1).

By Definition 3.6, ā 2 q(D) if and only if (D, ⌘) |= ' with ⌘ being the
assignment for ' over D such that ⌘(x̄) = ā. Therefore, to establish that
FO-Evaluation is in PSpace, it su�ces to show that the problem of checking
whether (D, ⌘) |= ' is in PSpace. This is done by exploiting the recursive
procedure Evaluation, depicted in Algorithm 1. Notice that the algorithm

54 7 First-Order Query Evaluation

performs simple Boolean tests for determining its output values, like testing
if R(⌘(x̄)) is an element of D in line 1 or whether ⌘(xi) = ⌘(xj) in line 2. It is
not di�cult to verify that (D, ⌘) |= ' if and only if Evaluation(', D, ⌘) =
true. It remains to argue that Evaluation(', D, ⌘) uses polynomial space.

Algorithm 1 Evaluation(', D, ⌘)

Input: An FO formula ', a database D, and an assignment ⌘ for ' over D.
Output: true if (D, ⌘) |= ', and false otherwise.

1: if ' is of the form R(x̄) then return R(⌘(x̄)) 2 D
2: else if ' is of the form (xi = xj) then return ⌘(xi) = ⌘(xj)
3: else if ' is of the form (xi = a) then return ⌘(xi) = a
4: else if ' is of the form ¬'0

then return ¬Evaluation('0, D, ⌘)
5: else if ' is of the form '0 _ '00

then

6: return Evaluation('0, D, ⌘) _ Evaluation('00, D, ⌘)
7: else if ' is of the form 9x'0

then

8: return
W

a2Dom(D) Evaluation('
0, D, ⌘[x/a])

9: . ⌘[x/a] extends ⌘ by setting ⌘(x) = a.

Lemma 7.2. Evaluation(', D, ⌘) runs in Space(O(k'k2 · log kDk)).

Proof. Observe that the total space used by Evaluation(', D, ⌘) is its recur-
sion depth times the space needed by each recursive call. It is clear that the
recursion depth is O(k'k). We proceed to argue, by induction on the structure
of ', that each recursive call uses O(k'k · log kDk) space on a Turing Machine,
which in turn implies that the total space used by Evaluation(', D, ⌘) is
O(k'k2 · log kDk).

• Assume first that ' = R(x̄). In this case, the algorithm checks whether
R(⌘(x̄)) 2 D. The space needed to store ⌘(x̄) on the work tape (adopting
the encoding discussed in Appendix C) is O(k'k · log kDk). Furthermore,
as shown in Appendix C (see Lemma C.1), for a tuple t̄ over Dom(D), we
can check whether R(t̄) 2 D using O(ar(R) · log kDk) space if ar(R) > 0,
and O(log kDk) space if ar(R) = 0. Therefore, in the worst-case where
ar(R) > 0, we can check whether R(⌘(x̄)) 2 D using space

O(k'k · log kDk) + O(ar(R) · log kDk).

Since ar(R)  k'k, the total space used is O(k'k · log kDk).
• When ' = (xi = xj), the algorithm checks whether ⌘(xi) = ⌘(xj), which
can be done using O(k'k·log kDk) space by simply storing the tuples ⌘(xi)
and ⌘(xj) (adopting the encoding from Appendix C) on the work tape,
and then check that they are equal. The case ' = (xi = a) is analogous.

7 First-Order Query Evaluation 55

• When ' = ¬'0, the algorithm computes the value ¬Evaluation('0, D, ⌘),
which, by induction hypothesis, can be done using O(k'k · log kDk) space.

• When ' = '0 _ '00, the algorithm computes Evaluation('0, D, ⌘) _
Evaluation('00, D, ⌘), which, by induction hypothesis, can be done using
O(k'k · log kDk) space.

• Finally, assume that ' = 9x'0. In this case, the algorithm computesW
a2Dom(D) Evaluation('

0, D, ⌘[x/a]). This is done by iterating over the
constants of Dom(D) in the order provided by the encoding of D (see
Appendix C), and reusing the space used by the previous iteration. Thus,
it su�ces to argue that computing the value Evaluation('0, D, ⌘[x/a]),
for some value a 2 Dom(D), can be done using O(k'k·log kDk) space. The
latter clearly holds by induction hypothesis, and the claim follows. ut

For the lower bound, we provide a reduction from QSAT, which we know
is PSpace-complete (see Appendix B). Consider an input to QSAT given by

 = 9x̄18x̄29x̄3 . . . Qnx̄n
0hx̄1, . . . , x̄ni,

where Qn = 8 if n is even, and Qn = 9 if n is odd. We assume that 0 is in
negation normal form, which means that negation is only applied to variables,
since QSAT remains PSpace-hard. We construct the database

D = {Zero(0),One(1)}

and the Boolean FO query

q = 9x̄18x̄29x̄3 . . . Qnx̄n
00,

where 00 is obtained from 0 by replacing each occurrence of the literal x by
One(x), and each occurrence of the literal ¬x by ¬One(x). The only reason
why we add Zero(0) to the database is to ensure that 0 is in the active domain.
For example, if 0(x1, x2, x3) = (x1 ^ x2)_ (¬x1 ^ x3), then 00 = (One(x1)^
One(x2))_ (¬One(x1)^One(x3)). It is not hard to verify that is satisfiable
if and only if D |= q (we leave the proof as an exercise). ut

Note that q(D), for an FO query q = '(x̄) and a database D, can also be
computed in polynomial space as follows: iterate over all tuples ā over Dom(D)
that are compatible with x̄, and output ā if and only if Evaluation(', D, ⌘)
= true with ⌘ being the assignment for ' over D such that ⌘(x̄) = ā. It is
easy to show that this procedure runs in polynomial space. This, of course,
relies on the fact that the running space of a Turing Machine with output is
defined without considering the output tape; see Appendix B for details.

Data Complexity

How can it be that databases are so successful in practice, even though Theo-
rem 7.1 proves that the most essential database problem is PSpace-complete,

56 7 First-Order Query Evaluation

a complexity class that we consider to be intractable? If we take a closer look
at the lower bound proof of Theorem 7.1, we see that the entire di�culty of the
problem is encoded in the query. In fact, the database D = {Zero(0),One(1)}
consists of only two atoms, whereas the query q can be arbitrarily large. This is
in contrast to what we typically experience in practice, where databases are or-
ders of magnitude larger than queries, which means that databases and queries
contribute in di↵erent ways to the complexity of evaluation. This brings us to
the data complexity of FO query evaluation.

As discussed in Chapter 2, when we study the data complexity of query
evaluation, we essentially consider the query to be fixed, and only the database
and the candidate output are considered as input. Formally, we are interested
in the complexity of the problem q-Evaluation for an FO query q, which takes
as input a databaseD and a tuple ā over Dom(D), and asks whether ā 2 q(D).
Recall that, by convention, we say that FO-Evaluation is in a complexity class
C in data complexity if q-Evaluation is in C for every FO query q.

Theorem 7.3

FO-Evaluation is in DLogSpace in data complexity.

Proof. Fix an FO query q = '(x̄). Our goal is to show that q-Evaluation is in
DLogSpace. As for Theorem 7.1, we prove the result for the case where ā is
over Dom(D), and leave the extension to tuples over Const as an exercise.

Consider a database D, and a tuple ā over Dom(D). Observe that the
input word encoding D on a Turing Machine has length O(kDk log kDk). We
therefore need to prove that q-Evaluation can be solved in Space(O(log(kDk
log kDk))) = Space(O(log kDk)). As explained in the proof of Theorem 7.1,
we can assume that the relational atoms in ' do not contain constants, the
tuples x̄ = (x1, . . . , xn) and ā = (a1, . . . , am) are compatible, and that ' uses
only ¬, _, and 9. To prove our claim it su�ces to show that checking whether
(D, ⌘) |= ' with ⌘ being the assignment for ' over D such that ⌘(x̄) = ā is in
DLogSpace. This is done by exploiting the procedure Evaluation', which
takes as inputD and ⌘, and it simply calls the procedure Evaluation given in
Algorithm 1 with input ', D and ⌘. More precisely, Evaluation'(D, ⌘) does
the following: if Evaluation(', D, ⌘) = true, then return true; otherwise,
return false. From the correctness of Evaluation, it is straightforward to see
that (D, ⌘) |= ' if and only if Evaluation'(D, ⌘) = true. Moreover, from the
complexity analysis of Evaluation performed in the proof of Theorem 7.1,
and the fact that ' is fixed, we conclude that Evaluation'(D, ⌘) runs in
space O(log kDk), and the claim follows. ut

Theorem 7.3 essentially tells us that fixing the query indeed has a big im-
pact to the complexity of evaluation, which goes from PSpace toDLogSpace.
Actually, FO-Evaluation is in AC0 in data complexity, a class that is properly
contained in DLogSpace. The class AC0 consists of those languages that are

7 First-Order Query Evaluation 57

accepted by polynomial-size circuits of constant depth and unbounded fan-in
(the number of inputs to their gates). This is the reason why FO-Evaluation
is often regarded as an “embarrassingly parallel” task.

8

Static Analysis

We now study central static analysis tasks for FO queries. We focus on sat-
isfiability, containment, and equivalence, which are key ingredients for query
optimization. As we shall see, these problems are undecidable for FO queries.
This in turn implies that, given an FO query, computing an optimal equivalent
FO query is, in general, algorithmically impossible.

Satisfiability

A query q is satisfiable if there is a database D such that q(D) is non-empty.
It is clear that a query that is not satisfiable it is not a useful query since its
output on a database is always empty. In relation to satisfiability, we consider
the following problem, parameterized by a query language L.

Problem: L-Satisfiability

Input: A query q from L
Output: true if there is a database D such that q(D) 6= ;, and false

otherwise

Notice that satisfiability is, in a sense, the most elementary static analysis
question one can ask about a query: “does there exist a database at all for
which the query returns an answer?” Indeed, if there does not, then optimizing
the query is extremely simple: one can just always return the empty set of
answers, independently of the input database.

We are asking the satisfiability question focussing on finite databases. In
the case of possibly infinite databases, we know from a classical result in logic
that goes back in the 1930s, known as Church’s Theorem (sometimes called
Church-Turing Theorem), that checking for satisfiability is undecidable. The
problem remains undecidable even for finite databases, a result proved by

60 8 Static Analysis

Trakhtenbrot in the 1950s, i.e., several years after Church’s Theorem. In what
follows we present Trakhtenbrot’s Theorem.

Theorem 8.1: Trakhtenbrot’s Theorem

FO-Satisfiability is undecidable.

Proof. The proof is by reduction from the halting problem for Turing Ma-
chines; details on Turing Machines can be found in Appendix B. It is well-
known that the problem of deciding whether a (deterministic) Turing Machine
M = (Q,⌃, �, s) halts on the empty word is undecidable. Our goal is to con-
struct a Boolean FO query qM such that the following are equivalent:

1. M halts on the empty word.

2. There exists a database D such that qM (D) = true.

The Boolean FO query qM will be over the schema

{�[2],First[1], Succ[2]} [{Symbola[2] | a 2 ⌃} [{Head[2], State[2]}.

The intuitive meaning of the above relation names is the following:

• �(·, ·) encodes a strict linear order over the underlying domain, which will
be used to simulate the time steps of the computation of M on the empty
word, and the tape cells of M .

• First(·) contains the first element from the linear order �.
• Succ(·, ·) encodes the successor relation over the linear order �.
• Symbola(t, c): at time instant t, the tape cell c contains the symbol a.

• Head(t, c): at time instant t, the head points at cell c.

• State(t, p): at time instant t, the machine M is in state p.

Having the above schema in place, we can now proceed with the definition
of the Boolean FO query qM , which is of the form

'� ^ 'first ^ 'succ ^ 'comp,

where '�, 'first and 'succ are FO sentences that are responsible for defining
the relations �, First and Succ, respectively, while 'comp is an FO sentence
responsible for mimicking the computation of M on the empty word. The
definitions of the above FO sentences follow. For the sake of readability, we
write x � y instead of the formal �(x, y).

8 Static Analysis 61

The Sentence '�

This sentence simply expresses that the binary relation � over the underlying
domain is total, irreflexive, and transitive:

8x8y
�
¬(x = y)! (x � y _ y � x)

�
^

8x¬(x � x) ^
8x8y8z

�
(x � y ^ y � z)! x � z

�
.

Note that irreflexivity and transitivity together imply that the relation � is
also asymmetric, i.e., 8x8y ¬(x � y ^ y � x).

The Sentence 'first

This sentence expresses that First(·) contains the smallest element over �:

8x
�
First(x) $ 8y (x = y _ x � y)

�
.

The Sentence 'succ

It simply defines the successor relation over � as expected:

8x8y
✓
Succ(x, y) $

�
x � y ^ ¬9z (x � z ^ z � y)

�◆
.

The Sentence 'comp

Assume that the set of states of M is Q = {p1, . . . , pk}, where p1 = s is the
start state, p2 = “yes” is the accepting state, and p3 = “no” is the rejecting
state. The key idea is to associate to each state of M a distinct element of
the underlying domain, which in turn will allow us to refer to the states of
M . Thus, 'comp is defined as the following FO sentence; for a subformula
of 'comp, we write hx̄i to indicate that FV() consists of the variables in x̄:

9x1 · · · 9xk

✓V
i,j2[k] : i<j ¬(xi = xj) ^ 'starthx1i ^ 'consistenthx1, . . . , xki ^

'�hx1, . . . , xki ^ 'halthx2, x3i
◆
,

where

• 'start defines the start configuration sc("),

• 'consistent performs several consistency checks to ensure that the compu-
tation of M on the empty word is faithfully described,

• '� encodes the transition function of M , and

• 'halt checks whether M halts.

62 8 Static Analysis

The definitions of the subformulae of 'comp follow.

The Formula 'start. It is defined as the conjunction of the following FO
formulae, expressing that the first tape cell contains the left marker

8x
�
First(x) ! Symbol.(x, x)

�
,

the rest of tape cells contain the blank symbol

8x8y
�
(First(x) ^ ¬First(y)) ! Symbolt(x, y)

�
,

the head points to the first cell

8x (First(x) ! Head(x, x)),

and the machine M is in state s

8x (First(x) ! State(x, x1)).

Note that we refer to the start state s = p1 via the variable x1.

The Formula 'consistent. It is defined as the conjunction of the following
FO formulae, expressing that, at any time instant x, M is in exactly one state

8x

0

@
✓ k_

i=1

State(x, xi)

◆
^

^

i,j2[k] : i<j

¬
�
State(x, xi) ^ State(x, xj)

�
1

A ,

each tape cell y contains exactly one symbol

8x8y

0

@
✓ _

a2⌃
Symbola(x, y)

◆
^

^

a,b2⌃ : a 6=b

¬
�
Symbola(x, y) ^ Symbolb(x, y)

�
1

A ,

and the head points at exactly one cell

8x
✓
9yHead(x, y) ^ 8y8z

✓�
Head(x, y) ^Head(x, z)

�
! y = z

◆◆
.

The Formula '�. It is defined as the conjunction of the following FO formu-
lae: for each pair (pi, a) 2 (Q� {“yes”, “no”})⇥⌃ with �(pi, a) = (pj , b, dir),

8x8y
✓�

State(x, xi) ^Head(x, y) ^ Symbola(x, y) ^ 9t (x � t)
�
!

9z9w
✓
Succ(x, z) ^Move(y, w) ^Head(z, w) ^ Symbolb(z, y) ^ State(z, xj)^

8u
✓
¬(y = u)!

^

c2⌃

�
Symbolc(x, u)! Symbolc(z, u)

�◆◆◆
,

8 Static Analysis 63

where

Move(y, w) =

8
>>>><

>>>>:

Succ(y, w) if dir =!,

Succ(w, y) if dir = , and

y = w if dir = �.

The Formula 'halt. Finally, this formula checks whether M has reached an
accepting or a rejecting configuration

9x (State(x, x2) _ State(x, x3)).

Recall that, by assumption, p2 = “yes” and p3 = “no”. Thus, the states “yes”
and “no” can be accessed via the variables x2 and x3, respectively.

This completes the construction of the Boolean FO query qcomp, and thus
of qM . It is not hard to verify that M halts on the empty word if and only if
there exists a database D such that q(D) = true, and the claim follows. ut

The proof of Theorem 8.1 relies on the finiteness of databases; it does not
work for possibly infinite databases. Assuming that the Turing Machine M
does not halt on the empty word, we can construct an infinite database D
such that qM (D) = true (we leave this as an exercise).1 As mentioned earlier,
Church’s Theorem shows the undecidability of the satisfiability problem for
FO queries over possibly infinite databases (see also Exercise 1.11).

We have seen in Chapter 6 that FO and RA have the same expressive power
(Theorem 6.1). This fact and Theorem 8.1 immediately imply the following.

Corollary 8.2

RA-Satisfiability is undecidable.

Containment and Equivalence

We now focus on the problems of containment and equivalence for FO queries:
given two FO queries q and q0, is it the case that q ✓ q0 and q ⌘ q0, respectively.
By exploiting Theorem 8.1, it is easy to show the following.

Theorem 8.3

FO-Containment and FO-Equivalence are undecidable.

1 The output of an FO query on an infinite database D is defined in the same way
as for databases (see Definition 3.6).

64 8 Static Analysis

Proof. The proof is by an easy reduction from FO-Satisfiability. Consider an
FO query q. From the proof of Theorem 8.1, we know that FO-Satisfiability is
undecidable even for Boolean FO queries. Consider the Boolean FO query

q0 = 9x (R(x) ^ ¬R(x)),

which is trivially unsatisfiable. It is easy to verify that q is unsatisfiable if and
only if q ⌘ q0 (or even q ✓ q0), and the claim follows. ut

The following is an easy consequence of the fact that FO and RA have the
same expressive power, and Theorem 8.3.

Corollary 8.4

RA-Containment and RA-Equivalence are undecidable.

9

Homomorphisms

Homomorphisms are a fundamental tool that plays a very prominent role in
various aspects of relational databases. We introduce them here, because we
will use them in Chapter 10 to reason about functional dependencies. In this
chapter, we define homomorphisms and provide some simple examples.

Definition of Homomorphism

Homomorphisms are structure-preserving functions between two objects of
the same type. In our setting, the objects that we are interested in are (possi-
bly infinite) databases and queries. To talk about them as one we define ho-
momorphisms among (possibly infinite) sets of relational atoms. Recall that
relational atoms are of the form R(ū), where ū is a tuple that can mix vari-
ables and constants, e.g., R(a, x, 2, b). Recall also that we write Dom(S) for
the set of constants and variables occurring in a set of relational atoms S; for
example, Dom({R(a, x, b), R(x, a, y)}) = {a, b, x, y}.

The way that the notion of homomorphism is defined between sets of atoms
is slightly di↵erent from the standard notion of mathematical homomorphism,
namely constant values of Const should be mapped to themselves. The reason
for this is that, in general, a value a 2 Const represents an object di↵erent
from the one represented by b 2 Const with a 6= b, and homomorphisms, as
structure preserving functions, should preserve this information as well.

Definition 9.1: Homomorphism

Let S, S0 be sets of relational atoms over the same schema. A homomor-
phism from S to S0 is a function h : Dom(S)! Dom(S0) such that:

1. h(a) = a for every a 2 Dom(S) \ Const, and

2. if R(ū) is an atom in S, then R(h(ū)) is an atom in S0.

66 9 Homomorphisms

If h(ū) = v̄, where ū, v̄ are tuples of the same length over Dom(S) and
Dom(S0), respectively, then h is a homomorphism from (S, ū) to (S0, v̄).
We write S ! S0 if there exists a homomorphism from S to S0, and
(S, ū)! (S0, v̄) if there exists a homomorphism from (S, ū) to (S0, v̄).

Example 9.2: Homomorphism

Assume that S and S0 are sets of relational atoms over the schema {R[2]}.
In this way, we can view both S and S0 as a directed graph: the set of
nodes is the set of constants and variables occurring in the relational
atoms, and R(u, v) means that there exists an edge from u to v. Unless
stated otherwise, the elements in S and S0 are variables.

A homomorphism always exists. Let S0 = {R(z, z)}. The function
h : Dom(S) ! Dom(S0) such that h(x) = z, for each x 2 Dom(S),
is a homomorphism from S to S0 since R(h(x), h(y)) = R(z, z) is an
atom of S0, for every x, y 2 Dom(S).

A homomorphism does not exist. Let S = {R(a, x)} and S0 =
{R(z, z)}, where a 2 Const. In contrast to the previous example,
there is no homomorphism h from S to S0 since, by definition, h(a)
must be equal to a, while a 62 Dom(S0).

A homomorphism is easy to find. Let now S0 = {R(x, y), R(y, x)}.
Assume that a homomorphism h from S to S0 exists. As usual, h�1

stands for the inverse, i.e., h�1(x) = {z 2 Dom(S) | h(z) = x}, and
likewise for h�1(y). The sets h�1(x) and h�1(y) are disjoint since
x 6= y. If we have an edge (z, w) in S, we know that the variables z
and w cannot belong to the same set h�1(x) or h�1(y); otherwise,
either R(x, x) or R(y, y) would be an atom in S by the definition of
the homomorphism. This means that S, viewed as a directed graph,
is bipartite: its nodes are partitioned into two sets such that edges
can only connect vertices in di↵erent sets. In other words, the nodes
of the directed graph given by S can be colored with two colors x and
y. Thus, in this case, checking for the existence of a homomorphism
witnessing S ! S0 is the same as checking for the existence of a
2-coloring of S, which can be done in polynomial time (by using, for
example, a coloring version of depth-first search).

A homomorphism is hard to find. We now add z to Dom(S0), and
let S0 = {R(x, y), R(y, x), R(x, z), R(z, x), R(y, z), R(z, y)}. Then, as
before, if h : Dom(S)! Dom(S0) is a homomorphism from S to S0,
and R(z, w) is an edge in S, then h(z) 6= h(w). In other words, the
nodes of the directed graph given by S can be colored with three
colors x, y and z. Therefore, in this case, checking for the existence

9 Homomorphisms 67

of a homomorphism witnessing S ! S0 is the same as checking for
the existence of a 3-coloring of S, which is an NP-complete problem.

Grounding Sets of Atoms

In several chapters, it will be convenient to have a mechanism viewing sets of
atoms as databases. This is done by converting a set of atoms S into a possibly
infinite database by replacing the variables occurring in S by new constants
not already in S.1 This process is called grounding, and can be easily defined
via homomorphisms.

Definition 9.3: Grounding

Let S be a set of relational atoms over a schema S. A possibly infinite
databaseD of S is called a grounding of S if there exists a homomorphism
from S to D that is a bijection.

Note that, in general, there is no unique grounding for a set of atoms.
Consider, for example, the set of atoms

S = {R(x, a, y), P (y, b, x, z)},

where a, b are constants and x, y, z are variables. The databases

D1 = {R(c1, a, d1), R(d1, b, c1, e1)} and D2 = {R(c2, a, d2), R(d2, b, c2, e2)}

with c1 6= c2, d1 6= d2, and e1 6= e2, are both groundings of S. On the other
hand, D1 and D2 are isomorphic databases, that is, they are the same up to
renaming of constants. This simple observation can be generalized to any set
of atoms. In particular, for a set of atoms S, it is straightforward to show that,
for every two groundingsD1 andD2 of S, there is a bijection ⇢ : Const! Const
such that ⇢(D1) = D2. Therefore, we can refer to:

• the grounding of S, denoted S#, and

• the unique bijective homomorphism GS from S to S#.

We conclude the chapter with a note on the di↵erence between Dom(S)
and Dom(S#) to avoid confusion later in the book. If S is a set of atoms, then
Dom(S) ✓ Const [Var, that is, it may contain both constants and variables.
On the other hand, by definition, Dom(S#) contains only constants. Similarly,

RS is a set of tuples that may mention constants and variables, while RS#
is

a set of tuples that mention only constants.

1 Converting a database into a set of atoms by replacing constants with variables
is needed less often; this is discussed in Chapter 13.

10

Functional Dependencies

In a relational database system, it is possible to specify semantic properties
that should be satisfied by all databases of a certain schema, such as “ev-
ery person should have at most one social security number”. Such properties
are crucial in the development of transparent and usable database schemas for
complex applications, as well as for optimizing the evaluation of queries. How-
ever, the relational model as presented in Chapter 2 is not powerful enough
to express such semantic properties. This can be achieved by incorporating
integrity constraints, also known as dependencies.

One of the most important classes of dependencies supported by relational
systems is the class of functional dependencies, which can express that the
values of some attributes of a tuple uniquely (or functionally) determine the
values of other attributes of that tuple.

Example 10.1: Functional Dependencies

Consider the (named) database schema

Person [pid, name, cid]

We can express that the id of a person uniquely determines that person
via the functional dependency

Person : {1}! {1, 2, 3} ,

which states that whenever two tuples of the relation Person agree on the
first attribute, the id, they should also agree on all the other attributes.

Note that the form of dependency used in Example 10.1, where a set of
attributes determines the entire tuple, is of particular interest and is called a
key dependency. We may also say that the id attribute is a key of Person.

70 10 Functional Dependencies

Syntax and Semantics

We start with the syntax of functional dependencies.

Definition 10.2: Syntax of Functional Dependencies

A functional dependency (FD) � over a schema S is an expression

R : U ! V

where R 2 S and U, V ✓ {1, . . . , ar(R)}. If V = {1, . . . , ar(R)}, then �
is called a key dependency, and we simply write key(R) = U .

Intuitively, an FD R : U ! V expresses that the values of the attributes
U of R functionally determine the values of the attributes V of R, while a
key dependency key(R) = U states that the values of the attributes U of R
functionally determine the values of all the attributes of R. We proceed to
formally define the semantics of FDs. Note that in the following definition, by
abuse of notation, we write U and V in the projection expressions ⇡U (·) and
⇡V (·) for the lists consisting of the elements of U and V in ascending order.

Definition 10.3: Semantics of FDs

A database D of a schema S satisfies an FD � of the form R : U ! V
over S, denoted D |= �, if for each pair of tuples ā, b̄ 2 RD,

⇡U (ā) = ⇡U (b̄) implies ⇡V (ā) = ⇡V (b̄).

D satisfies a set ⌃ of FDs, written D |= ⌃, if D |= � for each � 2 ⌃.

Note that the notion of satisfaction for FDs can be easily transferred to
finite sets of atoms by exploiting the notion of grounding of sets of atoms. In
particular, a finite set of atoms S satisfies an FD �, denoted S |= �, if S# |= �,
while S satisfies a set ⌃ of FDs, written S |= ⌃, if S# |= ⌃.

Satisfaction of Functional Dependencies

A central task is checking whether a database D satisfies a set ⌃ of FDs.

Problem: FD-Satisfaction

Input: A database D of a schema S, and a set ⌃ of FDs over S
Output: true if D |= ⌃, and false otherwise

It is not di�cult to show the following result:

10 Functional Dependencies 71

Theorem 10.4

FD-Satisfaction is in PTime.

Proof. Consider a database D of a schema S, and a set ⌃ of FDs over S. Let
� be an FD from ⌃ of the form R : U ! V . To check whether D |= � we need
to check that, for every ā, b̄ 2 RD, ⇡U (ā) = ⇡U (b̄) implies ⇡V (ā) = ⇡V (b̄). It
is easy to verify that this can be done in time O(kDk2). Therefore, we can
check whether D |= ⌃ in time O(k⌃k · kDk2), and the claim follows. ut

The Chase for Functional Dependencies

Another crucial task in connection with dependencies is that of (logical) im-
plication, which allows us to discover new dependencies from existing ones. A
natural problem that arises in this context is, given a set of dependencies ⌃
and a dependency �, to determine whether ⌃ implies �. This means checking
if, for every database D such that D |= ⌃, it holds that D |= �. Before formal-
izing and studying this problem, we first introduce a fundamental algorithmic
tool for reasoning about dependencies known as the chase. Actually, the chase
should be understood as a family of algorithms since, depending on the class
of dependencies in question, we may get a di↵erent variant. However, all the
chase variants have the same objective, that is, given a finite set of relational
atoms S, and a set ⌃ of dependencies, to transform S as dictated by ⌃ into
a set of relational atoms that satisfies ⌃.

Consider a finite set S of relational atoms over a schema S, and an FD
� = R : U ! V over S. We say that � is applicable to S with (ū, v̄), where
ū, v̄ 2 RS ,1 if ⇡U (ū) = ⇡U (v̄) and ⇡V (ū) 6= ⇡V (v̄). Let ⇡V (ū) = (u1, . . . , uk)
and ⇡V (v̄) = (v1, . . . , vk). For technical convenience, we assume that there is
a strict total order < on the elements of the set Const [Var such that a < x,
for each a 2 Const and x 2 Var, i.e., constants are smaller than variables
according to <. Let hū,v̄ : Dom(S)! Dom(S) be a function such that

hū,v̄(w) =

8
>>>><

>>>>:

ui if w = vi and ui < vi, for some i 2 [k],

vi if w = ui and vi < ui, for some i 2 [k],

w otherwise.

The result of applying � to S with (ū, v̄) is defined as

S0 =

8
<

:

? if there is an i 2 [k] with ui 6= vi and ui, vi 2 Const,

hū,v̄(S) otherwise.

1 Recall that tuples in RS can contain both constants and variables.

72 10 Functional Dependencies

Intuitively, the application of � to S with (ū, v̄) fails, indicated by ?, whenever
we have two distinct constants from Const that are supposed to be equal to
satisfy �. In case of non-failure, S0 is obtained from S by simply replacing
ui and vi by the smallest of the two, for every i 2 [k]. Recall that, by our
assumption on <, if one of ui, vi is a variable and the other one is a constant,
then the variable is always replaced by the constant. The application of � to

S with (ū, v̄), which results to S0, is denoted by S
�,(ū,v̄)����! S0.

We are now ready to introduce the notion of chase sequence of a finite set
S of relational atoms under a set ⌃ of FDs, which formalizes the objective of
transforming S as dictated by ⌃ into a set of atoms that satisfies ⌃.

Definition 10.5: The Chase for FDs

Consider a finite set S of relational atoms over a schema S, and a set ⌃
of FDs over S.

• A finite chase sequence of S under ⌃ is a finite sequence s =
S0, . . . , Sn of sets of relational atoms, where S0 = S, and

– for each i 2 [0, n � 1], there is an FD � = R : U ! V in ⌃ and

atoms R(ū), R(v̄) 2 Si such that Si
�,(ū,v̄)����! Si+1, and

– either Sn = ?, in which case we say that s is failing, or, for every
FD � = R : U ! V in ⌃ and atoms R(ū), R(v̄) 2 Sn, � is not
applicable to Sn with (ū, v̄), in which case s is called successful.

• An infinite chase sequence of S under ⌃ is an infinite sequence
S0, S1, . . . of sets of relational atoms, where S0 = S, and for each
i � 0, there is an FD � = R : U ! V in ⌃ and atoms R(ū), R(v̄) 2 Si

such that Si
�,(ū,v̄)����! Si+1.

We proceed to present some fundamental properties of the chase for FDs.2

In what follows, let S be a finite set of relational atoms, and ⌃ a finite set
of FDs, both over the same schema S. It is not hard to see that there are no
infinite chase sequences under FDs.3 This is a consequence of the fact that
each non-failing chase application does not introduce new terms but only
equalizes them. Therefore, in the worst-case, the chase either will fail, or will
produce after finitely many steps a set of relational atoms with only one term,
which trivially satisfies every functional dependency.

Lemma 10.6. There is no infinite chase sequence of S under ⌃.

2 Formal proofs are omitted since in Chapter 52 we are going to present the chase
for a more general class of dependencies than FDs, known as equality-generating
dependencies, and provide proofs there for all the desired properties.

3 As we discuss in Chapter 11, this is not the case for other types of dependencies,
in particular, inclusion dependencies.

10 Functional Dependencies 73

Although there could be several finite chase sequences of S under ⌃, de-
pending on the application order of the FDs in ⌃, we can show that all those
sequences either fail or end in exactly the same set of relational atoms.

Lemma 10.7. Let S0, . . . , Sn and S0
0, . . . , S

0
m be two finite chase sequences of

S under ⌃. Then it holds that Sn = S0
m.

The above lemma allows us to refer to the result of the chase of S under
⌃, denoted by Chase(S,⌃), which is defined as Sn for some (any) finite chase
sequence S0, . . . , Sn of S under ⌃. Notice that we do not need to define the
result of infinite chase sequences under FDs since, by Lemma 10.6, they do not
exist. Hence, Chase(S,⌃) is either the symbol ?, or a finite set of relational
atoms. It is not di�cult to verify that in the latter case, Chase(S,⌃) satisfies
⌃. Actually, this follows from the definition of successful chase sequences.

Lemma 10.8. If Chase(S,⌃) 6= ?, then Chase(S,⌃) |= ⌃.

A central notion is that of chase homomorphism, which essentially com-
putes the result of a successful finite chase sequence of S under ⌃. Consider
such a chase sequence s = S0, S1, . . . , Sn of S under ⌃ such that

S0
�0,(ū0,v̄0)������! S1

�1,(ū1,v̄1)������! S2 · · ·Sn�1
�n�1,(ūn�1,v̄n�1)������������! Sn.

Recall that Si = hūi�1,v̄i�1(Si�1), for each i 2 [n]. The chase homomorphism
of s, denoted hs, is defined as the composition of functions

hūn�1,v̄n�1 � hūn�2,v̄n�2 � · · · � hū0,v̄0 .

It is clear that hs(S0) = hs(S) = Sn. Since, by Lemma 10.7, di↵erent finite
chase sequences have the same result, we get the following.

Lemma 10.9. Let s and s0 be successful finite chase sequences of S under ⌃.
It holds that hs(S) = hs0(S).

Therefore, assuming that Chase(S,⌃) 6= ?, we can refer to the chase homo-
morphism of S under ⌃, denoted hS,⌃ . It should be clear that Chase(S,⌃) 6=
? implies hS,⌃(S) = Chase(S,⌃).

By Lemma 10.6, Chase(S,⌃) can be computed after finitely many steps.
Furthermore, assuming that Chase(S,⌃) 6= ?, also the chase homomorphism
hS,⌃ can be computed after finitely many steps. In fact, as the next lemma
states, this is even possible after polynomially many steps.

Lemma 10.10. Chase(S,⌃) can be computed in polynomial time. Further-
more, if Chase(S,⌃) 6= ?, then hS,⌃ can be computed in polynomial time.

The last main property of the chase states that, if Chase(S,⌃) 6= ?, then
it acts as a representative of all the sets of atoms S0 that satisfy ⌃ and S ! S0,
that is, there exists a homomorphism from S to S0.

74 10 Functional Dependencies

Lemma 10.11. Let S0 be a set of atoms over S such that (S, ū)! (S0, v̄) and
S0 |= ⌃. If Chase(S,⌃) 6= ?, then (Chase(S,⌃), hS,⌃(ū))! (S0, v̄).

Note that the definition of the chase for FDs, as well as its main properties,
would be technically simpler if we focus on sets of constant-free atoms since in
this case there are no failing chase sequences. As we shall see, this su�ces for
studying the implication problem for FDs. Nevertheless, we consider sets of
atoms with constants since the chase is also used in Chapter 17 for studying
a di↵erent problem for which the proper treatment of constants is vital.

Implication of Functional Dependencies

We now proceed to study the implication problem for FDs, which we define
next. Given a set ⌃ of FDs over a schema S and a single FD � over S, we say
that ⌃ implies �, denoted ⌃ |= �, if, for every database D of S, we have that
D |= ⌃ implies D |= �. The main problem of concern is the following:

Problem: FD-Implication

Input: A set ⌃ of FDs over a schema S, and an FD � over S
Output: true if ⌃ |= �, and false otherwise

We proceed to show the following result:

Theorem 10.12

FD-Implication is in PTime.

To show Theorem 10.12, we first show how implication of FDs can be
characterized via the chase for FDs. This is done by showing that checking
whether a set of FDs ⌃ implies an FD � boils down to checking whether the
result of the chase of the prototypical set of relational atoms S� that violates
� is a set of atoms that satisfies �. Given an FD � of the form R : U ! V ,
the set S� is defined as {R(x1, . . . , xar(R)), R(y1, . . . , yar(R))}, where

• x1, . . . , xar(R), y1, . . . , yar(R) are variables,

• for each i, j 2 {1, . . . , ar(R)} with i 6= j, it holds that xi 6= xj and yi 6= yj ,
and

• for each i 2 {1, . . . , ar(R)}, we have xi = yi if and only if i 2 U .

We can now show the following useful characterization:

10 Functional Dependencies 75

Proposition 10.13

Consider a set ⌃ of FDs over as schema S, and an FD � over S. Then:

⌃ |= � if and only if Chase(S�,⌃) |= �.

Proof. ()) By hypothesis, for every finite set of relational atoms S, it holds
that S |= ⌃ implies S |= �. Observe that Chase(S�,⌃) 6= ? since S� contains
only variables. Therefore, by Lemma 10.8, we have that Chase(S�,⌃) |= ⌃.
Since, by Lemma 10.6, Chase(S�,⌃) is finite, we get that Chase(S�,⌃) |= �.

(() Consider now a database D of S such that D |= ⌃, and with �
being of the form R : {i1, . . . , ik}! {j1, . . . , j`}, assume that there are tuples
(a1, . . . , aar(R)), (b1, . . . , bar(R)) 2 RD such that (ai1 , . . . , aik) = (bi1 , . . . , bik).
Recall also that S� is of the form {R(x1, . . . , xar(R)), R(y1, . . . , yar(R))}. Let
z̄ = (xj1 , . . . , xj` , yj1 , . . . , yj`) and c̄ = (aj1 , . . . , aj` , bj1 , . . . , bj`). It is clear
that (S�, z̄)! (D, c̄). Since D |= ⌃ and Chase(S�,⌃) 6= ?, by Lemma 10.11

(Chase(S�,⌃), hS�,⌃(z̄)) ! (D, c̄).

Since, by hypothesis, Chase(S�,⌃) |= �, we can conclude that

(hS�,⌃(xj1), . . . , hS�,⌃(xj`)) = (hS�,⌃(yj1), . . . , hS�,⌃(yj`)),

which in turn implies that

(aj1 , . . . , aj`) = (bj1 , . . . , bj`).

Therefore, D |= �, and the claim follows. ut

By Proposition 10.13, we get a simple procedure for checking whether a
set ⌃ of FDs implies an FD � that runs in polynomial time:

if Chase(S�,⌃) |= �, then return true; otherwise, return false.

We know that the set of atoms Chase(S�,⌃) can be constructed in polynomial
time (Lemma 10.10), and we also know that Chase(S�,⌃) |= � can be checked
in polynomial time (Theorem 10.4), and Theorem 10.12 follows.

11

Inclusion Dependencies

In this chapter, we concentrate on another central class of constraints sup-
ported by relational database systems, called inclusion dependencies (also
known as referential constraints). With this type of constraints we can express
relationships among attributes of di↵erent relations, which is not possible us-
ing functional dependencies that can talk only about one relation.

Example 11.1: Inclusion Dependencies

Having the (named) database schema

Person [pid, pname, cid]
Profession [pid, prname]

we would like to express that the values occurring in the first attribute of
Profession are person ids. This can be done via the inclusion dependency

Profession[1] ✓ Person[1].

This dependency simply states that the set of values occurring in the
first attribute of the relation Profession should be a subset of the set of
values appearing in the first attribute of the relation Person.

Syntax and Semantics

We start with the syntax of inclusion dependencies.

Definition 11.2: Syntax of Inclusion Dependencies

An inclusion dependency (IND) � over a schema S is an expression

78 11 Inclusion Dependencies

R[i1, . . . , ik] ✓ P [j1, . . . , jk]

where k � 1, R,P belong to S, and (i1, . . . , ik) and (j1, . . . , jk) are lists
of distinct integers from {1, . . . , ar(R)} and {1, . . . , ar(P)}, respectively.

Intuitively, an IND R[i1, . . . , ik] ✓ P [j1, . . . , jk] states that if R(ā) belongs
to a database D, then in the same database an atom P (b̄) should exist such
that the i`-th element of ā coincides with the j`-th element of b̄, for ` 2 [k].
The formal definition of the semantic meaning of INDs follows.

Definition 11.3: Semantics of INDs

A databaseD of a schema S satisfies an IND � of the form R[i1, . . . , ik] ✓
P [j1, . . . , jk] over S, denoted D |= �, if for every tuple ā 2 RD, there
exists a tuple b̄ 2 PD such that

⇡(i1,...,ik)(ā) = ⇡(j1,...,jk)(b̄).

D satisfies a set ⌃ of INDs, denoted D |= ⌃, if D |= � for each � 2 ⌃.

Satisfaction of Inclusion Dependencies

A central task is checking whether a database D satisfies a set ⌃ of INDs.

Problem: IND-Satisfaction

Input: A database D over a schema S, and a set ⌃ of INDs over S
Output: true if D |= ⌃, and false otherwise

It is not di�cult to show the following result:

Theorem 11.4

IND-Satisfaction is in PTime.

Proof. Consider a databaseD of a schema S, and a set ⌃ of INDs over S. Let �
be an IND from ⌃ of the form R[i1, . . . , ik] ✓ P [j1, . . . , jk]. To check whether
D |= � we need to check that, for every tuple (a1, . . . , aar(R)) 2 RD, there
exists a tuple (b1, . . . , bar(P)) 2 PD such that (ai1 , . . . , aik) = (bj1 , . . . , bjk). It
is not di�cult to verify that this can be done in time O(kDk2). Therefore, we
can check whether D |= ⌃ in time O(k⌃k · kDk2), and the claim follows. ut

11 Inclusion Dependencies 79

The Chase for Inclusion Dependencies

As for FDs, the other crucial task of interest in connection with INDs is (log-
ical) implication. Unsurprisingly, the main tool for studying the implication
problem for INDs is the chase for INDs, which we introduce next.

Consider a finite set S of atoms over S, and an IND � = R[i1, . . . , im] ✓
P [j1, . . . , jm] over S. We say that � is applicable to S with ū = (u1, . . . , uar(R))
if ū 2 RS . Let new(�, ū) = P (v1, . . . , var(P)), where, for each ` 2 [ar(P)],

v` =

8
<

:

uik if ` = jk, for k 2 [m],

x
�,⇡(i1,...,im)(ū)

` otherwise,

with x
�,⇡(i1,...,im)(ū)

` 2 Var�Dom(S).1 The result of applying � to S with ū is
the set of atoms S0 = S [{new(�, ū)}. In simple words, S0 is obtained from S
by adding the new atom new(�, ū), which is uniquely determined by � and ū.

The application of � to S with ū, which results in S0, is denoted S
�,ū��! S0.

We are now ready to introduce the notion of chase sequence of a finite set
S of relational atoms under a set ⌃ of INDs, which formalizes the objective
of transforming S as dictated by ⌃ into a set of atoms that satisfies ⌃.

Definition 11.5: The Chase for INDs

Consider a finite set S of relational atoms over a schema S, and a set ⌃
of INDs over S.

• A finite chase sequence of S under ⌃ is a finite sequence s =
S0, . . . , Sn of sets of relational atoms, where S0 = S, and

1. for each i 2 [0, n�1], there is � = R[↵] ✓ P [�] in ⌃ and ū 2 RSi

such that new(�, ū) 62 Si and Si
�,ū��! Si+1, and

2. for each IND � = R[↵] ✓ P [�] in ⌃ and ū 2 RSn , new(�, ū) 2 Sn.

The result of s is defined as the set of atoms Sn.

• An infinite chase sequence of S under ⌃ is an infinite sequence s =
S0, S1, . . . of sets of atoms, where S0 = S, and

1. for each i � 0, there is � = R[↵] ✓ P [�] in ⌃ and ū 2 RSi such

that new(�, ū) 62 Si and Si
�,ū��! Si+1, and

2. for each i � 0, and for each � = R[↵] ✓ P [�] in ⌃ and ū 2 RSi

such that � is applicable to Si with ū, there exists j > i such
that new(�, ū) 2 Sj .

1 One could adopt a simpler naming scheme for these newly introduced variables.
For example, for each ` 2 [ar(P)]� {j1, . . . , jm}, we could simply name the new
variable x�,ū

` . For further details on this matter see the comments for Part I.

80 11 Inclusion Dependencies

The result of s is defined as the set infinite set of atoms
S

i�0 Si.

In the case of finite chase sequences, the first condition in Definition 11.5
simply says that Si+1 is obtained from Si by applying � to Si with ū, while
� has not been already applied to some Sj , for j < i, with ū. The second
condition states that no new atom, which is not already in Sn, can be derived
by applying an IND of ⌃ to Sn. Now, in the case of infinite chase sequences,
the first condition in Definition 11.5, as in the finite case, says that Si+1 is
obtained from Si by applying � to Si with ū, while � has not been already
applied before. The second condition is known as the fairness condition, and
it ensures that all the INDs that are applicable eventually will be applied.

We proceed to show some fundamental properties of the chase for INDs.2

In what follows, let S be a finite set of relational atoms, and ⌃ a finite set of
INDs, both over the same schema S. Recall that in the case of FDs we know
that there are no infinite chase sequences since a chase application does not
introduce new terms, but only equalizes terms. However, in the case of INDs,
a chase step may introduce new variables not occurring in the given set of
atoms, which may lead to infinite chase sequences. Indeed, this can happen
even for simple sets of atoms and INDs. For example, it is not hard to verify
that the single chase sequence of {R(a, b)} under {R[2] ✓ R[1]} is infinite.

Although we may have infinite chase sequences, we can still establish some
favourable properties. It is clear that there are several chase sequences of S
under ⌃ depending on the order that we apply the INDs of ⌃. However, the
adopted naming scheme of new variables ensures that, no matter when we
apply an IND � with a tuple ū, the newly generated atom new(�, ū) is always
the same, which in turn allows us to show that all those chase sequences
have the same result. At this point, let us stress that the result of an infinite
chase sequence s = S0, S1, . . . of S under ⌃ always exists.3 This can be shown
by exploiting classical results of fixpoint theory. By using Kleene’s Theorem,
we can show that

S
i�0 Si coincides with the least fixpoint of a continuous

operator (which corresponds to a single chase step) on the complete lattice
(Inst(S),✓), which we know that always exists by Knaster-Tarski’s Theorem
(we leave the proof as an exercise). We can now state the announced result.

Lemma 11.6. The following hold:

1. There exists a finite chase sequence of S under ⌃ if and only if there is
no infinite chase sequence of S under ⌃.

2. Let S0, . . . , Sn and S0
0, . . . , S

0
m be two finite chase sequences of S under

⌃. Then, it holds that Sn = S0
m.

2 Formal proofs are omitted since in Chapter 43 we are going to present the chase
for a more general class of dependencies than INDs, known as tuple-generating
dependencies, and provide proofs there for all the desired properties.

3 This statement trivially holds for finite chase sequences.

11 Inclusion Dependencies 81

3. Let S0, S1, . . . and S0
0, S

0
1, . . . be two infinite chase sequences of S under

⌃. Then, it holds that
S

i�0 Si =
S

i�0 S
0
i.

Lemma 11.6 allows us to refer to the unique result of the chase of S under
⌃, denoted Chase(S,⌃), which is defined as the result of some (any) finite or
infinite chase sequence of S under ⌃. At this point, the reader may expect that
the next key property is that Chase(S,⌃) satisfies ⌃. However, it should not
be overlooked that Chase(S,⌃) is a possibly infinite set of atoms, and thus,
we cannot directly apply the notion of satisfaction from Definition 11.3. Nev-
ertheless, Definition 11.3 can be readily applied to possibly infinite databases,
which in turn allows us to transfer the notion of satisfaction for INDs to sets
of atoms via the notion of grounding. In particular, a set of atoms S satisfies
an IND �, denoted S |= �, if S# |= �, while S satisfies a set ⌃ of INDs, written
S |= ⌃, if S# |= ⌃. We can now formally state that Chase(S,⌃) satisfies ⌃.
Let us clarify, though, that in the case where only infinite chase sequences
exist, this result heavily relies on the fairness condition.

Lemma 11.7. It holds that Chase(S,⌃) |= ⌃.

The last crucial property states that Chase(S,⌃) acts as a representative
of all the finite or infinite sets of atoms S0 that satisfy ⌃, and such that there
exists a homomorphism from S to S0, that is, S ! S0.

Lemma 11.8. Let S0 be a set of atoms over S such that (S, ū)! (S0, v̄) and
S0 |= ⌃. It holds that (Chase(S,⌃), ū)! (S0, v̄).

Implication of Inclusion Dependencies

We now proceed to study the implication problem for INDs. The notion of
implication for INDs is defined in the same way as for functional dependencies.
More precisely, given a set ⌃ of INDs over a schema S and a single IND �
over S, we say that ⌃ implies �, denoted ⌃ |= �, if, for every database D of
S, we have that D |= ⌃ implies D |= �. This leads to the following problem:

Problem: IND-Implication

Input: A set ⌃ of INDs over a schema S, and an IND � over S
Output: true if ⌃ |= �, and false otherwise

Although for FDs the implication problem is tractable (Theorem 10.12),
for INDs it turns out to be an intractable problem:

82 11 Inclusion Dependencies

Theorem 11.9

IND-Implication is PSpace-complete.

We first concentrate on the upper bound. We are going to establish a result,
analogous to Proposition 10.13 for FDs, that characterizes implication of INDs
via the chase. However, since the chase for INDs may build an infinite set of
atoms, we can only characterize implication under possibly infinite databases.
Given a set ⌃ of INDs over a schema S and a single IND � over S, we say
that ⌃ implies without restriction �, denoted ⌃ |=1 �, if, for every possibly
infinite database D of S, we have that D |= ⌃ implies D |= �.

Given an IND � of the form R[i1, . . . , ik] ✓ P [j1, . . . , jk], the set S� is
defined as the singleton {R(x1, . . . , xar(R))}, where x1, . . . , xar(R) are distinct
variables. We can now show the following auxiliary lemma.

Lemma 11.10. Consider a set ⌃ of INDs over schema S, and an IND � over
S. It holds that ⌃ |=1 � if and only if Chase(S�,⌃) |= �.

Proof. ()) By hypothesis, for every possibly infinite set of relational atoms
S, it holds that S |= ⌃ implies S |= �. By Lemma 11.7, Chase(S�,⌃) |= ⌃,
and therefore, Chase(S�,⌃) |= �.

(() Consider now a possibly infinite database D of S such that D |=
⌃, and with � being of the form R[i1, . . . , ik] ✓ P [j1, . . . , jk], assume that
there exists a tuple (a1, . . . , aar(R)) 2 RD. Recall also that S� is of the form
{R(x1, . . . , xar(R))}. Let ȳ = (xi1 , . . . , xik) and b̄ = (ai1 , . . . , aik). It is clear
that (S�, ȳ)! (D, b̄). Since D |= ⌃, by Lemma 11.8

(Chase(S�,⌃), ȳ) ! (D, b̄).

Since, by hypothesis, Chase(S�,⌃) |= �, we can conclude that there exists a
tuple (z1, . . . , zar(P)) 2 PChase(S�,⌃) such that

(xi1 , . . . , xik) = (zj1 , . . . , zjk),

which in turn implies that there exists (c1, . . . , car(P)) 2 PD such that

(ai1 , . . . , aik) = (cj1 , . . . , cjk).

Therefore, D |= �, and the claim follows. ut

Lemma 11.10 alone is of little use since it characterizes implication of
INDs under possibly infinite databases, whereas we are interested only in
(finite) databases. However, we can show that implication of INDs is finitely
controllable, which means that implication under finite databases (|=) and
implication under possibly infinite databases (|=1) coincide.

11 Inclusion Dependencies 83

Theorem 11.11: Finite Controllability of Implication

Consider a set ⌃ of INDs over as schema S, and an IND � over S. Then:

⌃ |= � if and only if ⌃ |=1 �.

Although the above theorem is crucial for our analysis, we do not discuss
its proof here (see Exercise 1.15). An immediate consequence of Lemma 11.10
and Theorem 11.11 is the following:

Corollary 11.12

Consider a set ⌃ of INDs over a schema S, and an IND � over S. Then:

⌃ |= � if and only if Chase(S�,⌃) |= �.

Due to Corollary 11.12, the reader may think that the procedure for check-
ing whether ⌃ |= �, which will lead to the PSpace upper bound claimed in
Theorem 11.9, is simply to construct the set of atoms Chase(S�,⌃), and then
check whether it satisfies �, which can be achieved due to Theorem 11.4. How-
ever, it should not be forgotten that Chase(S�,⌃) may be infinite. Therefore,
we need to rely on a finer procedure that avoids the explicit construction of
Chase(S�,⌃). We proceed to present a technical lemma that is the building
block of this refined procedure, but first we need some terminology.

Given an IND � = R[i1, . . . , im] ✓ P [j1, . . . , jm] and a tuple of variables
x̄ = (x1, . . . , xar(R)), we define the atom new?(�, x̄) as the atom obtained
from new(�, x̄) after replacing the newly introduced variables with the special
variable ? 62 {x1, . . . , xar(R)}, which should be understood as a placeholder for
new variables. Formally, new?(�, x̄) = P (y1, . . . , yar(P)), where, for ` 2 [ar(P)],

y` =

8
<

:

xik if ` = jk, for k 2 [m],

? otherwise.

Given a set ⌃ of INDs, a witness of � relative to ⌃ is a sequence of atoms
R1(x̄1), . . . , Rn(x̄n), for n � 1, such that:

• S� = {R1(x̄1)},
• for each i 2 [2, n], there is �i = Ri�1[↵i�1] ✓ Ri[↵i] in ⌃ that is applicable
to {Ri�1(x̄i�1)} with x̄i�1 such that Ri(x̄i) = new?(�i, x̄i�1),

• Rn = P , and

• ⇡(i1,...,im)(x̄1) = ⇡(j1,...,jm)(x̄n).

A witness of � relative to ⌃ is essentially a compact representation, which
uses only ar(R) + 1 variables, of a sequence of atoms of Chase(S�,⌃) that

84 11 Inclusion Dependencies

Algorithm 2 ImplicationWitness(⌃,�)

Input: A set ⌃ of INDs over S and � = R[i1, . . . , ik] ✓ P [j1, . . . , jk] over S.
Output: true if there is a witness of � relative ⌃, and false otherwise.

1: if R = P and (i1, . . . , ik) = (j1, . . . , jk) then
2: return true
3: SO := {R(x̄)}, where x̄ = (x1, . . . , xar(R)) consists of distinct variables
4: S. := ;
5: repeat

6: if �0 = T [↵] ✓ T 0[�] 2 ⌃ is applicable to SO with ȳ 2 Dom(SO)
ar(T)

then

7: S. := {new?(�0, ȳ)}
8: if S. = ; then

9: return false
10: SO := S.

11: S. := ;
12: Check := b, where b 2 {0, 1}
13: until Check = 1
14: return (T 0 = P ^ ⇡(i1,...,ik)(x̄) = ⇡(j1,...,jk)(z̄))

witnesses the following: starting from S� = {R(x1, . . . , xar(R))}, an atom
P (y1, . . . , yar(P)) with ⇡(i1,...,im)(x1, . . . , xar(R)) = ⇡(j1,...,jm)(y1, . . . , yar(P))
can be obtained via chase applications, which means that Chase(S�,⌃) |= �.
It is also not di�cult to see that if Chase(S�,⌃) |= �, then a witness of � rela-
tive to ⌃ can be extracted from Chase(S�,⌃). This discussion is summarized
in the following technical lemma, whose proof is left as an exercise.

Lemma 11.13. Consider a set ⌃ of INDs over a schema S, and an IND �
over S. Then, Chase(S�,⌃) |= � i↵ there is a witness of � relative to ⌃.

By Corollary 11.12 and Lemma 11.13, we have that the problem of check-
ing whether a set ⌃ of INDs over a schema S implies a single IND � over S,
boils down to checking whether a witness of � relative to ⌃ exists. This is done
via the nondeterministic procedure depicted in Algorithm 2. Assume that �
is of the form R[i1, . . . , ik] ✓ P [j1, . . . , jk]. The algorithm first checks whether
R[i1, . . . , ik] = P [j1, . . . , jk], in which case a witness of � relative to ⌃ trivially
exists, and returns true. Otherwise, it proceeds to nondeterministically con-
struct a witness of � relative to ⌃ (if one exists). This is done by constructing
one atom after the other via chase steps, without having to store more than
two consecutive atoms. The algorithm starts from SO = {R(x1, . . . , Rar(R))};
SO should be understood as the “current atom”, which at the beginning is S�,
from which we construct the “next atom” S. in the sequence. The repeat-until
loop is responsible for constructing S. from SO. This is done by guessing an
IND �0 2 ⌃, and adding to S. the atom new?(�0, ȳ) if �0 is applicable to SO

with ȳ; note that ȳ is the single tuple occurring in SO. This is repeated until
the algorithm chooses to exit the loop by setting Check to 1, and check whether

11 Inclusion Dependencies 85

S. consists of an atom T 0(z̄) with T 0 = P and ⇡(i1,...,ik)(x̄) = ⇡(j1,...,jk)(z̄), in
which case it returns true; otherwise, it returns false.

It is easy to verify that Algorithm 2 uses polynomial space. This heavily
relies on the fact that the atoms generated during its computation contain
only variables from {x1, . . . , xar(R)} and the special variable ?, which in turn
implies that SO and S. can be represented using polynomial space. It also
takes polynomial space to check if R[i1, . . . , ik] = P [j1, . . . , jk] (see line 1), to
check if an IND is applicable to SO with ȳ (see line 6), and to check if T 0 = P
and ⇡(i1,...,ik)(x̄) = ⇡(j1,...,jk)(z̄) (see line 14). Therefore, IND-Implication is in
NPSpace, and thus in PSpace since NPSpace = PSpace.

A PSpace lower bound for IND-Implication can be shown via a reduction
from the following PSpace-hard problem: given 2-TM M that runs in linear
space, and a word w over the alphabet of M , decide whether M accepts input
w. The formal proof is left as Exercise 1.17.

Exercises

Exercise 1.1. Let q be an FO query. Prove that one can compute in polyno-
mial time an FO query q0 that uses only ¬, _, and 9 such that q ⌘ q0.

Exercise 1.2. We say that a query q from a database schema S to a relation
schema S0 is C-generic, for some C ✓ Const, if for every database D of S,
and for every bijection ⇢ : Const! Const that is the identity on C, q(⇢(D)) =
⇢(q(D)). Show that an FO query '(x̄) over a schema S is Dom(')-generic.

Exercise 1.3. The semantics of the rename and join operations in the named
RA has been defined in Chapter 4. Provide formal definitions for the semantics
of the other operations, i.e., selection, projection, union, and di↵erence.

Exercise 1.4. State and prove the converse of Theorem 4.6.

Exercise 1.5. Prove that allowing conditions of the form ā 2 e and empty(e)
in selection conditions of RA does not increase its expressiveness. In partic-
ular, show that selections with these new conditions can be expressed using
standard operations of RA.

Exercise 1.6. Prove that adding nested subqueries in the FROM clause does
not increase expressiveness. In particular, extend the translation from basic
SQL to RA that handles nested subqueries in FROM.

Exercise 1.7. The proofs of Theorems 7.1 and 7.3 only consider the special
case of FO-Evaluation where the query does not use constants, i.e., elements
from Const. How can the proof be extended to FO-Evaluation in general, i.e.,
allowing for general FO queries?

Exercise 1.8. For showing that FO-Evaluation is PSpace-hard, we provided
a reduction from QSAT. In particular, for an input to QSAT given by , we
constructed a database D and an FO query q (see the proof of Theorem 7.1).
Show that is satisfiable if and only if D |= q .

88 Exercises

Exercise 1.9. For an integer k > 0, we write FOk for the class of FO queries
that can mention at most k variables. The evaluation problem for the class
of FOk queries, for some fixed k > 0, is defined as expected: given an FOk

query q, a database D, and a tuple ā, decide whether ā 2 q(D). Show that
the evaluation problem for FOk queries, for a fixed k > 0, is in PTime.

Exercise 1.10. Let qM be the Boolean FO query constructed in the proof of
Theorem 8.1. Prove that if the Turing machine M on the empty word does
not halt, then there exists an infinite database D such that q(D) = true.

Exercise 1.11. Let FO-Unrestricted-Satisfiability be the unrestricted version
of FO-Satisfiability where we consider possibly infinite databases. In other
words, FO-Unrestricted-Satisfiability is defined as follows: given an FO query
q, is there a possibly infinite database D such that q(D) 6= ;? Show that FO-
Unrestricted-Satisfiability is undecidable by adapting the proof of Theorem 8.1.

Exercise 1.12. Prove that FO-Containment remains undecidable even if the
left hand-side query is a Boolean query q = 9x̄', where ' is a conjunction of
relational atoms or the negation of relational atoms.

Exercise 1.13. The algorithms underlying Theorems 10.4 and 11.4 for check-
ing whether a database satisfies a set of FDs and INDs, respectively, were
designed with simplicity instead of e�ciency in mind. Provide more e�cient
algorithms for the problems FD-Satisfaction and IND-Satisfaction.

Exercise 1.14. Prove that the result of an infinite chase sequence of a finite
set of relational atoms under a set of INDs always exists.

Exercise 1.15. Prove Theorem 11.11. The non-trivial task is to show that
if ⌃ |=1 � does not hold, then also ⌃ |= � does not hold. One can exploit
Lemma 11.10, which states that if ⌃ |=1 � does not hold, then Chase(S�,⌃)
does not satisfy �. If Chase(S�,⌃) is finite, then we have that ⌃ |= � does not
hold. The main task is, when Chase(S�,⌃) is infinite, to convert Chase(S�,⌃)
into a finite set S such that S |= ⌃, but S does not satisfy �.

Exercise 1.16. Prove Lemma 11.13.

Exercise 1.17. Prove that IND-Implication is PSpace-hard. To this end, pro-
vide a reduction from the following PSpace-hard problem: given 2-TM M
that runs in linear space, and a word w over the alphabet ofM , decide whether
M accepts input w.

Bibliographic Comments

(Very preliminary version)

The relational model was introduced by Codd [10]. The equivalence be-
tween first-order queries and relational algebra was shown in [11]. Further-
more, Codd invented the notion of functional dependency.

Data complexity was originated by Vardi [30].
Inclusion dependencies were first defined, named, and studied in [7]. This

paper contains also, among other things, Theorem 11.6, that finite and infinite
implication of inclusion dependencies are the same, and Theorem 11.9 that
the implication problem for inclusion dependencies is PSPACE-complete.

Part II

Conjunctive Queries

12

Syntax and Semantics

Conjunctive queries are of special importance to databases. They express re-
lational joins, which correspond to the operation that is most commonly per-
formed by relational database engines. This is because data is typically spread
over multiple relations, and thus, to answer queries, one needs to join such re-
lations. Actually, conjunctive queries have the power of select-project-join RA
queries, which means that they correspond to a very common type of queries
written in Core SQL. The goal of this chapter is to introduce the syntax and
semantics of conjunctive queries.

Syntax of Conjunctive Queries

We start with the syntax of conjunctive queries.

Definition 12.1: Syntax of Conjunctive Queries

A conjunctive query (CQ) over a schema S is an FO query '(x̄) over S
with ' being a formula of the form

9ȳ
�
R1(ū1) ^ · · · ^Rn(ūn)

�

for n � 1, where Ri(ūi) is a relational atom, and ūi a tuple of constants
and variables mentioned in x̄ and ȳ, for every i 2 [n].

It is very common to represent CQs via a rule-like syntax, which is remi-
niscent of the syntax of logic programming rules. In particular, the CQ '(x̄)
given in Definition 12.1 can be written as the rule

Answer(x̄) :– R1(ū1), . . . , Rn(ūn) ,

where Answer is a relation name not in S, and its arity (under the singleton
schema {Answer}) is equal to the arity of q. The relational atom Answer(x̄)

94 12 Syntax and Semantics

that appears on the left of the :– symbol is called the head of the rule, while
the expression R1(ū1), . . . , Rn(ūn) that appears on the right of the :– symbol
is called the body of the rule. In general, throughout the book, we use the rule-
like syntax for CQs. Nevertheless, for convenience, we will freely interpret a
CQ as a first-order query or as a rule.

Example 12.2: Conjunctive Queries

Consider again the relational schema from Example 3.2:

Person [pid, pname, cid]

Profession [pid, prname]

City [cid, cname, country]

The following CQ can be used to retrieve the list of names of computer
scientists that were born in the city of Athens in Greece:

9x9z
�
Person(x, y, z) ^ Profession(x, ‘computer scientist’) ^

City(z, ‘Athens’, ‘Greece’)
�
.

In rule-like representation, this query is expressed as follows:

Answer(y) :– Person(x, y, z),Profession(x, ‘computer scientist’),

City(z, ‘Athens’, ‘Greece’).

A CQ q is Boolean if it has no output variables, i.e., x̄ is the empty tuple.
When we write a Boolean CQ as a rule, we simply write Answer as the head,
instead of Answer(). For example, the following Boolean CQ checks whether
there exists a computer scientist that was born in the city of Athens in Greece:

Answer :– Person(x, y, z),Profession(x, ‘computer scientist’),

City(z, ‘Athens’, ‘Greece’).

Semantics of Conjunctive Queries

Since CQs are FO queries, the definition of their output on a database can be
inherited from Definition 3.6. More precisely, given a database D of a schema
S, and a k-ary CQ q = '(x̄) over S, where k � 0, the output of q on D is

q(D) = {ā 2 Dom(D)k | D |= '(ā)} .

Notice that q(D) consists of tuples over Dom(D), not over Dom(D)[Dom(').
This is because CQs do not allow for equational atoms, and thus, there is no
way for a constant of Dom(')�Dom(D) to appear in the output.

12 Syntax and Semantics 95

Interestingly, there is a more intuitive (and equivalent) way of defining the
semantics of CQs when they are viewed as rules. The body of a CQ q of the
form Answer(x̄) :– body can be seen as a pattern that must be matched with
the database D via an assignment ⌘ that maps the variables in q to Dom(D).
For each such assignment ⌘, if ⌘ applied to this pattern produces only facts
of D, it means that the pattern matches with D via ⌘, and the tuple ⌘(x̄) is
an output of q on D. We proceed to formalize this informal description.

Consider a database D and a CQ q of the form

Answer(x̄) :– R1(ū1), . . . , Rn(ūn) .

An assignment for q over D is a function ⌘ from the set of variables in q to
Dom(D). We say that ⌘ is consistent with D if

{R1(⌘(ū1)), . . . , Rn(⌘(ūn))} ✓ D ,

where, for i 2 [n], the fact Ri(⌘(ūi)) is obtained by replacing each variable x
in ūi with ⌘(x), and leaving the constants in ūi untouched. The consistency of
⌘ with D essentially means that the body of q matches with D via ⌘. Having
this notion in place, we can define what is the output of a CQ on a database.

Definition 12.3: Evaluation of CQs

Given a database D of a schema S, and a CQ q(x̄) over S, the output of
q on D is defined as the set of tuples

q(D) = {⌘(x̄) | ⌘ is an assignment for q over D consistent with D} .

It is an easy exercise to show that the semantics of CQs inherited from
the semantics of FO queries in Definition 3.6, and the semantics of CQs given
in Definition 12.3, are equivalent, i.e., for a CQ q = '(x̄) and a database D,

{ā 2 Dom(D)k | D |= '(ā)} =

{⌘(x̄) | ⌘ is an assignment for q over D consistent with D} .

Example 12.4: Evaluation of CQs

Let S be the schema from Example 3.2, which has been also used in
Example 12.2. Let D be the database of S shown in Figure 3.1; we recall
the relations Person and Profession in Figure 12.1. The following CQ q
can be used to retrieve the ids and names of actors:

Answer(x, y) :– Person(x, y, z),Profession(x, ‘actor’).

Observe that the assignment ⌘ for q over D such that

⌘(x) = ‘1’ ⌘(y) = ‘Aretha’ ⌘(z) = ‘MPH’

96 12 Syntax and Semantics

Person

pid pname cid

1 Aretha MPH
2 Billie BLT
3 Bob DLT
4 Freddie ST

Profession

pid prname

1 singer
1 songwriter
1 actor
2 singer
3 singer
3 songwriter
3 author
4 singer
4 songwriter

Fig. 12.1: The relations Person and Profession for Example 12.4.

is consistent with D. Indeed, when applied to the body of q it produces
the facts Person(‘1’, ‘Aretha’, ‘MPH’) and Profession(‘1’, ‘actor’), both
of which are facts of D. On the other hand, the assignment ⌘0 such that

⌘0(x) = ‘2’ ⌘0(y) = ‘Billie’ ⌘0(z) = ‘BLT’

is not consistent with D. When applied to the body of q, it generates
the fact Profession(‘2’, ‘actor’) that is not in D. It is straightforward to
verify that ⌘ is the only assignment for q over D that is consistent with
D, which in turn implies that the output of q on D is

q(D) = {(‘1’, ‘Aretha’)}.

If q is a Boolean CQ, then q(D) = true if and only if there is an assignment
for q over D that is consistent with D. In other words, q(D) = true if and
only if the body of the CQ matches with D via at least one assignment for q
over D. For instance, if in Example 12.4 we consider also the Boolean CQ q0

Answer :– Person(x, y, z),Profession(x, ‘actor’),

which is the Boolean version of q in Example 12.4, then q0(D) = true since
the assignment ⌘ is consistent with D. On the other hand, given the CQ q00

Answer :– Person(x, y, z),Profession(x, ‘nurse’),

q00(D) = false since there is no assignment ⌘ such that Person(⌘(x), ⌘(y), ⌘(z))
and Profession(⌘(x), ‘nurse’) are both facts of D.

Conjunctive Queries as a Fragment of FO

When CQs are seen as FO queries they use only relational atoms, conjunction
(^), and existential quantification (9). Thus, every CQ can be expressed using

12 Syntax and Semantics 97

formulae from the fragment of FO that corresponds to the closure of relational
atoms under 9 and ^; we refer to this fragment of FO as FOrel[^, 9]. Actually,
the converse is also true. Consider a query '(x̄) with ' being an FOrel[^, 9]
formula. It is easy to show that '(x̄) is equivalent to a CQ. We first rename
variables in order to ensure that bound variables do not repeat (which leads to
an equivalent query), and then push the existential quantifiers outside. This
conversion can be easily illustrated via a simple example.

Example 12.5: From FOrel[^, 9] Queries to CQs

Consider the FOrel[^, 9] query '(x) with

' = (9y R(x, a, y)) ^ (9y S(y, x, b)).

We first rename the second occurrence of y, and get the query '0(x) with

'0 = (9y R(x, a, y)) ^ (9z S(z, x, b)).

We then push all the quantifiers outside, and get the CQ '00(x) with

'00 = 9y9z
�
R(x, a, y) ^ S(z, x, b)

�
.

From the above discussion, we immediately get that:

Theorem 12.6

The languages of CQs and of FOrel[^, 9] queries are equally expressive.

Notice that FOrel[^, 9] is not the same as FO[^, 9], that is, the fragment
of FO that allows only for conjunction (^) and existential quantification (9).
Fragments defined by listing a set of features of FO are assumed to be the
closure of all atomic formulae (including equational atoms) under those fea-
tures. Therefore, the fragment FO[^, 9] allows also for equational atoms, which
means that the query '(x, y) with ' = (x = y) is an FO[^, 9] query. As we
shall see in the next chapter, though, '(x, y) is not equivalent to a CQ.

Conjunctive Queries as a Fragment of RA

The class of CQs has the same expressive power as the fragment of RA that
is built from base expressions R 2 Rel and allows for selection, projection, and
Cartesian product. Furthermore, conditions in selections are conjunctions of
equalities. Note that base expressions of the form {a} with a 2 Const are not
included. This fragment of RA is called the select-project-join (SPJ) fragment.
Henceforth, we simply refer to the associated queries as SPJ queries. Recall

98 12 Syntax and Semantics

that the join operation is actually a selection from the Cartesian product on
a condition that is a conjunction of equalities. We proceed to show that:

Theorem 12.7

The languages of CQs and of SPJ queries are equally expressive.

Proof. We first show how to translate a CQ q of the form

Answer(x̄) :– R1(ū1), . . . , Rn(ūn)

into an SPJ query. In fact, q can be expressed as the query

⇡↵
�
�✓(q)

�
�✓(ū1)(R1)⇥ �✓(ū2)(R2)⇥ · · ·⇥ �✓(ūn)(Rn)

��
,

where conditions in selections, as well as the list of positions in the projections
are defined as follows:

• For each i 2 [n], ✓(ūi) is a conjunction of statements j
.
= a and j

.
= k,

where a 2 Const and j, k 2 [ar(Ri)], such that j
.
= a is a conjunct of ✓(ūi)

if and only if the j-th component of ūi is the constant a, and j
.
= k is a

conjunct of ✓(ūi) if and only if the j-th and the k-th components of ūi are
the same variable. If no constant occurs in ūi, and ūi consists of distinct
variables, then the selection is omitted; we have Ri instead of �✓(ūi)(Ri).

• The condition ✓(q) is a conjunction of statements of the form j
.
= k, where

j, k 2 [ar(R1) + · · ·+ ar(Rn)], such that j
.
= k is a conjunct of ✓(q) if and

only if the following hold:

(i) if j = ar(R1) + · · · + ar(R`) + `0, for some ` 2 [0, n � 1] and `0 2
[ar(R`+1)], then k > ar(R1) + · · ·+ ar(R`+1), and

(ii) the j-th and the k-th components of ū1ū2 . . . ūn are the same variable.

Item (i) states that j and k should be positions from di↵erent ūi tuples.

• Finally, ↵ is a list of positions among ū1ū2 . . . ūn that form the output
tuple of variables x̄.

The correctness of the above translation is left as an exercise. Note that instead
of using the condition ✓(q), one can replace the Cartesian products by ✓-joins
(recall that the ✓-join of relations R and S is defined as R on✓ S = �✓(R⇥S)).
Here is a simple example that illustrates the above translation.

Example 12.8: From CQs to SPJ Queries

Consider the CQ q defined as

Answer(x, x, y) :– R1(x, z, z, a, x| {z }
ū1

), R2(a, y, z, a, b| {z }
ū2

), R3(x, y, z| {z }
ū3

) .

It is easy to verify that

12 Syntax and Semantics 99

✓(ū1) = (4
.
= a) ^ (1

.
= 5) ^ (2

.
= 3)

✓(ū2) = (1
.
= a) ^ (4

.
= a) ^ (5

.
= b) ,

while the selection operation �✓(ū3) is omitted since neither a constant
nor a repetition of variables occurs in ū3.

The condition ✓(q) essentially has to specify that in

ū1ū2ū3 = (x, z, z, a, x, a, y, z, a, b, x, y, z)

the variable x in ū1 and the variable x in ū3 are the same, the variable
z in ū1 and the variable z in both ū2 and ū3 are the same, and that the
variable y in ū2 and the variable y in ū3 are the same. This results in

✓(q) = (1
.
= 11) ^ (5

.
= 11) ^ (2

.
= 8) ^ (2

.
= 13) ^

(3
.
= 8) ^ (3

.
= 13) ^ (8

.
= 13) ^ (7

.
= 12).

Finally, ↵ corresponds to variable x repeated twice and variable y, i.e.,
↵ = (1, 1, 7). Summing up, the CQ q is expressed as

⇡(1,1,7)
⇣
�(1 .=11)^(2

.
=8)^(2

.
=13)^(7

.
=12)

�
�(4 .=a)^(1

.
=5)^(2

.
=3)(R1) ⇥

�(1 .=a)^(4
.
=a)^(5

.
=b)(R2)⇥R3

�⌘
.

For the sake of readability, we have eliminated (5
.
= 11) from ✓(q) since

it can be derived from (1
.
= 11) in ✓(q) and (1

.
= 5) in ✓(ū1), and likewise

for conditions (3
.
= 8), (3

.
= 13) and (8

.
= 13) in ✓(q).

We now proceed with the other direction, and show that every SPJ query
e can be expressed as a CQ qe. The proof is by induction on the structure of
e. We can assume that in e all selections are either of the form �i .=a or �i .=j

(because more complex selections can be obtained by applying a sequence of
simple selections). We also assume that all projections are of the form ⇡ı̄ that
exclude the i-th component; for instance, ⇡2̄(R) applied to a ternary relation R
will transform each tuple (a, b, c) into (a, c) by excluding the second component
(again, more complex projections are simply sequences of these simple ones).

• If e = R, where R is a k-ary relation, then qe is the CQ '(x̄) = R(x̄),
where x̄ is a k-ary tuple of pairwise distinct and fresh variables.

• If e is of arity k with qe = '(x1, . . . , xk), where the xi’s are not necessarily
distinct, then

– q�i
.
=a(e)

is the CQ obtained from qe by replacing each occurrence of
the variable xi by the constant a,

– q�i
.
=j(e)

is the CQ obtained from qe by replacing each occurrence of
the variable xj with the variable xi, and

100 12 Syntax and Semantics

– q⇡ı̄(e) is the CQ '(x1, . . . , xi�1, xi+1, . . . , xk) if xi occurs among the
xj ’s with j 6= i, and 9xi '(x1, . . . , xk) otherwise.

• If e1 is k-ary with qe1 = '1(x1, . . . , xk) and '1 = 9z̄ 1, and e2 is m-
ary with qe2 = '2(y1, . . . , ym) and '2 = 9w̄ 2, then q(e1⇥e2) is the CQ
'(x1, . . . , xk, y1, . . . , ym) with ' = 9z̄9w̄ 1 ^ 2; we assume that 1 and
 2 do not share variables.

This completes the construction of the CQ qe. The correctness of the above
translation is left as an exercise to the reader.

We conclude by explaining further the di↵erence between the two cases of
handling projection. Consider the unary relations U , V and an RA expression
e = ⇡1̄(�1 .=2(U ⇥ V)). First, notice that U ⇥ V is translated as '(x, y) =
U(x)^ V (y), since the expression U has to be translated as a relational atom
of the form U(z) where the variable z is fresh, and likewise for the expression
V ; thus, the occurrences of U and V in e have to be translated considering
distinct variables, in this case x and y. Then �1 .=2(U ⇥ V) is translated as
'(x, x) = U(x) ^ V (x), since y is replaced with x. Finally, ⇡1̄(�1 .=2(U ⇥ V))
is obtained by eliminating the first occurrence of x as an output variable: the
CQ defining e is (x) = U(x) ^ V (x). On the other hand, the correct way to
define e0 = ⇡2̄(U ⇥ V) as a CQ is to existentially quantify over y in '(x, y)
that defines U ⇥ V , that is, the CQ 0(x) with = 9y (U(x) ^ V (y)). ut

The following is an immediate corollary of Theorems 12.6 and 12.7 that
relates the languages of FOrel[^, 9] and SPJ queries.

Corollary 12.9

The language of FOrel[^, 9] queries and the language of SPJ queries are
equally expressive.

13

Homomorphisms and Expressiveness

As already discussed in Chapter 9, homomorphisms are a fundamental tool
that plays a key role in various aspects of relational databases. In this chapter,
we discuss how homomorphisms emerge in the context of CQs. In particular,
we show that they provide an alternative way to describe the evaluation of
CQs, and also use them as a tool to understand the expressiveness of CQs.

CQ Evaluation and Homomorphisms

We can recast the semantics of CQs using the notion of homomorphism. The
key observation is that the body of a CQ, written as a rule, can be viewed as
a set of atoms. More precisely, given a CQ q of the form

Answer(x̄) :– R1(ū1), . . . , Rn(ūn)

we define the set of relational atoms

Aq = {R1(ū1), . . . , Rn(ūn)}.

Thus, we can naturally talk about homomorphisms from CQs to databases.

Definition 13.1: Homomorphisms from CQs to Databases

Consider a CQ q(x̄) over a schema S, and a database D of S. We say that
there is a homomorphism from q to D, written as q ! D, if Aq ! D.
We also say that there is a homomorphism from (q, x̄) to (D, ā), written
as (q, x̄)! (D, ā), if (Aq, x̄)! (D, ā).

To define the output of a CQ q(x̄) on a database D (see Definition 12.3),
we used the notion of assignment for q over D, which is a function from the
set of variables in q to Dom(D). The output of q on D consists of all the tuples
⌘(x̄), where ⌘ is an assignment for q over D that is consistent with D, i.e.,

102 13 Homomorphisms and Expressiveness

{R1(⌘(ū1)), . . . , Rn(⌘(ūn))} ✓ D.

Since, for i 2 [n], Ri(⌘(ūi)) is the fact obtained after replacing each variable x
in ūi with ⌘(x), and leaving the constants in ūi untouched, such an assignment
⌘ corresponds to a function h : Dom(Aq)! Dom(D), which is the identity on
the constants occurring in q, such that R(h(ūi)) = R(⌘(ūi)). But, of course,
this is the same as saying that h is a homomorphism from q to D. Therefore,
q(D) is the set of all tuples h(x̄), where h is a homomorphism from q to D,
i.e., the set of all tuples ā over Dom(D) with (q, x̄)! (D, ā). This leads to an
alternative characterization of CQ evaluation in terms of homomorphisms.

Theorem 13.2

Given a database D of a schema S, and a CQ q(x̄) of arity k � 0 over S,

q(D) = {ā 2 Dom(D)k | (q, x̄)! (D, ā)}.

Here is a simple example that illustrates the above characterization.

Example 13.3: CQ Evaluation via Homomorphisms

Let D and q be the database and the CQ, respectively, that have been
considered in Example 12.4. We know that q(D) = {(‘1’, ‘Aretha’)}. By
the characterization given in Theorem 13.2, we conclude that

�
q, (x, y)

�
!�

D, (‘1’, ‘Aretha’)
�
. To verify that this is the case, recall that we need to

check whether
�
Aq, (x, y)

�
!
�
D, (‘1’, ‘Aretha’)

�
, where

Aq = {Person(x, y, z),Profession(x, ‘actor’)}.

Consider the function h : Dom(Aq)! Dom(D) such that

h(x) = ‘1’ h(y) = ‘Aretha’ h(z) = ‘MPH’ h(‘actor’) = ‘actor’.

It is clear that the following facts belong to D:

Person(h(x), h(y), h(z)) = Person(‘1’, ‘Aretha’, ‘MPH’)

Profession(h(x), h(‘actor’)) = Profession(‘1’, ‘actor’)

Moreover, h
�
(x, y)

�
= (‘1’, ‘Aretha’). Thus, h is a homomorphism from�

Aq, (x, y)
�
to
�
D, (‘11’, ‘Aretha’)

�
, witnessing that

�
Aq, (x, y)

�
!
�
D, (‘1’, ‘Aretha’)

�
.

13 Homomorphisms and Expressiveness 103

Preservation Results for CQs

Some particularly useful properties of CQs are their preservation under vari-
ous operations, such as application of homomorphisms, or taking direct prod-
ucts. These properties will provide a precise explanation of the expressiveness
of CQs as a subclass of FO queries.

Preservation Under Homomorphisms

By saying that a query q is preserved under homomorphisms, we essentially
mean the following: if a tuple ā belongs to the output of q on a databaseD, and
(D, ā)! (D0, b̄), then b̄ should belong to the output of q on D0. Although we
can naturally talk about homomorphisms among databases (since databases
are sets of relational atoms), there is a caveat that is related to the fact that
homomorphisms are the identity on constant values. Since Dom(D) ✓ Const
for every database D, it follows that D ! D0 if and only if D ✓ D0. Thus,
the notion of homomorphism among databases is actually subset inclusion.
However, the intention underlying the notion of homomorphism is to preserve
the structure, possibly by leaving some constants unchanged.

To overcome this mismatch, we need a mechanism that allows us to convert
a database into a set of relational atoms by replacing constant values with
variables.1 To this end, for a finite set of constants C ✓ Const, we define an
injective function VC : Const! Const [Var such that

• VC is the identity on C and

• VC(a) 2 Var for every a /2 C.

We then write (D, ā) !C (D0, b̄) if (VC(D),VC(ā)) ! (D0, b̄). Note that in
VC(D) and VC(ā) all constants, except for those in C, have been replaced by
variables, so the definition of homomorphism no longer trivializes to being a
subset.

1 This is essentially the opposite of grounding a set of atoms discussed in Chapter 9.

104 13 Homomorphisms and Expressiveness

Example 13.4: Homomorphisms Among Databases

Consider the databases

D1 = {R(a, b), R(b, a)} D2 = {R(c, c)}.

If C1 = ;, then we have that VC1(a) and VC1(b) are distinct elements of
Var, let say VC1(a) = x and VC1(b) = y. Hence,

VC1(D1) = {R(x, y), R(y, x)} VC1((a, b)) = (x, y),

from which we conclude that (D1, (a, b))!C1 (D2, (c, c)) since

�
VC1(D1),VC1((a, b))

�
!
�
D2, (c, c)

�
.

On the other hand, if C2 = {a, b}, then

VC2(D1) = {R(a, b), R(b, a)} VC2((a, b)) = (a, b).

Therefore, it does not hold that (D1, (a, b))!C2 (D2, (c, c)), since it does
not hold that

�
VC2(D1),VC2((a, b))

�
!
�
D2, (c, c)

�
.

We can now define the notion of preservation under homomorphisms.

Definition 13.5: Preservation Under Homomorphisms

Consider a k-ary FO query q = '(x̄) over a schema S. We say that q is
preserved under homomorphisms if, for every two databases D and D0

of S, and tuples ā 2 Dom(D)k and b̄ 2 Dom(D0)k, it holds that

(D, ā)!Dom(') (D
0, b̄) and ā 2 q(D) implies b̄ 2 q(D0).

We then show the following for CQs.

Proposition 13.6

Every CQ is preserved under homomorphisms.

Proof. Consider a k-ary CQ q(x̄) over a schema S, and let C be the set of
constants in q. Assume that (D, ā) !C (D0, b̄) for some databases D,D0 of
S, and tuples ā 2 Dom(D)k and b̄ 2 Dom(D0)k. Assume also that ā 2 q(D).
Let h be a homomorphism witnessing (VC(D),VC(ā))! (D0, b̄). By Theorem
13.2, (q, x̄)! (D, ā) via some h0. It holds that hq = VC�h0 is a homomorphism

13 Homomorphisms and Expressiveness 105

witnessing (q, x̄)! (VC(D),VC(ā)) since hq is the identity on C; indeed, for
a 2 C, VC(h0(a)) = a by definition. Observe that h � hq is a homomorphism
from (q, x̄) to (D0, b̄), and thus, by Theorem 13.2, b̄ 2 q(D0), as needed. ut

Another key property is that of monotonicity. A query q over a schema S
is monotone if, for every two databases D and D0 of S, we have that

D ✓ D0 implies q(D) ✓ q(D0).

We show that homomorphism preservation implies monotonicity of CQs.

Corollary 13.7

Every CQ is monotone.

Proof. Let q be a CQ over S, and C be the set of constants occurring in q.
Consider the databases D,D0 of S such that D ✓ D0, and assume that ā 2
q(D). It is clear that V�1

C is a homomorphism from (VC(D),VC(ā)) to (D0, ā)
and thus, (D, ā)!C (D0, ā). By Proposition 13.6, we get that ā 2 q(D0). ut

Preservation under Direct Products

The second preservation result stated here concerns direct products. Given
two directed graphs G1 = (V1, E1) and G2 = (V2, E2), their direct product
G1 ⌦ G2 has V1 ⇥ V2 as the set of vertices, i.e., each vertex is a pair (v1, v2)
with v1 2 V1 and v2 2 V2. In G1 ⌦ G2 there is an edge between (v1, v2) and
(v01, v

0
2) if there is an edge from v1 to v01 in E1 and from v2 to v02 in E2. Note

that the notion of direct product is di↵erent from that of Cartesian product.
Indeed, the Cartesian product of two binary relations is a 4-ary relation, while
their direct product is still binary.

The definition of direct products for databases is essentially the same,
modulo one small technical detail. Elements of databases come from Const.
For two constants a1 and a2, the pair (a1, a2) is not an element of Const, but
we can think of it as such. Indeed, since Const is countably infinite, there is a
pairing function, i.e., a bijection ⌧ : Const⇥Const! Const. A typical example,
assuming that Const is enumerated as c0, c1, c2, . . . , is to define ⌧(cn, cm) = ck
for k = (n+m)(n+m+ 1)/2 +m. Given a pairing function, we can think of
(a1, a2) as being in Const, represented by ⌧(a1, a2), and then simply extend
the previous definition to arbitrary databases as follows. Given two databases
D and D0 of a schema S, their direct product D⌦D0 is a database of S that,
for each n-ary relation name R in S, contains the following facts:

R
�
⌧(a1, a

0
1), . . . , ⌧(an, a

0
n)
�
where R(a1, . . . , an) 2 D and R(a01, . . . , a

0
n) 2 D0 .

Technically speaking, this definition depends on the choice of a pairing func-
tion, but this choice is irrelevant for FO queries (see Exercise 2.4).

106 13 Homomorphisms and Expressiveness

We proceed to define the notion of preservation under direct products. We
do this for Boolean queries without constants, as this su�ces to understand
the limitations of CQs. Exercises 2.6 and 2.7 explain how these results can be
extended to queries with constants and free variables, respectively.

Definition 13.8: Preservation under Direct Products

A Boolean FO query q over a schema S is preserved under direct products
if, for every two databases D and D0 of S, it holds that

D |= q and D0 |= q implies D ⌦D0 |= q.

We then show the following for CQs.

Proposition 13.9

Every Boolean CQ is preserved under direct products.

Proof. As stated earlier, for technical clarity, we only consider CQs that do
not mention constants, but the result holds even for CQs with constants (see
Exercise 2.6). Let q be a Boolean CQ without constants over a schema S, and
let D,D0 be databases of S such that D |= q and D0 |= q. By Theorem 13.2,
there are homomorphisms h, g witnessing q ! D and q ! D0, respectively.
Define now f(x) = ⌧

�
h(x), g(x)

�
. Assume that R(u1, . . . , un) is an atom in q.

Then R(h(u1), . . . , h(un)) 2 D and R(g(u1), . . . , g(un)) 2 D0. Hence,

R
�
f(u1), . . . , f(un)

�
= R

�
⌧(h(u1), g(u1)), . . . , ⌧(h(un), g(un))

�

belongs to D⌦D0, proving that f is a homomorphism from q to D⌦D0. Thus,
by Theorem 13.2, D ⌦D0 |= q, as needed. ut

Expressiveness of CQs

The above preservation results allow us to delineate the expressiveness bound-
aries of CQs. By Theorem 12.7, CQs and SPJ queries, that is, RA queries that
do not have inequality in selections, union (and disjunction in selection con-
ditions), and di↵erence, are equally expressive. We prove that none of these
is expressible as a CQ. Also notice that in the definition of CQs we disallow
explicit equality: CQs correspond to FOrel[^, 9] queries, i.e., FO queries based
on the fragment of FO that is the closure of relational atoms under 9 and ^.
Implicit equality is, of course, allowed by reusing variables. We show that by
adding explicit equality one obtains queries that cannot be expressed as CQs.

13 Homomorphisms and Expressiveness 107

CQs cannot express inequality. This is because CQs with inequality are
not preserved under homomorphisms.2 Consider, e.g., the FO query

q1 = 9x9y
�
R(x, y) ^ x 6= y

�
.

For D = {R(a, b)} and D0 = {R(c, c)}, we have that D !; D0. However,
D |= q1 while D0 6|= q1. As a second example, consider the FO query

q2 = 9x (S(x) ^ x 6= a),

where a is a constant. Given D = {S(b)} and D0 = {S(a)}, we have that
D !{a} D0. However, D |= q2 while D0 6|= q2.

CQs cannot express negative relational atoms. The reason is because
such queries are not monotone. Consider, for example, the FO query

q = ¬P (a),

where a is a constant. If we take D = ; and D0 = {P (a)}, then D ✓ D0

but D |= q while D0 6|= q.

CQs cannot express di↵erence. This is because di↵erence is not mono-
tone. Consider, for example, the FO query

q = 9x(P (x) ^ ¬Q(x)).

For D = {P (a)} ✓ D0 = {P (a), Q(a)}, we have that D |= q while D0 6|= q.

CQs cannot express union. This is because such queries are not preserved
under direct products. Consider, for example, the FO query

q = 9x (R(x) _ S(x)).

Let D = {R(a)} and D0 = {S(a)}. Then, D |= q and D0 |= q, but D⌦D0

is empty, and thus, D ⌦D0 6|= q.

CQs cannot express explicit equality. This is because such queries are
not preserved under direct products. Consider, for example, the FO query

q = 9x9y (x = y).

Let D = {R(a)} and D0 = {S(a)}. Observe that D |= q and D0 |= q, but
D ⌦D0 6|= q since D ⌦D0 is empty.

2 Conjunctive queries with inequality are studied in-depth in Chapter 30.

14

Query Evaluation

In this chapter, we study the complexity of evaluating conjunctive queries,
that is, CQ-Evaluation. Recall that this is the problem of checking whether
ā 2 q(D) for a CQ query q, a database D, and a tuple ā over Dom(D). Recall
that for FO queries the same problem is PSpace-complete (Theorem 7.1). As
we show next, the complexity for CQs lies in NP.

Theorem 14.1

CQ-Evaluation is NP-complete.

Proof. We start with the upper bound. Consider a CQ q(x̄), a databaseD, and
a tuple ā 2 Dom(D). By Theorem 13.2, ā 2 q(D) if and only if (q, x̄)! (D, ā).
Therefore, we need to show that checking whether there exists a homomor-
phism from (q, x̄) to (D, ā) is in NP. This is done by guessing a function
h : Dom(Aq)! Dom(D), and then verifying that h is a homomorphism from
(Aq, x̄) to (D, ā), i.e., h is the identity on Dom(Aq) \ Const, and R(ū) 2 Aq

implies R(h(ū)) 2 D. Since both steps are feasible in polynomial time, we
conclude that checking whether (q, x̄)! (D, ā) is in NP, as needed.

For the lower bound, we provide a reduction from a graph-theoretic prob-
lem, called Clique, which is NP-complete. Recall that a clique in an undirected
graph G = (V,E) is a complete subgraph G0 = (V 0, E0) of G, i.e., every two
distinct nodes of V 0 are connected via an edge of E0. We say that such a clique
is of size k � 1 if V 0 consists of k nodes. The problem Clique follows:

Problem: Clique

Input: An undirected graph G, and an integer k � 1
Output: true if G has a clique of size k, and false otherwise

Consider an input to Clique given by G = (V,E) and k � 1. The goal is to
construct in polynomial time a database D and a Boolean CQ q such that G

110 14 Query Evaluation

has a clique of size k if and only if D |= q. We construct the database

D = {Node(v) | v 2 V } [{Edge(v, u) | {v, u} 2 E and v 6= u},

which essentially stores the undirected graph G, but without loops of the form
{v} that may occur in E (that is, {v} 2 E). We can eliminate loops, which
is crucial for the correctness of the CQ that we construct next, since they do
not a↵ect the existence of a clique of size k in G, i.e., G has a clique of size k
if and only if G0 obtained from G after eliminating the loops has a clique of
size k. We also construct

q = 9x1 · · · 9xk

✓ k̂

i=1

Node(xi) ^
^

i,j2[k] : i 6=j

Edge(xi, xj)

◆
,

which asks whether G has a clique of size k. It is clear that D and q can be
constructed in polynomial time from G and k. Moreover, it is easy to see that
G has a clique of size k if and only if D |= q, and the claim follows. ut

The data complexity of CQ-Evaluation is immediately inherited from FO-
Evaluation (see Theorem 7.3) since CQs are FO queries. Recall that, by con-
vention, CQ-Evaluation is in a complexity class C in data complexity if, for
every CQ query q, the problem q-Evaluation, which takes as input a database
D and a tuple ā over Dom(D), and asks whether ā 2 q(D), is in C.

Corollary 14.2

CQ-Evaluation is in DLogSpace in data complexity.

Actually, as discussed in Chapter 7, FO-Evaluation, and thus CQ-Evaluation,
is in AC0 in data complexity, a class that is properly contained inDLogSpace.
Recall that AC0 consists of those languages that are accepted by polynomial-
size circuits of constant depth and unbounded fan-in.

Parameterized Complexity

As discussed in Chapter 2, queries are typically much smaller than databases
in practice. This motivated the notion of data complexity, where the cost
of evaluation is measured only in terms of the size of the database, while the
query is considered to be fixed. However, an algorithm that runs, for example,
in time O(kDkkqk), although is tractable in terms of data complexity since kqk
is a constant, it cannot be considered to be really practical when the database
D is very large, even if the query q is small. This suggests that we need to
rely on a finer notion of complexity than data complexity for classifying query
evaluation algorithms as practical or impractical.

14 Query Evaluation 111

This finer notion of complexity is parameterized complexity, which is rele-
vant whenever we need to classify the complexity of a problem depending on
some central parameters. In the context of query evaluation, it is sensible to
consider the size of the database and the size of the query as separate param-
eters when designing evaluation algorithms, and target algorithms that take
less time on the former parameter. For example, a query evaluation algorithm
that runs in time O(kDk ·kqk2) is expected to perform better in practice than
an algorithm that runs in time O(kDk2 · kqk). Moreover, if the di↵erence be-
tween kDk and kqk is significant, as it usually happens in real-life, then even
an algorithm that runs in time O(kDk · 2kqk) could perform better in practice
than an algorithm that runs in time O(kDk2 · kqk).

Background on Parameterized Complexity

Before studying the parameterized complexity of CQ-Evaluation when consid-
ering the size of the database and the size of the query as separate parameters,
we first need to introduce some fundamental notions of parameterized com-
plexity. We start with the notion of parameterized problem (or language).

Definition 14.3: Parameterized Problem

Consider a finite alphabet ⌃. A parameterization of ⌃⇤ is a polynomial
time computable function  : ⌃⇤ ! N. A parameterized problem (over
⌃) is a pair (L,), where L ✓ ⌃⇤, and  is a parameterization of ⌃⇤.

A typical example of such a problem is the parameterized version of Clique.

Example 14.4: Parameterized Clique

Recall that Clique is the set of pairs (G, k), where G is an undirected
graph that contains a clique of size k � 1. Assume that graph-integer
pairs are encoded as words over some finite alphabet ⌃. Let  : ⌃⇤ ! N
be the parameterization of ⌃⇤ defined by

(w) =

8
<

:

k if w is the encoding of a graph-integer pair (G, k),

1 otherwise,

for w 2 ⌃⇤. We denote the parameterized problem (Clique,) as p-Clique.

The input to a parameterized problem (L,) over the alphabet ⌃ is a word
w 2 ⌃⇤, and the numbers (w) are the corresponding parameters. Similarly to
(non-parameterized) problems that are represented in the form input-output,
we will represent parameterized problems in the form input-parameter-output.
For example, p-Clique is represented as follows:

112 14 Query Evaluation

Problem: p-Clique

Input: An undirected graph G, and an integer k � 1
Parameter: k
Output: true if G has a clique of size k, and false otherwise

Analogously, we can talk about the parameterized version of CQ-Evaluation,
where the parameter is the size of the query:

Problem: p-CQ-Evaluation

Input: A CQ q(x̄), a database D, and a tuple ā over Dom(D)
Parameter: kqk
Output: true if ā 2 q(D), and false otherwise

Recall that the motivation underlying parameterized complexity is to have
a finer notion of complexity that allows us to classify algorithms as practical or
impractical. But when an algorithm in the realm of parameterized complexity
is considered to be practical? This brings us to fixed-parameter tractability.

Definition 14.5: Fixed-Parameter Tractability

Consider a finite alphabet ⌃, and a parametarization  : ⌃⇤ ! N of ⌃⇤.
An algorithm A with input alphabet ⌃ is an fpt-algorithm with respect
to  if there exists a computable function f : N! R+

0 , and a polynomial
p(·) such that, for every w 2 ⌃⇤, A on input w runs in time

O
�
p(|w|) · f((w))

�
.

A parameterized problem (L,) is fixed-parameter tractable if there is an
fpt-algorithm with respect to  that decides L. We write FPT for the
class of all fixed-parameter tractable problems.

In simple words, (L,) is fixed-parameter tractable if there is an algorithm
that decides whether w 2 L in time arbitrarily large in the parameter (w),
but polynomial in the size of the input w. This reflects the assumption that
(w) is much smaller than |w|, and thus, an algorithm that runs, e.g., in time
O(|w| · 2(w)) is preferable than one that runs in time O(|w|(w)).

Whenever we deal with an intractable problem, e.g., the problem of con-
cern of this chapter, i.e., CQ-Evaluation, it would be ideal to be able to show
that its parameterized version is in FPT. The reader may be tempted to think
that p-CQ-Evaluation is in FPT, and that this can be easily shown by exploit-
ing the algorithm for proving that CQ-Evaluation is in NP. It turns out that
this is not true. Consider a CQ q(x̄), a databaseD, and a tuple ā over Dom(D).

14 Query Evaluation 113

To check if ā 2 q(D), we can iterate over all functions h : Dom(Aq)! Dom(D)
until we find one that is a homomorphism from (Aq, x̄) to (D, ā), in which case
we return true; otherwise, we return false. Since there are |Dom(D)||Dom(Aq)|

such functions, we conclude that this algorithm runs in time

O
�
kDkkqk · r(kDk+ kqk)

�

for some polynomial r(·); note that the size of ā is not included in the bound
since it is polynomially bounded by kDk and kqk. Therefore, we cannot con-
clude that p-CQ-Evaluation is in FPT since the expression that describes the
running time of the above algorithm is not of the form O(p(kDk) · f(kqk)),
for some polynomial p(·) and computable function f : N ! R+

0 , as required
by fixed-parameter tractability in Definition 14.5.

It is widely believed that there is no fpt-algorithm that decides the param-
eterized version of CQ-Evaluation. But then the natural question that comes
up is the following: how can we prove that a parameterized problem is not in
FPT? Several complexity classes have been defined in the context of param-
eterized complexity in order to prove that a parameterized problem is not in
FPT. Such classes are widely believed to properly contain FPT. This means
that if a parameterized problem is complete for one of those classes, then this
is a strong indication that the problem in question is not in FPT. Notice here
the analogy with classes such as NP and PSpace: it is not known whether
these classes properly contain PTime, but if a problem is complete for any
of them, then this is considered as a strong evidence that the problem is not
tractable. We proceed to define one of such classes, namely W[1], which will
allow us to pinpoint the exact complexity of p-CQ-Evaluation.

To define the class W[1], we need to introduce some auxiliary terminology.
Consider a schema S. Let X be a relation name of arity m � 0 that does not
belong to S, and ' an FO sentence over S[{X}. For a database D of S, and
a relation S ✓ Dom(D)m, we write D |= '(S) to indicate that D0 |= ', where
D0 = D [{X(ā) | ā 2 S}. We further define the problem p-WD' as follows:

Problem: p-WD'

Input: A database D of the schema S, and k 2 N
Parameter: k
Output: true if there exists S ✓ Dom(D)m such that |S| = k and

D |= '(S), and false otherwise

Notice that the sentence ' is fixed in the definition of p-WD'. Therefore,
a di↵erent FO sentence of the form described above gives rise to a di↵erent
parameterized problem, dubbed p-WD . The last notion that we need before
introducing the class W[1] is that of FPT-reduction.

An FPT-reduction from a parameterized problem (L1,1) over ⌃1 to a
parameterized problem (L2,2) over ⌃2 is a function � : ⌃⇤

1 ! ⌃⇤
2 such that

114 14 Query Evaluation

the following holds: there are computable functions f, g : N ! R+
0 , and a

polynomial p(·), such that, for every word w 2 ⌃⇤
1 :

1. w 2 L1 if and only if �(w) 2 L2,

2. �(w) can be computed in time p(|w|) · f(1(w)), and
3. 2(�(w))  g(1(w)).

The first and the second conditions are natural. The third condition is needed
to ensure the crucial property that FPT is closed under FPT-reductions: if
there exists an FPT-reduction from (L1,1) to (L2,2), and (L2,2) 2 FPT,
then (L1,1) 2 FPT; the proof is left as an exercise.

We now have all the ingredients needed for introducing the class W[1].
Recall that universal FO sentences are FO sentences of the form 8x1 · · · 8xn ,
where is quantifier free and FV() = {x1, . . . , xn}.

Definition 14.6: The Class W[1]

A parameterized problem (L,) is in W[1] if there exists a schema S, a
relation name X not in S, and a universal FO sentence ' over S[{X},
such that there exists an FPT-reduction from (L,) to p-WD'.

To give some intuition about the definition of W[1], we show that p-Clique
is inW[1]. We first define a universal FO sentence ', and then show that there
exists an FPT-reduction from p-Clique to p-WD'. Assume that S consists of
the relation names Node[1] and Edge[2]. Let also Elem[1] be a relation name
not in S. We define the universal FO sentence ' over S [{Elem}

8x8y
�
(Elem(x) ^ Elem(y) ^ x 6= y)! Edge(x, y)

�
.

We proceed to show that there is an FPT-reduction from p-Clique to p-WD'.
Consider an input to p-Clique given by G = (V,E) and k � 1. Let

D = {Node(v) | v 2 V } [{Edge(v, u) | {v, u} 2 E and v 6= u}.

The sentence ' checks whether the nodes in the relation Elem form a clique.
Thus, G has a clique of size k if and only if there exists S ✓ Dom(D) such
that |S| = k and D |= '(S). It is also clear that (D, k) can be computed in
polynomial time. Therefore, the above reduction from p-Clique to p-WD' is
an FPT-reduction, which in turn implies that p-Clique 2W[1].

Before we proceed with the parameterized complexity of CQ-Evaluation,
let us comment on the nomenclature of W[1]. The class W[1] is the first level
of a hierarchy of complexity classes W[t], for each t � 1; hence the number 1.
More specifically, the class W[t] is defined in the same way as the class W[1],
but allowing the FO sentence ' in p-WD' to be of the form 8x̄19x̄2 · · ·Qx̄t ,
where is quantifier free, Q = 9 if t is even, and Q = 8 if t is odd. The W-
hierarchy is defined as the union of all the classes W[t], that is,

S
t�1 W[t].

14 Query Evaluation 115

Parameterized Complexity of CQ-Evaluation

We know that p-Clique is W[1]-complete, which means that p-Clique 2W[1]
(this has been shown above), and every parameterized problem inW[1] can be
reduced via an FPT-reduction to p-Clique. We also known that FPT ✓W[1],
and it is widely believed that this inclusion is strict (the status of the question
whether FPT 6= W[1] is comparable to that of PTime 6= NP). Thus, it is
unlikely that p-Clique 2 FPT (as FPT is closed under FPT-reductions). We
use this result to prove that the same holds for p-CQ-Evaluation, thus providing
strong evidence that this problem is not fixed-parameter tractable.

Theorem 14.7

p-CQ-Evaluation is W[1]-complete.

Proof. For the lower bound, we show that there exists an FPT-reduction from
p-Clique to p-CQ-Evaluation. We use the same reduction as for the lower bound
in Theorem 14.1, which we recall here for the sake of readability. Consider an
input to p-Clique given by G = (V,E) and k � 1. The database is

D = {Node(v) | v 2 V } [{Edge(v, u) | {v, u} 2 E and v 6= u},

and the Boolean CQ is

q = 9x1 · · · 9xk

✓ k̂

i=1

Node(xi) ^
^

i,j2[k] : i 6=j

Edge(xi, xj)

◆
.

As discussed in the proof of Theorem 14.1, G has a clique of size k if and only
if D |= q, and D and q can be constructed in polynomial time from G and k.
To conclude that this is an FPT-reduction, it remains to show that the third
condition in the definition of FPT-reductions holds, i.e., kqk  g(k) for some
computable function g : N ! R+

0 . It is easy to verify that kqk  c · log k · k2
for some constant c 2 R+, and thus, p-CQ-Evaluation is W[1]-hard.

We now focus on the upper bound. For technical clarity, we consider only
constant-free Boolean CQs over a schema consisting of a single binary relation
name Edge. We leave the prove for the general case, where no restrictions are
imposed to the query and its schema, as an exercise.

We first define a universal FO sentence ', and then show that there exists
an FPT-reduction from p-CQ-Evaluation to p-WD'. Consider the schema

S = {Const[1], Var[1], Edge1[2], Edge2[2]}.

Consider also the relation name Hom[2] that does not belong to S. We define
the universal FO sentence ' over S [{Hom} as follows:

116 14 Query Evaluation

8x8y8z
�
(Hom(x, y) ^Hom(x, z))! y = z

�
^

8x8y (Hom(x, y)!
�
Var(x) ^ Const(y))

�
^

8x18y18x28y2
�
(Edge1(x1, y1) ^Hom(x1, x2) ^Hom(y1, y2))! Edge2(x2, y2)

�
.

We show that there is an FPT-reduction from p-CQ-Evaluation to p-WD'.
Consider an input to p-CQ-Evaluation given by a constant-free Boolean CQ
q over the schema {Edge[2]}, and a database D of {Edge[2]}. Assuming that
{x1, . . . , xn} are the variables occurring in q, we define the database D0 as

D [{Const(a) | a 2 Dom(D)} [{Var(ax1), . . . ,Var(axn)}
[{Edge1(axi , axj) | Edge(xi, xj) is an atom occuring in q}

[{Edge2(a, b) | Edge(a, b) 2 D}.

Roughly, the relation Const stores the constants occurring in D, the relation
Var stores the variables occurring in q, the relation Edge1 stores the atoms of
q, and the relation Edge2 stores the facts of D. We further define n = k, that
is, k is the number of variables occurring in q.

With the definitions of D0 and k in place, we can now explain the meaning
of the FO sentence '. The first conjunct 8x8y8z ((Hom(x, y)^Hom(x, z))!
y = z) states that Hom represents a function, as only one value can be as-
sociated to x. The second conjunct states that Hom maps variables of q to
constants of D. Finally, the third conjunct states that Hom represents a homo-
morphism from q toD. Notice, however, that ' does not impose the restriction
that every variable occurring q has to be mapped to a constant of D, as this
requires a non-universal FO sentence of the form

8x (Var(x)! 9y (Const(y) ^Hom(x, y))).

Instead, the parameter k = n is used to force Hom to map every variable in
q to a constant of D, as n is the number of variables occurring in q.

Summing up, q(D) = true if and only if there is S ✓ Dom(D0)2 with |S| =
k and D0 |= '(S). It is also clear that D0 and k can be constructed from D and
q in polynomial time, and k  kqk. Thus, we have provided an FPT-reduction
from p-CQ-Evaluation to p-WD', which shows that p-CQ-Evaluation 2 W[1]
(for constant-free Boolean CQs over a single binary relation). ut

15

Containment and Equivalence

We have seen in Chapter 8 that the satisfiability problem for FO and RA is
undecidable. In terms of query optimization, satisfiability is arguably the most
elementary task one can think of, since it simply asks whether a query has a
non-empty output on at least one database. Indeed, if a query is not satisfiable,
then we do not even need to access the database in order to compute its
output, which is trivially empty. Furthermore, for FO and RA, undecidability
of other static analysis tasks such as containment and equivalence immediately
follow from the undecidability of satisfiability.

On the other hand, the satisfiability problem for CQs is trivial. Indeed,
given a CQ q, there is always a database on which q has a non-empty output,
that is, the grounding A#

q of Aq (see Definition 9.3). This means that static
analysis for CQs is drastically di↵erent than for FO and RA, which in turn
indicates that we need to revisit the problems of containment and equivalence
in the case of CQs. This is the goal of this chapter.

Optimizing A Simple Query

We start by first illustrating the role of containment and equivalence for CQs
in query optimization by means of a simple example.

Example 15.1: A CQ with Redundancy

Consider again the relational schema

Person [pid, pname, cid]

Profession [pid, prname]

City [cid, cname, country]

from Chapter 3, and the CQ

118 15 Containment and Equivalence

q = Answer(y) :– Person(x, y, z),Profession(x, ‘actor’),Profession(x,w)

over this schema. The query q asks for names of persons who are actors
and who have some profession. It is clear that q contains some redun-
dancy since, if a person is an actor, then this person also has a profession
(namely, being an actor). In fact, the CQ

q0 = Answer(y) :– Person(x, y, z),Profession(x, ‘actor’)

asks the same query, but in smarter way in the sense that it mentions
fewer relational atoms in its body. We make two observations:

(a) The query q0 is a part of q, that is, all atoms in the body of q0 belong
also to the body of q.

(b) In order to test if q and q0 are equivalent, we only need to test if
q0 ✓ q. The other inclusion immediately follows from (a).

The above example suggests that the following simple strategy may be
useful for optimizing a CQ q. We write (q � R(ū)) for the CQ obtained by
deleting from the body of q the relational atom R(ū).

Algorithm 3 Optimize-By-Containment(q)

Input: A CQ q(x̄)
Output: A CQ q⇤(x̄) that is equivalent to q(x̄), and may mention fewer atoms

1: while there exists an atom R(ū) in the body of q such that (q �R(ū)) ✓ q do

2: q := (q �R(ū))

3: return q(x̄)

The approach in Algorithm 3 captures a very natural idea for optimizing
CQs: keep removing atoms from the body of the CQ as long as the resulting CQ
is equivalent to the original one. In order to carry out this strategy (and nu-
merous other, more intricate, optimization strategies), it is crucial that we are
able to e↵ectively test containment, and thus equivalence, between CQs. We
therefore study in this chapter the closely related problems CQ-Containment
and CQ-Equivalence. We will retake Algorithm 3 in Chapter 16.

Containment

We first concentrate on CQ-Containment. We start by illustrating the notion
of containment for CQs via a simple example.

15 Containment and Equivalence 119

Example 15.2: CQ Containment

Consider the CQ

q1 = Answer(y1) :– Person(x1, y1, z1),Profession(x1, ‘actor’),

City(z1, ‘Los Angeles’, ‘United States’)

asking for names of actors who live in Los Angeles, and the CQ

q2 = Answer(y2) :– Person(x2, y2, z2),Profession(x2, w2)

asking for persons who have a profession. It is easy to verify that q1 ✓ q2
since q1 imposes the extra conditions that the returned persons are actors
who live in Los Angeles.

We proceed to show that checking for containment in the case of CQs is
decidable, but an intractable problem.

Theorem 15.3

CQ-Containment is NP-complete.

The proof of Theorem 15.3 relies on a useful characterization of contain-
ment of CQs in terms of homomorphisms, which we present below. Given two
CQs q(x̄) and q0(x̄0), we write (q0, x̄0) ! (q, x̄) for the fact that there exists
a homomorphism from (Aq0 , x̄0) to (Aq, x̄); we also write q ! q0 to indicate
that Aq ! Aq0 . Recall that Aq and Aq0 are the sets of atoms occurring in the
body of q and q0, respectively, when seen as rules.

We also remind the reader that for a set of atoms S, we write S# for the
grounding of S, which allows us to view S as a database. Such a grounding is
given by the bijective homomorphism GS from S to S# that replaces variables
in S by new constants; in particular, GS(S) = S#.

Theorem 15.4: Homomorphism Theorem

Let q(x̄) and q0(x̄0) be CQs. Then:

q ✓ q0 if and only if (q0, x̄0)! (q, x̄).

Proof. ()) Assume that q ✓ q0. Since GAq is a homomorphism, Theorem 13.2
implies GAq (x̄) 2 q(GAq (Aq)). Since q ✓ q0, we have GAq (x̄) 2 q0(GAq (Aq)).
Applying Theorem 13.2 again, we conclude that there exists a homomorphism
h from (Aq0 , x̄0) to (GAq (Aq),GAq (x̄)). Since GAq is bijective, G�1

Aq
� h is a

homomorphism from (Aq0 , x̄0) to (Aq, x̄), as needed.

120 15 Containment and Equivalence

(() Conversely, assume that (q0, x̄0) ! (q, x̄), and let h be a homomor-
phism from (Aq0 , x̄0) to (Aq, x̄). Given a database D, assume that ā 2 q(D).
By Theorem 13.2, there exists a homomorphism g from (Aq, x̄) to (D, ā). Since
homomorphisms compose, g � h is a homomorphism from (Aq0 , x̄0) to (D, ā)
and, thus, ā 2 q0(D) by Theorem 13.2. Therefore, we have that q(D) ✓ q0(D),
from which we conclude that q ✓ q0. ut

The next example shows the usefulness of the Homomorphism Theorem.

Example 15.5: Homomorphism Theorem

Consider again the CQs q1 and q2 from Example 15.2, and recall that
q1 ✓ q2. This is confirmed by the Homomorphism Theorem since

(q2, y2) ! (q1, y1).

This is the case since the function h : Dom(Aq2)! Dom(Aq1) defined as

h(x2) = x1 h(y2) = y1 h(z2) = z1 h(w2) = ‘actor’

is a homomorphism from (Aq2 , y2) to (Aq1 , y1).

An easy consequence of the Homomorphism Theorem is that the problem
CQ-Containment can be reduced to CQ-Evaluation.

Corollary 15.6

Let q(x̄) and q0(x̄0) be CQs. Then:

q ✓ q0 if and only if GAq (x̄) 2 q0(GAq (Aq)).

Proof. By Theorem 15.4, we conclude that

q ✓ q0 if and only if (Aq0 , x̄
0)! (Aq, x̄).

We can also show that

(Aq0 , x̄
0)! (Aq, x̄) if and only if (Aq0 , x̄

0) ! (GAq (Aq),GAq (x̄)).

Indeed, if (Aq0 , x̄0)! (Aq, x̄) is witnessed via h, then we have that GAq � h is
a homomorphism from (Aq0 , x̄0) to (GAq (Aq),GAq (x̄)). Conversely, assuming
that (Aq0 , x̄0)! (GAq (Aq),GAq (x̄)) is witnessed via g, G�1

Aq
� g is a homomor-

phism from (Aq0 , x̄0) to (Aq, x̄). By Theorem 13.2, we get that

(Aq0 , x̄
0)! (GAq (Aq),GAq (x̄)) if and only if GAq (x̄) 2 q0(GAq (Aq)).

Consequently, we get that q ✓ q0 if and only if GAq (x̄) 2 q0(GAq (Aq)). ut

15 Containment and Equivalence 121

By exploiting the Homomorphism Theorem, we can further show that the
problem CQ-Evaluation can be reduced to CQ-Containment, i.e., the opposite
of what Corollary 15.6 shows. In the proof of Corollary 15.6, we essentially
convert the CQ q into a database via the bijective homomorphism GAq . Now
we are going to do the opposite, i.e., convert a database into a CQ. As dis-
cussed in Chapter 13, we can convert a database D into a set of relational
atoms via the injective function VC : Const ! Const [Var, where C is a
finite set of constants. Recall that VC(D) is the set of relational atoms ob-
tained from D by replacing constants, except for those in C, with variables.
The following corollary, which establishes that CQ-Evaluation can be reduced
to CQ-Containment, is stated for Boolean CQs, as this su�ces for the pur-
pose of pinpointing the complexity of CQ-Containment, but it can be easily
generalized to arbitrary CQs.

Corollary 15.7

Let q be a Boolean CQ, D a database, and qD the Boolean CQ such that
AqD = VC(D), where C = Dom(Aq) \ Const. Then:

D |= q if and only if qD ✓ q.

Proof. By Theorem 13.2, we conclude that

D |= q if and only if q ! D.

It is easy to show that

q ! D if and only if q ! qD.

Indeed, if q ! D is witnessed via h, then we get that VC�h is a homomorphism
from q to qD. Conversely, assuming that q ! qD is witnessed via g, V�1

C � g is
a homomorphism from q to D. By Theorem 15.4, we conclude that

q ! qD if and only if qD ✓ q.

From the above equivalences, we get that D |= q if and only if qD ✓ q. ut

By Theorem 14.1, CQ-Evaluation is in NP, and thus, Corollary 15.6 implies
that also CQ-Containment is in NP. Moreover, since CQ-Evaluation is NP-hard
even for Boolean CQs (this is because the CQ that the reduction from Clique to
CQ-Evaluation builds in the proof of Theorem 14.1 is Boolean), Corollary 15.7
implies that CQ-Containment is NP-hard. Therefore, CQ-Containment is NP-
complete, which establishes Theorem 15.3.

Equivalence

We now focus on the equivalence problem: given two CQs q, q0, check whether
q ⌘ q0, i.e., whether q(D) = q0(D) for every database D. We show that:

122 15 Containment and Equivalence

Theorem 15.8

CQ-Equivalence is NP-complete.

Proof. Concerning the upper bound, it su�ces to observe that

q ⌘ q0 if and only if q ✓ q0 and q0 ✓ q,

which implies that CQ-Equivalence is in NP since, by Theorem 15.3, the prob-
lem of deciding whether q ✓ q0 and q0 ✓ q is in NP.

Concerning the lower bound, we provide a reduction from CQ-Containment.
In fact, CQ-Containment is NP-hard even if we consider Boolean CQs (this is
a consequence of the proof of Theorem 15.3). Consider two Boolean CQs

q = Answer :– R1(ū1), . . . , Rn(ūn) q0 = Answer :– R0
1(ū

0
1), . . . , R

0
m(ū0

m),

We assume that q, q0 do not share variables since we can always rename vari-
ables without a↵ecting the semantics of a query. Let q\ be the Boolean CQ

Answer :– R1(ū1), . . . , Rn(ūn), R
0
1(ū

0
1), . . . , R

0
m(ū0

m),

which essentially computes the intersection of q and q0. In other words, for
every database D, q(D) \ q0(D) = q\(D). It is straightforward to see that

q ✓ q0 if and only if q ⌘ q\,

which in turn implies that CQ-Equivalence is NP-hard, as needed. ut

16

Minimization

Query optimization is the task of transforming a query into an equivalent one
that is easier to evaluate. Since joins are expensive operations, we typically
consider an equivalent version of a CQ q with fewer atoms in its body, and
thus, with fewer joins to perform. Ideally, we would like to compute a CQ q0

that is equivalent to q, and is also minimal, i.e., it has the minimum number
of atoms. This brings us to the notion of minimization of CQs.

Definition 16.1: Minimization of CQs

Consider a CQ q over a schema S. A CQ q0 over S is a minimization of
q if the following hold:

1. q ⌘ q0, and

2. for every CQ q00 over S, q0 ⌘ q00 implies |Aq0 |  |Aq00 |.

In other words, q0 is a minimization of q if it is equivalent to q and has the
smallest number of atoms among all the CQs that are equivalent to q. It is
straightforward to see that every CQ q over a schema S has a minimization,
which is actually a query from the finite set (up to variable renaming)

Mq = {q0 | q0 is a CQ over S and |Aq0 |  |Aq|}

that collects all the CQs over S (up to variable renaming) with at most |Aq|
atoms. Hence, to compute a minimization of q, we could, e.g., iterate over
all CQs of Mq in increasing order with respect to the number of body atoms,
until we find one that is equivalent to q. But now the following questions arise:

1. Is there a smarter procedure for computing a minimization of q instead of
naively iterating over the exponentially many CQs of Mq? In particular,
does the strategy of removing atoms from q as long as the resulting query
is equivalent to q (see Algorithm 3) lead to a minimization of q?

124 16 Minimization

2. Which minimization of q should be computed? Is there one that stands
out as the best?

The above questions have neat answers, which we discuss in detail in the
rest of the chapter. In a nutshell, one can indeed find minimizations of a CQ
q by removing atoms from its body. Moreover, although q may have several
minimizations, they are all the same (up to variable renaming). This implies
that no matter in which order we remove atoms from the body of q, we will
always compute the same minimization of q (up to variable renaming).

Minimization via Atom Removals

Consider a CQ q of the form Answer(x̄) :– R1(ū1), . . . , Rn(ūn). The CQ q0

obtained from q by removing the atom Ri(ūi), for some i 2 [n], is

Answer(x̄0) :– R1(ū1), . . . , Ri�1(ūi�1), Ri+1(ūi+1), . . . , Rn(ūn),

where x̄0 is obtained from x̄ by removing every variable that is only mentioned
in the atom Ri(ūi). For example, if we remove the atom R(x) from the CQ
Answer(x, y) :– R(x), S(y), then we obtain the CQ Answer(y) :– S(y) as the
variable x is only mentioned in R(x). On the other hand, if we remove the
atom R(x) from the CQ Answer(x, y) :– R(x), T (x, y), then we obtain the CQ
Answer(x, y) :– T (x, y) since x occurs also in T (x, y).

The building block of minimization via atom removals is as follows: given
a CQ q(x̄), construct a CQ q0(x̄) by removing an atom R(ū) from the body of
q such that (q, x̄)! (q0, x̄). Notice that the output tuple x̄ remains the same,
which means that the atom R(ū) either it does not contain a variable of x̄, or
it contains only variables of x̄ that occur also in atoms of Aq�{R(ū)}. In this
way, we actually construct a CQ that is equivalent to q. Indeed, since (q, x̄)!
(q0, x̄), we get that q0 ✓ q (by Theorem 15.4). Moreover, (q0, x̄)! (q, x̄) holds
trivially due to the identity homomorphism from Aq0 to Aq, and thus, q ✓ q0

(again by Theorem 15.4). We then iteratively remove atoms as above until we
reach a CQ q00(x̄) that is minimal, i.e., any CQ q000(x̄) that can be obtained by
removing an atom from the body of q00 is such that (q00, x̄)! (q000, x̄) does not
hold. The CQ q00 is typically called a core of q. The formal definition follows.

Definition 16.2: Core of a CQ

Consider a CQ q(x̄). A CQ q0(x̄) is a core of q if the following hold:

1. Aq0 ✓ Aq,

2. (q, x̄)! (q0, x̄), and

3. for every CQ q00(x̄) with Aq00 (Aq0 , (q0, x̄)! (q00, x̄) does not hold.

The first condition in Definition 16.2 expresses that either q = q0, or q0 is
obtained by removing atoms from q but without altering the output tuple x̄,

16 Minimization 125

the second condition ensures that q ⌘ q0, and the third condition states that
q0 is minimal. Here is an example that illustrates the notion of core of a CQ.

Example 16.3: Core of a CQ

Consider the Boolean CQ q1 defined as

Answer :– R(x, y), R(x, z).

The function h defined as h(x) = x, h(y) = y and h(z) = y is a ho-
momorphism from {R(x, y), R(x, z)} to {R(x, y)}. Therefore, q1 ! q01,
where q01 is the Boolean CQ defined as

Answer :– R(x, y).

Since, by definition, a CQ must have at least one atom in its body, we
conclude that q01 is a core of q1. Observe that the Boolean CQ q001

Answer :– R(x, z)

is also a core of q1 due to the homomorphism h0 defined as h(x) = x,
h(y) = z and h(z) = z. Therefore, a CQ may have several cores that are
syntactically di↵erent, depending on the order that atoms are removed.

Consider now the Boolean CQ q2 defined as

Answer :– R(x, y), R(y, z).

Observe that there is neither a homomorphism from {R(x, y), R(y, z)}
to {R(x, y)}, nor a homomorphism from {R(x, y), R(y, z)} to {R(y, z)}.
This means that there is no way to remove an atom from q2 and get an
equivalent CQ. Therefore, we conclude that q2 is its own core.

Finally, consider the CQ q3 defined as

Answer(x, y, z) :– R(x, y), R(x, z),

which is actually q1 with all the variables in the output tuple. By remov-
ing the atom R(x, z) from q3, we obtain the CQ q03

Answer(x, y) :– R(x, y).

In this case, there is no homomorphism from (Aq3 , (x, y, z)) to (Aq03
, (x, y))

since there is no way to map the ternary tuple (x, y, z) to the binary tu-
ple (x, y). Hence, q03 is not equivalent to q3. The case where we remove
the atom R(x, y) from q3 is analogous. Therefore, q3 is its own core.

We proceed to show that the notion of core captures our original intention,
that is, the construction of a minimization of a CQ.

126 16 Minimization

Proposition 16.4

Every CQ q has at least one core, and every core of q is a minimization
of q.

Proof. We first show that a CQ q(x̄) has a core. If q is a core of itself, then the
claim follows. Assume now that this is not the case. This means that condition
(3) in the definition of core (Definition 16.2) is violated, which in turn implies
that there is a CQ q0(x̄) with Aq0 (Aq such that (q, x̄) ! (q0, x̄). If q0 is a
core of itself, then it is clear that q0 is a core of q. Otherwise, we iteratively
apply the above argument until we reach a core of q.

We now proceed to show that a core of q(x̄) is a minimization of it. We
first show a useful technical lemma:

Lemma 16.5. Consider a CQ q1(ȳ1), and assume that there is a CQ q2(ȳ2)
such that q1 ⌘ q2 and |Aq2 | < |Aq1 |. Then, there is a CQ q3(ȳ1) such that

(q1, ȳ1)! (q3, ȳ1) and Aq3 (Aq1 .

Proof. By Theorem 15.4, we conclude that

(q1, ȳ1)! (q2, ȳ2) and (q2, ȳ2)! (q1, ȳ1).

Assume that these statements are witnessed via the homomorphisms h1 and
h2, respectively. Let q3(ȳ3) be the CQ such that

Aq3 = h2(Aq2) and ȳ3 = h2(ȳ2).

It is clear that ȳ3 = ȳ1 and Aq3 ✓ Aq1 . Furthermore, since |Aq3 |  |Aq2 | and
|Aq2 | < |Aq1 |, we conclude that |Aq3 | < |Aq1 |, and thus, Aq3 (Aq1 . It remains
to show that (q1, ȳ1)! (q3, ȳ1). Since homomorphisms compose, the latter is
witnessed via the homomorphism h2 � h1. ut

Consider now a CQ q0(x̄) that is a core of q(x̄). Towards a contradiction,
assume that q0 is not a minimization of q. This implies that there exists a CQ
q00 such that q0 ⌘ q00 and |Aq00 | < |Aq0 |. By Lemma 16.5, we conclude that
there exists a CQ q000(x̄) such that (q0, x̄) ! (q000, x̄) and Aq000 (Aq0 . This
contradicts our hypothesis that q0 is a core of q, and the claim follows. ut

By Proposition 16.4, to compute a minimization of a CQ q, we simply need
to compute a core of it. This can be done via the simple iterative procedure
ComputeCore, given in Algorithm 4. Notice that this algorithm is a more
detailed reformulation of Algorithm 3. It is straightforward to show that, for
a CQ q, ComputeCore(q) terminates after finitely many steps. It is also not
di�cult to show that the procedure ComputeCore is correct.

Lemma 16.6. Given a CQ q, ComputeCore(q) is a core of q.

16 Minimization 127

Algorithm 4 ComputeCore(q)

Input: A CQ q(x̄)
Output: A CQ q⇤(x̄) that is a core of q(x̄)

1: S := Aq

2: while there exists R(ū) 2 S such that each variable in x̄
3: occurs in Dom(S � {R(ū)}) and (S, x̄) ! (S � {R(ū)}, x̄) do
4: S := S � {R(ū)}
5: return q⇤(x̄) :– R1(ū1), . . . , Rn(ūn), where S = {R1(ū1), . . . , Rn(ūn)}

Proof. At each iteration of the while-loop, the CQ q0(x̄) with Aq0 = S (which
is indeed a CQ since, by construction, every variable in x̄ occurs in Aq0) is
such that Aq0 ✓ Aq and (q, x̄)! (q0, x̄). Therefore, the CQ q⇤(x̄) returned by
the algorithm is such that Aq⇤ ✓ Aq and (q, x̄) ! (q⇤, x̄). Furthermore, by
construction, for every CQ q00(x̄) with Aq00 (Aq⇤ , (q⇤, x̄) ! (q00, x̄) does not
hold. Therefore, q⇤ satisfies all the three conditions given in the definition of
core (Definition 16.2), and thus, it is a core of q, as needed. ut

Note that ComputeCore is a nondeterministic algorithm. Observe that
there may be several atoms R(ȳ) 2 S satisfying the condition of the while loop
(in particular, the condition (S, x̄)! (S � {R(ȳ)}, x̄)), but we do not specify
how such an atom is selected. In fact, the atom R(ȳ) of S that is eventually
removed from S at step 4 is chosen nondeterministically. Therefore, the final
result computed by the algorithm depends on how the atoms to be removed
from S are chosen, and thus, di↵erent executions of ComputeCore(q) may
compute cores of q that are syntactically di↵erent. This fact should not be
surprising as it has been already illustrated in Example 16.3 (see the queries
q01 and q001 that are cores of q1). This leads to the second main question raised
above: is there a core of q that stands out as the best?

Uniqueness of Minimizations

It turns out that such a concept as the best core does not exist since a CQ has
a unique core (up to variable renaming). This is a consequence of the fact that
every CQ has a unique minimization (up to variable renaming). We proceed
to show the latter statement.

We say that two CQs q(x̄), q0(x̄0) are isomorphic if one can be turned into
the other via renaming of variables, i.e., if there is a bijection ⇢ : Dom(Aq)!
Dom(Aq0) that is a homomorphism from (Aq, x̄) to (Aq0 , x̄0), and its inverse
⇢�1 is a homomorphism from (Aq0 , x̄0) to (Aq, x̄). (Recall from Chapter 9 that
homomorphisms between sets of atoms are always the identity on constants.)

128 16 Minimization

Proposition 16.7

Consider a CQ q(x̄), and let q0(x̄0) and q00(x̄00) be minimizations of q.
Then q0 and q00 are isomorphic.

Proof. We need to show that there is a bijection ⇢ : Dom(Aq0) ! Dom(Aq00)
that is a homomorphism from (Aq0 , x̄0) to (Aq00 , x̄00), and its inverse ⇢�1 is a
homomorphism from (Aq00 , x̄00) to (Aq0 , x̄0). Since both q0 and q00 are minimiza-
tions of q, we get that q ⌘ q0 and q ⌘ q00, and thus, q0 ⌘ q00. By Theorem 15.4,

(q0, x̄0)! (q00, x̄00) and (q00, x̄00)! (q0, x̄0).

Assume that these statements are witnessed via the homomorphisms h and
g, respectively. We proceed to show a useful statement concerning h and g:

Lemma 16.8. The functions h and g are bijections.

Proof. We concentrate on h, and show that is both surjective and injective;
the proof for g is analogous. We give a proof by contradiction:

• Assume first that h is not surjective. This implies that there is a variable
z 2 Dom(Aq00) such that there is no variable y 2 Dom(Aq0) with h(y) = z.
Let R(ū) 2 Aq00 be an atom that mentions z. We have that R(ū) 62 h(Aq0).
We define q000(x̄00) as the CQ with Aq000 = h(Aq0). It is clear that (q0, x̄0)!
(q000, x̄00) via h, and (q000, x̄00)! (q0, x̄0) via g. Therefore, by Theorem 15.4,
q0 ⌘ q000. Since q0 ⌘ q00, we conclude that q00 ⌘ q000. Observe also that
Aq000 (Aq00 , which implies that |Aq000 | < |Aq00 |. But this contradicts the
fact that q00 is a minimization of q, and thus, h is surjective.

• Assume now that h is not injective. This implies that there are two dis-
tinct variables y, z 2 Dom(Aq0) such that h(y) = h(z). Hence, g(h(y)) =
g(h(z)), which implies that g �h is a homomorphism from (q0, x̄0)! (q0, x̄0)
that is not surjective. Therefore, there exists a variable u 2 Dom(Aq0) such
that there is no variable v 2 Dom(Aq0) with g(h(v)) = u. Let R(ū) 2 Aq0

be an atom that mentions u. We have that R(ū) 62 g(h(Aq0)). We define
q000(x̄0) as the CQ with Aq000 = g(h(Aq0)). It is clear that (q0, x̄0)! (q000, x̄0)
via g � h. Observe also that Aq000 (Aq0 . Hence, (q000, x̄0)! (q0, x̄0) via the
identity homomorphism, which means that q0 ⌘ q000 due to Theorem 15.4,
and |Aq000 | < |Aq0 |. But this contradicts the fact that q0 is a minimization
of q, which in turn implies that h is injective.

Since h is both surjective and injective, the claim follows. ut

16 Minimization 129

We are now ready to define the bijection ⇢ : Dom(Aq0)! Dom(Aq00). Let
f = g � h. It is clear that f is a homomorphism from (Aq0 , x̄0) to (Aq0 , x̄0).
Since, by Lemma 16.8, both h and g are bijections, we can further conclude
that f is a bijection. This implies that there exists k � 0 such that the function

fk = f � · · · � f| {z }
k

is the identity homomorphism from (Aq0 , x̄0) to (Aq0 , x̄0). Let ⇢ = h � fk�1.
Since both h and fk�1 are bijections, we get that also ⇢ is a bijection. It is
also clear that ⇢ is a homomorphism from (Aq0 , x̄0) to (Aq00 , x̄00). Notice also
that g � ⇢ = fk is the identity, which means that g is the inverse of ⇢. Thus,
the inverse of ⇢ is a homomorphism from (Aq00 , x̄00) to (Aq0 , x̄0). Therefore, ⇢
witnesses the fact that q0 and q00 are isomorphic, and the claim follows. ut

From Proposition 16.4, which tells us that a core of a CQ q is a minimiza-
tion of q, and Proposition 16.7, we immediately get the following corollary:

Corollary 16.9

Consider a CQ q, and let q0 and q00 be cores of q. It holds that q0 and q00

are isomorphic.

Recall that di↵erent executions of the nondeterministic procedure Com-
puteCore on some input CQ q, may compute cores of q that are syntactically
di↵erent. However, Corollary 16.9 tells us that those cores di↵er only on the
names of their variables. In other words, cores of q computed by di↵erent exe-
cutions of ComputeCore(q) are actually the same up to variable renaming.

17

Containment Under Integrity Constraints

As discussed in Chapters 10 and 11, relational systems support the specifi-
cation of semantic properties that should be satisfied by all databases of a
certain schema. This is achieved via integrity constraints, also called depen-
dencies. The question that arises is how static analysis, and in particular the
notion of containment of CQs, studied in Chapter 16, is a↵ected in the pres-
ence of constraints. In this chapter, we study this question concentrating on
functional dependencies (FDs) and inclusion dependencies (INDs).

Functional Dependencies

We start with FDs, and illustrate via an example how containment of CQs is
a↵ected if we focus on databases that satisfy a given set of FDs.

Example 17.1: Containment of CQs Under FDs

Consider the CQs q1 and q2 defined as

Answer(x1, y1) :– R(x1, y1), R(y1, z1), R(x1, z1)

Answer(x2, y2) :– R(x2, y2), R(y2, y2),

respectively. It is easy to verify that (q2, (x2, y2))! (q1, (x1, y1)) does not
hold, and thus, we have that q1 6✓ q2 by the Homomorphism Theorem.
For example, if we consider the database

D = {R(1, 2), R(2, 3), R(1, 3)},

then q1(D) = {(1, 2)} and q2(D) = ;, so that q1(D) 6✓ q2(D). Suppose
now that q1, q2 will be evaluated only over databases that satisfy the FD

� = R : {1}! {2}.

132 17 Containment Under Integrity Constraints

In particular, q1 and q2 will not be evaluated over the database D since
it does not satisfy �. We can show that, for every database D0,

D0 |= � implies q1(D
0) ✓ q2(D

0).

To see this, consider an arbitrary database D0 that satisfies �, and as-
sume that (a, b) 2 q1(D0). By Theorem 13.2, we have that

(q1, (x1, y1)) ! (D0, (a, b))

via a homomorphism h1. Since D0 |= � and

{R(h1(x1), h1(y1)), R(h1(x1), h1(z1))} ✓ D0,

it holds that h1(y1) = h1(z1). Since R(h1(y1), h1(z1)) 2 D0, we get that

(q2, (x2, y2)) ! (D0, (a, b))

via h2 such that h2(x2) = h1(x1) and h2(y2) = h1(y1) = h1(z1).

Our goal is to revisit the problem of containment for CQs in the presence
of FDs. More precisely, given two CQs q and q0, and a set ⌃ of FDs, we say
that q is contained in q0 under ⌃, denoted by q ✓⌃ q0, if for every database D
that satisfies ⌃, it holds that q(D) ✓ q0(D). The problem of interest follows:

Problem: CQ-Containment-FD

Input: Two CQs q and q0, and a set ⌃ of FDs
Output: true if q ✓⌃ q0, and false otherwise

We proceed to show the following result:

Theorem 17.2

CQ-Containment-FD is NP-complete.

It is clear that the NP-hardness is inherited from CQ containment without
constraints (see Theorem 15.3). Recall that, by the Homomorphism Theorem,
checking whether a CQ q(x̄) is contained in a CQ q0(x̄0) in the absence of
constraints boils down to checking whether (q0, x̄0) ! (q, x̄). Even though
this is not enough in the presence of FDs, we can adopt a similar approach
providing that we first transform, by identifying terms as dictated by the
FDs, the set of atoms Aq in q into a new set of atoms S that satisfies the
FDs, and the tuple of variables x̄ into a new tuple ū, which may contain also
constants, and then check whether (Aq0 , x̄0) ! (S, ū). This simple idea has

17 Containment Under Integrity Constraints 133

been already illustrated by Example 17.1. Unsurprisingly, the transformation
of Aq and x̄ into S and ū, respectively, can be done by exploiting the chase for
FDs, which has been introduced in Chapter 10. For brevity, we simply write
Chase(q,⌃) instead of Chase(Aq,⌃), and hq,⌃ instead of hAq,⌃ . We now show
the following result by providing a proof similar to that of the Homomorphism
Theorem:

Theorem 17.3

Let q(x̄) and q0(x̄0) be CQs over a schema S, and ⌃ a set of FDs over S.
The following are equivalent:

1. q ✓⌃ q0.

2. Chase(q,⌃) 6= ? implies (Aq0 , x̄0)! (Chase(q,⌃), hq,⌃(x̄)).

Proof. For brevity, let S = Chase(q,⌃) and ū = hq,⌃(x̄).
We first show that (1) implies (2). By hypothesis, q ✓⌃ q0. It is clear that,

if S 6= ?, then GS(ū) 2 q(GS(S)). Since, by Lemma 10.8, S |= ⌃, which means
that GS(S) |= ⌃, we have that GS(ū) 2 q0(GS(S)). By Theorem 13.2, there
exists a homomorphism h from (Aq0 , x̄0) to (GS(S),GS(ū)). Clearly, G

�1
S �h is

a homomorphism from (Aq0 , x̄0) to (S, ū), as needed.
For showing that (2) implies (1) we proceed by case analysis:

• Assume first that S = ?. This implies that, for every databaseD of S such
that D |= ⌃, there is no homomorphism from q to D; otherwise, there
is a successful finite chase sequence of q under ⌃, which contradicts the
fact that S = ?. Therefore, for every database D of S such that D |= ⌃,
q(D) = ;, which in turn implies that q ✓⌃ q0.

• Assume now that S 6= ?. By hypothesis, we get that (Aq0 , x̄0)! (S, ū) via
a homomorphism h. LetD be an arbitrary database of S such thatD |= ⌃,
and assume that ā 2 q(D). By Theorem 13.2, (q, x̄) ! (D, ā). Since
D |= ⌃, Lemma 10.11 implies that (S, ū) ! (D, ā) via a homomorphism
g. Since homomorphisms compose, g � h is a homomorphism from (q0, x̄0)
to (D, ā). By Theorem 13.2, ā 2 q0(D), which implies that q ✓⌃ q0.

Since in both cases we get that q ✓⌃ q0, the claim follows. ut

The following is an easy consequence of Theorem 17.3 and Theorem 13.2.

Corollary 17.4

Let q(x̄) and q0(x̄0) be CQs over a schema S, and ⌃ a set of FDs over S.
With S = Chase(q,⌃), the following are equivalent:

134 17 Containment Under Integrity Constraints

1. q ✓⌃ q0.

2. S 6= ? implies GS(hq,⌃(x̄)) 2 q0(GS(S)).

By Lemma 10.10, Chase(q,⌃) can be computed in polynomial time. More-
over, if Chase(q,⌃) 6= ?, then the chase homomorphism hq,⌃ can be also com-
puted in polynomial time. Since CQ-Evaluation is in NP (see Theorem 14.1),
we conclude that CQ-Containment-FD is also inNP, and Theorem 17.2 follows.

Inclusion Dependencies

We now focus on INDs. We first illustrate via an example how containment
of CQs is a↵ected if we focus on databases that satisfy a set of INDs.

Example 17.5: Containment of CQs Under INDs

Consider the CQs q1 and q2 defined as

Answer(x1, y1) :– R(x1, y1), R(y1, z1), P (z1, y1)

Answer(x2, y2) :– R(x2, y2), R(y2, z2), S(x2, y2, z2),

respectively. It is clear that (q2, (x2, y2)) ! (q1, (x1, y1)) does not hold,
and thus, we have that q1 6✓ q2 by the Homomorphism Theorem. Suppose
now that q1 and q2 will be evaluated only over databases that satisfy

�1 = R[1, 2] ✓ S[1, 2] and �2 = S[2, 3] ✓ R[1, 2].

We can show that, for every database D,

D |= {�1,�2} implies q1(D) ✓ q2(D).

Consider an arbitrary database D that satisfies {�1,�2}, and assume
that (a, b) 2 q1(D), or, equivalently, (q1, (x1, y1)) ! (D, (a, b)) via a
homomorphism h1. This implies that R(h1(x1), h1(y1)) 2 D. Since D |=
�1, we get that D contains an atom of the form S(h1(x1), h(y1), c). But
since D |= �2, we also get that D contains the atom R(h1(y1), c). Hence,

{R(h1(x1), h1(y1)), R(h1(y1), c), S(h1(x1), h1(y1), c)} ✓ D.

This implies that (q01, (x1, y1)) ! (D, (a, b)), where q01 is obtained from
q1 by adding certain atoms according to �1 and �2, i.e., q01 is defined as

Answer(x1, y1) :– R(x1, y1), R(y1, z1), P (z1, y1), S(x1, y1, w1), R(y1, w1),

17 Containment Under Integrity Constraints 135

where w1 is a new variable not in q1. Now observe that (q2, (x2, y2)) !
(q01, (x1, y1)), which implies that (q2, (x2, y2)) ! (D, (a, b)). By the Ho-
momorphism Theorem, (a, b) 2 q2(D), and thus, q1(D) ✓ q2(D).

Our goal is to revisit the problem of CQ containment in the presence of
INDs. Given two CQs q and q0, and a set ⌃ of INDs, q is contained in q0 under
⌃, denoted q ✓⌃ q0, if for every database D that satisfies ⌃, q(D) ✓ q0(D).
The problem of interest is defined as expected:

Problem: CQ-Containment-IND

Input: Two CQs q and q0, and a set ⌃ of INDs
Output: true if q ✓⌃ q0, and false otherwise

Although the complexity of CQ containment in the presence of FDs re-
mains NP-complete (Theorem 17.2), this is not true for INDs:

Theorem 17.6

CQ-Containment-IND is PSpace-complete.

We first focus on the upper bound. Recall again that, by the Homomor-
phism Theorem, checking whether a CQ q(x̄) is contained in a CQ q0(x̄0) in
the absence of constraints boils down to checking whether (q0, x̄0) ! (q, x̄).
Although this is not enough in the presence of INDs, we can adopt a similar
approach providing that we first transform, by adding atoms as dictated by
the INDs, the set of atoms Aq occurring in q into a new set of atoms S that
satisfies the INDs, and then check whether (Aq0 , x̄0)! (S, x̄). This simple idea
has been already illustrated by Example 17.5. As expected, the transforma-
tion of Aq into S can be achieved by exploiting the chase for INDs, which has
been already introduced in Chapter 11.

We are going to establish a statement analogous to Theorem 17.3. However,
since the chase for INDs may build an infinite set of atoms, we can only
characterize CQ containment under possibly infinite databases. Notice that
here we refer to the output of a CQ over a possibly infinite database. Although
this is defined in the same way as for databases (Definition 12.3), we proceed
to give the formal definition for the sake of completeness.

Consider a possibly infinite database D and a CQ q of the form

Answer(x̄) :– R1(ū1), . . . , Rn(ūn) .

An assignment for q over D is a function ⌘ from the set of variables in q to
Dom(D). We say that ⌘ is consistent with D if

{R1(⌘(ū1)), . . . , Rn(⌘(ūn))} ✓ D ,

136 17 Containment Under Integrity Constraints

where, for i 2 [n], Ri(⌘(ūi)) is the fact obtained after replacing each variable
x in ūi with ⌘(x), and leave the constants in ūi untouched. Having this notion,
we can define what is the output of a CQ on a possibly infinite database.

Definition 17.7: Evaluation on Possibly Infinite Databases

Given a possibly infinite database D of a schema S, and a CQ q(x̄) over
S, the output of q on D is defined as the set of tuples

q(D) = {⌘(x̄) | ⌘ is an assignment for q over D consistent with D} .

We can naturally talk about homomorphisms from CQs to possibly infi-
nite databases. Actually, Definition 13.1 merely extends to possibly infinite
databases, which allows us to state a result analogous to Theorem 13.2:

Theorem 17.8

Given a possibly infinite database D of a schema S, and a CQ q(x̄) of
arity k � 0 over S, it holds that

q(D) = {ā 2 Dom(D)k | (q, x̄)! (D, ā)}.

Consider two CQs q and q0, and a set ⌃ of INDs. We say that q is contained
without restriction in q0 under ⌃, denoted q ✓1

⌃ q0, if for every possibly infinite
database D that satisfies ⌃, q(D) ✓ q0(D). For brevity, we write Chase(q,⌃)
instead of Chase(Aq,⌃). The next result is shown as Theorem 17.3.

Theorem 17.9

Let q(x̄), q0(x̄0) be CQs over schema S, and ⌃ a set of INDs over S. Then:

q ✓1
⌃ q0 if and only if (Aq0 , x̄

0)! (Chase(q,⌃), x̄).

The above statement alone is of little use since we are interested in finite
databases. However, combined with the following result, known as the finite
controllability of CQ containment under INDs, we get the desired characteri-
zation of CQ containment under finite databases via the chase.

Theorem 17.10: Finite Controllability of Containment

Let q and q0 be CQs over a schema S, and ⌃ a set of INDs over S. Then:

q ✓⌃ q0 if and only if q ✓1
⌃ q0.

The above theorem is a deep result that is extremely useful for our analysis,
but whose proof is out of the scope of this book. An easy consequence of
Theorems 17.9 and 17.10, combined with Theorem 17.8, is the following:

17 Containment Under Integrity Constraints 137

Corollary 17.11

Let q(x̄) and q0(x̄0) be CQs over a schema S, and ⌃ a set of INDs over
S. With S = Chase(q,⌃), the following holds:

q ✓⌃ q0 if and only if GS(x̄) 2 q0(GS(S)).

Due to Corollary 17.11, the reader may be tempted to think that the
procedure for checking whether q ✓⌃ q0, which in turn will lead to the PSpace
upper bound claimed in Theorem 17.6, is to check whether GS(x̄) belongs to
the evaluation of q0 over S#, where S = Chase(q,⌃). However, it should not be
forgotten that Chase(q,⌃) may be infinite. Hence, we need a finer procedure
that avoids the explicit construction of Chase(q,⌃). We present a lemma that
is the building block of this procedure, but first we need some terminology.

For an IND � = R[i1, . . . , im] ✓ P [j1, . . . , jm], a tuple ū = (u1, . . . , uar(R)),
and a set of variables V , newV (�, ū) is the atom obtained from new(�, ū) after
replacing each newly introduced variable with a distinct variable from V .
Formally, newV (�, ū) = P (v1, . . . , var(P)), where, for each ` 2 [ar(P)],

v` =

8
<

:

uik if ` = jk, for k 2 [m],

x 2 V otherwise,

such that, for each i, j 2 [ar(P)]� {j1, . . . , jm}, i 6= j implies vi 6= vj .1 Given
two CQs q(x̄), q0(x̄0) over a schema S, and a set ⌃ of INDs over S, a witness
of q0 relative to q and ⌃ is a triple (V,S, Q), where V is a sequence of (not
necessarily disjoint) sets of variables V1, . . . , Vn, for n � 0, S is a sequence of
disjoint sets of relational atoms S0, . . . , Sn, and Q ✓

S
i2[0,n] Si, such that:

• |
S

i2[n] Vi|  3 · |Aq0 | ·maxR2S{ar(R)},
• for each i 2 [n], Vi \ (Dom(Si�1) [Dom(S)) = ;,
• for each i 2 [0, n], |Si|  |Aq0 |,
• S0 ✓ Aq,

• for each i 2 [n] and P (v̄) 2 Si, there exists � = R[↵] ✓ P [�] in ⌃ that is
applicable on Si�1 with some ū 2 RSi�1 such that P (v̄) = newVi(�, ū),

• for each i 2 [n] and x 2 Dom(Si)�Dom(Si�1), there is only one occurrence
of x in Si, i.e., it is mentioned only once by exactly one atom of Si,

• |Q|  |Aq0 |, and
• GQ(x̄) 2 q0(GQ(Q)).

1 We assume some fixed mechanism that chooses the variable v` from the set V
whenever ` 2 [ar(P)]� {j1, . . . , jm}.

138 17 Containment Under Integrity Constraints

Let S = Chase(q,⌃). Notice that GS(x̄) 2 q0(GS(S)) holds due to the
existence of a set A ✓ Chase(q,⌃) such that (Aq0 , x̄0)! (A, x̄). It is also not
di�cult to see that the construction of A can be witnessed via a sequence
A0, A1, . . . , An of disjoint subsets of Chase(q,⌃), where each such set consists
of at most |Aq0 | atoms, A0 ✓ Aq0 , An = A, and for each i 2 [n], the atoms of
Ai are obtained from the atoms of Ai�1 via chase applications using INDs of
⌃. A witness of q0 relative to q and ⌃ should be understood as a compact rep-
resentation, which uses only polynomially many variables, of such a sequence
A0, A1, . . . , An of disjoint subsets of Chase(q,⌃). Therefore, the existence of
a witness of q0 relative to q essentially implies that GS(x̄) 2 q0(GS(S)). Fur-
thermore, if GS(x̄) 2 q0(GS(S)), then a witness of q0 relative to q and ⌃ can
be extracted from Chase(q,⌃). The above informal discussion is summarized
in the following technical lemma, whose proof is left as an exercise.

Algorithm 5 ContainmentWitness(q, q0,⌃)

Input: Two CQs q(x̄) and q0(x̄0) over S, and a set ⌃ of INDs over S.
Output: true if there is a witness for q0 relative to q and ⌃, and false otherwise.

1: AO := A, where A ✓ Aq with |A|  |Aq0 |
2: A. := ;
3: Q := A, where A ✓ AO

4: V := {y1, . . . , ym} ⇢ Var�Dom(Aq) for some m 2 [3 · |Aq0 | ·maxR2S{ar(R)}]
5: repeat

6: repeat

7: if � = R[↵] ✓ P [�] 2 ⌃ is applicable on AO with ū 2 Dom(AO)
ar(R)

then

8: N := new
V (�, ū)

9: V := V �Dom({N})
10: A. := A. [{N}
11: if |A.| < |Aq0 | then
12: Next := b, where b 2 {0, 1}
13: else

14: Next := 1
15: until Next = 1
16: if A. = ; then

17: return false
18: V := V [((Dom(AO) \ Var)� (Dom(A.) [Dom(Q)))
19: AO := A.

20: A. := ;
21: Q := Q [A, where A ✓ AO

22: if |Q| < |Aq0 | then
23: Evaluate := b, where b 2 {0, 1}
24: else

25: Evaluate := 1
26: until Evaluate = 1
27: return GQ(x̄) 2 q0(GQ(Q))

17 Containment Under Integrity Constraints 139

Lemma 17.12. Let q(x̄) and q0(x̄0) be CQs over a schema S, and ⌃ a set of
INDs over S. With S = Chase(q,⌃), it holds that GS(x̄) 2 q0(GS(S)) if and
only if there exists a witness of q0 relative to q and ⌃.

By Corollary 17.11 and Lemma 17.12, we conclude that the problem of
checking whether a CQ q(x̄) is contained in a CQ q0(x̄0) under a set ⌃ of INDs
boils down to checking whether a witness of q0 relative to q and⌃ exists. This is
done via the nondeterministic procedure shown in Algorithm 5. It essentially
constructs the sequence of sets of variables V1, . . . , Vn, and the sequence of
sets of atoms S0, . . . , Sn, required by a witness for q0 relative to q and ⌃, one
after the other (if they exist), without storing more than two consecutive sets
of a sequence during its computation. It also constructs on the fly the set of
atoms Q. This is done by storing some of the atoms of a set Si (possibly none)
into Q before discarding it. Finally, the algorithm checks whether GQ(x̄) 2
q0(GQ(Q)), in which case it returns true; otherwise, it returns false. We
proceed to give a bit more detailed description of Algorithm 5:

Initialization. The algorithm starts by guessing a subset of Aq with at most
|Aq0 | atoms, which is stored in AO (see line 1); AO should be seen as the
“current set” from which we construct the “next set” A. in the sequence.
It also guesses a subset of AO that is stored in Q (see line 3); this step is
part of the “on the fly” construction of the set Q. It also collects 3 · |Aq0 | ·
maxR2S{ar(R)} variables not occurring in Aq in the set V (see line 4).

Inner repeat-until loop. The inner repeat-until loop (see lines 6 - 15) is
responsible for constructing the set A. from AO. This is done by guessing
an IND � 2 ⌃ and a tuple ū over Dom(AO), and adding to A. the atom
newV (�, ū) if � is applicable on the current set AO with ū. It also removes
from V the variables that has been used in newV (�, ū) since they should
not be reused in any other atom of A. that will be generated by a sub-
sequent iteration. This is repeated until A. contains exactly |Aq0 | atoms,
which means that its construction has been completed, or the algorithm
nondeterministically chooses that its construction has been completed,
even if it contains less than |Aq0 | atoms, by setting Next to 1. Once A.
is in place, the algorithm updates V by adding to it the variables that
occur in the current set AO, but have not been propagated to A. and do
not occur in Q (see line 18). This essentially gives rise to the next set of
variables in the sequence of sets of variable under construction. Then AO

is not needed further, and we can reuse the space that it occupies. The
set A. becomes the current set AO (see line 19), while A. becomes empty
(see line 20). Then the algorithm guesses a subset of AO that is stored in
Q (see line 21); this step is part of the “on the fly” construction of Q.

Outer repeat-until loop. The above is repeated untilQ contains more than
|Aq0 | atoms (in the worst-case, 2 · |Aq0 | atoms), which means that its
construction has been completed, or the algorithm nondeterministically
chooses that its construction has been completed, even if it contains less

140 17 Containment Under Integrity Constraints

than |Aq0 | atoms, by setting Evaluate to 1. The algorithm returns true if
GS0(x̄) 2 q0(GS0(S0)); otherwise, it returns false.

It is not di�cult to verify that Algorithm 5 uses polynomial space, which
is actually the space needed to represent the sets AO, A., Q and V , as well
as the space needed to check whether an IND is applicable on AO with some
tuple ū 2 Dom(AO)ar(R) (see line 7), and the space needed to check whether
GQ(x̄) 2 q0(GQ(Q)) (see line 27). This shows that CQ-Containment-IND is in
NPSpace, and thus in PSpace since NPSpace = PSpace.

The PSpace-hardness of CQ-Containment-IND is shown via a reduction
from IND-Implication, which is PSpace-hard (see Theorem 11.9). Recall that
the IND-Implication problem takes as input a set ⌃ of INDs over a schema
S, and an IND � over S, and asks whether ⌃ |= �, i.e., whether for every
database over S, D |= ⌃ implies D |= �. We are going to construct two CQs
q and q0 such that ⌃ |= � if and only if q ✓⌃ q0.

Assume that � = R[i1, . . . , ik] ✓ P [j1, . . . , jk]. The CQ q is defined as

Answer(xi1 , . . . , xik) :– R(x1, . . . , xar(R)),

while the CQ q0 is defined as

Answer(xi1 , . . . , xik) :– R(x1, . . . , xar(R)), P (xf(1), . . . , xf(ar(R))),

where, for each m 2 [ar(P)],

f(m) =

8
<

:

i` if m = j`, where ` 2 [k],

ar(R) +m otherwise.

The function f ensures that the variable at position j` in the P -atom of q0 is
xi` , i.e., the same as the one at position i` in the R-atom of q0, while all the
variables in the P -atom occurring at a position not in {j1, . . . , jk} are new
variables occurring only once in the P -atom, and not occurring in the R-atom.
It is an easy exercise to show that indeed ⌃ |= � if and only if q ✓⌃ q0.

Exercises

Exercise 2.1. Let q be the CQ given in Example 12.8. Express q as an RA
query using ✓-joins instead of Cartesian product.

Exercise 2.2. Prove the correctness of the translation of a CQ into an SPJ
query, and the translation of an SPJ query into a CQ, given in the proof of
Theorem 12.7, which establishes that the languages of CQs and of SPJ queries
are equally expressive.

Exercise 2.3. For a CQ q, let eq be the equivalent SPJ query obtained by
applying the translation in the proof of Theorem 12.7. What is the size of eq
with respect to the size of q? Conversely, assuming that qe is the CQ obtained
after translating an SPJ query e into a CQ according to the translation in the
proof of Theorem 12.7, what is the size of qe with respect to the size of e?

Exercise 2.4. Prove that the choice of a pairing function in the definition of
direct product does not matter. More precisely, let ⌦⌧ be the direct product
defined using a pairing function ⌧ . Then, for every Boolean FO query q, every
two databases D and D0, and every two pairing functions ⌧ and ⌧ 0, show that
D ⌦⌧ D0 |= q if and only if D ⌦⌧ 0 D0 |= q.

Exercise 2.5. Let q be a Boolean FO query without constants over a schema
S. Prove that the following are equivalent:

1. There exists a CQ q0 over S such that q ⌘ q0, i.e., q(D) = q0(D) for every
database D of S.

2. q is preserved under homomorphisms and direct products.

Exercise 2.6. The goal of this exercise is to extend the notion of preservation
under direct products to queries with constants. To this end, we first refine
the definition of a pairing function. Let C ✓ Const be a finite set of constants,
and ⌧C a pairing function such that ⌧C(a, a) = a for each a 2 C. First, prove
that such a pairing function exists. Then, prove that for any two databases D

142 Exercises

and D0 of the same schema S, and for a Boolean CQ q over S that mentions
only constants from C, if D |= q and D0 |= q, then D ⌦ D0 |= q, where the
definition of ⌦ uses the pairing function ⌧C .

Exercise 2.7. The goal is to extend further the notion of preservation under
direct products to queries with constants that are not Boolean. For a finite set
of constants C ✓ Const, let ⌧C be a pairing function defined as in Exercise 2.6.
Then, given two tuples ā = (a1, . . . , an) and b̄ = (b1, . . . , bn), define the n-ary
tuple ā ⌦ b̄ as

�
⌧C(a1, b1), . . . , ⌧C(an, bn)

�
. Consider now an n-ary CQ q(x̄)

that mentions only constants from C. Show that if ā 2 q(D) and b̄ 2 q(D0),
then ā⌦ b̄ 2 q(D ⌦D0), where ⌦ is defined with the pairing function ⌧C .

Exercise 2.8. Use Exercise 2.6 to prove that the Boolean query q = 9x (x =
a), where a is a constant, cannot be expressed as a CQ.

Exercise 2.9. Use Exercise 2.7 to prove that the query q = '(x, y), where '
is the equational atom (x = y), cannot be expressed as a CQ.

Exercise 2.10. Consider a parameterized problem (L1,1) over ⌃1, and a pa-
rameterized problem (L2,2) over ⌃2. Show that if there is an FPT-reduction
from (L1,1) to (L2,2), and (L2,2) 2 FPT, then (L1,1) 2 FPT.

Exercise 2.11. Recall that in the proof of the fact that p-CQ-Evaluation is in
W[1] (see Theorem 14.7), for technical clarity, we consider only constant-free
Boolean CQs over a schema consisting of a single binary relation name. Prove
that p-CQ-Evaluation is in W[1] even for arbitrary CQs.

Exercise 2.12. Show Corollary 15.7 for arbitrary (non-Boolean) CQs.

Exercise 2.13. Show that the binary relation ⌘ over CQs is an equivalence
relation, i.e., is reflexive, symmetric, and transitive. Show also that the binary
relation ✓ over CQs is reflexive and transitive, but not necessarily symmetric.

Exercise 2.14. Answer the following questions about CQs and their cores.

(i) Consider the Boolean CQ q1 over the schema {E[2]} defined as

Answer :– E(x1, y1), E(y1, z1), E(z1, w1), E(w1, x1), E(x2, y2), E(y2, x2).

Assume that E is used to represent the edge relation of a directed graph
G. What does q1 check for G? Compute the core of q1.

(ii) Consider the Boolean CQ q2 over the schema {R[1], S[1]} defined as

Answer :– R(x), S(x), R(y), S(y).

Compute the core of q2.

143

(iii) Consider the CQ q3 over the schema {R[1], S[1]} defined as

Answer(x, y) :– R(x), S(x), R(y), S(y).

Prove that q3 is a core of itself.

Exercise 2.15. Let q(x̄) be a CQ, and q0(x̄) a core of q(x̄). Prove that there
is a homomorphism from (q, x̄) to (q0, x̄) that is the identity on Dom(Sq0).

Exercise 2.16. Recall that ComputeCore (see Algorithm 4) is nondeter-
ministic. Devise a deterministic algorithm that computes the core of a CQ,
and show that it runs in exponential time in the size of the input query.

Exercise 2.17. (a) Let CQ-Minimization be the problem where, given a Boolean
CQ q and integer k 2 N, the question is if there exists a CQ q0 such that
q0 ⌘ q and |q0|  k. Prove that CQ-Minimization is NP-complete.

(b) Let CQ-Minimality be the problem where, given a Boolean CQ q, the ques-
tion is to answer true if q is minimal and false otherwise. Prove that
CQ-Minimality is coNP-complete.

Exercise 2.18. Let D be a database, and T = {ā1, . . . , ān} a set of m-ary
tuples over Dom(D), for m > 0. Show that there exists a CQ q(x̄) such that
q(D) = T if and only if the following hold:

1.
Q

i2[n] āi appears in
Q

i2[n] D, and

2. there is no tuple b̄ 2 Dom(D)m � T such that
Q

i2[n](D, āi)! (D, b̄).

Exercise 2.19. The purpose of this exercise is to understand what happens if
we allow equalities of the form x = y or x = a in CQs. We define a conjunctive
query with equalities (CQ=) similarly to a CQ, but we additionally allow
equational atoms. Such queries can therefore be written as rules

Answer(x̄) :– R1(ū1), . . . , Rn(ūn), y1 = v1, . . . , yk = vk,

where {v1, . . . , vk} ✓ Var [Const.

1. Why are the queries Answer(x) :– x = y and Answer(x) :– x = a not
expressible as CQs?

2. Prove that (i) Theorem 14.1, (ii) Theorem 15.3, and (iii) Theorem 15.8
also hold for CQ=.

3. Prove that queries in CQ= can be minimized with a variant of Algorithm 4.

Exercise 2.20. Prove that the following problem is coNExpTime-complete:
given a database D, and a set T = {ā1, . . . , ān} of m-ary tuples over Dom(D),
for m > 0, check whether there exists a CQ q such that q(D) = T .

144 Exercises

Exercise 2.21. Prove that FO-Containment remains undecidable even if one
of the two input queries is a CQ.

Exercise 2.22. Prove Lemma 17.12.

Exercise 2.23. Prove that the reduction at the end of Chapter 17 from
IND-Implication to CQ-Containment-IND, which establishes that the latter is
PSpace-hard, is correct.

Bibliographic Comments

(Very preliminary version)

Conjunctive queries were first studied in [8].

Part III

Fast Conjunctive Query Evaluation

Motivation

Here we are interested in understanding when CQ evaluation can be solved
e�ciently in combined complexity. In Theorem 14.1, we have shown that CQ
evaluation is NP-complete by reducing from an NP-complete problem over
graphs. It is known, on the other hand, that several NP-complete problems
over graphs become tractable if they are restricted to be nearly acyclic. As
we show in this part of the book, similar ideas can be applied to prove that
CQ evaluation is tractable when CQs are nearly acyclic. This is highly rele-
vant from a practical point of view, as such CQs appear often in real-world
applications.

18

Acyclicity of Conjunctive Queries

We start by studying the notion of acyclicity for CQs, which has received
considerable attention in the database literature since the early 1980s. In this
chapter, we define acyclicity and present an algorithm to recognize it. In the
next chapter, we will present two algorithms that show that acyclic CQs can
be evaluated e�ciently.

Conjunctive Queries and Hypergraphs

We have seen in Theorem 14.1 that the evaluation problem for CQs is NP-
complete. So, the reader may wonder why databases are so successful in prac-
tice, even though the most fundamental database problem on the most com-
mon class of queries is NP-complete. The crux is that the syntactic shape of
a CQ plays a key role on how complex is its evaluation. For instance, assume
that we have a database D of the schema {E[2]}, i.e., D can be understood
as a directed graph with E being the edge relation. Evaluating the CQ

Answer :– E(x1, x2), E(x2, x3), E(x3, x4), E(x4, x1), E(x1, x3), E(x2, x4)

can be seen as matching a variant of the 4-clique, namely a graph of the form

x1 x2

x3x4

in D. In fact, this correspondence between evaluation of CQs and graph
matching is precisely what we used in Theorem 14.1 to reduce the Clique
problem into the CQ-Evaluation problem.

152 18 Acyclicity of Conjunctive Queries

However, CQs in practice are usually not shaped as cliques. Instead, tree-
shaped CQs are much more common. Since it is well-known that finding cliques
in graphs is computationally di�cult, whereas finding tree-like structures in
graphs is much easier, it makes sense to study the evaluation problem of CQs
for which the associated graph is acyclic.

To make this precise, however, we need to consider a generalization of
undirected graphs that can deal with relations of arity three or more. Such
graphs are called hypergraphs.

Definition 18.1: Hypergraph

A hypergraph is a pair H = (V,E), where

• V is a finite set of nodes and

• E is a set of subsets of V , called hyperedges.

Acyclicity of Hypergraphs

Defining the notion of acyclicity for hypergraphs is not as simple as it is
for graphs. In fact, several natural, non-equivalent notions of acyclicity for
hypergraphs exist. We work here with one such a notion, often referred to as
↵-acyclicity, which has received considerable attention in database theory.

We will call a hypergraph H acyclic if it admits a join tree, that is, if its
hyperedges can be arranged in the form of a tree (recall the definition of tree
from Chapter 2), while preserving the connectivity of elements that occur in
di↵erent hyperedges.

Definition 18.2: Join Tree and Acyclic Hypergraph

Given a hypergraph H = (V,E), a tree T is a join tree of H if

• the nodes of T are precisely the hyperedges in E and,

• for each node v 2 V , the set of nodes of T in which v is an element
forms a connected subtree of T .

Moreover, H is acyclic if H admits a join tree.

Example 18.3: Acyclic and Non-Acyclic Hypergraphs

Consider the following hypergraph H1 = (V1, E1):

18 Acyclicity of Conjunctive Queries 153

a b c d

e

f

Thus, we have that V1 = {a, b, c, d, e, f} and E1 = {{a, b, c}, {b, c}, {c, d},
{b, e, f}}. It holds that H1 is an acyclic hypergraph, as the following tree
T1 is a join tree for H1:

{a, b, c}

{c, d}{b, c} {b, e, f}

Recall that by convention, the root of T1 is depicted on top and its edges
are directed downwards. We have that T1 is a join tree of H1 as the nodes
of T1 are precisely the hyperedges in E1, and for each v 2 V1, the set of
nodes of T1 in which v occurs defines a connected subtree of T1. As an
example of this latter condition, if we consider v = c, then we obtained
the following subtree of T1 that is connected:

{a, b, c}

{c, d}{b, c}

On the other hand, consider a hypergraph H2 that extends H1 with the
hyperedge {c, e}. We have that H2 is not acyclic, as it is not possible to
construct a join tree for it. For instance, consider the extension T2 of T1

that is obtained by adding a node {c, e} as a children of {a, b, c}.

{a, b, c}

{c, d}{b, c} {b, e, f} {c, e}

154 18 Acyclicity of Conjunctive Queries

Then we have that T2 is not a join tree for H2 as the set of nodes of T2

in which e occurs do not define a connected subtree of T2:

{b, e, f} {c, e}

It is not hard to see that for undirected graphs, the notion of ↵-acyclicity
coincides with the usual notion of acyclicity that stems from graph theory
(i.e., tree-shaped or forest-shaped graphs).

Acyclicity of Conjunctive Queries

The notion of acyclic hypergraph is the key concept in the definition of acyclic
CQs. Each CQ q is naturally associated with a hypergraph Hq that represents
the structure of joins among its variables. In particular, if q is of the form

Answer(x̄) :– R1(ū1), . . . , Rn(ūn),

where ūi is a tuple of constants and variables for every i 2 [n], then Hq =
(V,E) is a hypergraph such that

• its set V of vertices contains all variables mentioned in q and

• the hyperedges in E are precisely the sets of variables appearing in the
atoms of q, i.e., E = {Xi | i 2 [n]}, where Xi is the set of variables
occurring in ūi.

Definition 18.4: Acyclicity of CQs

An acyclic conjunctive query (ACQ) is a conjunctive query q such that
its associated hypergraph Hq is acyclic.

Example 18.5: Acyclic and Non-Acyclic CQs

Consider the following CQ q1:

Answer(x, y) :– R(x, y, z), T (y, z), S(y, w,w0), T (z, z0).

Then we have that Hq1 is the following hypergraph:

18 Acyclicity of Conjunctive Queries 155

x y z z0

w

w0

We know from Example 18.3 that Hq1 is an acyclic hypergraph, as Hq1

can be obtained from the hypergraph H1 in Example 18.3 by renaming
the nodes of H1. Therefore, we have that q1 is an acyclic CQ. In the
same way, we obtain that the following CQ q2:

Answer(x, y) :– R0(x, y, z, a), T 0(y, z, a), S(y, w,w0), T 0(z, z0, b)

is acyclic as Hq2 = Hq1 . In particular, notice that constants a, b in q2
do not play any role in the construction of Hq2 . On the other hand, the
following CQ q3:

Answer(x, y) :– R(x, y, z), T (y, z), S(y, w,w0), T (z, z0), T (z, w)

is not acyclic as the hypergraph Hq3 is not acyclic. Notice that this latter
fact is also obtained from Example 18.3, as Hq3 can be obtained from the
hypergraph H2 in Example 18.3 by renaming the nodes of H2. Finally,
consider the following CQ q4:

Answer(x, y) :– R(x, y, z), R(y, y, z), T (y, z), S(y, w,w0), T (z, z0).

Then we have that q3 is an acyclic CQ since Hq3 = Hq1 . Notice that
this latter condition holds as the set of variable occurring in R(y, y, z) is
{y, z}, which is the same as the set of variables occurring in T (y, z).

Acyclicity Recognition

In the following chapter, we will show that ACQs can be evaluated e�ciently.
But before doing so, it is important to explain why acyclicity itself can be
e�ciently recognized. This follows from the existence of an equivalent defini-
tion of acyclicity in terms of an iterative process described in the following
proposition.

156 18 Acyclicity of Conjunctive Queries

Proposition 18.6: GYO Algorithm

A hypergraph H = (V,E) is acyclic if and only if all of its vertices can
be deleted by repeatedly applying the following two operations (in no
particular order):

1. Delete a vertex that appears in at most one hyperedge.

2. Delete a hyperedge that is contained in another hyperedge.

The proof of Proposition 18.6 is left as an exercise for the reader (see
Exercise 3.1). The characterization given in this proposition leads directly to
a polynomial-time algorithm for checking acyclicity of hypergraphs, and thus
of CQs: Given a CQ q, we apply operations (1) and (2) in the statement of
Proposition 18.6 over Hq until a fixpoint is reached. The query q is acyclic if
and only if we are left with no vertices. Interestingly, a simple extension of
this algorithm also constructs in polynomial time a join tree of Hq when q is
acyclic (see Exercise 3.2).

Example 18.7: Application of GYO Algorithm

Consider the hypergraph H1 in Example 18.3. As expected, by using the
previous algorithm we obtain that H1 is acyclic. In fact, all vertices of
H1 are deleted by applying the following sequence of operations: delete
vertex d (that appears only in hyperedge {c, d}), delete vertices e and f ,
delete hyperedges {b} and {c} (that are contained in hyperedge {b, c}),
delete hyperedge {b, c} (that is contained in hyperedge {a, b, c}), and
delete vertices a, b and c.

On the other hand, and also as expected, by applying the previous
algorithm on hypergraph H2 from Example 18.3, we obtain that H2 is
not acyclic. In fact, no matter what order is used when applying the two
operations of the algorithm, we reach the following fixed point:

b c

e

Notice that no operation can be applied to reduce this hypergraph, which
is intuitively correct as this hypergraph represents the canonical example
of an undirected graph that is not acyclic.

18 Acyclicity of Conjunctive Queries 157

It is important to mention that there are more sophisticated algorithms
that check whether a CQ q is acyclic and construct a join tree of Hq if the
latter is the case, in time O(kHqk), that is, linear time. We summarize this
result in the following proposition.

Proposition 18.8: CQ Acyclicity Checking

There exists a linear-time algorithm that, given a CQ q, checks whether
q is acyclic, and if this is the case constructs a join tree of Hq.

We will exploit this proposition later in the presentation of e�cient eval-
uation algorithms for acyclic conjunctive queries.

19

E�ciently Evaluating Boolean ACQs

We will present two algorithms that show that acyclic CQs can be evalu-
ated e�ciently. The first one, known as Yannakakis’s algorithm, makes use
of the decomposition of an acyclic CQ as a join tree, which was defined in
the previous chapter, while the second one is based on a simple consistency
criterion. Yannakakis’s algorithm achieves a relatively e�cient running time
of O(kDk · log kDk · kqk), where D is the database and q is the query. On
the other hand, the algorithm based on the consistency criterion has the ad-
vantage that it does not require the CQ itself to be acyclic, only its core (as
defined in Chapter 16).

Semijoins and Acyclic CQs

The evaluation of acyclic CQs is tightly related to a particular relational
algebra operation, known as semijoin, which we describe next. In the named
relational algebra, one would define the semijoin as follows:

Semijoin. If e1, e2 are named RA expressions of sort U1 and U2, respectively,
then their semijoin (e1 n e2) is a named RA expression of sort U1. It is
defined as (e1 n e2) := ⇡U1(e1 on e2).

In this chapter, we use the semijoin operator on outputs of conjunctive queries.
Let D be a database. Given CQs q(x̄) and q0(x̄0) and tuples ā 2 q(D) and
b̄ 2 q0(D), we call ā and b̄ consistent if they have the same value on each
position that contains a common variable of x̄ and x̄0. We then define the
semijoin of q(D) and q0(D), denoted by q(D) n q0(D), as the set of tuples
ā 2 q(D) that are consistent with some tuple b̄ 2 q0(D).

160 19 E�ciently Evaluating Boolean ACQs

Example 19.1: Semijoin of Conjunctive Queries

Assume that D = {R(a, b, c), R(d, d, d), S(c, b, e), S(d, e, e)}, and that q
and q0 are the following CQs:

q = Answer(x, y, z) :– R(x, y, z)

q0 = Answer(z, y, w) :– S(z, y, w).

Then we have that q(D) = {(a, b, c), (d, d, d)}, q0(D) = {(c, b, e), (d, e, e)},
and q(D) n q0(D) = {(a, b, c)}. In particular, we have that (a, b, c) is in
q(D)nq0(D) since (a, b, c) belongs to q(D) and (a, b, c) is consistent with
the tuple (c, b, e) 2 q0(D), as these two tuples have the same value b in
the position that corresponds to the variable y shared by (x, y, z) and
(z, y, w), and have the same value c in the position that corresponds to
the variable z shared by (x, y, z) and (z, y, w). Moreover, we have that
(d, d, d) is not in q(D)nq0(D) as this tuple is not consistent with any tu-
ple in q0(D). Finally, notice that q0(D)n q(D) = {(c, b, e)}, which shows
that, as opposed to the case of the join operator, n is not commutative.

We now explain the relationship between the CQs in ACQ and the semi-
join operator. Let q = Answer :– R1(ū1), . . . , Rn(ūn) be a Boolean ACQ, and
consider an arbitrary join tree T of Hq. Recall that the set of nodes of T is
{Xi | i 2 [n]}, where each Xi is the set of variables occurring in ūi. For every
node s of T , we define the following CQs for some i 2 [n], assuming that
s = Xi and that ȳi is a tuple of pairwise distinct variables consisting exactly
of the variables in Xi:

• A CQ qs = Answer(ȳi) :– Rj1(ūj1), . . . , Rjp(ūjp), where {Rj1(ūj1), . . . ,
Rjp(ūjp)} is the set of of atoms of q such that Xj` = Xi for each ` 2 [p].

• A CQ Qs(ȳi) whose set atoms is the union of those that appear in CQs
qs0 , where s0 is a descendant of s in T (including s itself).

Notice that Qs ✓ qs for each node s of T . Moreover, if s is a (non-leaf) node
of T with children s1, . . . , sp, then the set of atoms of Qs is the union of the
atoms of Qs1 , . . ., Qsp , and the atoms of qs.

In what follows, we present a fundamental connection between the evalua-
tion of acyclic CQs and the semijoin operator. To understand this connection,
assume that q = Answer :– R1(ū1), . . . , Rn(ūn) is a Boolean ACQ, and sup-
pose that T is a join tree of Hq with root r = X`, for some ` 2 [n]. Then we
have that Qr is a CQ of the form Qr = Answer(ȳ`) :– R1(ū1), . . . , Rn(ūn),
which means that Qr has the same body as q. Thus, for every database D, it
holds that

q(D) = true if and only if Qr(D) 6= ;

19 E�ciently Evaluating Boolean ACQs 161

and, therefore, an e�cient algorithm for the evaluation of Qr can also be
used to evaluate q. We show in the next section that the following proposition
gives us such an algorithm. The proposition tells us that Qr can be inductively
evaluated by computing semijoins while traversing T in a bottom-up manner,
provided that the CQ qs has been previously evaluated for every node s of T .

Proposition 19.2

Let q be a Boolean ACQ, T a join tree of Hq and D a database. Then
for every node s of T ,

• if s is a leaf of T , then Qs(D) = qs(D) and

• otherwise, if the children of s in T are s1, . . . , sp, then

Qs(D) =
p\

i=1

�
qs(D)nQsi(D)

�
.

Proof. Assume that q = Answer :– R1(ū1), . . . , Rn(ūn) is the Boolean ACQ.
Therefore, the set of nodes of T is {Xi | i 2 [n]}, where each Xi is the set of
variables occurring in ūi. If s is a leaf of T , then qs and Qs are the same CQ
and, thus, Qs(D) = qs(D).

Let us assume then that s is a non-leaf node of T with children s1, . . . , sp.
Moreover, assume s = X`, s1 = Xk1 , . . ., sp = Xkp , where `, k1, . . . , kp are
pairwise distinct numbers in the set [n]. Then we have that ȳ`, ȳk1 , . . ., ȳkp

are the tuples of free variables of CQs Qs, Qs1 , . . ., Qsp , respectively. Let us
consider first an arbitrary tuple in Qs(D). By definition, such a tuple is of
the form h(ȳ`) for some homomorphism h from Qs to D. It is not hard to see
that h(ȳ`) 2 qs(D) n Qsi(D) for every i 2 [p]. Indeed, h(ȳ`) 2 qs(D) since
Qs ✓ qs, and h(ȳki) 2 Qsi(D) since the atoms of Qsi are contained in those
of Qs. Moreover, h(ȳ`) and h(ȳki) are consistent by definition. We conclude
that h(ȳ`) 2

Tp
i=1

�
qs(D)nQsi(D)

�
.

Let us consider now an arbitrary tuple in
Tp

i=1

�
qs(D) n Qsi(D)

�
. By

definition, such a tuple is of the form h(ȳ`) for some homomorphism h from
qs to D. Moreover, for each i 2 [p], there is a homomorphism hi from Qsi

to D such that h(ȳ`) and hi(ȳki) are consistent; i.e., they have the same
values on positions where ȳ` and ȳki have common variables. We claim that
h0 = h [h1 [· · · [hp is a well-defined homomorphism from Qs to D. Since
h0(ȳ`) = h(ȳ`), this shows that h(ȳ`) 2 Qs(D) as desired.

We first show that h0 is well defined. Take an arbitrary variable y in Qs. If
y occurs only in qs but not in any of the CQs Qsi (for i 2 [p]), or if y occurs
only in one of the CQs Qsi (for i 2 [p]) but not in qs, then clearly h0(y) is
well defined. There are two other possibilities: y occurs in qs and in Qsi , for
some i 2 [p], or y occurs in Qsi and Qsj , for some i, j 2 [p] with i 6= j. We
only consider the latter case since the former can be handled analogously. By

162 19 E�ciently Evaluating Boolean ACQs

definition of join trees, the nodes in T that contain y are connected, which
means that y 2 s \ si \ sj . Therefore, we conclude that hi(y) = hj(y) = h(y)
since h(ȳ`) is consistent with both hi(ȳki) and hj(ȳkj).

We now prove that h0 is a homomorphism from Qs to D. Take an arbitrary
atom R(z̄) in Qs. Then, R(h0(z̄)) = R(h(z̄)) or R(h0(z̄)) = R(hi(z̄)) for some
i 2 [p]. Thus, R(h0(z̄)) 2 D because h and hi are homomorphisms. This
concludes the proof of the proposition. ut

Yannakakis’s Algorithm

Yannakakis’s algorithm uses the conditions in Proposition 19.2 to evaluate
a Boolean ACQ, as shown in Algorithm 6. The correctness of the algorithm
follows from Proposition 19.2—which justifies the correctness of the inductive
computation carried out in the while loop—and the fact that the atoms of Qr

are precisely those of q, from which we conclude that Qr(D) 6= ; if and only
if q(D) = true.

Algorithm 6 Yannakakis(q,D)

Input: A Boolean ACQ q and a database D
Output: q(D)
1: T := a join tree of Hq

2: N := the set of nodes of T
3: r := the root of T
4: while N 6= ; do

5: Choose s 2 N such that no child of s is in N
6: Compute qs(D)
7: if s is a leaf of T then

8: Qs(D) := qs(D)
9: else

10: Let s1, . . . , sp be the children of s in T
11: Qs(D) :=

Tp
i=1

�
qs(D)nQsi(D)

�

12: N := N � {s}
13: if Qr(D) 6= ; then

14: return true
15: else

16: return false

We now analyze the complexity of the algorithm. We first notice that
Proposition 18.8 tell us that a join tree T of Hq can be computed in time
O(kqk). We show next that the remainder of the algorithm can be implemented
in time O(kDk · log kDk · kqk). To see why this is the case, we need the
following observation (see Exercise 3.3): the time needed to compute q(D)n
q0(D), given q(D) and q0(D), is O(N logN) with N = kq(D)k + kq0(D)k. In

19 E�ciently Evaluating Boolean ACQs 163

particular, then, each qs(D), for a node s in T , can be computed in time
O(kDk · log kDk · kqsk). Therefore, the collection of all queries qs(D), for s a
node in T , can be computed in time O(kDk · log kDk · kqk).

Now, if s is a node of T with children s1, . . . , sp, we can compute Qs(D) =T
1ip qs(D) n Qsi(D) in time O(kDk · log kDk · p). This follows from the

fact that kqs(D)k  kDk and kQsi(D)k  kqsi(D)k  kDk, for each i 2 [p].
Therefore, we can inductively compute the collection of all queries Qs, for s
a node in T , in time O(kDk · log kDk · kTk) = O(kDk · log kDk · kqk).

In summary, we obtain the following result:

Theorem 19.3

ACQ-Evaluation can be solved in time O(kDk · log kDk · kqk).

Proof. We already proved in the preceding analysis that the theorem holds
for Boolean ACQs. Assume now that we are given a non-Boolean ACQ q =
Answer(x̄) :– R1(ū1), . . . , Rn(ūn), a database D, and a tuple ā over Const
of the same arity than x̄. We want to check whether ā 2 q(D). We start
by turning q(x̄) into a Boolean ACQ by simultaneously replacing in q(x̄)
each free variable xi in x̄ = (x1, . . . , xk) by its corresponding value ai in
ā = (a1, . . . , ak). We denote this Boolean CQ as qā. Clearly, qā is acyclic and,
in addition, ā 2 q(D) if and only if qā(D) = true. ut

The Consistency Algorithm

While Yannakakis’s algorithm uses a join tree of an acyclic CQ q in order to
evaluate q over a database D in time O(kDk · log kDk · kqk), if we only aim
for tractability then there is no need for such a join tree to be computed.
In fact, below we present an algorithm that evaluates q on D in polynomial
time, only by holding the promise that q is acyclic (i.e., that a join tree of
q exists). The design of such an algorithm is based on a simple consistency
criterion, established in the following proposition, which characterizes when
q(D) = true for a Boolean ACQ q and a database D.

Proposition 19.4: Consistency Property

Let q = Answer :– R1(ū1), . . . , Rn(ūn) be a Boolean ACQ and D a
database, and qi = Answer(x̄i) :– Ri(ūi) be a CQ such that x̄i is the
tuple obtained from ūi by removing constants, for each i 2 [n]. Then the
following are equivalent:

1. q(D) = true.

2. There are nonempty sets S1 ✓ q1(D), . . . , Sn ✓ qn(D) such that

164 19 E�ciently Evaluating Boolean ACQs

Si = Si n Sj for all i, j 2 [n] .

That is, each tuple in Si is consistent with some tuple in Sj for all
i, j 2 [n].

Proof. Assume first that q(D) = true, i.e., there is a homomorphism h from
q to D. In this case, we can choose Si to be {h(x̄i)}, for each i 2 [n].

For the other direction, assume that nonempty sets S1, . . . , Sn as described
in Item 2 exist. Let T be an arbitrary join tree of Hq. One can then prove
by induction the following for each node s of T (recall the notation in Algo-
rithm 6):

If s is the set Xi of variables occurring in x̄i, for i 2 [n], then Si ✓ Qs(D)
(see Exercise 3.5).

In particular, if the root r of T is the set Xj of variables occurring in x̄j , for
j 2 [n], then Sj ✓ Qr(D). Therefore, since Sj is nonempty, we conclude that
Qr(D) is also nonempty. This implies that there is at least one homomorphism
from Qr to D. But the atoms of Qr and q are the same by definition, and
thus q(D) = true. ut

We are ready to present the consistency algorithm, which can be under-
stood as a greatest fixed-point computation that checks for the existence of
nonempty sets S1, . . ., Sn as described in Item 2 of Proposition 19.4.

Algorithm 7 Consistency(q,D)

Input: A Boolean ACQ q = Answer :– R1(ū1), . . . , Rn(ūn) and a database D
Output: q(D)
1: Si := qi(D), for each i 2 [n]
2: while Si 6= Si n Sj for some i, j 2 [n] do
3: Si := Si n Sj

4: if Si 6= ; for every i 2 [n] then
5: return true
6: else

7: return false

The algorithm initializes Si to be qi(D), for each i 2 [n]. It then iteratively
deletes every tuple in Si that is not consistent with a tuple in Sj , for some j 2
[n]. If some Si becomes empty during this procedure, the algorithm declares
q(D) = false. Otherwise, q(D) = true. The algorithm runs in polynomial
time, but not in time O(kDk · log kDk · kqk) as Yannakakis’s algorithm. Next,
we establish that it is correct.

19 E�ciently Evaluating Boolean ACQs 165

Proposition 19.5

Given a Boolean ACQ q and a database D, we have that q(D) = true
if and only if Consistency(q,D) = true.

We leave the proof of Proposition 19.5 as an exercise for the reader (see
Exercise 3.6).

Acyclicity of the Core

It is known that there are Boolean CQs that are not acyclic, yet their core is
acyclic. (The reader is asked to prove this fact in Exercise 3.7). Interestingly,
the consistency algorithm continues being correct for the evaluation problem
of such a class of CQs.

Proposition 19.6

Let q be a Boolean CQ whose core is acyclic and D a database. Then
we have that q(D) = true if and only if Consistency(q,D) = true.

Proof. Let q be a CQ whose core q0 is acyclic. It is then the case that:

q(D) = true if and only if q0(D) = true

if and only if Consistency(q0, D) = true

if and only if Consistency(q,D) = true.

The first equivalence holds since q ⌘ q0, the second one since q0 is acyclic
(based on Proposition 19.5), and the last one given the fact that if there
exists a homomorphism from q to q0 and Consistency(q0, D) = true, then
Consistency(q,D) = true (see Exercise 3.9). ut

As a corollary, we obtain the following, for the class ACoreCQ of CQs that
have an acyclic core.

Theorem 19.7

ACoreCQ-Evaluation is in PTime.

20

E�ciently Evaluating General ACQs

In this chapter we show how the ideas from Chapter 19 can be extended to
obtain an e�cient algorithm for computing the output of acyclic conjunctive
queries. More precisely, we study the following problem.

Problem: ACQ-Answering

Input: A query q from ACQ and a database D
Output: q(D)

So, in contrast to ACQ-Evaluation, where the task is to test if a given tuple ā
is an element of q(D), we now need to compute the entire set q(D).

Before we dive into the details and present an algorithm that we claim
to be e�cient, we need to clarify what “e�cient algorithm” in this context
actually means. Until now, we have always studied decision problems in the
book, which are problems that answered with true or false. Algorithms
for such problems are typically considered to be e�cient if their runtime is
always polynomial in the size of the input.1 For answering ACQs, however,
this definition arguably does not make much sense, because if q(x̄) is an ACQ
and D is a database, then q(D) can contain exponentially many tuples in
kDk+ kqk. We illustrate this in an example.

Example 20.1: ACQs with Exponentially Large Output

For n 2 N, consider the database Dn containing the facts R(1, i) for
every i 2 [n] and the CQ qn defined as

Answer(x, y1 . . . , yn) :– R(x, y1), R(x, y2), . . . , R(x, yn) .

1 We realize that this definition of “e�ciency” is painting with a very broad brush,
even when considering decision problems. Depending on the concrete research
field, this notion may need to be significantly refined.

168 20 E�ciently Evaluating General ACQs

Then qn(D2) has 2n many output tuples, which means that the output of
an ACQ can be exponentially large in the size of the query and arbitrarily
much larger than the size of the database. The number of tuples in
qn(Dn) is nn, which is exponential in both the size of the data and the
size of the query.

Similarly, it also does not make sense to ask for an algorithm whose runtime
is polynomial in the size of q(D). If q is a Boolean query, whose output always
has constant size, this requirement would mean that the algorithm would need
to run in constant time. The notion that we adopt here is total polynomial
time.

Definition 20.2: Total Polynomial Time

Let f be a computable function. An algorithm A is said to compute f in
total polynomial time if there exists a polynomial function p : N ! R+

0

such that, for every input x, algorithm A computes f(x) within time
p(kxk+ kf(x)k).

The notion of total polynomial time indeed seems to be a well-suited first step
for measuring the e�ciency of query evaluation algorithms. It gives algorithms
the time to read the entire input and allows it to use polynomial time for every
produced output tuple. We emphasise that, in practice, where faster is better,
usually stronger guarantees are needed. Typically, one would desire less than
linear time between subsequent output tuples, for example.

Yannakakis’s Algorithm for Answering ACQs

We now present the full-fledged version of Yannakakis’s algorithm that solves
the ACQ-Answering problem. Let q(x̄) :– R1(ū1), . . . , Rn(ūn) be an ACQ, and
consider an arbitrary join tree T of Hq. Recall that the set of nodes of T is
{Xi | i 2 [n]}, where each Xi is the set of variables occurring in ūi. In addition
to Qs and qs, which we already defined in Chapter 19, for every node s of T ,
we define the following CQs for some i 2 [n], assuming that s = Xi and that
ȳi is a tuple of pairwise distinct variables consisting exactly of the variables
in Xi:

• A conjunctive query As(ȳi) :– R1(ū1), . . . , Rn(ūn).

Proposition 20.3

Algorithm 8 correctly computes the sets As(D).

Proof. TODO.

20 E�ciently Evaluating General ACQs 169

Algorithm 8 RealYannakakis(q,D)

Input: An ACQ q(x̄) and a database D
Output: q(D)
1: T := a join tree of Hq

2: N1, N2, N3 := the set of nodes of T
3: r := the root of T
4: while N1 6= ; do

5: Choose s 2 N1 such that no child of s is in N1

6: Compute qs(D)
7: if s is a leaf of T then

8: Qs(D) := qs(D)
9: else

10: Let s1, . . . , sp be the children of s in T
11: Qs(D) :=

Tp
i=1

�
qs(D)nQsi(D)

�

12: N1 := N1 � {s}
13: Ar := Qr(D)
14: while N2 6= ; do

15: Choose s 2 N2 such that its parent is not in N2

16: for each child s0 of s in T do

17: As0(D) := Qs0(D)nAs(D)

18: N2 := N2 � {s}
19: Rename all As(D) to Os(D) . We will compute the output in the Os(D)
20: while N3 6= ; do

21: Choose s 2 N3 such that no child of s is in N3

22: if s is not a leaf in T then

23: Let s1, . . . , sp be the children of s in T
24: for j = 1, . . . , p do

25: Os(D) := ⇡s[x̄

�
Os(D) on Osj (D)

�

26: N3 := N3 � {s}
27: return Or(D)

Theorem 20.4

Yannakakis’s Algorithm solves ACQ-Answering in total polynomial time.

21

Treewidth

Acyclic conjunctive queries were defined in Chapter 18 by representing a CQ
as a hypergraph, and then verifying whether this hypergraph can be encoded
as a tree. A natural way to extend this idea is by measuring the similarity of
a hypergraph with a tree, and then defining a hypergraph as “nearly-acyclic”
if this similarity is bounded. In this chapter, we take a first step in this line
of work by defining a graph representation for conjunctive queries, and then
introducing the well-studied graph-theoretic notion of treewidth that mea-
sures the similarity of a graph with a tree (and, in particular, generalizes the
notion of acyclicity for graphs). In this way, we obtain a first formalization of
the concept of near-acyclicity of a conjunctive query, based on its underlying
graph representation, which retains several of the good properties of acyclicity
shown in Chapters 18 and 19. In particular, CQs of bounded treewidth can
be evaluated in polynomial time. In Chapter 22, we will continue with this
line of work by introducing a notion of similarity with trees for hypergraphs,
which generalizes both the notion presented in this chapter and the notion of
acyclicity given in Chapter 18.

The Treewidth of a Graph

To define the notion of treewidth for conjunctive queries, first we need to
introduce this notion for undirected graphs, which in turn requires defining
the concept of tree decomposition of an undirected graph.

Definition 21.1: Tree Decomposition of an Undirected Graph

Let G = (V,E) be an undirected graph. A tree decomposition of G is a
pair (T,�) such that T = (VT , ET) is a non-empty tree, � is a function
that assigns a subset of V to each s 2 VT , and:

1. For each edge {a, b} 2 E, there exists s 2 VT such that {a, b} ✓ �(s).

172 21 Treewidth

2. For each node v 2 V , the set of nodes ��1(v) = {s 2 VT | v 2 �(s)}
is non-empty and induces a subtree (connected subgraph) of T .

Example 21.2: Tree Decomposition of an Undirected Graph

Let G1 be the following undirected graph:

a1

a2 a3

a4 a5

Then a tree decomposition (T1,�1) of G1 is depicted in the following
figure, where the label of a node s of T1 corresponds to �1(s):

{a1}

{a1, a2} {a1, a3}

{a2, a4} {a2, a5}

Notice that the set ��1
1 (a2) induces the following subtree of T1:

{a1, a2}

{a2, a4} {a2, a5}

Now let G2 be the following undirected graph:

a1

a2 a3

a4 a5

a6

a7 a8

Then a tree decomposition of G2 is depicted in the following figure:

21 Treewidth 173

{}

{a1}

{a1, a2} {a1, a3}

{a2, a4} {a2, a5}

{a6}

{a6, a7} {a6, a8}

Finally, let G3 be the following undirected graph:

a1 a2

a3a4

Then a tree decomposition of G3 is depicted in the following figure:

{a1, a2}

{a1, a2, a3}

{a1, a3, a4}

{a1, a4}

The notion of treewidth of a graph is defined by considering all its possible
tree decompositions.

Definition 21.3: Treewidth of an Undirected Graph

Let G = (V,E) be an undirected graph. The width of a tree decompo-
sition (T,�) of G, where T = (VT , ET), is the number max{|�(s)| | s 2
VT } � 1. Moreover, the treewidth of G, denoted by tw(G), is defined is
the minimum width over all tree decompositions of G.

Let G1, G2 and G3 be the undirected graphs in Example 21.2. From the
tree decomposition of G1 given in this example, we know that tw(G1)  1.
Besides, every such a decomposition (T,�) has to include a node s such that
{a1, a2} ✓ �(s), so that the width of (T,�) is at least 1. Hence, we conclude
that tw(G1) = 1. In fact, the term “�1” is included in Definition 21.9 to let
trees have treewidth 1.

174 21 Treewidth

In the same way, it is possible to conclude that tw(G2) = 1. Moreover,
from the tree decomposition of G3 given in Example 21.2, we know that
tw(G3)  2. In what follows, we introduce some tools that allow us to conclude
that tw(G3) = 2. In fact, as a more general result, we obtain that the treewidth
of a cycle is 2, which can be interpreted as an indication of how close a cycle
is to a tree.

Lemma 21.4. Given two undirected graphs G1 and G2, if G1 is a subgraph
of G2, then tw(G1)  tw(G2).

Proof. Let (T,�) be a tree decomposition of G2, and assume that G1 =
(V1, E1). Then for every node s of T , define �0(s) = �(s) \ V1. It is straight-
forward to prove that (T,�0) is a tree decomposition of G1. Moreover, the
width of (T,�0) is at most the width of (T,�). Hence, given that (T,�) is an
arbitrary tree decomposition of G2, we conclude that tw(G1)  tw(G2). ut

In the following lemma, we need a notion of separation for graphs. More
precisely, assume that G = (V,E) is an undirected graph, and V1, V2, S ✓ V .
Then S separates V1 from V2 in G if for every v1 2 V1, v2 2 V2 and undirected
path ⇡ from v1 to v2 in G, a node in S occurs in ⇡.

Lemma 21.5. Let (T,�) be a tree decomposition of an undirected graph G,
where T = (VT , ET). Moreover, let (t, u) 2 ET and Vu = {v 2 VT | v is a
descendant of u in T}. Then �(t) \ �(u) separates �(Vu) from �(VT � Vu)
in G.

The proof Lemma 21.5 is left as an exercise for the reader. By using the
previous two lemmas, we can establish the following values for the treewidth
of a graph.

Proposition 21.6

Assuming that G is an undirected graph, all of the following statements
are true.

1. If G consists of n nodes, where n � 0, then tw(G)  n� 1.

2. If G is a cycle with at least three nodes, then tw(G) = 2.

3. G is acyclic if and only if tw(G)  1.

4. If G is a clique with n nodes, where n � 0, then tw(G) = n� 1.

Proof.

1. Assume that G = (V,E), where |V | = n. By consider a tree decomposition
(T,�) of G such that T consists of a single node s with �(s) = V , we
conclude that tw(G)  |V |� 1 = n� 1.

21 Treewidth 175

2. Assume that G = (V,E), where V = {1, 2, 3, . . . , n}, n � 3 and E =
{ {i, i + 1} | i 2 [1, n� 1] } [{ {1, n} }. It is straightforward to generalize
the construction for graph G3 in Example 21.2 to show that tw(G)  2.
For the sake of contradiction, assume that tw(G)  1. Then there exists
a tree decomposition (T,�) of G such that T = (VT , ET) and |�(s)|  2
for every s 2 VT . Moreover, assume that for every (t, u) 2 ET , it holds
that �(t) 6= �(u) (if this is not the case, then u can be removed, and the
children of u can become children of t).
Given that {1, 2}, {1, n} 2 E, there exist nodes s1, s2 2 VT such that
�(s1) = {1, 2} and �(s2) = {1, n}. First, assume that s2 is a descendant
of s1. Then given that s1 6= s2, there exists an edge (s1, u) 2 ET such
that s2 2 Vu, where Vu = {v 2 VT | v is a descendant of u in T}. By
Lemma 21.5, we know that �(s1) \ �(u) separates �(Vu) from �(VT �
Vu) in G. Hence, given that 2 2 �(VT � Vu), n 2 �(Vu), 2, 3, . . . , n is
an undirected path from 2 to n in G and �(s1) = {1, 2}, we have that
2 2 �(s1) \ �(u). Moreover, given that 1 2 �(s1), 1 2 �(s2) and T is a
tree decomposition of G, we have that 1 2 �(u). Therefore, given that
|�(u)|  2, we conclude that �(u) = �(s1) = {1, 2}, which contradicts one
of our initial assumptions. Second, assume that s2 is not a descendant
of s1. Then given that s1 6= s2, there exists an edge (t, s1) 2 ET such
that s2 2 VT � Vs1 , where Vs1 = {v 2 VT | v is a descendant of s1
in T}. By Lemma 21.5, we know that �(t) \ �(s1) separates �(Vs1) from
�(VT�Vs1) in G. Hence, given that 2 2 �(Vs1), n 2 �(VT�Vs1), 2, 3, . . . , n
is an undirected path from 2 to n in G and �(s1) = {1, 2}, we have that
2 2 �(t) \ �(s1). Moreover, given that 1 2 �(s1), 1 2 �(s2) and T is
a tree decomposition of G, we have that 1 2 �(t). Therefore, given that
|�(t)|  2, we conclude that �(t) = �(s1) = {1, 2}, which again contradicts
one of our initial assumptions.

3. First, assume that G is acyclic. Notice that if G is the empty graph, then
tw(G) = �1, and if G consists only of isolated nodes, then tw(G) = 0.
Hence, assume that G is the disjoint union of some trees containing at
least one edge. Then it is straightforward to generalize the construction
for graph G2 in Example 21.2 to show that tw(G) = 1.
Second, assume that G is not acyclic. Then G has as a subgraph a cycle
G0 with at least three nodes. By Part 2 of this proposition, we have that
tw(G0) = 2. Hence, we conclude that tw(G) � 2, given that tw(G) �
tw(G0) by Lemma 21.4.

4. If G is a clique with n nodes and n 2 [0, 3], then it has already been shown
that tw(G) = n�1 in the previous parts of this proposition. Hence, assume
that G = (V,E), where V = {1, . . . , n}, n � 4 and E = { {i, j} | i, j 2
[1, n] and i 6= j }. For the sake of contradiction, assume that tw(G) < n�1.
Then there exists a tree decomposition (T,�) of G such that T = (VT , ET)
and |�(s)|  n � 1 for every s 2 VT . Moreover, assume that for every

176 21 Treewidth

(t, u) 2 ET , it holds that �(t) 6= �(u) (if this is not the case, then u can
be removed, and the children of u can become children of t).
Let s1 2 VT such that �(s1) is maximal in the sense that there is no s 2 VT

such that �(s1) (�(s). Given that |�(s1)|  n� 1, there exists i 2 [1, n]
such that i 62 �(s1). Moreover, given that (T,�) is a tree decomposition
of G, there exists s2 2 VT such that i 2 �(s2). First, assume that s2
is a descendant of s1. Then given that s1 6= s2, there exists an edge
(s1, u) 2 ET such that s2 2 Vu, where Vu = {v 2 VT | v is a descendant
of u in T}. By Lemma 21.5, we know that �(s1) \ �(u) separates �(Vu)
from �(VT � Vu) in G. Let j 2 �(s1). Then given that j 2 �(VT � Vu),
i 2 �(Vu), j, i is an undirected path from j to i in G and i 62 �(s1), we
have that j 2 �(s1)\�(u). Hence, �(s1) ✓ �(u), from which we conclude
that �(s1) = �(u) by maximality of �(s1). But this contradicts one of
our initial assumptions. The second case of this proof, where s2 is not a
descendant of s1, is left as an exercise for the reader. ut

As a final example, we consider the case of grids. Given k � 1, the (k⇥k)-
grid is defined as the undirected graph:

Gk⇥k = ([k]⇥ [k], {{(i, j), (i0, j0)} | |i� i0|+ |j � j0| = 1}.

For example, the (3⇥ 3)-grid is depicted in the following figure:

(1, 1) (1, 2) (1, 3)

(2, 1) (2, 2) (2, 3)

(3, 1) (3, 2) (3, 3)

In the following proposition, we show that grids have unbounded treewidth.

Proposition 21.7

tw(Gk⇥k) = k for every k � 1.

Proof. Notice that we have already proved in Proposition 21.6 that tw(G1⇥1) =
1 and tw(G2⇥2) = 2, so consider k � 3.

21 Treewidth 177

We start by showing that tw(Gk⇥k)  k. Let T = (VT , ET) be a tree
defined as:

VT = {vi,j | i 2 [k � 1] and j 2 [k]},
ET = {(vi,j , vi,j+1) | i 2 [k � 1] and j 2 [k � 1]} [{(vi,k, vi+1,1) | i 2 [k � 2]}.

Moreover, let � be the following function that assigns a subset of [k]⇥ [k] to
each node vi,j of T :

�(vi,j) = {(i, j), . . . , (i, k), (i+ 1, 1), . . . , (i+ 1, j)}

In what follows, we prove that (T,�) is a tree decomposition of Gk⇥k, from
which we conclude that tw(Gk⇥k)  k since the width of (T,�) is k (in fact,
|�(vi,j)| = k + 1 for every node vi,j 2 VT). But before doing this proof, we
provide the tree decomposition obtained for the grid G3⇥3:

{(1, 1), (1, 2), (1, 3), (2, 1)}

{(1, 2), (1, 3), (2, 1), (2, 2)}

{(1, 3), (2, 1), (2, 2), (2, 3)}

{(2, 1), (2, 2), (2, 3), (3, 1)}

{(2, 2), (2, 3), (3, 1), (3, 2)}

{(2, 3), (3, 1), (3, 2), (3, 3)}

In particular, this is a tree decomposition of G3⇥3 as ��1((i, j)) induces a
subtree of T for each node (i, j) of G3⇥3. For example, the following is the
subtree of T induced by ��1((2, 2)):

{(1, 2), (1, 3), (2, 1), (2, 2)}

{(1, 3), (2, 1), (2, 2), (2, 3)}

{(2, 1), (2, 2), (2, 3), (3, 1)}

{(2, 2), (2, 3), (3, 1), (3, 2)}

Let us consider now the general definition of T . For every edge {(i, j), (i, j+1)}
of Gk⇥k such that i 2 [k � 1], it holds that {(i, j), (i, j + 1)} ✓ �((i, j)), and
for every edge {(k, j), (k, j + 1)} of Gk⇥k, it holds that {(k, j), (k, j + 1)} ✓

178 21 Treewidth

�((k � 1, k)). Moreover, for every edge {(i, j), (i + 1, j)} of Gk⇥k, it holds
that {(i, j), (i + 1, j)} ✓ �((i, j)). From this reasoning, it is also possible to
conclude that ��1((i, j)) is not empty for every node (i, j) of Gk⇥k, so it only
remains to prove that ��1((i, j)) induces a (connected) subtree of T to show
that (T,�) is a tree decomposition of Gk⇥k. This latter condition can be easily
proved by noticing that for every i 2 [2, k � 1] and j 2 [k]:

��1((1, j)) = {v1,1, . . . , v1,j},
��1((i, j)) = {vi�1,j , . . . , vi,j},
��1((k, j)) = {vk�1,j , . . . , vk�1,k},

and by considering the definition of the edge relation ET of T . This concludes
the proof that tw(Gk⇥k)  k.

To complete the proof of the proposition, we need to show that tw(Gk⇥k) �
k. In what follows, we show that tw(Gk⇥k) � k�1, and we leave as an exercise
for the reader to prove the tight upper bound tw(Gk⇥k) � k.

To prove that tw(Gk⇥k) � k � 1, we need to introduce some terminology
and prove a technical lemma. Let G = (V,E) be a graph and W ✓ V . Given
S ✓ V , define (G � S) as the subgraph of G induced by the set of nodes
V � S. Moreover, S is said to be a balanced W -separator if every connected
component of (G� S) contains at most |W |/2 elements of W .

Lemma 21.8. Let G = (V,E) be a graph such that tw(G)  k and W ✓ V .
Then there exists S ✓ V such that S is a balanced W -separator and |S|  k+1.

Proof. Given that tw(G)  k, there exists a tree decomposition (T,�) of G
such that T = (VT , ET) and the width of (T,�) is at most k. Given a node u of
T , recall from Lemma 21.5 the notation Vu = {v 2 VT | v is a descendant of u
in T}. Then let u0 be a node of T such that: �(Vu0) contains more than |W |/2
elements of W , and �(Vu) contains at most |W |/2 elements of W for every
child u of u0. Notice that such a node u0 exists since �(Vroot) contains more
than |W |/2 elements of W , where root is the root of T , given that W ✓ V
and V = �(Vroot).

Next we prove that �(u0) is a balanced W -separator, from which we con-
clude the lemma holds since |�(u0)|  k+1 (given that the width of (T,�) is
at most k). Assume that u1, . . ., u` are the children of u0 in T , and consider a
connected component C of (G��(u0)). First, assume that C \�(Vui) 6= ; for
some i 2 [`]. For the sake of contradiction, assume that C 6✓ �(Vui), and let
v1, v2 be nodes of C such that v1 62 �(Vui) and v2 2 �(Vui). Given that C is a
connected component of (G� �(u0)), there exists an undirected path ⇡ from
v1 to v2 in (G � �(u0)). By Lemma 21.5, we know that �(u0) \ �(ui) sepa-
rates �(VT � Vui) from �(Vui) in G. Hence, given that v1 2 �(VT � Vui) and
v2 2 �(Vui), a node of ⇡ occurs in �(u0)\�(ui). But this implies that ⇡ is not
a path in (G��(u0)), which contradicts our initial assumption. We conclude
that C ✓ �(Vui) and, thus, C contains at most |W |/2 elements of W as �(Vui)
contains at most |W |/2 elements ofW by definition of u0. Second, assume that

21 Treewidth 179

C \ �(Vui) = ; for every i 2 [`]. Then we have that C \ [
S

i2[`] �(Vui)] = ;.
Moreover, we know that C \ �(u0) = ; since C is a connected component
of (G � �(u0)). Hence, given that �(Vu0) = �(u0) [[

S
i2[`] �(Vui)], we have

that C \ �(Vu0) = ; and, thus, C contains at most |W |/2 elements of W as
�(Vu0) contains more than |W |/2 elements of W . This concludes the proof of
the lemma.

To see how Lemma 21.8 is used to prove that tw(Gk⇥k) � k � 1, first
consider k = 3. For the sake of contradiction, suppose it is not the case that
tw(G3⇥3) � 2, so that tw(G3⇥3)  1. Then by considering W = [3] ⇥ [3]
in Lemma 21.8, we know that there exists S ✓ [3] ⇥ [3] such that |S|  2
and S is a balanced ([3]⇥ [3])-separator, so that every connected component
of (G3⇥3 � S) has at most 4 elements. If |S| = 1, then (G3⇥3 � S) has one
connected component with 8 elements, so the previous condition does not
hold. Hence, we are left with the possibility that |S| = 2. We depict in the
following figure the result of removing some of such sets S from G3⇥3:

In all the above cases, there are connected components with more than 4
elements, so the sets S in these examples are not balanced ([3]⇥[3])-separators.
By simple inspecting the remaining alternatives for S, it is easy to conclude
that each graph resulting by removing two nodes from G3⇥3 has a connected
component with more than 4 elements. This leads to a contradiction to the
fact that S is a balanced ([3] ⇥ [3])-separator, and to a contradiction to our
initial assumption that tw(G3⇥3)  1.

In general, if we assume that tw(Gk⇥k)  k � 2, then by considering
W = [k] ⇥ [k] in Lemma 21.8, we know that there exists S ✓ [k] ⇥ [k] such
that |S|  k�1 and S is a balanced ([k]⇥[k])-separator. However, this leads to
a contradiction, as it is possible to prove that for every S ✓ [k]⇥ [k] such that
|S|  k � 1, there exists a connected component C of (Gk⇥k � S) with more
than k2/2 elements. This last property is left as an exercise for the reader.

The Treewidth of a Conjunctive Query

To define the treewidth of a conjunctive query q, we need to consider a graph
representation of the structure of the variables occurring in q. Formally, as-
sume that q is the following CQ:

Answer(x̄) :– R1(ū1), . . . , Rn(ūn).

180 21 Treewidth

Then the Gaifman graph of q, denoted by Gq = (V,E), is defined as the
following undirected graph. The set of nodes V is the set of variables y such
that y occurs in ūi for some i 2 [n], and y does not occur in x̄. Moreover, for
every pair of distinct variables y and z in V , it holds that {y, z} 2 E if and
only if y, z occur in ūi for some i 2 [n]. For example, if q1 is the CQ

Answer(x, y) :– R(x, y, z), R(y, y, z), S(y, w,w0), T (z, z0, w),

then Gq1 = (V1, E1), where V1 = {z, w,w, z0} and E1 = {{w,w0}, {z, z0},
{z, w}, {z0, w}}.

Definition 21.9: Treewidth of a Conjunctive Query

The treewidth of a conjunctive query q, denoted by tw(q), is defined
as tw(Gq).

For each fixed k � 1, we write TW(k) for the set of CQs whose treewidth is
at most k.

E�cient Evaluation of Conjunctive Queries with
Bounded Treewidth

To provide an e�cient algorithm to evaluate a CQ in TW(k), for a fixed value
k � 1, we first need an e�cient procedure to construct a tree decomposition
for such a query. To do this, we notice that there exists a linear-time algorithm
that, given an undirected graph G with tw(G)  k, construct a tree decom-
position of G of width at most k. Hence, given that Gq can be constructed
from q in time O(kqk2), we obtain the following result.

Proposition 21.10: Construction of a tree decomposition

Fix k � 1. Then there exists an algorithm that, given a CQ q in TW(k),
constructs a tree decomposition ofGq of width at most k in time O(kqk2).

By using this proposition, it is possible to prove the following.

Theorem 21.11

Fix k � 1. Then TW(k)-Evaluation can be solved in time O(kDkk+1 ·
(kqk+ kāk)4 · (log kDk+ log kqk+ log kāk)).

Proof. We start by considering a database D and a Boolean CQ q

Answer :– R1(ū1), . . . , Rn(ūn)

21 Treewidth 181

such that q is in TW(k). Our goal is to provide a polynomial-time algorithm
for computing q(D). Let (T,�) be a tree decomposition of Gq obtained by
using the algorithm in Proposition 21.10. We know that the width of (T,�)
is at most k, and we assume that T = (VT , ET).

Let bq be a Boolean CQ defined as follows from q and T . For every node
s 2 VT , let Rs be a new relation name of arity |�(s)|, and x̄s be a tuple of
variables containing exactly the variables in �(s) (in an arbitrary order). Then
bq is the following Boolean CQ:

Answer :– R1(ū1), . . . , Rn(ūn),
^

s2VT

Rs(x̄s).

Moreover, let bD be a database defined as follows from D. For every i 2 [n], we

have that R
bD
i = RD

i , and for every s 2 VT , we have that R
bD
s = Dom(D)|�(s)|.

From the definitions of bq and bD, it is clear that q(D) = bq(bD).
Next we show that bq is an acyclic conjunctive query (as defined in Chapter

18). Let i 2 [n] and Xi be the set of variables occurring in ūi. Then there
exists s 2 VT such that Xi ✓ �(s). For the sake of contradiction, assume that
this property does not hold, and let GXi be the subgraph of Gq induced by
Xi. We note that GXi is a clique with ` = |Xi| nodes by definition of Gq. Let
�0 be the restriction of function � to Xi: �0(s) = �(s) \Xi for every s 2 VT .
It is straightforward to prove that (T,�0) is a tree decomposition of GXi .
Moreover, given that Xi 6✓ �(s) for every s 2 VT , we have that |�0(s)| < ` for
every s 2 VT , and, thus, the width of (T,�0) is at most ` � 2. But then we
conclude that tw(GXi)  ` � 2, which leads to a contradiction to Part 4 of
Proposition 21.6 (given that GXi is a clique with ` nodes).

Let T 0 be a tree constructed from (T,�) as follows. For every i 2 [n], let
si be a node in T such that Xi ✓ �(si). Then for every s 2 VT , we have that
�(s) is a node of T 0, and if t is a child of s in T , then �(t) is a child of �(s)
in T 0. Moreover, for every i 2 [n], we have that Xi is a child of �(si). By
definition of T 0 and given that (T,�) is a tree decomposition of Gq, we have
that T 0 is a join tree of bq (see Chapter 18 for a definition of join tree), from
which we conclude that bq is an acyclic CQ.

Given that bq is an acyclic CQ, we have by Theorem 19.3 that bq(bD) can
be computed in time O(k bDk · log k bDk · kbqk). Given that tw(Gq)  k, we have

that |�(s)|  k + 1 for every s 2 VT . Hence, we have that k bDk is O(kDk +
kDkk+1 · kTk), and we conclude that k bDk is O(kDkk+1 · kqk2). Moreover, we
have that kbqk is O(kqk+kTk) and, thus, kbqk is O(kqk2). Therefore, given that
q(D) = bq(bD) and bq can be constructed in time O(kqk2), we conclude that q(D)
can be computed in time O(kqk2 +(kDkk+1 · kqk2) · kqk2 · log(kDkk+1 · kqk2))
and, thus, in time O(kDkk+1 · kqk4 · (log kDk+ log kqk)). This concludes the
proof for the case of Boolean CQs in TW(k).

Assume now that we are given a database D, a non-Boolean CQ q

Answer(x̄) :– R1(ū1), . . . , Rn(ūn)

182 21 Treewidth

such that q is in TW(k), and a tuple ā over Const of the same arity than
x̄. We want to check whether ā 2 q(D). We start by turning q(x̄) into a
Boolean CQ by simultaneously replacing in q(x̄) each free variable xi in x̄ =
(x1, . . . , xk) by its corresponding value ai in ā = (a1, . . . , ak). We denote
this Boolean CQ as qā. By definition of the notion of Gaifman graph, we
have that Gqā = Gq. Hence, we have that qā is in TW(k) and, therefore, we
can compute qā(D) in time O(kDkk+1 · kqāk4 · (log kDk + log kqāk)) by the
previous discussion. Given that kqāk is O(kqk+kāk) and ā 2 q(D) if and only
if qā(D) = true, we conclude that it can be verified whether ā 2 q(D) in
time O(kDkk+1 · (kqk+ kāk)4 · (log kDk+ log(kqk+ kāk))) and, thus, in time
O(kDkk+1 · (kqk + kāk)4 · (log kDk + log kqk + log kāk)). This concludes the
proof of the theorem.

22

Generalized Hypertreewidth

A significant number of real-world CQs are not acyclic, but are in some sense
“nearly-acyclic”. Bounded generalized hypertreewidth provides a natural for-
malization of the notion of near-acyclicity. Unlike treewidth, this notion ex-
tends acyclicity. It also retains several of the good properties of the latter.
In particular, CQs of bounded generalized hypertreewidth can be evaluated
in polynomial time. Importantly, most of the CQs found in real-world situa-
tions are of small generalized hypertreewidth, thus establishing the practical
relevance of the concept.

The notion of generalized hypertreewidth

The definition of generalized hypertreewidth is based on the important no-
tions of tree decompositions and generalized hypertree decompositions. We have
already defined the notion of tree decomposition of a graph, but here we ex-
tend it in the expected way to hypergraphs. Let H = (V,E) be a hypergraph.
A tree decomposition of H = (V,E) is a pair (T,�), formed by a tree T and
a mapping � that assigns a subset of the nodes in V to each node s 2 T , for
which the following statements hold:

1. For each edge e 2 E, there is a node s 2 T such that e ✓ �(s).
2. For each node v 2 V , the set of nodes s 2 T for which v occurs in �(s) is

connected.

Definition 22.1: Generalized Hypertree Decomposition

A generalized hypertree decomposition of H = (V,E) is a triple (T,�,�)
such that:

1. (T,�) is a tree decomposition of H.

184 22 Generalized Hypertreewidth

2. � is a mapping that assigns a subset of the hyperedges in E to each
node s 2 T .

3. For each node s 2 T , it is the case that �(s) ✓
S

e2�(s) e.

In other words, a generalized hypertree decomposition (T,�,�) of H ex-
tends the tree decomposition (T,�) by covering each set �(s) of nodes, for
s 2 T , with a set �(s) of hyperedges from H.

The width of a node s in the generalized hypertree decomposition (T,�,�)
is the number of atoms in �(s). The width of (T,�,�) is the maximal width
of the nodes of T . The generalized hypertreewidth of a hypergraph is the min-
imum width of its generalized hypertree decompositions.

The notion of generalized hypertreewidth of a CQ is defined as follows:

Definition 22.2: Generalized hypertreewidth

The generalized hypertreewidth of a CQ q corresponds to the generalized
hypertreewidth of its associated hypergraph Hq.

For each fixed k � 1, we write GHW(k) for the set of CQs whose generalized
hypertreewidth is at most k. That is, CQs in GHW(k) are those which admit
generalized hypertree decompositions of the form (T,�,�) in which each set
of variables �(s), for s 2 T , is covered by a set �(s) of at most k edges in Hq.

It is easy to prove that GHW(k) (GHW(k + 1), for each k � 1. As an
example, let us recall the CQ

q = Answer(x, y) :– R(x, y, z), S(y, z), S(y, w,w0), T (z, z0), T (z, w),

which was introduced in Chapter 18. The CQ q is in GHW(2). This is
witnessed by the generalized hypertree decomposition (T,�,�) such that
T consists of two nodes r and t for which �(r) = {x, y, z, w,w0}, �(r) =
{{x, y, z}, {y, w,w0}}, �(t) = {z, z0}, and �(t) = {{z, z0}}. On the other hand,
q is not in GHW(1). This is because CQs in GHW(1) are acyclic (see Propo-
sition 22.3 below) and we know from Example 18.5 that q is not acyclic.

By slightly abusing notation, in the rest of the section we assume for sim-
plicity that if q is a CQ and (T,�,�) is a generalized hypertree decomposition
of Hq, then �(s) corresponds to a set of atoms from q, for each node s 2 T .

Bounded generalized hypertreewidth and acyclicity

The notion of bounded generalized hypetreewidth properly subsumes acyclic-
ity. More in particular, acyclic CQs coincide with the CQs of generalized
hypertreewidth one.

22 Generalized Hypertreewidth 185

Proposition 22.3

GHW(1) is the class of acyclic CQs.

Proof. It is easy to see that each acyclic CQ is in GHW(1). In fact, let q be an
acyclic CQ whose set of atoms is Aq = {R1(ū1), . . . , Rm(ūm)} and let T be
an arbitrary join tree of q. Then T can be turned into a generalized hypertree
decomposition of q of width one as follows. For each node s 2 T which is
associated with the set Xi of variables that are mentioned in ūi, for 1  i  m,
we define �(s) = Xi and �(s) = {Ri(ūi)}. On the other hand, assume that
q is in GHW(1) and (T,�,�) is a generalized hypertree decomposition of q of
width one. From (T,�,�) one can construct a join tree of q as follows. Each
node s 2 T is associated with the set of variables mentioned in the single
atom in �(s). If two such nodes end up being associated with the same set
of variables, we simply delete one of them (provided that it is not the root).
Clearly, then, each node s 2 T is associated with the set Xi of variables
mentioned in some tuple ūi, for 1  i  m, and no two distinct nodes are
associated with the same Xi. Still, there might be several 1  i  m such
that Xi is associated with no node in T . However, by definition of generalized
hypertree decomposition, for each such an 1  i  m there must be a node
s 2 T such that Xi ✓ �(s) ✓ Xj , assuming that s is associated with the set
Xj of variables mentioned in ūj , for 1  j  m. One can then create a new
children s0 of s which is associated with Xi. This construction yields a join
tree of q. ut

Tractable evaluation based on consistency

It is shown next that CQs of bounded generalized hypertreewidth can be
evaluated in polynomial time by extending the consistency criterion for acyclic
CQs developed in Proposition 19.4. For reasons explained in Chapter 18, we
concentrate on Boolean CQs.

Let q = Answer() :– R1(ū1), . . . , Rm(ūm) be a Boolean CQ. For each S ✓
{1, . . . ,m}, let us define qS(x̄S) to be the CQ whose set of atoms is {Ri(ūi) |
i 2 S} and x̄S is a tuple that consists precisely of the variables mentioned in
such atoms. Our consistency criterion establishes the following:

Proposition 22.4

Fix k � 1. Let q = Answer() :– R1(ū1), . . . , Rm(ūm) be a Boolean CQ
in GHW(k) and D a database. Then the following are equivalent:

1. q(D) = true.

2. For each S ✓ {1, . . . ,m} with at most k elements, there is a
nonempty set Cons(qS(D)) ✓ qS(D) such that, for each S0 ✓

186 22 Generalized Hypertreewidth

{1, . . . ,m} with at most k atoms it is the case that

Cons(qS(D)) = Cons(qS(D))n Cons(qS0(D)).

That is, each tuple in Cons(qS(D)) is consistent with some tuple in
Cons(qS0(D)), for every S, S0 ✓ {1, . . . ,m} with at most k atoms.

Proof. Suppose first that q(D) = true; i.e., there is a homomorphism h from
q to D. It is not hard to see then that one can choose Cons(qS(D)) to be
{h(x̄S)}, for each S ✓ {1, . . . ,m} with at most k elements. Suppose, on the
other hand, that for each S ✓ {1, . . . ,m} with at most k elements a nonempty
set Cons(qS(D)) as described in (2) exists. Let (T,�,�) be an arbitrary rooted
and directed generalized hypertree decomposition of q of width k. This implies
that Cons(q�(t)(D)) is well-defined for each node s 2 T , as |�(s)|  k by
definition. One can then prove by induction the following for each node s 2 T
(see Exercise 3.14): Let Xs be the set of variables mentioned in sets of the
form �(s0), for s0 a descendant of s in T (including s itself) and S(Xs) the set
of all atoms in q that only mention variables in Xs. Then Cons(q�(s)(D)) ✓
q0S(Xs)

(D), where q0S(Xs)
is the CQ that has the same set of atoms as qS(Xs)

but its tuple of free variables is x̄�(s). In particular, for the root r of T it is
the case that Cons(q�(r)(D)) ✓ q0S(Xr)

(D). Therefore, since Cons(q�(r)(D))

is nonempty one can conclude that q0S(Xr)
(D) is also nonempty. This implies

that there is at least one homomorphism from q0S(Xr)
to D. But the atoms of

q0S(Xr)
and q are the same by definition, and thus q(D) = true. ut

As for acyclic CQs, this result allows us to construct a simple greatest-fixed
point procedure that checks for the existence of sets Cons(qS(D)) as described
in item (2) of Proposition 22.4. The algorithm, called k-Consistency, is
presented next:

Algorithm 9 k-Consistency(q,D)

Input: A Boolean CQ q :– R1(ū1), . . . , Rm(ūm) in GHW(k) and a database D.
Output: If q(D) = true, then Cons(qS(D)) 6= ; for each S ✓ {1, . . . ,m} with at

most k elements. Otherwise, fail.
1: Cons(qS(D)) := qS(D), for each S ✓ {1, . . . ,m} with at most k elements
2: while Cons(qS(D)) 6= Cons(qS(D))nCons(qS0(D)) for S, S0 ✓ {1, . . . ,m} with

at most k elements do
3: Cons(qS(D)) := Cons(qS(D))n Cons(qS0(D))

4: if Cons(qS(D)) = ; for some S ✓ {1, . . . ,m} with at most k elements then
5: fail

22 Generalized Hypertreewidth 187

It is not hard to see that k-Consistency runs in polynomial time, for each
fixed k � 1. In fact, a näıve analysis shows that k-Consistency(q,D) can be
implemented in time O(||D||2k · ||q||2k) based on the following observations:

1. For each S ✓ {1, . . . ,m} with at most k elements, the value of qS(D)
can be computed in time O(||D||k). Therefore, the initialization step of
the algorithm in which Cons(qS(D)) is set to be qS(D), for each S ✓
{1, . . . ,m} with at most k elements, runs in time O(||D||k · ||q||k).

2. Each further step of the algorithm in which Cons(qS(D)) is set to be
Cons(qS(D))n Cons(qS0(D)), for each S, S0 ✓ {1, . . . ,m} with at most k
elements, takes time O(||D||k ·||q||k). Since each such a step deletes at least
one tuple from some Cons(qS(D)), for an S ✓ {1, . . . ,m} with at most k
elements, the maximum number of steps performed by the algorithm is
bounded by O(||D||k · ||q||k).

The soundness and completeness of k-Consistency is established next:

Proposition 22.5

Let q be a Boolean CQ in GHW(k) and D a database. Then:

q(D) = true () k-Consistency(q,D) 6= fail.

The proof of Proposition 22.5 is left as an exercise for the reader (see Exercise
3.15). As a corollary, one obtains the following:

Theorem 22.6

Fix k � 1. GHW(k)-Evaluation can be solved in polynomial timeO(||D||2k·
||q||2k).

Bounded generalized hypertreewidth of the core

Recall that the Consistency procedure for evaluating acyclic CQs, presented
in Chapter 18, continues being sound for the class of CQs whose core is acyclic.
The k-Consistency algorithm presented above preserves this good behavior,
this time with respect to the class of CQs whose core is in GHW(k):

Proposition 22.7

Fix k � 1. Let q be a Boolean CQ whose core is in GHW(k) and D a
database. Then:

188 22 Generalized Hypertreewidth

q(D) = true () k-Consistency(q,D) 6= fail.

The proof of this result is similar to the proof of Proposition 19.6. As a
corollary, one then obtains the following:

Theorem 22.8

Fix k � 1. The evaluation problem for the class of CQs whose core is in
GHW(k) can be solved in polynomial time.

Computing generalized hypertree decompositions for
faster evaluation

CQs in GHW(k) can be evaluated in polynomial time, for each fixed k � 1,
via the k-Consistency procedure. Such a procedure assumes that the input
CQ q is in GHW(k), i.e., that a generalized hypertree decomposition of q of
width k exists, but no such a decomposition is required to be computed. On
the other hand, as we will see later, having access to a generalized hypertree
decomposition of width k with good properties helps improving the cost of
evaluation for CQs in GHW(k). This is in line with the case of acyclic CQs,
for which we know that computing a join tree allows us to perform evaluation
in linear time using Yannakakis’s algorithm.

Having access to a generalized hypertree decomposition is not a problem
for the case k = 1; in fact, GHW(1) corresponds to the class of acyclic CQs,
and from an acyclic CQ we can always compute a join tree (or, equivalently, a
generalized hypertree decomposition), in linear time. Unfortunately, for k > 1
this good property no longer holds as the following result shows:

Theorem 22.9

Fix k > 1. Assuming PTime 6= NP, there is no polynomial time al-
gorithm that given an input CQ q computes a generalized hypertree
decomposition of width k whenever q 2 GHW(k).

Proof. The proof relies on the following di�cult result:

Proposition 22.10

Fix k > 1. The problem of checking if a given CQ is in GHW(k) is
NP-complete.

In fact, assume for the sake of contradiction that for some k > 1 there is a
polynomial time algorithmA that given an input CQ q computes a generalized

22 Generalized Hypertreewidth 189

hypertree decomposition of width k whenever q 2 GHW(k). We show then that
there is a polynomial time algorithm A0 that checks whether a given CQ is in
GHW(k), thus contradicting Proposition 22.10. Take an arbitrary CQ q and
run A on q. The algorithm A0 accepts i↵ A outputs a generalized hypertree
decomposition of q of width k (the latter can be checked in polynomial time).
It is easy to see, then, that A0 accepts i↵ q is in GHW(k). ut

Does this result completely rule out the possibility of using generalized hy-
pertree decompositions for query evaluation? Not necessarily, for the following
reasons. It can be proved that if q is in GHW(k), then there is a generalized
hypertree decomposition of q of width k with at most n nodes, where n is the
number of variables in q. Therefore, in order to check if q 2 GHW(k), and,
if so, compute a generalized hypertree decomposition of q of width k with
at most n nodes, we can do the following: Iterate over all tuples of the form
(T,�,�), where T is a tree with at most n nodes, � is a mapping that assigns
a subset of the variables in q to each node s 2 T , and � is a mapping that
assigns a subset of at most k atoms from q to each node s 2 T . Then check
if any of them is a generalized hypertree decomposition of q. This takes time
2||q||

c

, for some integer c � 1. While this algorithm exhibits an exponential
behavior, it is not completely impractical as the problem corresponds to a
static analysis task for which the input, the CQ q, is often small.

We can then establish the following:

Theorem 22.11

Fix k � 1. Then GHW(k)-Evaluation can be solved in time 2||q||
c

+
O(||D||k · ||q||), for some integer c � 1.

Proof. First compute in time 2||q||
c

, for some integer c � 1, a generalized hy-
pertree decomposition of q of width k with at most n nodes, where n is the
number of variables in q. Recall that for each node s 2 T the CQ q�(s) is
defined as follows: the atoms of q�(s) are precisely those in �(s) and the free
variables of q�(s) are all the variables that are mentioned in such atoms. Com-
pute then the value of q�(s)(D), for each t 2 T . Each q�(s)(D) can be computed
in time O(||D||k), and thus computing them all takes time O(||D||k · ||T ||),
which is O(||D||k · ||q||). By mimicking Yanankakis’s algorithm, we inductively
compute the values Q�(s)(D)’s, for s a node in T , which are defined as follows:

• If s is a leaf of T , then Q�(s)(D) = q�(s)(D).

• If s has children s1, . . . , sp, then Q�(s)(D) =
T

1ip q�(s)(D)nQ�(si)(D).

This takes time O(||D||k · ||q||) since ||q�(s)|| is O(||D||k), for each node s 2 T ,
and T has at most n nodes. It can be proved then (see Exercise ??) that for
each node s 2 T we have that:

190 22 Generalized Hypertreewidth

Q�(s)(D) = q0S(Xs)
(D),

where q0S(Xs)
is as defined in the proof of Proposition 22.4. In particular, the

atoms of q0S(Xs)
are precisely the atoms of q that only mention variables that

appear in the subtree of T rooted in s, and the free variables of q0S(Xs)
are those

that are mentioned in �(s). The algorithm then accepts if Q�(r)(D) 6= ;, where
r is the root of T . In fact, from the previous observation it is the case that
Q�(r)(D) = q0S(Xr)

(D). Moreover, clearly the atoms of q0S(Xr)
and q are the

same. It follows then that Q�(r)(D) 6= ; if and only if there is a homomorphism
from q to D, i.e., q(D) = true. ut

The bound for evaluation of CQs in GHW(k) obtained in Theorem 22.11
is better, in many practical situations, than the one o↵ered by the consistency
algorithm. In fact, from Theorem 22.11 we obtain that the problem can be
solved in time 2||q||

c

+ O(||D||k · ||q||). This is better than the O(||D||2k ·
||q||2k) obtained by applying the k-Consistency algorithm whenever 2||q||

c

is O(||D||2k). But this is not uncommon, as often the database D is very large
and the CQ q is orders of magnitude smaller.

23

The Necessity of Bounded Treewidth

If a class C of CQs has bounded generalized hypertreewidth, then the evalua-
tion problem for C can be solved in polynomial time. Moreover, this positive
behavior continues to hold even if C itself does not have bounded general-
ized hypertreewidth, but the class Ccore of all cores of CQs in C does. More
formally, it follows from Proposition 22.7 that if Ccore satisfies that there is a
k � 1 such that every CQ q 2 Ccore is in GHW(k), then the evaluation problem
for C can be solved in polynomial time.

A crucial question at this stage is whether this notion exhausts the space
of tractability for CQ evaluation. That is, whether for every class C of CQs
the following are equivalent:

1. Evaluation for C can be solved in polynomial time.

2. Ccore has bounded generalized hypertreewidth.

Perhaps not surprisingly, it can be shown that this is not the case in general; in
fact, there are more general notions of bounded CQ-width, e.g., bounded frac-
tional hypertreewidth, that lead to tractability of CQ evaluation and properly
extend the notion of bounded generalized hypertreewidth.

On the other hand, it is shown in this section that there is one impor-
tant scenario in which conditions 1 and 2 expressed above are equivalent (at
least under widely-held complexity theoretical assumptions); namely, when
the arity of the underlying schemas of the CQs in C is fixed in advance.
This includes the important case in which all CQs in C come from the same
schema. In other words, notions such as bounded fractional hypertreewidth,
that ensure tractability of CQ evaluation, properly extend bounded general-
ized hypertreewidth only when schemas of unbounded arity are allowed.

The equivalence of conditions 1 and 2 over schemas of fixed arity is ob-
tained by proving that if C is a class of CQs over bounded arity schemas such
that Ccore is not of bounded generalized hypertreewidth, then the evaluation
problem for C is W[1]-complete. Thus, under the standard assumption that
W[1]-complete problems are not tractable, one can conclude the evaluation

192 23 The Necessity of Bounded Treewidth

problem for C cannot be solved in polynomial time. But not only that, under
the assumption that FPT 6= W[1] one also obtains a stronger result: if C is
a class of CQs over fixed arity schemas, then the evaluation problem for C
is tractable if and only if the evaluation problem for C is fixed-parameter
tractable if and only if Ccore has bounded generalized hypertreewidth. In
other words, at least in this restricted scenario the notion of fixed param-
eter tractability does not add to the usual notion of tractability.

Fixed Arity Schemas and CQs of Bounded Treewidth

It is easy to see that the notion of bounded generalized hypertreewidth prop-
erly extends the notion of bounded treewidth. As an example, consider the
class formed by all boolean CQs qn, for n � 3, defined as follows:

qn = Answer()
^

1i,jn

E(xi, xj), Tn(x1, . . . , xn),

where
V

1ijn E(xi, xj) is a shortening for the fact that all atoms of the
form E(xi, xj), for 1  i, j  n, are in qn. Notice that {qn | n � 3} ✓
GHW(1) as every CQ qn in C is acyclic: this is witnessed by the generalized
hypertree decomposition that contains a single node labeled with all variables
in {x1, . . . , xn} that is covered by the single atom Tn(x1, . . . , xn). On the other
hand, it is the case that qn+1 62 TW(n), for each n > 1. This follows directly
from the fact that the treewidth of the (n+ 1)-clique is exactly n.

Notice, on the other hand, that there is no bound on the arity of the
schemas over which the CQs in {qn | n � 3} are defined (as qn contains the
n-ary atom Tn(x1, . . . , xn)). This is in fact necessary, since over fixed arity
schemas the notions of bounded treewidth and bounded generalized hyper-
treewidth coincide. This is formally stated below:

Lemma 23.1. Let q be a CQ defined over a schema all of whose relation
symbols have arity at most c, for c � 1. Then for every k � 1:

• q 2 GHW(k) implies q 2 TW(ck � 1).

• q 2 TW(k) implies q 2 GHW(k + 1).

In particular, if C is a class of CQs defined over fixed arity schemas, then C
is of bounded treewidth i↵ C is of bounded generalized hypertreewidth.

The proof of this result is left as an easy exercise for the reader.

The Main Result

The main result of this section, which is the characterization of the tractable
classes of CQs over fixed arity schemas in terms of the notion of bounded

23 The Necessity of Bounded Treewidth 193

treewidth, is stated next. Only the version for boolean CQs is presented, but
there is a simple extension of the result that characterizes tractability for
arbitrary CQs (see Exercise ??):

Theorem 23.2

Assume that FPT 6= W[1]. Let C be a recursively enumerable class of
boolean CQs such that there is a bound on the arity of the relation sym-
bols that are mentioned by CQs in C. Then the following are equivalent:

1. C-Evaluation can be solved in polynomial time.

2. C-Evaluation is FPT.

3. Ccore has bounded treewidth.

The restriction on C to be recursively enumerable can be removed if one
assumes a stronger complexity theoretical assumption; namely, that the non-
uniform versions of FPT and W[1] are also di↵erent.

Overall Idea Behind the Proof of Theorem 23.2

The implication from (1) to (2) is straightforward. The implication from (3)
to (1) follows from Proposition 22.7 and Lemma 23.1. The implication from
(2) to (3) is proved next via the contrapositive. To do this, it is shown that if
Ccore does not have bounded treewidth, then the evaluation problem for Ccore
is W[1]-hard under fpt-reductions and, therefore, not in FPT based on the
assumption that FPT 6= W[1].

Let C be a recursively enumerable class of CQs over fixed arity schemas
such that Ccore is not of bounded treewidth. The proof constructs an ftp-
reduction from the parameterized problem p-CLIQUE to p-C-Evaluation. Re-
call that p-CLIQUE is the problem of given a simple graph G = (V,E) and an
integer k � 1, decide if G has a k-clique using k as a parameter. As mentioned
in Chapter 14, the problem p-CLIQUE is W[1]-complete under fpt-reductions.

The construction makes use of a deep result in graph theory presented
below. The (n⇥m)-grid is the undirected graph whose vertices are the pairs
(i, j), for 1  i  n and 1  j  m, and whose set of edges is:

�
{(i, j), (i+ 1, j)} | 1  i < n, 1  j  m

[

�
{(i, j), (i, j + 1)} | 1  i  n, 1  j < m

.

It can be proved that the (n⇥n)-grid has treewidth n, for each n > 1. A minor
of a simple graph G is a graph H that can be obtained from a subgraph G0

of G by contracting edges. Then:

194 23 The Necessity of Bounded Treewidth

Theorem 23.3: Excluded Grid Theorem

There is a function t : N! N, such that for every k � 1 and simple graph
G of treewidth at least t(k) it is the case that G contains a (k⇥K)-grid
as a minor, for K =

�k
2

�
.

Let G = (V,E) and H = (V 0, E0) be simple graphs. A minor map from H
to G is a mapping µ : V 0 ! 2V that satisfies the following:

(M1) If n is a node of H, then µ(n) is a connected and nonempty subset of the
nodes of G.

(M2) The sets of the form µ(n), for n a node of H, are pairwise disjoint.

(M3) For every edge (n1, n2) 2 E0, there exist nodes n0
1 2 µ(n1) and n0

2 2 µ(n2)
such that (n0

1, n
0
2) 2 E.

A minor map is said to be onto if, in addition, the sets of the form µ(n), for
n a node of H, define a partition of V .

The following is left as an easy exercise for the reader (see Exercise ??):

Lemma 23.4. H is a minor of G if and only if there is a minor map µ from
H to G. If, in addition, G is connected, then there exists an onto minor map
µ from H to G.

The reduction from p-CLIQUE to p-C-Evaluation is explained next. Con-
sider an input for p-CLIQUE given by the pair (G, k), where G is a simple
graph and k � 1 is an integer. Since Ccore is not of bounded treewidth, there
is some CQ q 2 C whose core q0 has treewidth at least t(k). This means that
there is at least one connected component q⇤ of q0 whose treewidth is at least
t(k). By Lemma 23.1 then, the Gaifman graph Gq⇤ of q⇤ has treewidth at least
t(k), and from the Excluded Grid Theorem it is the case that the (k⇥K)-grid
is a minor of Gq⇤ , where K =

�k
2

�
. Notice that q⇤ is also a core. Moreover,

since the (k ⇥K)-grid is a minor of Gq⇤ and Gq⇤ is connected, Lemma 23.4
implies that there exists an onto minor map µ from the (k ⇥K)-grid to Gq⇤ .

Based on G, q⇤, and µ, the proof constructs a database D = D(G, q⇤, µ)
over the schema of q⇤ such that:

q⇤(D) = true () G contains a k-clique.

Let us assume that q0 \ q⇤ is the CQ that is obtained from q0 by removing all
atoms in the connected component q⇤. Let us denote by D0 the disjoint union
of D and (the canonical database of) q0 \ q⇤. Notice that because q0 is a core
and q⇤ is connected, it must be the case that if h is a homomorphism from q0

to D0 then h maps q⇤ to D. Therefore:

q0(D0) = true () q⇤(D) = true () G contains a k-clique.

23 The Necessity of Bounded Treewidth 195

Since q0 is the core of q, one concludes that:

q(D0) = true () G contains a k-clique.

The construction of D = D(G, q⇤, µ) and the proof that q⇤(D) = true if
and only if G contains a k-clique are presented later. To conclude that the
reduction is indeed an fpt-reduction, it is necessary to further establish the
following facts:

1. There is a computable function g : N! N such that kqk  g(k).

2. There is a computable function f : N! N such that the pair (D0, q) can
be constructed in time f(k) · kGkO(1) from (G, k).

Condition 1 holds since q depends exclusively on k and C is recursively enu-
merable. To show that condition 2 also holds, it is su�cient to show the
following:

3. There is a computable function f : N! N such that D = D(G, q⇤, µ) can
be constructed in time f(k) · kGkO(1) from (G, k).

This is because D0 is the disjoint union of D and q0 \ q⇤ and the latter is
computable from q. Condition 3 is established during the construction of D.

The Construction of D(G, q⇤, µ)

Recall that the set {1, . . . , n} is denoted [n], for each n � 1. Let (G, k) be
an input to p-CLIQUE, and assume that G = (V,E) and K =

�k
2

�
. It is

convenient to interchangeably interpret the columns of the (k ⇥ K)-grid as
elements of [K] and unordered pairs of elements over [k]. For that, let us define
an arbitrary bijection ' from the set [K] to the set of all unordered pairs of
elements over [k]. The notation i 2 '(p), for i 2 [k] and p 2 [K], is just a
shortening for the fact that the integer i is contained in the pair '(p).

As explained before, q⇤ is a CQ in C that satisfies the following: It is a
core, it is connected, and the (k ⇥ K)-grid is a minor of Gq⇤ . In addition,
µ : [k] ⇥ [K] ! 2V is a minor map satisfying the aforementioned conditions
M1, M2, and M3. The database D = D(G, q0, µ) is then defined over the
alphabet of q⇤ as follows:

The domain The domain of D consists of all tuples:

(v, e, i, p, x) 2
�
V ⇥ E ⇥ [k]⇥ [K]⇥Dom(q⇤)

�
,

such that the following holds: v 2 e () i 2 '(p) and, in addition,
x 2 µ(i, p).

196 23 The Necessity of Bounded Treewidth

The facts Let us define the projection ⇧ : D ! Dom(q⇤) such that
⇧(v, e, i, p, x) = x. One can assume that ⇧ extends to tuples by defining
it component-wise. Then for every fact of the form R(x̄) 2 Dq⇤ , it is the
case that D contains all facts of the form R(b̄) such that ⇧(b̄) = x̄ and
the following conditions hold for any two elements b = (v, e, i, p, x) and
b0 = (v0, e0, i0, p0, x0) in the domain of D that are mentioned in b̄:

(C1) If i = i0 then v = v0.

(C2) If p = p0 then e = e0.

Before establishing the correctness of the construction, let us analyze the
cost of computing D = D(G, q⇤, µ). First of all, q⇤ and µ can be computed
from q, which in turn depends only on k. Once they are computed, it is possible
to construct D in time:

O(|V | · |E| · k ·K · kq⇤k)r,

where r is the maximum arity of a relation symbol mentioned in q⇤. But such
a maximum arity is fixed by assumption, implying that there is a computable
function f : N ! N such that D = D(G, q⇤, µ) can be constructed in time
f(k) · kGkO(1) from (G, k).

Correctness of the Construction

It is finally shown that q⇤(D) = true if and only if G contains a k-clique.
This is proved in the two lemmas that follow:

Lemma 23.5. If G contains a k-clique, then q⇤(D) = true.

Proof. Let {v1, . . . , vk} be a set of vertices that defines a k-clique in G. For
p 2 [K] with '(p) = {i, j}, let us define ep to be the edge {vi, vj}. Therefore,
it is possible to define a mapping h : q⇤ ! Dom(D) in such a way that:

h(x) = (vi, ep, i, p, x),

where i 2 [k] and p 2 [K] are the elements that satisfy that x 2 µ(i, p). In fact,
h(x) belongs to D as by definition it is the case that vi 2 ep () i 2 '(p).

Next it is shown that h : q⇤ ! Dom(D) is a homomorphism, thus implying
q⇤(D) = true. Consider a fact of the form R(x̄) in q⇤, where x̄ = (x1, . . . , xr).
Let i1, . . . , ir and p1, . . . , pr be such that xj 2 µ(ij , pj), for each 1  j  r.
Then:

h(x̄) =
�
(vi1 , ep1 , i1, p1, x1), . . . , (vir , epr , ir, pr, xr)

�
.

Conditions (C1) and (C2) described above are trivially satisfied, and thus
R(h(x̄)) 2 D. ut

Lemma 23.6. If q⇤(D) = true, then G contains a k-clique.

23 The Necessity of Bounded Treewidth 197

Proof. Since q⇤(D) = true, there is a homomorphism h : q⇤ ! D. Notice
that, by definition, ⇧ is a homomorphism from D to q⇤. Then f = ⇧ � h is
a homomorphism from q⇤ to q⇤, and thus it is also an isomorphism since q⇤

is a core. One can assume, without loss of generality, that f is the identity. If
not, simply consider h � f�1 as the homomorphism instead of h.

As f = ⇧ � h is the identity, for each element x 2 Dom(q⇤) such that
x 2 µ(i, p), for i 2 [k] and p 2 [K], it must be the case that

h(x) = (vx, ex, i, p, x),

for some vx 2 V and ex 2 E such that vx 2 ex () i 2 '(p). To prove the
existence of a k-clique in G it is necessary to establish several properties of
the h(x)’s, for x 2 Dom(q⇤), as stated in the following claims:

Claim 23.7. For each i 2 [k], p 2 [K], and x, x0 2 µ(i, p), it is the case that
vx = vx0 and ex = ex0 .

Proof. Since µ(i, p) is connected in q⇤, it su�ces to prove the claim for x, x0

such that there is an edge between x and x0 in Gq⇤ Let R(x̄) be a fact in q⇤

such that both x and x0 are mentioned in x̄. Then R(h(x̄)) 2 D, and thus
vx = vx0 and ex = ex0 since conditions (C1) and (C2) hold. ut

Claim 23.8. For each i, i0 2 [k], p 2 [K], x 2 µ(i, p), and x0 2 µ(i0, p), it is
the case that ex = ex0 .

Proof. Let us assume without loss of generality that i  i0. If i = i0 then the
result holds from Claim 23.7. Let us suppose then that i < i0. It is su�cient
to establish the result for the case i0 = i + 1, as all other cases follow easily
by induction.

Since there is an edge between {i, p} and {i+1, p} = {i0, p} in the (k⇥K)-
grid and µ is a minor map, there is an edge between an element y 2 µ(i, p)
and an element y0 2 µ(i0, p) in Gq⇤ . Thus, there is a fact R(ȳ) in q⇤ such that
both y and y0 are mentioned in ȳ. Let us assume without loss of generality
that ȳ = (y, y0, . . .). Since R(h(ȳ)) 2 D, it must be the case that ey = ey0 by
condition (C2). But by Claim 23.7, it is the case that ey = ex and ey0 = ex0 .
This finishes the proof of the claim. ut

Claim 23.9. For each i 2 [k], p, p0 2 [K], x 2 µ(i, p), and x0 2 µ(i, p0), it is
the case that vx = vx0 .

Proof. Analogous to the proof of Claim 23.8 and left as an exercise for the
reader. ut

Summing up, the previous claims imply that there are vertices v1, . . . , vk
and edges e1, . . . , eK in G satisfying the following:

• For each i 2 [k] and element x 2 Dom(q⇤) such that x 2 µ(i, p), for some
p 2 [K], it is the case that h(x) is of the form (vi, e, i, p, x).

198 23 The Necessity of Bounded Treewidth

• For each p 2 [K] and element x 2 Dom(q⇤) such that x 2 µ(i, p), for some
i 2 [k], it is the case that h(x) is of the form (v, ep, i, p, x).

Fix an arbitrary pair {i, j} with 1  i < j  k and consider the pair p 2
[K] such that '(p) = {i, j}. It is possible to prove that ep = {vi, vj}, and,
therefore, that {v1, . . . , vk} defines a k-clique in G. In fact, since µ is a minor
map, there are elements x 2 µ(i, p) and x0 2 µ(j, p). From the previous
remarks, h(x) = (vi, ep, i, p, x) and h(x0) = (vj , ep, j, p, x). Now, since vi 2
ep () i 2 '(p) and vj 2 ep () j 2 '(p) by definition, we conclude that
ep = {vi, vj}. This finishes the proof of Lemma 23.6.

25

Bounding the Join Size

So far, the search for e�cient CQ evaluation methods has focused on the so-
called structural approach. The underlying idea is to exploit structural proper-
ties of the input CQs, such as bounded generalized hypertreewidth, to develop
tractable evaluation algorithms. This approach, however, disregards quanti-
tative aspects such as the cardinalities of di↵erent relations in the database,
which play a fundamental role in query evaluation.

The goal of this chapter is to present a result that brings together both
structural and quantitative aspects. It does so by providing a tight bound on
the size of the answer q(D) of a CQ q over a database D in terms of the
cardinalities of the relations in D and a sophisticated notion of width for q
based on fractional covers. As we will see in the next chapter, this result also
provides the tools for developing worst-case optimal evaluation algorithms for
CQs.

Join Queries

We consider in this chapter the named perspective for relational algebra, as
defined in Chapter 4. Recall that, under this perspective, the join R1 on R2

of relations R1[U1] and R2[U2] is the set of tuples t of sort U1 [U2 such that
there exist t1 2 R1 and t2 2 R2 with t(A) = t1(A) for every A 2 U1 and
t(A) = t2(A) for every A 2 U2. That is, if A is a common attribute name in
R1 and R2, then t1 and t2 have the same value for their A-attribute.

For the sake of presentation, this chapter only deals with CQs that repre-
sent join queries, which we define next.

Definition 25.1: Join Query

A join query over a named schema S is a named RA query over S of the
form

R1 on · · · on Rn .

208 25 Bounding the Join Size

We will assume throughout the chapter that R1, . . . , Rn are pairwise dif-
ferent. Notice that this is possible because the join operator on is com-
mutative, associative, and idempotent (that is, (R on R)(D) = R(D) for
every database D). Join queries therefore correspond to CQs of the form
Answer(x̄) :– R1(ȳ1), . . . , Rn(ȳn) where

(1) each relation name Ri with i 2 [n] occurs exactly once;

(2) for every i 2 [n], no variables are repeated in the tuple ȳi; and

(3) every variable that appears in some tuple ȳi for i 2 [n] also appears in x̄.

Condition (3) states that join queries do not have bound variables, i.e., they
are projection free. For several of the results presented next this restriction is
not essential, and in fact such results continue to hold for arbitrary CQs at
the cost of more complicated proofs.

A Gentle Introduction

As a gentle introduction, consider the join query

qM = R[A,B] on S[B,C] on T [C,A] ,

and the hypergraph

A B

C

that visualizes the structure of qM. For simplicity, let us assume that we evalu-
ate qM on a database D where R, S, and T have the same number n of tuples.
How many tuples can there be in qM(D)?

Trivially, |qM(D)| is at most n3, because |qM(D)| is at most as large as the
size |R⇥S⇥T | of the Cartesian product of R, S, and T . But we can also see
that |qM(D)| is at most n2 = |R⇥ S|. This is because we can obtain qM(D) as
follows. We first compute R ⇥ S and select those tuples in R ⇥ S that agree
on the B-attribute. Finally, we observe that joining the result of the previous
step with T can only remove further tuples: it selects those tuples that agree
with some tuple in T on their A- and C-attribute.

This idea can be generalized when we consider edge covers of the hyper-
graph of a join query q of the form R1 on · · · on Rn. Let {A1, . . . , Am} be
the set of attributes used by q, i.e., [i2[n]S(Ri). We define the hypergraph
Hq = (Vq, Eq) of q to consist of the set of nodes Vq = {A1, . . . , Am} and
hyperedges Eq = {S(Ri) | i 2 [n]}.

25 Bounding the Join Size 209

Definition 25.2: Edge Cover

An edge cover of a hypergraph H = (V,E) is a subset E0 ✓ E of its
edges such that, for each node v 2 V , there is an edge e 2 E0 with v 2 e.

The intuition of edge dovers is that the set of selected edges in E0 “cover” each
node of H. For example, the hyperedges {A,B} and {B,C} (corresponding
to R[A,B] iand S[B,C] in qM) are an edge cover of HqM . The principle that
we used to give the n2 upper bound for |qM(D)| can be generalized as follows.

Theorem 25.3

Let q = R1 on · · · on Rn be a join query and let E be an edge cover of its
hypergraph Hq. Then, for every database D, we have that

|q(D)| 
Y

S(Ri)2E

|RD
i | 2 O(|D||E|) .

We will prove a generalization of this result as Theorem 25.8.
Whereas Theorem 25.3 gives an upper bound for |q(D)|, what can we

say about lower bounds? Consider again the query qM. We can see that, for
every k 2 N, the database Dk, in which R[A,B] = {(A : i, B : 1) | i 2 [k]},
S[B,C] = {(B : 1, C : 1)}, and T [C,A] = {(C : 1, A : i) | i 2 [k]} returns k
answers to q. Indeed, we have that q(Dk) = {(A : i, B : 1, C : 1) | i 2 [k]}.

Interestingly, also this idea can be generalized using a standard graph-
theoretical notion, namely independent sets.

Definition 25.4: Independent Set

An independent set of a hypergraph H = (V,E) is a subset V 0 ✓ V of
its nodes such that, for each edge e 2 E, it holds that |e \ V 0|  1.

The intuition behind independent sets is that all distinct node pairs in V 0

are “independent”, i.e., not connected by an edge. For example, the node A
is an independent set of HqM which, incidentally, we used to construct the
databases Dk. Similar to before, we can also generalize this idea.

Proposition 25.5

Let q = R1 on · · · on Rn be a join query and let V be an independent set
of its hypergraph Hq. Then, for every k 2 N, there is a database D with

k|V |  |q(D)|

210 25 Bounding the Join Size

and every relation in D has at most k tuples.

Again, we will prove a generalization of this result as Proposition 25.20.

The AGM Bound

We now embark on generalizing the results from the gentle introduction and
start with focusing on upper bounds. We consider the following generalization
of the edge covers from Definition 25.2.

Definition 25.6: Fractional Edge Cover

A fractional edge cover of a hypergraph H = (V,E) is a function

f : E ! Q�0

such that, for each node v 2 V , it holds that
P

v2e f(e) � 1. The weight
of f is the value

P
e2E f(e).

It is easy to see that each edge cover is indeed also a fractional edge cover. Let
us illustrate the di↵erence between edge covers and their fractional variant on
an example.

Example 25.7

Consider again the join query

qM = R[A,B] on S[B,C] on T [C,A] ,

and its hypergraph HqM

A B

C

By slight abuse of notation, let us denote the hyperege {A,B} as R,
the hyperedge {B,C} as S, and {C,A} as T . We can then write the
conditions for a fractional edge cover f of HqM as the following system
of equations.

f(R), f(S), f(T) � 0,

f(R) + f(T) � 1, f(R) + f(S) � 1, f(S) + f(T) � 1 .

25 Bounding the Join Size 211

The equation f(R) + f(T) � 1, for example, is obtained by considering
attribute A and the fact that R and T are the edges in HqM that contain
A. One solution to this system of equations, i.e., a fractional edge cover,
is f(R) = f(S) = f(T) = 1/2. The weight of this fractional edge cover
is 3/2.

Recall that in a database D, we denote by RD the relation instance associ-
ated to relation name R, that is, RD is the set of tuples ā such that R(ā) 2 D.
With this notation, we can state the AGM bound, which received its name
from the last names of Albert Atserias, Martin Grohe, and Dániel Marx.

Theorem 25.8: AGM Bound

Consider a join query q = R1 on · · · on Rn over schema S and a fractional
edge cover f of q. Then, for every database D, we have that

|q(D)| 
nY

i=1

|RD
i |f(S(Ri)) .

Before proving the theorem, it is worth illustrating the application of the
AGM bound on a specific query.

Example 25.9

Applying the AGM bound to the fractional cover of Example 25.7, we
obtain that, over every database D,

|q(D)| 
q
|RD| · |SD| · |TD| .

We could also consider another fractional cover, namely f(R) =
f(S) = 1 and f(T) = 0. Applying the AGM bound to this solution
implies that

|q(D)|  |RD| · |SD| .

Which bound is better depends on the underlying database D.

• Consider first the case when RD = SD = TD, i.e., when the interpre-
tations of all three relations over D coincide. Moreover, assume that
RD does not contain any tuple of the form (a, a). Then D can be
naturally seen as a graph without loops and with M = |RD| edges,
and, thus, |q(D)| is equal to three times the number of directed tri-
angles in such a graph. (Notice that each directed triangle is counted
three times as a tuple (A : a,B : b, C : c) is considered to be di↵erent
from a tuple (A : b, B : c, C : a)). In this case, the first bound is bet-

212 25 Bounding the Join Size

ter, as it implies that |q(D)|  M3/2, while the second one implies
that |q(D)| M2.
The fact that the maximum number of directed triangles in a graph
with M edges is bounded by

M 3/2

3

is non-trivial, which illustrates the power of Theorem 25.8 as a tool
for obtaining meaningful bounds on the size of the evaluation of a
join query.

• Consider now the case when |RD| = |SD| = 1 and |TD| = M . Then
the second bound is tighter, as it implies that |q(D)| = 1 while the
first one implies that |q(D)| 

p
M .

Proof of the AGM Bound

We will now prove the AGM bound. The proof makes use of a key query de-
composition lemma, which is in turn proved by applying the following version
of Hölder’s inequality, which we state without proof.

Theorem 25.10: Hölder’s Inequality

Let p, r be positive integers, y1, . . . , yr be non-negative real numbers such
that y1 + · · ·+ yr � 1, and ai,j be a non-negative real number for every
i 2 [p] and j 2 [r]. Then it holds that

pX

i=1

rY

j=1

a
yj

i,j 
rY

j=1

✓ pX

i=1

ai,j

◆yj

.

From now on, fix a join query q = R1 on · · · on Rn over schema S, and
assume that X = {A1, . . . , Am} is the set of attributes occurring in q. Given
Y ✓ X, define R(Y) as

S
Aj2Y R(Aj). That is, R(Y) is the set of those

Ri’s that mention some attribute in Y , for i 2 [n]. Moreover, assuming that
R(Y) = {Ri1 , . . . , Ri`}, where 1  i1 < · · · < i`  n, define query

qY = ⇡Y \S(Ri1)
(Ri1) on · · · on ⇡Y \S(Ri`

)(Ri`) . (25.1)

Recall that S(R) is the set of attributes associated to relation name R under
schema S. Thus, query qY defines the join of the projection over Y of those
Ri’s that mention at least some attribute in Y .1

1 Recall that, in order for a projection ⇡↵(e) to be well defined, it is required that
↵ is a subset of the sort U of e. This is why we intersect with S(Rij) in every
projection.

25 Bounding the Join Size 213

Finally, to state the query decomposition lemma, recall the definition of
the semijoin operator n from Chapter 18. In particular, recall that two tuples
ā and b̄ are said to be consistent if they have the same value in each shared
attribute. Thus, the term R n {ā} is used in the lemma to denote the set of
tuples in R that are consistent with ā.

Lemma 25.11 (Query Decomposition Lemma). Assume that f is a frac-
tional edge cover for the hypergraph Hq of q and consider an arbitrary partition
{Y, Z} of X. Then for every database D it holds that

X

ā2qY (D)

Y

Ri2R(Z)

|RD
i n {ā}|f(S(Ri)) 

nY

i=1

|RD
i |f(S(Ri)).

Here, we assume that all relations RD
i are non-empty.

Proof. Let A be an arbitrary attribute in Y . Define Y 0 = Y � {A} and Z 0 =
Z [{A}. Next we show that

X

ā2qY (D)

Y

Ri2R(Z)

|RD
i n {ā}|f(S(Ri))


X

ā02qY 0 (D)

Y

Ri2R(Z0)

|RD
i n {ā0}|f(S(Ri)). (25.2)

The lemma is then obtained by repeatedly applying (25.2) until Y 0 is empty, in
which case the right-hand side of the inequality is precisely

Qn
i=1 |RD

i |f(S(Ri)).
Each tuple ā 2 qY (D) can be decomposed as a pair ā0, v such that ā0 2

qY 0(D) and v is the value of ā for attribute A. In what follows, we use (ā0, v)
as an alternative notation for tuple ā. Then the left-hand side of equation
(25.2) can be expressed as

X

ā02qY 0 (D)

X

v : (ā0,v)2qY (D)

Y

Ri2R(Z)

|RD
i n {(ā0, v)}|f(S(Ri)),

which in turn can be rewritten as

X

ā02qY 0 (D)

X

v : (ā0,v)2qY (D)

✓⇣ Y

Ri2R(Z)

|RD
i n {(ā0, v)}|f(S(Ri))

⌘
·

⇣ Y

Ri2R(Z0)�R(Z)

1f(S(Ri))
⌘◆

. (25.3)

Notice that equation (25.3) is equivalent to

X

ā02qY 0 (D)

X

v : (ā0,v)2qY (D)

Y

Ri2R(Z0)

|RD
i n {(ā0, v)}|f(S(Ri)), (25.4)

214 25 Bounding the Join Size

since for those Ri in R(Z 0) � R(Z), it holds that the set of attributes of
Ri is contained in Y and, thus, |RD

i n {(ā0, v)}| = 1. Moreover, given that
RD

i n {(ā0, v)} = RD
i n {ā0} for each Ri 2 R(Z 0)�R(A), equation (25.4) can

be expressed as

X

ā02qY 0 (D)

Y

Ri2R(Z0)�R(A)

|RD
i n {ā0}|f(S(Ri))

X

v : (ā0,v)2qY (D)

Y

Ri2R(A)

|RD
i n {(ā0, v)}|f(S(Ri)). (25.5)

This is the moment in which Hölder’s inequality stated in Claim 25.10 is
applied to obtain that the value expressed in equation (25.5) is bounded by

X

ā02qY 0 (D)

Y

Ri2R(Z0)�R(A)

|RD
i n {ā0}|f(S(Ri))

Y

Ri2R(A)

✓ X

v : (ā0,v)2qY (D)

|RD
i n {(ā0, v)}|

◆f(S(Ri))

. (25.6)

Observe that it is possible to apply Claim 25.10 because: (i) f is a fractional
cover of q and, thus,

P
Ri2R(A) f(S(Ri)) � 1; and (ii) |RD

i n {(ā0, v)}| � 0 for
every Ri 2 R(A) and v such that (ā0, v) 2 qY (D).

To conclude, the value expressed in Equation (25.6) is bounded by

X

ā02qY 0 (D)

Y

Ri2R(Z0)�R(A)

|RD
i n {ā0}|f(S(Ri))

Y

Ri2R(A)

|RD
i n {ā0}|f(S(Ri)).

(25.7)
This is because for every Ri 2 R(A): (i) RD

i n {(ā0, v)} ✓ RD
i n {ā0}; and (ii)

if (ā0, v1) and (ā0, v2) are in qY (D), with v1 6= v2, then RD
i n {(ā0, v1)} and

RD
i n{(ā0, v2)} are disjoint given that A 2 S(Ri). Finally, equation (25.7) can

be simplified as

X

ā02qY 0 (D)

Y

Ri2R(Z0)

|RD
i n {ā0}|f(S(Ri)),

which finishes the proof of the lemma. ut

We now move to the proof of Theorem 25.8, which is done by induction on
the size of the set X = {A1, . . . , Am} of attributes occurring in q. Notice that
this theorem trivially holds if |RD

i | = 0 for some i 2 [n]. Thus, we assume in
the following proof that |RD

i | � 1 for every i 2 [n].

• Base case. We have that |X| = 1, and hence each relation Ri is unary
for each ` 2 [n]. Then we have that

25 Bounding the Join Size 215

|q(D)|  min
`2[n]

|RD
` |


�
min
`2[n]

|RD
` |
�Pn

i=1 f(S(Ri))

=
nY

i=1

�
min
`2[n]

|RD
` |
�f(S(Ri))


nY

i=1

|RD
i |f(S(Ri)) ,

where the second inequality holds given that min`2[n] |RD
` | � 1 and

that
Pn

i=1 f(S(Ri)) � 1.

• Inductive case. We have that |X| = m with m > 1. Let Y =
{A1, . . . , Am�1}. Let S0 be the schema such that S0(R) = {Am} for every
R 2 R(Am). Let q0 be the natural join query over S0, that is,

q0 = onR2S0 R .

Notice that q0 is in fact the query q{Am} = qX�Y as in (25.1), which
computes the intersection over all the unary relations R over schema S0.
For every tuple ā 2 qY (D), let Dā be the database over S0 such that
RDā = ⇡{Am}(R

D n {ā}) for each R 2 R(Am). Then we have that

q(D) =
[

ā2qY (D)

�
q0(Dā)⇥ {ā}

�
(25.8)

and, therefore,

|q(D)| 
X

ā2qY (D)

|q0(Dā)| .

Since f satisfies
P

Am2S(Ri)
f(S(Ri)) � 1, we obtain by induction hypoth-

esis for every ā 2 qY (D) that

|q0(Dā)| 
Y

Ri2R(Am)

|RDā
i |f(S(Ri)) =

Y

Ri2R(Am)

|RD
i n {ā}|f(S(Ri)) .

It is possible then to conclude that

|q(D)| 
X

ā2qY (D)

|q0(Dā)| 

X

ā2qY (D)

Y

Ri2R(Am)

|RD
i n {ā}|f(S(Ri)) 

nY

i=1

|RD
i |f(S(Ri)) ,

where the last inequality holds by Lemma 25.11.

This finishes the proof of Theorem 25.8.

216 25 Bounding the Join Size

Fractional Independent Sets

In the remainder of this chapter, we will prove that the AGM bound is tight.
To this end, we will consider a fractional version of independent sets.

Definition 25.12: Fractional Independent Set

A fractional independent set of a hypergraph H = (V,E) is a function

g : V ! Q�0

such that, for each edge e 2 E, it holds that
P

v2e g(v)  1. The weight
of g is the sum

P
v2V g(v).

Fractional independent sets assign a nonnegative weight to each node in the
hypergraph, such that the sum of the weights of the nodes in a single hy-
peredge should not exceed 1. This generalizes the condition of the “classical”
independent set problem that states that at most one node per edge is allowed
in the independent set. We illustrate the notion on an example.

Example 25.13

Consider again the join query

qM = R[A,B] on S[B,C] on T [C,A] ,

and its hypergraph HqM

A B

C

We can write the conditions for a fractional independent set g of HqM as
the following system of equations.

g(A), g(B), g(C) � 0,

g(A) + g(B)  1, g(B) + g(C)  1, g(C) + g(A)  1 .

The equation g(A) + g(B)  1 is obtained by considering the hyperedge
{A,B}. One solution to this system of equations, i.e., a fractional inde-
pendent set, is g(A) = g(B) = g(C) = 1/2. The weight of this fractional
independent set is 3/2.

25 Bounding the Join Size 217

Connection to Linear Programming

Fractional edge covers and fractional independent sets are closely related to
each other, which will become clear when we explore their connection to linear
programming. To this end, we first need to introduce some background on
linear programs.

Definition 25.14: Linear Program

Let a1, . . . , an be real numbers and x1, . . . , xn be variables. A linear
function (over x1, . . . , xn) is a function f of the form

f(x1, . . . , xn) = a1x1 + a2x2 + · · ·+ anxn .

If f is a linear function and b a real number, then the equations

f(x1, . . . , xn)  b and f(x1, . . . , xn) � b

are linear inequalities. A linear program (over x1, . . . , xn) consists of a
linear function f , a set of linear inequalities, and a task, which is to
minimize or to maximize.

Let us illustrate how we will denote linear programs by means of a few exam-
ples.

Example 25.15

When we denote f(R), f(S), and f(T) as variables xR, xS , and xT ,
respectively, then we can associate a linear program to the system of
equations in Example 25.7, namely

minimize xR + xS + xT

subject to xR + xT � 1

xR + xS � 1

xS + xT � 1

and xR � 0 xS � 0 xT � 0 .

Here, the linear function is xR + xS + xT , the task is to minimize, and
we have a set of six linear equations.

Likewise, when we denote g(A), g(B), and g(C) as variables yA, yB ,
and yC , respectively, then we can associate a linear program to the sys-
tem of equations in Example 25.13, namely

218 25 Bounding the Join Size

maximize yA + yB + yC

subject to yA + yB  1

yB + yC  1

yC + yA  1

and yA � 0 yB � 0 yC � 0 .

Here, the task is to maximize.

Definition 25.16: Feasible Solutions and Optimal Values

Let L be a linear program with linear inequalities

f1(x1, . . . , xn) ✓1 b1
...

fk(x1, . . . , xn) ✓k bk ,

where ✓i 2 {,�} for every i 2 [k]. A feasible solution to L is an
assignment ⇢ : {x1, . . . , xn} ! R such that fi(⇢(x1), . . . , ⇢(xn)) ✓i bi
holds for every i 2 [k].

Let L additionally have the linear function f . If the task of L is
to minimize (resp., to maximize), then its optimal value, if it exists, is
the smallest (resp., largest) value of f(⇢(x1), . . . , ⇢(xn)) such that ⇢ is a
feasible solution to L. In this case, we call ⇢ an optimal solution to L.

Example 25.17

Both ⇢1 with ⇢1(xR) = ⇢1(xS) = ⇢1(xT) = 1/2 and ⇢2 with ⇢2(xR) =
⇢2(xS) = 1 and ⇢2(xT) = 0 are feasible solutions to the first linear
program in Example 25.15. One can show that the optimal value is 3/2
and therefore ⇢1 is an optimal solution.

Linear Programming Duality

We will use the Strong Duality Theorem of linear programming, which we
state next. To this end, the dual of a linear program of the form

25 Bounding the Join Size 219

minimize
nX

i=1

cixi

subject to
nX

i=1

ai,jxi � bj for each j 2 [m] ,

and xi � 0 for each i 2 [n]

over the variables x1, . . . , xn is the linear program

maximize
mX

j=1

bjyj

subject to
mX

j=1

ai,jyj  ci for each i 2 [n] ,

and yj � 0 for each j 2 [m]

over the variables y1, . . . , ym.

Theorem 25.18: Strong Duality Theorem

Let ⇢⇤ be the optimal value of a linear program P and let ⌧⇤ be the
optimal value of its dual program PD. Then ⇢⇤ = ⌧⇤.

We are now ready to show the key observation that ties the previous
notions in this chapter together with linear programs. The observation is
that, if we consider a join query q, then the linear program that maximizes
the weight of the fractional independent set of Hq is the dual of the linear
program that minimizes the weight of the fractional edge cover of Hq. For
instance, in Example 25.15, the second linear program is the dual of the first
one. We make this more precise next.

Let q = R1 on · · · on Rn be a join query over some schema S and assume
that {A1, . . . , Am} is the set of all attributes occurring in q. Recall that we
use R(Aj) to denote the set of relation names Ri in {R1, . . . , Rn} that use
attribute Aj under schema S, i.e., such that Aj 2 S(Ri).

Let us denote the linear program

minimize
nX

i=1

xi

subject to
X

Ri2R(Aj)

xi � 1 for each j 2 [m] ,

and xi � 0 for each i 2 [n] ,

that minimizes the weight of the fractional edge cover of Hq, as EC(Hq).
Likewise, let us denote the linear program

220 25 Bounding the Join Size

maximize
mX

j=1

yj

subject to
X

Aj2S(Ri)

yj  1 for each i 2 [n]

and yj � 0 for each j 2 [m] .

that maximizes the weight of the fractional independent set of Hq, as IS(Hq).
Notice that IS(Hq) is indeed the dual program of EC(Hq).

Let us call a fractional edge cover f of Hq minimal if its weight equals the
optimal value of EC(Hq); and a fractional independent set g maximal if its
weight equals the optimal value of IS(Hq). Then Theorem 25.18 implies the
following Corollary.

Corollary 25.19

Let q be a join query and Hq be its hypergraph. Let f be a minimal
fractional edge cover and g be a maximal fractional independent set of
Hq. Then the weight of f equals the weight of g.

Optimality of the AGM Bound

We show next that the bound stated in Theorem 25.8 is strict.

Proposition 25.20

Let q = R1 on · · · on Rn be a join query over schema S and let f
be a minimal edge cover of the hypergraph Hq of q. Then there exist
arbitrarily large databases D such that |RD

i | � 1 for each i 2 [n] and

|q(D)| =
nY

i=1

|RD
i |f(S(Ri)) .

Proof. Assume that {A1, . . . , Am} is the set of attributes occurring in q. Let f
be a minimal fractional edge cover and g be a maximal fractional independent
set of Hq. Let f⇤ be the weight of f and g⇤ be the weight of g.

We now define a database Dk for each k 2 N. For each i 2 [n], let �i
be a function such that S(Ri) = {A�i(1), . . . , A�i(r)}, where r = arS(Ri). We
define the database Dk as

RDk
i =

�
(A�i(1) : j1, . . . , A�i(r) : jr) |

j` 2 {1, . . . , bkg(A�i(`)
)c} for every ` 2 [r]

.

25 Bounding the Join Size 221

It is straightforward to show that

q(Dk) = {1, . . . , bkg(A1)c}⇥ · · ·⇥ {1, . . . , bkg(Am)c} .

Since g(Aj) 2 Q for every j 2 [m], there are arbitrarily large k such that every
value kg(Aj) is an integer. In this case, all relations RDk

i have size k and we

have that |q(Dk)| = k
Pm

j=1 g(Aj). We then obtain that

nY

i=1

|RDk
i |f(S(Ri)) = k

Pn
i=1 f(S(Ri)) = kf

⇤
= kg

⇤
.

Here, the first equality holds because |RDk
i | = k. The second equality is by

definition of f⇤, and the third is because f⇤ = g⇤ (Corollary 25.19). This
concludes the proof. ut

We illustrate the construction of Proposition 25.20 with an example.

Example 25.21

Consider a join query with the following hypergraph H:

A

B C D

E

This hypergraph has a fractional edge cover f that assigns weight 1
3

to every edge, amounting to a total weight of 7
3 . It has a fractional

independent set g that assigns

• weight 1
3 to B, C, and D; and

• weight 2
3 to A and E,

also amounting to a total weight of 7
3 . Therefore, f is minimal and g is

maximal. We now use the construction in the proof of Proposition 25.20
to construct a database from g. Let us choose a value of k such that
kg(v) is an integer for every node v of H. This is the case for k = 8, since
3
p
8 = 2 and 82/3 = 4. The construction in Proposition 25.20 now defines

the database Dk as

222 25 Bounding the Join Size

A

E

B

C

D

1 1
1 2
2 1
2 2
3 1
3 2
4 1
4 2

B C D

1 1 1
1 1 2
1 2 1
1 2 2
2 1 1
2 1 2
2 2 1
2 2 2

where every binary relation, i.e., over attributes {A,B}, {A,C}, {A,D},
{E,B}, {E,C}, and {E,D} is like the relation on the left and the ternary
relation like the relation on the right.

26

Worst-Case Optimal Join Algorithms

Join Plans

In a database system, join queries are typically evaluated using join plans,
which aim at finding a clever ordering in which to perform the joins. Assume,
for example, that we have a join query q = R1 on R2 on R3 on R4. Due to
the commutativity and associativity of the join operator, we can for example
consider the trees

on

on

on

R1 R2

R3

R4

on

on

on

R2 R3

R4

R1

on

on

R1 R3

on

R2 R4

. . .

Each of these trees represent a join plan: if we have a databaseD with relations
R1, . . . , R4 and evaluate the joins of q in a bottom-up fashion over these trees,
we end up with q(D) at the root of each tree.

Since joins are very expensive operators in database systems, it makes
sense to think about which join plan leads to the fastest computation of the
result. Here, it is important to know that, in general, joining big relations typi-
cally takes more time than joining small relations. Query optimizers therefore
try to perform joins that produce small results early, since it is easier and
faster to continue the computation with a small intermediate result than with
a large one. For instance, if |R1 on R2(D)| is much smaller than |R2 on R3(D)|,
we may prefer the leftmost join plan to the middle one. Since the join plans we
considered here always take the join of two relations, they are called pairwise
join plans.

224 26 Worst-Case Optimal Join Algorithms

Are Pairwise Join Plans Sub-Optimal?

Perhaps surprisingly, there exist cases in which every possible pairwise join
plan produces after the first step an intermediate result that contains more
tuples than the entire output. Consider the join query

q(A,B,C) :– R(A,B), S(B,C), T (C,A)

and, for n 2 N, the database Dn in which R[A,B] = S[B,C] = T [C,A] is the
relation

1 1
1 2
...

...
1 n/2
2 1
...

...
n/2 1

which consists of n� 1 tuples.
Any join plan that starts with joining two relations will produce an inter-

mediate result that is quadratic in n, because, if we consider qRS = R on S,
qTR = T on R, and qST = S on T , then we have

|qRS(Dn)| = |qTR(Dn)| = |qST (Dn)| =
✓
n

2

◆2

=
n2

4
.

But, according to the AGM bound, we have that |q(D)|  n3/2.
This example shows that no query evaluation algorithm that uses join

plans in the way that we explained in the beginning of this chapter has a
runtime proportional to the number of tuples in the output. Furthermore,
it raises the quesion whether such an algorithm even exists. We will show
in this chapter that there exists an algorithm that can evaluate join queries
q on databases D in time Õ(nm|q(D)|), where n and m are the number of
atoms and attributes in q, respectively. Here, the Õ-notation hides logarithmic
factors, see Appendix A.

Worst-Case Optimal Join By Example

Consider again the join query q(A,B,C) :– R(A,B), S(B,C), T (C,A) and
the database D in Figure 26.1. Here, we represent atoms R(a, b), S(a, b), and
T (a, b) with green, blue, and orange arrows from a to b, respectively.

The algorithm that we present in this section initializes three sets L1, L2,
and L3 as empty and computes q(D) in the following steps, each of which
focuses on an attribute A, B, or C:

26 Worst-Case Optimal Join Algorithms 225

1

3

5

2

6

7

9

4

10

8

R

S

T

Fig. 26.1: Visualization of a database for illustrating worst-case optimal join

(1) Compute L1 := ⇡A(R on T).

(2) For each a 2 L1,

• compute the values b in ⇡B(R on S) such that (a, b) 2 R and

• add the pairs (a, b) to L2.

(3) For each (a, b) 2 L2,

• compute the values c in ⇡C(S on T) such that (b, c) 2 S and (c, a) 2 T

• add the triples (a, b, c) to L3.

(4) Return L3.

On the database in Figure 26.1, the algorithm therefore computes

(1) L1 = {5, 2, 6, 7, 4, 10};
(2) L2 = {(5, 3), (2, 3), (2, 4), (6, 8), (4, 8)};
(3) L3 = {(5, 3, 1), (2, 3, 1)}.

A Worst-Case Optimal Join Algorithm

We now describe a join algorithm that is worst-case optimal. As in Chapter 25,
fix a join query q = R1 on · · · on Rn over schema S, and assume that X =
{A1, . . . , Am} is the set of attributes occurring in q. Given Y ✓ X, recall that
R(Y) =

S
Aj2Y R(Aj) is the set of those Ri’s that mention some attribute

in Y , for i 2 [n]. Moreover, assuming that R(Y) = {Ri1 , . . . , Ri`}, where
1  i1 < · · · < i`  n, recall that query qY is

⇡Y \S(Ri1)
(Ri1) on · · · on ⇡Y \S(Ri`

)(Ri`) .

Algorithm 10, called AE-Join (short for “Attribute Elimination Join”)
describes a worst-case optimal join algorithm by repeated elimination of at-
tributes. The algorithm considers the attributes in {A1, . . . , Am} one by one

226 26 Worst-Case Optimal Join Algorithms

Algorithm 10 AEJoin(q,D)

Input: Join query q using attributes A1, . . . , Am and database D
Output: q(D)
1: L0 := {()} . L0 is the set with the empty tuple
2: for i = 1, . . . ,m do

3: Li := ;
4: for each tuple ā 2 Li�1 do

5: V :=
T

R2R(Ai)
⇡{Ai}(R

D n {ā})
6: Li := Li [({ā}⇥ V)

7: return Lm

and completely deals with it before going to the next. As such, it iteratively
computes sets L0, . . . , Lm, where each Li can be seen as the result of the
query, considering only the attributes A1, . . . , Ai. As we show next, Lm is the
result of q on D.

Proposition 26.1

Given a join query q and a database D, we have that AEJoin(q,D)
returns q(D).

Proof. We show by induction on i 2 [m] that Li = qZ(D), with Z =
{A1, . . . , Ai}. The result then follows since qZ = q when Z = {A1, . . . , Am}.
For the base case i = 1, this holds trivially, as we have that

L1 =
\

R2R(A1)

⇡{A1}R
D = q{A1}(D)

by definition. Consider now the inductive case i, for i > 1, and define
Y = {A1, . . . , Ai�1}. Notice that, by definition of q{Ai}, it holds that
V = q{Ai}(R

Dā), where Dā is the database over S0 such that RDā =
⇡{Ai}(R

D n {ā}) for each R 2 R(Ai). Hence,

Li =
[

ā2qY (D)

(q{Ai}(R
Dā)⇥ {ā}) .

But, as explained in Equation (25.8) and the analysis that precedes it, the
right-hand side of this expression coincides with qZ(D). ut

We invite the reader to compare how Algorithm 10 implements the pro-
cedure on the triangle query that we described before. Furthermore, notice
that the exact execution of algorithm is highly dependent on the ordering
A1, . . . , Am of the attributes in the input. Indeed, the for-loop considers in-
creasing values of i from 1 to m, which corresponds to first considering A1,
then A2 etc. However, we will show that the algorithm is worst-case optimal
independent of the ordering A1, . . . , Am of the attributes.

26 Worst-Case Optimal Join Algorithms 227

Complexity Analysis

We will prove that Algorithm 10 runs in time

Õ

✓
n ·m ·

nY

j=1

|RD
j |xj

◆
,

where (x1, . . . , xn) is a fractional edge cover of q.
In order to reach this bound, we will rely on a couple of assumptions. To

facilitate the analysis, we assume that all relations RD mentioned in q are
non-empty. Notice that this assumption is without loss of generality, since
it can be checked in constant time before evaluating the query. Second, we
assume that there exists an ordering on the values in the database, since we
will work with sorted lists.

Furthermore, we rely on the following complexity assumption on how the
relations in D can be accessed:

Claim 26.2. Let R be a relation containing n tuples. We can construct a data
structure such that, given an attribute name Ai of R, and a tuple ā = (A1 :
a1, . . . , Ai�1 : ai�1), we can get access to an increasingly sorted list � of values
b such that (ā, b) 2 ⇡{A1,...,Ai}R in time O(i log n).

Notice that not all attributes A1, . . . , Ai have to be attributes of R. Finally,
we will rely on the following claim about sorted lists:

Claim 26.3. Given n lists �1, . . . ,�n of increasingly sorted values, we can
compute the set V = {j | j occurs in each list �1, . . . ,�n} in time Õ(n ·
mini2[n] |�i|).

We will prove Claims 26.2 and 26.3 in Chapter 27.
Using these claims, we show that the algorithm can be implemented such

that for every i 2 [m],

(1) at the end of the ith for-loop in line 2, we have computed Li in time

Õ

✓
n · i ·

nY

j=1

|RD
j |xj

◆

since the start of the algorithm and

(2) given a tuple ā, the set V can be computed in time

Õ

✓
n ·

nY

Rj2R(Ai)

|RD
j n ā|xj

◆
.

Notice that we measure the time in (1) and (2) di↵erently. In (1) we count
the number of steps since the start of the algorithm and in (2) we consider

228 26 Worst-Case Optimal Join Algorithms

the tuple ā as input, i.e., we only measure from the beginning of an iteration
of the inner for-loop. Our desired bound then follows from (1), taking i = m.

We proceed by induction on i. To this end, assume that i = 1. In this case,
notice that L1 = V = \R2R(A1)⇡{A1}R

D. According to Claim 26.2, for each
R 2 R(A1), we can get access to a sorted list �R containing the values ⇡A1R.
Using Claim 26.3, we can compute the set V , which are the values that occur
in each of these lists, in time

Õ

✓
n · min

R2R(A1)
|RD|

◆
.

Furthermore, we have that

n · min
R2R(A1)

|RD|  n ·
Y

Rj2R(A1)

�
min

R2R(A1)
|RD|

�xj

 n ·
Y

Rj2R(A1)

|RD
j |xj

 n ·
nY

j=1

|RD
j |xj ,

where the first inequality holds because (x1, . . . , xn) is a fractional edge cover
and the last line holds because we assumed (without loss of generality) that
all relations RD

j are non-empty.
For general i, we first note that, given a tuple ā, we can compute the set

V , analogously to the i = 1 case, in time

Õ

✓
n · min

R2R(Ai)
|RD n ā|

◆

using Claims 26.2 and 26.3. Furthermore,

n · min
R2R(Ai)

|RD n ā|  n ·
nY

Rj2R(Ai)

|RD
j n ā|xj ,

again analogously to the i = 1 case.
We will now prove that, at the end of an iteration of the for-loop in line 2,

we can compute Li in

Õ

✓
n · i ·

nY

j=1

|RD
j |xj

◆

steps since the beginning of the entire algorithm. By induction, we can finish
computing Li�1 after

Õ

✓
n · (i� 1) ·

nY

j=1

|RD
j |xj

◆

26 Worst-Case Optimal Join Algorithms 229

steps, which we then use to compute Li. So we need to show that we can
compute Li using an additional

Õ

✓
n ·

nY

j=1

|RD
j |xj

◆

steps, making use of Li�1. Indeed, given Li�1, we can compute Li in

Õ

✓ X

ā2Li�1

✓
n ·

Y

Rj2R(Ai)

|RD
j n ā|xj

◆◆

steps and, taking Y = {A1, . . . , Ai�1} we have that

X

ā2Li�1

✓
n ·

Y

Rj2R(Ai)

|RD
j n ā|xj

◆
= n ·

X

ā2Li�1

✓ Y

Rj2R(Ai)

|RD
j n ā|xj

◆

= n ·
X

ā2qY (D)

✓ Y

Rj2R(Ai)

|RD
j n ā|xj

◆

 n ·
X

ā2qY (D)

✓ Y

Rj2R({Ai,...,Am})

|RD
j n ā|xj

◆

 n ·
nY

j=1

|RD
j |xj

where the last inequality is by Lemma 25.11, the Query Decomposition
Lemma.

27

Leapfrog Triejoin

In Chapter 26, we outlined and analyzed a worst-case optimal join algorithm.
The algorithm itself, however, is still described in a relatively high-level fashion
and its complexity analysis relies on Claim 26.2 and 26.3, which we have not
proved yet. In this chapter, we describe a more detailed approach and prove
Claims 26.2 and 26.3.

For readability, our presentation in this chapter is sometimes going to be
somewhat informal. The reason is that this allows us to use standard concepts
from object-oriented programming.

Tries

A trie, also known as a prefix tree, is a data structure that is commonly used
to store a set of words in a tree. We informally introduce tries here before
discussing in the next section how we will use them to represent relations in
more detail.

Assume that we have a set of words S over the Latin alphabet, that is,
the set A = {a, b, c, . . . , z} of lowercase symbols. A trie that represents the
words in S will be a tree in which every node is labeled with a symbol from
A, except for the root, which carries a special label “•”. Furthermore, every
root-to-leaf path is labeled with a word from S (ignoring the special label of
the root), the symbols of siblings are alphabetically ordered from left to right,
and siblings always carry di↵erent labels.

Example 27.1: A Trie for a Set of Words

The following is a trie for the words {force, four, one, open, tea, test,
three, thrive, two}.

232 27 Leapfrog Triejoin

•

f

o

r

c

e

u

r

o

n

e

p

e

n

t

e

a s

t

h

r

e

e

i

v

e

w

o

Representing Relations using Tries

In this chapter, we use tries to represent relations, as illustrated in the next
example. In order to do this, assume that we have a database D over some
schema S. Furthermore, let {A1, . . . , Am} be all the attribute names in D or,
more formally, {A1, . . . , Am} = [R2Dom(S)S(R).

In this chapter we will fix an ordering of the attribute names. The ordering
is arbitrary and the presented results hold independently of the ordering we
choose, but it is important that the ordering is consistent throughout this
chapter. For simplicity, let us simply order the attribute names by their index,
that is, A1, . . . , Am. Furthermore, again for simplicity, we will assume that
the domain of D is the set of natural numbers N, but the results hold for any
ordered domain.

We now explain how we represent a relation RD as a trie. It will be
similar to the trie for words that we presented before, but some details
will di↵er. Intuitively, when we represent a relation RD with attributes
S(R) = {Ai1 , . . . , Aik} with i1 < · · · < ik, we first build the trie for the
set of words {ai1 · · · aik | (Ai1 : ai1 , . . . , Aik : aik) 2 RD}, where we use the
ordering in N to order siblings left to right instead of the alphabetical order-
ing. Then, to every sequence of siblings, we add a node labeled . as a new
leftmost node and a node labeled / as a new rightmost node. These new nodes
are added for technical reasons, as they will simplify some of the algorithms
later in the chapter. Since siblings in tries are ordered increasingly and since
we use data values in N in this chapter, we will assume that . < n and / > n
for every n 2 N.

27 Leapfrog Triejoin 233

Example 27.2: A Trie Representing a Relation

Consider the following relation R:

A1 A2 A3

1 2 3
1 2 5
1 4 1
1 4 7
2 3 1
2 4 7
4 3 7

We will use the following trie-like representation of R:

•

. 1

. 2

. 3 5 /

4

. 1 7 /

/

2

. 3

. 1 /

4

. 7 /

/

/A1:

A2:

A3:

The trie is obtained from R by considering the attribute ordering
A1, A2, A3 from the root to the leafs, and by adding the end markers
. and / to each sequence of siblings.

We now define the trie representation of a relation more formally.

Definition 27.3: Trie of a Relation

Let D be a database over named schema S and let RD be a relation of D.
Let � be an ordering on attribute names and let S(R) = {A1, . . . , Ak}
with A1 � · · · � Ak. The trie T�

R is the trie obtained from RD by

• first constructing the trie for the set of words {a1 · · · ak | (A1 :
a1, . . . , Ak : ak) 2 RD} and

• adding new nodes labeled . and / to the left and right of each non-
empty sequence of siblings, respectively.

Notice that T�
R is indeed a trie, i.e., for the set of words W [W .[W /, where

234 27 Leapfrog Triejoin

• W = {a1 · · · ak | (A1 : a1, . . . , Ak : ak) 2 RD},
• W . = {a1 · · · ai. | 0  i < k and a1 · · · ak 2W},
• W / = {a1 · · · ai/ | 0  i < k and a1 · · · ak 2W, i < k}.

(When i = 0, then a1 · · · ai. is simply the word .; similar for a1 · · · ai/.)
In the remainder of the chapter, if we write TR, i.e., we don’t explicitly

mention the ordering �, it means that we are assuming that R has attribute
names Ai, with i ranging over a finite subset of N, and that the attribute
ordering is in the order of the increasing index numbers.

Trie Iterators

In order to interact with tries, we will use so-called trie iterators. Iterators are
a common concept in object-oriented programming, which means that readers
who have some experience with programming may already be familiar with
the concept. Intuitively, iterators are used to traverse a collection of objects,
and we will use them to traverse tries. Conceptually, for the purpose of this
book, they can be understood as follows.

Definition 27.4: Trie Iterator

Let T be a trie. A trie iterator for T is a variable I that can be bound
to a node in T on which the following operations can be performed.

I. init(trie T) binds I to the root of T

I. value() returns the value of the node that I is bound to

I. next() binds I to the right sibling of the node it is bound to

I. open() binds I to the leftmost child of the node it is bound to

I. up() binds I to the parent of the node it is bound to

I. seek(value v) binds I to its first sibling with value at least v
We call I freshly initialized on T , if I. init(T) has been executed and no

other operations have been performed on I afterwards.

We will assume in this chapter that we already have an implementation trie
iterators available. Notice that such a trie iterator is indeed easy to implement
(we leave this as an exercise). Furthermore, we assume that this implemen-
tation can perform the operations I. init(T), I. value(), I. next(), I. open(),
and I. up() in constant time and I. seek(v) in time O(log n), where n is the
number of nodes in the trie. Notice that I. seek(v) can be easily implemented
to run in this time using binary search trees. (In real database systems, one
would of course use a more advanced data structure that can elegantly deal
with updates to the data, such as B-trees.)

Let us illustrate our use of trie iterators with an example.

27 Leapfrog Triejoin 235

Algorithm 11 Trie-Enumerate(I, ā)

Input: A trie iterator I on trie TR and a tuple ā = (A1 : a1, . . . , An : an)
Output: �A1

.
=a1^···^An

.
=an

R
1: if arity(ā) = depth(TR) then return ā
2: else

3: I.open()
4: I.next()
5: while I.value() 6= / do

6: Trie-Enumerate(I, (ā, I.value()))
7: I.next()

8: I.up()

Example 27.5: Using a Trie Iterator

Consider the trie TR for the relation R in Example 27.2. Let I be a trie
iterator. If we perform I. init(TR), then I is initialized and bound to the
root of TR. At this point, I. value() would return •. If we then perform
the sequence of operations

I. open(), I. next(), I. open(), I. next(), I. open() ,

then I is bound to the leftmost node at depth three (corresponding to
the values of attribute A3), labeled .. At this point, the sequence of op-
erations I. seek(4), I. value() would return 5. Indeed, the seek operation
would search the leftmost sibling with value at least 3. Since the siblings
have values 3, 5, and /, the first one with value at least 4 has value 5.

At this point, we have everything in place to prove Claim 26.2, which we
repeat here for convenience:

Claim 26.2. Let R be a relation containing n tuples. We can construct a
data structure such that, given an attribute name Ai of R, and a tuple ā =
(A1 : a1, . . . , Ai�1 : ai�1), we can get access to an increasingly sorted list � of
values b such that (ā, b) 2 ⇡{A1,...,Ai}R in time O(i log n).

Proof. Given a tuple ā = (A1 : a1, . . . , Ai�1 : ai�1), we can navigate to the
starting node of � by initializing a trie iterator I with TR and then call-
ing I. seek(a1), . . . , I. seek(ai�1), I. seek(b). At that point, we can navigate
through � by calling I. next(). ut

We now show that, using a trie iterator on TR, it is easy to output the
relation RD. We summarize the algorithm in Algorithm 11. It should be called
with a freshly initialized iterator on TR and the empty tuple.

236 27 Leapfrog Triejoin

Proposition 27.6

Consider a relation R and its trie TR. Let I be a freshly initialized iterator
on TR. Then

Enumerate(I, ()) returns the set of tuples in RD .

The Leapfrog Algorithm

In this section we present the Leapfrog algorithm, which works on unary re-
lations. Given unary relations R1, . . . , Rn over the same attribute, Leapfrog
computes the output

R1 on · · · on Rn .

Notice that, in this case, R1 on · · · on Rn is the same as R1 \ · · · \ Rn, so
the algorithm can also be understood as an algorithm that computes the
intersection of n sets. Furthermore, it will prove Claim 26.3.

Example 27.7: List Representation of Unary Relations

Consider the unary relation R = {1, 5, 7, 9}. We will represent this unary
relation as the sorted list

. 1 5 7 9 / .

Observe that the list representation of a unary relation is almost the same
as its trie representation. (We only omit the root of the trie.) For navigating
through such sorted lists, we will use so-called list iterators, which are similar
to trie iterators but only provide a subset of the operations.

Definition 27.8: List Iterator

Let L be a sorted list. A list iterator for L is a variable I that can be
bound to a node in L on which the following operations can be performed.

I. init(list L) binds I to the leftmost node in L

I. value() returns the value of the node that I is bound to

I. next() binds I to the node to the immediate right of the node
it is bound to

I. seek(value v) binds I to the leftmost node to the right of the current
node, with value at least v

Similar to trie iterators, we will assume that we have an implementation of
list iterators available. Furthermore, we assume that this implementation can

27 Leapfrog Triejoin 237

Algorithm 12 Leapfrog class

Input: List iterators J0, . . . , Jn�1 for unary relations R0, . . . , Rn�1

Provides: List iterator for R0 ./ · · · ./ Rn�1

1: internal records: List iterators I0, . . . , In�1

2: constructor Leapfrog(J0, . . . , Jn�1) . Constructor for leapfrog iterator
3: (I0, . . . , In�1) := (J0, . . . , Jn�1)

4: function value()
5: return Ip. value()

6: function sync()
7: max := I0. value()
8: min := In�1. value()
9: p := 1
10: while min 6= max do

11: Ip. seek(max)
12: max := Ip. value()
13: p := p+ 1 mod n
14: min := Ip. value()

15: function next()
16: I0. next()
17: sync()

18: function seek(value v)
19: I0. seek(v)
20: sync()

Algorithm 13 Leapfrog-Join

Input: Initialized list iterators I1, . . . , In for the unary relations R1, . . . , Rn

Output: R1 on · · · on Rn

21: I := Leapfrog(I1, . . . , In)
22: while I. value() 6= / do

23: I. next()
24: return I. value()

do I. init(L), I. value(), and I. next() in constant time and I. seek(v) in time
O(log n), where n is the number of elements in the list. These are the same
complexities that we assumed for trie iterators.

Let R1, . . . , Rn be a set of unary relations over the same attribute and
let I1, . . . , In be initialized iterators for their respective list representations.
Algorithms 12 and 13 describe the code on how to compute R1 on · · · on
Rn. Algorithm 12 provides the Leapfrog class, for which an instance can be
constructed using a set of list operators I0, . . . , In�1 (lines 2–3). (We start
numbering from zero in this class because it simplifies the code due to the

238 27 Leapfrog Triejoin

L1: . 5 6 8 12 22 25 29 32 42 45 /

L2: . 2 3 5 12 15 29 30 42 43 /

L3: . 1 2 5 9 10 29 34 35 37 42 /

1

2

3

4

5

6

7

8

9

10

11

12 13

14

15

16

Fig. 27.1: Illustration of the Leapfrog algorithm

modulo operator in line 13.) This class provides the functionality of a list
iterator over the list of common values seen by I0, . . . , In�1.

As such, the list iterator provided by Algorithm 12 can be used by Al-
gorithm 13 to enumerate all values in R1 on · · · on Rn. Algorithm 13 should
be started with calling Leapfrog-Join(I1, . . . , In), where all iterators I1, . . . , In
are freshly initialized, that is, they are all bound to the leftmost nodes in the
sorted lists, all carrying the value ..

Example 27.9: Leapfrog Algorithm

Consider the following lists:

L1: . 5 6 8 12 22 25 29 32 42 45 /
L2: . 2 3 5 12 15 29 30 42 43 /
L3: . 1 2 5 9 10 29 34 35 37 42 /

Algorithm 13 initializes all iterators on the leftmost element of each list,
labeled .. The constructor of Algorithm 12 then provides it with a list
iterator for the relation R1 on · · · on Rn. The while loop in Algorithm 13
uses this list operator to output the values in R1 on · · · on Rn: It skips
over . and continues calling next() on this iterator until we reach /.

Now let us look at how next() is implemented. The function advances
the first iterator to the next element on line 16 and then calls the sync()
function, which is the main internal function of the list iterator that
searches the next common value in I0, . . . , In�1.

In order to do this, the sync() function keeps track of the smallest and
largest value among all the current values of the lists. In our example, we
will have max = 5 (since I0 already advanced one step) and min = .. The
sync() function then uses the value p to iterate through I0, . . . , In�1 in a
round robin fashion. As it does so, it always seeks the smallest value that
is at least max in iterator Ip, and updates the values min and max. The
function stops when all iterators point to the same value, that is, when
min = max. In our example, the sync() function performs the jumps

27 Leapfrog Triejoin 239

2 and 3 (using seek(5)) in the following image in Figure 27.1. At this
point, all iterators are synchronized on the value 5, which is returned on
line 24.

In the next iteration of the while-loop on line 22, we call I. next()
again, which advances the first iterator again (jump 4 in the image
above), after which sync() performs jumps 5–8. At this point, we output
the value 29. It can be checked that the next iteration of the while-loop
on line 22 performs jumps 9–12, after which we output 42, and the last
iteration performs jumps 13–16.

We can now prove:

Proposition 27.10

Let R1, . . . , Rn be a set of unary relations over the same attribute and
let L1, . . . , Ln be their respective list representations. Then Leapfrog-
Join(L1, . . . , Ln) outputs R1 on · · · on Rn. Furthermore, the algorithm
runs in time Õ(nmini2[n] |Ri|).

Proof (Sketch). We only provide the main argument concerning the run time.
The crux here is that Leapfrog-Join cycles through the lists L1, . . . , Ln a
number of times (in the seek() function). Each such cycle moves the iterator
for each list at least one step to the right. Therefore, the number of such cycles
is in O(mini2[n] |Ri|).

Furthermore, each such cycle consists of O(n) seek operations, each
of which costs O(log(|R1|) + · · · + log(|Rn|)) time. Altogether, these are
Õ(nmini2[n] |Ri|) many steps. ⇤

Notice that Proposition 27.10 immediately implies Claim 26.3:

Claim 26.3. Given n lists �1, . . . ,�n of increasingly sorted values, we can
compute the set V = {j | j occurs in each list �1, . . . ,�n} in time Õ(n ·
mini2[n] |�i|).

The Triejoin Algorithm

We now want to use the Leapfrog class to build an algorithm that can take
initialized trie iterators I1, . . . , In for arbitrary relations R1, . . . , Rn as input
and compute R1 on · · · on Rn. It is important for this algorithm, however, that
the tries for which we have the iterators are consistent with the same ordering
� of attributes. The ordering itself can be arbitrary,1 but it needs to be the
same ordering for all the iterators I1, . . . , In.

1 This is convenient in practice, because indexes may not be available on every
attribute of a relation.

240 27 Leapfrog Triejoin

The principal idea of the algorithm is similar as before. The algorithm
is divided into a Triejoin class (Algorithm 14) and Triejoin (Algorithm 15),
which the triejoin class to produce the result of the join. Notice that we use
Trie-Enumerate (Algorithm 11) to produce the output.

The Triejoin class maintains a counter ` 2 N to remember the A central
insight for the algorithm is that, after open() has been called on a node u,
then the methods value(), next(), and seek(v) work exactly like a list iterator
on siblings of the di↵erent tries. More precisely, if we are processing attribute
A`, the method works exactly like Leapfrog on the unary relations

⇡A`

�
�A1

.
=a1,...,A`�1

.
=a`�1

(R)
�
.

The Triejoin class maintains as internal records a number of trie iterators
I1, . . . , In, which are the iterators over the tries that represent R1, . . . , Rn

respectively. A set of list iterators H1, . . . , Hm is used to perform Leapfrog on
lists of siblings. Then, it uses a number ` 2 N to remember its current depth
or, equivalently, the attribute A` it is currently processing. Finally, the class
use sets of integers S1, . . . , Sm for maintaining, for each i 2 [m], the set of
relations Rk that use the attribute Ai.

The main work in Algorithm 14 lies in the function open() on line 5. This
function first moves one level deeper by increasing `, then computes the set S`
representing the relations that use attribute A`, calls open() on all iterators
that have the attribute A`, and then initializes the list iterator H` using the
Leapfrog constructor on the iterators that have the attribute A`. (Here, we use
the notation (Ik)k2S` to denote the tuple (Ij1 , . . . , Ijp) where S` = {j1, . . . , jp}
and j1 < · · · < jp.)

Example 27.11: Triejoin Algorithm

Consider the tries from Figure 27.2a representing relations R1, R2, and
R3 (from left to right), respectively.

The Triejoin algorithm (Algorithm 15) first builds a trie iterator I
with the constructor of the Triejoin class (Algorithm 14) with the initial-
ized trie iterators for T1, T2, and T3. As such, these initialized iterators
are stored in the internal fields I1, I2, and I3 of I.

The first operation that is performed on I is I. open(), which calls
I1. open() and I3. open(), because T1 and T3 are the only tries that have
values for attribute A1. Then, I. next() is called, which performs the
leapfrog algorithm to find the next common value at depth 1 of T1 and
T3, which is 6.

Subsequently, I. open() is called again, which calls I2. open() and
I3. open(); the iterators for tries with values for A2. As such, the in-
ternal list iterator H2 will iterate through the lists . 5 7 / and . 2 5 7 /
using the Leapfrog algorithm. As soon as the first common value (i.e.,
5) is found, the iterator H2 is paused and we move to depth 3 for the
first time.

27 Leapfrog Triejoin 241

Algorithm 14 Triejoin class

Input: Trie iterators J1, . . . , Jn for relations R1, . . . , Rn over attributes A1, . . . , Am.
The trie iterators need to have the attributes ordered according to the same total
order A1 � A2 � · · · � Am

Provides: Trie iterator for R1 ./ · · · ./ Rn

1: internal records:

• Trie iterators I1, . . . , In

• List iterators H1, . . . , Hm

• Integer `

• Sets of integers S1, . . . , Sm

2: constructor Triejoin(J1, . . . , Jn)
3: (I1, . . . , In) := (J1, . . . , Jn)
4: ` := 0

5: function open()
6: ` := `+ 1
7: S` := {k | A` 2 S(Rk)} . S is the schema
8: for every k 2 S` do

9: Ik. open()

10: H` := Leapfrog((Ik)k2S`) . (Ik)k2S` : tuple containing the Ik with k 2 S`

11: function value()
12: return J`. value()

13: function next()
14: H`. next()

15: function up()
16: for every k 2 S` do

17: Ik. up()

18: ` := `� 1

19: function seek(value v)
20: H`. seek(v)

Algorithm 15 Triejoin

Input: Initialized trie iterators I1, . . . , In for the tries representing relations
R1, . . . , Rn. The tries need to have their attributes ordered according to the
same total order A1 � A2 � · · · � Am

Output: R1 on · · · on Rn

21: I := Triejoin(I1, . . . , In)
22: Trie-Enumerate(I, ())

242 27 Leapfrog Triejoin

A1:

A2:

A3:

A4:

•

. 6

. 2 4 5 7 /

/

•

. 5

. 1

. 2 7 /

3

. 6 7 /

/

7

. 8

. 8 /

/

/

•

. 6

. 2 5 7 /

/

T1: T2: T3:

(a)

A1:

A2:

A3:

A4:

•

. 6

. 5

. 1

. 2 7 /

3

. 7 /

/

7

. 8 /

/

/

(b)

Fig. 27.2: Input tries (27.2a) and output trie (27.2b) for Example 27.11

For moving to depth 3, we only call I2. open(). The Leapfrog algo-
rithm on depth 3 at this point is very easy, since there is only one list,
namely . 1 3 /. After the first value (i.e., 1) is found, the iterator H3 is
paused and we move to depth 4 for the first time.

To this end, we call I1. open() and I2. open() and our task is to do
the Leapfrog algorithm on the lists . 2 4 5 7 / and . 2 7 / using list
iterator H4. Here, Leapfrog proceeds all the way to the end of the lists,
since we arrived at the leafs. After finding the common values 2 and 7,
we call I1. up() and I2. up() and resume the work of iterator H3.

When iterator H3 finds the next value (i.e., 3), we again move to
depth 4, but this time on the lists . 2 4 5 7 / and . 6 7 /.

Essentially, the operation of the Triejoin algorithm, does a depth-first
left-to-right pass over the “result trie” of the join, which is the trie in
Figure 27.2b. In fact, if we initialize the Triejoin class as we did in this
example, it produces a trie iterator for the trie in Figure 27.2b.

Notice that this trie can contain only partially complete tuples, like
(A1 : 1, A2 : 7, A3 : 8). These are tuples that we were able to join on the
first three attributes, but not on the fourth one.

We state the following result without proof.

27 Leapfrog Triejoin 243

Theorem 27.12

Let D be a database, q = R1 on · · · on Rn be a join query using m at-
tributes, and (x1, . . . , xm) be a fractional edge cover of q. Then Leapfrog
Triejoin computes q(D) in time

Õ

✓
n ·m ·

nY

i=1

|RD
j |xi

◆
.

Exercises

Exercise 3.1. The goal of this exercise is to prove Proposition 18.6 in sev-
eral steps.

(a) Define an ear of a hypergraph H = (V,E) to be an edge e 2 E for which
there exists a distinct edge ew such that the nodes of e can be partitioned
in two sets:

• nodes that only appear in e and

• nodes that appear in ew.

We call ew a witness for e. Notice that each edge that is contained in
another edge is an ear.
Assume that |E| = n. An ear decomposition of H is an ordered sequence

e1, . . . , en

of the edges in E such that, for each i 2 [1, n� 1], edge ei is an ear in the
hypergraph (V,E � {e1, . . . , ei�1}).
Prove that a hypergraph has an ear decomposition if and only if the pro-
cedure in Proposition 18.6 can delete all the vertices of H.

(b) Prove that a hypergraph H acyclic if and only if it has an ear decompo-
sition. To this end, show that the edges in a join tree of H correspond to
the ear/witness relationship in an ear decomposition.

Exercise 3.2. Based on Proposition 18.6, design a polynomial-time algorithm
that computes a join tree of an acyclic CQ q.

Exercise 3.3. Prove that q(D) n q0(D), given q(D) and q0(D), can be com-
puted in time O((kq(D)k+ kq0(D)k) · log(kq(D)k+ kq0(D)k)).

Exercise 3.4. Extend Yannakakis’s algorithm to show that the set q(D), for
q(x̄) an acyclic CQ and D a database, can be computed in time O(kDk ·

246 27 Leapfrog Triejoin

log kDk ·kqk ·kq(D)k). In addition, if the set of free variables of q is contained
in at least one node of the join tree of q, then the latter can be improved
to O(kDk · log kDk · kqk).

Exercise 3.5. Complete the proof of Proposition 19.4.

Exercise 3.6. Complete the proof of Proposition 19.5.

Exercise 3.7. Prove that there are CQs with arbitrarily many atoms that
are not acyclic, yet its core is acyclic.

Exercise 3.8. While the class of CQs whose core is acyclic defines an “island
of tractability” for CQ evaluation, checking membership into such an island is
an intractable problem. In particular, checking whether a CQ has an acyclic
core is NP-complete (this is in stark contrast with acyclicity recognition,
which can be solved in linear time). You are asked to prove this fact.

Exercise 3.9. Let q, q0 be Boolean CQs and D a database. Prove that if there
exists a homomorphism from q to q0 and Consistency(q0, D) = true, then
Consistency(q,D) = true.

Exercise 3.10. Prove Lemma 21.5.

Exercise 3.11. Complete the proof of Part 4 of Proposition 21.6.

Exercise 3.12. Let Gk⇥k be the (k ⇥ k)-grid. Prove by induction on k � 3
that for every S ✓ [k]⇥[k] with |S|  k�1, there exists a connected component
C of (Gk⇥k � S) with more than k2/2 elements.

Exercise 3.13. Prove that tw(Gk⇥k) � k.

Exercise 3.14. Complete the proof of Proposition 22.4.

Exercise 3.15. Prove Proposition 22.5.

Bibliographic Comments

(Very preliminary version)

Acyclic database schemas were first defined, named, and studied, in the
two papers [14] and [3]. In particular, several desirable properties of acyclic
database schemes were identified and studied in [3]. The notion of ↵-acyclicity
of hypergraphs used in Chapter 18 was introduced in [13].

In [29], it is given a linear-time algorithm for checking whether a CQ q is
acyclic, and for constructing a join tree of Hq if the latter is the case.

Yannakakis’s algorithm was proposed in [33]. The correctness of the Con-
sistency Algorithm was proved in [3], and the fact that this algorithm con-
tinues being correct for the class of CQs whose cores are acyclic was shown
in [9].

The notion of treewidth was introduced in [25]. Lemmas 21.5 and 21.8, as
well as the proof that tw(Gk⇥k) � k�1, were taken from [15]. For a fixed k � 1,
it was shown in [4] the fact that there exists a linear-time algorithm that, given
an undirected graph G with tw(G)  k, constructs a tree decomposition of G
of width at most k. Proposition 21.10 is a corollary of this result.

Part IV

Expressive Languages

28

Unions of Conjunctive Queries

The first, and simplest, addition to conjunctive queries is union, which leads
to the language of union of conjunctive queries.

Definition 28.1: Union of Conjunctive Queries

A union of conjunctive queries (UCQ) over a schema S is an FO query
'(x̄) over S where ' is a formula of the form

'1 _ · · · _ 'n

for n � 1, with FV(') = FV('i) and 'i(x̄) being a CQ, for every i 2 [n].

For notational convenience, we denote a UCQ q = '(x̄) with ' = '1 _
· · · _ 'n as q1 [· · · [qn, where qi is the CQ 'i(x̄), for each i 2 [n]. It is easy
to verify that, given a database D of a schema S, and a UCQ q = q1[· · ·[qn
over S, it holds that q(D) = q1(D) [· · · [qn(D).

Example 28.2: Union of Conjunctive Queries

Consider the relational schema from Example 3.2:

Person [pid, pname, cid]

Profession [pid, prname]

City [cid, cname, country]

The UCQ '(y), where ' = '1 _ '2 with

'1 = 9x9z
�
Person(x, y, z) ^ Profession(x, ‘computer scientist’) ^

City(z, ‘Athens’, ‘Greece’)
�
.

and

252 28 Unions of Conjunctive Queries

'2 = 9x9z
�
Person(x, y, z) ^ Profession(x, ‘computer scientist’) ^

City(z, ‘Putú’, ‘Chile’)
�
.

can be used to retrieve the list of names of computer scientists that were
born in the city of Athens in Greece, or in the city of Putú in Chile.

Union of Conjunctive Queries as a Fragment of FO

By definition, UCQ s use only relational atoms, conjunction (^), disjunc-
tion (_), and existential quantification (9). Therefore, every UCQ can be
expressed using formulae from the fragment of FO that corresponds to the
closure of relational atoms under ^, _ and 9; we refer to this fragment of
FO as FOrel[^,_, 9]. Interestingly, we can show that the converse is also true,
which leads to the following expressive power result:

Theorem 28.3

The language of UCQ s and the language of FOrel[^,_, 9] queries are
equally expressive.

Proof. As discussed above, by definition, a UCQ is trivially an FOrel[^,_, 9]
query. The interesting task is to show that an FOrel[^,_, 9] query '(x̄) can
be equivalently expressed as a UCQ. This is done in three main steps:

• First, we propagate disjunction by using the following simple rules:

� ^ (⇠ _) (� ^ ⇠) _ (� ^) and 9x (� _) 9x� _ 9x ,

where �, ⇠ and are FO formulae. By applying the above rules, we can
convert the formula ' into an equivalent formula of the form

'1 _ · · · _ 'n

for n � 1, where 'i is a formula from FOrel[^, 9], for each i 2 [n].

• We then convert 'i, for each i 2 [n], into a formula of the form 9x̄i '0
i,

where '0
i is a quantifier-free conjunction of relational atoms. This is done

in the same way as the transformation of an FOrel[^, 9] query into a CQ
(see Example 12.5): we first rename variables in order to ensure that bound
variables do not repeat, and then push the existential quantifiers outside.

• After applying the above steps, we end up with a formula of the form

 1 _ · · · _ n

where i = 9x̄1 '0
i and '0

i is a quantifier-free conjunction of relational
atoms, for each i 2 [n]. Observe also that during the above two steps we

28 Unions of Conjunctive Queries 253

have not altered the set of free variables of ', i.e., FV(') = FV(). Hence,
 (x̄) is a syntactically valid FO query that is equivalent to '(x̄). However,
it should not be overlooked that (x̄) is not yet a UCQ since there is no
guarantee that FV() = FV(i), for each i 2 [n]. In this final step, we
explain how (x̄) can be converted into an equivalent UCQ.

Assume that we have access to a unary relation dom that stores all the val-
ues in the given database. In other words, we assume that every database
D comes with a unary relation dom such that, for every a 2 Dom(D),
dom(a) 2 D. In this case, it is easy to see that 0(x̄) with

 0 =
n_

i=1

0

@ i ^
^

y2FV()�FV(i)

dom(y)

1

A

is a syntactically valid UCQ that is equivalent to (x̄). Indeed, FV() =
FV(0), each disjunct 0

i of is such that FV(0) = FV(0
i), and

0
i(x̄)

is a CQ. Moreover, (x̄)(D) = 0(x̄)(D) for every database D equipped
with the unary relation dom. It remains to show that the relational atoms
of the form dom(·) in 0 can be eliminated with the help of disjunction.

Consider a formula of the form 9ȳ � ^ dom(u), where � is an arbitrary
formula over a schema S. It is easy to verify that it is equivalent to

_

R2S

_

i2{1,...,ar(R)}

9ȳ 9z1 . . . 9zar(R)�1 � ^R
�
z1, . . . , zi�1, u, zi, . . . , zar(R)�1

�

where z1, . . . , zi�1, zi+1, . . . , zar(R)�1 are new variables not occurring in �.
Indeed, if a is a value that occurs in the input database, then a must occur
in a tuple of some relation R at some position i 2 {1, . . . , ar(R)}. Using
this transformation, we can eventually eliminate all the relational atoms
of the form dom(·) in 0, and obtain a formula 00 = 00

1 _ · · · _ 00
m such

that 0(x̄) and 00(x̄) are equivalent queries, and 00
i (x̄) is a syntactically

valid CQ for each i 2 [m], which in turn implies that 00(x̄) is a UCQ. ut

Let FO[^,_, 9] be the fragment of FO that corresponds to the closure of
relational atoms and equational atoms under ^, _ and 9. This is known as the
existential positive fragment of FO, and is typically denoted as 9FO+; hence,
from now on, by 9FO+ we actually mean FO[^,_, 9]. In other words, 9FO+ is
the fragment of FO obtained by explicitly adding equality to FOrel[^,_, 9]. It
is easy to show that the language of 9FO+ queries is strictly more expressive
than the language of UCQ s, and thus, by Theorem 28.3, also the language of
FOrel[^,_, 9] queries. Consider, for example, the 9FO+ query q = '(x) with
' = (x = a), where a 2 Const. Clearly, q(D) = {(a)} for every database D,
even if a 62 Dom(D). However, given a database D0 such that a 62 Dom(D0),
for every unary UCQ q0, it holds that {(a)} 62 q0(D0) since the output of a
CQ, and thus of a UCQ, on D0 consists of tuples of constants from Dom(D0).

254 28 Unions of Conjunctive Queries

Observe that the 9FO+ query q above uses equality among a variable and
a constant. It turns out that this is crucial for showing that 9FO+ queries
form a strictly more expressive language than UCQ s. Interestingly, the lan-
guage of queries based on FOrel,var=[^,_, 9], that is, the fragment of FO that
corresponds to the closure of relational atoms and equational atoms of the
form x = y, where both x and y are variables, under ^, _ and 9, has the same
expressive power as the language of UCQ s.

Theorem 28.4

The language of UCQ s and the language of FOrel,var=[^,_, 9] queries
are equally expressive.

Proof. By definition, a UCQ is trivially an FOrel,var=[^,_, 9] query. It remains
to show that an FOrel,var=[^,_, 9] query '(x̄) can be equivalently expressed
as a UCQ. This is done by first observing that equational atoms that mention
only variables can be eliminated by using atoms of the form dom(·), where as
before dom is a unary relation that stores all the values in the given database.
Indeed, for each equational atom x = y in ', we replace y by x everywhere in
' and x̄, and add the atom dom(x) to the conjunction. To see why the latter
is needed, consider, for example, the query (x, y) with = (x = y). We
cannot just throw away the equational atom; instead, this query is equivalent
to 0(x, x) with 0 = dom(x). Hence, after the above transformation, we
obtain an FOrel[^,_, 9] query '0(x̄0) that is equivalent to '(x̄) over databases
equipped with the unary relation dom. Since, as discussed in the proof of
Theorem 28.3, dom(·) atoms can be eliminated with the help of disjunction,
we can convert '0(x̄0) into an FOrel[^,_, 9] query '00(x̄0) that is equivalent to
'(x̄) over all databases. Finally, by Theorem 28.3, we know that there exists a
UCQ that is equivalent to '00(x̄0), and thus to '(x̄), and the claim follows. ut

We have seen that UCQ s are not powerful enough for expressing every
9FO+ query. We have also seen that the key reason for this is the fact that
UCQ s, although can express equality among variables, cannot express equal-
ity among variables and constants. The question that comes up is whether
the addition of equality among variables and constants to UCQ s leads to a
language that can express every 9FO+ query. A UCQ with variable-constant
equality '(x̄) is defined as a UCQ with the only di↵erence that a disjunct of
' can be a conjunction of relational atoms and equational atoms of the form
(x = a), where x is a variable and a is a constant. By using the same ideas as
in the proofs of Theorems 28.3 and 28.4, it is easy to show the following:

Theorem 28.5

The language of UCQ s with variable-constant equality and the language
of 9FO+ queries are equally expressive.

28 Unions of Conjunctive Queries 255

It is important to stress that the transformations described in the proofs of
the above expressive power results can be costly. Already, the transformation
of an FOrel[^,_, 9] query into a UCQ may lead to an exponentially sized
query. Consider, e.g., an FOrel[^,_, 9] query '(x̄), where ' is of the form

('1 _ '0
1) ^ · · · ^ ('n _ '0

n)

and 'i(x̄), '0
i(x̄) are CQs, for every i 2 [n]. Representing '(x̄) as a UCQ

requires transforming an FO formula in conjunctive normal form into an FO
formula in disjunctive normal form, resulting in a UCQ consisting of 2n CQs.
Consequently, even though UCQ s and FOrel[^,_, 9] (or FOrel,var=[^,_, 9])
queries have the same expressive power, some problems related to them will
have di↵erent complexity (whenever the size of the query matters). The same
holds for UCQ s with variable-constant equality and 9FO+ queries.

Union of Conjunctive Queries as a Fragment of RA

We know, by Theorem 12.7, that the language of CQs has the same expressive
power as the language of SPJ queries. Recall that SPJ is the fragment of RA
that is built from base expressions R 2 Rel (crucially, base expressions of the
form {a} with a 2 Const are not included), and allows for selection, projection,
and Cartesian product. Furthermore, conditions in selections are conjunctions
of equalities. It should not come as a surprise the fact that by adding union to
SPJ we get a fragment of RA, called select-project-join-union (SPJU), that
has the same expressive power as UCQ s.

Theorem 28.6

The language of UCQ s and the language of SPJU queries are equally
expressive.

Proof. The fact that every UCQ can be expressed as an SPJU query immedi-
ately follows from Theorem 12.7, which shows that every CQ can be expressed
as an SPJ query. Indeed, a UCQ q1 [· · ·[qn is equivalent to the SPJU query
e1[· · ·[en, where ei is an SPJ query that is equivalent to qi, for each i 2 [n].

Consider now an SPJU k-ary query e. We proceed to show that e can be
expressed as a UCQ. This is done in three main steps:

• First, we propagate union through other operations to become the outer-
most operation by applying the following simple rules:

�✓(e1 [e2) �✓(e1) [�✓(e2)
⇡↵(e1 [e2) ⇡↵(e1) [⇡↵(e2)

e1 ⇥ (e2 [e3) (e1 ⇥ e2) [(e1 ⇥ e3).

256 28 Unions of Conjunctive Queries

By applying the above rules, we get an SPJU query

e0 = e1 [· · · [en

where ei is an SPJ query, for each i 2 [n].

• Let 'i(x1
i , . . . , x

k
i) be the CQ that is equivalent to the SPJ query ei, for

each i 2 [n]; such a CQ always exists due to Theorem 12.7. Let

' = '1 _ · · · _ 'n.

• At this point, one may think that the above step leads to the desired UCQ
that is equivalent to the SPJU query e. However, there is no guarantee
that, for each i, j 2 [n] with i 6= j, it holds that FV('i) = FV('j). We
proceed to convert ' into an FO formula such that (z1, . . . , zk), where
z1, . . . , zk are distinct variables not occurring in ', is an FOrel,var=[^,_, 9]
query that is equivalent to the query e0, and thus, to the query e. This
su�ces to show our claim since, by Theorem 28.4, we get that (z1, . . . , zk)
can be equivalently expressed as a UCQ.

Consider an arbitrary disjunct 'i of '. Let P'i = {P1, . . . , P`}, where
`  k is the number of distinct variables occurring in (x1

i , . . . , x
k
i), be the

partition of the set of integers [k] such that, for every j, j0 2 [k], j, j0 belong

to the same set of P'i if and only if xj
i = xj0

i . For example, with k = 5
and (x1

i , . . . , x
5
i) = (x, y, x, z, y), P'i = {{1, 3}, {2, 5}, {4}}. Let i be the

formula obtained from 'i as follows: for every set {j1, . . . , jm} 2 P'i ,

replace in 'i the variable xj1
i (note that xj1

i = xj2
i = · · · = xjm

i) with the
variable zj1 , and add as a conjunct the conjunction of equational atoms

^

j2{j2,...,jm}

(zj1 = zj).

It is easy to verify that (z1, . . . , zk) with

 = 1 _ · · · _ n

is an FOrel,var=[^,_, 9] query that is equivalent to e0, as needed. ut

The following is an immediate corollary of Theorems 28.3, 28.4 and 28.6.

Corollary 28.7

The language of FOrel[^,_, 9] (or even FOrel,var=[^,_, 9]) queries and
the language of SPJU queries are equally expressive.

It should be clear that the inability of SPJ queries to state base expressions
of the form {a} with a 2 Const it is crucial for the validity of Theorem 28.6. In-
deed, the addition of such base expressions to the SPJU fragment of RA leads

28 Unions of Conjunctive Queries 257

to the strictly more expressive language of positive relational algebra (RA+)
queries. Interestingly, by providing a proof similar to that of Theorem 28.6,
we can show that adding base expressions of the form {a} with a 2 Const to
SPJU corresponds to the addition of variable-constant equality to UCQ s.

Theorem 28.8

The language of UCQ s with variable-constant equality and the language
of RA+ queries are equally expressive.

The following is an immediate corollary of Theorems 28.5 and 28.8 that
relates the languages of 9FO+ queries and RA+ queries.

Corollary 28.9

The language of 9FO+ queries and the language of RA+ queries are
equally expressive.

Note that the transformations described in the proofs of the above expres-
sive power results (in particular, in the proof of Theorem 28.6) can be costly.
For example, given an SPJU query of the form

(e1 [e01)⇥ · · ·⇥ (en [e0n)

where ei, e0i are SPJ queries, for each i 2 [n], after propagating the union
during the first step of the transformation in the proof of Theorem 28.6, we
get an SPJU query that is the union of 2n SPJ queries.

Preservation Under Homomorphisms

We have already seen that CQs are preserved under homomorphisms (Proposi-
tion 13.6). In other words, given a k-ary CQ q = '(x̄) over a schema S, for ev-
ery two databasesD andD0 of S, and tuples ā 2 Dom(D)k and b̄ 2 Dom(D0)k,

(D, ā)!Dom(') (D
0, b̄) and ā 2 q(D) implies b̄ 2 q(D0).

It is not di�cult to show that preservation under homomorphisms extends to
UCQ s with variable-constant equality (and thus, to 9FO+ queries).

Proposition 28.10

Every UCQ with variable-constant equality is preserved under homo-
morphisms.

258 28 Unions of Conjunctive Queries

Proof. Let q = '(x̄) be a k-ary UCQ with variable-constant equality over a
schema S. Assume that ' = '1 _ · · · _ 'n, and let qi be the query 'i(x̄), for
each i 2 [n]; note that these queries are not CQs since they use equational
atoms. Consider two databases D and D0 of S, and tuples ā 2 Dom(D)k and
b̄ 2 Dom(D0)k such that (D, ā) !Dom(') (D

0, b̄) and ā 2 q(D). Since q(D) =Sn
i=1 qi(D), it is clear that ā 2 qi(D) for some i 2 [n]. By providing a proof

similar to that of Proposition 13.6, which shows that CQs are preserved under
homomorphisms, we can show that qi is preserved under homomorphisms.
Therefore, b̄ 2 qi(D), which in turn implies that b̄ 2 q(D), as needed. ut

It is far more remarkable, though, that the converse is true, that is, every
FO query that is preserved under homomorphisms can be expressed as a UCQ
with variable-constant equality.

Theorem 28.11

Consider an FO query q that is preserved under homomorphisms. There
exists a UCQ with variable-constant equality that is equivalent to q.

This is a deep result whose proof is beyond the scope of this book, but it is
very important and found many applications in the foundations of databases.
An immediate corollary of Proposition 28.10 and Theorem 28.11 is that:

Corollary 28.12

The language of UCQ s with variable-constant equality and the language
of FO queries preserved under homomorphisms are equally expressive.

It is important to stress that many preservation results known in logic are
true on arbitrary (finite or infinite) structures, but fail on finite structures.
Preservation results of this kind can be transferred to the database setting
only for possibly infinite databases, but not for (finite) databases, which is of
course what is of interest to us. Remarkably, Theorem 28.11 is a rare exception
that holds in the case of (finite) databases.

Query Evaluation

A general rule of thumb is that whatever is true about the evaluation of CQs,
is true about the evaluation of their unions. We illustrate this by analyzing
the combined complexity of evaluating UCQ s and acyclic UCQ s; concerning
the data complexity, both problems are in DLogSpace due to Theorem 7.3.

28 Unions of Conjunctive Queries 259

Evaluation of UCQs

We first concentrate on UCQ-Evaluation. Recall that this is the problem of
checking whether ā 2 q(D) for a UCQ q, a database D, and a tuple ā over
Dom(D). We show that indeed UCQ-Evaluation has the same (combined) com-
plexity as CQ-Evaluation.

Theorem 28.13

UCQ-Evaluation is NP-complete.

Proof. It is clear that the NP-hardness is inherited from CQ-Evaluation, which
we know is NP-hard (Theorem 14.1). We proceed to show the upper bound.
Consider a UCQ q(x̄) of the form q1 [· · · [qn, a database D, and a tuple
ā 2 Dom(D). By Theorem 13.2, for i 2 [n], ā 2 qi(D) if and only if (qi, x̄)!
(D, ā). Thus, we need to show that checking whether there exists an integer
i 2 [n] and a homomorphism from (qi, x̄) to (D, ā) is in NP. This is done
by guessing an integer i 2 [n] and a function h : Dom(Aqi) ! Dom(D), and
then verifying that h is a homomorphism from (Aqi , x̄) to (D, ā), i.e., h is the
identity on Dom(Aqi)\Const, R(ū) 2 Aqi implies R(h(ū)) 2 D, and h(x̄) = ā.
Since all the above steps are feasible in polynomial time, the claim follows. ut

It is not di�cult to show, by providing a proof similar to that of Theo-
rem 28.13, that evaluating UCQ s with variable-constant equality remains in
NP. What is more interesting is the fact that evaluating 9FO+ queries, as well
as RA+ queries, is also inNP. We have seen that every 9FO+ can be converted
into an equivalent UCQ with variable-constant equality (Theorem 28.5); the
same holds for RA+ queries (Theorem 28.8). However, the conversion can be
very costly; it may take, in general, exponential time. Therefore, knowing that
evaluating UCQ s with variable-constant equality is in NP does not immedi-
ately imply that evaluating 9FO+ and RA+ queries is also in NP. Hence, one
has to adopt a more refined procedure than simply converting the given 9FO+

or RA+ query into a UCQ with variable-constant equality (see Exercise 4.1).

Evaluation of Acyclic UCQs

We now consider the problem of evaluating acyclic UCQ s, that is, UCQ s of
the form q1 [· · ·[qn, where, for each i 2 [n], the CQ qi is acyclic. Recall that
a CQ is acyclic if its associated hypergraph is acyclic (Definition 18.4). We
further know that acyclic CQs can be e�ciently evaluated. More precisely,
by Theorem 19.3, checking whether ā 2 q(D) for an acyclic CQ query q, a
database D, and a tuple ā over Dom(D) is feasible in time O(kDk · log kDk ·
kqk). It is easy to show that the same holds for acyclic UCQ s.

260 28 Unions of Conjunctive Queries

Theorem 28.14

Consider an acyclic UCQ q, a database D, and a tuple ā over Dom(D).
Checking whether ā 2 q(D) is feasible in time O(kDk · log kDk · kqk).

Proof. We need to check whether ā 2
Sn

i=1 qi(D). By Theorem 19.3, for every
i 2 [n], checking whether ā 2 qi(D) is feasible in time O(kDk · log kDk · kqik).
This implies that checking whether ā 2

Sn
i=1 qi(D) can be done in time

O

0

@||D|| · log kDk ·
X

i2[n]

||qi||

1

A = O(kDk · log kDk · kqk)

and the claim follows. ut

29

Static Analysis of Unions of Conjunctive
Queries

In this chapter, we study the containment and equivalence problems for unions
of conjunctive queries, as well as the task of minimizing such queries.

Containment and Equivalence

We first focus on UCQ-Containment, the problem of deciding whether a UCQ
q is contained in a UCQ q0, that is, whether q(D) ✓ q0(D) for every database
D. We show that it has the same complexity as CQ-Containment. But first we
present a useful result that characterizes when q is contained in q0 in terms of
containment of the individual CQs occurring in q and q0.

Proposition 29.1

Consider two UCQ s q = q1[· · ·[qn and q0 = q01[· · ·[q0m. The following
are equivalent:

1. q ✓ q0.

2. For every i 2 [n], there exists j 2 [m] such that qi ✓ q0j .

Proof. We first show that (1) implies (2). We assume that the output tuple of
q and q0 is x̄ and x̄0, respectively. This means that, for each i 2 [n] and j 2 [m],
the output tuple of qi and q0j is x̄ and x̄0, respectively. Consider an arbitrary
integer i 2 [n]. Recall that GAqi

is a homomorphism from Aqi to the grounding
of Aqi , Thus, by Theorem 13.2, we get that GAqi

(x̄) 2 qi(GAqi
(Aqi)). Since q ✓

q0, we have that GAqi
(x̄) 2 q0(GAqi

(Aqi)), and hence, GAqi
(x̄) 2 q0j(GAqi

(Aqi))
for some j 2 [m]. As in the proof of the Homomorphism Theorem (Theorem
15.4), we can show that there exists a homomorphism h from (q0j , x̄

0) to (qi, x̄).
From the Homomorphism Theorem itself, we conclude then that qi ✓ q0j .

For showing that (2) implies (1), assume that ā 2 q(D) for some database
D and tuple ā over Dom(D). Clearly, there exists i 2 [n] such that ā 2 qi(D).

262 29 Static Analysis of Unions of Conjunctive Queries

By hypothesis, there exists j 2 [m] such that qi ✓ q0j , and thus, ā 2 q0j(D). The
latter implies that ā 2 q0(D), which in turn shows that q ✓ q0, as needed. ut

We are now ready to pinpoint the complexity of UCQ-Containment.

Theorem 29.2

UCQ-Containment is NP-complete.

Proof. It is clear that the NP-hardness is inherited from CQ-Containment,
which we know is NP-hard (Theorem 15.3). Consider now two UCQ s q = q1[
. . .[qn and q0 = q01[· · ·[q0m. We proceed to show that checking whether q ✓ q0

is in NP. We assume that, for i 2 [n] and j 2 [m], the output tuple of qi and
q0j is x̄ and x̄0, respectively. By the Homomorphism Theorem (Theorem 15.4)
and Proposition 29.1, to check whether q ✓ q0 it su�ces to do the following:

• for each i 2 [n], guess an integer ji 2 [m], and a function h : Dom(Aq0ji
)!

Aqi , and

• for each i 2 [n], verify that hi is a homomorphism from (q0ji , x̄
0) to (qi, x̄).

Since both steps are feasible in polynomial time, we conclude that deciding
whether q ✓ q0 is in NP, and the claim follows. ut

An immediate corollary of Theorem 29.2 is that the equivalence problem
for UCQ s, that is, given two UCQ s q, q0, check whether q ⌘ q0, is in NP since
it boils down to two containment checks: q ✓ q0 and q0 ✓ q. The NP-hardness
is inherited from CQ-Equivalence (Theorem 15.8).

Corollary 29.3

UCQ-Equivalence is NP-complete.

Recall that query evaluation remains NP-complete even if we consider
FOrel[^,_, 9] and SPJU queries (or even 9FO+ and RA+ queries), despite the
fact that these languages allow us to express UCQ s in a more succinct way.
However, this is not true in the case of containment, where we can show that
the complexity increases. We illustrate this for SPJU-Containment, that is, the
problem of deciding whether an SPJU query is contained in another SPJU
query. The treatment for FOrel[^,_, 9], and the more expressive languages
9FO+ and RA+, is similar and is left as an exercise (see Exercise 4.3).

We proceed to show that SPJU-Containment is ⇧p
2 -complete. This essen-

tially tells us that, given two SPJU queries e and e0, the problem of deciding
whether e 6✓ e0 is in ⌃p

2 = NPNP, i.e., it can be solved via a nondeterminisitc
algorithm that runs in polynomial time assuming that it has access to an

29 Static Analysis of Unions of Conjunctive Queries 263

oracle that can solve any problem in NP. In other words, the complement of
SPJU-Containment is ⌃p

2 -complete.1 To show this we need some preparation.
We associate to an SPJU query e a set of SPJ queries, denoted SPJ(e).

This is done by induction on the structure of e; essentially, for every union
e1 [e2 that occurs in e, we look at possible ways of resolving this union, i.e.,
choosing e1 or e2. The set SPJ(e) is formally defined as follows:

SPJ(e) =

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

{R} if e = R

{�✓(e00) | e00 2 SPJ(e0)} if e = �✓(e0)

{⇡↵(e00) | e00 2 SPJ(e0)} if e = ⇡↵(e0)

{e01 ⇥ e02 | e01 2 SPJ(e1) and e02 2 SPJ(e2)} if e = e1 ⇥ e2

SPJ(e1) [SPJ(e2) if e = e1 [e2.

The following is easily shown by structural induction.

Proposition 29.4

Consider an SPJU query e, and assume that SPJ(e) = {e1, . . . , en}. For
every i 2 [n], ei is an SPJ query, and e ⌘ e1 [· · · [en.

It is clear that Proposition 29.4 provides an algorithm for solving the prob-
lem SPJU-Containment: given two SPJU queries e1 and e2, compute the sets
SPJ(e1) and SPJ(e2), and then check whether, for every e01 2 SPJ(e1), there
exists e02 2 SPJ(e2) such that e01 ✓ e02; the latter is essentially a containment
check among two CQs, since an SPJ query can be easily converted into a CQ,
which can be performed using the algorithm underlying Theorem 15.3. How-
ever, this is a very naive algorithm, which only shows that SPJU-Containment
is in ExpTime. Indeed, it explicitly constructs the sets SPJ(e1) and SPJ(e2),
which are in general of exponential size, and then performs exponentially
many containment checks among SPJ queries. To establish the desired ⇧p

2

upper bound, we need to rely on a refined version of the above algorithm.
The key observation towards such a refined procedure is that finding a

query e0 2 SPJ(e), for an SPJU query e, amounts to “resolving” each union in
e. In other words, having the parse tree Te of the expression e, for every union
node in Te, with two subtrees under it, we keep only one of those subtrees,
while the other one is replaced by ?. The obtained tree T 0

e is essentially the
parse tree of an SPJ query from SPJ(e). Consider, for example, the query

e = (e1 [e2)⇥ (e3 [(e4 [e5)),

1 This is actually the first time in the book that we encounter the complexity classes
⌃p

2 and ⇧p
2 , which contain NP. For further details see Appendix B.

264 29 Static Analysis of Unions of Conjunctive Queries

where e1, . . . , e5 are [-free. One way to resolve the union nodes in Te is

(e1 [?)⇥ (e3 [?),

which leads to e1 ⇥ e3 2 SPJ(e). Another way is

(? [e2)⇥ (? [(? [e5)),

which leads to e2 ⇥ e5 2 SPJ(e). If union occurs k times in e, this gives us
2k expressions that can result from resolving those union nodes, as each one
gives us two choices. However, each way to resolve the union nodes in Te can
be carried out in polynomial time, or, in other words, we can guess any SPJ
query from SPJ(e) in polynomial time. This fact allows us to devise the refined
procedure for SPJU-Containment.

Before doing this, we need to establish an intermediate complexity result,
which will be crucial in the complexity analysis of this refined procedure.
Furthermore, it illustrates the fact that restricting the language of the left-
hand side query in the containment check has an impact on the complexity.

Proposition 29.5

Consider an SPJ query e, and an SPJU query e0. The problem of deciding
whether e ✓ e0 is in NP.

Proof. By Proposition 29.4, it su�ces to show that checking whether there
exists an SPJ query e00 2 SPJ(e0) such that e ✓ e00 is in NP. This is done
by guessing an SPJ query e00 from SPJ(e0), and a mapping h : Dom(Aqe00)!
Dom(Aqe), where qe(x̄) and qe00(ȳ) are the CQs obtained after converting e
and e00 into CQs by applying the translation given in Theorem 12.7. It is easy
to see that such translation can be carried out in polynomial time. We finally
verify that h is a homomorphism from (qe00 , ȳ) to (qe, x̄). The correctness of
this procedure is guaranteed by the Homomorphism Theorem (Theorem 15.4).
Since both steps are feasible in polynomial time (recall that an SPJ query
from SPJ(e) can be guessed in polynomial time), we conclude that checking
whether e ✓ e0 is in NP, and the claim follows. ut

Proposition 29.5 essentially tells us that SPJU-Containment remains NP-
complete whenever the left-hand side query in the containment check does
not use union. However, as already mentioned, the complexity increases when
considering the problem in its general form without any assumptions.

Theorem 29.6

SPJU-Containment is ⇧p
2 -complete.

29 Static Analysis of Unions of Conjunctive Queries 265

Proof. Consider two SPJU queries e and e0. We proceed to show that checking
whether e 6✓ e0 is in⌃p

2 = NPNP, which in turn implies that SPJU-Containment
is in ⇧p

2 . By Proposition 29.4, it su�ces to show that the problem of checking
whether there exists an SPJ query ê 2 SPJ(e) such that ê 6✓ e0 is in NPNP.
This is done by simply guessing an SPJ query ê from SPJ(e), and verifying
that ê 6✓ e0. It is clear that the “guess” step can be performed in polynomial
time. Concerning the “verify” step, by Proposition 29.5, it can be performed
in constant time assuming that we have access to an oracle that can solve any
problem in NP. In particular, the oracle takes as input the queries ê and e0,
and does the following: if ê ✓ e0, then return false; otherwise, return true.
Therefore, checking whether e 6✓ e0 is in NPNP, as needed.

To prove the ⇧p
2 -hardness one can provide a polynomial-time reduction

from the problem 89QSAT (Exercise 4.2). ut

An immediate corollary of Theorem 29.6 is that the equivalence problem
for SPJU queries, that is, given two SPJU queries e, e0, check whether e ⌘ e0,
is in ⇧p

2 since it boils down to two containment checks: e ✓ e0 and e0 ✓ e. The
⇧p

2 -hardness is shown via an easy reduction from SPJU-Containment. Given
two SPJU queries e, e0 of arity k, it holds that e ✓ e0 i↵ ⇡(1,...,k)(e on✓ e0) ⌘ e,
where ✓ = (1

.
= k + 1) ^ (2

.
= k + 2) ^ · · · ^ (k

.
= 2k). Therefore:

Corollary 29.7

SPJU-Equivalence is ⇧p
2 -complete.

Minimization

In Chapter 16, we studied the notion of minimization of CQs, which aims to
provide equivalent CQs that are also minimal. More precisely, given a CQ q
over a schema S, a CQ q0 over S is a minimization of q if q ⌘ q0, and for every
CQ q00 over S with q0 ⌘ q00 it holds that |Aq0 |  |Aq00 |. We have also seen how
the minimization of a CQ, which is unique (up to variable renaming), can be
computed by simply removing atoms from its body. We proceed to discuss
how the ideas developed around CQ minimization can be extended to UCQ
s. We start by defining the notion of minimization for UCQ s.

Definition 29.8: Minimization of UCQs

Consider a UCQ q = q1 [· · · [qn over a schema S. A UCQ q0 = q01 [
· · · [q0m, for m  n, over S is a minimization of q if the following hold:

1. q ⌘ q0,

2. for every i 2 [m], and CQ p over S, if q0i ⌘ p then |Aq0i
|  |Ap|, and

266 29 Static Analysis of Unions of Conjunctive Queries

3. for every UCQ q00 = q001 [· · · [q00` , if q
0 ⌘ q00 then m  `.

In simple words, q0 is a minimization of q if it is equivalent to q, each CQ
of q0 has the smallest number of atoms among all the CQs that are equivalent
to it, and q0 has the smallest number of CQs among all the UCQ s that are
equivalent to it. We proceed to show that minimizations of a UCQ q can be
found by simply removing atoms from the body of its CQs (i.e., by computing
a core of its CQs), as well as removing CQs from it. Moreover, although q may
have several minimizations, they are all the same (up to variable renaming).

Minimization via Atom and CQ Removals

We start be defining the notion of core for UCQ s, which is a generalization
of the notion of core for CQs given in Definition 16.2.

Definition 29.9: Core of a UCQ

Consider a UCQ q(x̄) = q1 [· · · [qn. A UCQ q0(x̄) = q01 [· · · [q0m is a
core of q if the following hold:

1. m  n, and there is a set of integers {i1, . . . , im} ✓ [n] such that, for
every j 2 [m], q0j is a core of qij ,

2. for every i 2 [n], there exists j 2 [m] such that qi ✓ q0j , and

3. for every i 2 [m], there is no j 2 [m]� {i} such that q0i ✓ q0j .

The first condition in Definition 29.9 states that q0 can be obtained from q
by eliminating some of its CQs, and then computing a core of the remaining
CQs, the second condition ensures that q ⌘ q0, and the third condition states
that q0 is minimal with respect to the number of CQs occurring in it. We show
that the notion of core captures our intention of constructing a minimization.

Proposition 29.10

Every UCQ q has at least one core, and every core of q is a minimization
of q.

Proof. We first show that we can always construct a core of q. Assuming that
q = q1 [· · · [qn, we first replace qi with a core of it, for each i 2 [n], which
we know always exists by Proposition 16.4, and get a UCQ q0 = q0i [· · · [q0n.
If q0 is a core of itself, then the claim follows. Assume now that this is not the
case. This means that condition (3) in the definition of core (Definition 29.9)
is violated, which in turn implies that there exists i 2 [n] such that q0i ✓ q0j
for some j 2 [n]� {i}. If q00 obtained from q0 by removing the CQ q0i is a core

29 Static Analysis of Unions of Conjunctive Queries 267

Algorithm 16 ComputeCoreUCQ(q)

Input: A UCQ q(x̄) = q1 [. . . [qn
Output: A UCQ q⇤(x̄) that is a core of q(x̄)

1: Q := ;
2: for i = 1 to n do

3: Q := Q [{ComputeCore(qi)}
4: while there are distinct CQs q0, q00 2 Q such that q0 ✓ q00 do
5: Q := Q� {q0}
6: return q⇤ =

S
q02Q q0

of itself, then it is clear that q00 is a core of q. Otherwise, we iteratively apply
the above argument until we reach a core of q.

We now proceed to show that a core of q(x̄) = q1[· · ·[qn is a minimization
of it. Towards a contradiction, assume that q0(x̄) = q01 [· · · [q0m is a core of
q but not a minimization of q. This implies that one of the following holds:

1. there exists i 2 [n] and a CQ p such that q0i ⌘ p and |Ap| < |Aq0i
|, or

2. there exists a UCQ q00 = q001 [· · · [q00` such that q0 ⌘ q00 and ` < m.

Assuming (1) holds, we have that q0i is not a core of itself, and hence q0i
cannot be a core of a CQ in q. This contradicts the fact that q0 is a core of
q. Assume now (2). Since q0 ✓ q00, by Proposition 29.1 we get that, for every
i 2 [m], there exists j 2 [`] such that q0i ✓ q00j . Then, from the fact that ` < m,
we obtain that there exist i, i0 2 [m], with i 6= i0, and j⇤ 2 [`] such that q0i ✓ q00j⇤
and q0i0 ✓ q00j⇤ . Now, since q00 ✓ q0, by Proposition 29.1 we get that, for each
j 2 [`], there exists i 2 [m] such that q00j ✓ q0i. Therefore, there exists i⇤ 2 [m]
such that q00j⇤ ✓ q0i⇤ . This implies that q0i ✓ q0i⇤ and q0i0 ✓ q0i⇤ . Consequently,
there exist i 2 [m] and j 2 [m]�{i} such that q0i ✓ q0j , which again contradicts
our hypothesis that q0 is a core of q, and the claim follows. ut

By Proposition 29.10, computing a minimization of a UCQ boils down to
computing a core of it. This can be done by applying the iterative procedure
ComputeCoreUCQ, given in Algorithm 16, which in turn relies on Com-
puteCore, given in Algorithm 4, that computes the core of a CQ. It is clear
that, for a UCQ q, ComputeCoreUCQ(q) terminates after finitely many
steps. It is also easy to verify that ComputeCoreUCQ is correct.

Lemma 29.11. Given a UCQ q, ComputeCoreUCQ(q) is a core of q.

Let us clarify that ComputeCoreUCQ is a nondeterministic algorithm
since the procedure ComputeCore is nondeterministic. Moreover, there may
be several CQs satisfying the condition of the while loop (in particular, there
may be several CQs that must be removed from the set Q), but we do not

268 29 Static Analysis of Unions of Conjunctive Queries

specify how such a CQ is selected. Actually, the CQ q0 of Q that is even-
tually removed from Q at step 5 is chosen nondeterministically. Therefore,
the final result computed by the algorithm depends on the computation of
ComputeCore at step 3, as well as how the CQs to be removed from Q
are chosen at step 5. Consequently, di↵erent executions of ComputeCore(q)
may compute cores of q that are syntactically di↵erent. However, as we dis-
cuss next, di↵erent minimizations of a UCQ q are isomorphic, which in turn
implies, due to Proposition 29.10, that di↵erent cores of q are isomorphic.

Uniqueness of Minimization

We say that two UCQ s q(x̄) = q1 [· · · [qn and q0(x̄0) = q01 [· · · [q0m are
isomorphic if one can be turned into the other via renaming of variables, i.e.,
there is a bijection � : {q1, . . . , qn}! {q01, . . . , q0m}, which means that n = m,
such that for every i 2 [n] the CQs qi and �(qi) are isomorphic.

Proposition 29.12

Consider a UCQ q(x̄), and let q0(x̄0) and q00(x̄00) be minimizations of q.
Then q0 and q00 are isomorphic.

Proof. Assume that q0 = q01 [· · · [q0n and q00 = q001 [· · · [q00n. We need to
show that there is a bijection � : {q01, . . . , q0n} ! {q001 , . . . , q00n} such that for
every i 2 [n] the CQs q0i and �(q

0
i) are isomorphic. We first show an auxiliary

lemma:

Lemma 29.13. There is a bijection ⌧ : [n] ! [n] such that q0i ⌘ q00⌧(i), for

each i 2 [n].

Proof. To prove the claim, it su�ces to show that, for each i 2 [n]:

1. there exists j 2 [n] such that q0i ⌘ q00j , and

2. for each j, k 2 [n], if q0i ⌘ q00j and q0i ⌘ q00k then j = k.

We first show claim (1). Since q and q0 are minimizations of q, we conclude
that q ⌘ q0 and q ⌘ q00, and thus, q0 ⌘ q00. By Proposition 29.1, we get
that, for each i 2 [n], there exists j 2 [n] such that q0i ✓ q00j . But, again by
Proposition 29.1, there exists k 2 [n] such that q00j ✓ q0k. Necessarily, q0i = q0k;
otherwise, q0 is equivalent to the UCQ obtained from q0 after eliminating q0i
(since q0i ✓ q0k), which contradicts the fact that q0 is a minimization of q. We
conclude then that q0i ⌘ q00j .

We now prove claim (2). Towards a contradiction, assume that there exists
i 2 [n], and distinct integers j, k 2 [n] such that q0i ⌘ q00j and q0i ⌘ q00k . This
implies that the UCQ obtained from q00 after eliminating one of the CQs q00j
or q00k (since q00j ⌘ q00k) is equivalent to q00, which contradicts the fact that q00 is
a minimization of q. This completes the proof of Lemma 29.13. ut

29 Static Analysis of Unions of Conjunctive Queries 269

Having the bijection ⌧ : [n]! [n] provided by Lemma 29.13, we define the
bijection � : {q01, . . . , q0n} ! {q001 , . . . , q00n} as �(q0i) = q00⌧(i), for each i 2 [n]. It

remains to argue that, for every i 2 [n], the CQs q0i and �(q
0
i) are isomorphic.

Since q0 and q00 are minimizations of q, both q0i and �(q0i) must be cores of
themselves. Hence, �(q0i) is a minimization of q0i, and thus, by Proposition 16.7,
we get that q0i and �(q

0
i) are isomorphic. ut

From Proposition 29.10, which tells us that a core of a UCQ q is a mini-
mization of q, and Proposition 29.12, we get the following corollary:

Corollary 29.14

Consider a UCQ q, and let q0 and q00 be cores of q. It holds that q0 and
q00 are isomorphic.

Recall that di↵erent executions of the nondeterministic procedure Com-
puteCoreUCQ on some UCQ q, may compute cores of q that are syntacti-
cally di↵erent. However, Corollary 29.14 tells us that those cores di↵er only on
the names of their variables. In other words, cores of q computed by di↵erent
executions of ComputeCoreUCQ(q) are the same up to variable renaming.

30

Unions of Conjunctive Queries with
Inequalities

It is not di�cult to show that UCQ s, or even UCQ s with variable-constant
equality that are equally expressive to 9FO+ queries, are not powerful enough
for expressing simple queries that involve negation such as the query

q = 9x9y (Edge(x, y) ^ ¬(x = y)),

which essentially asks whether a graph has an edge (v, u) that is not a loop,
i.e., v and u are di↵erent nodes. Observe that q is not preserved under homo-
morphisms: for D = {R(a, b)} and D0 = {R(c, c)}, we have that D !; D0,
but D |= q while D0 6|= q. On the other hand, we know by Proposition 28.10
that UCQ s (even with variable-constant equality) are preserved under homo-
morphisms, which immediately implies that q cannot be expressed as a UCQ
(even with variable-constant equality). This raises the question whether there
are languages obtained by adding a tamed negation to UCQ s without in-
creasing the complexity of query evaluation, and, more importantly, without
losing the decidability of containment and equivalence. The best known such
language is that of UCQ s with inequality, that is, UCQ s that can also use
expressions of the form ¬(v = u) as the query q given above. In this chap-
ter, we introduce the language of UCQ s with inequality, and study the main
computational problems: evaluation and containment.

Conjunctive Queries with Inequality

Before we introduce and study UCQ s with inequality, it is important to study
and understand first CQs with inequalities. Note that in the rest of the chapter
we write v 6= u as an abbreviation for ¬(v = u).

Syntax of Conjunctive Queries with Inequality

We start with the syntax of conjunctive queries with inequalities.

272 30 Unions of Conjunctive Queries with Inequalities

Definition 30.1: Syntax of CQs with Inequality

A conjunctive query with inequality (CQ 6=) over a schema S is an FO
query '(x̄) over S where ' is a formula of the form

9ȳ
�
R1(ū1) ^ · · · ^Rn(ūn) ^ v1 6= v01 ^ · · · ^ vm 6= v0m

�

for n � 1 and m � 0, where

• for each i 2 [n], Ri(ūi) is a relational atom, and ūi a tuple of con-
stants and variables mentioned in x̄ and ȳ, and

• for each i 2 [m], vi is a variable mentioned in ūk for some k 2 [n],
and v0i is a variable mentioned in ūk for some k 2 [n] or a constant.

Note that the second item of the definition requires that each variable that
participates in at least one inequality appears also in at least one relational
atom. This is a common assumption in CQs with inequality that, as we discuss
below, allows us to show that homomorphisms provide an alternative way to
describe the evaluation of CQs with inequality in the same way as for CQs.

It is common to represent CQs with inequality via a rule-like syntax. In
particular, the CQ 6= '(x̄) given in Definition 12.1 can be written as the rule

Answer(x̄) :– R1(ū1), . . . , Rn(ūn), v1 6= v01, . . . , vm 6= v0m ,

where Answer is a relation name not in S, and its arity (under the singleton
schema {Answer}) is equal to the arity of q. The relational atom Answer(x̄)
that appears on the left of the :– symbol is the head of the rule, while the
expression that appears on the right of the :– symbol is the body of the rule.
In general, we use the rule-like syntax. Nevertheless, for convenience, we will
freely interpret a CQ with inequality as an FO query or as a rule.

Semantics of Conjunctive Queries with Inequality

Since a CQ 6= is an FO query, the definition of its output on a database can be
inherited from Definition 3.6. More precisely, given a database D of a schema
S, and a k-ary CQ 6= q = '(x̄) over S, where k � 0, the output of q on D is

q(D) = {ā 2 Dom(D)k | D |= '(ā)} .

Recall that every variable that occurs in an inequality of q it also occurs in a
relational atom of q. For this reason, the output of q only consists of tuples
of constants from Dom(D). It is easy to verify that if we drop this condition,
then the output may mention constants that occur in the query but not in
the database. Consider, for example, the FO query q = '(y) with

' = 9x (R(x) ^ x 6= y ^ a 6= b),

30 Unions of Conjunctive Queries with Inequalities 273

where x, y are variables and a, b are constants, which is not a CQ with in-
equality since y does not occur in a relational atom. Clearly, for D = {R(a)},
q(D) = {(b)}, while the constant b does not belong to Dom(D).

As for plain CQs, there is a more intuitive (and equivalent) way of defining
the semantics of CQs with inequality when they are viewed as rules. The body
of a CQ 6= q of the form Answer(x̄) :– body can be seen as a pattern that must
be matched with the database D via an assignment ⌘ that maps the variables
in q to Dom(D). For each such assignment ⌘, if ⌘ applied to this pattern
produces only facts of D, and at the same time respects all the inequalities, it
means that the pattern matches with D via ⌘, and the tuple ⌘(x̄) is an output
of q on D. We proceed to formalize this informal description.

Consider a database D and a CQ 6= q of the form

Answer(x̄) :– R1(ū1), . . . , Rn(ūn), v1 6= v01, . . . , vm 6= v0m .

An assignment for q over D is a function ⌘ from the set of variables in q to
Dom(D). We say that ⌘ is consistent with D if

Ri(⌘(ūi)) 2 D and ⌘(vj) 6= ⌘(v0j)

for each i 2 [n] and j 2 [m], where the fact Ri(⌘(ūi)) is obtained by replacing
each variable x in ūi with ⌘(x), and leaving the constants in ūi untouched.
The consistency of ⌘ with D essentially means that the body of q matches
with D via ⌘. We can now define what is the output of a CQ 6= on a database.

Definition 30.2: Evaluation of CQs with Inequality

Given a database D of a schema S, and a CQ 6= q(x̄) over S, the output
of q on D is defined as the set of tuples

q(D) = {⌘(x̄) | ⌘ is an assignment for q over D consistent with D} .

It is an easy exercise to show that the semantics of CQ 6= inherited from
the semantics of FO queries in Definition 3.6, and the semantics of CQs given
in Definition 30.2, are equivalent, i.e., for a CQ q = '(x̄) and a database D,

{ā 2 Dom(D)k | D |= '(ā)} =

{⌘(x̄) | ⌘ is an assignment for q over D consistent with D} .

Evaluation and Homomorphisms

We proceed to discuss how homomorphisms emerge in the context of CQs
with inequality. In particular, we show that they provide an alternative way
to describe the evaluation of CQs with inequality. Given a CQ 6= q of the form

Answer(x̄) :– R1(ū1), . . . , Rn(ūn), v1 6= v01, . . . , vm 6= v0m ,

274 30 Unions of Conjunctive Queries with Inequalities

we define the sets of relational atoms and inequalities

A+
q = {R1(ū1), . . . , Rn(ūn)} and A�

q = {v1 6= v01, . . . , vm 6= v0m},

respectively. As usual, Dom(A+
q) collects all the variables and constants oc-

curring in the relational atoms of A+
q . We further write Dom(A�

q) for the set
of constants occurring in A�

q . Notice that there may be constants in Dom(A�
q)

that do not occur in Dom(A+
q) since, according to Definition 30.1, only the

variables (not the constants) that occur in an inequality must also occur in a
relational atom. Having the above sets in place, we can naturally talk about
homomorphisms from CQs with inequality to databases.

Definition 30.3: Homomorphisms from CQ 6= to Databases

Consider a CQ 6= q(x̄) over a schema S, and a database D of S.

• A homomorphism from q to D is a function h : Dom(A+
q) [

Dom(A�
q) ! Dom(D) [Dom(A�

q) that is a homomorphism from
A+

q to D, is the identity on Dom(A�
q), and h(v) 6= h(u) for every

v 6= u 2 A�
q . We write q ! D if such a homomorphism exists.

• A homomorphism from (q, x̄) to (D, ā) is a homomorphism h from
q to D such that h(x̄) = ā. We write (q, x̄) ! (D, ā) if such a
homomorphism exists.

To define the output of a CQ 6= q(x̄) on a database D (see Definition 30.2),
we used the notion of assignment for q over D, which is a function from the
set of variables in q to Dom(D). The output of q on D consists of all the tuples
⌘(x̄), where ⌘ is an assignment for q over D that is consistent with D, i.e.,
Ri(⌘(ūi)) 2 D and ⌘(vj) 6= ⌘(v0j) for each i 2 [n] and j 2 [m]. Since Ri(⌘(ūi))
is the fact obtained after replacing each variable x in ūi with ⌘(x) and leaving
the constants in ūi untouched, for i 2 [n], such an assignment ⌘ corresponds
to a function h : Dom(A+

q) [Dom(A�
q)! Dom(D) [Dom(A�

q), which is the
identity on the set of constants occurring in q, such that R(h(ūi)) = R(⌘(ūi)).
But, of course, this is the same as saying that h is a homomorphism from q to
D. Therefore, q(D) is the set of all tuples h(x̄), where h is a homomorphism
from q to D, i.e., the set of all tuples ā over Dom(D) with (q, x̄) ! (D, ā).
This leads to an alternative characterization of CQ 6= evaluation.

Theorem 30.4

For a database D of a schema S, and a CQ 6= q(x̄) of arity k � 0 over S,

q(D) = {ā 2 Dom(D)k | (q, x̄)! (D, ā)}.

Unlike plain CQs, CQs with inequality are not preserved under homomor-
phisms. This has been already illustrated at the beginning of the chapter via

30 Unions of Conjunctive Queries with Inequalities 275

the CQ 6= Answer :– Edge(x, y), x 6= y, which asks for the existence of an edge
in a graph that is not a loop. On the other hand, we can easily show that CQs
with inequality remain monotone, i.e., given a CQ 6= q over a schema S, and
two databases D and D0 of S, if D ✓ D0 then q(D) ✓ q(D0).

Proposition 30.5

Every CQ 6= is monotone.

Proof. Let q(x̄) be a CQ 6= over a schema S. Consider the databases D,D0 of
S such that D ✓ D0, and assume that ā 2 q(D). By Theorem 30.4, we get
that (q, x̄)! (D, ā). Since D ✓ D0, we immediately get that (q, x̄)! (D0, ā),
and thus, again by Theorem 30.4, ā 2 q(D0), as needed. ut

The fact that CQs with inequality are monotone allows us to clarify the ex-
pressiveness boundaries of CQ 6=. In particular, we can show that the negation
allowed in CQ 6= is indeed quite restricted. Note that the following arguments
have been already used in Chapter 13 to show that CQs cannot express neg-
ative relational atoms and di↵erence.

CQ 6= cannot express negative relational atoms. The reason is because
such queries are not monotone. Consider, for example, the FO query

q = ¬P (a),

where a is a constant. If we take D = ; and D0 = {P (a)}, then D ✓ D0

but D |= q while D0 6|= q.

CQ 6= cannot express di↵erence. This is because di↵erence is not mono-
tone. Consider, for example, the FO query

q = 9x(P (x) ^ ¬Q(x)).

For D = {P (a)} ✓ D0 = {P (a), Q(a)}, we have that D |= q while D0 6|= q.

Query Evaluation

We now proceed to study the complexity of CQ 6=-Evaluation, that is, the prob-
lem of checking whether ā 2 q(D) for a CQ 6= query q, a database D, and a
tuple ā over Dom(D). We actually show that it has the same (combined)
complexity as CQ-Equivalence; concerning the data complexity, it is clear that
CQ 6=-Evaluation is in DLogSpace due to Theorem 7.3.

Theorem 30.6

CQ 6=-Evaluation is NP-complete.

276 30 Unions of Conjunctive Queries with Inequalities

Proof. It is clear that the NP-hardness is inherited from CQ-Evaluation, which
we know is NP-hard (Theorem 14.1). We proceed to show the upper bound.
Consider a CQ 6= q(x̄), a database D, and a tuple ā 2 Dom(D). By Theo-
rem 30.4, ā 2 q(D) if and only if (q, x̄)! (D, ā). Therefore, we need to show
that checking whether there exists a homomorphism from (q, x̄) to (D, ā) is
in NP. This is done by guessing a function h : Dom(A+

q) [Dom(A�
q) !

Dom(D)[Dom(A�
q) that is the identity on constants, and then verifying that

(i) h is a homomorphism from (A+
q , x̄) to (D, ā), and (ii) for every v 6= u 2 A�

q ,
h(v) 6= h(u). Since both steps are feasible in polynomial time, we conclude
that checking whether (q, x̄)! (D, ā) is in NP, and the claim follows. ut

Containment

We now focus on CQ 6=-Containment, the problem of deciding whether a CQ 6=

is contained in another CQ 6=. We show that this problem is decidable, but its
complexity is higher than CQ-Containment, that is, ⇧p

2 -complete.
Recall that for CQs (without inequality) the building block underlying the

procedure for checking containment is the Homomorphism Theorem (Theo-
rem 15.4) that provides a useful characterization of containment in terms of
homomorphisms: given two CQs q(x̄) and q0(x̄), q ✓ q0 i↵ (q0, x̄0)! (q, x̄). It
is not di�cult to see, however, that this is no longer true once inequalities are
allowed. This can be easily shown via a simple example.

Example 30.7: The Homomorphism Theorem Fails for CQ 6=

Consider the (Boolean) queries

q = Answer :– Edge(x, y)

q0 = Answer :– Edge(x0, y0), x0 6= y0.

It is clear that q0 ! q, that is, there is a homomorphism h from A+
q0 to

Aq with h(x0) 6= h(y0), but q 6✓ q0: for D = {R(a, a)} we have that D |= q
but D 6|= q0. This should not be surprising since the existence of an edge
in a graph does immediately imply that there is a non-loop edge.

As the above example illustrates, the key reason why a result similar to
the Homomorphism Theorem fails for CQs with inequality is because homo-
morphisms, as defined for these queries, do not compose. In other words, the
fact that q0 ! q and q ! D, for q, q0 CQs with inequalities, does not allow us
to conclude that q0 ! D by simply composing homomorphisms. Observe that
after composing h0, where h0(x0) = x and h0(y0) = y, which witnesses the fact
that q0 ! q, with h, where h(x) = h(y) = a, which witnesses that q ! D, we
get the function g with g(x0) = g(y0) = a that is not a homomorphism from
q0 to D since the inequality is not preserved. The above discussion indicates
that we need a version of the Homomorphism Theorem that somehow ensures

30 Unions of Conjunctive Queries with Inequalities 277

the following: no matter how the homomorphism h, which witnesses the fact
that q ! D, looks like, h � h0 is a homomorphism from q0 to D.

For a CQ (without inequality) q(x̄), and a CQ 6= q0(x̄0), we write (q0, x̄0)!
(q, x̄) for the fact that there exists a homomorphism from (Aq0 , x̄0) to (Aq, x̄),
which in turn is defined in exactly the same way as the notion of homomor-
phism from a CQ 6= to a database (see Definition 30.3).

Given a CQ 6= q(x̄) of the form

Answer(x̄) :– R1(ū1), . . . , Rn(ūn), v1 6= v01, . . . , vm 6= v0m ,

let Hq be the set of all functions h : Dom(A+
q) [Dom(A�

q) ! Dom(A+
q) [

Dom(A�
q) such that (i) h is the identity on constants, and (ii) for every v 6=

u 2 A�
q , h(v) 6= h(u). Intuitively, Hq collects all the possible ways that q can

be mapped into a homomorphic image of itself. For a function h 2 Hq, we
write h(q+) for the CQ (without inequality)

Answer(h(x̄)) :– R1(h(ū1)), . . . , Rn(h(ūn)) ,

i.e., the CQ obtained from q by eliminating the inequalities and then replacing
each term u with the term h(u). We are now ready to establish the version of
the Homomorphism Theorem for CQs with inequality.

Theorem 30.8

Let q(x̄) and q0(x̄0) be CQ 6=s. The following are equivalent:

1. q ✓ q0.

2. (q0, x̄0)! (h(q+), h(x̄)), for each h 2 Hq.

Proof. We first establish that (1) implies (2). Consider an arbitrary func-
tion h 2 Hq; for brevity, let p = h(q+). Note that p is a CQ without in-
equalities. By definition of Hq, we have that h is a homomorphism from
(q, x̄) to (p, h(x̄)). Since GAp is a bijective homomorphism from (p, h(x̄)) to
(GAp(Ap),GAp(h(x̄))), we conclude that (GAp [µ) � h, where µ is the iden-
tity on the set of constants Dom(A�

q0) � Dom(Ap), is a homomorphism from
(q, x̄) to (GAp(Ap),GAp(h(x̄))). By Theorem 30.4, GAp(h(x̄)) 2 q(GAp(Ap)).
Since, by hypothesis, q ✓ q0, we conclude that GAp(h(x̄)) 2 q0(GAp(Ap)). By
applying again Theorem 30.4, we get that there exists a homomorphism g
from (q0, x̄0) to (GAp(Ap),GAp(h(x̄))). Since GAp is a bijection, (G�1

Ap
[µ0) � g,

where µ0 is the identity on the set of constants Dom(A�
q) � Dom(Ap), is a

homomorphism from (q0, x̄0) to (p, h(x̄)).
We now proceed to show that (2) implies (1). Given a database D, assume

that ā 2 q(D). By Theorem 30.4, there exists a homomorphism g from (q, x̄)
to (D, ā). Let h be a function from Dom(A+

q) [Dom(A�
q) to itself such that

• h is the identity on constants,

278 30 Unions of Conjunctive Queries with Inequalities

• for every two variables x, y 2 Dom(A+
q), h(x) = h(y) i↵ g(x) = g(y), and

• h(x) is a variable, for every variable x 2 Dom(A+
q).

In simple words, h unifies the variables in q+ that are mapped by g to the same
constant of Dom(D). It is easy to verify that that such a function always exists
and belongs to Hq. It is also clear that (h(q+), h(x̄)) ! (D, ā) is witnessed
via a bijective homomorphism g0. Since h 2 Hq, by hypothesis, there exists a
homomorphism h0 from (q0, x̄0) to (h(q+), h(x̄)). Since g0 is a bijection, we get
that (g0 [µ) � h0, where µ is the identity on the set of constants Dom(A�

q0)�
Dom(Ah(q+)), is a homomorphism from (q0, x̄0) to (D, ā). By Theorem 30.4,
we get that ā 2 q0(D), and the claim follows. ut

The next example illustrates how Theorem 30.8 is used in order to confirm
what has been discussed in Example 30.7.

Example 30.9: Application of Theorem 30.8

Consider again the CQs q and q0 given in Example 30.7, and recall that
q 6✓ q0. This is confirmed by Theorem 30.8 since, for the function h 2 Hq

with h(x) = h(y) = x, we can conclude that there is no homomorphism
from q0 to h(q). Indeed, the only way to map q0 to h(q) is via the function
g with g(x0) = g(y0) = x, which is not a homomorphism from q0 to h(q).

From Theorem 30.8, we immediately get a procedure for CQ 6=-Containment:
given two CQs with inequality q(x̄) and q0(x̄0), return true if (q0, x̄) !
(h(q+), h(x̄)), for every function h 2 Hq; otherwise, return false. However,
this naive approach only shows that CQ 6=-Containment is in ExpTime sinceHq

consists, in general, of exponentially many functions, i.e., we need to perform
exponentially many homomorphism checks, while each one takes exponential
time. By providing a more clever procedure, we can establish the following.

Theorem 30.10

CQ 6=-Containment is ⇧p
2 -complete.

Proof. Consider two CQ 6= q(x̄) and q0(x̄0). We proceed to show that checking
whether q 6✓ q0 is in ⌃p

2 = NPNP, which in turn implies that CQ 6=-Containment
is in ⇧p

2 . By Theorem 30.8, it su�ces to show that the problem of checking
whether there exists a function h 2 Hq such that there is no homomorphism
from (q0, x̄0) to (h(q+), h(x̄)) is inNPNP. This can be done by simply guessing a
function h from Hq, and the verifying that indeed there is no homomorphism
from (q0, x̄0) to (h(q+), h(x̄)). It is clear that the “guess” step is feasible in
polynomial time. Concerning the “verify” step, we first observe the following,
which can be easily shown via a simple guess-and-check algorithm:

30 Unions of Conjunctive Queries with Inequalities 279

Lemma 30.11. Given a CQ 6= q1(x̄1) and a CQ (without inequality) q2(x̄2),
the problem of deciding whether (q1, x̄1)! (q2, x̄2) is in NP.

By Lemma 30.11, we conclude that the “verify” step can be performed in
constant time assuming we have access to an oracle that can solve any problem
in NP. In particular, the oracle takes as input the queries q0 and h(q+), and
does the following: if (q0, x̄0) ! (h(q+), h(x̄)), then return false; otherwise,
return true. Therefore, checking whether q 6✓ q0 is in NPNP, as needed.

For the ⇧p
2 -hardness of CQ

6=-Containment see Exercise 4.4. ut
With Theorem 30.10 in place, we can easily pinpoint the complexity of the

equivalence problem for CQ 6=: given two CQ 6= q and q0, check whether q ⌘ q0,
i.e., whether q(D) = q0(D) for every database D. We show that:

Theorem 30.12

CQ 6=-Equivalence is ⇧p
2 -complete.

Proof. For the upper bound, it su�ces to observe that q ⌘ q0 i↵ q ✓ q0 and
q0 ✓ q. This implies that CQ 6=-Equivalence is in ⇧p

2 since, by Theorem 30.10,
the problem of deciding whether q ✓ q0 and q0 ✓ q is in ⇧p

2 .
For the lower bound, we provide an easy reduction from CQ 6=-Containment

that is ⇧p
2 -hard (Theorem 30.10); in fact, this holds even for Boolean queries.

Given two Boolean CQ 6= q, q0, we can easily construct a CQ 6= q\ that computes
the intersection of q and q0, i.e., for every database D, q(D)\ q0(D) = q\(D),
by merging the bodies of q and q0; a similar construction has been already used
in the proof of Theorem 15.8 that deals with CQ-Equivalence. Since q ✓ q0 i↵
q ⌘ q\, we get that CQ 6=-Equivalence is ⇧p

2 -hard, and the claim follows. ut

Adding Union to CQ 6=

We now proceed to add the union operator to CQs with inequality.

Definition 30.13: Union of Conjunctive Queries with Inequality

A union of conjunctive queries with inequality (UCQ 6=) over a schema S
is an FO query '(x̄) over S, where ' is of the form

'1 _ · · · _ 'n

for n � 1, FV(') = FV('i), and 'i(x̄) is a CQ 6= for every i 2 [n].

As for UCQ s without inequality, for notational convenience, we denote a
UCQ 6= q = '(x̄) with ' = '1 _ · · · _ 'n as q1 [· · · [qn, where qi is the CQ 6=

'i(x̄), for each i 2 [n]. It is easy to verify that, given a database D of a schema
S, and a UCQ 6= q = q1[· · ·[qn over S, we have that q(D) = q1(D)[· · ·[qn(D).

280 30 Unions of Conjunctive Queries with Inequalities

Example 30.14: Union of Conjunctive Queries with Inequality

Consider the relational schema from Example 3.2:

Person [pid, pname, cid]

Profession [pid, prname]

City [cid, cname, country]

The UCQ '(y), where ' = '1 _ '2 with

'1 = 9x9z
�
Person(x, y, z) ^ Profession(x, ‘computer scientist’) ^

City(z, w, ‘Greece’) ^ w 6= ‘Athens’
�
.

and

'2 = 9x9z
�
Person(x, y, z) ^ Profession(x, ‘computer scientist’) ^

City(z, w, ‘Chile’) ^ w 6= ‘Santiago’
�
.

can be used to retrieve the list of names of computer scientists that were
born in Greece or Chile, but not in the capital city of the country.

Query Evaluation

We proceed with UCQ 6=-Evaluation, the problem of checking whether ā 2 q(D)
for a UCQ 6= q, a database D, and a tuple ā over Dom(D). We show that it
has the same (combined) complexity as CQ 6=-Evaluation; concerning the data
complexity, both problems are in DLogSpace due to Theorem 7.3.

Theorem 30.15

UCQ 6=-Evaluation is NP-complete.

Proof. It is clear that the NP-hardness is inherited from CQ-Evaluation, which
we know is NP-hard (Theorem 14.1). We proceed to show the upper bound.
Consider a UCQ 6= q(x̄) of the form q1 [· · · [qn, a database D, and a tuple
ā 2 Dom(D). By Theorem 30.4, for i 2 [n], ā 2 qi(D) if and only if (qi, x̄)!
(D, ā). Thus, we need to show that checking whether there exists an integer
i 2 [n] and a homomorphism from (qi, x̄) to (D, ā) is in NP. This is done
by guessing an integer i 2 [n] and a function h : Dom(A+

qi) [Dom(A�
qi) !

Dom(D) [Dom(A�
qi), and then verifying that h is indeed a homomorphism

from (Aqi , x̄) to (D, ā), i.e., is a homomorphism from A+
qi to D, is the identity

on Dom(A�
qi), for every v 6= u 2 A�

qi , h(v) 6= h(u), and h(x̄) = ā. Since all the
above steps are feasible in polynomial time, the claim follows. ut

30 Unions of Conjunctive Queries with Inequalities 281

Containment

We finally concentrate on UCQ 6=-Containment, the problem of deciding whether
a UCQ 6= q is contained in a UCQ 6= q0, that is, whether q(D) ✓ q0(D) for every
database D. We show that it has the same complexity as CQ 6=-Containment.
To this end, we first observe that Proposition 29.1 for UCQ s (without in-
equality) holds also for UCQ s with inequality. More precisely, the proof
of Proposition 29.1 relies on the fact that, for a database D, and a UCQ
q = q1[· · ·[qn, q(D) =

S
i2[n] qi(D). Since the latter property holds even for

UCQ s with inequality, the same proof shows the following:

Proposition 30.16

Consider two UCQ 6= q = q1[· · ·[qn and q0 = q01[· · ·[q0m. The following
are equivalent:

1. q ✓ q0.

2. For every i 2 [n], there exists j 2 [m] such that qi ✓ q0j .

We are now ready to pinpoint the complexity of UCQ 6=-Containment.

Theorem 30.17

UCQ 6=-Containment is ⇧p
2 -complete.

Proof. It is clear that the ⇧p
2 -hardness is inherited from CQ 6=-Containment,

which we know is ⇧p
2 -hard (Theorem 30.10). Consider now two UCQ 6= q =

q1[. . .[qn and q0 = q01[· · ·[q0m. We proceed to show that checking whether
q 6✓ q0 is in ⌃p

2 = NPNP, which in turn implies that UCQ 6=-Containment is in
⇧p

2 . We assume that, for i 2 [n] and j 2 [m], the output tuple of qi and q0j
is x̄ and x̄0, respectively. By Theorem 30.8 and Proposition 30.16, to check
whether q 6✓ q0 it su�ces to do the following:

• guess an i 2 [n], and, for every j 2 [m], guess a function hj 2 Hqi , and

• for each j 2 [m], verify that there is no homomorphism from (q0j , x̄
0) to

(hj(q
+
i), hj(x̄)).

It is clear that the “guess” step is feasible in polynomial time. Moreover, by
Lemma 30.11, the “verify” step can be performed in polynomial time assuming
access to an oracle that can solve any problem in NP. In particular, for each
j 2 [m], the oracle is called with input the queries q0j and hj(q

+
i), and does the

following: if (q0j , x̄
0) ! (hj(q

+
i), hj(x̄)), then return false; otherwise, return

true. Therefore, deciding whether q 6✓ q0 is in NPNP, as needed. ut

282 30 Unions of Conjunctive Queries with Inequalities

An immediate corollary of Theorem 30.17 is that the equivalence problem
for UCQ s with inequality, that is, given two UCQ 6= q, q0, check whether q ⌘ q0,
is in ⇧p

2 since it boils down to two containment checks: q ✓ q0 and q0 ✓ q.
The ⇧p

2 -hardness is inherited from CQ 6=-Equivalence (Theorem 30.12).

Corollary 30.18

UCQ 6=-Equivalence is ⇧p
2 -complete.

31

The Limits of First-Order Queries: Recursion

We have seen that the language of UCQ s has the same expressive power as
the language of FOrel[^,_, 9] queries (Theorem 28.3), and that adding equa-
tional atoms x = a between variables and constants leads to the strictly more
expressive language of 9FO+ queries (Theorem 28.5). If we further add nega-
tion to 9FO+ queries, we then get the full power of FO queries. Universal
quantification can be expressed by means of negation and existential quan-
tification: 8x' is equivalent to ¬9x¬'. In fact, this is how SQL typically
expresses universal quantification, as it lacks explicit statements for it.

We have already learned some interesting facts about the language of FO
queries. Theorem 6.1 states that it has the same expressive power as the
language of RA queries. This tells us that adding negation to 9FO+ queries is
the same as extending RA+ queries with the di↵erence operation, and allowing
inequalities in conditions. The problem of evaluating FO queries is PSpace-
complete in combined complexity (Theorem 7.1), and in DLogSpace in data
complexity (Theorem 7.3). On other hand, static analysis for FO queries,
unlike 9FO+ queries or UCQ 6=, is undecidable (Theorems 8.1 and 8.3).

In the next two chapters, we address a di↵erent type of questions about the
language of FO queries: what are the limitations of its expressive power? In
other words, what kinds of queries FO cannot express. Knowing this justifies
what practical languages need to add on top of the language of FO queries.

In this chapter, we study the inexpressibility in FO, and thus in RA, of
queries requiring recursive computation. Note that recursion is the subject of
Chapters 35 – 38. A canonical query of this type is reachability in directed
graphs. Given a directed graph G, this query computes all the pairs of nodes
(u, v) in G such that v is reachable from u. It can be computed by the following
simple algorithm: a node v is reachable from a node u if

1. there is an edge from u to v, or

2. there is an edge from u to some node w such that v is reachable from w.

284 31 The Limits of First-Order Queries: Recursion

This algorithm is indeed recursive since the second item defines reachability
in terms of itself. Such a description allows us to extract arbitrarily long paths
from the input graph. For example, in the graph with nodes {0, . . . , n} and
edges (i, i+ 1) for all i 2 [n� 1], a node j is reachable from i i↵ i < j. Thus,
the reachability query will extract paths of any length from 1 to n.

To show that such queries cannot be defined in FO, we present a funda-
mental property of FO queries, that is, locality. Intuitively, locality means that
FO queries can only talk about objects that they see in a fixed neighbourhood
of their free variables (this will be made precise below). This will let us prove
that we cannot express queries such as reachability in directed graphs using
FO queries. In particular, since seeing if there exists a path from one node to
another may involve paths of arbitrary length, such a query is not local.

Notion of Locality and Its Use

To build towards the notion of locality, we need to define some auxiliary termi-
nology. Given a database D, its Gaifman graph, denoted GD, is an undirected
graph whose nodes are the elements of Dom(D), and whose edges are the sets
{a, b} such that a and b appear together in some fact of D, i.e., there is a fact
of the form R(. . . , a, . . . , b, . . .) in D. Given a, b 2 Dom(D), the distance of a
and b in D, denoted by dD(a, b), is the length of the shortest path in GD from
a to b; by convention, dD(a, a) = 0, and dD(a, b) =1 if there is no path in GD

from a to b. For a tuple ā = (a1, . . . , an) over Dom(D), the distance of ā and b
in D, denoted dD(ā, b), is mini2[n]{dD(ai, b)}. The radius-r ball of ā in D, for
r � 0, denoted BD

r (ā), is the set {b 2 Dom(D) | dD(ai, b)  r for i 2 [n]}. The
radius-r neighborhood (or simply r-neighborhood) of ā in D, denoted ND

r (ā),
is the set of facts {R(b̄) 2 D | b̄ is over BD

r (ā)}, i.e., the set of all facts of
D that contain only elements of BD

r (ā). The tuple ā should be understood
as a tuple of distinguished elements in ND

r (ā). Finally, we say that two r-
neighborhoods ND

r (ā) and ND
r (b̄) are isomorphic if there exists a bijection

h : Dom(ND
r (ā)) ! Dom(ND

r (b̄)) such that h(ā) = b̄, and R(c̄) 2 ND
r (ā) if

and only if R(h(c̄)) 2 ND
r (b̄). We can now define locality of queries.

Definition 31.1: Locality of Queries

A k-ary query q over schema S is r-local, for r � 0, if, for every database
D of S, and every two tuples ā, b̄ 2 Dom(D)k such that ND

r (ā) and
ND

r (b̄) are isomorphic, ā 2 q(D) i↵ b̄ 2 q(D). A query is called local if it
is r-local for some r � 0.

Interestingly, we can show that FO queries are local. In fact, we can show
more than that; we can further connect the number r witnessing the locality
of an FO query to the depth of quantifier nesting in formulae, defined below.

31 The Limits of First-Order Queries: Recursion 285

Definition 31.2: Quantifier Rank of FO Formulae

The quantifier rank of an FO formula is inductively defined as follows:

• rank(') = 0 if ' is atomic.

• rank(' _) = rank(' ^) = max{rank('), rank()}.
• rank(¬') = rank(').

• rank(9x') = rank(8x') = rank(') + 1.

Note that rank(') is not the total number of quantifiers, but rather the
depth of their nesting, that is, the largest number of quantifiers one encounters
in a branch of a parse tree of '. For example, rank(9xS(x) _ 8y ¬R(y, y)) is
1 and not 2. The formal statement about the locality of FO queries follows.

Theorem 31.3

Every FO query q = '(x̄) is r-local for r = (3rank(') � 1)/2.

Before we give the proof of Theorem 31.3, let us explain how it is used in
order to obtain inexpressibility results for FO queries. Specifically, we look at
the already seen reachability query, defined formally below.

Definition 31.4: The Reachability Query

The reachability query, denoted qreach, over a schema S = {E[2]} is such
that, for every database D of S and a, b 2 Dom(D), (a, b) 2 qreach(D) if

• E(a, b) 2 D, or

• there are constants c1, . . . , cn 2 Dom(D), for n > 0, such that
{E(a, c1), E(c1, c2), . . . , E(cn�1, cn), E(cn, b)} ✓ D.

With Theorem 31.3 in place, to show that the reachability query cannot
be expressed as an FO query, that is, there is no FO query q over {E[2]} such
that qreach ⌘ q, it su�ces to show that qreach is not local.

Proposition 31.5

The reachability query qreach over S = {E[2]} is not local.

Proof. By contradiction, we assume that qreach is r-local, for some r > 0.
Consider a database D of S consisting of the facts E(i, i + 1) for each i 2
[0, 5r � 1]. In the output of qreach on D we have all the pairs (i, j) with i <
j. Note that the r-neighborhoods ND

r (r, 4r) and ND
r (4r, r) are isomorphic.

286 31 The Limits of First-Order Queries: Recursion

0 1 2 3 4 5 6 7 8 9 10

r r r r

Fig. 31.1: Illustration of locality (with r = 2)

Indeed, each of these r-neighborhoods is a disjoint union of two chains of
length 2r, with the distinguished elements in the middle of those chains. This
is illustrated in Figure 31.1, where E(i, j) is visualized using an arrow from i
to j. Therefore, by locality,

(r, 4r) 2 qreach(D) () (4r, r) 2 qreach(D) .

However, (r, 4r) 2 qreach(D) but (4r, r) 62 qreach(D), since r < 4r, which leads
to a contradiction. This implies that qreach is not local, as needed. ut

Proving Locality of FO

We proceed with the proof of Theorem 31.3. For clarity of the presentation,
we assume that the FO query q = '(x̄) is over a schema S that consists of
a binary relation R, but of course the proof generalizes to arbitrary schemas.
We proceed by induction on the quantifier rank of '.

Assume first that rank(') = 0. This implies that ' is an atomic formula
x = y or R(x, y). For a database D of S, and tuples ā, b̄ over Const, the fact
that ND

0 (ā) and ND
0 (b̄) are isomorphic means that the same atomic formulae

are true about ā and b̄ since the neighborhood does not contain any other
elements, and thus, ā 2 q(D) i↵ b̄ 2 q(D). Therefore, q is 0-local, as needed.

Assume now that rank(') = k for k > 0. We first observe that conjunction
and disjunction, as well as negation, do not alter locality. More precisely, if
both ' and are r-local, then so are '_ and '^ , as well as ¬'. Notice also
that conjunction, disjunction and negation do not alter the quantifier rank.
Thus, the induction step should treat the case where '(x̄) = 9y (x̄, y); we do
not need to explicitly treat the case '(x̄) = 8y (x̄, y) since 8y (x̄, y) is equiv-
alent to ¬9y ¬ (x̄, y), which has the same quantifier rank. Since rank(') = k,
we get that rank() = k � 1. By induction hypothesis, the query (x̄, y) is r-
local, where r = (3k�1�1)/2. We proceed to show that '(x̄) is (3k�1)/2-local,
or, equivalently, 3r + 1-local.

Lemma 31.6. It holds that '(x̄) is (3r + 1)-local.

Proof. Consider a database D of S, and two tuples ā, b̄ over Const such that
ND

3r+1(ā) and ND
3r+1(b̄) are isomorphic. We need to establish that ā 2 '(x̄)(D)

i↵ b̄ 2 '(x̄)(D). To this end, it su�ces to show that there exists a bijection f
from Dom(D) to Dom(D) such that ND

r (ā, c) and ND
r (b̄, f(c)) are isomorphic,

31 The Limits of First-Order Queries: Recursion 287

for every c 2 Dom(D). Indeed, if such a bijection exists, the claim follows.
Assuming that ā 2 '(x̄)(D), we can find a witness c 2 Dom(D) of the ex-
istential quantifier 9y such that (ā, c) 2 (x̄, y)(D). But since ND

r (ā, c) and
ND

r (b̄, f(c)) are isomorphic, f(c) is a witness that b̄ 2 '(x̄)(D), since (b̄, f(x))
is in (x̄, y)(D). For the converse, we use the bijection f�1 instead of f . The
rest of the proof is devoted to showing the existence of the bijection f .

Assume that h is an isomorphism between ND
3r+1(ā) and ND

3r+1(b̄). Con-
sider an arbitrary c 2 BD

2r+1(ā). Since BD
r (c) ✓ BD

3r+1(ā) and Br
D(h(c)) ✓

BD
3r+1(b̄), we thus obtain, from the fact that h is an isomorphism, that

ND
r (ā, c) and ND

r (b̄, h(c)) are isomorphic; in fact the same isomorphism h wit-
nesses this. Towards proving the existence of f , we define a pointed database
as a pair (D0, d) for d 2 Dom(D0). An isomorphism type of pointed databases
is the set of pointed databases that are all isomorphic to each other, and no
pointed database from outside the set is isomorphic to them. In other words, it
is an equivalence class with respect to the equivalence relation of being isomor-
phic. Note that each neighborhoodND

r (c) is a pointed database. Let T1, . . . , Tk

be all the isomorphism types of r-neighborhoods present inD, and let ni be the
number of elements of c 2 Dom(D) such that ND

r (c) belongs to Ti, for i 2 [k].
Let mi(ā) be the number of elements c 2 BD

2r+1(ā) such that ND
r (c) 2 Ti, and

let mi(b̄) be similarly defined for B2r+1(b̄). Since ND
r (c) and ND

r (h(c)) are
isomorphic for c 2 BD

2r+1(ā), we obtain that mi(ā) = mi(b̄), for i 2 [k]. Now,
consider ni�mi(ā); it is the number of elements c 2 Dom(D)�B2r+1(ā) such
that ND

r (c) 2 Ti, and let ni �mi(b̄) similarly count the number of elements
c 2 Dom(D) � B2r+1(b̄) such that ND

r (c) 2 Ti. Since mi(ā) = mi(b̄), we see
that ni �mi(ā) = ni �mi(b̄), for i 2 [k]. Hence,

|{c 62 BD
2r+1(ā) | ND

r (c) 2 Ti}| = |{c 62 BD
2r+1(b̄) | ND

r (c) 2 Ti}|

and thus, there is a bijection g : Dom(D)�BD
2r+1(ā)! Dom(D)�BD

2r+1(b̄) so
that Nr(c) and Nr(g(c)) belong to the same set Ti, i.e., they are isomorphic.

We now define f : Dom(D) ! Dom(D): on BD
2r+1(ā) we let f(c) = h(c),

and on Dom(D) � BD
2r+1(ā) we let f(c) = g(c). For c 2 BD

2r+1(ā), we have
already seen that ND

r (ā, c) and ND
r (b̄, f(c)) are isomorphic. If c 62 BD

2r+1(ā),
then ND

r (ā, c) is the disjoint union of ND
r (ā) and ND

r (c), and ND
r (b̄, f(c)) is

the disjoint union of ND
r (b̄) and ND

r (f(c)). Thus, ND
r (ā, c) and ND

r (b̄, f(c))
are isomorphic since they are the disjoint union of isomorphic sets. ut

This completes the proof of Theorem 31.3.

Other Forms of Locality

Locality as seen in Definition 31.1 is not the only manifestation of this prop-
erty for FO. A di↵erent one, called Hanf-locality, is defined in Exercise 4.18.
Essentially, it says that if we have two databases, D and D0, and and a bijec-
tion f between their domains such that ND

r (a) and ND0

r (f(a)) are isomorphic,

288 31 The Limits of First-Order Queries: Recursion

for an appropriately chosen r (say, 3k), then no Boolean FO query given by
a formula ' of quantifier rank k distinguishes D form D0: it is either true in
both, or false in both.

A di↵erent type of property makes it especially easy to show that some
queries are inexpressible in FO. We present it again for graphs, that is, for
schemas consisting of a single binary relation name, but it can be stated for
arbitrary schemas too. Given a graph, i.e., a database D of the schema {E[2]},
degrees of D are numbers of the form |{b | E(a, b) 2 D}| and |{b | E(b, a) 2
D}|. These are essentially out-degrees and in-degrees of graph nodes. We
write deg(D) for the set of all degrees that occur in D. We can then show
the following property for binary FO queries over {E[2]}, i.e., FO queries that
take a graph as their input and return a graph as well.

Proposition 31.7

Let q be a binary FO query over {E[2]}. There is a function f : N! N
such that, for every database D of {E[2]} and k > 0, if all elements of
deg(D) are bounded by k, then |deg(q(D))|  f(k).

To use this to show that qreach cannot be defined as an FO query, we refer
again to the database D in the proof of Proposition 31.5 consisting of the
facts E(i, i+ 1) for i 2 [0, n� 1]. In this case, deg(D) = {0, 1}. Assume qreach
can be expressed as an FO query. By Proposition 31.7, there exists a function
f : N ! N such that |deg(qreach(D))|  f(1). However, if n > f(1), this does
not hold: the output of qreach(D) has all edges (i, j) for 0  i < j  n, and
thus, n+ 1 di↵erent degrees, from 0 to n, are present in it.

32

The Limits of First-Order Queries: Counting

In this chapter, we continue the study of the limitations of FO queries and
what these limitations tell us in terms of extending the capabilities of prac-
tical query languages, and present two fundamental inexpressibility results
concerning constant-free FO queries:

• They cannot express nontrivial statements about cardinalities of sets (for
example, is the cardinality of a set even?).

• They cannot compare cardinalities of relations.

Let us stress that the results presented in this chapter do not hold for FO
queries with constants. This is discussed further in the comments for Part IV.

An Easy Expressiveness Bound

We start by providing a rather preliminary result on the expressive power of
constant-free FO queries (Theorem 32.3), which in turn allows us to conclude
that such queries cannot express nontrivial statements about the cardinalities
of sets. Note that an FO sentence ' is called constant-free if it does not
mention any constants, that is, the set Dom(') is empty. We further call an
FO query '(x̄) constant-free if ' is constant-free.

Let S = {R[1]}, that is, S is a schema consisting of a single unary relation
name R. Databases of S are essentially sets, i.e., they store the elements of
a set R. It is easy to see that two databases D and D0 of S with |D| = |D0|
satisfy exactly the same constant-free FO sentences over S, i.e., for every such
FO sentence ' over S, D |= ' i↵ D0 |= '. This is because D and D0 are the
same up to renaming of constants. We can thus define

µn(') =

(
1 if D |= ', for every D 2 Inst(S) with |D| = n

0 if D 6|= ', for every D 2 Inst(S) with |D| = n .

We can then show the following useful technical result:

290 32 The Limits of First-Order Queries: Counting

Proposition 32.1

Consider a constant-free FO sentence ' over S = {R[1]}. There is k 2 N
such that either µn(') = 1 for all n � k, or µn(') = 0 for all n � k.

To prove the above result we need a few basic notions and facts about first-
order logic. A (possibly infinite) set T of first-order sentences over a schema
S is called a first-order theory over S, or simply a theory over S. The notion
of satisfaction of an FO sentence by a database (see Definition 3.3) can be
naturally extended to possibly infinite databases. We call a possibly infinite
database of a schema S a model of a theory T over S if D |= ' for every
' 2 T . We further say that T is consistent if it has at least one model. We
know that a consistent theory T over S has always a countably infinite model
since S is finite and Const is countably infinite; the latter is a consequence of
a basic result in logic known as the Löwenheim-Skolem Theorem. A sentence
' is a consequence of a theory T , written T |= ', if every model of T satisfies
'. We further know that if T |= ', then there exists a finite subset T0 of T
such that T0 |= '; this is known as the Compactness Theorem of first-order
logic. We are now ready to give the proof of Proposition 32.1.

Proof (of Proposition 32.1). Consider the theory T = { n | n 2 N}, where

 n = 9x1 · · · 9xn

^

i,j2[n] : i<j

¬(xi = xj),

i.e., it states that there are n distinct elements. Clearly, T is consistent since
any possibly infinite database of S is a model of T . It is easy to show that:

Lemma 32.2. Either T |= ' or T |= ¬'.

Proof. Notice that T |= ' and T |= ¬' cannot be both true since in this case
there exists a possibly infinite database D of S such that D |= ' and D |= ¬',
which cannot be the case. Assume now that T 6|= ' and T 6|= ¬'. This implies
that both theories T [{'} and T [{¬'} are consistent, and thus, they have
countably infinite models. Since there is only one countably infinite model, up
to isomorphism, we get a contradiction as it cannot satisfy both ',¬'. ut

We now proceed to show the claim by considering the two cases provided
by Lemma 32.2: either T |= ' or T |= ¬'. Assume first that T |= '. By the
Compactness Theorem, there exists a finite subset T0 of T such that T0 |= '.
Let k be the sentence with the largest index k among the sentences of T0.
It is clear that k |= ' since k |= m whenever m  k. Therefore, for every
database D of S with |D| � k it is the case that D |= '. This implies that
µn(') = 1 for every n � k. Analogously, if T |= ¬', then we can show that
there is k 2 N such that µn(') = 0 for every n � k, and the claim follows. ut

32 The Limits of First-Order Queries: Counting 291

We can use Proposition 32.1 to show that only simple properties of cardi-
nalities of sets can be expressed using constant-free FO queries. We proceed
to make this more precise. Given a set of integers C ✓ N, let qC be a Boolean
query over the schema S = {R[1]} that asks whether the cardinality of the
input database is equal to an integer of C. In other words, for every database
D of S, D |= qC i↵ |D| 2 C. Interestingly, we can precisely characterize when
qC is expressible as a constant-free FO query.

Theorem 32.3

Let C ✓ N, and S be the schema {R[1]}. The following are equivalent:

1. There is a constant-free FO query q over S such that qC ⌘ q.

2. Either C is a finite set, or N� C is a finite set.

Proof. We first prove that (1) implies (2). Since, by hypothesis, qC can be
expressed as a constant-free FO query, Proposition 32.1 implies that there is
an integer k 2 N such that one of the following statements hold:

(i) For every D 2 Inst(S) with |D| � k it is the case that D |= qC .

(ii) For every D 2 Inst(S) with |D| � k it is the case that D 6|= qC .

Assuming that (i) holds, there are finitely many integers, let us say i1, . . . , im,
for m � 0, such that, given a database D0 of S with |D0| 2 {i1, . . . , im},
D0 6|= qC . This in turn implies that N � C is finite. Analogously, when (ii)
holds, we can show that C is finite, and statement (2) follows.

We now show that (2) implies (1). This is shown by constructing a Boolean
constant-free FO query q over S such that qC ⌘ q. We first observe that, given
an integer k 2 N, it is easy to construct an FO sentence 'k over S that is
satisfied only by databases D over S with |D| = k; in particular, 'k is

9x1 · · · 9xk

0

@
k̂

i=1

R(xi) ^
^

i,j2[k] : i<j

¬(xi = xj)

1

A ^

8x1 · · · 8xk+1

0

@
k+1̂

i=1

R(xi)!
_

i,j2[k+1] : i<j

xi = xj

1

A ,

where the first conjunct states that |D| � k, while the second conjunct states
that |D|  k. By exploiting the fact that either C is finite, or N�C is finite,
the desired Boolean constant-free FO query q is defined as '(), where

' =

8
><

>:

W
i2C 'i if C is finite

¬
�W

i2N�C 'i

�
if N� C is finite .

292 32 The Limits of First-Order Queries: Counting

It is easy to verify that qC ⌘ q, and the claim follows. ut

According to Theorem 32.3, it is impossible to check using a constant-free
FO query whether the cardinality of a set is even, or, more generally, whether
is divisible by some number n 2 N. Such a query is of the form qC where C is
an infinite set, and thus, not expressible as a constant-free FO query.

Zero-One Law

Although Theorem 32.3 allows us to conclude that constant-free FO queries
cannot express nontrivial statements about the cardinalities of sets, it is not
powerful enough to tell us something about comparisons of cardinalities of re-
lations. We proceed to establish a stronger property of FO sentences than the
one established by Proposition 32.1 above, known as zero-one law, which will
allow us to derive inexpressibility results concerning cardinality comparisons.

We start by reformulating the definition of the function µn used above.
We assume that the values occurring in a database are integers in order to be
able to enumerate them. Then, for an FO sentence ' over a schema S, let

µn(') =
|{D 2 Inst(S) | Dom(D) = [n] and D |= '}|

|{D 2 Inst(S) | Dom(D) = [n]}| .

In simple words, µn(') is the proportion of databases of S with Dom(D) = [n]
that satisfy '. Notice that this new definition of the function µn applies to
arbitrary schemas, not only to those with a single unary relation name. The
intuition behind the quantity µn(') can be described in purely probabilistic
terms. Consider the finite set of databases D of S with Dom(D) = [n]. Then
µn(') is the probability that a database one picks uniformly at random from
this set satisfies '. Now, by taking the limit limn!1 µn('), we essentially
describe the asymptotic behavior of the sequence (µi('))i>0; intuitively, it
defines the probability that a randomly picked database satisfies '.

Definition 32.4: 0–1 Law

We say that an FO sentence ' over a schema S enjoys the 0–1 law if

lim
n!1

µn(') 2 {0, 1}.

Intuitively, if an FO sentence ' over a schema S enjoys the 0–1 law, then
it is either satisfied by almost all the databases of S, or violated by almost
all the databases of S. This is the case for constant-free FO sentences over a
schema with a single unary relation name. Observe that there exists only one
database D of S = {R[1]} with Dom(D) = [n]. Therefore, for a constant-free
FO sentence ' over S, Proposition 32.1 says that the sequence (µi('))i>0

32 The Limits of First-Order Queries: Counting 293

eventually stabilizes, namely limn!1 µn(') 2 {0, 1}. Interestingly, this can
be shown for every constant-free FO sentence over an arbitrary schema.

Before showing this, let us stress that not all logical sentences enjoy the
0–1 law. There are, for example, FO sentences that mention constants that do
not enjoy the 0–1 law; this is discussed further in the comments for Part IV.
Another example is the query 'even, expressed in a logical formalism that goes
beyond first-order logic, that checks whether the cardinality of a database of
the schema S = {R[1]} is even, i.e., for every database D of S, D |= 'even i↵
|D| is even. Thus, µn('even) is 1 when n is even, and 0 when n is odd, which
means that the limit limn!1 µn(') does not even exist.

Theorem 32.5: 0–1 Law

Every constant-free FO sentence enjoys the 0–1 law.

Proof. We shall not prove the result in its full generality, but instead consider
the special case of constant-free FO sentences over a schema S with two unary
relation names, i.e., S = {R[1], S[1]}. Some ideas on how to extend the proof
to graphs, i.e., to schemas with a single binary relation name, are explained
in Exercise 4.13. This special case we study here builds on the proof of Propo-
sition 32.1, illustrates key elements in the proof of the 0–1 law, and allows us
to derive corollaries about cardinality comparisons.

The key elements are the same as in the general proof of the 0–1 law, and
are summarized in the next technical lemma:

Lemma 32.6. There exists a first-order theory T over S such that:

1. limn!1 µn() = 1 for each 2 T , and

2. T has a unique, up to isomorphism, countably infinite model.

Before we give the proof of the lemma, let us explain how it can be used to
show that every constant-free FO sentence enjoys the 0–1 law. Let T be the
theory provided by Lemma 32.6. Condition (2) of the lemma, and the same
argument as in the proof of Lemma 32.2, show that for every constant-free
FO sentence ', either T |= ' or T |= ¬'. Consider now a constant-free FO
sentence ' over S. We proceed by case analysis:

• Assume that T |= '. By the Compactness Theorem, ' is a consequence of
a finite subset { 1, . . . , m} of sentences of T . Since limn!1 µn(i) = 1
for each i 2 [m], we get that limn!1 µn(

Vm
i=1 i) = 1. Therefore, we have

that limn!1 µn(') = 1 since µn(') � µn(
Vm

i=1 i).

• Assume now that T |= ¬'. We apply the same argument to ¬', and
conclude that limn!1 µn(¬') = 1, which implies that limn!1 µn(') = 0.

Hence, limn!1 µn(') 2 {0, 1}. We proceed with the proof of Lemma 32.6.

294 32 The Limits of First-Order Queries: Counting

Proof (of Lemma 32.6). We construct a theory T over S, and then show that
it satisfies conditions (1) and (2). For each k 2 N, the theory T contains

 k(RS) = 9x1 · · · 9xk

0

@
^

i,j2[k] : i<j

¬(xi = xj) ^
^

i2[k]

(R(xi) ^ S(xi))

1

A ,

which states that, for a database D, the set RD \SD has at least k elements,

 k(RS̄) = 9x1 · · · 9xk

0

@
^

i,j2[k] : i<j

¬(xi = xj) ^
^

i2[k]

(R(xi) ^ ¬S(xi))

1

A ,

which states that RD � SD has at least k elements, and

 k(R̄S) = 9x1 · · · 9xk

0

@
^

i,j2[k] : i<j

¬(xi = xj) ^
^

i2[k]

(¬R(xi) ^ S(xi))

1

A ,

which states that SD �RD has at least k elements.
We first observe that the theory T is consistent. Indeed, it has a countably

infinite modelD such that RD[SD = N (recall the assumption that the values
occurring in a database are integers), and RD \ SD, RD � SD, and SD �RD

are countably infinite; for example, we can take RD = {3n, 3n+1 | n 2 N} and
SD = {3n, 3n+2 | n 2 N}. It is easy to see that any two such infinite databases
are isomorphic, and thus, up to isomorphism, T has only one countably infinite
model, satisfying condition (2) of Lemma 32.6.

We now prove that T satisfies the first condition. We show that, for each
integer k 2 N, the sentences k(RS), k(RS̄), and k(R̄S) are true in almost
all databases of S. We do this as an illustration for the sentence k(RS). To
this end, we consider its negation stating that |RD \ SD| < k, for a database
D. We first provide an upper bound for µn(¬ k(RS)):

• The numerator of µn(¬ k(RS)) coincides with the number of di↵erent
ways that we can choose two sets R and S from [n] such that R[S = [n]
and |R\S| < k. For each j < k, we have

�n
j

�
ways to choose an intersection

R \ S of cardinality less than k. Then we need to choose the elements of
R�S from the remaining n�j elements, and there are 2n�j ways of doing
so. The remaining elements must belong to S�R since R[S = [n]. Thus,
there are

�n
j

�
· 2n�j ways to choose two sets from [n] whose intersection

has exactly j elements, and whose union contains all the elements of [n].
This means that there are at most

X

j2[0,k�1]

✓
n

j

◆
· 2n�j  nk · 2n

ways of choosing two sets whose intersection has cardinality less than k.

32 The Limits of First-Order Queries: Counting 295

• The denominator of µn(¬ k(RS)) coincides with the number of ways to
choose two sets R and S from [n] such that R [S = [n]. There are 3n

ways of doing so since, for each element of [n], there are 3 possibilities: it
can either belong to R \ S, or R� S, or S �R.

From the above analysis, we conclude that

µn(¬ k(RS))  nk

✓
2

3

◆n

which means limn!1 µn(¬ k(RS)) = 0, and therefore

lim
n!1

µn(k(RS)) = 1.

The proof for k(RS̄) and k(S̄R) are very similar. This shows that T satisfies
both conditions (1) and (2), and concludes the proof of Lemma 32.6. ut

This completes the proof of Theorem 32.5. ut

Theorem 32.5 allows us to establish inexpressibility results concerning car-
dinality comparisons. For ⇧ 2 {<,,=}, let q⇧ be a Boolean query over the
schema S = {R[1], S[1]} that compares the cardinalities of the relations RD

and SD for a database D according to the comparison ⇧. In other words, for
every database D of S, the query q⇧ is true in D i↵ the comparison |RD|⇧ |SD|
is true. We now show via a 0–1 law argument that none of the comparisons
|R| = |S|, or |R| < |S|, or |R|  |S|, is expressible as a constant-free FO query.

Theorem 32.7

Let S = {R[1], S[1]}. For every ⇧ 2 {<,,=}, there is no constant-free
FO query q over S such that q⇧ ⌘ q.

Proof. We prove the result for the case of q< via a 0–1 law argument; a very
similar argument works for q. The case of q= can be also shown via a 0–1
law argument, and is left as an exercise (see Exercise 4.10).

Let F=
n be the number of all databases D of S such that Dom(D) = [n] and

|RD| = |SD|; we define F<
n and F>

n likewise. From the proof of Theorem 32.5
we know that F=

n + F<
n + F>

n = 3n. Moreover, by symmetry, F<
n = F>

n , and
thus, F=

n +2F<
n = 3n. We first estimate the value F=

n . To have a database D
in which |RD| = |SD|, for every k  bn/2c, we can pick k elements to belong
to RD � SD, from the remaining n � k elements we can pick k elements to
belong to SD �RD, and the remaining ones belong to RD \ SD. Hence

F=
n =

X

kbn/2c

✓
n

k

◆✓
n� k

k

◆

and one can show (Exercise 4.12) that

296 32 The Limits of First-Order Queries: Counting

lim
n!1

F=
n

3n
= 0.

Assume now that there is a constant-free FO query q = '() such q< ⌘ q,
i.e., q expresses the condition |RD| < |SD|. Then

lim
n!1

µn(') = lim
n!1

F<
n

3n
= lim

n!1

3n � F=
n

2 · 3n =
1

2
� lim

n!1

F=
n

2 · 3n =
1

2

which contradicts the 0–1 law, and the claim follows. ut

33

Adding Aggregates and Grouping

When the core of SQL was presented in Chapter 5, a commonly used feature of
it was omitted, namely aggregation. It is typically used together with grouping
to apply numerical functions to entire columns of a relation. Recall that one
of the relation names in the schema that we usually use in examples is

City [cid, cname, country]

If we want to know how many cities each country has, we can write in SQL

SELECT country, COUNT(cid) AS city_count
FROM City
GROUP BY country

For each value of the country attribute, it groups together all the tuples having
this value, and then counts the number of occurrences of cid in such a group
and outputs it as the value of the new attribute city count. Here, COUNT is an
aggregate function: it applies to a collection, and produces a single numerical
value. The standard aggregates of SQL, in addition to COUNT, are SUM and AVG
that compute the sum and the average of a collection of numbers, as well as
MIN and MAX that compute the minimum and the maximum.

Queries with aggregates are extremely common and useful in practice; for
example, “find the average grade for each class” or “find the total cost of
products sold to each country”. The addition of aggregate functions, however,
takes us out of the realm of FO and RA queries. Indeed, by Theorem 32.7,
we know that cardinality comparisons are not expressible via FO queries.
However, they are easily expressible with the help of aggregate functions:

SELECT DISTINCT 1 FROM R, S
WHERE (SELECT COUNT(*) FROM R) > (SELECT COUNT(*) FROM S)

outputs 1 if |R| > |S|, and nothing otherwise.

298 33 Adding Aggregates and Grouping

In this chapter, we introduce a query language with aggregates and group-
ing based on RA. Of course one can also define a logical language with aggre-
gates, but this is cumbersome for the reasons that are explained below. Note
that in Chapter 34, we analyze queries that cannot be expressed even if we
have the powerful features of aggregates and grouping. Let us now discuss the
technical issues that arise due to aggregates:

Numerical Attributes. So far we assumed that database elements come
from a countably infinite set Const of values. With the addition of aggre-
gates, however, we can no longer make this assumption, as we need to
distinguish attributes that are numerical. For example, we can only apply
AVG over numbers. Thus, in the description of relational schemas, it is no
longer su�cient to simply state what the arity of each relation name is. In
addition, we need to provide information about attributes that are numer-
ical. The standard approach for solving this technical issue is to consider
two-sorted schemas: there will be columns populated by the usual values
from Const, and columns populated by values from a numerical domain
Num; e.g., the natural numbers N, or the integers Z, or the rationals Q.

Infinite Numerical Domains. The second issue manifests itself when we
deal with logical languages for aggregates. In Chapter 3, we defined the
satisfaction of a logical formula over the active domain of the database and
the formula (recall that Definition 3.3 defines the active domain seman-
tics of first-order logic). However, aggregates can produce new numerical
values that do not occur in the active domain. Therefore, the satisfaction
of formulae must be defined with respect to the entire infinite numeri-
cal domain Num. This leads to the situation where a logical formula '
may be satisfied by an infinite number of assignments of values to its free
variables, and thus, the expression '(x̄), for some tuple x̄ over the free
variables of ', may not define a query since its output on a database may
be infinite. Although we can define a logical language with aggregates
that does not exhibit this problem, its syntax is cumbersome. Therefore,
we present the language with aggregates and grouping at the level of re-
lational algebra, where the above problem does not arise. We present an
extension of first-order logic with aggregates in Chapter 34 that uses a
relatively simple syntax, and show that RA with aggregates and grouping
translates to it. However, this logical language will not serve as the basis
for defining a query language with aggregates, but rather as a technical
tool for analyzing the expressive power of aggregates.

Two-Sorted Schemas, Databases and Queries

We first revisit the notions of database schema, database instance, and query
in order to take into account the fact that relations can now have both ordi-
nary and numerical values. These are actually straightforward adaptations of

33 Adding Aggregates and Grouping 299

the definitions given in Chapter 2, but, for the sake of completeness and read-
ability, we proceed to properly introduce those notions. As usual, for technical
clarity, we adopt the unnamed perspective.

Each relation name R in a schema should come not simply with its arity k,
but rather with a tuple ⌧ of arity k over {o, n}, where o indicates a column of
ordinary type taking values from Const, and n indicates a column of numerical
type taking values from a set of numerical values Num. The formal definition
of two-sorted database schemas follows.

Definition 33.1: Two-Sorted Database Schema

A two-sorted (database) schema is a partial function

S : Rel! {o, n}k,

for k 2 N, such that Dom(S) is finite. For a relation name R 2 Dom(S),
the arity of R under S, denoted arS(R), is defined as k.

In order to avoid heavy notation, we write ar(R) instead of arS(R) for the
arity of R under S. We may even write R : ⌧ to indicate that S(R) = ⌧ . As
for plain schemas, a two-sorted schema can be naturally seen as a finite set of
relation names. We may also write S = {R1 : ⌧1, . . . , Rn : ⌧n} for the fact
that Dom(S) = {R1, . . . , Rn} and S(Ri) = ⌧i for each i 2 [n].

The elements of database tuples are coming from the set of values Const,
and the set of numerical values Num, namely a two-sorted database tuple is an
element of (Const[Num)k for some k 2 N. A two-sorted relation instance is a
finite set S of two-sorted database tuples of the same arity k. We say that k
is the arity of S, denoted by ar(S). By tsRI (for two-sorted relation instances)
we denote the set of all such relation instances. The formal definition of a
database instance of a two-sorted schema follows.

Definition 33.2: Two-Sorted Database Instance

A database instance D of a two-sorted schema S is a function

D : Dom(S)! tsRI

such that, for every R 2 Dom(S), the following hold:

• ar(D(R)) = arS(R), and

• with S(R) = (⌧1, . . . , ⌧k) and D(R) = (a1, . . . , ak), we have that
ai 2 Const if ⌧i = o, and ai 2 Num if ⌧i = n, for every i 2 [k].

We will refer to a database instance of a two sorted schema as a two-sorted
database, or simply as a database whenever is clear that the underlying schema
is two-sorted. The active domain (or simply domain) of a two-sorted database

300 33 Adding Aggregates and Grouping

D is defined in the same way as the active domain of a plain database given in
Chapter 2, and is denoted Dom(D); we will never use the term domain, and
the notation Dom(D), to refer to the domain of the function D, i.e., Dom(S).
A two-sorted database can be naturally seen as a finite set of facts.

We can now naturally define two-sorted queries as functions that map two-
sorted databases to finite sets of tuples of the same type over Const [Num.
For a two-sorted schema S, we write Inst(S) for the set of all databases of S.

Definition 33.3: Two-Sorted Queries

Consider a two-sorted database schema S. A query of type (⌧1, . . . , ⌧k) 2
{o, n}k, for k � 0, over S is a function of the form

q : Inst(S)! Pfin((Const [Num)k)

such that, for every D 2 Inst(S) with q(D) = (a1, . . . , ak), it is the case
that ai 2 Const if ⌧i = o, and ai 2 Num if ⌧i = n, for every i 2 [k].

Regarding the domain Num, we assume that it comes equipped with:

• (Numerical) predicates: a predicate P or arity k > 0 over Num is a subset
of Numk. For brevity, we say that P (a1, . . . , ak) holds if (a1, . . . , ak) 2 P .
Examples of binary predicates are = and <.

• (Numerical) functions: a function of arity k > 0 over Num is a function of
the form f : Numk ! Num. Examples of binary functions are + and ⇥.

• Aggregate functions or aggregates: an aggregate F over Num is a function
that maps bags (or multisets) of elements of Num to Num. In a bag, unlike
a set, an element can appear multiple times; e.g., {|1, 1, 2, 4|} is a bag that
has two occurrences of 1, and one occurrence of 2 and 4. We shall use the
brackets {| |} to distinguish bags from sets.

Let us stress that aggregates must be applied to bags rather than sets since
values in databases can repeat. Here is a simple example that illustrates this.

Example 33.4: Aggregates over Bags

Consider the two-sorted database

D = {R(a, 1), R(b, 1), R(c, 2), R(d, 4)}.

It is clear that the second column of RD is the bag

{|1, 1, 2, 4|}.

Assume now that we are interested in computing the average of the nu-
merical values occurring in the second column of RD. Applying the aver-

33 Adding Aggregates and Grouping 301

age aggregate to {|1, 1, 2, 4|} will correctly produce the value 2. However,
if we apply it to the set {1, 2, 4}, we get an incorrect value 2.333 · · · .

Syntax of RA with Aggregates and Grouping

Assuming a set ⌦ of predicates, functions, and aggregates over the numerical
domain Num, we are going to define relational algebra with aggregates and
grouping, denoted RAAggr(⌦). Its expressions, unlike expressions of RA, will
be typed. The type of an expression is again a tuple over {o, n} indicating which
attributes of the output are ordinary and which are numerical. In addition to
the usual operations, we add the operations of selection based on numerical
predicates, applying functions, and applying aggregates.

Before giving the formal definition of RAAggr(⌦), we first need to introduce
some auxiliary notions. For a tuple ⌧ = (⌧1, . . . , ⌧k) 2 {o, n}k, where k 2 N,
we inductively define (⌦, ⌧)-terms, and their associated types, as follows:

• Every a 2 Const is an (⌦, ⌧)-term of type o.

• Every integer i 2 [k] is an (⌦, ⌧)-term of type ⌧i.

• If f is an m-ary numerical function from ⌦, and t1, . . . , tm are (⌦, ⌧)-
terms of type n, then f(t1, . . . , tm) is an (⌦, ⌧)-term of type n.

We write ⌧(t) for the type of an (⌦, ⌧)-term t, and Var(t) for the set of all
integers that appear in t. An (⌦, ⌧)-condition ✓ is a Boolean combination of
statements of the form i

.
= j and i 6 .= j, for i, j 2 [k], and P (i1, . . . , im), where

i1, . . . , im 2 [k] and P is an m-ary predicate from ⌦.

Definition 33.5: Syntax of RA with Aggregates and Grouping

Consider a set ⌦ of predicates, functions, and aggregates over Num. We
inductively define RAAggr(⌦) expressions over a two-sorted schema S,
and their associated types, as follows:

Base Expression. If R : ⌧ belongs to S, then R is an RAAggr(⌦) ex-
pression over S of type ⌧ .

Selection. If e is an RAAggr(⌦) expression over S of type ⌧ , and ✓ is
an (⌦, ⌧)-condition, then �✓(e) is an RAAggr(⌦) expression over S of
type ⌧ .

Projection. If e is an RAAggr(⌦) expression of type ⌧ = (⌧1, . . . , ⌧k), for
k � 0, and ↵ = (t1, . . . , tm), for m � 0, is a list of (⌦, ⌧)-terms, then
⇡↵(e) is an RAAggr(⌦) expression over S of type (⌧(t1), . . . , ⌧(tm)).

Cartesian Product. If e1, e2 are RAAggr(⌦) expressions over S of type
(⌧1, . . . , ⌧k) and (⌧ 01, . . . , ⌧

0
m), for k,m � 0, respectively, then (e1⇥e2)

is an RAAggr(⌦) expression over S of type (⌧1, . . . , ⌧k, ⌧ 01, . . . , ⌧
0
m).

302 33 Adding Aggregates and Grouping

Aggregation and Grouping. If e is an RAAggr(⌦) expression over S
of type ⌧ = (⌧1, . . . , ⌧k), for k � 0, ↵ = (i1, . . . , im), for m � 0, is a
list of integers from [k], and t1, . . . , t`, for ` � 0, are (⌦, ⌧)-terms of
type n such that Var(ti) \ {i1, . . . , im} = ;, for each i 2 [`], then

Aggr↵[F1(t1), . . . ,F`(t`)](e),

where F1, . . . ,F` are aggregates from ⌦, is an RAAggr(⌦) expression
over S of type (⌧i1 , . . . , ⌧im , n, . . . , n) with n repeated ` times.

Union. If e1, e2 are RAAggr(⌦) expressions over S of type ⌧ , then (e1 [
e2) is an RAAggr(⌦) expression over S of type ⌧ .

Di↵erence. If e1, e2 are RAAggr(⌦) expressions over S of type ⌧ , then
(e1 � e2) is an RAAggr(⌦) expression over S of type ⌧ .

Concerning the base expression in Definition 33.5, observe the di↵erence
with the definition of RA (Definition 4.1). In particular, in ordinary RA we
have base expressions {a} of arity 1, where a 2 Const. Thus, one would expect
in Definition 33.5 base expressions of the form {a} of type o. However, such
base expressions would be redundant since every element of Const is a term,
and thus, can be expressed via expressions of the form ⇡(a)(R) of type o (based
on the semantics of RAAggr(⌦) expressions as defined next).

Semantics of RA with Aggregates and Grouping

The semantics of the standard relational algebra operations is the same as it
was presented in Chapter 4. For numerical selection conditions, P (i1, . . . , im)
is true in a tuple (a1, . . . , ak) i↵ i1, . . . , im correspond to columns of type n
and P (ai1 , . . . , aim) holds. For example, <(1, 3) is true in a tuple (a1, a2, a3)
i↵ the first and the third components are numerical and a1 < a3.

It remains to explain the new generalized projection, and aggregation with
grouping. We first provide informal explanations by means of SQL examples.

Example 33.6: Generalized Projection

Projection allows us compute functions on attributes and output them.
For example, for R[A,B,C] with (R,A)l(R,B)l(R,C), the SQL query

SELECT R.A+R.C, R.B*R.C
FROM R

is translated into the following RAAggr(⌦) expression of type (n, n):

⇡(add(1,3),mult(2,3))(R)

assuming that ⌦ contains the binary functions add and mult such that

33 Adding Aggregates and Grouping 303

add(x, y) = x+ y and mult(x, y) = x · y.

Grouping and aggregation can also be explained intuitively by using SQL
queries. In particular, Aggr(i1,...,im)[F1(t1), . . . ,F`(t`)](R) corresponds to

SELECT i1, . . . , im,F1(t1), . . . ,F`(t`)
FROM R
GROUP BY i1, . . . , im

assuming that the attributes of R are 1, . . . , k.

Example 33.7: Aggregation and Grouping

For a ternary relation R, the evaluation of

Aggr(1)[SUM(mult(2, 3))](R)

is illustrated below:

a 4 5
a 5 4
b 6 7
b 7 6

! (GROUP BY)

a
4 5
5 4

b
6 7
7 6

! (mult)

a
20
20

b
42
42

! (SUM)
a 40
b 84

The GROUP BY clause does the grouping relative to the first attribute,
keeping duplicates if necessary. Then, the term values are computed,
again preserving duplicates; for example, for both tuples (4, 5) and (5, 4),
the result of the multiplication is 20, and thus two copies are kept. Fi-
nally, the aggregate sums up the values of those terms.

We now define the semantics of generalized projection, and aggregation
with grouping. We first need some auxiliary notions. Consider an (⌦, ⌧)-term
t, where ⌧ = (⌧1, . . . , ⌧k) 2 {o, n}k. A tuple ā = (a1, . . . , an) 2 (Const[Num)n,
for n � k, is compatible with t if ⌧i = o implies ai 2 Const, and ⌧i = n implies
ai 2 Num, for every i 2 Var(t) . We define the evaluation of t over a tuple
ā = (a1, . . . , an) that is compatible with it, denoted eval(t|ā), as follows:

• if t = a with a 2 Const, then eval(t|ā) = a,

• if t = i with i 2 [k], then eval(t|ā) = ai, and

• if t = f(t1, . . . , tm), then eval(t|ā) = f
�
eval(t1|ā), . . . , eval(tm|ā)

�
.

Furthermore, given a two-sorted relation R of arity n 2 N consisting of tuples
that are compatible with t, a list of integers ↵ = (i1, . . . , im), for m � 0, from
[n], and a tuple ā 2 ⇡↵(R), we define the bag

304 33 Adding Aggregates and Grouping

B(ā, R, t) = {| eval(t|c̄) | c̄ 2 R and ā = ⇡↵(c̄) |} .

For instance, going back to Example 33.7, for t = mult(2, 3),

B((a), R, t) = {| eval(t|(a, 4, 5)), eval(t|(a, 5, 4)) |} = {| 20, 20 |} .

Definition 33.8: Semantics of Projection and Aggregation

Consider a set ⌦ of predicates, functions, and aggregates over Num. Let
D be a database of a two-sorted schema S, and e an RAAggr(⌦) over S.
We define the output e(D) of e on D as follows:

• If e = ⇡(t1,...,tm)(e1), where e1 is an RAAggr(⌦) expression, then

e(D) = {(eval(t1|ā), . . . , eval(tm|ā)) | ā 2 e1(D)} .

• If e = Aggr(i1,...,im)[F1(t1), . . . ,F`(t`)](e1), where e1 is an RAAggr(⌦)
expression, then

��
ā,F1

�
B(ā, R, t1)

�
, . . . ,F`

�
B(ā, R, t`)

�� �� ā 2 ⇡(i1,...,im)(e1(D))

.

It is clear that RAAggr(⌦) expressions readily define queries over two-sorted
schemas. Indeed, if e is an RAAggr(⌦) expression, then the output of e on a
two-sorted database D is e(D). We thus may refer to e as a query.

Here is another example, slightly more involved than the ones given above,
of expressing an SQL query as an RA query with aggregates and grouping.

Example 33.9: RA with Aggregates and Grouping

For R[A,B,C] with (R,A)l (R,B)l (R,C), the SQL query

SELECT R.A, SUM(R.B), AVG(R.B*R.C)
FROM R
GROUP BY R.A
HAVING SUM(R.B) > AVG(R.C)

is translated into the RAAggr(⌦) query

⇡(1,2,4)
⇣
�2>3

⇣
Aggr(1) [SUM(2), AVG(3), AVG(mult(2, 3))] (R)

⌘⌘

assuming ⌦ contains the predicate <, the numerical function mult, and
the aggregate functions SUM and AVG with the obvious meaning. The
aggregate expression groups by the first attribute, and computes the
sum of the second, and the averages of the third and the product of the
second and the third attributes, which then become the second, third,

33 Adding Aggregates and Grouping 305

and fourth attributes. The selection �2>3 enforces the condition in the
HAVING clause, and the projection outputs the attributes listed in SELECT.

Complexity of RA with Aggregates and Grouping

We proceed to study the complexity of evaluating RAAggr(⌦) queries for some
set ⌦ of predicates, functions, and aggregates over Num. Note that the query
evaluation problem for RAAggr(⌦) is defined in a slightly di↵erent way than
the query evaluation problem for the query languages that we have seen so
far. In particular, the input database is two-sorted, while the candidate tuple
mentions both constants from Const and values from Num.

Problem: RAAggr(⌦)-Evaluation

Input: A query e from RAAggr(⌦), a two-sorted database D, a tuple
ā over Const [Num

Output: true if ā 2 e(D), and false otherwise

We can also talk about the data complexity of RAAggr(⌦)-Evaluation. As
discussed in Chapter 2, when we study the data complexity of query evalua-
tion, we essentially consider the query to be fixed, and only the database and
the candidate output are part of the input. Formally, we are interested in the
complexity of e-Evaluation, for an RAAggr(⌦) query e, which takes as input
a two-sorted database D and a tuple ā over Const [Num, and asks whether
ā 2 e(D). As usual, RAAggr(⌦)-Evaluation is in C in data complexity, for some
complexity class C, if e-Evaluation is in C for every RAAggr(⌦) query e.

Given an RAAggr(⌦) query e, to check whether ā 2 e(D), we actually need
to compute e(D). Indeed, the only way to check if a numerical value equals
the output of an aggregate function is to compute the entire bag of values to
which the aggregate is applied. It is clear that the complexity of computing
e(D), and therefore, the complexity of RAAggr(⌦)-Evaluation, heavily relies
on how complex is to compute predicates, functions, and aggregates from ⌦.
We concentrate on predicates, functions, and aggregates that are easily com-
putable, and show that, although evaluating RAAggr(⌦) queries is in general
intractable, it becomes tractable when we focus on data complexity.

We say that a k-ary predicate P is computable in polynomial time if, for
a tuple ā 2 Numk, we can check in polynomial time whether P (ā) holds. We
also say that that a k-ary function f is computable in polynomial time if
f(ā) can be computed in polynomial time. Analogously, we can talk about
aggregates that are computable in polynomial time. By a simple inspection of
each operation of RAAggr(⌦), it is not di�cult to show the following result:

306 33 Adding Aggregates and Grouping

Theorem 33.10

Consider a set ⌦ of predicates, functions, and aggregates over Num that
are computable in polynomial time. Then RAAggr(⌦)-Evaluation is in Ex-
pTime, and in PTime in data complexity.

34

Aggregates, Grouping, and Locality

Aggregation and grouping are powerful features that allow us to express inter-
esting counting properties. There are some common queries nonetheless that
cannot be expressed even if aggregation and grouping are available. These are
the same recursive queries, such as reachability, that were already shown to
be inexpressible in FO in Chapter 31. In fact, the tool we shall use to show
this is also the same, namely locality. It turns out that adding any amount of
aggregate and counting power does not break the locality of FO, i.e., queries
can still only see within a fixed distance of their free variables. In particular,
in this chapter we are going to show the following inexpressibility result:

Theorem 34.1

Consider a numerical domain Num, and an arbitrary set ⌦ of predicates,
functions, and aggregates over Num. There is no RAAggr(⌦) query e over
the schema S = {E : (o, o)} that expresses the reachability query qreach.

This will motivate extending query languages with explicit recursive com-
putation, as will be done in Chapters 35 – 38.

Locality of Two-Sorted Queries

We need to lift the main definitions related to locality, seen in Chapter 31,
to queries over databases that include values of the numerical type. This is
very routine: the definitions of the Gaifman graph, radius-r balls and neigh-
borhoods, and their isomorphism, do not change at all.

Definition 34.2: Locality of Queries

A query q of type ⌧ 2 {o, n}k over a two-sorted schema S is r-local,
for r � 0, if, for every database D of S, and every two tuples ā, b̄ 2

308 34 Aggregates, Grouping, and Locality

(Const [Num)k such that ND
r (ā) and ND

r (b̄) are isomorphic, ā 2 q(D)
i↵ b̄ 2 q(D). A query is called local, if it is r-local for some r � 0.

We proceed to show a locality result focussing on schemas that consist of
relation names of ordinary type. For brevity, we say that as schema S is of
ordinary type if, for each R : ⌧ 2 S, ⌧ 2 {o}k for some k � 0.

Theorem 34.3

Consider a numerical domain Num, and a set ⌦ of predicates, functions,
and aggregates over Num. Every RAAggr(⌦) query of type {o}k, for k � 0,
over a schema of ordinary type is local.

What if instead we consider arbitrary two-sorted schemas? In this case
there is no known result analogous to Theorem 34.3. In fact, proving an analog
of Theorem 34.1 for relations of type (n, n) would resolve deep open problems
in complexity theory (see Exercise 4.19 for further explanations).

The rather long proof of Theorem 34.3 consists of three main steps:

FO with Aggregates. We first present an extension of FO with aggregates,
and show that RA with aggregates and grouping translates to it. Note that
this logical language is a useful technical tool for showing Theorem 34.3,
but it cannot serve as the basis for defining a query language with aggre-
gates; further details are given below.

Counting Logic. We then express an RA query with aggregates and group-
ing, via its translation into the extension of FO with aggregates, in an
infinitary counting logic that is easier to analyze mathematically.

Locality of Counting Logic. We finally prove the locality of this counting
logic. In fact, we shall see that the proof given in Chapter 31 applies with
a few minor modifications.

For the sake of clarity, the second and third steps are focussing on queries and
logical formulae that do not mention ordinary constants from Const. Extend-
ing the proof to handle constants is the subject of Exercise 4.15.

First-Order Logic with Aggregates

Considering the set ⌦ of predicates, functions, and aggregates over the nu-
merical domain Num, we are going to define first-order logic with aggregates,
denoted FOAggr(⌦). Similarly to RAAggr(⌦), the logical language FOAggr(⌦)
must be typed, in particular, each variable should come with its type. We
therefore assume that the set Var is partitioned into two infinite sets Varo and
Varn of variables of type o and n, respectively. We use x, y, z, . . . for variables

34 Aggregates, Grouping, and Locality 309

from Varo, which will be ranging over the set of constants Const, and ı, |, . . .
for variables from Varn, which will be ranging over the numerical domain Num.

Definition 34.4: Syntax of FO with Aggregates

Consider a two-sorted schema S. We define ⌦-terms (relative to S) with
their associated types, and FOAggr(⌦) formulae over S, by mutual induc-
tion as follows:

⌦-terms

• Each constant of Const and variable of Varo is an ⌦-term of type o.

• Each value a 2 Num is an⌦-term of type n, whose set of free variables
FV(a) is empty.

• Each variable ı 2 Varn is an ⌦-term of type n, whose set of free
variables FV(ı) is {ı}.

• If f is an m-ary numerical function from ⌦, and t1, . . . , tm are ⌦-
terms of type n, then f(t1, . . . , tm) is an ⌦-term of type n, whose set
of free variables FV(f(t1, . . . , tm)) is FV(t1) [· · · [FV(tm).

• If ' is an FOAggr(⌦) formula over S, t is an ⌦-term of type n, and
F is an aggregate of ⌦, then

AggrF (ū) (', t)

where ū = (u1, . . . , uk) is a tuple of variables over Var such that
{u1, . . . , uk} ✓ FV(t) and FV(t) ✓ FV('), is an ⌦-term of type n,
whose set of free variables FV(AggrF (ū) (', t)) is FV(')�{u1, . . . , uk}.

FOAggr(⌦) Formulae

• If a 2 Const, and x 2 Varo, then x = a is an atomic formula, whose
set of variables FV(x = a) is {x}.

• If x, y 2 Varo, then x = y is an atomic formula, whose set of free
variables FV(x = y) is {x, y}.

• If t is an ⌦-term of type n, and ı 2 Varn, then ı = t is an atomic
formula, whose set of free variables FV(ı = t) is {ı} [FV(t).

• If u1, . . . , uk are ⌦-terms (not necessarily distinct) from Const [
Num[Var, where ui is of type ⌧i for each i 2 [k], and R : (⌧1, . . . , ⌧k)
belongs to S, then R(u1, . . . , uk) is an atomic formula, whose set of
free variables FV(R(u1, . . . , uk)) is {u1, . . . , uk} \ Var.

• If u1, . . . , uk are ⌦-terms (not necessarily distinct) from Num[Varn,
and P is a k-ary numerical predicate from ⌦, then P (u1, . . . , uk) is

310 34 Aggregates, Grouping, and Locality

an atomic formula, whose set of free variables FV(P (u1, . . . , uk)) is
{u1, . . . , uk} \ Varn.

• If '1 and '2 are formulae, then ('1^'2) and ('1_'2) are formulae,
whose set of free variables FV('1 ^ '2) = FV('1 _ '2) is FV('1) [
FV('2).

• If ' is a formula, then (¬') is a formula, whose set of free variables
FV(¬') is FV(').

• If ' is a formula and u 2 Var, then (9u') and (8u') are formulae,
whose set of free variables FV(9u') = FV(8u') is FV(')� {u}.

We will omit the outermost brackets of FOAggr(⌦) formulae. To define the
semantics of FOAggr(⌦), we need the notion of assignment for ⌦-terms and
formulae. Given an ⌦-term t of type n, an assignment ⌘ for t is a function from
FV(t) to Const [Num such that ⌘(u) 2 Const if u 2 Varo, and ⌘(u) 2 Num
if u 2 Varn. Similarly, given an FOAggr(⌦) formula ', and a database D, an
assignment ⌘ for ' over D is a function from FV(') to Dom(D)[Dom(')[
Num, where Dom(') is the set of constants and numerical values occurring in
', such that ⌘(u) 2 Const if u 2 Varo, and ⌘(u) 2 Num if u 2 Varn. We write
⌘[u/a], for u 2 Var and a 2 Const [Num, for the assignment that modifies ⌘
by setting ⌘(u) = a. To avoid heavy notation, we extend an assignment to be
the identity on Const [Num. The semantics of FOAggr(⌦) follows.

34 Aggregates, Grouping, and Locality 311

Definition 34.5: Semantics of FO with Aggregates

Consider a two-sorted schema S. We define the value of ⌦-terms (relative
to S) of type n, and the satisfaction of FOAggr(⌦) formulae over S, by
mutual induction as follows.

Value of ⌦-terms

Let t be an ⌦-term of type n and ⌘ an assignment for t. The value of t
in a database D of S under ⌘, denoted tD,⌘, is defined as follows:

• If t = a with a 2 Num, then tD,⌘ = a.

• If t = ı with ı 2 Varn, then tD,⌘ = ⌘(ı).

• If t = f(t1, . . . , tm), then tD,⌘ = f(tD,⌘
1 , . . . , tD,⌘

m).

• If t = AggrF (ū) (', t0), with H being the set of all assignments
⌘0 for ' over D that agree with ⌘ on FV(') and satisfy that
(D, ⌘0) |= ', then tD,⌘ = F({||}) if H is infinite, otherwise tD,⌘ =

F
⇣
{|tD,⌘0

0 | ⌘0 2 H|}
⌘
.

Satisfaction of FOAggr(⌦) Formulae

Let ' be a formula over S, and ⌘ an assignment for '. We define when '
is satisfied in a database D of S under ⌘, written (D, ⌘) |= ', as follows
(omitting Boolean connectives, which are defined in the standard way):

• If ' is x = a, then (D, ⌘) |= ' if ⌘(x) = a.

• If ' is x = y, then (D, ⌘) |= ' if ⌘(x) = ⌘(y).

• If ' is ı = t, then (D, ⌘) |= ' if ⌘(ı) = tD,⌘.

• If ' is R(u1, . . . , uk), for R a k-ary relation symbol from S, then
(D, ⌘) |= ' if R(⌘(u1), . . . , ⌘(uk)) 2 D.

• If ' is P (u1, . . . , uk), for P a k-ary numerical predicate from ⌦, then
(D, ⌘) |= ' if (⌘(u1), . . . , ⌘(uk)) 2 P .

• If ' = 9u , then (D, ⌘) |= ' if (D, ⌘[u/a]) |= for some a 2
(Dom(D) [Dom(')) \ Const if u 2 Varo, and a 2 Num if u 2 Varn.

• If ' = 8x , then (D, ⌘) |= ' if (D, ⌘[x/a]) |= for each a 2
Dom(D) [(Dom(') \ Const) if u 2 Varo, and a 2 Num if u 2 Varn.

We can now observe a crucial di↵erence between first-order logic with
aggregates, and first-order logic as defined in Chapter 3. Given an FOAggr(⌦)
formula ', we may have infinitely many assignments ⌘ for ' over a database D
such that (D, ⌘) |= '. Consider, for example, the formula ' = R(x)^(| = ı+1),

312 34 Aggregates, Grouping, and Locality

and the database D = {R(a)} with a 2 Const. Assuming that Num is the set
of integers, any of the infinitely many assignments ⌘ : {x, ı, |} ! {a} [Num
for which ⌘(x) = a and ⌘(|) = ⌘(ı) + 1 satisfies (D, ⌘) |= '. This implies that
first-order logic with aggregates cannot be used to define a query language
as we did with ordinary FO in Chapter 3. Nevertheless, given an expression
'(ū), where ' is an FOAggr(⌦) formula, and ū is a tuple over FV(') such that
each free variable of ' occurs in ū at least once, we can define the output of
'(ū) on a database D, denoted '(ū)(D), in the obvious way, but we cannot
call '(ū) a query since '(ū)(D) may be infinite. One can still define a logic
with aggregates that can in turn be used to define a query language, but the
syntax is much more cumbersome.

We now show that that every RA query with aggregates and grouping can
be expressed via FO with aggregates.

Proposition 34.6

Consider an RAAggr(⌦) query e over a two-sorted schema S. There ex-
ists an FOAggr(⌦) formula 'e over S, and a tuple ūe over FV('e) that
mentions all the variables of FV('e), such that e(D) = 'e(ūe)(D), for
every database D of S.

Proof. The proof is by induction on the structure of e. Most of the cases are
treated in the same way as in the proof of Theorem 6.1, in particular, the proof
that every RA query can be equivalently written as an FO query. We proceed
to discuss the two new cases, namely generalized projection and grouping
with aggregation. For an (⌦, ⌧)-term t, where ⌧ = (⌧1, . . . , ⌧k) 2 {o, n}k, and
a tuple of variables ū = (u1, . . . , uk) with ui being of type ⌧i, for each i 2 [k],
we write t(ū) for the ⌦-term obtained from t by replacing each i 2 Var(t)
with ui. We are now ready to proceed with the translations:

• Assume first that e is ⇡(t1,...,tm)(e
0). By induction hypothesis, there exists

an FOAggr(⌦) formula 'e0 , and a tuple ūe0 = (u1, . . . , uk) over FV('e0),
such that 'e0(ūe0) expresses e0. We define the FOAggr(⌦) formula

'e = 9u1 · · · 9uk

'e0 ^

m̂

i=1

vi = ti(ūe0)

!
,

and the tuple ūe = (v1, . . . , vm) over FV('e).

• Assume now that e is Aggr(i1,...,im)[F1(t1), . . . ,F`(t`)](e0); for the sake
of clarity, we assume that (i1, . . . , im) = (1, . . . ,m), but the same con-
struction can be applied to any list of integers. By induction hypothesis,
there exists an FOAggr(⌦) formula 'e0 , and a tuple ūe0 = (u1, . . . , uk) over
FV('e0), such that 'e0(ūe0) expresses e0. We define the FOAggr(⌦) formula

34 Aggregates, Grouping, and Locality 313

'e = 9wm+1 · · · 9wk

✓
 e0 ^

`̂

i=1

vi = AggrFi
(wm+1, . . . , wk) (e0 , ti(u1, . . . , um, wm+1, . . . , wk))

◆
,

where e0 is obtained from 'e0 by replacing ui with wi for each i 2 [m+
1, k], and the tuple ūe = (u1, . . . , um, v1, . . . , v`) over FV('e).

It is easy to verify the correctness of the above translations. ut

An Infinitary Counting Logic

We now proceed with the second step of the proof of Theorem 34.1, where the
goal is to express an RAAggr(⌦) query, by exploiting Proposition 34.6, into
a convenient infinitary counting logic. We proceed to introduce the counting
logic LC, and its sublogic LC, which we prove to be equivalent to LC. Recall
that, for the sake of clarity, in this step we focus on queries and formulae that
do not mention constants from Const. In what follows, every value of Num,
and every variable of Var, is a term of the respective type, and of rank 0.

Definition 34.7: An Infinitary Counting Logic

Consider a two-sorted schema S. We define formulae of LC over S, and
their associated rank, by induction as follows:

• If x, y 2 Varo, then x = y is an atomic formula with rank(x = y) = 0.

• If a 2 Num, and ı 2 Varn, then ı = a is an atomic formula with
rank(ı = a) = 0.

• If ı, | 2 Varn, then ı = | is an atomic formula with rank(ı = |) = 0.

• If u1, . . . , uk are terms (not necessarily distinct), where ui is of type ⌧i
for each i 2 [k], and R : (⌧1, . . . , ⌧k) belongs to S, then R(u1, . . . , uk)
is an atomic formula with rank(R(u1, . . . , uk)) = 0.

• If � is a (possibly infinite) set of formulae, and k = sup'2� rank(')

is finite, then =
⇣V

'2� '
⌘
and 0 =

⇣W
'2� '

⌘
are formulae with

rank() = rank(0) = k.

• If ' is a formula, then (¬') is a formula with rank(¬') = rank(').

• If ' is a formula, ū = (u1, . . . , uk) is a tuple over Var, and n 2 N,
then =

�
9�nū'

�
is a formula with rank() = rank(') + k.

We further define formulae of LC over S, and their associated rank, in the
same way as LC formulae, with the di↵erence that only quantification
of the form 9�n x, where x is a single variable type o, is allowed:

314 34 Aggregates, Grouping, and Locality

• If ' is a formula of LC, x 2 Varo, and n 2 N, then =
�
9�nx'

�
is

a formula of LC with rank() = rank(') + 1.

Let us stress that LC, and thus LC, consists of formulae of finite rank since
in the definition of the infinitary conjunctions and disjunctions we explicitly
restrict the rank to be finite; otherwise, we may get formulae of infinite rank,

e.g., if � = {'1,'2, . . .} with rank('i) = i for each i > 0, then rank
⇣W

'2� '
⌘

is infinite. The set of free variables of an LC formula ', denoted FV('), as well
as the semantics of LC, are defined in the expected way. Let us only discuss
the details in the case of a formula of the form = 9�nū', which essentially
states that there exist at least n witnesses for ū. For an assignment ⌘ for
over a database D, i.e., a function that maps FV() to Dom(D) [Num, is
satisfied in D under ⌘, written (D, ⌘) |= , if there are at least n assignments
⌘0 for ' over D that agree with ⌘ on FV() such that (D, ⌘0) |= '. We can
use the shorthand 9=nū' to say that there are exactly n such assignments for
' over D, that is, 9�nū'^¬9�n+1ū', which does not alter the rank. Given
an expression '(ū), where ' is an LC formula, and ū is a tuple over FV(')
such that each free variable of ' occurs in ū at least once, we can define the
output of '(ū) on a database D, denoted '(ū)(D), in the obvious way.

Proposition 34.8

Consider an FOAggr(⌦) formula ' over a two-sorted schema S, and a
tuple ū over FV(') that mentions all the variables of FV('). There exists
an LC formula over S, with FV(') = FV(), such that '(ū)(D) =
 (ū)(D), for every database D of S.

Proof. We first show the statement for the counting logic LC.

Lemma 34.9. There is an LC formula '⇧ over S, with FV(') = FV('⇧),
such that '(ū)(D) = '⇧(ū)(D), for every database D of S.

Proof. We translate every ⌦-term t of type n occurring in ' into an LC

formula ↵ı
t, where ı is a distinguished free variable of ↵ı

t. Intuitively, ↵
ı
t states

that ı is the value of t, that is, (D, ⌘) |= ↵ı
t i↵ tD,⌘ = ⌘(ı). We further translate

the formula ' into an LC formula '⇧ with FV(') = FV('⇧).
To ensure that '⇧ is indeed an LC formula, we need to show that it has

finite rank. To this end, we first need to transfer the notion of rank to ⌦-terms
and FOAggr(⌦) formulae by mutual induction. Let t be an ⌦-term:

• If t 2 Num [Var, then rank(t) = 0.

• If t = f(t1, . . . , tm), then rank(t) = maxi2[m]{rank(ti)}.
• If t = AggrF (v̄) ('

0, t0), then rank(t) = max{rank('0), rank(t0)}+ k, where
k is the arity of the tuple v̄.

34 Aggregates, Grouping, and Locality 315

Consider now an FOAggr(⌦) formula '0:

• If '0 is x = y, then rank('0) = 0.

• If '0 is ı = t, then rank('0) = rank(t).

• If '0 is R(v1, . . . , vk), then rank('0) = maxi2[k]{rank(vi)}.
• If '0 is '1 ^ '2 or '1 _ '2, then rank('0) = max{rank('1), rank('2)}.
• If '0 is ¬'1, then rank('0) = rank('1).

• If '0 is 9v '1 or 8v '1, then rank('0) = rank('1) + 1.

We are now ready to provide the translation of an ⌦-term t of type n
occurring in ', and of ' itself, into LC by mutual induction. In what follows,
given an LC formula �, a variable ı 2 FV(�), and a value a 2 Num, we write
�[ı/a] for the formula obtained from � after replacing ı with a.

Translation of an ⌦-term t occurring in ' into an LC formula ↵ı
t

• If t = a with a 2 Num, then ↵ı
t = (ı = a) of rank 0.

• If t = ı with ı 2 Varn, then ↵ı
t = (ı = ı) of rank 0.

• If t = f(t1, . . . , tm), then

↵ı
t =

_

(a1,...,am,am+1)2Numm+1 :

f(a1,...,am)=am+1

0

@
^

i2[m]

↵|iti [|i/ai] ! ı = am+1

1

A

of rank maxi2[m]{rank(↵|iti)}  rank(t), where ı is a new numerical variable
not occurring in ↵|iti , for each i 2 [m].

• If t = AggrF (v̄) ('
0, t0), with B being the set of all bags (finite or infinite)

over Num, then

↵ı
t =

_

B2B

�
�B ^ ⇣B ^ ı = F(B)

�
,

where ı is a new numerical variable not occurring in �B and ⇣B , and �B

and ⇣B are defined as follows. For B 2 B, we write supp(B) for its support,
i.e., the set of elements that appear in it, and](a,B) for the number of
occurrences of a in B. We then define

�B =
^

a2supp(B)

9=](a,B)v̄

✓
('0)⇧ ^ ↵|t0 [|/a]

◆

stating that the values of t0, as v̄ ranges over tuples satisfying '0, have
exactly the same multiplicities as in B, and

316 34 Aggregates, Grouping, and Locality

⇣B = 8v̄

0

@('0)⇧ !
_

a2supp(B)

↵|t0 [|/a]

1

A

stating that only elements of B are values of t0 as v̄ ranges over tuples satis-
fying '0. It is easy to verify that ↵ı

t is of rank max{rank(('0)⇧), rank(↵|t0)}+
k  max{rank('0), rank(t0)}+k = rank(t), where k is the arity of the tuple
v̄. Moreover, it should be clear that ↵ı

t essentially states that, for some
bag B 2 B, the values of t0 form exactly B, and the value of t is the value
of the aggregate F on B.

Translation of the formula ' into an LC formula '⇧

• If ' is the atomic formula x = y or R(v̄), then '⇧ is precisely ', and thus,
rank('⇧) = rank(').

• If ' is the atomic formula ı = t, then '⇧ is ↵ı
t with rank('⇧)  rank(t).

• If ' is P (v1, . . . , vk), then '⇧ is

_

(a1,...,ak)2P

0

@
^

i2[k]

↵|ivi [|i/ai]

1

A

with rank('⇧)  maxi2[m]{rank(↵|ivi)}  rank(').

• If ' is '1^'2, '1_'2, ¬'1, then '⇧ is '⇧
1^'⇧

2, '
⇧
1_'⇧

2, ¬'⇧
1, respectively,

of with rank('⇧) = rank(').

• If ' is 9v '1, 8v '1, then '⇧ is 9v '⇧
1, ¬9v ¬'⇧

1, respectively, with rank('⇧) =
rank(').

This completes the translation of ⌦-terms of type n occurring in ', and of
' itself. It can be verified that '⇧ is indeed an LC formula, with FV(') =
FV('⇧), such that '(ū)(D) = '⇧(ū)(D), for every database D of S. ut

We now proceed to show that the LC formula '⇧ provided by Lemma 34.9
can be converted into an LC formula such that '⇧(ū) and (ū) have the
same output on every database of S, which will prove Proposition 34.8.

Lemma 34.10. There exists an LC formula over S, with FV('⇧) = FV(),
such that '⇧(ū)(D) = (ū)(D), for every database D of S.

Proof. To prove the claim, we need to replace quantifiers of the form 9�nv̄ 0

in '⇧ with 9�nx 0, where x 2 Varo, without increasing the rank. We explain
how this is done when v̄ is binary; the general proof is then by induction on
the arity of v̄, using the case when v̄ is binary as the base step.

Consider a subformula 9�n(v, w) 0 of '⇧, where v, w 2 FV(0). The idea
of replacing this by simpler quantifiers is to say that there are at least k1 v’s
for which there exist exactly `1 w’s satisfying 0, and there are exactly k2 v’s

34 Aggregates, Grouping, and Locality 317

for which there exist exactly `2 w’s satisfying 0, and so on, with all the `i’s
being distinct in order to ensure that the same pair of values is never counted
twice. Formally, a finite set of pairs of integers {(k1, `1), . . . , (ks, `s)} is an
n-witness if

Ps
i=1 ki · `i � n, and `i 6= `j for each i, j 2 [s] with i 6= j. Let

Wn be the set of all n-witnesses, which is clearly infinite. Then, 9�n(v, w) 0

is replaced by the infinitary disjunction

_

{(k1,`1),...,(ks,`s)}2Wn

ŝ

i=1

9�kiv 9=`iw 0

!

whose rank is rank(9�n(v, w) 0) = rank(0) + 2.
According to the definition of LC, we can only quantify variables of type

o. Thus, we need to eliminate from the above infinitary disjunction the quan-
tifiers over numerical variables. This is done by using infinitary disjunctions
as follows: a formula of the form 9�nı 00, where ı 2 FV(00), is written as

_

A✓Num : |A|�n

^

a2A

 00[ı/a]

!

whose rank is rank(9�nı 00)�1. This completes the proof of Lemma 34.10. ut

By Lemma 34.9 and 34.10, we get an LC formula , with FV(') = FV(),
such that '(ū)(D) = (ū)(D), for every database D of S, as needed. ut

Locality of Counting Logic

The last step of the proof of Theorem 34.3 is proving the locality of LC.

Proposition 34.11

Consider an LC formula ' over a schema S = {R1 : ⌧1, . . . , Rn : ⌧n} with
⌧i 2 {o}ki and ki � 0, for each i 2 [n], of rank k such that FV(') ✓ Varo,
and a tuple x̄ over FV(') that mentions all the variables of FV('). Then
'(x̄) is (3k � 1)/2-local.

Proof. We proceed exactly as in the proof of Theorem 31.3, using rank in place
of quantifier rank. The cases of atomic formulae are identical. For infinitary
connectives

W
'2� ' and

V
'2� ', we note that k is the bound on the rank of

all formulae ' 2 �, and thus, the same proof as in Theorem 31.3 applies. The
case of negation does not change either.

The last step is to consider formulae of the form '(x̄) = 9�ny , with
rank(') = k. Thus, rank() = k� 1, and by the induction hypothesis, (x̄, y)
is r-local, where r = (3k�1 � 1)/2. As in Theorem 31.3, we must show that

318 34 Aggregates, Grouping, and Locality

' is (3r + 1)-local. The proof is the same as the one given before. Indeed,
recall that we established that, given a database D of S, with tuples ā, b̄ over
Const such that ND

3r+1(ā) and ND
3r+1(b̄) are isomorphic, we have a bijection

f : Dom(D) ! Dom(D) such that ND
r (ā, c) and ND

r (b̄, f(c)) are isomorphic,
for each c 2 Dom(D). By r-locality of , we get that the number of wit-
nesses to (ā, y) and (b̄, y) are the same, and thus '(ā) and '(b̄) are either
simultaneously true, or simultaneously false. ut

We can now finalize the proof of Theorem 34.3. Given an RAAggr(⌦) query
e of type {o}k, for k � 0, over a schema S without numerical types, by Proposi-
tions 34.6 and 34.8, there exists an LC formula 'e over S with FV('e) ✓ Varo,
and a tuple x̄e over FV('e) that mentions all the variables of FV('e), such
that e(D) = 'e(x̄e)(D), for every database D of S. Therefore, by Proposi-
tion 34.11, e is (3k � 1)/2-local, where k is the rank of the formula 'e.

35

Adding Recursion: Datalog

As discussed in Chapter 34, a serious limitation of relational algebra with
aggregates, and in fact all of the query languages encountered so far in the
previous chapters, is their inability to express recursive queries such as the
reachability query. In this chapter, we introduce a rule-based language, called
Datalog, that is powerful enough to express such queries. It can be seen as an
extension of UCQs with the key feature of recursion.

Syntax of Datalog

We start by defining the syntax of Datalog rules by using a rule-based syntax
similar to that of CQs when seen as rules.

Definition 35.1: Syntax of Datalog

A Datalog rule over a schema S is an expression of the form

R0(x̄) :– R1(ū1), . . . , Rn(ūn)

for n � 1, where

• Ri 2 S, for each i 2 [0, n],

• Ri(ūi) is a relational atom, and ūi is a tuple of constants and vari-
ables, for each i 2 [n],

• R0(x̄) is a relational atom, and x̄ is a tuple of variables, and

• each variable mentioned in x̄ is also mentioned in ūk for some k 2 [n];
this is known as the safety condition.

A Datalog program over S is a finite set of Datalog rules over S.

320 35 Adding Recursion: Datalog

As we shall see, the key idea underlying Datalog queries is to declaratively
specify what the query output should be by means of a Datalog program. The
Datalog program that provides the specification of the reachability query over
directed graphs follows.

Example 35.2: Graph Reachability

Consider the following (named) database schema:

Edge [node1, node2]

Reachable [node1, node2]

The Edge relation stores the edges of the input directed graph G, and
the Reachable relation stores the pairs of nodes (v, u) of G such that
u is reachable from v. We can now inductively compute the Reachable
relation via the following Datalog program over the above schema:

Reachable(x, y) :– Edge(x, y)

Reachable(x, y) :– Reachable(x, z),Edge(z, y) .

The first rule, which is the base step of the inductive definition, simply
states that if there is an edge from x to y, then y is reachable from x.
The second rule, which corresponds to the inductive step, states that if z
is reachable from x and there is an edge from z to y, then y is reachable
from x. Notice that the second rule is recursive in the sense that the
definition of the relation Reachable depends on itself.

The relational atom that appears on the left of the :– symbol in a Datalog
rule is called the head of the rule, while the expression that appears on the right
of the :– symbol is called the body of the rule. Given a Datalog program ⇧
over a schema S, it is crucial to have a way to distinguish between the relation
names of S that appear only in the bodies of the rules of ⇧, and those that
appear in the head of at least one rule of ⇧. In particular, a relation name
R 2 S occurring in the Datalog program ⇧ is called:

• extensional if there is no rule of the form R(x̄) :– body in ⇧, that is, R
occurs only in rule-bodies, and

• intensional if there exists at least one rule of the form R(x̄) :– body in ⇧,
that is, R appears in the head of at least one rule of ⇧.

Intuitively, extensional relation names correspond to the input relations, while
intensional relation names correspond to the relations that are computed
by the Datalog program. The extensional (database) schema of ⇧, denoted
edb(⇧), consists of the extensional relation names in ⇧, while the intentional
schema of ⇧, denoted idb(⇧), is the set of all intentional relation names in ⇧.

35 Adding Recursion: Datalog 321

The schema of⇧, denoted sch(⇧), is the set of relation names edb(⇧)[idb(⇧).
Note that sch(⇧) is, in general, a subset of S since it might be the case that
some relation names of S do not appear in ⇧.

Semantics of Datalog

An interesting property of Datalog programs is the fact that their semantics
can be defined either declaratively by adopting a model-theoretic approach,
or operationally by following a fixpoint approach. In the model-theoretic ap-
proach, the Datalog rules are considered as logical sentences asserting a prop-
erty of the desired result, while in the fixpoint approach the semantics is
defined as a particular solution of a fixpoint procedure.

Model-Theoretic Semantics

Recall that a set � of first-order sentences over a schema S is called a first-
order theory over S, or simply a theory over S. A database of S is a model of
the theory � if D |= ', for every sentence ' 2 �.1 The idea underlying the
model-theoretic approach is to consider a Datalog program ⇧ as a first-order
theory �⇧ over sch(⇧) that describes the desired outcome of the program. In
other words, the desired outcome is a particular model of �⇧ ; hence the name
model-theoretic semantics. However, there might be infinitely many models of
the theory �⇧ , which means that the theory alone does not uniquely determine
the desired outcome of the program. It is therefore crucial to specify which
model is the intended outcome. We proceed to formalize the above discussion.
In particular, we are going to explain how a Datalog program is converted
into a first-order theory, and which model of this theory is the intended one.

Definition 35.3: From a Program to a Theory

Given a Datalog rule ⇢ of the form R0(x̄) :– R1(ū1), . . . , Rn(ūn), we write
'⇢ for the first-order sentence

8x1 · · · 8xm (R1(ū1) ^ · · · ^Rn(ūn) ! R0(x̄)),

where x1, . . . , xm are the variables in ⇢. Given a Datalog program ⇧, we
define the first-order theory �⇧ over sch(⇧) as {'⇢ | ⇢ 2 ⇧}.

For brevity, we refer to the models of a Datalog program ⇧ meaning the
models of the theory �⇧ . Interestingly, the notion of satisfaction of a sentence
'⇢, where ⇢ 2 ⇧, by a database D of sch(⇧), can be characterized by means of

1 The notion of first-order theory, together with the notion of model of such a
theory, have been already used in Chapter 32.

322 35 Adding Recursion: Datalog

homomorphisms. Similarly to CQs, the body of a Datalog rule can be viewed
as a set of atoms. More precisely, given a Datalog rule ⇢ of the form

R0(x̄) :– R1(ū1), . . . , Rn(ūn)

we define the set of relational atoms

A⇢ = {R1(ū1), . . . , Rn(ūn)}.

We can thus talk about homomorphisms from rule-bodies to databases. It is
then easy to verify the following proposition that provides a useful character-
ization of rule satisfaction that will be used in our later proofs:

Proposition 35.4

Consider a Datalog rule ⇢ of the form R0(x̄) :– R1(ū1), . . . , Rn(ūn), and
a database D. The following are equivalent:

1. D |= '⇢.

2. For every homomorphism h from A⇢ to D, R0(h(x̄)) 2 D.

It should be clear that a Datalog program ⇧ admits infinitely many mod-
els. We proceed to explain how we choose the intended one. The idea is that
the intended model should not contain more atoms than needed for satisfying
�⇧ . In other words, from all the models of �⇧ , we choose the ✓-minimal
ones, i.e., those models D such that, for every atom R(ā) 2 D, it is the case
that D� {R(ā)} is not a model of �⇧ . Based on this simple idea, we proceed
to define the semantics of a Datalog program on an input database.

Given a Datalog program ⇧ and a database D of edb(⇧), we define

MM(⇧, D) = {D0 | D0 is a ✓ -minimal model of ⇧ and D ✓ D0}.

We can show that MM(⇧, D) contains exactly one database, which will give
rise to the semantics of ⇧ on D. But first we need to establish an auxiliary
result. Let B(⇧, D) be the union of D with the set of all relational atoms that
can be formed using relation names from idb(⇧) and constants from Dom(D):

B(⇧, D) = D [
n
R(ā) | R 2 idb(⇧) and ā 2 Dom(D)ar(R)

o
.

We can show the following:

Lemma 35.5. Consider a Datalog program ⇧, and a database D of edb(⇧).
It holds that B(⇧, D) is a model of ⇧ that contains D.

Proof. The fact that B(⇧, D) contains D follows by definition. It remains to
show that B(⇧, D) is a model of ⇧. Consider an arbitrary rule ⇢ 2 ⇧ of the

35 Adding Recursion: Datalog 323

form R0(x̄) :– R1(ū1), . . . , Rn(ūn), and assume that there is a homomorphism
h from A⇢ to D. Due to the safety condition, every variable in x̄ occurs in A⇢.
This implies that h(x̄) is a tuple over Dom(D). Since R 2 idb(⇧) we conclude
that R(h(x̄)) 2 B(⇧, D), and thus B(⇧, D) |= '⇢. Consequently, B(⇧, D) is a
model of �⇧ , and thus, a model of ⇧, as needed. ut

We are now ready to show the claimed statement concerning MM(⇧, D):

Proposition 35.6

Consider a Datalog program ⇧, and a database D of edb(⇧). Then

|MM(⇧, D)| = 1.

Proof. By Lemma 35.5, B(⇧, D) is a model of ⇧ that contains D. Therefore,
there exists a subset of B(⇧, D) that belongs to MM(⇧, D), which implies
that |MM(⇧, D)| � 1. Assume now that |MM(⇧, D)| � 2, and let D1, . . . , D`,
for ` � 2, be its members. We proceed to show that the database

D\ = D1 \ · · · \D`

is a model of⇧ that containsD, which contradicts the fact thatD1, . . . , D` are
✓-minimal. Since D ✓ Di, for each i 2 [`], we get that D ✓ D\. Consider now
a Datalog rule ⇢ 2 ⇧ of the form R0(x̄) :– R1(ū1), . . . , Rn(ūn), and assume
there exists a homomorphism h from A⇢ to D\. For each i 2 [`], Di is a model
of ⇧, and thus, R0(h(x̄)) 2 Di. Therefore, R0(h(x̄)) 2 D\, which means, due
to Proposition 35.4, that D\ |= '⇢. Hence, D\ is a model of ⇧, as needed. ut

Having the above result in place, we are now ready to define the semantics
of a Datalog program on an input database.

Definition 35.7: Semantics of Datalog

Given a Datalog program ⇧, and a database D of edb(⇧), the output of
⇧ on D, denoted ⇧(D), is the ✓-minimal model of ⇧ that contains D.

By Proposition 35.6, we get that ⇧(D) is uniquely determined by the pro-
gram and the database, and thus, Definition 35.7 provides a well-defined se-
mantics for Datalog programs. The crucial question that comes up is whether
we can devise an algorithm that computes the semantics of a Datalog program
⇧ on a database D. The next result provides such an algorithm. Let M(⇧, D)
be all the subsets of B(⇧, D) that are models of ⇧ and contain D. Formally,

M(⇧, D) = {D0 | D0 is a model of ⇧ and D ✓ D0 ✓ B(⇧, D)}.

Interestingly, the intersection of the databases occurring in M(⇧, D) coincides
with the ✓-minimal model of ⇧ that contains D. By giving a proof similar to
that of Proposition 35.6, we can show that

T
M(⇧, D) is a model of ⇧ that

contains D, while the fact that is a ✓-minimal model follows by construction.

324 35 Adding Recursion: Datalog

Theorem 35.8

Consider a Datalog program ⇧, and a database D of edb(⇧). Then

⇧(D) =
\

D02M(⇧,D)

D0.

It is clear that Theorem 35.8 suggests the following procedure for comput-
ing the semantics of a Datalog program ⇧ on a database D: construct all the
possible subsets of B(⇧, D) that are models of ⇧ and contain D, and then
compute their intersection. However, this is computationally a very expensive
procedure. As we shall see in the next section, the fixpoint approach provides
a more e�cient algorithm for computing the database ⇧(D).

Fixpoint Semantics

We present an alternative way to define the semantics of Datalog that relies
on an operator called the immediate consequence operator. This operator is
applied on a database in order to produce new relational atoms. The model-
theoretic semantics presented above coincides with the smallest solution of a
fixpoint equation that involves the immediate consequence operator.

Definition 35.9: Immediate Consequence Operator

Consider a Datalog program⇧, and a databaseD of sch(⇧). A relational
atom R(ā) is an immediate consequence for ⇧ and D if:

1. R(ā) 2 D, or

2. There exists a rule ⇢ 2 ⇧ of the form R(x̄) :– R1(ū1), . . . , Rn(ūn)
such that (A⇢, x̄)! (D, ā).

The immediate consequence operator of ⇧ is defined as the function

T⇧ : Inst(sch(⇧)) ! Inst(sch(⇧))

such that

T⇧(D) = {R(ā) | R(ā) is an immediate consequence for ⇧ and D}.

A database D of sch(⇧) is called a fixpoint of T⇧ if T⇧(D) = D.

The next lemma, which is easy to prove, collects some useful properties of
the T⇧ operator that we are going to use below.

Lemma 35.10. Consider a Datalog program ⇧. The following hold:

35 Adding Recursion: Datalog 325

1. T⇧ is monotone, i.e., for every two databases D and D0 of sch(⇧), if
D ✓ D0 then T⇧(D) ✓ T⇧(D0).

2. A database D of sch(⇧) is a model of ⇧ if and only if T⇧(D) ✓ D.

3. Every fixpoint of T⇧ is a model of ⇧.

We are now ready to establish the following crucial result, which states
that the model-theoretic semantics of a Datalog program on a database D
coincides with the ✓-minimal fixpoint of T⇧ that contains D.

Theorem 35.11

Consider a Datalog program ⇧, and a database D of edb(⇧). It holds
that ⇧(D) is the ✓-minimal fixpoint of T⇧ that contains D.

Proof. We first show that ⇧(D) is a fixpoint of T⇧ , i.e., T⇧(⇧(D)) = ⇧(D).
Since ⇧(D) is a model of ⇧, Lemma 35.10 implies that T⇧(⇧(D)) ✓ ⇧(D).
By Lemma 35.10, T⇧ is monotone, and thus, T⇧(T⇧(⇧(D))) ✓ T⇧(⇧(D)).
Therefore, by Lemma 35.10, T⇧(⇧(D)) is a model of ⇧ that contains D.
But since ⇧(D) is the ✓-minimal mode of ⇧ that contains D, we immedi-
ately get that ⇧(D) ✓ T⇧(⇧(D)). Consequently, T⇧(⇧(D)) = ⇧(D). By
Lemma 35.10, each fixpoint of T⇧ that contains D is a model of ⇧ that con-
tains D. Hence, ⇧(D) is the ✓-minimal fixpoint of T⇧ that contains D. ut

It remains to explain how the ✓-minimal fixpoint of the T⇧ operator that
contains the database D is constructed. This is essentially done by iteratively
applying the T⇧ operator starting from the database D.

Definition 35.12: Application of the T⇧ Operator

Consider a Datalog program ⇧, and a database D of edb(⇧). We define

T 0
⇧(D) = D and T i+1

⇧ (D) = T⇧(T i
⇧(D)), for i 2 N,

and we let
T1
⇧ (D) =

[

i�0

T i
⇧(D).

At first glance, the construction of T1
⇧ (D) requires infinitely many itera-

tions. However, since T1
⇧ (D) ✓ B(⇧, D), it is the case that T1

⇧ (D) is obtained
in at most |B(⇧, D)| iterations. It is easy to verify that

T1
⇧ (D) = T |B(⇧,D)|

⇧ (D).

We now show the following result, which essentially states that the semantics
of a Datalog program ⇧ on a database D can be computed by iteratively
applying the operator T⇧ starting from D until a fixpoint is reached.

326 35 Adding Recursion: Datalog

Theorem 35.13

Consider a Datalog program ⇧, and a database D of edb(⇧). It holds
that T1

⇧ (D) is the ✓-minimal fixpoint of T⇧ that contains D.

Proof. Recall first that the following hold:

T1
⇧ (D) = T |B(⇧,D)|

⇧ (D) and T⇧(T |B(⇧,D)|
⇧ (D)) = T |B(⇧,D)|

⇧ (D).

Therefore, T1
⇧ (D) is a fixpoint of T⇧ that contains D. It remains to show

that T1
⇧ (D) is ✓-minimal, or, equivalently, T1

⇧ (D) ✓ D0, for every fixpoint
D0 of T⇧ that contains D. Fix such a fixpoint D0. We can show via an easy
inductive argument that T i

⇧(D) ✓ D0, for every i 2 N, which implies that
T1
⇧ (D) ✓ D0. In fact, T 0

⇧(D) ✓ D0 since T 0
⇧(D) = D. Moreover, T i

⇧(D) ✓ D0

implies T⇧(T i
⇧(D)) = T i+1

⇧ (D) ✓ T⇧(D0) = D0 by monotonicity of T⇧ . ut
The next result is an immediate corollary of Theorems 35.11 and 35.13:

Corollary 35.14

Consider a Datalog program ⇧, and a database D of edb(⇧). Then

⇧(D) = T1
⇧ (D).

Datalog Queries

Recall that a k-ary query q produces a finite set of k-ary tuples q(D) ✓ Constk,
for every databaseD. Datalog programs can be used to define queries. In order
to do this, we simply specify together with a Datalog program ⇧ a relation
name R from idb(⇧) that indicates the relation that collects the output of
the query. In other words, given a database D of edb(⇧), after computing the
database ⇧(D), the output of the query is the set of tuples ā over Dom(D)
such that R(ā) 2 ⇧(D). For example, the Datalog query over {Edge[2]} that
computes the pairs (v, u) such that u is reachable from v is (⇧,Reachable),
where ⇧ is the Datalog program over {Edge[2],Reachability[2]} given in Ex-
ample 35.2. The formal definition of Datalog queries follows.

Definition 35.15: Datalog Queries

A Datalog query over a schema S is a pair (⇧, R), where ⇧ is a Datalog
program over a schema S [S0, with S0 being a schema disjoint from S,
such that edb(⇧) ✓ S, idb(⇧) ✓ S0, and R 2 idb(⇧).

Having the semantics of a Datalog program ⇧ on a database D (see Def-
inition 35.7), we can naturally define what is the output of a Datalog query
(⇧, R) onD; simply collect the tuples in the relation R after computing⇧(D).

35 Adding Recursion: Datalog 327

Definition 35.16: Evaluation of Datalog Queries

Given a database D of a schema S, and a Datalog query q = (⇧, R) over
S, the output of q on D is defined as the set of tuples

q(D) =
n
ā 2 Constar(R) | R(ā) 2 ⇧(D)

o
.

It is clear that the set q(D) belongs to P(Constar(R)). However, to be able
to say that q defines a query over S as in Definition 2.5, we need to ensure that
q(D) 2 Pfin(Const

ar(R)), i.e., the output of q on D is finite. This is guaranteed
by the following result, which is an immediate consequence of Theorem 35.8,
and the fact that Dom(D0) = Dom(D), for every database D0 2 M(⇧, D).

Proposition 35.17

For a database D of schema S, and a Datalog query q = (⇧, R) over S,

q(D) =
n
ā 2 Dom(D)ar(R) | R(ā) 2 ⇧(D)

o
.

Since Dom(D) is finite, Proposition 35.17 implies that q(D) 2 Pfin(Const
k),

and thus, q defines a query over S in the sense of Definition 2.5.
At the beginning of the chapter, we claimed that Datalog extends UCQ s

with the feature of recursion. We can easily show that indeed Datalog leads to
a strictly more expressive language that is able to express recursive queries:

Theorem 35.18

The language of Datalog queries is strictly more expressive than the
language of UCQs.

Proof. From Theorem 34.1, we conclude that the reachability query on di-
rected graphs cannot by expressed as a UCQ, but we have already seen that
it can be easily expressed as a Datalog query. On the other hand, it is straight-
forward to see that every UCQ q(x̄) = q1[· · ·[qn can be equivalently written
as the Datalog query (⇧q,Answer), where ⇧q consists of the CQs q1, . . . , qn
seen as rules of the form Answer(x̄) :– body. ut

Recall from Chapter 28 that UCQ s with variable-constant equality form
a strictly more expressive language than UCQ s. It turns out that there exists
a UCQ with variable-constant equality that cannot be expressed as a Datalog
query, which means that Datalog and UCQ s with variable-constant equality
form incomparable languages in terms of expressive power. This is because
UCQ s with variable-constant equality may have in their output constants not

328 35 Adding Recursion: Datalog

from the domain of the database, which is not possible for Datalog queries
(Proposition 35.17). Consider, for example, the simple query q = '(x) with

' = (x = a),

where a is a constant. For D = {R(b)}, we get that q(D) = {(a)}.

36

Expressiveness of Datalog Queries

We have already seen in the previous chapter that Datalog queries are strictly
more expressive than UCQ s. We have also seen an easy inexpressibility result,
i.e., there are UCQ s with variable-constant equality (in fact, the query '(x)
with ' = (x = a)) that cannot be expressed as a Datalog query. The question
that comes up is how Datalog queries compare in terms of expressive power
with UCQ s with inequality, and more generally, whether Datalog queries can
express negation, or at least a restricted form of negation.

Our goal in this chapter is to show that Datalog queries are inherently
positive. Note that the easy inexpressibility result that Datalog queries cannot
express '(x) with ' = (x = a) relies on the property of Datalog queries
provided by Proposition 35.17, that is, the output of a Datalog query mentions
only constants from the domain of the database. However, this property is
not powerful enough to show that Datalog queries are inherently positive. We
proceed to establish that Datalog queries are preserved under homomorphisms
and monotone, and then use those properties to show that indeed Datalog
queries cannot express inequality, negative relational atoms, and di↵erence.

Preservation Under Homomorphisms

The notion of preservation under homomorphisms for Datalog queries is de-
fined in the same way as for FO queries. For a Datalog program ⇧, we write
Dom(⇧) for the set of constants occurring in the rules of ⇧.

Definition 36.1: Preservation Under Homomorphisms

Consider a Datalog query q = (⇧, R) over a schema S. We say that q is
preserved under homomorphisms if, for every two databases D and D0

of S, and tuples ā 2 Dom(D)ar(R) and b̄ 2 Dom(D0)ar(R), it holds that

330 36 Expressiveness of Datalog Queries

if (D, ā)!Dom(⇧) (D
0, b̄) and ā 2 q(D) then b̄ 2 q(D0).

We proceed to show that Datalog queries are preserved under homomor-
phisms. The key idea underlying this result is that a Datalog query q over a
schema S can be converted into an equivalent UCQ q0 over S providing that
q0 can have infinitely many disjuncts; such UCQ s are called infinitary. The
evaluation of infinitary UCQ s is defined in the same way as for UCQ s, that
is, given a database D of a schema S, and an infinitary UCQ q = q1 [q2 [· · ·
over S, where each qi for i � 1 is a CQ over S, q(D) =

S1
i=1 qi(D). It is easy to

show that every infinitary UCQ is preserved under homomorphisms; the proof
is essentially the same as the one of Proposition 28.10, which establishes that
UCQ s are preserved under homomorphisms. Therefore, to show that Datalog
queries are preserved under homomorphisms it su�ces to show that a Datalog
query over S can be converted into an equivalent infinitary UCQ over S.

Proposition 36.2

Consider a Datalog query q = (⇧, R) over a schema S. There exists an
infinitary UCQ q0 = '(x̄) over S with Dom(⇧) = Dom(') and q ⌘ q0.

For technical clarity, we show the above result only for Boolean queries.
Nevertheless, the given proof illustrates the key elements that are used in the
proof for non-Boolean queries, which we leave as an exercise. We first need to
introduce the basic notions of unification and unfolding.

We say that two atoms R(ū) and P (v̄) unify if the there exists a function
� : Const [Var ! Const [Var, which is the identity on Const and the set
of variables not mentioned in ū and v̄, such that R(�(ū)) = P (�(v̄)); such a
function � is called a unifier for R(ū) and P (v̄). Observe that for R(ū) and
P (v̄) to unify it is a necessary condition that R and P are the same relation
names, and ū, v̄ have the same arity. A most general unifier for R(ū) and P (v̄)
is a unifier � for them such that, for every other unifier �0 for R(ū) and P (v̄),
there exists a function ✓ : Const[Var! Const[Var such that �0 = ✓ � �. For
example, the atoms R(x, y) and R(z, a) unify due to the function � : Const [
Var! Const[Var that is the identity on Const[(Var� {x, y, z}), and assigns
the constant a to the variables x, y, z, i.e., �(x) = �(y) = �(z) = a. However, it
is easy to verify that � is not a most general unifier for R(x, y) and R(z, a). In
particular, for the unifier �0 for R(x, y) and R(z, a) with �0(x) = �0(z) = z and
�0(y) = a, we can show that there is no ✓ : Const[Var! Const[Var such that
�0 = ✓��. On the other hand, we can show that �0 is a most general unifier for
R(x, y) and R(z, a). For instance, � = ✓��0 with ✓ : Const[Var! Const[Var
being such that ✓(u) = a.

It is easy to show that, for any two atoms R(ū) and P (v̄),

• if R(ū) and P (v̄) unify, then there is a most general unifier for them, and

36 Expressiveness of Datalog Queries 331

• if �1 and �2 are most general unifiers for R(ū) and P (v̄), then, for every
relational atom S(w̄), it holds that S(�1(w̄)) and S(�2(w̄)) are the same
up to variable renaming.

These facts allow us to refer to the most general unifier for R(ū) and P (v̄).
We now proceed to introduce the notion of unfolding of a Boolean CQ

with a Datalog program, which relies on unification. Let q be the Boolean CQ

Answer :– R1(ū1), . . . , Rn(ūn),

and ⇢ be the Datalog rule

P0(ȳ) :– P1(v̄1), . . . , Pm(v̄m).

We can always assume that q and ⇢ do not share variables since we can simply
rename the variables occurring in ⇢ without changing its semantic meaning.
Assume now that, for i 2 [n], Ri(ūi) and P0(ȳ) unify, and let � be their most
general unifier. We denote by q⇢,i,� the CQ

Answer :– R1(�(ū1)), . . . , Ri�1(�(ūi�1)),

Ri+1(�(ūi+1)), . . . , Rn(�(ūn)), P1(�(v̄1)), . . . , Pm(�(v̄m)).

Let {Ri1(ūi1), . . . , Ri`(ūi`)} be the set that collects all the relational atoms in
the body of q that unify with P0(ȳ), and let �ij be the most general unifier
for Rij (ūij) and P0(ȳ), for each j 2 [`]. The unfolding of q with ⇢, denoted
Unfold⇢(q), is defined as the set of CQs {q⇢,i1,�i1 , . . . , q⇢,i`,�i` }. Now, for a
Datalog program ⇧, the unfolding of q with ⇧, denoted Unfold⇧(q), is

[

⇢2⇧
Unfold⇢(q).

Therefore, Unfold⇧(·) can be seen as an operator that takes as input a CQ
and computes all the CQs that can be obtained by unfolding q with a Datalog
rule from ⇧. We can then define the set of all CQs that can be obtained
starting from q and exhaustively applying the Unfold⇧(·) operator.

Definition 36.3: Application of the Unfold⇧(·) Operator

Consider a Datalog program ⇧ over S, and a CQ q over S. We define

Unfold0⇧(q) = {q} and Unfoldi+1
⇧ (q) =

[

q02Unfoldi
⇧(q)

Unfold⇧(q0)

for i � 0, and let

Unfold1⇧ (q) =
[

i�0

Unfoldi⇧(q).

332 36 Expressiveness of Datalog Queries

We are now ready to show Proposition 36.2.

Proof (of Proposition 36.2). We prove this for Boolean queries, i.e., we assume
that the Datalog query q = (⇧, R) is Boolean, that is, ar(R) = 0. We further
assume, without a↵ecting the generality of the proof, that there is exactly one
rule ⇢R 2 ⇧ of the form R() :– body, and there is no rule in ⇧ that mentions
R in its body, i.e., we assume that the intensional relation name R occurs only
in the head of ⇢R. We can indeed make this assumption since we can always
rewrite q into an equivalent Datalog query with the above property: construct
⇧⇤ by replacing every occurrence of the relation name R in ⇧ with a new
relation name R⇤ not occurring in sch(⇧), and then consider the query

q⇤ = (⇧⇤ [{R() :– R⇤()}, R).

It is clear that edb(⇧) = edb(⇧⇤) and q(D) = q⇤(D) for every D of edb(⇧).
In what follows, let qR for the Boolean CQ such that AqR = A⇢R , i.e., qR is
the Boolean CQ that has as its body the body of the rule ⇢R.

We are now ready to define the desired infinitary UCQ over S by using the
Unfold⇧(·) operator. We write Unfold1⇧ (qR)|S for the subset of Unfold1⇧ (qR)
that keeps only the CQs over S, that is, the CQs that use only relation names
from S. We then define the infinitary UCQ

q⇧R =
[

q02Unfold1
⇧ (qR)|S

q0.

By construction, q⇧R is an infinitary UCQ over S, and ⇧ and q⇧R mention
exactly the same constants. It remains to show that q and q⇧R are equivalent,
i.e, q(D) = q⇧R (D), for every database D of S. To this end, it su�ces to show
that, for a database D of S, the following are equivalent:

1. A⇢R ! ⇧(D).

2. There exists a sequence of CQs (qi)i2[0,n], for some n � 0, such that:

• q0 = qR,

• qi 2 Unfold⇧(qi�1), for each i 2 [n], and

• Aqn ! D.

The Direction (1)) (2)

By hypothesis, there exists a sequence of databases (Di)i2[0,n], for some n � 0,
such that: (i) D0 = D, (ii) for each i 2 [n], Di = Di�1 [{P (ā)}, where
P (ā) 2 T⇧(Di�1), i.e., there is ⇢i�1 2 ⇧ of the form P (x̄) :– body such that
(A⇢i�1 , x̄) ! (Di�1, ā) via a homomorphism hi�1, and (iii) A⇢R ! Dn. We
proceed to show the following auxiliary lemma:

36 Expressiveness of Datalog Queries 333

Lemma 36.4. There exists a sequence of CQs (qi)i2[0,n] such that:

• q0 = qR,

• qi = qi�1 or qi 2 Unfold⇢n�i(qi�1), for each i 2 [n], and

• Aqi ! Dn�i, for each i 2 [n].

Proof. We proceed by induction on the length of (Di)i2[0,n]. For the base case
the statement holds trivially since A⇢R ! D0, which in turn implies that
AqR ! D0. In other words, the desired sequence of CQs consists only of q0.

We proceed with the inductive step. By hypothesis, AqR ! Dn via a
homomorphism µ. We consider two cases:

• Assume first that P (hn�1(x̄)) 62 µ(AqR), or P (hn�1(x̄)) 2 µ(AqR) and
P (hn�1(x̄)) 2 Dn�1. This implies that AqR ! Dn�1. By induction hy-
pothesis, there exists a sequence of CQs (q0i)i2[0,n�1], where q

0
0 = qR, and,

for each i 2 [n� 1], q0i = q0i�1 or q0i 2 Unfold⇢n�i(q
0
i�1), and Aqi ! Dn�i.

Therefore, the claim follows due to the sequence of CQs q00, q
0
0, q

0
1, . . . , q

0
n�1.

• The interesting case is when P (hn�1(x̄)) 62 µ(AqR) and P (hn�1(x̄)) 2
Dn �Dn�1. It is clear that there exists P (ū) 2 AqR such that P (µ(ū)) =
P (hn�1(x̄)), which means that � = µ [hn�1 is a unifier for P (ū) and
P (x̄). This implies that there exists a most general unifier �̂ for P (ū) and
P (x̄). Let q̂ be the unfolding of qR with ⇢n�1 using �̂. In fact, we can
show that Aq̂ ! Dn�1. By definition of most general unifiers, � = ✓ � �̂
for some function ✓ : Const [Var ! Const [Var. It is clear that ✓ is a
homomorphism from Aq̂ to Dn�1 since � maps A⇢n�1 to Dn�1. Therefore,
Aq̂ ! Dn�1 as claimed above. By induction hypothesis, there is a sequence
of CQs (q0i)i2[0,n�1], where q00 = q̂, and, for each i 2 [n � 1], q0i = q0i�1

or q0i 2 Unfold⇢n�1(q
0
i�1), and Aqi ! Dn�1. The claim follows due to the

sequence of CQs qR, q00, . . . , q
0
n�1.

This completes the proof of Lemma 36.4. ut

We can now complete the proof of the direction (1)) (2). Let (qi)i2[0,n]

be the sequence of CQs provided by Lemma 36.4. Clearly, q0 = qR and Aqn !
Dn. However, it is not the case that qi 2 Unfold⇧(qi�1), for each i 2 [n], due
to the fact that some CQs in (qi)i2[0,n] are simply repeated. This can be easily
fixed by removing the redundant CQs. Let Ind be the set of indices

�
ij | j 2 [n] and qij 62 Unfold⇧(qij�1)

.

Observe that 0 62 Ind, and that, for each k 2 Ind, qk = qk�1. Therefore, the
sequence of CQs (q0i)i2[0,m], where m  n, obtained from (qi)i2[0,n] by simply
removing the CQs {qk | k 2 Ind} is such that q00 = qR, q0i 2 Unfold⇧(q0i�1),
for each i 2 [m], and Aq0m ! D. This implies that (2) holds, as needed.

334 36 Expressiveness of Datalog Queries

The Direction (2)) (1)

We first establish the following auxiliary lemma:

Lemma 36.5. For every i 2 [n], Aqi ! ⇧(D) implies Aqi�1 ! ⇧(D).

Proof. By hypothesis, there exists a homomorphism h that maps Aqi to⇧(D).
Since qi 2 Unfold⇧(qi�1), we conclude that qi 2 Unfold⇢(qi�1) for some ⇢ 2 ⇧
of the form P (x̄) :– body. This means that there exists an atom P (ū) 2 Aqi�1

that unifies with P (x̄), and qi is the unfolding of qi�1 with ⇢ using the most
general unifier � for P (x̄) and P (ū). We show that the function µ = h � � is
a homomorphism from Aqi�1 to ⇧(D), which witnesses that Aqi�1 ! ⇧(D).

Since hmaps Aqi to⇧(D), we get that hmaps �(Aqi�1�{P (ū)}) to⇧(D),
i.e., µmaps Aqi�1�{P (ū)} to⇧(D). It remains to show that P (µ(ū)) 2 ⇧(D).
Since �(A⇢) ✓ �(Aqi), we conclude that h maps �(A⇢) to ⇧(D), i.e., µ is a
homomorphism fromA⇢ to⇧(D). This implies that P (µ(x̄)) 2 ⇧(D). Observe
that P (µ(x̄)) = P (µ(ū)). Indeed, since �(x̄) = �(ū), we get that

P (µ(x̄)) = P (h(�(x̄))) = P (h(�(ū))) = P (µ(ū)),

which in turn implies that P (µ(ū)) 2 ⇧(D), and the claim follows. ut

We can now complete the proof of the direction (2)) (1). By hypothesis,
Aqn ! D, and thus, Aqn ! ⇧(D); the latter holds due to the monotonicity of
CQs (Corollary 13.7). By repeatedly applying Lemma 36.5, we get that Aq0 !
⇧(D). Since q0 = qR and AqR = A⇢R , we conclude that A⇢R ! ⇧(D). ut

By Proposition 36.2, and the fact that infinitary UCQ s are preserved
under homomorphisms, we immediately get the following result:

Corollary 36.6

Every Datalog query is preserved under homomorphisms.

Another key property is that of monotonicity. Recall that a query q over
a schema S is monotone if, for every two databases D,D0 of S, we have that

D ✓ D0 implies q(D) ✓ q(D0).

We can show that homomorphism preservation implies monotonicity of Data-
log queries. In fact, the proof is exactly the same as the one of Corollary 13.7,
which establishes that every CQ is monotone.

Corollary 36.7

Every Datalog query is monotone.

36 Expressiveness of Datalog Queries 335

Datalog Queries and Negation

We now delineate the expressiveness boundaries of Datalog queries. We show
that they cannot express inequality, negative relational atoms, and di↵erence.

Datalog queries cannot express inequality. This is because already CQs
with inequality are not preserved under homomorphisms. Consider

q1 = 9x9y
�
R(x, y) ^ x 6= y

�
.

For D = {R(a, b)} and D0 = {R(c, c)}, we have that D !; D0. However,
D |= q1 while D0 6|= q1. As a second example, consider the CQ 6=

q2 = 9x (S(x) ^ x 6= a),

where a is a constant. Given D = {S(b)} and D0 = {S(a)}, we have that
D !{a} D0. However, D |= q2 while D0 6|= q2.

Datalog queries cannot express negative relational atoms. The reason
is because such queries are not monotone. Consider the query

q = ¬P (a),

where a is a constant. If we take D = ; and D0 = {P (a)}, then D ✓ D0

but D |= q while D0 6|= q.

Datalog queries cannot express di↵erence. This is because di↵erence is
not monotone. Consider, for example, the FO query

q = 9x(P (x) ^ ¬Q(x)).

For D = {P (a)} ✓ D0 = {P (a), Q(a)}, we have that D |= q while D0 6|= q.

37

Datalog Query Evaluation

In this chapter, we study the complexity of evaluating Datalog queries, that
is, Datalog-Evaluation. This is the problem of checking whether ā 2 q(D) for
a Datalog query q, a database D, and a tuple ā over Dom(D).

Combined Complexity

We first look at the combined complexity of the problem, i.e., when the input
consists of a Datalog query q = (⇧, R), a database D of edb(⇧), and a tuple
ā 2 Dom(D)ar(R). Recall that the fixpoint approach for defining the semantics
of Datalog programs provides an algorithm for computing the database ⇧(D).
In particular, by Corollary 35.14, ⇧(D) = T1

⇧ (D), which in turn implies that

ā 2 q(D) if and only if R(ā) 2 T1
⇧ (D).

We proceed to analyze the time complexity of checking whether the fact R(ā)
belongs to T1

⇧ (D). Recall that for computing T1
⇧ (D) we need to apply the

T⇧ operator at most |B(⇧, D)| times. We first analyze the time complexity
of the i-th application of the T⇧ operator. Let maxvar and maxbody be the
maximum number of variables and body atoms, respectively, in a rule of ⇧.
The i-th application of T⇧ , for i 2 {1, . . . , |B(⇧, D)|}, takes time

O(|⇧| · |Dom(D)|maxvar ·maxbody · |T i�1
⇧ (D)|)

since, for each ⇢ 2 ⇧, we need to consider all the possible functions h, which
are the identity on Const, from the variables and constants in ⇢ to Dom(D),
and then check whether h is a homomorphism from the set of atoms in the
body of ⇢ to T i�1

⇧ (D). Recall that, for each i 2 {1, . . . , |B(⇧, D)|}, |T i�1
⇧ (D)| 

|B(⇧, D)|. Hence, each application of the T⇧ operator takes time

O(|⇧| · |Dom(D)|maxvar ·maxbody · |B(⇧, D)|).

338 37 Datalog Query Evaluation

As said above, for computing T1
⇧ (D) we need to apply the T⇧ operator at

most |B(⇧, D)| times, which implies that T1
⇧ (D) can be computed in time

O(|⇧| · |Dom(D)|maxvar ·maxbody · |B(⇧, D)|2).

It is easy to verify that

|B(⇧, D)|  |sch(⇧)| · |Dom(D)|ar(⇧),

where ar(⇧) is the maximum arity over all relation names of sch(⇧). Con-
sequently, T1

⇧ (D) can be computed in exponential time, which implies that
checking whether R(ā) 2 T1

⇧ (D) is feasible in exponential time.
One may think that there is a more clever procedure than naively comput-

ing T1
⇧ (D) that allows us to show that the complexity of Datalog-Evaluation

matches the complexity of UCQ-Evaluation, that is, NP-complete. However,
we can show that exponential time is the best that we can achieve.

Theorem 37.1

Datalog-Evaluation is ExpTime-complete.

Proof. We have already seen that Datalog-Evaluation is in ExpTime. We pro-
ceed to show that Datalog-Evaluation is ExpTime-hard. This is done by show-
ing that an arbitrary language L in ExpTime is polynomial time reducible to
Datalog-Evaluation. Let M = (Q,⌃, �, s) be a (deterministic) Turing Machine
that decides L in exponential time; details on Turing Machines can be found
in Appendix B. The goal is, on input w, to construct in polynomial time in
|w| a database D, and a Boolean Datalog query q = (⇧,Yes), i.e., Yes is a
0-ary relation name, such that

M accepts w if and only if q(D) = true.

We first describe the high level idea of the reduction.
Consider a pair (p, a) 2 (Q � {“yes”, “no”}) ⇥ ⌃. The transition rule

�(p, a) = (p0, b, dir) expresses the following if-then statement:

if at some time instant t of the computation of M on w, we have that M is
in state p, the head points to the tape cell c, and c contains the symbol a

then at time instant t+1, we have that M is in state p0, the cell c contains b,
and the head points to the cell c0, where c0 is the cell right to c (respectively,
the cell left to c, c itself) if dir =! (respectively, dir = , dir = �).

We can naturally encode such an if-then statement via Datalog rules since
a Datalog rule is essentially an if-then statement. This in turn allows us to
describe the complete evolution of M on input w from its start configuration
sc(w) to configuration c that can be reached in 2m steps, where m = |w|k for

37 Datalog Query Evaluation 339

some k 2 N. To achieve this, we need a way to refer to the i-th time instant of
the computation of M on w, and the i-th tape cell of M , where 0  i  2m�1.
This can be done by representing the time instances and the tape cells from
0 to 2m� 1 by tuples of size m over {0, 1}, on which the functions “next time
instant” and “next tape cell” are realized by means of a successor relation
Succm from a linear order �m on {0, 1}m. We now formalize this description.

The Extensional and Intensional Schema

We begin by describing the extensional and intensional schema of ⇧. As we
shall see, there will be relations Succi, Firsti and Lasti, for each i 2 [m], which
tell the successor, the first, and the last element from a linear order �i on
{0, 1}i, respectively, that will be inductively constructed by ⇧ starting from
Succ1, First1 and Last1. The extensional schema edb(⇧) is

{Succ1,First1,Last1},

where Succ1 is a binary relation name, and First1, Last1 are unary relation
names. The intensional schema idb(⇧) is defined as

{Symbola | a 2 ⌃} [{Head} [{Statep | p 2 Q} [
{Yes} [

S
i2[2,m]{Succ

i,Firsti,Lasti} [{�m},

where the arity of the relations names Symbola, Head, and �m is 2m, of
Statep is m, of Succi is 2i, of Firsti and Lasti is i, and of Yes is 0.

The intuitive meaning of the relation names of idb(⇧), apart from Succi,
Firsti, Lasti, and �m that have been discussed above, is as follows:

• Symbola(t, c): at time instant t, the tape cell c contains the symbol a.

• Head(t, c): at time instant t, the head points at cell c.

• Statep(t): at time instant t, M is in state p.

• Yes(): M has reached an accepting configuration.

Having edb(⇧) and idb(⇧) in place, we can now proceed with the definition
of the database D and the Datalog program ⇧.

The Database D

We only need to store the relations Succ1, First1, and Last1, which form the
base case of the inductive definition of Succi, Firsti, and Lasti. In particular,

D = {Succ1(0, 1),First1(0),Last1(1)}.

340 37 Datalog Query Evaluation

The Program ⇧

The program ⇧, which is responsible for faithfully describing the evolution of
M on w starting from sc(w), is the union of the following five programs:

1. ⇧� that inductively constructs Succi, �i, and Firsti, for each i 2 [m].

2. ⇧start that constructs the start configuration sc(w) = (s, ., w,t, . . . ,t).
3. ⇧� that simulates the transition function of M .

4. ⇧inertia that ensures that the tape cells that have not been changed at
time instant t keep their values at time instant t+ 1.

5. ⇧accept that checks whether M has reached an accepting configuration.

The definitions of the above Datalog program follow. For notational conve-
nience, we write x̄ for x1, . . . , xk, where k � 0 will be clear from the context,
and x̄i for xi,1, . . . , xi,m.

The Program ⇧�. For each i 2 [m� 1], we add the Datalog rules:

Succi+1(z, x̄, z, ȳ) :– Succi(x̄, ȳ),First1(z)

Succi+1(z, x̄, z, ȳ) :– Succi(x̄, ȳ),Last1(z)

Succi+1(z, x̄, v, ȳ) :– Succ1(z, v),Lasti(x̄),Firsti(ȳ)

Firsti+1(x, ȳ) :– First1(x),Firsti(ȳ)

Lasti+1(x, ȳ) :– Last1(x),Lasti(ȳ)

�m (x̄, ȳ) :– Succm(x̄, ȳ)

�m (x̄, z̄) :– �m (x̄, ȳ), Succm(ȳ, z̄).

The Program ⇧start. Assuming that w = a0, . . . , a|w|�1, we add the rules:

States(x̄) :– Firstm(x̄)

Symbola0
(x̄, x̄) :– Firstm(x̄)

Symbola1
(x̄0, x̄1) :– Firstm(x̄0), Succ

m(x̄0, x̄1)

...

Symbola|w|�1
(x̄0, x̄i) :– Firstm(x̄0), Succ

m(x̄0, x̄1), . . . , Succ
m(x̄|w|�2, x̄|w|�1)

Symbolt(x̄0, ȳ) :– Firstm(x̄0), Succ
m(x̄0, x̄1), . . . ,

Succm(x̄|w|�2, x̄|w|�1),�m (x̄|w|�1, ȳ)

Head(x̄, x̄) :– Firstm(x̄)

The Program ⇧�. For each pair (p, a) 2 (Q � {“yes”, “no”}) ⇥ ⌃, with
�(p, a) = (p0, b, dir), we add the following Datalog rules. For brevity, let

�(p,a)(x̄, ȳ, z̄) = Statep(x̄),Head(x̄, ȳ), Symbola(x̄, ȳ), Succ
m(x̄, z̄).

37 Datalog Query Evaluation 341

The following rules change the state from p to p0, and the symbol from a to
b at the next time instant of the computation:

Statep0(z̄) :– �(p,a)(x̄, ȳ, z̄)

Symbolb(z̄, ȳ) :– �(p,a)(x̄, ȳ, z̄).

The next rule, which is responsible for moving the head, depends on the
direction dir 2 {!, ,�}. In particular, if dir =!, then we add the rule

Head(z̄, v̄) :– �(p,a)(x̄, ȳ, z̄), Succ
m(ȳ, v̄).

If dir = , then we add the rule

Head(z̄, v̄) :– �(p,a)(x̄, ȳ, z̄), Succ
m(v̄, ȳ).

Finally, if dir = �, then we add the rule

Head(z̄, ȳ) :– �(p,a)(x̄, ȳ, z̄).

The Program ⇧inertia. Recall that this program is responsible for, essen-
tially, copying the content of the tape cells that have not been a↵ected during
the transition from time instant t to time instant t + 1. The following rule
achieves this for the tape cells coming before the current cell

Symbola(v̄, ȳ) :– Symbola(x̄, ȳ),Head(x̄, z̄),�m (ȳ, z̄), Succm(x̄, v̄).

The next rule does the same for the tape cells coming after the current cell

Symbola(x̄, ȳ) :– Symbola(x̄, ȳ),Head(x̄, z̄),�m (z̄, ȳ), Succm(x̄, v̄).

The Program ⇧accept. Finally, we check whether M has reached an accept-
ing configuration via the Datalog rule

Yes :– State“yes”(x̄).

It is not di�cult to verify that D and ⇧ can be constructed from M and
w in polynomial time. It is also not hard to see that ⇧ faithfully describes
the computation of M on input w. This means that, with q = (⇧,Yes), M
accepts w if and only if q(D) = true (we leave the proof as an exercise). ut

Data Complexity

We now concentrate on the data complexity of Datalog-Evaluation. As dis-
cussed in Chapter 2, when we study the data complexity of query evaluation,
we essentially consider the query to be fixed, and only the database and the
candidate output are considered as input. Formally, we are interested in the

342 37 Datalog Query Evaluation

complexity of the problem q-Evaluation for a Datalog query q, which takes as
input a database D and a tuple ā over Dom(D), and asks whether ā 2 q(D).
As usual, by convention, we say that Datalog-Evaluation is C-complete in data
complexity, for a complexity class C, if q-Evaluation is in C for every Datalog
query q, and there exists a Datalog query q such that q-Evaluation is C-hard.
We show that fixing the query has an impact on the complexity of the problem,
that is, Datalog-Evaluation, from provably intractable, becomes tractable.

Theorem 37.2

Datalog-Evaluation is PTime-complete in data complexity.

Proof. The upper bound follows from the analysis performed at the beginning
of the chapter. Fix a Datalog query q = (⇧, R). Given a databaseD of edb(⇧),
and a tuple ā over Dom(D), the analysis performed above shows that T1

⇧ (D)
can be computed in time O(|Dom(D)|k) for some k 2 N that solely depends
on q, which implies that checking whether R(ā) 2 T1

⇧ (D) is feasible in time
O(|Dom(D)|k). Therefore, q-Evaluation is in PTime, as needed.

For the lower bound we provide a reduction from a standard PTime-hard
problem known asmonotone circuit value. For n 2 N, an n-input, single-output
monotone Boolean circuit is a directed acyclic graph C with exactly n nodes
without incoming edges, called the sources, and exactly one node without
outgoing edges, called the sink. All the nodes that are not sources are labeled
with either ^ or _ (¬ is not allowed, hence the term monotone). We write
C(v1, . . . , vn) to indicate that the i-th source of C is the node vi, for i 2 [n].
An input to such a Boolean circuit C(v1, . . . , vn) is a tuple (w1, . . . , wn) 2
{0, 1}n. The output of C(v1, . . . , vn) on (w1, . . . , wn), denoted C(w1, . . . , wn),
is defined by recursively assigning to every node v a value bv as follows:

• bvi = wi, for each i 2 [n], and

• for every node u 62 {v1, . . . , vn}, assuming that the two incoming edges of
u are coming from u1 and u2, bu = bu1 ⇧ bu2 , where ⇧ is the label of u.

The output C(w1, . . . , wn) is defined as bvs , where vs is the sink of C. We are
now ready to introduce the monotone circuit value problem:

Problem: MCVP

Input: An n-input, single-output monotone Boolean circuit C(v̄),
and a tuple w̄ 2 {0, 1}n, where n 2 N

Output: true if C(w̄) = 1, and false otherwise

Our goal is to show that there exists a Datalog query q such thatMCVP can
be reduced to q-Evaluation via a reduction that is computable in deterministic

37 Datalog Query Evaluation 343

logarithmic space. Intuitively, the query q should specify a generic procedure
for evaluating monotone Boolean circuits. This can be straightforwardly done
via the query q = (⇧,Yes), where ⇧ is the Datalog program

True(x) :– Or(x, y, z),True(y)

True(x) :– Or(x, y, z),True(z)

True(x) :– And(x, y, z),True(y),True(z)

Yes :– Sink(x),True(x).

We now proceed to show that MCVP can be reduced to q-Evaluation via a
reduction that is computable in deterministic logarithmic space. Consider an
instance of MCVP, i.e., an n-input, single-output monotone Boolean circuit
C(v1, . . . , vn), and a tuple w̄ = (w1, . . . , wn) 2 {0, 1}n, for an integer n 2 N.
For brevity, we write ui = uj ^ uk for the fact that the node ui is labeled by
^, and its incoming edges are coming from the nodes uj and uk; analogously,
we write ui = uj _ uk. We define the database DC,w̄ of edb(⇧) as follows:

{True(vi) | i 2 [n] and wi = 1}
[{And(ui, uj , uk) | ui, uj , uk are nonsource nodes of C, and ui = uj ^ uk}
[{Or(ui, uj , uk) | ui, uj , uk are nonsource nodes of C, and ui = uj _ uk}
[{Sink(vs) | vs is the sink of C}.

It is clear that the database DC,w̄ can be computed in deterministic logarith-
mic space in the size of C and w̄. It is also easy to verify that

C(w̄) = 1 if and only if q(DC,w̄) = true.

Therefore, q-Evaluation is PTime-hard, and the claim follows. ut

38

Static Analysis of Datalog Queries

In this chapter, we discuss central static analysis tasks for Datalog queries that
are important for query optimization purposes. In fact, we consider the three
fundamental tasks that we have also studied for first-order and conjunctive
queries, namely satisfiability, containment, and equivalence. We also discuss a
new static analysis task, known as boundedness, that is relevant for recursive
query languages such as Datalog. In simple words, a Datalog query is bounded
if it can be equivalently rewritten as a Datalog query without recursion.

As we shall see, we can e↵ectively check whether a Datalog query is satis-
fiable. On the other hand, the problem of checking whether a Datalog query
is contained into (or is equivalent to) another Datalog query, as well as the
problem of checking whether a Datalog query is bounded, are undecidable.

Satisfiability

We start by considering the satisfiability problem: given a Datalog query q =
(⇧, R), is there a database D of edb(⇧) such that q(D) 6= ;? We proceed to
show that this problem is decidable. We call a Datalog query (⇧, R) constant-
free if the rules of the Datalog program ⇧ do not mention constants.

Theorem 38.1

Datalog-Satisfiability is in ExpTime, and in PTime for constant-free Dat-
alog queries.

Proof. Consider a Datalog query q = (⇧, R), and assume that a1, . . . , an 2
Const are the constants mentioned by⇧. We first characterize the satisfiability
of q via a very simple database. Let

D⇧ =
n
P (c̄) | P 2 edb(⇧) and c̄ 2 {?, a1, . . . , an}ar(P)

o
,

where ? is a value from Const�{a1, . . . , an}. We can show the following lemma:

346 38 Static Analysis of Datalog Queries

Lemma 38.2. It holds that q is satisfiable if and only if q(D⇧) 6= ;.

Proof. It is clear that if q(D⇧) 6= ;, then q is satisfiable. Assume now that
q is satisfiable. This implies that there exists a database D of edb(⇧) such
that q(D) 6= ;, i.e., there exists a tuple c̄ over Dom(D) with R(c̄) 2 ⇧(D).
Let h : Dom(D)! {?, a1, . . . , an} be the function that maps each element in
Dom(D) � {a1, . . . , an} to ? and each element in Dom(D) \ {a1, . . . , an} to
itself. Clearly, h(D) ✓ D⇧ , which in turn allows us to show that h(⇧(D)) ✓
⇧(D⇧); the latter can be shown via an easy inductive argument. Therefore,
R(h(c̄)) 2 ⇧(D⇧), which implies that h(c̄) 2 q(D⇧). Thus, q(D⇧) 6= ;. ut

Lemma 38.2 leads to the following simple procedure for checking whether
the Datalog query q = (⇧, R) is satisfiable:

if q(D⇧) 6= ;, then yes; otherwise, no.

From the analysis performed in Chapter 37 (see the discussion before Theorem
37.1), we conclude that checking whether q(D⇧) 6= ; is feasible in time

O
⇣
|⇧| · |Dom(D⇧)|maxvar ·maxbody · |sch(⇧)|2 · |Dom(D⇧)|2·ar(⇧)

⌘
,

where maxvar and maxbody are the maximum number of variables and body
atoms, respectively, in a rule of ⇧. This implies that Datalog-Satisfiability is
in ExpTime, as needed.

Now, observe that in the case where ⇧ is constant-free, we have that

D⇧ = {P (?, . . . , ?) | P 2 edb(⇧)}.

Therefore, checking whether q(D⇧) 6= ; is feasible in time

O
�
|⇧| ·maxbody · |sch(⇧)|2

�

since |Dom(D⇧)| = 1. This implies that, for constant-free Datalog queries,
Datalog-Satisfiability is in PTime, and the claim follows. ut

Containment and Equivalence

We now concentrate on the containment problem for Datalog: given two Dat-
alog queries q1 = (⇧1, R1) and q2 = (⇧2, R2) over a schema S (in particular,
with edb(⇧1) = edb(⇧2)), is it the case that q1 ✓ q2. We can show that:

Theorem 38.3

Datalog-Containment is undecidable.

38 Static Analysis of Datalog Queries 347

The above result is shown via a reduction from a known undecidable prob-
lem, namely containment for context-free grammars. A context-free grammar
is a set of production rules that describe how to produce words over a certain
alphabet. Consider, for example, the grammar G consisting of the rules

S ! AA A ! a A ! b.

The first rule states that we can replace S with AA, while the other two rules
state that A can be replaced with a or b. Assuming that S is the starting point
of the production, and {a, b} is the underlying alphabet, the above grammar
produces the words aa, ab, ba, bb. Let us formalize the above discussion.

A context-free grammar (CFG) is a tuple (N,T, P, S), where

• N is a finite set, the non-terminal symbols,

• T is a finite set disjoint from N , the terminal symbols,

• P is a finite subset of N ⇥ (N [T)⇤, the production rules, and

• S 2 N , the start symbol.

For any two words v, w 2 (N [T)⇤, we say that v directly yields w, written
v) w, if there exists (x, y) 2 P and z1, z2 2 (N [T)⇤ such that v = z1xz2
and w = z1yz2. Now, for any two words v, w 2 (N [T)⇤, we say that v yields
w, written as v)⇤ w, if there exists k � 1, and words z1, . . . , zk 2 (N [T)⇤

such that v = z1) z2 · · ·) zk = w. The language of G, denoted L(G), is the
set of words {w 2 T ⇤ | S)⇤ w}, that is, all the words w over T that can be
obtained starting from the symbol S and applying production rules of P .

Given two context-free grammars G1 and G2, we say that G1 is contained
in G2, denoted G1 ✓ G2, if L(G1) ✓ L(G2). The containment problem for
context-free grammars is defined as expected:

Problem: CFG-Containment

Input: Two context-free grammars G1 and G2

Output: true if G1 ✓ G2, and false otherwise

Proof (of Theorem 38.3). We provide a reduction from CFG-Containment to
Datalog-Containment. In other words, given two context-free grammars G1 and
G2, the goal is to construct two Datalog queries q1 and q2 such that G1 ✓ G2

if and only if q1 ✓ q2. We first explain how to transform a CFG into a Datalog
query. Let us clarify that, in what follows, given a CFG G = (N,T, P, S), we
assume that P is a finite subset of N ⇥ ((N � {S}) [T)⇤ � {✏}, where ✏
denotes the empty string. In other words, there is no rule in P that produces
the empty string, and the start symbol does not occur in the right-hand side of
a rule. This does not a↵ect the generality of our proof since CFG-Containment
remains undecidable even with the above simplifying assumptions.

348 38 Static Analysis of Datalog Queries

We proceed to define the Datalog program ⇧G, where G = (N,T, P, S) is
a CFG. The extensional schema edb(⇧G) and intensional schema idb(⇧G) are

{SymbolA | A 2 T} and {SymbolA | A 2 N},

respectively, where all the relations are binary. For each production rule in P

(A,A1 · · ·An),

for n � 1, we add to ⇧G the Datalog rule

SymbolA(x1, xn+1) :– SymbolA1
(x1, x2), SymbolA2

(x2, x3), . . . ,

SymbolAn
(xn, xn+1).

We finally define the Datalog query qG = (⇧G, SymbolS).

Example 38.4: From CFG to Datalog

Consider the CFG G = (N,T, P, S), where N = {A,S}, T = {a, b}, and
P = {(S,Aa), (A, abA), (A, aa)}. The Datalog program ⇧G is

SymbolS(x1, x3) :– SymbolA(x1, x2), Symbola(x2, x3)

SymbolA(x1, x4) :– Symbola(x1, x2), Symbolb(x2, x3), SymbolA(x3, x4)

SymbolA(x1, x3) :– Symbola(x1, x2), Symbola(x2, x3),

while the query qG = (⇧G, SymbolS).

To show the correctness of the above construction, we need to introduce
the notion of proof tree of an atom from a Datalog program. Roughly speak-
ing, such a proof tree explains how an atom can be derived from a Datalog
program, i.e., it provides a proof for that atom. As we shall see below, this no-
tion is closely related to the notion of derivation tree in context-free languages
that essentially explains how a word can be derived from a CFG.

Consider an atom R(ā), with ā 2 Constar(R), and a Datalog program ⇧.
A proof tree of R(ā) from ⇧ is a labeled rooted tree T = (V,E,�), where �
is a function from V to the set of atoms that can be formed using relations
from sch(⇧) and constants from Const, such that

1. assuming that v 2 V is the root node of T , �(v) = R(ā), and

2. for each internal node v 2 V with children u1, . . . , un for n � 1, there exists
a rule ⇢ 2 ⇧ of the form R0(x̄0) :– R1(x̄1), . . . , Rn(x̄n), and a function h
from the constants and variables in ⇢ to Const, which is the identity on
Const, such that �(v) = R0(h(x̄0)) and �(ui) = Ri(h(x̄i)), for each i 2 [n].

38 Static Analysis of Datalog Queries 349

We say that the sequence of atoms R1(ā1), . . . , Rn(ān) is induced by the proof
tree T if, assuming that the leaf nodes of T are v1, . . . , vn (in this order), then
�(vi) = Ri(āi), for each i 2 [n]. Given a database D of edb(⇧), a proof tree of
R(ā) from ⇧ and D is a proof tree T = (V,E,�) of R(ā) from ⇧ such that,
for each v 2 V , �(v) 2 B(⇧, D), i.e., �(v) is an atom with a relation from
sch(⇧) and constants from Dom(D), and for each leaf node v of T , �(v) 2 D.

Example 38.5: Proof Tree

Consider the Datalog program ⇧G obtained from the CFG G as in Ex-
ample 38.4. A proof tree of the atom SymbolS(c1, c6) from ⇧G and

D ◆ {Symbola(c1, c2), Symbolb(c2, c3), Symbola(c3, c4),

Symbola(c4, c5), Symbola(c5, c6)}

is the following one

SymbolS(c1, c6)

SymbolA(c1, c5)

Symbola(c1, c2) Symbolb(c2, c3) SymbolA(c3, c5)

Symbola(c3, c4) Symbola(c4, c5)

Symbola(c5, c6)

Clearly, the above proof tree induces the sequence of atoms

Symbola(c1, c2), Symbolb(c2, c3), Symbola(c3, c4),

Symbola(c4, c5), Symbola(c5, c6).

It is an easy exercise to show the following lemma:

Lemma 38.6. Consider a Datalog query q = (⇧, R), a database D of edb(⇧),
and a tuple ā 2 Dom(D)ar(R). The following are equivalent:

1. ā 2 q(D).

2. There exists a proof tree of R(ā) from ⇧ and D.

The next technical lemma makes apparent the intention underlying the
transformation of a CFG G to a Datalog program ⇧G.

350 38 Static Analysis of Datalog Queries

Lemma 38.7. Consider a CFG G = (N,T, P, S), and two words a1 · · · an 2
T ⇤ and c1 · · · cn+1 2 Const⇤, for n � 1. The following are equivalent:

1. a1 · · · an 2 L(G).

2. There exists a proof tree of SymbolS(c1, cn+1) from ⇧G that induces the
sequence of atoms Symbola1

(c1, c2), . . . , Symbolan
(cn, cn+1).

The proof of the above lemma, which is left as an exercise, relies on the
correspondence between proof trees and derivation trees in context-free lan-
guages. For example, the following tree is a derivation tree of the word abaaa
from the CFG G given in Example 38.4

S

A

a b A

a a

a

The correspondence between the proof tree of the atom SymbolS(c1, c6) given
above, and the derivation tree of the word abaaa should be apparent. By
exploiting the above technical lemmas, we can now show the following result:

Proposition 38.8

Consider the CFGs Gi = (Ni, Ti, Pi, Si) for i 2 {1, 2}. Then

G1 ✓ G2 if and only if qG1 ✓ qG2 .

Proof. We only show the ‘if’ direction; the ‘only if’ direction is shown analo-
gously. Consider a database D of edb(⇧G1), and assume that (c, d) 2 qG1(D).
By Lemma 38.6, there exists a proof tree of SymbolS1

(c, d) from ⇧G1 and D.
Assume that this proof tree induces the sequence of atoms

s = Symbola1
(c1, c2), Symbola2

(c2, c3), . . . , Symbolan
(cn, cn+1),

where c = c1, d = cn+1, and a1 · · · an 2 T ⇤
1 . By Lemma 38.7, we conclude

that a1 · · · an 2 L(G1). Since, by hypothesis, G1 ✓ G2, we get that a1 · · · an 2
L(G2). By Lemma 38.7, there exists a proof tree of SymbolS2

(c1, cn+1) from
⇧G2 that induces the sequence of atoms s. Since the atoms in s are atoms of
D, Lemma 38.6 implies that (c, d) 2 qG2(D), and the claim follows. ut

Since CFG-Containment is undecidable, Proposition 38.8 implies the same
for Datalog-Containment. This completes the proof of Theorem 38.3. ut

Let us now turn our attention on the equivalence problem: given two Dat-
alog queries q and q0, is it the case that q ⌘ q0. By exploiting the fact that
the containment problem is undecidable, we can easily show the following:

38 Static Analysis of Datalog Queries 351

Theorem 38.9

Datalog-Equivalence is undecidable.

Proof. It su�ces to reduce Datalog-Containment to Datalog-Equivalence. Con-
sider two Datalog queries q1 = (⇧1, R1) and q2 = (⇧2, R2), where edb(⇧1) =
edb(⇧2). We assume, without loss of generality, that idb(⇧1) \ idb(⇧2) = ;.
We define the Datalog query

q12 = (⇧1 [⇧2 [{R12(x̄) :– R1(x̄), R12(x̄) :– R2(x̄)}, R12),

where R12 is a new relation name not occurring in sch(⇧1) [sch(⇧2). It is
easy to verify that q1 ✓ q2 if and only if q12 ⌘ q2, and the claim follows. ut

Boundedness

As discussed in Chapter 35, given a Datalog program ⇧, and a database D of
edb(⇧), the semantics of ⇧ on D, i.e., the database ⇧(D), can be computed
by repeatedly applying the immediate consequence operator T⇧ of ⇧ starting
fromD until a fixpoint is reached; in fact, by Corollary 35.14,⇧(D) = T1

⇧ (D).
We have also seen that the construction of T1

⇧ (D) does not require infinitely
many iterations. Actually, there exists an integer k  |B(⇧, D)| such that
T1
⇧ (D) = T k

⇧(D). The smallest integer k such that T1
⇧ (D) = T k

⇧(D) is called
the stage of ⇧ and D, denoted stage(⇧, D).

Given a Datalog program⇧, it is generally the case that, for some arbitrary
database D of edb(⇧), the integer stage(⇧, D) depends on both ⇧ and D.
This essentially means that the Datalog program ⇧ is inherently recursive, or,
in other words, the depth of recursion of ⇧ is unbounded. On the other hand,
if there is a uniform upper bound (i.e., a bound that depends only on ⇧) for
stage(⇧, D), then the recursion of ⇧ is bounded, which actually means that ⇧
is non-recursive despite the fact that syntactically it may look recursive. The
following example illustrates that a bounded (seemingly recursive) Datalog
program can be replaced by an equivalent non-recursive Datalog program.

Example 38.10: Program Boundedness

Consider the Datalog program ⇧ consisting of the rules

P (x, y) :– R(x), P (z, y) P (x, y) :– S(x, y).

Notice that ⇧ is syntactically recursive due to the first rule (P depends
on itself). However, ⇧ is bounded, and equivalent to the program

P (x, y) :– R(x), S(z, y) P (x, y) :– S(x, y),

352 38 Static Analysis of Datalog Queries

that is non-recursive. We can safely replace the atom P (z, y) in the first
rule with the atom S(z, y), which leads to a non-recursive program, since
it does not share any variable with the atom R(x).

Boundedness for Datalog programs is defined as expected:

Definition 38.11: Program Boundedness

A Datalog program ⇧ is bounded if there exists k 2 N such that
stage(⇧, D)  k, for every database D of edb(⇧).

As explained above, boundedness essentially removes from Datalog pro-
grams the feature of recursion. Therefore, it should not come as a surprise the
fact that a Datalog query (⇧, R), where ⇧ is bounded, can always be written
as a UCQ. An interesting question at this point is whether the opposite holds,
namely whenever a Datalog query (⇧, R) is equivalent to a UCQ, then ⇧ is
bounded. It is easy to see that, in general, this is not the case.

Example 38.12: Program Boundedness and UCQ s

Consider the Datalog query q = (⇧, R), where ⇧ consists of the rules

P (x, y) :– S(x, y)

P (x, y) :– P (x, z), S(z, y)

R(x, y) :– S(x, y)

R(x, y) :– T (x, y).

It is clear that ⇧ is not bounded due to the first two rules that compute
the transitive closure of the binary relation P . On the other hand, q is
equivalent to the UCQ q0 = '(x, y) with

' = S(x, y) _ T (x, y).

Indeed, for every database D of edb(⇧) = {S, T}, q(D) = q0(D) since
the relation name R depends only on S and T .

Observe that the key reason why the query q = (⇧, R) from Example 38.12
can be written as a UCQ, despite the fact that ⇧ is not bounded, is because
the relation name R does not depend on a recursive relation name, but only
on non-recursive ones (in this case, on the extensional relation names S and
T). This leads to the notion of boundedness of relation names.

Given a Datalog program ⇧, and a database D of edb(⇧), analogously
to the stage of ⇧ and D, for a relation name R 2 idb(⇧) we define the
stage of R with respect to ⇧ and D as the smallest integer k with RT1

⇧ (D) =

38 Static Analysis of Datalog Queries 353

RTk
⇧(D), denoted stage⇧,D(R). Considering again the Example 38.12, although

the stage of ⇧ and D is not bounded, stage⇧,D(R) = 1. This essentially tells
that, even though the program ⇧ may be inherently recursive, the part of it
that is responsible for computing the relation R is actually non-recursive. We
can now define when a Datalog query (instead of a program) is bounded.

Definition 38.13: Query Boundedness

A Datalog query q = (⇧, R) is bounded if there exists a k 2 N such that
stage⇧,D(R)  k, for every database D of edb(⇧).

The notion of query boundedness essentially removes from Datalog queries
the feature of recursion. Therefore, it should be expected that a bounded Dat-
alog query (⇧, R) can always be written as a UCQ, even if ⇧ is not bounded.
What is more interesting, though, is the fact that query boundedness, unlike
program boundedness, characterises the fragment of Datalog queries that can
be written, not only as UCQ s, but actually as FO queries.

Theorem 38.14

Let q = (⇧, R) be a Datalog query over S. The following are equivalent:

1. q is bounded.

2. There exists an FO query q0 over S such that q ⌘ q0.

3. There exists a UCQ q00 over S such that q ⌘ q00.

Proof. We discuss how (1) implies (2) can be shown, and leave the formal proof
as an exercise. We know from Proposition 36.2 that there is an infinitary UCQ
q0 over S such that q ⌘ q0. Recall that q0 is defined by exhaustively applying
the Unfold⇧(·) operator, introduced in Chapter 36, starting from a certain
CQ qR obtained from q, and then keeping only the infinitary CQs over S.1

Now, in the case of bounded Datalog queries, it can be shown that q0 is an
ordinary UCQ over S, and thus, an FO query over S. This is due to the fact
that the Unfold⇧(·) operator, starting from qR, it constructs a CQ over S after
finitely many steps, in fact, in at most k steps, where k � 0 is the integer that
bounds stage⇧,D(R), for every database D of edb(⇧).

We now proceed to show the direction (2) implies (3). By hypothesis, there
is an FO query q0 over S such that q ⌘ q0. By Corollary 36.6, we get that q0 is
preserved under homomorphisms. This in turn implies, due to Theorem 28.11,
that there is a UCQ with variable-constant equality q̂ over S such that q0 ⌘ q̂.
It remains to explain how the equational atoms in q̂ can be eliminated. Since

1 Note that the proof of Proposition 36.2 was given for Boolean queries, but it can
be extended to non-Boolean queries; this extension was left as an exercise.

354 38 Static Analysis of Datalog Queries

q ⌘ q̂, by Proposition 35.17, we get that, for every database D of S, q̂(D)
consists of tuples over Dom(D), i.e., it is not possible to have a value in the
output of q̂ on D that occurs in q̂ but not in D. Assuming that q̂ = '(x̄), we
then conclude the following: if a variable y in ' occurs in an equational atom,
but not in a relational atom, then y is not among the free variables of ', i.e.,
y is not mentioned in x̄. This observation allows us to eliminate an equational
atom (y = a) from ' by simply replacing each occurrence of y with a, and
then removing (y = a) from '. This eventually leads to a UCQ q00 over S such
that q̂ ⌘ q00, and thus, q ⌘ q00, as needed.

We finally show that (3) implies (1). Consider an arbitrary database D of
edb(⇧), and a tuple ā over Dom(D). It su�ces to show that R(ā) 2 ⇧(D)
implies R(ā) 2 T k

⇧(D) for some k 2 N that does not depend on D and ā.
Indeed, if this is the case, then stage⇧,D(R)  k, for every database D of
edb(⇧), which means that q is bounded. By hypothesis, there exists a UCQ
q00, let say of the form q1[· · ·[qn, such that q ⌘ q00. Therefore, if R(ā) 2 ⇧(D),
which means that ā 2 q(D), then ā 2 q00(D). Let m be the maximum number
of atoms occurring in the CQs q1, . . . , qn, that is, m = maxi2[n]{|Aqi |}. It
is clear that there is a database D0 ✓ D with |D0|  m such that ā 2
q00(D0). Since q ⌘ q00, we have that R(ā) 2 ⇧(D0) or R(ā) 2 T1

⇧ (D0). Recall

that T1
⇧ (D0) = T |B(⇧,D0)|

⇧ (D0) with |B(⇧, D0)|  |sch(⇧)| · |Dom(D0)|ar(⇧),
where ar(⇧) is the maximum arity over all relation names of sch(⇧). Since

|D0|  m, we get that |Dom(D0)|  m · ar(⇧). Observe that T |B(⇧,D0)|
⇧ (D0) ✓

T |B(⇧,D0)|
⇧ (D). Therefore, R(ā) 2 T k

⇧(D) for some k 2 N that does not depend
on D and ā (it only depends on q00 and ⇧), and the claim follows. ut

It is clear that checking whether a Datalog program or query is bounded
are important static analysis tasks that are relevant for optimization purposes.

Problem: Datalog-PBoundedness

Input: A Datalog program ⇧
Output: true if ⇧ is bounded, and false otherwise

Problem: Datalog-QBoundedness

Input: A Datalog query q
Output: true if q is bounded, and false otherwise

It turns out that both problems are undecidable. It can be shown via a re-
duction from the Post Correspondence Problem, a classical undecidable prob-
lem, that checking whether a Datalog program is bounded is undecidable. This
can be then easily transferred to query boundedness via an easy reduction.

38 Static Analysis of Datalog Queries 355

Consider a Datalog program⇧. We define the Datalog query q = (⇧[{⇢}, R),
where, assuming that idb(⇧) = {P1, . . . , Pn}, the Datalog rule ⇢ is

R(x1
1, . . . , x

1
ar(P1)

, . . . , xn
1 , . . . , x

n
ar(Pn)

) :– P1(x
1
1, . . . , x

1
ar(P1)

), . . . ,

Pn(x
n
1 , . . . , x

n
ar(Pn)

)

and R is a (ar(P1) + · · ·+ar(Pn))-ary relation name not occurring in idb(⇧).
It is easy to see that ⇧ is bounded i↵ q is bounded. We then have that:

Theorem 38.15

Datalog-PBoundedness and Datalog-QBoundedness are undecidable.

Exercises

Exercise 4.1. Prove that query evaluation for 9FO+ and RA+ is in NP.

Exercise 4.2. Prove that SPJU-Containment containment is ⇧p
2 -hard.

Exercise 4.3. Prove that containment for 9FO+ and RA+ is ⇧p
2 -complete.

Exercise 4.4. Prove that CQ 6=-Containment is ⇧p
2 -hard.

Exercise 4.5. Let q, q0 be CQ 6=s. Prove that q ✓ q0 if, and only if, for every
i 2 [n], there exists j 2 [m] such that qi ✓ q0j .

Exercise 4.6. The language CQ< is defined in the same way as CQ 6= (see
Definition 30.1), but instead of 6= we use <, assuming that there is an order on
the set of constant Const from which database entries are drawn. Analogously,
we can define the language UCQ<. Prove that the problem of containment
remains decidable for CQ< and UCQ<.

Exercise 4.7. The class BCCQ consists of Boolean combinations of CQs,
i.e., queries obtained by repeatedly applying the operations of union (q1[q2),
intersection (q1 \ q2), and di↵erence (q1 � q2) to CQs of the same arity with
the obvious semantics. Prove that containment for BCCQs is decidable.

Exercise 4.8. Prove that the sentences k(RS̄) and k(R̄S), used in the
proof of Theorem 32.5, are true in almost all databases of S = {R[1], S[1]}.

Exercise 4.9. In general, Theorem 32.5 (0–1 law) does not hold if we focus on
a restricted class C of databases, i.e., for an FO sentence ', µn(') is defined by
considering only databases from the class C. Let C✓ be the class of databases
D of the schema S = {R[1], S[1]} such that SD ✓ RD. Adapt the proof of
Theorem 32.5, given in Chapter 30, to show that the 0–1 law holds even if
we focus on the class of databases C✓. Use this result to show that the parity
query q over S, which checks whether the cardinality of the relation B is even,
is not expressible as an FO query if we focus on the class of databases C✓.

358 Exercises

Exercise 4.10. Use Exercise 4.9 (not just the result but the proof that you
produced) to infer the following: for every Boolean FO query q over the schema
S = {R[1], S[1]}, there exist numbers k � 0 and m � 0 such that, for every
database D of S, D |= q i↵ |SD| � k and |RD � SD| � m.

Use this fact to derive Theorem 32.7 when ⇧ is =, i.e., to show that the
query q= over S, which checks whether, for a database D of S, |RD| = |SD|,
cannot be expressed as a constant-free FO query over S.

Exercise 4.11. Let '�() be the constant-free FO query over S = {R[1], S[1]}
such that, for every database D of S, D |= '�() i↵ |RD| � |SD|. Analogously,
we define the constant-free FO queries '>() and '=() over S. Show that

lim
n!1

µn('�) =
1

2
and lim

n!1
µn('>) =

1

2
.

Also show that
lim
n!1

µn('=) = 0.

Exercise 4.12. Recall the estimate used in the proof of Theorem 32.7

F=
n =

X

kbn/2c

✓
n

k

◆✓
n� k

k

◆
.

Show that

lim
n!1

F=
n

3n
= 0.

Exercise 4.13. Recall that Theorem 32.5 (0–1 law) was shown for the spea-
cial case of constant-free FO sentences over a schema with two unary relation
names. Prove the result for the schema S = {E[2]} with a single binary re-
lation name (i.e., for undirected graphs). Recall that you need to construct a
theory T which has a unique, up to isomorphism, countable model, and whose
sentences are true in almost all databases of S. Such a theory T has sentences
 k,m that express the following: for every two disjoint sets X and Y of nodes
of cardinalities k and m, respectively, there exists a node z such that there
are edges (z, x) for each x 2 X, and there is no edge (z, y) for y 2 Y . While
the proof of condition 2 of Lemma 32.6 follows the same ideas as those we
saw, the proof of condition 1 is more elaborate and requires ideas not seen in
this book; the interested reader is advised to consult [22].

Exercise 4.14. Give an example of an FO sentence with constants for which
Theorem 32.5 (0–1 law) does not hold. A much more di�cult task is to show
that, for every FO sentence ' with constants, limn!1 µn(') exists, and is a
rational number with the denominator being of the form 2k for some k � 0.

Exercise 4.15. Recall that Theorem 34.1 was shown for RAAggr(⌦) without
constants. Extend the proof to the version of RAAggr(⌦) that allows the use
of constants from Const. This is done in the following four steps:

359

1. First extend LC and LC with constants from Const, and show that a trans-
lation of an RAAggr(⌦) expression that uses constants from {c1, . . . , cn} (
Const into LC, and then into LC, can be carried out in such a way that
only constants from {c1, . . . , cn} are present in formulae.

2. Next, prove a locality result for the extension of LC with constants. Con-
sider an expression '(x̄), where ' is an LC formula using constants from
{c1, . . . , cn} over a schema S = {R1 : ⌧1, . . . , Rn : ⌧n} with ⌧i 2 {o}ki and
ki � 0, for each i 2 [n], such that FV(') ✓ Varo, and x̄ is a tuple over
FV(') that mentions all the variables of FV('). There exists r � 0 such
that, for a database D of S, and tuples ā, b̄ over Dom(D), if ND

r (ā, c̄) is
isomorphic to ND

r (b̄, c̄), for c̄ = (c1, . . . , cn), then either both ā, b̄ belong
to '(x̄)(D), or none of them belongs to '(x̄)(D).

3. Finally, using the above locality result for the extension of LC with con-
stants, show that a modified version of the reachability query (that incor-
porates constants from {c1, . . . , cn}) still violates locality.

Exercise 4.16. Use the translation of Theorem 34.6 to find syntactic restric-
tions on FOAggr(⌦) that lead to a logical formalism that can be used to define
a query language, i.e., to ensure that the output of an expression '(ū), where
' is a formula from the restricted formalism, and ū a tuple of variables over
FV(') that mentions all the variables of FV('), on a database is always finite.

Exercise 4.17. Recall that Proposition 34.11 was shown for the schema S =
{R : (o, o)}. Generalize the proof to arbitrary schemas {R1 : ⌧1, . . . , Rn : ⌧n}
with ⌧i 2 {o}ki and ki � 0, for each i 2 [n].

Exercise 4.18. There is a di↵erent notion of locality, known in the literature
as Hanf-locality (as opposed to Gaifman-locality used in Chapter 34). Given
two databases D and D0 of a two-sorted schema S, and tuples ā and ā0 of
the same arity over Dom(D) and Dom(D0), respectively, we write (D, ā) ⇠r

(D0, ā0) if there is a bijection f : Dom(D) ! Dom(D0) such that, for every
b 2 Dom(D), ND

r (ā, b) is isomorphic to ND0

r (ā0, f(b)). Note that, in particular,
(D, ā) ⇠r (D0, ā0) implies |Dom(D)| = |Dom(D0)|. A query q of type ⌧ 2
{o, n}k, for k � 0, over S is Hanf-local if there exists r � 0 such that, for every
ā, ā0 2 (Const [Num)k, (D, ā) ⇠r (D0, ā0) implies ā 2 q(D) i↵ ā0 2 q(D0).

Prove Theorem 34.3 for Hanf-locality instead of Gaifman locality. To do
so, show, by extending the argument in the proof of Proposition 34.11, the
following: for an LC formula ' over a schema S = {R1 : ⌧1, . . . , Rn : ⌧n} with
⌧i 2 {o}ki and ki � 0, for each i 2 [n], such that FV(') ✓ Varo, and a tuple
x̄ over FV(') that mentions all the variables of FV('), '(x̄) is Hanf-local.

Exercise 4.19. Consider a restriction of LC where infinitary connectives are
not allowed, we have quantification over variables of both types, and we
have counting terms]x'(x, ȳ) counting the number of elements of the input
database satisfying '. Concerning the semantics, is defined in the expected

360 Exercises

way with the crucial restriction that numerical variables can only range over
the values [0, n�1], where n is the number of elements in the input database.

Prove that, for every expression '(), where ' is a sentence from this re-
stricted logic, there exists a Boolean RAAggr(⌦) query e, where ⌦ contains <,
+, and ·, and the summation aggregate

P
, such that, for every database D

of a schema S, '()(D) = e(D) for the following two cases:

1. S = {R1 : ⌧1, . . . , Rn : ⌧n} such that, for each i 2 [n], ⌧i 2 {n}ki for
ki � 0, i.e., we focus on databases where all elements are of type n.

2. S = {R1 : ⌧1, . . . , Rn : ⌧n} such that, for each i 2 [n], ⌧i 2 {o}ki for
ki � 0, i.e., we focus on databases where all elements are of type o, and
we have access to an order relation < over the constants of Const.

The importance of these results stems from the fact the restricted logic we
defined captures a uniform version of a complexity class called TC0 (this
stands for threshold circuits of constant depth). TC0 has not been separated
from others above it such as PTime or NLogSpace. In particular, this means
that bounds on the expressivity of RAAggr(⌦) cannot be proved either over
ordered non-numerical domains, or numerical domains, without resolving deep
problems in complexity theory.

Exercise 4.20. A path system is a tuple P = (V,R, S, T), where V is a finite
set of nodes, R ✓ V ⇥ V ⇥ V , S ✓ V and T ✓ V . A node v 2 V is admissible
if v 2 T , or there are admissible nodes u,w 2 V such that (v, u, w) 2 R.

Show that the set of admissible nodes for P can be computed via a Datalog
query. In other words, there exists a Datalog query q = (⇧, A), where A
is unary relation, such that, for every path system P , q(DP) is the set of
admissible nodes for P , where DP stores P in the obvious way, i.e., V, S and
T via unary relations, and R via a ternary relation.

Exercise 4.21. An undirected graph G = (V,E) is 2-colorable if there exists
a function f : V ! {0, 1} such that (v, u) 2 E implies f(v) 6= f(u).

Show that non-2-colorability is expressible via a Datalog query, i.e., there
exists a Datalog query q = (⇧,Yes), where Yes is a 0-ary relation, such that,
for every undirected graph G, q(DG) = true if and only if G is not 2-colorable,
where DG stores G via the binary relation Edge(·, ·).

Exercise 4.22. Prove Theorem 35.8.

Exercise 4.23. Prove Lemma 35.10.

Exercise 4.24. Show that the query that asks whether an undirected graph
is 2-colorable is not expressible via a Datalog query. To do so, exploit the fact
that Datalog queries are monotone.

361

Exercise 4.25. Prove that there exists a monotone query that is not express-
ible via a Datalog query. The proof should not rely on any complexity-theoretic
assumption. (It is very easy to show that this holds under the assumption that
PTime 6= NP.)

Exercise 4.26. A Datalog program ⇧ is called linear if, for every rule ⇢ 2 ⇧,
the body of ⇢ mentions at most one relation from idb(⇧). A Datalog query
(⇧, R) is linear if ⇧ is linear.

Show that there is no linear Datalog query that computes the set of admis-
sible nodes for a path system P . The proof should not rely on any complexity-
theoretic assumption. (It is easier to show this statement if we assume that
NLogSpace 6= PTime.

Exercise 4.27. The predicate graph of a program ⇧ is the directed graph
G⇧ = (V,E), where V consists of the relations of sch(⇧), and (P,R) 2 E if
and only if there exists a rule ⇢ 2 ⇧ of the form

R(x̄) :– . . . , P (ȳ), . . .

We call ⇧ non-recursive if G⇧ is acyclic. A Datalog query (⇧, R) is non-
recursive if ⇧ is non-recursive.

Show that, for every non-recursive Datalog query q = (⇧, R), there exists
a finite UCQ q0 such that, for every database D of edb(⇧), q(D) = q0(D).

Exercise 4.28. Let D and q be the database and the Datalog query, respec-
tively, constructed from the Turing machine M and the input word w in the
proof of Theorem 37.1. Show that M accepts w if and only if q(D) = true.

Exercise 4.29. A Datalog program ⇧ is called guarded if, for every rule ⇢ 2
⇧, the body of ⇢ has an atom that contains (or “guards”) all the variables
occurring in ⇢. A Datalog query (⇧, R) is guarded if ⇧ is guarded.

Prove that the ExpTime-hardness shown in Theorem 37.1 holds even if
we focus on guarded Datalog queries.

Exercise 4.30. Consider a Datalog query q = (⇧, R), where the arity of the
relations of sch(⇧) is bounded by some integer constant, a database D of
edb(⇧), and a tuple ā of arity ar(R) over Dom(D). Show that the problem of
deciding whether ā 2 q(D) is NP-complete.

Exercise 4.31. Consider a Datalog query q = (⇧, R), where sch(⇧) consists
only of 0-ary relations, and a database D of edb(⇧). Show that the problem
of deciding whether q(D) = true is PTime-complete.

Exercise 4.32. Show that the evaluation problem for linear Datalog queries
is PSpace-complete in combined complexity, and NLogSpace-complete in
data complexity.

Exercise 4.33. Show that the evaluation problem for non-recursive Datalog
queries is PSpace-complete in combined complexity, and in DLogSpace in
data complexity.

Bibliographic Comments

To be done.

Part V

Uncertainty

39

Incomplete Databases

So far we assumed that all information in databases was complete: we have
a set Const from which all entries in databases come, and for every fact R(ā)
in a database, every element of the tuple ā comes from Const. The reality
of course is di↵erent: information is often missing, and databases are full
of entries shown as null. These null elements can have di↵erent semantics:
sometimes they mean that an attribute is not known (e.g., date of birth),
sometimes they mean that an attribute is not applicable (e.g., date of death
for a living person), and sometimes we simply do not have any information
why no data value was provided and a null replaced it.

In the next two chapters we study the most commonly considered model
of nulls representing missing, and currently unknown data. We define this
model using the framework of sets of atoms, and explain what such incomplete
instances mean. In fact, they can represent multiple complete databases, and
thus query answering must be consistent with answers obtained in all of them.

In this chapter, we present the model of incomplete data and the notion of
certain query answers. We then analyze its complexity (which is very high),
look at what real-world databases do (obviously they keep the complexity
low), thus arriving at the inevitable mismatch between the correct way of
answering queries and what happens in reality. In the following chapter, we
look at the ways of bridging this gap.

A Formal Model of Incomplete Data and Nulls

The idea of the model is simple: some entries in databases are replaced by vari-
ables, which are interpreted as values that exist but are currently unknown.
To separate them from variables used in queries, we assume that the set Var
of variables has a countably infinite subset Null of nulls whose elements will
be denoted by ?1,?2,?3, Unlike other elements of Var, however, they
will not be explicitly referenced in queries. An example of such a database
is shown in Figure 39.1. Some entries in the Profession table contain nulls,

368 39 Incomplete Databases

Person

pid pname cid

1 Aretha MPH
2 Billie BLT
3 Bob DLT

Profession

pid prname

1 singer
1 ?1

1 ?2

2 singer
3 ?1

3 author

Fig. 39.1: A incomplete database of the schema in Example 3.2.

denoted by ?1 and ?2. They stand for two currently unknown professions of
the person with id 1, namely Aretha. Moreover, one of the nulls, ?1, is also a
profession of the person with id 3, i.e., Bob. Thus, while we do not know what
these professions are, we do know that Aretha and Bob share a profession.

Definition 39.1: Incomplete Database Instances

An incomplete database instance I of a schema S is a finite set of atoms
over S, where all variables come from the set Null.

Since an incomplete instance I may contain both constants and nulls, so
can its domain Dom(I). We thus use the notation DomConst(I) for Dom(I)\
Const and DomNull(I) for Dom(I) \ Null.

An incomplete instance I may represent multiple complete instances. To
start with, nulls in it may be replaces by elements of Const, i.e., by their real,
but currently unknown values. If this is the only way to obtain further informa-
tion about I, one refers to the semantics under the Closed World Assumption,
or cwa-semantics. Another, more permissive interpretation, permits not only
replacing nulls with constant values but also adding tuples that may have
been missing in I. This is known as the semantics under the Open World
Assumption, or owa.

To define them formally, we use the machinery of homomorphisms. Recall
that a homomorphism h on a set of atoms (i.e., an incomplete instance) I is a
mapping h defined on Dom(I) such that h(a) = a whenever a 2 DomConst(I),
and otherwise h(a) is in Const[Var. In providing semantics of incompleteness,
we want to replace nulls with constant values rather than other nulls. Thus,
we look at homomorphisms whose image is a subset of Const. These are called
valuations.

Definition 39.2: Closed and Open-World Semantics

Given an incomplete instance I of schema S, its cwa-semantics is defined
as

39 Incomplete Databases 369

JIKcwa = {D 2 Inst(S) | D = h(I) and h is a valuation} .

Its owa-semantics is defined as

JDKowa = {D 2 Inst(S) | there is a valuation h : I ! D} .

It is easy to see that D 2 JIKowa i↵ D ◆ D0 for some D0 2 JIKcwa.
The database in Figure 3.1 of Example 3.2 belongs to JIKowa for the in-

stance I in Figure 39.1. It does not belong to JIKcwa due to the presence in it of
relation City, and information about the person with pid 4, namely Freddie.
However, if all the tuples about that person are eliminated from the instance
in Figure 3.1 together with the relation City, then the resulting database will
be in JIKcwa.

Certain Answers

Given an incomplete instance I and a query q written in some query language,
what is q(I)? Since the instance I represents multiple complete instances
(those in JIKcwa or JIKowa, depending on the semantics), q(I) must take into
account query answers q(D) for all D that I can represent.

To arrive at the definition of answers to q, consider initially Boolean
queries. That is, q(D) is either true or false. When can we say that
the answer to q in I is true? This can be asserted with certainty only if
q(D) = true for all D 2 JIK (where J K is one of the semantics we use). In
that case, we say that the certain answer to q over I is true; otherwise it
is false. From now on, we shall use the notation cert⇤(q, I) for certain an-
swers, where ⇤ is owa or cwa. Recall that true is viewed as the set {()}
containing the empty tuple while false is viewed as the empty set. Thus,
cert⇤(q, I) =

T
{q(D) | D 2 JIK⇤}.

Next, we move to queries of arbitrary arity. Suppose we have an incomplete
instance I and a tuple ā that consists of elements of DomConst(I). When can
we state with certainty that this tuple is in the answer to q on I? Again, this
happens if it is in all the answers q(D), for D 2 JIK⇤. So again we can define
cert⇤(q, I) as

T
{q(D) | D 2 JIK⇤}.

The definition gets more complicated if a tuple ā contains both nulls and
constants. Then the previous definition does not work: if ā contains nulls,
it cannot belong to q(D) for any complete D, as D itself contains no nulls.
But how can a query return, with certainty, a tuple with nulls? To see this,
consider a simple query that returns the relation Profession in Figure 39.1.
We know with certainty that the tuple ā = (1,?1) is in it, and thus we expect
it to be in the answer. The reason we know this with certainty is that for every
valuation h, we have h(ā) 2 h(Profession). We now extend this to arbitrary
queries.

370 39 Incomplete Databases

Definition 39.3: Certain Answers

Given a query q, and an incomplete instance I, its certain answers under
cwa and under owa are defined by:

ā 2 certcwa(q, I) , h(ā) 2 q(h(I)) for every valuation h

ā 2 certowa(q, I) , h(ā) 2 q(D) for every valuation h : I ! D

If I has no nulls, then JIKcwa = {I} and thus in this case certcwa(q, I) =
q(I). Hence, certain query answering under cwa properly generalizes query
answering in complete databases.

For tuples with no nulls in them, this definition of certain answers coincides
with the intersection of query answers in all databases represented by I.

Proposition 39.4

Given a query q, an incomplete instance I, and a tuple ā without nulls,
ā 2 cert⇤(q, I) i↵ ā 2

T
{q(D) | D 2 JIK⇤}, where ⇤ is owa or cwa.

Proof. We show this for cwa; for owa the proof is very similar. Assume
ā 2 certcwa(q, I) and take an arbitrary valuation h. Then h(ā) = ā since ā has
no nulls and thus ā 2 q(h(I)), proving ā 2

T
{q(D) | D 2 JIKcwa}. Conversely,

assume ā 2
T
{q(D) | D 2 JIKcwa}. Take any valuation h; then h(I) 2 JIKcwa

and hence ā 2 q(h(I)). Since ā has no nulls, we have h(ā) = ā 2 q(h(I)), thus
proving ā 2 certcwa(q, I).

Example 39.5: Certain Answers to Queries

We consider two queries similar to those in Example 3.2, now asked on
the incomplete instance I shown in Figure 39.1. As the language we use
FO, with one clarification: as mentioned earlier, variables in its formulae
use come from Var � Null. That is, elements of Null cannot be used as
explicit constants in formulae.

The first query asks for names of persons with two di↵erent profes-
sions:

9x9z9u19u2

�
Person(x, y, z)^

Profession(x, u1) ^ Profession(x, u2) ^ ¬(u1 = u2)
�
. (39.1)

The certain answer to this query is empty, under both owa and cwa
interpretation. Indeed, Billie has only one profession, and even though
it may seem like Aretha and Bob have multiple professions, there are
possible completions of I where this is not the case. For example, a
valuation where h(?1) = h(?2) = ‘singer’ results in a complete database

39 Incomplete Databases 371

where Aretha has only one profession, while a valuation with h(?1) =
author results in a complete database where the same is true of Bob.

The second asks for pairs of persons who share a profession:

9x9x09z9z09u
�
Person(x, y, z) ^ Person(x0, y0, z0)^

(Profession(x, u) ^ Profession(x0, u))
�
.

This query will return pairs of names, including all pairs of the form
(n, n), but also (Aretha,Billie) and (Billie,Aretha) who share the profes-
sion ‘singer’, as well as (Aretha,Bob) and (Bob,Aretha), who too share a
profession, ?1, though we do not know what it is. Still, in every database
D that is equal or contains h(I), this common profession will be rep-
resented by h(?1), and thus these pairs will be output by the query,
making them certain answers.

It might seem from these examples that certain answers are the same
under owa and cwa. This is not the case however, and we shall see
soon that they di↵er dramatically in terms of their complexity. To give a
simple example where certain answers are di↵erent, consider a Boolean
query q given by

8x8y8z
�
Person(x, y, z)! 9uProfession(x, u)

�

asking whether every person has a recorded profession. Then certcwa(q, I) =
true while certowa(q, I) = false. For example, a database D 2 JIKowa
obtained by giving values to nulls and by adding a tuple to table Person
with an id that is not present in table Profession violates the condition
expressed by q.

Complexity of Certain Answers

Next, we analyze the complexity of certain answers, and see that it is signifi-
cantly higher than the complexity of query evaluation.

Theorem 39.6

• Under the cwa semantics, data complexity of certain answers to
FO queries is coNP-complete and their combined complexity is
PSpace-complete.

• Under the owa semantics, combined complexity of certain answers
to FO queries is undecidable.

Proof. Upper bounds. We look at the complement problem, namely whether
ā 62 certcwa(q, I) for an incomplete instance I, a query q, and a tuple ā. We will
show that this problem is in PSpace if all of ā, I, and q are inputs, and in NP,

372 39 Incomplete Databases

if q is fixed. This will su�ce, since PSpace is closed under complementation.
Note that ā 62 certcwa(q, I) i↵ h(ā) 62 q(h(I)) for some valuation. This looks
like the proof: just guess that valuation h. However, to prove membership
in NP, a guess must be of polynomial size, but the above h could be an
arbitrary valuation, i.e., its range could be an arbitrary subset of the infinite
set Const. Instead, we show that if ā 62 certcwa(q, I), then such h can be
chosen among a finite set of valuations with a fixed range that is linear in the
size of Dom(I). This will prove membership in NP for a fixed q, as well as
membership in PSpace for combined complexity. Indeed, PSpace is closed
under nondeterminism (hence one can guess h) and checking h(ā) 62 q(h(I))
is in PSpace, since q is an FO query.

Assume that DomNull(I) = {?1, . . . ,?m}. Let C = {c1, . . . , cm} be a set
of m elements of Const disjoint from Dom(I) and Dom(q), the set of constants
mentioned in q. We claim that if h(ā) 62 q(h(I)) for some h, then this also
happens for some h whose range is contained in DomConst(I) [Dom(q) [C;
clearly this will su�ce. Consider h such that h(ā) 62 q(h(I)) and let i1, . . . , ik
be such that h(?ij) 62 DomConst(I) [Dom(q) for j 2 [k]. We then define h0

that coincides with h everywhere except that it sets h0(?ij) = cij for j 2 [k].
Let ⇡ : Const! U be a bijection that is the identity on DomConst(I)[Dom(q),
sends each cij to h(?ij), and is arbitrarily defined elsewhere. Note then that
⇡(h0(a)) = h(a) for every a 2 Dom(I) [Dom(q). If we now assume that
h0(ā) 2 q(h0(I)), then by genericity of FO queries (see Exercise 1.2) that
would mean that ⇡(h0(ā)) 2 q

�
⇡(h0(I))

�
, i.e., h(ā) 2 q(h(I)), which is a

contradiction. Hence, we can find a witness valuation with the range contained
in DomConst(I) [Dom(q) [C. This finishes the proof of upper bounds.

Lower bounds. The PSpace lower bound for combined complexity is al-
ready known for queries on databases with no nulls. Indeed, for such databases
certcwa(q, I) = q(I), and the latter is known to be PSpace-hard.

We next show coNP-hardness of data complexity. Actually, we will look at
the complement problem, which for Boolean queries is whether certcwa(q, I) =
false and prove it to be NP-hard, for a fixed query q. For this we reduce
from graph 3-colorability, a well-known NP-complete problem. Given a graph
G = hV,Ei, it is 3-colorable if there a coloring map c : V ! {r, g, b} such that
for every edge (v, v0) 2 E, the colors c(v) and c(v0) are di↵erent. Now given
such a graph with V = {v1, . . . , vn}, we create an incomplete instance IG of
the schema containing relations E[2] and C[2] such that E is the edge relation
of the graph, and C contains tuples (v1,?1), . . . , (vn,?n), where ?1, . . . ,?n

are distinct nulls. The intuition is that these are yet unknown colors assigned
to vertices; a database D 2 JIGKcwa then assigns colors to vertices. We next
define a Boolean FO query q stating that such an assignment is not a 3-
coloring. Specifically, this happens if

1. there are 4 or more di↵erent colors (values of the second column of C); or

2. there is an edge whose endpoints are given the same color.

39 Incomplete Databases 373

The first condition is expressed by an FO query

9x19x29x39x49y19y29y39y4
� 4̂

i=1

C(xi, yi) ^ di↵(y1, y2, y3, y4)
�

where the formula di↵(y1, y2, y3, y4) says that all of y1, y2, y3, y4 are pairwise
distinct; the second condition is expressed by

9x9y9u
�
C(x, u) ^ C(y, u) ^ ¬(x = y)

�
.

Thus, their disjunction is an FO query q such that q is true in h(IG) i↵ h, that
assigns values to nulls, is not a 3-coloring of G. Hence certcwa(q, IG) = false
i↵ there is at least one h that is a 3-coloring, i.e., i↵ the graph is 3-colorable.
Hence, checking certcwa(q, IG) = false is NP-hard in data complexity, and
thus checking certcwa(q, IG) = true is coNP-hard.

We finally show undecidability of the combined complexity of certain an-
swers under owa. Consider a Boolean FO query q given by a sentence ', and
let I; be the empty instance, where every relation has no tuples. Then an
arbitrary database D is in JI;Kowa. Hence certowa(q, I;) = true i↵ ' is a valid
sentence, i.e., true in every database. But we know from Chapter 8 that this
is an undecidable condition. ut

Note that Theorem 39.6 says nothing about data complexity of finding
certain answers under owa. Indeed, to prove undecidability, we use the fixed
empty database and it was the query that varied. This alone rules out certain
answers under owa as a viable query answering strategy, but we can show an
even stronger undecidability of data complexity. That is, there is a fixed FO
query q such that certowa(q, I) is undecidable when I is the only input; see
Exercise 5.1.

Note also that in the coNP-hardness reduction in the proof, we used an
example of an incomplete instance in which every nulls occurs exactly once.
Furthermore, the fixed query used in the reduction is a union of CQs with
inequalities, meaning that already for them the problem of finding certain
answers is intractable.

SQL Nulls and Three-Valued Logic

If finding certain answers is intractable even under the cwa, what do real-
life databases do? Clearly they cannot implement intractable exponential-time
algorithms. They do not indeed, and instead they use a very di↵erent solution:
SQL resorts to a 3-valued logic with an extra truth value unknown, which is
reserved for comparisons involving nulls. In fact in relational DBMSs there is
just one single null value, i.e., we cannot indicate that two values currently
unknown are equal. But this restriction, as we just saw, does not lower the
complexity.

374 39 Incomplete Databases

The 3-valued logic, used by SQL, and also known as Kleene’s logic, is as
follows:

• On true and false, operations ^,_, and ¬ have their standard Boolean
interpretation;

• ¬unknown = unknown (if we do not known a truth value, we do not know
its negation);

• true_unknown = true (disjunction of true with anything is true) while
false _ unknown = unknown _ unknown = unknown (if one truth value is
unknown its disjunction with anything other than true is unknown);

• false^ unknown = false (conjunction of false with anything is false)
while true^unknown = unknown^unknown = unknown (if one truth value
is unknown its conjunction with anything other than false is unknown).

For the definition of satisfaction, it is no longer su�cient to use only the
notion of (I, ⌘) |= ', which says that ' evaluates to true under the assignment
⌘ in I. In Boolean logic, the alternative to it is that ' evaluates to false,
but now we need to account for the possibility of ' evaluating to unknown.
The key rule that SQL uses is the following: If at least one argument of a
comparison is null, then the result of the comparison is unknown.

Definition 39.7: Eval(', I, ⌘)

Eval(', I, ⌘), the truth value to which ' evaluates in an incomplete in-
stance I under assignment ⌘, is defined as follows.

• Eval(x = y, I, ⌘) is
8
><

>:

true if ⌘(x), ⌘(y) 2 DomConst(I) and ⌘(x) = ⌘(y)

false if ⌘(x), ⌘(y) 2 DomConst(I) and ⌘(x) 6= ⌘(y)

unknown if ⌘(x) 2 DomNull(I) or ⌘(y) 2 DomNull(I)

• If a is a constant, then Eval(x = a, I, ⌘) is
8
><

>:

true if ⌘(x) = a

false if ⌘(x) 2 DomConst(I) and ⌘(x) 6= a

unknown if ⌘(x) 2 DomNull(I)

• Eval(R(u1, . . . , uk), I, ⌘) is
(
true if R(⌘(u1), . . . , ⌘(uk)) 2 I
false otherwise

39 Incomplete Databases 375

• Eval('1 ^ '2, I, ⌘) = Eval('1, I, ⌘) ^ Eval('2, I, ⌘)
• Eval('1 _ '2, I, ⌘) = Eval('1, I, ⌘) _ Eval('2, I, ⌘)
• Eval(¬'1, I, ⌘) = ¬Eval('1, I, ⌘)
• Eval(9x , I, ⌘) =

W
a2Dom(I) Eval(, I, ⌘[x/a]).

• Eval(9x , I, ⌘) =
W

a2Dom(I) Eval(, I, ⌘[x/a]).

A formula then defines a query q = (', x̄) whose result on an incomplete
instance I under the 3-valued logic interpretation is defined as

q3vl(I) = {⌘(x̄) | Eval(', I, ⌘) = true} .

Thus, in computing query answers, we are only interested in tuples that are
true, dismissing not only false but also unknown; in other words, unknown
is a truth value used for evaluating conditions but not for producing query
output. Notice that a query evaluated on an incomplete instance may return
tuples with nulls.

To give an example, consider query (39.1) from Example 39.5, evaluated
on the incomplete instance I in Figure 39.1. It asks for names of people having
two di↵erent professions. This query will return nothing under the 3-valued
interpretation as all comparisons ¬(u1 = u2) in it will evaluate to either false,
when u1 and u2 are the same, or unknown, when one of them is a null. Thus,
when the free variable y is instantiated as Aretha or Bob (pid is 1 or 3), the
formula evaluates to unknown, and when it is instantiated as Billie, with pid
2 and a single profession recorded, the formula is false.

By a simple extension of the query evaluation algorithm for FO queries,
we can show

Proposition 39.8

Query evaluation of FO queries under the 3-valued semantics is in
DLogSpace.

Thus, the 3-valued semantics cannot compute certain answers. The ques-
tion is then how close its answers are to certain answers. In general, they can
deviate from each other in two possible ways:

• SQL evaluation can produce false negatives, i.e., miss some certain an-
swers: that is, q3vl(I) (certcwa(q, I);

• SQL evaluation can produce false positives, i.e., give answers which are
now certain: certcwa(q, I) (q3vl(I).

We now show that the evaluation strategy based on 3-valued logic that is
chosen by SQL can produce both. In the next chapter we study alternative
query evaluation strategies that provide some guarantees on the quality of the
answers.

376 39 Incomplete Databases

Proposition 39.9

Query evaluation of FO queries under the 3-valued semantics can pro-
duce both false positives and false negatives.

Proof. Let I contain a binary relation R with tuples (1,?) and (2,?).
Consider a Boolean query q given by 9x9y

�
R(x, y) ^ ¬(x = y)}. Then

certcwa(q, I) = true. Indeed, h(?) cannot be both 1 and 2 and thus in h(I) at
least one tuple will have di↵erent values. On the other hand, q3vl(I) = ;, since
Eval(q, I) = unknown due to all the conditions x = y evaluating to unknown.
Since true = {()}, we have an example of a false negative.

To give an example of a false positive, consider an incomplete instance I
with two unary relations R and S containing (1) and (?) respectively. Let
q be given by '(x) = R(x) ^ ¬

�
R(x) ^ ¬S(y)

�
. Then its certain answer is

empty, as witnessed by h(I) with h(?) = 2. However, a routine inspection
shows q3vl(I) = {(1)}, thus producing a false positive. ut

40

Computing Certain Answers

To summarize the previous chapter, we have seen that:

• finding certain answers for FO queries is computationally intractable;

• SQL resorts to a 3-valued logic to achieve low complexity of query evalu-
ation; however, this leads to the presence of both false positives and false
negatives in query answers.

In this chapter we look at three di↵erent query evaluation strategies over
incomplete instances that combine e�ciency and correctness.

Näıve evaluation. One can try to evaluate a query näıve ly, as if nulls were
actual values. This cannot always give us certain answers – otherwise they
would have had tractable data complexity – but näıve evaluation avoids
false negatives and for some queries actually computes certain answers.

Approximation: absolute guarantees. We show to evaluate all FO queries
tractably, over incomplete instances, without producing false positives.
This is achieved by means of query translation: a query q is translated
into a query qt whose evaluation is guaranteed to produce a subset of
certain answers.

Approximation: probabilistic guarantees. A di↵erent approach is to com-
pute the probability that a given tuple is in the answer for a randomly
picked assignment of values to nulls. It turns out that for all FO queries,
their näıve evaluation gives us correct answers with probability 1.

Näıve Evaluation and Correctness of Answers

We first need to formalize the idea of answering a query on an incomplete
instance treating nulls as new constants. For this, we use the standard notion
of satisfaction of FO formulae, but extended to incomplete instances. More

378 40 Computing Certain Answers

precisely, to define (I, ⌘) |= ', we follow, word by word, Definition 3.3 of
satisfaction of FO formulae. Since Const and Null are disjoint sets, it means
that equalities ? = a for a constant a and ? = ?0 for two distinct nulls
evaluate to false, while ? = ? evaluates to true.

Definition 40.1: Näıve Evaluation

The näıve evaluation of an FO query q = (', x̄) on an incomplete instance
I is defined as

näıve(q, I) = {⌘(x̄) | (I, ⌘) |= '}

where ⌘ ranges over all assignments x̄ 7! Dom(I) [Dom(q).

In other words, the definition is really unchanged compared to the usual defi-
nition of FO query evaluation except that free variables can now be assigned
nulls, and not only constants. For example, given an incomplete instance
with atoms R(1,?), R(?,?), R(?,?0), the näıve evaluation of the query
R(x, y)^x = y produces (?,?), while the näıve evaluation of R(x, y)^¬(x =
y) produces (1,?) and (?,?0).

What is the relationship between näıve evaluation and certain answers?
We saw that SQL’s 3-valued logic-based evaluation can produce both false
positives and false negatives. Näıve evaluation, on the other hand, avoids
false negatives.

Proposition 40.2

For every FO query q, we have certowa(q, I) ✓ certcwa(q, I) ✓ näıve(q, I).

Proof. The first inclusion is an immediate consequence of JIKcwa ✓ JIKowa.
Assume next that q is given as (', x̄) and ā 2 certcwa(q, I). We say that
a valuation h on DomNull(I) is simple if it is a bijection and furthermore
h(?) 62 DomConst(I) [Dom(') for every ? 2 DomNull(I). If ā 2 certowa(q, I)
then h(ā) 2 q(h(I)) for every valuation h, and in particular for every simple
valuation h. The latter means (h(I), h�⌘) |= ', where ⌘ assigns ā to x̄. Using
Dom(')-genericity of ' (see Exercise 1.2) and applying it to the bijection
h�1, we conclude that (h�1(h(I)), h�1 � h � ⌘) |= ', i.e., (I, ⌘) |= ', and thus
ā 2 näıve(q, I). ut

At the same time, näıve evaluation can produce false positives. Consider an
FO query '(x) = R(x)^¬S(x) evaluated on a database with facts R(1), S(?).
Its naive evaluation outputs 1, while certain answers are empty, as witnessed
by the valuation h(?) = 1.

Nonetheless, for a large class of queries, näıve evaluation produces exactly
the certain answers. The class depends on the semantics of incompleteness,
and is larger for cwa. Indeed, under cwa, there are fewer instances in JIKcwa
than in JIKowa and thus it is “easier” for a tuple to be a certain answer.

40 Computing Certain Answers 379

Definition 40.3: Positive Formulae with Atomic Guards (PAG)

The class PAG of positive atomic formulae with guards is given by the
following rules:

• every atomic formula is in PAG;

• if ' and are in PAG, then so are ' ^ and ' _ ;
• if ' is in PAG, then so are 9x' and 8x';
• if ' is in PAG, and ↵(x̄) is an atomic formula in which no variable
repeats, then 8x̄

�
↵(x̄)! '

�
is in PAG.

A PAG query is an FO query given by a PAG formula.

This class of formulae excludes the negation from FO, while keeping ev-
erything else, and replaces negation by a weak form that has a guarded impli-
cation ↵(x̄) ! ' under the scope of a universal quantifier. These are rather
common queries of the shape “objects that participate in every relationship
of a certain kind”, e.g., customers who buy every product. Using the schema
of our example, such a query would be

8x18x2

�
Profession(x1, x2)! 9w Person(x, y, w) ^ Profession(x, x2)

�

asking asking for ids (x) and names (y) of people who have every profession
listed in the database. These queries correspond to the division operation of
relational algebra; see Exercise 5.4 for the explicit connection. Notice that the
guard ↵ is not allowed to repeat variables: for example, a guard R(x, x) is not
allowed, while R(x, y) is.

Theorem 40.4

1. If q is a UCQ, then näıve(q, I) = certowa(q, I) = certcwa(q, I).
2. If q is a PAG query, then näıve(q, I) = certcwa(q, I).

The key idea behind the proof is that the capturing of certain answers
by näıve evaluation is very closely connected with preservation under homo-
morphisms, seen in Chapter 13. The intuition behind this connection is as
follows: JIKowa consists of all database instances D such that we have a ho-
momorphism I ! D. Thus, if we have a Boolean query q and it is näıve ly
true in I, and furthermore preserved under all homomorphisms, then q is true
in all D 2 JIKowa. This reasoning extends to queries with free variables and
to the cwa semantics. For the latter, we need the notion of strong onto ho-
momorphisms. These are homomorphisms h : S ! S0 between sets of atoms
such that h(S) = S0.

We now recall the definition of preservation under homomorphisms. A
query q is preserved under homomorphisms if (D, ā) !Dom(q) (D0, b̄) and

380 40 Computing Certain Answers

ā 2 q(D) imply b̄ 2 q(D0), where (D, ā)!C (D0, b̄) means that there exists a
homomorphism from (VC(D),VC(ā)) to (D0, b̄). Here VC turns every constant
in D other than those in C into a new null, see Chapter 13. If in the above
definition we replace homomorphisms by strong onto homomorphisms, then
we have the definition of preservation under strong onto homomorphisms.

Proposition 40.5

Let q be an FO query.

1. If q is preserved under homomorphisms, then näıve(q, I) = certowa(q, I).
2. If q is preserved under strong onto homomorphisms, then näıve(q, I) =

certcwa(q, I).

Proof. We prove the first item for the owa semantics; the proof for cwa is very
similar. Assume q = (', x̄) is preserved under homomorphisms. We already
know that certowa(q, I) ✓ näıve(q, I), see Proposition 40.2. For the converse,
assume ā 2 näıve(q, I). Then (I, ⌘) |= ', where ⌘ maps x̄ to ā. Suppose
h : I ! D is an arbitrary valuation. Consider now VDom('); since it is a
bijection, by Dom(')-genericity of ' we have (VDom(')(I),VDom(') � ⌘) |= '.

Next notice that h � V�1
Dom(') is a homomorphism, as a composition of two

homomorphisms. Thus, by homomorphism preservation, we obtain

�
h � V�1

Dom(') � VDom(')(I), h � V�1
Dom(') � VDom(') � ⌘

�
|= ' ,

or in other words (D,h � ⌘) |= ', and thus h(ā) 2 q(D), proving that ā 2
certowa(q, I). This proves Proposition 40.5. ut

To complete the proof of Theorem 40.4, we simply use the fact that every
UCQ is preserved under homomorphisms, see Proposition 28.10. The last
remaining bit is to show that formulae in PAG are preserved under strong
onto homomorphism. This is done by a routine induction on the structure of
PAG formulae, see Exercise 5.5.

The connection between homomorphism preservation and coincidence of
näıve evaluation and certain answers extends beyond FO queries (Exercise
5.9), but for FO queries the classes of formulae in Theorem 40.4 are optimal
(Exercise 5.10).

Absolute Approximation of Certain Answers

Let us now summarize what we know about tractably evaluating queries on
incomplete instances:

40 Computing Certain Answers 381

• we could use 3-valued evaluation, q3vl, as SQL does (see Chapter 39)
but then q3vl(I) can produce both false positives and false negatives (see
Proposition 39.9); or

• we could use näıve evaluation which always produces a superset of certain
answers (Proposition 40.2) and thus no false negatives, but it can produce
false positives.

As false positives may be viewed as the worse of the two, since they give
completely false results, as opposed to omitting some true results, we now
turn to approximations of FO queries and demonstrate that FO queries could
be easily modified so that false positives could be avoided.

To achieve this, we transform an FO query q = (', x̄) into another FO
query qt = ('t, x̄) such that näıve(qt, I) ✓ certcwa(q, I). Thus, evaluating qt

with its usual DLogSpace complexity is guaranteed to avoid false positives.
Of course there is a simple and totally uninteresting way to define such qt

simply by setting 't = false. We obviously want a better approximation; at
the very least we need to ensure that qt(I) = q(I) if I has no nulls, i.e., is a
database rather than an incomplete instance.

To produce such a transformation we need two additional ingredients. One
is an extra atomic formula null(x) testing if x is a null. Its semantics is

• (I, ⌘) |= null(x) i↵ ⌘(x) 2 DomNull(I).

The second ingredient we need is a notion of unification of tuples. Given two
tuples ū and w̄ of the same length over Const[Null, we say they are unifiable,
and write ū* w̄, if there is a valuation h so that h(ū) = h(w̄). For example,
tuples (1,?1, 2) and (?1, 1,?2) are unifiable via h(?1) = 1 and h(?2) = 2,
which maps both into the same tuple (1, 1, 2). On the other hand, (1,?1, 2)
and (?1, 2,?2) are not unifiable.

We make two observations about unifiability. First, the condition x̄* ȳ can
be expressed in FO with null(·). For example, if x̄ = (x) and ȳ = (y), it is
expressed by null(x)_ null(y)_ (x = y). For tuples of higher arity, it is a more
complicated case analysis, checking which elements among (x1, . . . , xn) and
(y1, . . . , yn) are the same, which are di↵erent, and which are nulls. In other
words, the explicit listing of all equalities and inequalities between xis and
yjs, as well as explicit listing of all statements null(xi) and null(yj) or their
negations, which determine whether x̄ and ȳ unify (see Exercise 5.11 for more
details).

An FO formula for checking whether x̄ * ȳ is of exponential size in |x̄|.
At the same time, checking whether ū * w̄ can be done in linear time (see
Exercise 5.12). Thus we can also assume that x̄* ȳ are new atomic formulae
added to FO, and they have linear time evaluation complexity.

With these formulae in place, we can now produce a translation that elim-
inates false positives.

382 40 Computing Certain Answers

Definition 40.6: Translation ' 7! ('t,'f) of FO queries

• R(x̄)t = R(x̄)

• (x = y)t = (x = y)

• (' ^)t = 't ^ t

• (¬')t = 'f

• (9x')t = 9x't

• (R(x̄))f = ¬9ȳ
�
R(ȳ) ^ x̄* ȳ

�

• (x = y)f = ¬(x = y) ^ ¬null(x) ^ ¬null(y)
• (' ^)f = 'f _ f

• (¬')f = 't

• (9x')f = 8x'f

We now show that these translations give us a way to avoid one of false
positives or false negatives. Specifically, 't avoids false positive answers while
¬'f avoids false negatives.

Theorem 40.7

For every incomplete instance I, a FO query q = (', x̄), its negation
¬q = (¬', x̄), and every valuation h on I,

h(näıve(qt, I)) ✓ q(h(I)) and h(näıve(qf, I)) ✓ ¬q(h(I)) .

Proof. Given q and I as in the statement of the theorem, we will show the
following two implications, for every valuation h:

1. (I, ⌘) |= 't) (h(I), h � ⌘) |= '

2. (I, ⌘) |= 'f) (h(I), h � ⌘) |= ¬'

These clearly imply the statement: if ā 2 näıve(qt, I), then (I, ⌘) |= 't for ⌘
such that ⌘(x̄) = ā, and thus (h(I), h � ⌘) |= ', implying that h(ā) 2 q(h(I)),
and likewise for qf. We now prove these two statements by induction on the
structure of '.

Proof for 't.

• Assume ' is R(x̄); then 't = R(x̄). If (I, ⌘) |= 't then R(⌘(x̄)) is an atom
in I and hence R(h(⌘(x̄))) is a fact in h(I) and hence (h(I), h � ⌘) |= '.

• Assume ' is x = y, and 't = '. If (I, ⌘) |= 't then ⌘(x) = ⌘(y) and
hence h(⌘(x)) = h(⌘(y)) implying (h(I), h � ⌘) |= '.

40 Computing Certain Answers 383

• Assume ' is ^ �, and 't = t ^ �t. If (I, ⌘) |= 't then (I, ⌘) |= t

and (I, ⌘) |= �t and by the induction hypothesis (h(I), h � ⌘) |= and
(h(I), h � ⌘) |= � and therefore (h(I), h � ⌘) |= '.

• Assume ' is ¬ ; then 't = f. If (I, ⌘) |= 't then (I, ⌘) |= f and by the
induction hypothesis (h(I), h � ⌘) |= ¬ and therefore (h(I), h � ⌘) |= '.

• Assume ' is 9x ; then 't = 9x t. If (I, ⌘) |= 't then (I, ⌘[a/x]) |= t for
some a 2 Dom(I) and by the induction hypothesis (h(I), h � ⌘[a/x]) |=
and therefore (h(I), h � ⌘) |= ' as h(a) is a witness for x.

Proof for 'f.

• Assume ' is R(x̄). Towards contradiction, suppose that (I, ⌘) |= 'f but
(h(I), h � ⌘) |= '. The latter means that R

�
h(⌘(x̄))

�
is a fact of h(I).

This happens if there an atom R(ū) in I such that h(ū) = h(⌘(x̄)), i.e.,
ū * ⌘(x̄). Thus, (I, ⌘) |= 9ȳ (R(ȳ) ^ ȳ * x̄), i.e., (I, ⌘) |= 'f, which is a
contradiction.

• Assume ' is x = y, and 'f = (x 6= y) ^ ¬null(x) ^ ¬null(y). If (I, ⌘) |= 'f

then ⌘(x) and ⌘(y) are di↵erent constants, and thus so are h(⌘(x)) and
h(⌘(y)). Hence (h(I), h � ⌘) |= ¬(x = y), i.e., (h(I), h � ⌘) |= ¬'.

• Assume ' is ^�, and 'f = f _�f. If (I, ⌘) |= 'f then by the induction
hypothesis (h(I), h � ⌘) |= ¬ _ ¬� which is of course ¬(^ �).

• Assume ' is ¬ ; then 'f = t. If (I, ⌘) |= 'f then by the induction
hypothesis (h(I), h � ⌘) |= and therefore (h(I), h � ⌘) |= ¬'.

• Assume ' is 9x ; then 'f = 8x f. If (I, ⌘) |= 'f, then for every a 2
Dom(I) we have (I, ⌘[a/x]) |= f and thus (h(I), h � ⌘[a/x]) |= ¬ and
hence (h(I), h � ⌘) |= ¬9x which is ¬'. This concludes the proof. ut

Corollary 40.8: Avoiding False Positives and Negatives

For every FO query q, the query qt returns no false positives, and the
query ¬qf returns no false negatives. Moreover, on databases without
nulls, q(D) = qt(D) = ¬qf(D).

Proof. The first statement follows immediately from the theorem and the
definition of certain answers. The second is by inspection of the translation,
taking into account that without nulls, x̄ * ȳ can be replaced by x̄ = ȳ and
¬null(x) by true. ut

As an illustration, we return to the query '(x) = R(x) ^ ¬S(x) seen
earlier, for which näıve evaluation produces a false positive answer. Applying
the transformation, we have

384 40 Computing Certain Answers

't(x) = (R(x) ^ ¬S(x))t = (R(x))t ^ (¬S(x))t

= R(x) ^ (S(x))f = R(x) ^ ¬9y
�
S(y) ^ x*y

�

= R(x) ^ ¬9y
�
S(y) ^ (null(x) _ null(y) _ (x = y))

�

It is then easy to check that 't returns the empty set when evaluated näıve
ly on an incomplete instance with atoms R(1) and S(?).

We remark that while simple to present, the translation of Definition 40.6
is not going to be very e�cient when implemented in relational algebra for
queries involving negation. A couple of examples illustrating this are pre-
sented in Exercise 5.13, and an alternative more e�cient translation is given
in Exercise 5.14.

We conclude by showing that the above translation also helps us elimi-
nate false positives or false negatives under the 3-valued evaluation used in
SQL. Recall that at the end of Chapter 39, we defined q3vl(I) as {⌘(x̄) |
Eval(', I, ⌘) = true}, for a query q = (', x̄). We now define qt

3vl
and qf

3vl
in

the same way, but with ' replaced by 't and 'f. Of course we also need to
extend Eval to new formulae null(x) and x̄* ȳ. These formulae can only take
values true and false. We have Eval(null(x), I, ⌘) = true i↵ ⌘(x) is a null,
and Eval((x̄* ȳ), I, ⌘) = true i↵ ⌘(x̄) and ⌘(ȳ) unify.

Then we have an analog of Corollary 40.8

Corollary 40.9: Avoiding False Positives and Negatives

For every FO query q, the query qt
3vl

returns no false positives, and the
complement of the query qf

3vl
returns no false negatives. Moreover, on

databases without nulls, both of these queries coincide with q.

The proof is by simple adaptation of the inductive proof of Theorem 40.7.

Probabilistic Approximation of Certain Answers

We now address the following question: how close to certainty is the query
answer produced by the näıve evaluation? It turns out that the answer is “very
close”. Recall that ā 2 certcwa(q, I) if h(ā) 2 q(h(I)) for every valuation h.
The framework in which we pose our question is the following:

• Pick a valuation h uniformly at random. What is the probability that
h(ā) 2 q(h(I)) holds?

We then show – again, describing the intuition behind the result – that for
all FO queries q,

• this probability is either 0 or 1;

40 Computing Certain Answers 385

• it is 1 if and only if ā 2 näıve(q, I).

Thus, näıve evaluation, while only providing absolute guarantees of cer-
tainty of query answers for a restricted class of queries, gives high probability
guarantees for many more queries.

To prove such a result, there is still a technical problem: how do we choose
a valuation h : DomNull(I)! Const uniformly at random? Since the set Const
is infinite, there are infinitely many such valuations, and thus no uniform
distribution on them. Instead, we can use a trick inspired by the 0–1 law seen
in Chapter 32. Namely, we consider finite subsets of Const, restricted to which
there are finitely many valuations. We then look at the asymptotic behavior
of the probability that a tuple is in the answer.

To do this, fix some enumeration of elements of Const as {c1, c2, c3, . . . }.
The exact enumeration is not important, as we will see shortly. Let Constn
be the set {c1, . . . , cn}. Let Hn(I) be the finite set of all valuations h :
DomNull(I) ! Constn. For a k-ary query q, an incomplete instance I, and
a k-ary tuple over Dom(I), we now define

µn(q, I, ā) =
|{h 2 Hn | h(ā) 2 q(h(I))}|

|Hn(I)|

as the probability that a valuation h, picked uniformly at random from the
finite set Hn(I), witnesses that ā is in the answer to q on I, i.e., the condition
h(ā) 2 q(h(I)). Then we define its asymptotic behavior:

µ(q, I, ā) = lim
n!1

µn(q, I, ā) .

Notice that this value does not depend on the exact enumeration of Const: as
long as n is big enough so that it contains DomConst(I) and Dom(q), the value
of µn(q, I, ā) does not depend on how the rest of Const is enumerated.

Intuitively, µ(q, I, ā) gives us the probability that a valuation – now with-
out a restriction on its range - picked randomly witnesses that ā is an answer.
The closer this is to 1, the better ā is as the answer to q. We now show that
näıve evaluation gives us precisely the tuples that are good (although not
absolutely certain) answers.

Theorem 40.10

For every FO k-ary query q, every incomplete instance I, and every
k-tuple ā,

µ(q, I, ā) =

(
1 if ā 2 näıve(q, I)
0 if ā 62 näıve(q, I) .

Proof. Consider again simple valuations h : DomNull(I) ! Constn that
are bijections whose range contains no elements of DomConst(I) or Dom(q),

386 40 Computing Certain Answers

and let Hs
n(I) stand for the set of such valuations. We next show that

limn!1 |Hs
n(I)|/|Hn(I)| = 1.

Assume |DomNull(I)| = m and |DomConst(I) [Dom(q)| = k. A valuation
h fails to be simple if one of the following is true.

• The range of h contains an element of DomConst(I) [Dom(q), i.e., h(?)
is in that set for some ? 2 DomNull(I). There are at most mk · nm�1

such valuations. Indeed, we pick one of m nulls ? and one of k elements
of DomConst(I) [Dom(q) it is mapped into, and on the remaining m� 1
nulls this valuation can be arbitrary.

• The valuation h is not a bijection: there are two nulls ? and ?0 such
that h(?) = h(?0). The number of such valuations is at most

�m
2

�
· n ·

nm�2. Indeed, there are
�m
2

�
ways to pick ? and ?0, then n possible

assignments to an element of Constn, and on the remaining m�2 elements
of DomNull(I), the valuation can be chosen arbitrarily.

Summing up, the number of valuations not in Hs
n(I) is at most (mk +

�m
2

�
) ·

nm�1. Since |Hn(I)| = nm, we have

lim
n!1

|Hs
n(I)|

|Hn(I)|
� lim

n!1

nm � (mk +
�m
2

�
) · nm�1

nm
= 1� lim

n!1

mk +
�m
2

�

n
= 1 .

Next assume ā 2 näıve(q, I). By Dom(q)-genericity of FO queries (Exer-
cise 1.2), we have h(ā) 2 q(h(I)) for each h 2 Hs

n(I). Hence, µ(q, I, ā) �
limn!1 |Hs

n(I)|/|Hn(I)| = 1 which implies µ(q, I, ā) = 1. If ā 62 näıve(q, I),
we apply the previous argument to the complement of q, obtaining µ(¬q, I, ā) =
1 from which µ(q, I, ā) = 0 follows. ut

42

Inconsistent Databases

Let D be a database and ⌃ a set of constraints over the same schema S. We
call D inconsistent with respect to ⌃ if D 6|= ⌃, that is, there is at least one
constraint in ⌃ such that D does not satisfy. Here we focus on the case when
⌃ is a set of primary keys. Recall that this means that each R 2 S comes
equipped with its own key, i.e., key(R) = A, where A = ; or A = [1, . . . , p] for
some p 2 [1, ar(R)]. Henceforth, D is inconsistent with respect to ⌃ if there
is a symbol R 2 S and facts R(ā), R(b̄) 2 D such that

key(R) = A and ⇡A(ā) = ⇡A(b̄).

In this case we call the pair (R(ā), R(b̄)) to be key-violating.
When D is inconsistent with respect to a set ⌃ of primary keys, it is

always possible to restore consistency by deleting some of the tuples from D.
The idea, of course, is to do so without deleting more information than is
needed. As an example, consider the relational table SOURCES shown in
Table 42.1, and assume that News Id is the key for the table. Then clearly
SOURCES is inconsistent with respect to this key. However, the consistency
can be restored by deleting one tuple with key N1 and one tuple with key
N4. We could also delete all tuples with key N1 and all tuples with key N4,
which would yield a database that satisfies the key, but this would violate our
second requirement: we would be deleting more information than is needed to
restore consistency.

We can generalize this process as follows. Let us define a block in a database
D with respect to a set ⌃ of primary keys to be any maximal set B of facts
from D such that the facts in B are pairwise key-violating. For instance, in
the previous example the table SOURCES contains precisely the five blocks
listed below:

• B1 = {(N1, Internet Research Agency, 300K)}.
• B2 = {(N2,Gotham Globe, 27K), (N2,The Chippewa Buggle, 950K)}.
• B3 = {(N3,New York Daily Enquirer, 2M)}.

398 42 Inconsistent Databases

SOURCES

News Id Media Shares

N1 Internet Research Agency 300K
N2 Gotham Globe 27K
N2 The Chippewa Bugle 950K
N3 New York Daily Inquirer 2M
N4 La Cuarta 125K
N4 Fort́ın Mapocho 500K
N5 Twin Peaks Gazette 350K

Table 42.1: A table SOURCES, which is inconsistent with respect to the
key constraint that establishes that no two tuples can have the same value for
News Id.

• B4 = {(N4, La Cuarta, 125K), (N4, Fort́ın Mapocho, 500K)}.
• B5 = {(N5, Twin Peaks Gazette, 350K)}.

It is clear that to restore consistency from D with respect to ⌃ we need to
delete facts from D until leaving at most one tuple in each block B of D. In
addition, in order to do it in a minimal way we have to leave at least one fact
in each such a block. This gives rise to the notion of a repair of D with respect
to ⌃. This is a subset D0 of D that is obtained by choosing exactly one tuple
from each block of D with respect to ⌃. The notion of repair thus satisfies
the following important property, which establish that they are precisely the
maximally consistent subsets of D with respect to ⌃.

Proposition 42.1. Let D be a database and ⌃ a set of primary keys. The
repairs of D with respect to ⌃ are precisely the D0 with D0 ✓ D such that:

• D0 |= ⌃, and

• there is no D00 with D0 (D00 ✓ D such that D00 |= ⌃.

Notice that repairs always exist and, if D |= ⌃, then the only repair of
D with respect to ⌃ is D itself. Moreover, the number of repairs can be
exponential in the number of tuples of D (e.g., if D has n blocks, and each
block has two facts, then D has 2n repairs).

When querying a database D that is inconsistent with respect to a set
⌃ of primary keys, we are interested in obtaining those results that are true
regardless of how consistency is restored. These are the consistent answers,
which are those answers that are true in every possible repair ofD with respect
to ⌃. Formally, given a query q(x̄), a database D, and a tuple ā of elements in
Dom(D) of the same arity as x̄, we call ā a consistent answer to q over (D,⌃)
if ā 2 q(D0), for every repair D0 of D with respect to ⌃. We then define

CQA(q,D,⌃) = {ā | ā is a consistent answer to q over (D,⌃)}.

42 Inconsistent Databases 399

When q is boolean, we abuse notation write CQA(q,D,⌃) = true to denote
that the empty tuple () belongs to CQA(q,D,⌃); i.e., q(D0) = true for every
repair D0 of D with respect to ⌃.

For instance, in our example we have that the set of consistent answers to
the CQ q(x) = 9y9z Sources(x, y, z) is the set {N1,N2,N3,N4,N5}, and to
the CQ q(x, y) = 9z Sources(x, y, z) is the set

{(N1, Internet Research Agency), (N3,New York Daily Enquirer),

(N5, Twin Peaks Gazette)}.

Complexity of consistent query answering

Given a query language L, we are interested in the decision problem L-
ConsEvaluation which is defined as follows.

Problem: L-ConsEvaluation
Input: a query q from L, a set ⌃ of primary keys,

a database D, a tuple ā over Dom(D)
Question: is ā 2 CQA(q,D,⌃)?

As for the case of probabilistic query evaluation, we can show that the
problem L-ConsEvaluation is computationally hard even for the class of CQs
and in data complexity (where we assume both the actual query and the
set of keys to be fixed). For simplicity, if q is a fixed CQ and ⌃ a fixed set
of constraints we denote by ConsEvaluation(q,⌃) the problem of checking if
ā 2 CQA(q,D,⌃) on an input given by a database D and a tuple ā over
Dom(D). We can then show the following result.

Theorem 42.2. The problem CQ-ConsEvaluation is coNP-hard even in data
complexity. More precisely, there are a fixed Boolean CQ q and a fixed set ⌃
of primary keys such that ConsEvaluation(q,⌃) is coNP-hard.

Proof. We define the boolean CQ q to be 9x9y(Col(x, x0) ^ edge(x, y) ^
Col(y, y) ^ Bad(x0, y0)) and ⌃ to consist exclusively of the constraint that
establishes the first attribute of col to be a key; that is, ⌃ = {key(col) = 1}.
We show that there is a polynomial time reduction from 3-Col, the problem
of checking if a graph is 3-colorable, to the complement of the problem of
checking whether CQA(q,D,⌃) = true, given a database D.

Let G = (V,E) be a graph. We construct a database D over the schema of
q as follows. The domain of D is defined as the disjoint union of V and three
fresh constants 0, 1, and 2. The relation edgeD contains all edges (v, w) 2 E.
Second, the relation colD contains all pairs (v, 0), (v, 1), and (v, 2), for v 2 V .
Finally, the relation BadD contains the pairs (0, 0), (1, 1), and (2, 2). Since the
first component of col is the key of this relation, each repair of D defines an

400 42 Inconsistent Databases

assignment of a color in {0, 1, 2} to each node v 2 V . By definition, any such
an assignment corresponds to a proper 3-coloring of the graph G if there are
no two nodes v, w that are adjacent in G which are assigned the same color. It
is easy to see then that G is 3-colorable if and only if there is a repair D0 of D
that does not satisfy q, i.e., it is not the case that CQA(q,D,⌃) = true. ut

Hence, consistent query answering resembles query evaluation over prob-
abilistic databases in terms of the complexity of evaluation for CQs: Both
problems are intractable even in data complexity. As we did for CQ evalua-
tion over probabilistic databases, we present next two lines of research that
have been developed to tackle this issue. The first one corresponds to identify-
ing classes of CQs for which the problem can be solved e�ciently. The second
one corresponds to the design of an FPRAS for computing the “degree of
certainty” with which a CQ holds over an inconsistent database. This degree
of certainty refers to the number of repairs that satisfy the given CQ.

A tractable class of CQs

We focus on the class of self-join free CQs (sjfCQs), which was studied in the
previous chapter, since this case is much better understood in the literature
and results for it are much easier to explain than for the general case. Recall
that a sjfCQ q is a CQ in which no two distinct atoms use the same relation
symbol. We identify a syntactically restricted class of pairs (q,⌃), where q is
a sjfCQ and ⌃ is a set of primary keys, for which ConsEvaluation(q,⌃) can be
solved in polynomial time. This class is defined in terms of the key-join graphs
of pairs of the form (q,⌃), a notion that we introduce below. To simplify the
presentation, we consider Boolean sjfCQs only.

Let R(x̄) be an atom over a schema S with key(R) = A. The tuple of
variables in key positions of R(x̄) is defined as ;, if A = ;, and as (x1, . . . , xp),
if A = [1, p] for p 2 [1, ar(R)]. We often write R(x̄) as R(ȳ ; z̄) to denote
that ȳ and z̄ are the tuples of variables in key and non-key positions of R(x̄),
respectively. A Boolean sjfCQ R1(x̄1), . . . , Rm(x̄m) together with a set ⌃ of
primary keys can thus be represented in a single expression:

R1(ȳ1 ; z̄1), . . . , Rm(ȳm ; z̄m). (42.1)

We call these expressions constrained sjfCQs and often denote them q̂. We
write ConsEvaluation(q̂) as a shorthand for the problem ConsEvaluation(q,⌃),
where q and ⌃ are the CQ and set of primary keys, respectively, that are
univocally associated with q̂.

Let q̂ be a Boolean constrained sjfCQ of the form (42.1). By definition of
self-join freeness, the Ris are pairwise di↵erent. The key-join free graph of q̂
is a directed graph whose nodes are the atoms Ri(ȳi ; z̄i) of q̂ and there is a
directed edge from Ri(ȳi ; z̄i) to Rj(ȳj ; z̄j), for i 6= j, if there is a variable in
(ȳj ; z̄j) that appears in z̄i, i.e., in a non-key position of Ri(ȳi ; z̄i).

42 Inconsistent Databases 401

Example 42.3. Consider the constrained sjfCQ q̂1 :– R(x ; z), S(z ;x), where
we have underlined key positions for clarity. The key-join graph of q̂1 is shown
below:

R(x ; z) S(z ;x)
z

x

The labels in the edges represent the non-key positions in the source that
appear in the target.

Consider also the CQ q̂2 :– R(x ; z), S(z, v ;w). The key-join graph of q̂2 is
shown in the following figure:

R(x ; z) S(z, v ;w)
z

ut

Following with the previous example, we have that both ConsEvaluation(q̂1)
and ConsEvaluation(q̂2) are coNP-complete problems (this fact is left as an
exercise to the reader). Notice that the key-join graph of q̂1 contains a directed
cycle, and hence for the tractable family of CQs we aim to define in this section
we can only admit constrained sjfCQs with an acyclic key-join graph. Yet, this
is not su�cient. In fact, the key-join graph of q̂2 is acyclic. In this case, the
reason why ConsEvaluation(q̂2) is coNP-complete is found in the label of the
edge that goes from R(x ; z) to S(z, v ;w): this does not include all variables
that appear in key positions in the second atom, in particular, the variable v
is not present in such a label. In technical terms, it is said that the join from
the key of S(z, v ;w) to R(x ; z) is non-full. Henceforth, our tractable class
neither can admit non-full joins in edges of key-join graphs.

As we establish below, these two restrictions su�ce to guarantee tractabil-
ity for the problem ConsEvaluation(q̂). Formally, let us define Cac-full as the set
of Boolean constrained sjfCQs q̂ for which the following statements hold:

• the key-join graph of q̂ contains no directed cycles, and

• every edge of the key-join graph of q̂ is full, that is, each such an edge
of the form R(x̄ ; ȳ) ! S(z̄ ; w̄) satisfies that every variable that appears
in the tuple z̄ of key positions in S(z̄ ; w̄) also appears in the tuple ȳ of
non-key positions in R(x̄ ; ȳ).

Example 42.4. Consider the constrained sjfCQ

q̂ :– R(x, z ;u, x), S(u, x ; v, w),M(u ; t), L(t ; y).

The key-join graph of q̂ is shown in the following figure:

402 42 Inconsistent Databases

R(x, z ;u, x) S(u, x ; v, w)

M(u ; t) L(t ; y)

{u, x}

{t}{u}

It can be observed that the key-join graph of q̂ is acyclic and all edges are
full. Hence, q̂ in Cac-full. ut

The following is an important observation regarding the class Cac-full. We
leave the proof of this fact to the reader.

Lemma 42.5. For every q̂ 2 Cac-full we have that the key-join graph of q̂ must
be a directed forest, i.e., every node has at most one incoming edge.

The main result of this section is the following, which establishes the
tractability of computing certain answers for the constrained CQs in Cac-full.
It should be noted that this is also a meaningful result from a practical point
of view, as it has been observed that constrained sjfCQs in the class Cac-full
occur often in real world scenarios.

Theorem 42.6. Let q̂ be a fixed Boolean constrained sjfCQ in Cac-full. The
problem ConsEvaluation(q̂) can be solved in PTime.

Proof. We know from Lemma 42.5 that the key-join graph of q̂ is a directed
forest. For simplicity, we assume that it actually consists of a single directed
tree T ; the general case is slightly more involved and left as an exercise. Each
node t of T is thus associated with an atom Rt(x̄t ; ȳt) of q̂. We denote by
q̂t the constrained sjfCQ that is induced in q̂ by all the atoms of the form
Ru(x̄u ; ȳu), for u a (not necessarily proper) descendant of t in T . We proceed
by showing that each such a constrained sjfCQ q̂t admits an FO-rewriting.
More formally there is an FO sentence t such that for every database D we
have that:

CQA(q̂t, D) = true () D |= t.

Here CQA(q̂t, D) is a shortening for CQA(qt, D,⌃t), where qt and ⌃t are
the sjfCQ and set of primary keys, respectively, that are univocally associated
with q̂t. That is, the certain answer to qt over D with respect to ⌃t can be
obtained by directly evaluating the rewriting t over D. In particular, if r is
the root of T then q̂r = q̂, and hence q̂ itself admits an FO-rewriting. Theorem
42.6 then follows since FO sentences can be evaluated in DLogSpace in data
complexity from Theorem 7.3.

We start by proving the following claim. Here, q0t(x̄t) denotes the sjfCQ
which is obtained from qt by removing the existential quantification on x̄t.

Claim 42.7. For every node t of T there is an FO formula 0
t(x̄t) such that,

for every database D and tuple ā over Dom(D) with |ā| = |x̄t|, the following
statements are equivalent:

42 Inconsistent Databases 403

• D |= 0
t(ā).

• For every repair D0 of D with respect to ⌃t it is the case that ā 2 q0t(D
0).

We prove the claim by induction on the height of t. If t has height 0, then
it is a leaf. We illustrate the proof with an example. Suppose that the atom
Rt(x̄t ; ȳt) is R(x, y ;x, v). Then 0

t(x, y) can be defined as:

9v R(x, y, x, v) ^ 8u8v
�
R(x, y, u, v) ! u = x

�
.

In fact, it is easy to see that for every database D and elements a, b 2 Dom(D)
the following holds: for every repair D0 of D with respect to ⌃t we have that
(a, b) 2 q0t(D

0) if and only if there is a fact of the form R(a, b, a, d) 2 D, for
some d 2 Dom(D), and each fact in the same block than R(a, b, a, d) with
respect to ⌃t is of the form R(a, b, a, d0), for some d0 2 Dom(D). Clearly,
the latter holds if and only if D |= 0

t(a, b). The proof of the general case, in
which t is associated with an arbitrary atom of the form Rt(x̄t ; ȳt), is left to
the reader.

Assume now that t has height h+1, for h � 0. Let t1, . . . , tk be the children
of t in T . We then define 0

t(x̄t) as:

9ȳ0t Rt(x̄t, ȳt) ^ 8z̄t
�
Rt(x̄t, z̄t) ! �(x̄t, z̄t) ^

^

i2[1,k]

 0
ti(z̄ti)

�
,

where ȳ0t is the tuple of all variables in ȳt that do not appear in x̄t; the tuple
z̄t consists exclusively of fresh variables and satisfies |z̄t| = |ȳt|; for each ti
with i 2 [1, k] the formulae 0

i are obtained by induction hypothesis; the tuple
z̄ti is the one that is obtained from z̄t by selecting the positions corresponding
to key positions from x̄ti (this is well-defined as, by definition of the class
Cac-full, each variable in the x̄ti appears in ȳt); and, finally, �(x̄t, z̄t) contains
each equality of the form x = z such that x 2 x̄t, z 2 z̄t, and the variable
corresponding to z in ȳt is precisely x. As an example of the construction,
suppose that t is associated with atom R(x, y ;x, v) and has two children t1
and t2 which are respectively associated with atoms S(x ;u) and T (x, v ;w).
Then 0

t(x, y) is defined as:

9v R(x, y, x, v) ^ 8u8v
✓
R(x, y, u, v) !

�
u = x ^ 0

t1(u) ^
0
t2(u, v)

�◆
.

We start by proving the first part of Claim 42.7. Assume first that D |=
 0
t(ā). Then, by definition, there is a fact of the form Rt(ā, b̄) 2 D, for some

tuple b̄ over Dom(D), and each fact in the same block than Rt(ā, b̄) with
respect to ⌃t is of the form Rt(ā, b̄0), for some tuple b̄0 over Dom(D) that
satisfies �(ā, b̄0) and, in addition, it holds that D |= 0

ti(b̄
0
i), where b̄0i is the

restriction of b̄0 to the variables in z̄ti . Take an arbitrary repair D0 of D with
respect to ⌃t. Then D0 must contain some fact of the form Rt(ā, b̄), for some
tuple b̄ over Dom(D). By induction hypothesis, for each i 2 [1, k] we have

404 42 Inconsistent Databases

that b̄i 2 q0ti(D
0), where b̄i is the restriction of b̄ to the variables in z̄ti . That

is, there is a homomorphism hi from qti to D0 with hi(x̄ti) = b̄i. Let h be a
mapping defined as h(x̄t) = ā, h(ȳt) = b̄, and h(z) = hi(z), for each variable
z that appears in qti but not in (x̄t, ȳt) This mapping is well-defined for the
following reason: Every variable that appears in qti and qtj , for i 6= j, also
appears in (x̄t, ȳt). In fact, by definition of Cac-full each variable z that appears
in qti but not in (x̄t, ȳt) must have been introduced in some non-key position
of an atom A from qti . If z was also mentioned in an atom A0 of qtj , then there
would be an edge from A to A0; henceforth, T would not be a directed tree,
a contradiction. We prove now that ā 2 q0t(D

0). We do so by showing that h
is a homomorphism from qt to D0. The result then follows since h(x̄t) = ā.
We only have to prove that h is consistent with the his, i.e., h(z) = hi(z)
if z appears in both qti and (x̄t, ȳt). But this follows from the fact that the
only variables appearing in qti and (x̄t, ȳt) are those in x̄ti (which we know
appear also in ȳt); indeed, in any other case we could prove the existence of
an undesired edge destroying the fact that T is a directed tree (left as an
exercise). By definition we have that h(x̄ti) = b̄i = hi(x̄ti), and hence the
claim holds.

Assume now that for every repair D0 of D with respect to ⌃t we have
that ā 2 q0t(D

0). Henceforth, D |= 9ȳ0tRt(ā, ȳt). Consider now an arbitrary
fact Rt(ā, b̄) 2 D. First, D |= �(ā, b̄). Otherwise, ā does not belong to the
evaluation of 9ȳRt(x̄t, ȳt) over D00, where D00 is an arbitrary repair of D that
contains Rt(ā, b̄). This contradicts the fact that ā 2 q0t(D

00). We show next
that D |= 0

ti(b̄i), for each i 2 [1, k], assuming that b̄i is the restriction of b̄
to the variables in z̄ti . By induction hypothesis, it su�ces to show that for
every repair Di of D with respect to ⌃t we have that b̄i 2 q0ti(Di), i.e., there
is a homomorphism h from qti to Di with h(x̄ti) = b̄i. Take an arbitrary such
a repair Di and let us assume that Rt(ā, b̄0) is the only fact in the block of
R(ā, b̄) that belongs to Di. Let D0

i be the repair defined as (Di�{Rt(ā, b̄0)})[
{Rt(ā, b̄)}. We know that there is a homomorphism h from qt to D0

i with
h(x̄t) = ā. By definition, h(ȳt) = b̄ and h(x̄ti) = b̄i. Consider the set h(qti)
of facts in the image of qti under h, for i 2 [1, k]. None of these facts uses
the relation symbol Rt because qt is self-join free, and hence h(qti) ✓ Di. We
conclude that h is also a homomorphism from qti to Di with h(x̄ti) = b̄i, and
hence b̄i 2 q0ti(Di). Summing up, we have that D |= 0

t(ā).
We finish by proving the following claim, which establishes that t can be

defined as 9x̄t 0
t(x̄t) for each node t of T .

Claim 42.8. It is the case that CQA(q̂t, D) = true , D |= 9x̄t 0
t(x̄t), for

every database D.

The fact that D |= 9x̄t 0
t(x̄t) implies CQA(q̂t, D) = true easily follows

from Claim 42.7, so we omit it here. Assume then that CQA(q̂t, D) = true.
We show that there must exist a tuple ā over Dom(D) such that, for every
repair D0 of D with respect to ⌃t, it is the case that ā 2 q0t(D

0). From Claim

42 Inconsistent Databases 405

42.7 this implies that D |= 0
t(ā), and hence D |= 9x̄t 0

t(x̄t). We actually
prove the following claim.

Claim 42.9. Given two repairs D1 and D2 of D with respect to ⌃t, there is
a repair D⇤ of D with respect to ⌃t such that q0t(D

⇤) ✓ q0t(D1) \ q0t(D2).

Notice that from Claim 42.9 we obtain our desired result. In fact, by
repeated application of this claim we have that there is a repair D⇤ of D with
respect to ⌃t such that q0t(D

⇤) ✓ q0t(D
0), for each repair D0 of D with respect

to ⌃t. Since CQA(q̂t, D) = true, there is a homomorphism h from qt to D⇤.
Therefore, h(x̄t) 2 q0t(D

0) for each repair D0 of D with respect to ⌃t.
The proof of Claim 42.9 is by induction on the height of t. When t has

height 0, we have that q0t = 9ȳtRt(x̄t, ȳt). Take two repairs D1 and D2 of D
with respect to ⌃t. We define D⇤ by choosing one fact for each block over RD

t .
Take an arbitrary such a block B. Both D1 and D2 must contain a fact in B,
which we call Rt(ā, b̄) and Rt(ā, b̄0), respectively. If ā 2 q0t(D1)\q0t(D2), we add
to D⇤ either Rt(ā, b̄) or Rt(ā, b̄0). Otherwise, if ā 62 q0t(D1), we add Rt(ā, b̄) to
D⇤; else, we add Rt(ā, b̄0) to D⇤. It is clear then that q0t(D

⇤) ✓ q0t(D1)\q0t(D2).
Assume now that t has height h+1, for h � 0. Let t1, . . . , tk be the children

of t in T . Take two repairs D1 and D2 of D with respect to ⌃t, and let Di,
Di

1 and Di
2 be the restrictions of D, D1 and D2, respectively, to the relation

symbols in qti , for each i 2 [1, k]. By definition, Di
1 and Di

2 are repairs of Di

with respect to ⌃ti . Hence, by induction hypothesis, there is a repair Di
⇤ of

Di with respect to ⌃ti such that q0ti(D
i
⇤) ✓ q0ti(D

i
1) \ q0ti(D

i
2). We define a

repair D⇤ of D with respect to ⌃t by taking the disjoint union of the Di
⇤s,

for i 2 [1, k], plus one fact for each block B over RD
t . We explain next how to

choose such a fact.
Take an arbitrary block B over RD

t . BothD1 and D2 must contain a fact in
B, which we call Rt(ā, b̄) and Rt(ā, b̄0), respectively. If ā 2 q0t(D1)\q0t(D2), we
add to D⇤ either Rt(ā, b̄) or Rt(ā, b̄0). Otherwise, if ā 62 q0t(D1), we add Rt(ā, b̄)
to D⇤; else, we add Rt(ā, b̄0) to D⇤. We claim that q0t(D

⇤) ✓ q0t(D1) \ q0t(D2).
In fact, take a tuple ā 2 q0t(D

⇤). Hence, there is a homomorphism h from qt
to D⇤ with h(x̄t) = ā. In particular, D⇤ contains a (unique) fact of the form
Rt(ā, b̄), for b̄ a tuple over Dom(D). By definition, h is also a homomorphism
from qti to Di

⇤, for each i 2 [1, k]. By hypothesis, then, b̄i 2 q0ti(D
i
1)\ q0ti(D

i
2),

where b̄i = h(x̄ti). Now, suppose for the sake of contradiction that ā 62 q0t(D1);
the other case, when ā 2 q0t(D1) but ā 62 q0t(D2), is treated analogously. By
the way in which D⇤ is constructed, it is the case that D1 also contains the
fact Rt(ā, b̄). In addition, b̄i 2 q0ti(D

i
1) for each i 2 [1, k]. It is easy to observe

then that ā 2 q0t(D1), which is a contradiction. ut

An approximation algorithm

Although evaluating consistent answers to CQs is an intractable problem, even
in data complexity, analogously to the case of CQ evaluation over probabilistic

406 42 Inconsistent Databases

databases we can show the existence of an FPRAS for computing the ratio
between the number of repairs that satisfy the query and the total number
of repairs. This can serve as a good measure of how “consistent” an answer
is, especially in those cases in which exact evaluation of consistent answers is
infeasible.

Formally, given a CQ q(x̄), a database D, and a tuple ā of elements in
Dom(D) of the same arity as x̄, we define

ConsLevel(q, ā,D,⌃) :=
|{D0 | D0 is a repair of D wrt ⌃ with ā 2 q0(D)}|

|{D0 | D0 is a repair of D wrt ⌃}| .

The next result establishes that this value can be approximated with an
FPRAS when q and ⌃ are fixed.

Theorem 42.10. Let q(x̄) and ⌃ be a fixed CQ and set ⌃ of primary keys,
respectively. There is an FPRAS for the problem of computing the value
ConsLevel(q, ā,D,⌃) on a given database D and tuple ā in Dom(D).

The construction is very similar to the one shown in Theorem 41.9 for
evaluating CQs over probabilistic databases. We leave the proof to the reader.

Bibliographic Comments

To be done.

55

Background For Tree and Graph Structured
Data

Conceptually, tree- and graph-structured data is fundamentally di↵erent from
relational data. The reason is that tree- and graph-structured data does not
necessarily need to adhere to a schema. The reader does not need to be famil-
iar with the entire background chapter (Chapter 2) to start with Parts VIII
and X. We assume here that the reader is familiar with the Basic Notions
and Notation from Chapter 2 and introduce everything else here or give the
reader an explicit pointer to Chapter 2.

Graphs

Throughout Parts VIII and X, we assume that we have a countably infinite
set

Nodes of nodes

available, from which we will take the nodes in trees and graphs. We also
assume that we have a countably infinite set

Lab of labels.

Furthermore, we assume the existence of a special symbol ⇤ that does not
occur in any of the aforementioned sets and which we will use as a “wildcard”
in query languages over trees.

We next define node- and edge-labled directed graphs, which will be the
basis of di↵erent data models that we will use throughouth Parts VIII and X.
In particular, we will use special cases of the following definition. The main
reason why we introduce this general definition here is because we want to
define queries and some of their computational problems in this chapter.

452 55 Background For Tree and Graph Structured Data

Definition 55.1: Node- and Edge-Labeled, Directed Graph

Let k 2 N. A k-sorted node- and edge-labeled, directed graph with wild-
cards is a tuple

G = (V,E1, . . . , Ek, lab) ,

where

• V ✓ Nodes is a finite, nonempty set of nodes,

• Ei ✓ V ⇥ V is a set of directed edges for every i 2 [k], and

• lab: V [E1 [· · ·[Ek ! Lab[{⇤} is a partial function that assigns
to every node and edge its label from Lab or the wildcard symbol.

We say that G is node-labeled (resp., edge-labeled) if Dom(lab) = V
(resp., Dom(lab) = E1 [· · · [Ek).

We will use the k di↵erent sorts of edges to be able to assign di↵erent roles
to edges in the graph. For example, in Part VIII we will use this feature to
define child edges and next-sibling edges in trees.

Usually, we will use a restricted labeling function that does not assign
wildcards, that is, lab: V [E1 [· · · [Ek ! Lab. If this is the case, we will
omit “with wildcards” when we refer toG, that is, we will talk about a k-sorted
node-labeled, directed graph, etc. Furthermore, we will often leave “k-sorted”
implicit, since the number k can be inferred from the tuple (V,E1, . . . , Ek, lab).

Example 55.2

Figure 55.1 has a graphical representation of a 2-sorted node- and edge-
labeled directed graph G = (V,E1, E2, lab) where

• V = {v1, . . . , v10},
• E1 = {(v1, v2), (v2, v3), (v2, v4), (v1, v5), (v5, v6), (v6, v7), (v6, v8), (v5,
v9), (v5, v10)},

• E2 = {(v2, v5), (v3, v4), (v6, v9), (v7, v8), (v9, v10)}, and
• lab is defined in the Figure.

The two edge sorts are represented with solid and dashed arrows, respec-
tively.

Since presenting graphs as in Figure 55.1 is very verbose, we will leave
the elements of V implicit whenever we can. For example, the graph of
Figure 55.1 can be represented more compactly as in Figure 55.2. Notice
that, for the sake of brevity, we omitted some of the elements of V .
(We only mention v4, v5, v8, and v10.) We may do this in cases where
only some of the elements of V are relevant. For instance, if we view

55 Background For Tree and Graph Structured Data 453

v1

v2

v3 v4

v5

v6

v7 v8

v9 v10

with

lab(v1) = a lab(v6) = b
lab(v2) = b lab(v7) = c
lab(v3) = c lab(v8) = d
lab(v4) = d lab(v9) = a
lab(v5) = e lab(v10) = b

lab(v1, v2) = lab(v2, v3) = lab(v2, v4) = lab(v1, v5) = lab(v5, v6)
= lab(v6, v7) = lab(v6, v8) = lab(v5, v9) = lab(v5, v10) = c

lab(v2, v5) = lab(v3, v4) = lab(v6, v9) = lab(v7, v8) = lab(v9, v10) = ns

Fig. 55.1: Example of a Node- and Edge-Labeled Graph

a

b

c

c

d

c

c

e

b

c

c

d

c

c

a

c

b

c

c

ns

ns ns

ns

ns
v4

v5

v8

v10

Fig. 55.2: Less verbose representation of the graph in Figure 55.1, leaving
some of the elements of Nodes implicit

Figure 55.2 as a tree-like structure, we may want to say that v4, v5, v8,
and v10 are “rightmost children of their respective parents”. The nodes
we omitted are irrelevant for this statement.

In Parts VIII–X, we will use the letters u and v for referring to nodes. Let
G = (V,E1, . . . , Ek, lab) and E = E1 [· · · [Ek. An undirected path in G is a
non-empty sequence of nodes

⇡ = v0v1 · · · vn

where (vi�1, vi) 2 E or (vi, vi�1) 2 E for every i 2 [n]. We say that ⇡ is
from v0 to vn and has length n. (The path of length zero is from v0 to v0.)
A directed path in G is an undirected path where (vi�1, vi) 2 E for every
i 2 [n]. We assume in Parts VIII–X that paths are directed unless stated
otherwise. A graph is connected if, for every pair of nodes u, v 2 V , there is
an undirected path from u to v. Notice that these definitions are consistent
with the corresponding definitions for directed graphs in Chapter 2.

454 55 Background For Tree and Graph Structured Data

Data Graphs

For the following definition, we recall from Chapter 2 that we use Const
throughout the book to denote the set of values in databases.

Definition 55.3: k-Sorted Data Graph

Let k 2 N. A k-sorted data graph is a tuple

G = (V,E1, . . . , Ek, lab, d) ,

where:

• (V,E1, . . . , Ek, lab) is a k-sorted node- and edge-labeled directed
graph, and

• d : V [E1 [· · · [Ek ! Const is a partial function that assigns to
every node and edge its data value.

We write G for the set of all k-sorted data graphs for some k 2 N� {0}.

When the number k of sorts is not important, we may use the term data graph
to refer to a k-sorted data graph for some k 2 N� {0}.

Notice that we assume a single data value per node. This is just for no-
tational simplicity and is not a restriction at all, since a node u with k > 1
attributes can be modeled by a node u with k outgoing edges, leading to k
new nodes containing the data values.

Queries

Next we define queries over data graphs. Since Parts VIII–X will sometimes
consider strict subsets of the data graphs (e.g., node-labeled trees, edge-
labeled graphs), we define queries for subsets G0 of G.

Definition 55.4: Queries and Query Languages over Graphs

Let G0 ✓ G. A k-ary data graph query over G0 is a function of the form

q : G0 ! (Nodes [Const)k .

A data graph query language is a set of data graph queries.

Key Problems: Query Evaluation and Query Analysis

We now define some key problems concerning tree and graph-structured data.
In their most common form, these problems are parameterized by a data

55 Background For Tree and Graph Structured Data 455

graph query language L. Such query languages in Parts VIII–X will always
be associated to a data model, i.e., a subset GL ✓ G onto which the semantics
of L is defined. The intention is that queries from L will always be evaluated
over elements of GL.

Query Evaluation

Problem: L-Evaluation

Input: A query q from L, a data graph G 2 GL, a tuple ā over
Nodes [Const

Output: true if ā 2 q(G), and false otherwise

Query Containment and Equivalence

Let L be a data graph query language. We say that a query q 2 L is contained
in a query q0 2 L, written as q ✓ q0, if q(G) ✓ q0(G) for every data graph
G 2 GL. Query q is equivalent to q0, written as q ⌘ q0, if q(G) = q0(G) for
every data graph G 2 GL. Since, by definition, queries return sets of tuples,
the notions of set inclusion and equality can be applied.

In relation to containment and equivalence, we consider the following de-
cision problems, again parameterized by a query language L.

Problem: L-Containment

Input: Two queries q and q0 from L
Output: true if q ✓ q0, and false otherwise

Problem: L-Equivalence

Input: Two queries q and q0 from L
Output: true if q ⌘ q0, and false otherwise

Part VIII

Tree-Structured Data

459

Tree-structured data came to the attention of the data management com-
munity with the introduction of the Extensible Markup Language (XML) in
1998, which has since then become one of the most widespread formats for
exchanging data on the Web. The other popular data interchange format, the
JavaScript Data Interchange Standard (JSON), was defined in 1999 and is
similar to XML in the sense that it also treats data in a tree structured man-
ner. Tree-structured data is therefore an important part of data management
and we devote this part to discuss some of its fundamental aspects.

Part VIII is organized as follows. In Chapter 56, we discuss the data models
that we will use throughout this part. [TODO add explaining sentence.] We
then define tree pattern queries in Chapter 61. Tree pattern queries are a
fragment of the language XPath, and can navigate through trees using the
child and descendant relations. As such, they are among the most fundamental
languages one can devise for querying trees. They arguably play a similar
role for tree-structured data as conjunctive queries do for relational data.
In Chapters 62 and 63 we treat the basic static analysis and optimization
problems for tree pattern queries, namely containment and minimization.

Chapters 61 and 63 are presented in terms of unordered trees, that is,
trees in which siblings are unordered. However, since tree pattern queries are
agnostic of the sibling ordering in the data, all the results in Chapters 61 and
63 remain to hold in the setting where sibling ordering is present in the data.

56

Data Model

In this chapter we introduce several abstractions of tree-structured data. We
focus on abstractions that are simple and elegant, yet powerful enough to
prove results that help us understand the nature of querying and reasoning
about tree-structured data in practice. Before we dive into our mathematical
models, we take a look at how tree-structured data is represented in practice.

Tree-Structured Data in Practice

The most widespread formats for storing tree-structured data are XML (eX-
tensible Markup Language) and JSON (JavaScript Object Notation). We
briefly discuss the nuts and bolts of these formats by example.

XML

Consider Figure 56.1(a), which describes a simple XML document that con-
tains IDs, names, and birthplaces of three persons. The first line states that
the document uses version 1.0 of the XML standard and is encoded in UTF-
8. The actual data starts in the second line and is hierarchically structured,
much like HTML.1 In XML, the tags such as persons and person are called
element names, whereas pers id, name, and birthplace are attribute names.
In the document, the top-level element person contains three elements, la-
beled person, each of which has attributes with names pers id, name, and
birthplace. The values of the respective attributes are given as strings inside
double quotes. For instance, the birthplace of Jimi is Seattle.

Figure 56.1(a), however, does not significantly use the capabilities of XML
to structure data as a tree. So let us consider Figure 56.1(b), which contains
similar information than Figure 56.1(a), but with more detail. Compared to
Figure 56.1(a), we made two significant changes. First, instead of writing the

1 For brevity, we assume that the reader has basic familiarity with HTML, but at
the same time encourage her/him to continue reading even if this is not the case.

466 56 Data Model

<?xml version="1.0" encoding="UTF-8"?>
<persons>
<person pers_id="1" name="Jimi" birthplace="Seattle"/>
<person pers_id="2" name="Saul" birthplace="Stoke-on-Trent"/>
<person pers_id="3" name="Mark" birthplace="Glasgow"/>

</persons>

(a)

<?xml version="1.0" encoding="UTF-8"?>
<persons>
<person pers_id="1">
<name> Jimi </name>
<birthplace>
<city> Seattle </city>
<state> Washington </state>
<country> United States </country>

</birthplace>
</person>
<person pers_id="2">
<name> Saul </name>
<birthplace>
<city> Stoke-on-Trent </city>
<country> United Kingdom </country>

</birthplace>
</person>
<person pers_id="3">
<name> Mark </name>
<birthplace>
<city> Glasgow </city>
<country> United Kingdom </country>

</birthplace>
</person>

</persons>

(b)

Fig. 56.1: Two XML documents

names of persons as XML attributes, we wrote them inside name-tags which
are nested inside person-tags. (Notice that the values of names are no longer
enclosed in double quotes.) Second, we did the same with birthplaces, but
additionally provided more detail in terms of the state and country of the city
of birth. Furthermore, we did not provide state information for every city of
birth.

We now discuss some principled di↵erences between the two documents.
First of all, the ordering between attributes in XML is irrelevant. That is, the
element

56 Data Model 467

<person pers_id="1" name="Jimi" birthplace="Seattle"/>

conveys the same information than

<person name="Jimi" birthplace="Seattle" pers_id="1"/> .

Intuitively, XML considers both fragments as encoding an element with name
person for which the attribute with name pers id has value “1”, name has
value “Jimi”, and birthplace has value “Seattle”.

Ordering between elements, however is important. That is, the fragment

<person> <pers_id> 3 </pers_id> <name> Mark </name> </person>

is considered to be di↵erent from

<person> <name> Mark </name> <pers_id> 3 </pers_id> </person>

in XML. The reason is that XML treats the hierarchical nesting of elements
as a tree where, in the first fragment, the first child of person is a pers id-
element, whereas in the second fragment, the first child of person is a name-
element, which is di↵erent.

JSON

Let us now consider how JSON represents tree-structured data. In JSON,
a natural way to represent the information similar to that in Figure 56.1(a)
would be the document in Figure 56.2(a). Another way to represent this infor-
mation would be in Figure 56.2(b), which is closer to our XML representation
in Figure 56.1(a).

Before we dive into detail on these examples of JSON documents, let us
give a quick overview of how JSON documents are constructed, focusing on
aspects that are relevant to this book. JSON documents can be inductively
defined as follows. The simplest JSON documents are string values, which are
strings enclosed in double quotes, such as "persons", "person", "pers id",
"1", etc. If k1, . . . , kn are pairwise distinct string values and v1, . . . , vn are
JSON documents, then

{ k1 : v1, . . . , kn : vn }

is a JSON document, called a JSON object. For each i 2 [n], we refer to ki : vi
as a key-value pair of the object. Furthermore,

[v1, . . . , vn]

468 56 Data Model

is a JSON document, called a JSON array. It is important to note that, inside
JSON objects and arrays, the vi can again be objects and arrays, which gives
rise to the hierarchical or tree-structured nature of JSON documents.

Objects and arrays are used in JSON to represent ordered and unordered
information, respectively. That is,

{"pers_id":"3", "name":"Mark", "birthplace":"Glasgow"}

and

{"name":"Mark", "birthplace":"Glasgow", "pers_id":"3"}

represent the same information, but

["pers_id":"3", "name":"Mark", "birthplace":"Glasgow"]

and

["name":"Mark", "birthplace":"Glasgow", "pers_id":"3"]

do not, since the order inside arrays is important.
Let us now discuss the two JSON documents in Figure 56.2. We can now

see that the document in Figure 56.2(b) indeed represents a similar struc-
ture than the XML document in Figure 56.1(a). We have a persons entity,
which contains an ordered list of three person entities. Each of these contains
a JSON object that describes their “attribute names” pers id, name, and
birthplace, and their respective values. The data in Figure 56.1(a) could be
described in exactly the same way. Notice that, in this example, the require-
ment that keys inside JSON objects are pairwise disjoint corresponds to the
requirement that attribute names in XML elements are pairwise disjoint.

The JSON document in Figure 56.2(a) represents the information a bit
di↵erently, since it omits the person-keys and immediately packs the infor-
mation on the three persons in an array that contains three objects.

Finally, we show in Figure 56.3 how tree-structured information as in Fig-
ure 56.1b can be modeled in JSON. Notice that we needed to add a string
data to give a name to the array that contains the ordered name and birth-
place information of persons. The ordering between the person ID and this
array is irrelevant.

Labeled Unordered Trees

We now turn to mathematical abstractions of tree-structured data. The sim-
plest such abstraction is the one of labeled unordered trees, which is based on
node-labeled directed graphs.

56 Data Model 469

{"persons": [
{"pers_id":"1", "name":"Jimi", "birthplace":"Seattle"},
{"pers_id":"2", "name":"Saul", "birthplace":"Stoke-on-Trent"},
{"pers_id":"3", "name":"Mark", "birthplace":"Glasgow"}
]}

(a)
{"persons": [
{"person":
{"pers_id":"1", "name":"Jimi", "birthplace":"Seattle"}},

{"person":
{"pers_id":"2", "name":"Saul", "birthplace":"Stoke-on-Trent"}},

{"person":
{"pers_id":"3", "name":"Mark", "birthplace":"Glasgow"}}

]}

(b)

Fig. 56.2: Two similar JSON documents

Definition 56.1: Labeled Unordered Tree

A connected, node-labeled, directed graph T = (V,E, lab) is a labeled
unordered tree if,

• for every node v, there is at most one node u with (u, v) 2 E and

• there is exactly one node v (called the root of T) without an incoming
edge (u, v).

If T is a labeled unordered tree, we denote its root by Root(T). Furthermore,
if (u, v) 2 E then we call v a child of u and u the parent of v. Likewise, we refer
to E as the set of child edges of T . We call v a descendant of u if there exists a
non-empty path from u to v in T . In this case, we also call u and ancestor of
v. A leaf is a node without a child, that is, a node u such that {v | (u, v) 2 E}
is empty. Two nodes are siblings if they have the same parent. We extend this
terminology to sets of nodes and say that S is a set of siblings if all pairs of
elements from S are siblings. A set of siblings S is maximal if there does not
exist a node u 2 V �S such that S[{u} is a set of siblings. By T|u we denote
the subtree of T rooted at node u, formally defined as (V|u, E|u, lab|u), where
V|u consists of u and all its descendants in T , the relation E|u is E\V|u⇥V|u,
and lab|u is the restriction of lab to V|u.

We denote the empty labeled unordered tree by ". For a 2 Lab, we use the
notation a(T1, . . . , Tn) to denote the labeled unordered tree in which the root
has label a and has n children u1, . . . , un. Furthermore, Ti is its subtree at
node ui for each i 2 [n]. That is, for each i 2 [n], we have that Ti is a labeled
unordered tree and a(T1, . . . , Tn)|ui

= Ti. Notice that this definition implies
that Ti is never empty.

470 56 Data Model

{"persons": [
{"person":
{"pers_id": "1",
"data": [
{"name": "Jimi"},
{"birthplace": [
{"city": "Seattle" },
{"state": "Washington"},
{"country": "United States"}]

}]
}

},
{"person":
{"pers_id": "2",
"data": [
{"name": "Saul"},
{"birthplace": [
{"city": "Stoke-on-Trent"},
{"country": "United Kingdom"}]

}]
}

},
{"person":
{"pers_id": "3",
"data": [
{"name": "Mark"},
{"birthplace": [
{"city": "Glasgow"},
{"country": "United Kingdom"}]

}]
}

}]
}

Fig. 56.3: A JSON document that describes ordered and unordered informa-
tion in a similar way as the XML document in Figure 56.1b

The degree of a node is the number of its children. The degree of a tree
is the maximum degree of any of its nodes. The depth of the empty tree " is
zero, the depth of a tree T = a is one, and the depth of T = a(T1, . . . , Tn) is
one plus the maximal depth of T1, . . . , Tn.

We depict trees in the usual way as in Figure 56.4(b), with the root node
on top and the leafs at the bottom. Since all edges are directed downward (or
away from the root) in such pictures, we omit arrows. The trees we defined
until now are unordered, which means that we consider the children of a
node as an unordered set. Therefore, the trees in Figures 56.4(b) and 56.4(c)

56 Data Model 471

{"person":
{"name": "Jimi",
"birthplace": { "city": "Seattle",

"country": "United States"}
}

}

(a)
person

name birthplace

city country

(b)

person

birthplace

country city

name

(c)

Fig. 56.4: A JSON document and two illustrations of the unordered tree that
captures the nesting of its keys

formally represent the same unordered tree, which corresponds to the nesting
structure of the keys in the JSON document in Figure 56.4(a).

Recall, however, that there is a fundamental di↵erence between the nesting
of keys in JSON objects and labeled unordered trees. Labeled unordered trees
can have siblings with the same label, whereas key values on the same level
of a JSON object need to be unique. We choose not to impose this restriction
on labeled unordered trees, because

(1) this allows us to present results that are relevant to both JSON and XML
in Chapters 61–63 and

(2) the results in Chapters 61–63 are not a↵ected by this choice.

Labeled Ordered Trees

In many situations, the ordering between siblings is important. For instance,
if we want to describe an address, we may want to start with a street name
and number, followed by a city, followed by a country. We will model such
behavior by labeled trees in which the siblings are ordered. To this end, let S
be a finite set. We say that a binary relation R is a successor relation on S if
the restriction of R to S, that is, {(a, b) 2 R | a 2 S, b 2 S} is isomorphic to
{(1, 2), (2, 3), . . . , (|S|� 1, |S|)}.

Definition 56.2: Labeled Ordered Tree

A labeled ordered tree is a tuple

T = (V,Ec, Ens, lab) ,

472 56 Data Model

persons

person

name birthplace

city state country

person

name birthplace

city country

person

name birthplace

city country

Fig. 56.5: A labeled ordered tree, capturing the nesting of the element names
of the XML document in Figure 56.1(b).

where (V,Ec, lab) is a labeled unordered tree and Ens is a successor
relation on every maximal set of siblings of (V,Ec, lab).

Notice that a labeled ordered tree is a two-sorted node-labeled directed graph
according to Definition 55.1. We will use all the terminology that we intro-
duced for labeled unordered trees (such as root, child, degree, etc.) in the
context of labeled ordered trees. We refer to Ens as the next sibling relation.
The first child (resp., last child) of u in T is only defined if u has at least
one child and is the smallest (resp., largest) element among all the children
of u according to Ens. We say that v is a following sibling of u if there exists
a non-empty path from u to v in T whose edges are all in Ens. Whenever T
is clear from the context, we may omit “in T” when we discuss nodes an the
relationships between them. A set of labeled ordered trees is also called a tree
language.

Similarly to unordered labeled trees, we denote by T|u the subtree of T
rooted at node u, formally defined as (V|u, E

c
|u, E

ns
|u , lab|u), where V|u consists

of u and all its descendants, lab|u is the restriction of lab to V|u and the
relations Ec

|u and Ens
|u are Ec \ V|u ⇥ V|u, and Ens \ V|u ⇥ V|u, respectively.

We denote the empty labeled ordered tree by ". For a 2 Lab, we use the
notation a(T1, . . . , Tn) to denote the labeled ordered tree in which the root
has label a and has n children u1, . . . , un. Furthermore, Ti is its subtree at
node ui for each i 2 [n]. That is, for each i 2 [n], we have that Ti is a labeled
ordered tree and a(T1, . . . , Tn)|ui

= Ti.
Figure 56.5 depicts the ordered tree that captures the nested structure of

the element names in the XML document of Figure 56.1(b). The edges in Ec

are solid, whereas the edges in Ens are dashed. As in Figure 56.4(c), we omit
the arrows on the edges in Ec, since they all point downward. Furthermore,
notice that all the edges in Ens can be inferred from the figure, once we know
that the tree is supposed to be a labeled ordered tree. (They just go from
left to right among the children of nodes.) For this reason, we will therefore
also omit the arrows in Ens in illustrations of labeled ordered trees. To avoid
confusion, we will always make clear in the context whether a figure illustrates
a labeled unordered tree or a labeled ordered tree.

56 Data Model 473

persons

person

data

name birthplace

city state country

pers id

person

data

name birthplace

city country

pers id

person

data

name birthplace

city country

pers id

Fig. 56.6: A two-sorted node-labeled graph, capturing the nesting and ordering
of the element keys of the JSON document in Figure 56.3.

Theory versus Practice

We have now seen two fundamental theoretical abstractions of tree-structured
data, namely labeled unordered trees and labeled ordered trees, together with
a few examples of how tree-structured data can be represented in practice,
using JSON and XML. As the careful reader undoubtedly realizes, our two
abstractions are not even powerful enough to precisely capture our practical
examples. For instance, for representing the nesting of keys in the JSON doc-
ument in Figure 56.3, we would arguably require a structure as in Figure 56.6,
which is neither a labeled ordered tree, nor a labeled unordered tree.

So why do we work with labeled ordered or unordered trees? This is not
because we are we are lazy or uninterested in the gritty details of reality. Our
aim is rather to work with elegant and simple abstractions that still allow
us to study practically relevant issues. In fact, simple abstractions are often
very helpful to distill practical challenges to their mathematical core. They
enable us to discover the mathematical questions whose solution would imply
a solution to the practical challenge. Good abstractions help us to focus our
attention on the fundamental underlying issues.

In this spirit, all results in Part VIII are presented in terms of labeled
ordered or unordered trees. As such, they are immediately applicable to those
parts of XML or JSON that can be understood as labeled ordered or unordered
trees, respectively. In many cases, the results can even be trivially generalized
to abstractions that are closer to reality, e.g., abstractions that consider a
mixture of ordered and unordered siblings as in Figure 56.6.

We finally argue that there is no “best” way to abstract tree-structured
data as a tree. For example, the JSON document in Figure 56.4(a) can also
be represented as the labeled unordered tree in Figure 56.7, in which we treat
both the JSON keys and the data values ‘Jimi’, ‘Seattle’, and ‘United States’
as node labels. This aspect is important for understanding many results in
Part VIII. Although these results are about labeled ordered/unordered trees,
this does not mean that the results are only about the nesting structure of
element names in XML document or keys in JSON documents and therefore

474 56 Data Model

person

name

Jimi

birthplace

city

Seattle

country

United States

Fig. 56.7: Another way of seeing the JSON document in Figure 56.4(a) as a
labeled unordered tree

do not concern the actual data. In fact, when it comes to interpreting the
results in Part VIII for managing XML or JSON data, it is more instructive
to consider the interaction between data and queries. In Part VIII, we will
consider query languages that allow to compare labels to fixed values that we
specify in the query. An example of such a query is

Select all nodes with label ‘Seattle’,

which compares node labels to the fixed value ‘Seattle’. Therefore, such results
also generalize to query languages that can compare data values to constants.
Later in the book, we will consider query languages that can compare data
values to each other, which is fundamentally di↵erent. An example of a query
that compares values to each other is

Select all node pairs (x, y) such that x and y have di↵erent labels.

57

First-Order Logic over Trees

In this chapter we introduce first-order logic over labeled ordered trees, to
which we refer as “first order logic over trees” for the sake of brevity. This
logic is similar to first-order logic (Chapter 3), but is tuned towards expressing
properties over labeled ordered trees. Just like its relational counterpart, first-
order logic over trees is an important yardstick for the expressiveness of query
languages over trees.

Formulae in first-order logic over trees will use relation names from the set

{Laba | a 2 Lab} [{Efc, Ens, Ed, Efs} .

Here, Laba is called the a-label relation, Efc is called the first-child rela-
tion, Ens the next-sibling relation, Ed the descendant relation, and Efs the
following-sibling relation, respectively.1

We will follow the Background chapter (Chapter 2) in the sense that we as-
sume that we have a countably infinite set Var of variables, disjoint from Nodes
and Lab. As in Chapter 3, variables will be typically denoted by x, y, z, . . .
(possibly with subscripts and superscripts). Di↵erently from Chapter 3, the
symbols a, b, c, . . . are now used to to denote labels from Lab. Formulae of first-
order logic are inductively defined using terms, conjunction (^), disjunction
(_), negation (¬), existential quantification (9), and universal quantification
(8).

Definition 57.1: Syntax of First-Order Logic over Trees

We define formulae of first-order logic (FO) over trees as follows:

• If x is a variable, then Laba(x), for every a 2 Lab is an atomic
formula.

• If x and y are variables from Var, then x = y is an atomic formula.

1 The reader may wonder why we don’t use the child relation or the last-child
relation, but we will see that these can be expressed using the available relations.

476 57 First-Order Logic over Trees

• If x and y are variables from Var, then Efc(x, y), Ens(x, y), Ed(x, y),
Efs(x, y), and are atomic formulae.

• If '1 and '2 are formulae, then ('1 ^'2), ('1 _'2), and (¬'1) are
formulae.

• If ' is a formula and x 2 Var, then (9x') and (8x') are formulae.

Analogously to the first-order formulae for relational databases in Chap-
ter 3, the size k'k of ' is defined to be the total number of labels, variables,
and symbols from {^,_,¬,=, 9, 8} occurring in '. The free variables FV(') of
' are defined analogously as in first-order logic over relational databases. We
also omit brackets in the same manner as for first order formulae for relational
databases to avoid notional clutter.

Example 57.2: First-Order Formulae

Consider the following FO-formula over trees:

Lab‘person’(x) ^ Lab‘name’(y) ^ Efc(x, y) . (57.1)

The free variables of this formula are x and y. The three formulae

Lab‘person’(x) ^ ¬9y
✓
Lab‘state’(y) ^

�
9z9z19z2 Lab‘birthplace’(z)

^ Efc(x, z1) ^ Ens(z1, z) ^ Efc(z, z2) ^ Ens(z2, y)
�◆

, (57.2)

¬9y Ens(x, y) , (57.3)

and
¬9y

�
Efc(y, x) _ Ens(y, x)

�
(57.4)

have only one free variable, namely x. The formula

Efc(x, y) _
�
9z Efc(x, z) ^ Efs(z, y)

�
(57.5)

has two free variables, namely x and y.

Given a labeled ordered tree T = (V,Ec, Ens, lab), we define the notion of
satisfaction of a formula ' with respect to an assignment ⌘ for ' over T . Such
an assignment is a function from FV(') to V . If x is a variable and v 2 V a
node of T , we use ⌘[x/v] to denote the assignment that modifies ⌘ by setting
⌘(x) = v. We are now ready for defining the semantics of first-order formulae
over trees.

57 First-Order Logic over Trees 477

Definition 57.3: Semantics of First-Order Logic over Trees

Given a tree T = (V,Ec, Ens, lab), a formula ', and an assignment ⌘ for
' over T , we inductively define when ' is satisfied in T under ⌘, written
(T, ⌘) |= ', as follows:

• If ' is Laba(x), then (T, ⌘) |= ' if lab(⌘(x)) = a.

• If ' is x = y, then (T, ⌘) |= ' if ⌘(x) = ⌘(y).

• If ' is Efc(x, y), then (T, ⌘) |= ' if ⌘(y) is the first child of ⌘(x) in
T .

• If ' is Ens(x, y), then (T, ⌘) |= ' if ⌘(y) is a next sibling of ⌘(x) in
T .

• If ' is Ed(x, y), then (T, ⌘) |= ' if ⌘(y) is a descendant of ⌘(x) in T .

• If ' is Efs(x, y), then (T, ⌘) |= ' if ⌘(y) is a following sibling of ⌘(x)
in T .

• If ' = '1 ^ '2, then (T, ⌘) |= ' if (T, ⌘) |= '1 and (T, ⌘) |= '2.

• If ' = '1 _ '2, then (T, ⌘) |= ' if (T, ⌘) |= '1 or (T, ⌘) |= '2.

• If ' = ¬ , then (T, ⌘) |= ' if (T, ⌘) |= does not hold.

• If ' = 9x , then (T, ⌘) |= ' if (T, ⌘[x/v]) |= for some node v 2 V .

• If ' = 8x , then (T, ⌘) |= ' if (T, ⌘[x/v]) |= for every node v 2 V .

Formulae of FO over trees are therefore very similar to formulae of FO over
relations (Chapter 3) “over {Laba | a 2 Lab} [{Efc, Ens, Ed, Efs}”, with the
following di↵erences:

(1) Formally, assignments for formulae of FO over relations map variables to
Const, whereas they map variables to Nodes for formulae of FO over trees.
This means that formulae in FO over relations are interpreted over Const,
whereas formulae in FO over trees are interpreted over Nodes.

(2) Formulae in FO over relations have atomic formulae of the form “x = a”,
which allow equality tests between variables and constants. We do not
have a similar construct here (which would be an equality test between a
variable and a node).

(3) Whereas a schema S in Chapter 3 is always finite, the set {Laba | a 2
Lab} [{Efc, Ens, Ed, Efs} is infinite, becaues Lab is infinite. This is only
a minor di↵erence in the sense that it is similar to “omitting” the schema
in the relational world. (Each FO formula “over Rel” is an FO formula
over some schema S.)

478 57 First-Order Logic over Trees

Example 57.4: Semantics of First-Order Formulae

We give an intuitive description of the semantic meaning of the formulae
in Example 57.2:

• Formula (57.1) is satisfied by all nodes x and y such that x has label
‘person’, y has label ‘name’, and y is the first child of x.

• Formula (57.2) is satisfied by all nodes x with label ‘person’, such
that there does not exist a node y which is labeled ‘state’, and y is
the second child of a node labeled ‘birthplace’, which is in turn the
second child of x. In Figure 56.5, such nodes x would be the second
and third children of the root, i.e., nodes that do not have a ‘state’
child of their ‘birthplace’ child.

• Formula (57.3) is satisfied by all nodes x that do not have next
siblings. That is, x is a last sibling (or the root).

• Formula (57.4) is satisfied by all nodes x such that there does not
exist a node y from which x is the first child or the next sibling. That
is, x is the root of the tree.

• Formula (57.5) is satisfied by all nodes x and y such that y is a child
of x.

First-Order Queries over Trees

Recall that a k-ary data graph query is a function q that takes a data graph G
as input and produces a set q(G) ✓ (Nodes[Const)k. First-order queries over
trees are a special case of such queries, since their inputs are labeled ordered
trees and they produce a set of k-tuples of nodes, that is, a set in Nodesk. We
first define the syntax of first-order queries over trees.

Definition 57.5: First-Order Queries over Trees

A first-order query over trees is an expression of the form '(x̄), where '
is an FO formula over trees, and x̄ is a tuple of free variables of ' such
that each free variable of ' occurs in x̄ at least once.

We define size k'(x̄)k of a first-order query '(x̄) as k'k+ kx̄k.
We now define the semantics of first-order queries over trees. Let '(x̄) be

an FO query over trees. Given a labeled ordered tree T = (V,Ec, Ens, lab)
and a tuple ā of elements from Nodes, we say that T satisfies the query '(x̄)
using the values ā, denoted by T |= '(ā), if there exists an assignment ⌘ for '
over T such that ⌘(x̄) = ā and (D, ⌘) |= '. We can now define the data model
and the output of FO queries over trees. The data model defines the possible

57 First-Order Logic over Trees 479

persons

person

name birthplace

city state country

person

name birthplace

city country

person

name birthplace

city country

v1

v2

v3 v4

v5 v6 v7

v8

v9 v10

v11 v12

v13

v14 v15

v16 v17

Fig. 57.1: A labeled ordered tree

inputs of the queries. For each data graph in the data model, we define the
output of the query.

Definition 57.6: Evaluation of First-Order Queries over Trees

Given a labeled ordered tree T = (V,Ec, Ens, lab) and an FO query over
trees q = '(x1, . . . , xk), where k � 0, the output of q on T is defined as
the set of tuples

q(T) = {ā 2 Nodesk | T |= '(ā)}.

The data model of FO queries over trees is the set of labeled ordered
trees.

We conclude the chapter with a few examples of first-order queries over
trees.

Example 57.7: First-Order Queries over Trees

Let T be the tree in Figure 57.1, where the nodes are depicted in grey.

• Let q1 be the query '1(x, y), where '1 is the formula (57.1). Then

q1(T) = {(v1, v3), (v8, v9), (v13, v14)} .

• Let q2 be the query '2(x), where '2 is the formula (57.2). Then

q2(T) = {v8, v9} .

• Let q3 be the query '3(x), where '3 is the formula (57.3). Then

q3(T) = {v1, v4, v7, v10, v12, v13, v15, v17} .

• Let q4 be the query '4(x), where '4 is the formula (57.4). Then

q4(T) = {v1} .

480 57 First-Order Logic over Trees

• Let q5 be the query '5(y, x), where '5 is the formula (57.5). Then

q5(T) = {(v2, v1), (v3, v2), (v4, v2), (v5, v4), (v6, v4), (v7, v4),
(v8, v1), (v9, v8), (v10, v8), (v11, v10),

(v12, v10), (v13, v1), (v14, v13), (v15, v13), (v16, v15), (v17, v15)}

58

XPath

XPath is a powerful language that is designed for navigation and node-
selection in tree-structured data. In this chapter, we o↵er a principled view
on XPath, which means that we describe and formally define an elegant and
mathematically clean language for navigating through labeled ordered trees.
We will point out di↵erences with the o�cial XPath standard whenever rele-
vant.

XPath Axes

XPath uses so-called axes as primitive operations for navigating in trees. We
use the following axes in this chapter:

self descendant next-sibling following
child descendant-or-self following-sibling preceding
parent ancestor previous-sibling

ancestor-or-self preceding-sibling

We note that the XPath standard does not consider the axes next-sibling
and previous-sibling, but we consider them here for completeness. We now
explain the meaning of each axis x by associating it to a binary relation Rx

over Nodes. To this end, if R and R0 are two binary relations, then

• we denote by R � R0 the composition of R and R0, which is defined as
{(a, c) | (a, b) 2 R, (b, c) 2 R0},

• we denote by R+ the transitive closure of R, which is defined as {(a1, an) |
9a2, . . . , an�1 such that (ai, ai+1) 2 R for every i 2 [n� 1]},

• we denote by R⇤ the transitive reflexive closure of R, which is defined as
R+ [{(a, a) | 9b such that (a, b) 2 R or (b, a) 2 R}, and

• we denote by R�1 the inverse of R, which is defined as {(b, a) | (a, b) 2 R}.

482 58 XPath

Now consider a labeled ordered tree T = (V,Ec, Ens, lab). Then, we define

Rself = {(u, u) | u 2 V }, Rchild = Ec, and Rparent = (Rchild)
�1 .

Furthermore, we define

Rdescendant = (Rchild)+ , Rdescendant-or-self = (Rchild)⇤ ,

Rancestor = (Rparent)+ , Rancestor-or-self = (Rparent)⇤ ,

Rnext-sibling = Ens , Rfollowing-sibling = (Rnext-sibling)+ ,

Rprevious-sibling = (Rnext-sibling)�1 , Rpreceding-sibling = (Rprevious-sibling)+ ,

Rfollowing = Rancestor-or-self �Rfollowing-sibling �Rdescendant-or-self , and

Rpreceding = (Rfollowing)�1 .

Core XPath and Conditional XPath

We are now ready to define the syntax of Core XPath and Conditional XPath,
which are two languages that have received considerable attention in the re-
search literature.

Definition 58.1: Syntax of Core- and Conditional XPath

The syntax of Core XPath expressions is defined by the grammar

pe ::= step | (pe/pe) | (pe [pe)
step ::= axis | step[ne]
ne ::= ?pe | (lab = a) | (lab = *) | (ne ^ ne) | (ne _ ne) | ¬ne

Here, axis stands for one of the aforementioned axes and a is a label
from Lab. The non-terminal pe defines the syntax of Core XPath path
expressions and ne defines the syntax of Core XPath node expressions.

The syntax of Conditional XPath expressions is obtained from the
above definition by replacing the rule for step with

step ::= axis | step[ne] | (step[ne])⇤

In the grammar for Conditional XPath expressions, the non-terminal pe
defines the syntax of Conditional XPath path expressions and ne defines
the syntax of Conditional XPath node expressions.

In the remainder of the chapter, we abbreviate Core XPath with CoreXPath
and Conditional XPath with CondXPath. We now define the semantics of
these languages.

58 XPath 483

Definition 58.2: Semantics of Core- and Conditional XPath

Let T = (V,Ec, Ens, lab) be a labeled ordered tree. We define the se-
mantics of CoreXPath and CondXPath expressions on T using a mutual
induction that defines the semantics of path expressions and node ex-
pressions simultaneously. For every path expression ep, its semantics JepK
is a subset of V 2 and, for every node expression en, its semantics JenK is
a subset of V . More precisely, we have

JaxisKT := Raxis

Jstep[en]KT := {(u, v) 2 JstepKT | v 2 JenKT }
J(step[en])⇤KT := Jstep[en]K⇤T

J(ep/e0p)KT := JepKT � Je0
p
KT

J(ep [e0
p
)KT := JepKT [Je0

p
KT

and
J(lab = a)KT := {v | lab(v) = a}
J(lab = *)KT := V

J?epKT := {u | 9v with (u, v) 2 JepKT }
J(en ^ e0

n
)KT := JenKT \ Je0

n
KT

J(en _ e0
n
)KT := JenKT [Je0

n
KT

J¬enKT := V � JenKT

We note that subexpressions of the form (lab = *), i.e., wildcard tests,
are syntactic sugar, since they can be written as ((lab = a)_¬(lab = a)) for
an arbitrary a 2 Lab. Our main reasons for having (lab = *) in our definition
are that the XPath standard has this construct and it allows us to have a
clean correspondence between XPath and tree pattern queries in Chapter 61.
On the other hand, since it is syntactic sugar, we do not need to consider the
case (lab = *) in several proofs.

Example 58.3

Consider the labeled ordered tree in Figure 57.1. The CoreXPath path
expression

(self[(lab = person)]/child[(lab = name)]) (58.1)

selects pairs of nodes (x, y) where x is labeled ‘person’, y is labeled
‘name’, and y is a child of x.

The CoreXPath node expression

?
�
descendant[((lab = person) ^ ¬?child[(lab = birthplace))]]/

child[(lab = name)]
�

484 58 XPath

selects the nodes x that are labeled ‘person’ and have a child with label
‘name’, but do not have a child with label ‘birthplace’.

The CondXPath path expression

(next-sibling[(lab = person)])⇤ (58.2)

selects node pairs (x, y) such that x and y are siblings with label ‘person’
and every sibling between them also has label ‘person’.

Notice that our definition of the semantics of node and path expressions
allows us to interpret them as queries over the set T of labeled ordered trees.
Indeed, we can associate to each node expression en a query qen and to each
path expression ep a query qep such that, on each labeled ordered tree T ,

• the output of qen on T is the set of nodes

qen(T) = JenKT

and

• the output of qep on T is the set of node pairs

qep(T) = JepKT .

From now on, we will therefore also treat en and ep as unary and binary
queries over T , respectively.

Complexity of Evaluation

We show that unary CoreXPath and CondXPath queries can be evaluated in
linear time combined complexity.

Theorem 58.4

Let T be a labeled ordered tree and q be a unary CoreXPath or
CondXPath query. Then we can compute q(T) in time O(kqkkTk).

Proof. Let T = (V,Ec, Ens, lab) be a labeled ordered tree. We assume without
loss of generality that V = [k], where k = |V |. Since q is a unary query, we
have that q = en for some node expression en. Since node and path expressions
are defined by mutual induction, we will prove the following by induction on
subexpressions e of q:

(a) if e = en for some node expression en, then the set JenKT ✓ V can be
computed in time O(kenkkTk) and

58 XPath 485

(b) if S ✓ V and e = ep for some path expression ep, then the set
JepKT,S := {u | 9v 2 S with (u, v) 2 JepKT } ✓ V can be computed in
time O(kepkkTk).

Notice that the theorem immediately follows from the first bullet. The algo-
rithm recursively computes and stores the sets JenKT and JepKT,S , for a relevant
set of nodes S ✓ V , for every subexpression en and ep of q. Each such set can
be stored as an array of |V | bits.

Let e be a subexpression of q. We first consider case (a) where e is a node
expression. The first base case is when e is of the form (lab = a). Since we can
indeed compute the set of a-labeled nodes in T in time O(kTk), the induction
hypothesis holds. The second base case, where e is of the form (lab = *) is
analogous.

Moving to the induction, if e is one of (en^e0n) or (en_e0n), then JenKT can be
computed by iterating over every node v of T and testing if v 2 JenKT \ Je0

n
KT .

The total time for doing this, including the computation of JenKT and Je0
n
KT

is 2|V |+O(kenkkTk) +O(ke0
n
kkTk), which is in O(kekkTk). The proof where

e = ¬en is analogous. The final case, where e = ?ep, is immediate from the
induction hypothesis (b), taking S = V .

We now consider case (b). To this end, let S ✓ V and e be a path expres-
sion. If e = axis, then JeKT,S can be computed for each possibility of axis
in time O(kTk). E.g., when axis = descendant, then JeKT,S is the set of
nodes {u | 9v 2 S with (u, v) 2 Rdescendant}, which are the ancestors of nodes
in S. (We leave the other cases as an exercise.) If e = (ep/e0p), then we first
compute S0 = Je0

p
KT,S and then JepKT,S0 . For the case e = step[en], we use the

induction hypothesis to compute S0 = JenKT and then JstepKT,S0 . The final
case e = (ep [e0

p
) is also immediate from the induction, by computing JeKT,S

as JepKT,S [Je0
p
KT,S . This concludes the proof for CoreXPath.

In the case of CondXPath, the only extra case we need to deal with is
e = (step[en])⇤. According to the definition of CondXPath, e can either be
of the form (axis[en])⇤, (step0[e0n][en])

⇤, or ((step0[e0
n
])⇤[en])⇤. We will show

how JeKT,S can be computed in time O(kqkkTk) in all these cases.
In the first case, if JaxisKT is a transitive relation (e.g., for axis =

descendant), then e is equivalent to self [axis[en], which we have already
solved. If axis = child, then we need to compute all ancestors u of nodes in
S such that all nodes on the path from u to S are in JenK, which can obviously
be done in the required time. The other cases where JaxisKT is not transitive
are analogous.

In the second case, e is of the form (step0[e0
n
][en])⇤ which is equivalent to

(step0[e0
n
^ en])⇤ and therefore reduces to the first or third case.

In the third case, e is equivalent to self [(step0[e0
n
])⇤[en], which also re-

duces to cases that we already dealt with (union and step[en]). This concludes
the proof. ⇤

59

Expressiveness of XPath

In this chapter we compare the expressiveness of CoreXPath and CondXPath
queries to first-order queries over trees (Definition 57.5). In a nutshell, we will
see that unary CoreXPath queries are equally expressive as the unary FO
queries over trees that can be defined using formulae that use two variables.
CondXPath on the other hand can express precisely the unary and binary FO
queries over trees. In this chapter we present some of the main ideas behind
these correspondences. We first focus on unary queries and discuss binary
queries at the end of the chapter.

Unary CoreXPath and FO2

For our first result, we consider the two-variable fragment of FO over trees,
which is the set of all FO formulae over trees that use at most two variables
(repetitions are allowed). We denote this subset of formulae as FO2. We define
FO2 queries over trees analogously to FO queries over trees. We illustrate such
a query in the next example.

Example 59.1: FO2 Query over Trees

Consider the query '(x), where ' is the formula

9y
✓
Ens(x, y) ^

�
9x Ens(y, x) ^ 9y Ens(x, y)

�◆
.

This query selects all nodes x that have at least three siblings to the
right. Notice that the existence of the second and third sibling to the
right is expressed by re-using the variables x and y respectively.

It turns out that the unary CoreXPath queries are precisely the same as
the unary FO2 queries over trees.

488 59 Expressiveness of XPath

Theorem 59.2

Unary CoreXPath is equally expressive as unary FO2 over trees.

Proof (Sketch). For simplicity, we will only prove the result in one dimension,
that is, we only consider the CoreXPath queries for which the set of axes is
restricted to self, next-sibling, previous-sibling, following-sibling,
and preceding-sibling. We will prove that these queries are equally ex-
pressive as those FO2 queries in which formulae use the predicates Laba(x),
Ens(x1, x2), and Efs(x1, x2). The general result can be proved using the same
technique.

For the translation from CoreXPath to FO2, we only need to show that
CoreXPath queries defined by node expressions can be translated to FO2

queries. To this end, we will define

(a) for every CoreXPath node expression e an FO2 query 'e(x) that is equiv-
alent to the query e and

(b) for every CoreXPath path expression e an FO2 query 'e(x) that is equiv-
alent to the query ?e.

If e is a node expression, the definition of 'e is as follows:

• If e is of the form (lab = a), then 'e = Laba(x).

• If e is of the form (e1 ^ e2), (e1 _ e2), or ¬e1, then 'e = ('e1 ^ 'e2),
'e = ('e1 _ 'e2), or 'e = (¬'e1), respectively.

If e is a path expression, the definition of 'e is as follows:

• If e is of the form self, next-sibling or preceding-sibling, then 'e =
x, 'e = 9y Ens(x, y) or 'e(x) = 9y Ens(y, x), respectively.

• If e is of the form following-sibling or preceding-sibling, then 'e =
9y Efs(x, y) or 'e = 9y Efs(y, x), respectively.

• If e is of the form (e1/e2), then 'e = 'e1 ^ ('e2 [x/y, y/x]).

• If e is of the form (e1 [e2), then 'e = 'e1 _ 'e2 .

• If e is of the form e1[e2], where e2 is a node expression, then 'e = 'e1 ^
'e2 [x/y, y/x].

Recall that 'e2 [x/y, y/x] is the formula obtained from 'e2 by swapping x and
y, that is, simultaneously replacing every occurrence of x with y and vice
versa. We leave the correctness of the translation as an exercise.

Conversely, let q = '(x) be a unary FO2 query. We show a recursive trans-
lation procedure to turn '(x) into an equivalent CoreXPath node expression
e'. We can assume without loss of generality that '(x) only uses the Boolean
connectives _ and ¬ and the quantifier 9.

59 Expressiveness of XPath 489

If the formula ' is atomic, that is, of the form Laba(x), then e' = (lab =
a). If ' is of the form 1 _ 2 or ¬ , then we recursively compute e 1 _ e 2

or ¬e , respectively. Now, there is one remaining case, which is that ' is of
the form 9y . Since '(x) is an FO2 query, the variable x must be free in ',
which means that either FV() = {x} or FV() = {x, y}.

In the first case, the formula ' is equivalent to

9y (^ (lab(y) = a _ ¬lab(y) = a)),

which therefore reduces to the case where FV() = {x, y}. So the only re-
maining case is ' = 9y with FV() = {x, y}. In the remainder of the proof,
for a Boolean formula � over variables {x1, . . . , xk}, and for FO2 formulae
 1, . . . , k, we write �[1, . . . , k] for the formula obtained from � by replac-
ing each xi with i. Using this notation, and since only mentions variables
x and y, we can write as

�[�1, . . . ,�r, ⇠1, . . . , ⇠s, ⇣1, . . . , ⇣t],

where

• � is a Boolean formula,

• each �i is an atomic FO2 formula with FV(�i) = {x, y},
• each ⇠i is an atomic or existential FO2 formula with FV(⇠i) = {x}, and
• each ⇣i is an atomic or existential FO2 formula with FV(⇣i) = {y}.

In order to be able to recurse on subformulas of '(x), we have to separate
the ⇠i’s from the ⇣i’s. We first introduce a case distinction on which of the
subformulas ⇠i’s hold or not and obtain that ' is equivalent to

_

�̄2{true,false}s

✓ ^

i2[s]

(⇠i $ �i) ^ 9y �(�1, . . . ,�r, �1, . . . , �s, ⇣1, . . . , ⇣t)

◆
.

We proceed with a case distinction on which order relation holds between x
and y. These are five mutually exclusive cases, determined by the following
formulas, which we call order types: x = y, Ens(x, y), Ens(y, x), Efs(x, y) ^
¬Ens(x, y), or Efs(y, x)^¬Ens(y, x). When we assume that one of these order
types ⌧ is true, each atomic order formula evaluates to either true or false.
In particular, each of the �i’s evaluates to either true or false, and we will
denote this truth value by �⌧i . Taking ⌥ as the set containing the five order
types, we can now obtain that ' is equivalent to

_

�̄2{true,false}s

✓ ^

i2[s]

(⇠i $ �i) ^
_

⌧2⌥
9y
�
⌧ ^ �(�⌧1 , . . . ,�⌧r , �̄, ⇣̄)

�◆
.

If ⌧ is an order type, ⌘(x) an FO2 query, and e⌘ an equivalent CoreXPath
formula, there is an obvious way to obtain a CoreXPath expression eh⌧, ⌘i, as
shown in the following table.

490 59 Expressiveness of XPath

⌧ eh⌧, ⌘i
x = y e⌘

Ens(x, y) next-sibling[e⌘]
Ens(y, x) previous-sibling[e⌘]

Efs(x, y) ^ ¬Ens(x, y) next-sibling/following-sibling[e⌘]
Efs(y, x) ^ ¬Ens(y, x) previous-sibling/preceding-sibling[e⌘]

Let us denote by ⇣i[x] the formula ⇣i in which we substituted the free occur-
rences of y with x. Our recursive procedure will then recursively compute e⇠i
for every i 2 [s] and e⇣i[x] for every i 2 [t] and output

_

�̄2{true,false}s

✓ ^

i2[s]

(e⇠i $ �i) ^
_

⌧2⌥
eh⌧,�

�
�⌧1 , . . . ,�

⌧
r , �̄, e⇣1[x], . . . , e⇣t[x]i

�◆
.

This concludes the translation. We leave the proof of its correctness as an
exercise. ⇤

Unary CondXPath and FO

We now turn to CondXPath and FO. First, we shed some light on the dif-
ference between FO2 and FO. By definition, every FO2 query is also an FO
query, but the converse does not hold. Indeed, one can show that the unary
FO query '(x) with

' = following-sibling(x, y) ^ Laba(x) ^ Labb(y)

^ 8z
�
(following-sibling(x, z) ^ following-sibling(z, y))

! Labc(z)
�

cannot be expressed as an FO2 query over trees. The query returns nodes x
that have a following-sibling y such that x is labeled a, y is labeled b and
every node between x and y is labeled c. Intuitively, the two-variable fragment
cannot express this condition, because one needs one variable for x and y
each, and then one lacks the third variable to express the condition between
x and y.

Therefore, concerning unary queries, FO over trees is strictly more expres-
sive than CoreXPath and FO2 over trees. However, it can be shown that the
addition of (step[ne])⇤, which we have in CondXPath, makes the language
equally expressive as FO. In fact, this is one of the reasons why such a con-
struct has been added to the XPath standard. We state the following result
without proof.

59 Expressiveness of XPath 491

Theorem 59.3

Unary CondXPath is equally expressive as unary FO over trees.

Binary Queries

It is natural to ask if Theorem 59.2 can be generalized to binary queries. It
turns out that this is not the case, since the binary CoreXPath query

(next-sibling/next-sibling)

cannot be defined as a binary FO2 query (Exercise 8.3).
The connection between CondXPath and FO is stronger, though, since the

binary FO queries over trees are indeed the same as the binary CondXPath
queries.

Theorem 59.4

Binary CondXPath is equally expressive as binary FO over trees.

60

Static Analysis of XPath

Static analysis tasks such as satisfiability, containment, and equivalence for
queries are useful for query optimization. Indeed, if a (sub)query is not satis-
fiable, then the empty result can be returned without looking at the data. In
turn, if a query is satisfiable, it makes sense to test if it can be rewritten into
an equivalent query that can be more e�ciently evaluated on the data. In this
chapter we study satisfiability, containment, and equivalence for CondXPath.

Satisfiability

We first investigate Satisfiability. From a complexity theory point of view,
satisfiability for CoreXPath and CondXPath are rather complex, since both
problems are ExpTime-complete (Exercise 8.5). Here, we present the main
argument why the problems are in ExpTime.

Theorem 60.1

CondXPath-Satisfiability is in ExpTime.

Proof (Sketch). We prove the result only for CondXPath expressions that

• do not use unions of path expressions,

• only use (step[ne])⇤ in the form (child[ne])⇤, and

• only use the axes child, descendant, and descendant-or-self.

To this end, let q be a CondXPath query that satisfies these conditions. We
will first rewrite q into an equivalent query that allows us to reduce the num-
ber of cases we need to consider later in the proof. Using De Morgan’s law,
we can rewrite q such that it only uses ^ and ¬. Using associativity, we
can rewrite all subexpressions of the form ((pe/pe)/pe) as (pe/(pe/pe)). We

494 60 Static Analysis of XPath

can replace subexpressions of the form step[e1][e2] by step[e1 ^ e2] until
no such expression occurs anymore. Finally, we can rewrite descendant into
child/descendant-or-self and then descendant-or-self into (child[(lab =
*)])⇤, so that q only uses the child axis.

We will prove how we can iteratively compute sets Sn(T) and Sp(T) of
subexpressions of q such that T is a tree and

• Sn(T) = {en | en is a node subexpression of q with Root(T) 2 JenKT } and

• Sp(T) = {ep | ep is a path subexpression of q with Root(T) 2 J?epKT }.

Let S be the set of all such sets. Notice that |S|, the number of sets in S, is
at most 2kqk.

The computation of S will be a fixpoint computation in a process that
iterates over the increasing depth of trees T . More precisely, in a first itera-
tion, we compute Sn(T) and Sp(T) for the empty tree and single-node trees.
Later iterations consider trees T = a(T1, . . . , Tn) of depth k, where we already
computed Sn(Ti) and Sp(Ti) for all i 2 [n] in a previous iteration. We stop
once we find an iteration that has not found any new set in S. This would
mean that, for every tree of T depth k, the set Sn(T) equals the set Sn(T 0)
for some T 0 of depth smaller than k (similarly for Sp(T)).

During the entire proof, we will use a set ⌃ = {a | (lab = a) is a subex-
pression of q}[{#}. (We assume without loss of generality that (lab = #) is
not a subexpression of q. The symbol # plays the role of representing “every
label that does not appear in q”.) The first iteration of the fixpoint algorithm
computes all the sets Sn(T) and Sp(T) for T = " and for T = � for every
� 2 ⌃. According to Theorem 58.4, these sets can be computed in polynomial
time.

We now assume that we have computed Sn(T) and Sp(T) for all trees of
depth k � 1, degree at most kqk, and with labels in ⌃. The next iteration
now considers every � 2 ⌃ and `  kqk. We then consider every tree T =
�(T1, . . . , T`), such that we have computed Sn(Ti) and Sp(Ti) for all i 2 [`]. We
will now decide, for every node subexpression en and every path subexpression
ep of q, if en 2 Sn(T) or not and if ep 2 Sp(T) or not. We make these decisions
inductively on the structure of the subexpressions.

• If en is of the form (lab = a), then we decide en 2 Sn(T) if and only if
� = a.

• If en is of the form (lab = *), then we decide en 2 Sn(T).

• If en is of the form (e1 ^ e2), then we decide en 2 Sn(T) if and only if
e1 2 Sn(T) and e2 2 Sn(T).

• If en is of the form ¬e, then we decide en 2 Sn(T) if and only if e /2 Sn(T).

• If en is of the form ?e for a path expression e, then we decide en 2 Sn(T)
if and only if e 2 Sp(T).

60 Static Analysis of XPath 495

This concludes all cases for node subexpressions. We now turn to path subex-
pressions.

• If ep is of the form child, then we decide that ep 2 Sp(T).

• If ep is of the form child[e], then we decide that ep 2 Sp(T) if and only
if e 2 Sn(Ti) for some i 2 [`].

• If ep is of the form (child[e])⇤[f], then we decide that ep 2 Sp(T) if and
only if f 2 Sn(T) or there exists some i 2 [`] such that e 2 Sn(Ti) and
ep 2 Sp(Ti).

• If ep is of the form e1/e2, then we do a case distinction on the structure
of e1.

– If e1 is of the form child, then we decide that ep 2 Sp(T) if and only
if e2 2 Sp(Ti) for some i 2 [`].

– If e1 is of the form (child[e])⇤[f], then we decide that ep 2 Sp(T) if
and only if either (1) f 2 Sn(T) and e2 2 Sp(T) or (2) there exists
some i 2 [`] such that e 2 Sn(Ti) and ep 2 Sp(Ti).

This concludes the computation of S.
We argue why S can be computed in exponential time. This holds because

|S|  2kqk at all times of the algorithm. Therefore, we can do at most |S| 
2kqk iterations before we reach a fixpoint. Furthermore, in every iteration, we
consider at most |⌃| · kqkkqk trees.

We leave the proof of correctness as an exercise. (This requires proving
that considering the types of trees that we have considered in this proof, i.e.,
trees that use labels from ⌃ and and have degree at moes kqk is su�cient.) ut

Since every CoreXPath expression is also a CondXPath expression, we have
the following corollary.

Corollary 60.2

CoreXPath-Satisfiability is in ExpTime.

Containment and Equivalence

Since CoreXPath and CondXPath node expressions are closed under the
Boolean operations, we can reduce equivalence and containment to satisfi-
ability.

496 60 Static Analysis of XPath

Theorem 60.3

1. CoreXPath-Containment is in ExpTime.

2. CondXPath-Containment is in ExpTime.

Proof (Sketch). For unary queries, we have that en is contained in e0
n
if and

only if (en ^ ¬e0
n
) is not satisfiable. Concerning binary queries, there is a

construction that reduces the containment problem of binary queries to the
one of unary queries (Exercise 8.7).

Since equivalence can be decided by testing containment in both directions,
we also have the following.

Corollary 60.4

1. CoreXPath-Equivalence is in ExpTime.

2. CondXPath-Equivalence is in ExpTime.

61

Tree Pattern Queries

Tree pattern queries are a simple query language that uses the child and
descendant relation in trees in order to select tuples of nodes. They are im-
portant for querying tree-structured data because of two reasons. The first
is that they closely correspond to a natural part of XPath and CoreXPath,
namely the fragment that navigates with child and descendant, and uses
conjunction, label tests, wildcards, and filter expressions (denoted [·]). The
second reason is that this XPath fragment is widely used in practice, which
makes tree pattern queries important from a practical point of view.

In this sense, tree pattern queries play a similar fundamental role for tree-
structured data as conjunctive queries for relational data. An important di↵er-
ence between tree pattern queries and conjunctive queries though is that tree
pattern queries are always acyclic. This is due to the syntax of CoreXPath,
which cannot specify cyclic queries.

Definition and Semantics

In order to define tree pattern queries, we first generalize the definition of
labeled unordered trees to incorporate wildcards. We say that a connected,
node-labeled, directed graph with wildcards T = (V,E, lab) is a labeled un-
ordered tree with wildcards if,

• for every node v, there is at most one node u with (u, v) 2 E and

• there is exactly one node v (called the root of T) without an incoming
edge (u, v).

We are now ready to define tree pattern queries.

Definition 61.1: Tree Pattern Query

A k-ary tree pattern query (TPQ) is a tuple

498 61 Tree Pattern Queries

a

b

c

⇤

c d

e

q =

u1

u2

a

b

e

b

c

d c

d

T = v1

v2 v3

v4 v5

v6

v7

v8

h

Fig. 61.1: A tree pattern query q (left), a tree T (right), and a tree pattern
homomorphism from q to T .

q = (V,Ec, Ed, lab, v̄)

where

• Ec and Ed are disjoint,

• (V,Ec [Ed, lab) is a labeled unordered tree with wildcards, and

• v̄ = (v1, . . . , vk) is a k-tuple of output nodes

Similar to first-order queries over trees, we will sometimes denote a tree pat-
tern query q as q(v̄) to emphasize that v̄ is the tuple of output nodes of q. We
refer to Ec and Ed as the child edges and descendant edges of q, respectively.
If a node is labeled “⇤”, we call it a wildcard node. When we represent TPQs
graphically, we draw child edges using single lines and descendant edges using
double lines, see Figure 61.1.

We define kqk to be |V |+ k, i.e., the number of nodes of q plus the arity k
of the tuple of output nodes. Notice that we do not require the k output nodes
to be distinct. We call q a k-ary TPQ. If k = 0, we call the query Boolean. We
sometimes write Boolean TPQs as q = (V,Ec, Ed, lab) to simplify notation.
We define BoolTPQ to be the set of Boolean TPQs.

Intuitively, a TPQ can be matched in a tree if there exists a function from
the nodes of the TPQ to the nodes of tree that satisfies all constraints imposed
by the query. We define this next.

Definition 61.2: Semantics of Tree Pattern Queries

Let q = (V,Ec, Ed, lab, v̄) be a TPQ and T = (VT , Ec
T , labT) be a labeled

unordered tree. We say that a label a 2 Lab matches a node v 2 V if
lab(v) = a or lab(v) = ⇤. A function h : V ! VT is a tree pattern
homomorphism from q to T if it fulfills all the following conditions:

• for every v 2 V , the label labT (h(v)) matches v;

61 Tree Pattern Queries 499

• if (u, v) 2 Ec, then h(v) is a child of h(u) in T ; and

• if (u, v) 2 Ed, then h(v) is a descendant of h(u) in T .

By q ! T we denote that there exists a tree pattern homomorphism
from q to T . Conversely, q 9 T denotes that there does not exist such a
tree pattern homomorphism. The output of q(v̄) on T is defined as

q(T) = {h(v̄) | h is a homomorphism from q to T} .

As such, the data model of TPQs is the set of labeled unordered trees.

Notice that we do not require a homomorphism to be injective.
Notice that, even though we define the data model of TPQs to be the

set of labeled unordered trees, their semantics can also be defined on ordered
trees T = (V,Ec, Ens, lab). (In fact, the definition is exactly the same.)

Example 61.3: Semantics of Tree Pattern Queries

Figure 61.1 depicts a TPQ q, a tree T , and a tree pattern homomorphism
h from q to T . Assume that the tuple of output nodes of q is (u1, u2) —
we circled these two nodes in the Figure. The homomorphism h produces
the answer (v5, v6) in T . Another homomorphism can be obtained from
h by mapping u1 and u2 to nodes v3 and v7, respectively. Furthermore,
q(T) = {(v3, v7), (v5, v6)}. We note that there exist di↵erent tree pattern
homomorphisms that produce (v3, v7) (by mapping the c-labeled sibling
of node u2 in q to node v5 or to node v8, respectively).

Relationship to XPath

Unary and binary tree pattern queries naturally correspond to a fragment of
CoreXPath that uses the child and descendant axes, label tests, wildcards,
conjunction, and the [·]-operator. This fragment of CoreXPath turns out to be
very widely used in practice. We will not prove this correspondence formally,
but provide an illustrating example.

Example 61.4: XPath versus Tree Pattern Queries

The pattern q in Figure 61.1 can be defined in CoreXPath as

500 61 Tree Pattern Queries

self


(lab = *)^?descendant[(lab = c)]

^?ancestor

(lab = a)^?child

⇥
(lab = b)^?child[(lab = c)]

⇤

^?descendant[(lab = e)]

��
/child[(lab = d)]

More generally, one can prove the following.

Proposition 61.5

For every unary or binary tree pattern query q, there exists an equivalent
CoreXPath query q0. Furthermore,

1. q0 can be constructed in linear time and

2. q0 only uses child, descendant, ^, (lab = a), (lab = *), and [·].

Evaluation

Since TPQs have labeled unordered trees as their associated data model, the
problem TPQ-Evaluation is defined as follows.

Problem: TPQ-Evaluation

Input: A TPQ q, a labeled unordered tree T = (V,Ec, lab), and a
tuple ū 2 V k

Output: true if ū 2 q(T) and false otherwise

We will show that this problem can be solved in polynomial time. First
we reduce it to a simpler, Boolean variant of the problem. We present a
logarithmic space reduction, but it is easy to see that the reduction can also
be carried out in linar time on a random-access machine.

Lemma 61.1. Let q be a k-ary TPQ, T a tree, and ū a k-tuple of nodes of
T . Then there exists a Boolean TPQ qb and a tree Tb such that ū 2 q(T) if
and only if qb ! Tb. Furthermore, qb and Tb can be computed in logarithmic
space.

Proof. Let q = (Vq, Ec
q , E

d
q , labq, v̄) with v̄ = (v1, . . . , vk), let T = (V,Ec, lab),

and let ū = (u1, . . . , uk). Let z and o1, . . . , ok be elements of Lab not appearing
in T or q. The tree Tb is obtained from T by attaching to each node ui a new
child u0

i with label oi and to each leaf node u /2 {u1, . . . , uk} a new child u0

61 Tree Pattern Queries 501

a

b

c

⇤

c d

e

q =

1

2

a

b

c

⇤

⇤

c

⇤

d

o2

o1

e

⇤

qb =

a

b

e

b

c

d c

d

T =

1

2

a

b

e

z

b

c

d

o2

c

z

o1

d

z

Tb =

Fig. 61.2: Illustration of the reduction from TPQ-Evaluation to BoolTPQ-
Evaluation

a

b

⇤

p = a

b

T =

u1

a

b

⇤ o1

p̃b = a

b

o1

T̃b =

u1

Fig. 61.3: Illustration why the reduction in Lemma 61.1 needs to attach the
leaf nodes labeled z and ⇤.

with label z. Similarly, pattern qb is obtained from q by attaching to each
node vi a new child v0i with label oi and to each leaf node v /2 {v1, . . . , vk}
a new child v0 with label ⇤. It is easy to show that ū 2 q(T) if and only if
qb ! Tb. ⇤

Example 61.6: Construction in Lemma 61.1

We illustrate the construction in Lemma 61.1 on an example TPQ q and
labeled unordered tree T in Figure 61.2. The construction essentially
adds nodes with special labels to the output nodes of q and the nodes
in T that are to be tested. Leaf nodes di↵erent from these special nodes
receive an additional child.

One may wonder why it is necessary to attach new nodes (labeled ⇤ and z,
respectively) to the leaf nodes of q and T in the proof of Lemma 61.1. The

502 61 Tree Pattern Queries

reason is that this is necessary for the correctness of the construction, as we
explain next. Consider the pattern q and tree T in Figure 61.3. Furthermore,
q̃b and T̃b are obtained from q and T by the construction as in Lemma 61.1,
but without attaching the new nodes to the leaf nodes. Assume that u1 is the
b-labeled node in T . Then u1 /2 q(T) because q requires that its output node
is not a child. However, q̃b ! T̃b, which means that attaching new leaf nodes
is indeed necessary.

Theorem 61.7

TPQ-Evaluation is in PTime.

Proof. By Lemma 61.1, it su�ces to show how to test q ! T in PTime for a
Boolean pattern q. So, assume that T = (V,Ec, lab) and q = (Vq, Ec

q , E
d
q , labq).

The idea is that we compute two sets of nodes of q for each node u of T , namely

• match(u) = {v 2 Vq | q|v ! T|u} and

• match0(u) = {v 2 Vq | there exists a descendant u0 of u such that q|v !
T|u0}

We compute these sets in a bottom-up fashion. First, for each leaf u of T ,
we define match0(u) = ; and match(u) = {v 2 Vq | v is a leaf in q and lab(u)
matches v}.

Now, assume that u is a node in T with children {u1, . . . , un} such that
we know all sets match(ui) and match0(ui). Then, match(u) is the set of nodes
v 2 Vq that are matched by lab(u) and such that, for every edge (v, v0) of q,
there exists a child ui of u for which one of the following holds:

• If (v, v0) is a child edge, then v0 2 match(ui).

• If (v, v0) is a descendant edge, v0 2 match(ui) [match0(ui).

The set match0(u) is simply the union of all sets match(ui) and match0(ui).
Finally, the algorithm accepts if there exists a node u 2 V such that Root(q) 2
match(u). It is easy to see that the algorithm runs in polynomial time. ⇤

The complexity in Theorem 61.7 can be improved to O(kqk · kTk) by a direct
algorithm that does not use the reduction to Boolean patterns, see Exer-
cise 8.8.

62

Tree Pattern Query Containment and
Equivalence

Recall that the main static analysis problems for query languages are sat-
isfiability, containment, equivalence, and minimization. We will study these
problems in the present and the next chapter.

First, observe that satisfiability for tree pattern queries is trivial, since
every tree pattern query is satisfiable by the tree obtained from the pattern
by

1. replacing each descendant edge with a child edge and

2. replacing each wildcard by an arbitrary label.

Therefore, the first nontrivial problems we study are containment and equiv-
alence.

Containment and Equivalence

Recall that tree pattern query q1 is contained in tree pattern query q2 (denoted
q1 ✓ q2), if q1(T) ✓ q2(T) for every labeled unordered tree T . Tree pattern
query q1 is equivalent to q2 (denoted q1 ⌘ q2), if q1 ✓ q2 and q2 ✓ q1.

We first prove that it su�ces to focus on Boolean TPQs to study the
complexity of containment and equivalence.

Lemma 62.1. Let q1 and q2 be TPQs. Then there exist Boolean TPQs qb1 and
qb2 such that q1 ✓ q2 if and only if qb1 ✓ qb2. Furthermore, qb1 and qb2 can be
computed in logarithmic space.

Proof. The construction of qbi from qi is the same as the construction of qb
from q in the proof of Lemma 61.1. ⇤

Next, we prove that it su�ces to focus on the contaiment problem, i.e.,
for Boolean TPQs, containment and equivalence are interreducible.

504 62 Tree Pattern Query Containment and Equivalence

Assume that q1 and q2 are Boolean TPQs. On the one hand, q1 ⌘ q2 if
and only if q1 ✓ q2 and q2 ✓ q1. On the other hand, suppose that we want
to test if q1 ✓ q2. Let q01 be the TPQ obtained from q1 by adding a new root
labeled ⇤ and connecting it with a child edge to the root of q1. Likewise, let
q1 \ q2 be the TPQ obtained from q1 and q2 by adding a new root labeled
⇤ and attaching two child edges, one to the root of q1 one to the root of q2,
respectively. Then, we have that q1 ✓ q2 if and only if q01 ⌘ q1 \ q2. Therefore,
and by Lemma 62.1, we have now obtained the following.

Proposition 62.1

There exists logarithmic-space reductions between all of the following
problems:

• TPQ-Containment

• TPQ-Equivalence

• BoolTPQ-Containment

• BoolTPQ-Equivalence

For this reason, our focus for studying containment and equivalence of tree
pattern queries will be on the BoolTPQ-Containment problem.

Containment Via Homomorphisms

We proved in Theorem 15.4, the Homomorphism Theorem, that a conjunctive
query q1 is contained in q2 if and only if there exists a homomorphism from
q2 to q1. We now prove a similar result for TPQs. This time, however, the
equivalence between containment and the existence of a homomorphism only
holds for a fragment of TPQs. To this end, let BoolTPQ

Lab
be the set of

Boolean TPQs without wildcard nodes, i.e., every node has some label from
Lab.

We generalize the definition of tree pattern homomorphisms (Defini-
tion 61.2) to include functions from tree pattern queries to tree pattern queries.

Definition 62.2: Homomorphism between Tree Pattern Queries

Let q1 = (V1, Ec
1, E

d
1 , lab1) and q2 = (V2, Ec

2, E
d
2 , lab2) be Boolean TPQs.

A function h : V1 ! V2 is a tree pattern homomorphism from q1 to q2, if

• every v 2 Vq1 matches lab2(h(v)),

• if (u, v) 2 Ec
1 then h(u, v) 2 Ec

2, and

• if (u, v) 2 Ed
1 then h(u) is an ancestor of h(v) in q2.

62 Tree Pattern Query Containment and Equivalence 505

We write q1 ! q2 if there exists a tree pattern homomorphism from q1
to q2. Similarly, we write q1 9 q2 if no such tree pattern homomorphism
exists.

We are now ready to state a result for TPQs that is similar to the Homomor-
phism Theorem for conjunctive queries.

Theorem 62.3

If q1 and q2 are in BoolTPQ
Lab

, then

q1 ✓ q2 () q2 ! q1

Proof. Assume that h is a tree pattern homomorphism from q2 to q1. Then if
h1 is a tree pattern homomorphism from q1 to a tree T , we have that h1 � h
is a tree pattern homomorphism from q2 to T .

Conversely, assume that q1 ✓ q2. Let z be a label from Lab not appearing
in q2. Notice that z exists because Lab is infinite. Let T be the tree obtained
from q1 by replacing each descendant edge (u, v) with two child edges (u, uuv)
and (uuv, v), where uuv is a new node, labeled z. Since q1(T) = true and
q1 ✓ q2, we also have that q2(T) = true. Therefore, there is a tree pattern
homomorphism h from q2 to T . Since q2 does not have wildcard nodes, the
image of h does not contain any new nodes of the form nuv and, therefore, h
is a tree pattern homomorphism from q2 to q1. ⇤

We now turn to complexity. The following result is analogous to Theo-
rem 61.7.

Proposition 62.4

If q1 and q2 are Boolean TPQs, then it can be tested in PTime whether
q1 ! q2.

The following corollary is immediate from Theorem 62.3 and Proposition 62.4.

Corollary 62.5

BoolTPQLab-Containment and BoolTPQLab-Equivalence are in PTime.

We note that Corollary 62.5 also holds in the case where the queries are not
Boolean, see Exercise 8.9.

We now discuss why we restricted the aforementioned results to tree pat-
tern queries without wildcards. If the queries use wildcard nodes, there are
obvious examples that show that the existence of a homomorphism is not nec-
essary for containment, see Figure 62.1(a). Here, the left query is contained

506 62 Tree Pattern Query Containment and Equivalence

a

⇤

b c

a

⇤

b c

q1 = q2 =

(a)

a

b

b

b

c

d

c

d

c

⇤

d

(1)

(u1)

(u2)

a

b

b

c

d

c

⇤

d

(u)

q1 = q2 =

(b)

Fig. 62.1: Two examples where q1 ✓ q2 even though q2 9 q1

in the right query (and is even equivalent), even though no homomorphism
exists from right to left. Figure 62.1(b) illustrates a more complex example.
Here one can see that the left query is contained in the right query by case
distinction on the edge marked (1). Assume that T |= q1 with match m. If (1)
is mapped to a single edge in T , then node u of q2 can be mapped to m(u1).
Otherwise, it can be mapped to m(u2).

Star Extensions and Canonical Trees

Since testing the existence of a homomorphism is not su�cent to test contain-
ment of TPQs, the question arises if there exists an alternative method. Here
we make a first step towards such a method, by showing that it is su�cient
to consider canonical trees, which we define next.

Definition 62.6: Star Extensions and Canonical Trees

Let q be a Boolean TPQ.

• A star extension of q is a TPQ without descendant edges, ob-
tained from q by replacing each descendant edge (u, v) by a path
uuuv

1 · · ·uuv
k v where, for every i 2 [k] the node uuv

i is new and la-
beled ⇤.

• A tree T is a canonical tree of q if it can be obtained from a star
extension q⇤ of q by labeling each wildcard node by some fixed label
z that does not appear in q. By Tz[q⇤] we denote the canonical tree
that was obtained in this manner. Notice that canonical trees T of
q always match q, since the identity function on the nodes of q is
always a match of q in T .

62 Tree Pattern Query Containment and Equivalence 507

The importance of canonical trees is captured in the following Lemma,
which shows that it su�ces to restrict our attention to canonical trees for
deciding whether q1 ✓ q2.

Lemma 62.2. If q1 and q2 are Boolean TPQs. Then q1 ✓ q2 if and only if
q2(T) = true for every canononical tree T of q1.

Proof. The direction from left to right is trivial. We prove the other direction
by contraposition. Assume that q1 6✓ q2 and let z be a label that does not occur
in q2. Let T be a (not necessarily canonical) tree such that q1(T) = true and
q2(T) = false. Let h1 be a homomorphism from q1 to T . For each descendant
edge (u, v) of q1, let kuv be the number of nodes between h1(u) and h1(v) in
T . Let q⇤1 be the star extension of q1 where each descendant edge (u, v) is
replaced by the path uuuv

1 · · ·uuv
kuv

v. Let h⇤ be a homomorphism from q⇤1 to
T .

We claim that q2(Tz[q⇤1]) = false. Towards a contradiction, assume that
h2 is a tree pattern homomorphism from q2 to Tz[q⇤1]. Notice that h2 can only
map wildcard nodes of q2 to z-labeled nodes of Tz[q⇤1], since z does not appear
in q2. But this means that h = h⇤ �h2 is a tree pattern homomorphism1 of q2
in T , which contradicts that q2(T) = false. ⇤

Next, we establish that it is even su�cient to consider canonical trees of
polynomial size.

Lemma 62.3. If q1 and q2 are Boolean TPQs such that q1 6✓ q2, then there
exists a tree T with |T |  |q1|(|q2| + 1) such that q1(T) = true and q2(T) =
false.

Proof. Let z be a label that does not occur in q1 or q2. By Lemma 62.2 we know
that there exists a canonical tree Tlong = Tz[q⇤1] such that q1(Tlong) = true and
q2(Tlong) = false.

We will now prove that long paths of z-labeled nodes in Tlong can be short-
ened. Assume that Tlong has a path ⇡ = uuuv

1 · · ·uuv
k v with (u, v) a descen-

dant edge in q1 and k > |q2| + 1, so uuv
1 , . . . , uuv

k are new nodes in q⇤1 . Let
Tshort be obtained from Tlong by replacing ⇡ with ⇡0 = uuuv

1 · · ·uuv
|q2|+1v. Then

clearly q1(Tshort) = true, because it is a canonical tree. We will show that
q2(Tshort) = false. Assume the contrary. Then there is a tree pattern homo-
morphism h : q2 ! Tshort. By the pigeon hole principle, there is at least one
node vj in {vuv1 , . . . , vuv|q2|+1} that is not in the image of h. But then h is also

a homomorphism from q2 to the tree T 0, obtained from Tshort by replacing ⇡0

with ⇡00 = uvuv1 · · · vuvj�1v
uv
|q2|+2 · · · vuvk vuvj · · · vuv|q2|+1. However, T 0 is isomorphic

with Tlong, which would mean that q2 ! Tlong and therefore q2(Tlong) = true.
This is a contradiction. ⇤
1 We note that h⇤ and h2 can indeed be composed, since Tz[q

⇤
1] has the same set of

nodes as q⇤1 .

508 62 Tree Pattern Query Containment and Equivalence

ai

b

(a) Encoding xi = true

ai

⇤

b

(b) Encoding xi = false

r

a1

b

a2

b

· · · an

b

(c) The TPQ pA

Fig. 62.2: Encoding true, false, and truth assignments

The Complexity of TPQ Containment

We are now ready to settle the complexity of TPQ-Equivalence and TPQ-
Containment.

Theorem 62.7

TPQ-Containment and TPQ-Equivalence are coNP-complete.

Proof. Lemma 62.3 implies that BoolTPQ-Containment is in coNP, since we
can guess T and check deterministically (using Theorem 61.7) that q1 ! T
and q2 9 T . Using Proposition 62.1, this shows that TPQ-Containment and
TPQ-Equivalence are in coNP.

We now prove that the problem is coNP-hard. In particular, we prove
that BoolTPQ-Containment is coNP hard. Hardness for equivalence follows
again from Proposition 62.1.

We reduce from the validity problem of 3DNF formulae, which is well
known to be coNP-complete. To this end, let ' be a Boolean formula in
3DNF with variables {x1, . . . , xn}. We will construct Boolean TPQs p1 and
p2 such that p1 ✓ p2 if and only if ' is valid. Let

' = c1 _ · · · _ ck ,

where ci is a clause of the form (`i,1 ^ `i,2 ^ `i,3) for each i 2 [k]. Here, each
`i,j is called a literal and is either a variable or the negation thereof. We will
first construct TPQs pA and pC1 , . . . , pCk such that ' is valid if and only if,
for every tree T ,

pA ! T =) 9i 2 [k] such that pCi ! T

The task of pA is to “generate all the truth assignments”. To this end, we
interpret the tree in Figure 62.2a as “xi = true” and every tree that matches
the TPQ in Figure 62.2b as “xi = false”. As such, every tree that matches
the TPQ pA in Figure 62.2c can be understood as a truth assignment for
{x1, . . . , xn}.

We now construct the patterns pC1 , . . . , pCk . We first illustrate how to
construct pCi by example. Assume that ci = (x1 ^ ¬x3 ^ x7). Then pCi is

62 Tree Pattern Query Containment and Equivalence 509

r

a1

b

a3

⇤

b

a7

b

(a) Encoding a clause

r r

r

(b) Merging roots

Fig. 62.3: Constructing clause patterns and all-match patterns

c

pV
c

pV

c

pA

c

pV
c

pV

p1 =

k �
1
nodes

k �
1
nodes

p2 = c

pC1

c

pC2

c

pCk

k
nodes

Fig. 62.4: Patterns p1 and p2 in Theorem 62.7

the TPQ in Figure 62.3a. More generally, assume that ci = (`i,1 ^ `i,2 ^ `i,3).
Let f(i, j) 2 [n] be the number such that xf(i,j) is the variable mentioned in
`i,j for every j 2 [3]. Let bi,j be a Boolean value indicating whether `i,j is a
positive or negative literal. That is, bi,j = true if `i,j = xi,j and bi,j = false
if `i,j = ¬xi,j . Then, pCi consists of a root, labeled r, below which we attach
the three subpatterns encoding xf(i,j) = bi,j , for j 2 [3]. It is easy to prove
that ' is valid if and only if every tree that matches pA matches at least one
pCi for some i 2 [k].

In the next part of the proof, we turn pA and pC1 , . . . , pCk into two patterns
p1 and p2 such that ' is valid if and only if p1 ✓ p2. To this end, let V be the
pattern obtained by merging the roots of pC1 , . . . , pCk (see Figure 62.3b). We
then define p1 and p2 as illustrated in Figure 62.4. We leave the proof that '
is valid if and only if p1 ✓ p2 as an exercise. ⇤

63

Tree Pattern Query Minimization

Tree pattern query minimization amounts to transforming a given TPQ into
an equivalent one that has as few nodes as possible. We introduce minimiza-
tions of TPQs in a similar way as we did for conjunctive queries.

Definition 63.1: Minimization of TPQs

Given a TPQ q, a TPQ q0 is called a minimization of q if it is equivalent
to q and has the smallest number of nodes among all the TPQs that are
equivalent to q. A TPQ q is minimal if it is a minimization of itself.

In Chapter 16 we saw that, in the case of CQs, minimizations can be
obtained by removing atoms from the query. We can now ask ourselves if
something similar is true for TPQs. More precisely, we ask if TPQs can be
minimized by deleting nodes. To this end, for a TPQ q = (Vq, Eq, labq, v) and
a leaf u 2 Vq that does not appear in v, denote by (q� u) the query obtained
from q by removing u from Vq and every edge of the form (u0, u) from Eq.
Notice that every subpattern of q that contains the root and output nodes of
q can be obtained by repeatedly deleting leaves.

In Algorithm 17, we describe a procedure TrimTPQ, which is similar to
the ComputeCore algorithm for CQs, i.e., Algorithm 4 from Chapter 16. It
repeatedly removes leaves from the pattern as long as the pattern stays equiv-
alent. In some important cases, it is not very di�cult to show that TrimTPQ
indeed computes a minimization. We leave the proof as Exercise 8.13.

Theorem 63.2

Let q be a TPQ. Then TrimTPQ(q) computes a minimization of q if
either

512 63 Tree Pattern Query Minimization

Algorithm 17 TrimTPQ(q)

Input: A tree pattern query q
Output: A subpattern q⇤ of q that is equivalent to q
1: q⇤ := q
2: while there is a leaf u of q⇤ such that (q⇤ � u) ⌘ q⇤ do

3: q⇤ := (q⇤ � u)
return q⇤

⇤

⇤

a

a

⇤

a

b

c1 c2

b

c1 c2

b

c1

b

c2

⇤

⇤

⇤

a

b

c1

b

c2

⇤

⇤

⇤

a

b

c1

b

c2

⇤

⇤

a

a

⇤

a

b

c1 c2

b

c1 c2

b

c1

b

c2

⇤

⇤

⇤

a

b

c1 c2

⇤

⇤

⇤

a

b

c1

b

c2

q q

Fig. 63.1: A tree pattern query q that has no equivalent proper subpattern
(right) and a tree pattern query q that is equivalent and smaller (left). The
only di↵erence between the two patterns is in the dashed lines.

(1) q does not contain descendant edges, or

(2) q does not have wildcard nodes.

Perhaps surprisingly, Theorem 63.2 does not hold for TPQs in general.
Figure 63.1 contains on the right a tree pattern query q that has no equivalent
proper subpattern, that is, there is no node v with q ⌘ (q � v). However, it
is not minimal, because the pattern on the left is equivalent and smaller. We
prove that q and q are equivalent and leave the proof that q has no equivalent
proper subpattern as an exercise (Exercise 8.14).

Consider the tree pattern queries q1, . . . , q5, depicted on the right hand
sides of Figures 63.2 and 63.3. Observe that q is equivalent to q1[q2[q3[q4[q5,
since the only di↵erence between these patterns and q is that they replace the
lowermost descendant edge in q by paths of increasing length, where q5 has a
descendant edge to deal with paths of length at least five. Figures 63.2 and
63.3 then show how homomorphisms from q to q1, . . . , q5 can be constructed.
This shows that q ✓ q. The inclusion q ✓ q is easy to see, because there exists
a homomorphism from q to q. The homomorphism maps the two nodes in the
dashed lines in q to the single such node in q.

63 Tree Pattern Query Minimization 513

⇤

⇤

a

a

⇤

a

b

c1 c2

b

c1 c2

b

c1

b

c2

⇤

⇤

⇤

a

b

c1 c2

⇤

⇤

⇤

a

b

c1

b

c2

⇤

⇤

a

a

⇤

a

b

c1 c2

b

c1 c2

b

c1

b

c2

⇤

⇤

⇤

a

b

c1

b

c2

⇤

⇤

⇤

a

b

c1

b

c2

q q1

(a) Homomorphism from q to q1

⇤

⇤

a

a

⇤

a

b

c1 c2

b

c1 c2

b

c1

b

c2

⇤

⇤

⇤

a

b

c1 c2

⇤

⇤

⇤

a

b

c1

b

c2

⇤

⇤

⇤

a

a

⇤

a

b

c1 c2

b

c1 c2

b

c1

b

c2

⇤

⇤

⇤

a

b

c1

b

c2

⇤

⇤

⇤

a

b

c1

b

c2

q

q2

(b) Homomorphism from q to q2

⇤

⇤

a

a

⇤

a

b

c1 c2

b

c1 c2

b

c1

b

c2

⇤

⇤

⇤

a

b

c1 c2

⇤

⇤

⇤

a

b

c1

b

c2

⇤

⇤

⇤

⇤

a

a

⇤

a

b

c1 c2

b

c1 c2

b

c1

b

c2

⇤

⇤

⇤

a

b

c1

b

c2

⇤

⇤

⇤

a

b

c1

b

c2

q q3

(c) Homomorphism from q to q3

Fig. 63.2: Showing that patterns q and q in Figure 63.1 are equivalent

514 63 Tree Pattern Query Minimization

⇤

⇤

a

a

⇤

a

b

c1 c2

b

c1 c2

b

c1

b

c2

⇤

⇤

⇤

a

b

c1 c2

⇤

⇤

⇤

a

b

c1

b

c2

⇤

⇤

⇤

⇤

⇤

a

a

⇤

a

b

c1 c2

b

c1 c2

b

c1

b

c2

⇤

⇤

⇤

a

b

c1

b

c2

⇤

⇤

⇤

a

b

c1

b

c2

q q4

(a) Homomorphism from q to q4

⇤

⇤

a

a

⇤

a

b

c1 c2

b

c1 c2

b

c1

b

c2

⇤

⇤

⇤

a

b

c1 c2

⇤

⇤

⇤

a

b

c1

b

c2

⇤

⇤

⇤

⇤

⇤

⇤

a

a

⇤

a

b

c1 c2

b

c1 c2

b

c1

b

c2

⇤

⇤

⇤

a

b

c1

b

c2

⇤

⇤

⇤

a

b

c1

b

c2

q q5

(b) Homomorphism from q to q5

Fig. 63.3: Showing that patterns q and q in Figure 63.1 are equivalent

63 Tree Pattern Query Minimization 515

We conclude this chapter with a note on the complexity of computing
minimizations of TPQs. Minimizations of a TPQ q can be computed by a naive
algorithm that iterates through all TPQs that are smaller than q and tests
whether they are equivalent, but such an algorithm hardly seems satisfactory.
Surprisingly, we do not know an algorithm that is significantly better! From
the example in Figure 63.1, we know that deleting nodes is not su�cient
for minimizing TPQs since, in this case, nodes also need to be merged. But
there are examples that show that deleting and merging nodes still is not
su�cient: in some cases, nodes also need to be split. As such minimization is
a more complex problem for TPQs than for CQs, for example. Indeed, one
can show that, whereas it is coNP-complete to test if a given CQ is minimal
(Exercise 2.17), this problem is ⇧p

2 -complete for TPQs (Exercise 8.15). The
latter means that the “obvious algorithm” that tests if, for a given TPQ q,
every smaller TPQ is not equivalent to q is worst-case optimal.

Exercises

Exercise 8.1. Let T = (V,Ec, Ens, lab) be a labeled ordered tree. In the proof
of Theorem 58.4, show that, for every axis in the set

{self, child, parent, descendant, descendant-or-self, ancestor,
ancestor-or-self, next-sibling, following-sibling,

previous-sibling, preceding-sibling, following, preceding}

and every set S ✓ V , it is possible to compute JaxisKT,S in time O(kTk).

Exercise 8.2 (*). What is the precise complexity of evaluation for downward
XPath (child,descendant,filter,and,or,not)? For which complexity class is the
evaluation problem complete under logspace reductions? (Open problem.)

Exercise 8.3. Show that the binary CoreXPath query

(next-sibling/next-sibling) (63.1)

cannot be defined as a binary FO2 query.
Hint: It will be convenient to use a pebble characterization for FO2.

Exercise 8.4. Show that every FO query over trees can be defined as an FO3

query, that is, an FO query that only uses three variables.
Hint: Show that every binary CondXPath query can be defined in FO3

over trees.
Hint: Look into the paper Immerman & Kozen. Definability by a bounded

number of variables.

Exercise 8.5. Show that CoreXPath-Satisfiability and CondXPath-Satisfiability
are ExpTime-hard.

Hint: Reduce from two-player corridor tiling. For checking vertical con-
straints, an idea of encoding their violations in unary as in Bjorklund Martens
Schwentick MFCS 13 will be useful.

518 Exercises

Exercise 8.6. Show that the algorithm in the proof of Theorem 60.1 is cor-
rect.

Exercise 8.7. Show that CoreXPath-Containment and CondXPath-Containment
for binary queries can be reduced in polynomial time to CoreXPath-Containment
and CondXPath-Containment for unary queries, respectively

Hint: The construction is the proof of Theorem 6 in [Marx-edbt04]. It
consists of rewriting the queries in such a way that some axes are reversed.

Exercise 8.8. We note that the complexity in Theorem 61.7 can be improved
to O(|p||T |). Hint: Let the input to TPQ Evaluation be p, T , and (u1, . . . , uk).
Let (v1, . . . , vk) be the output nodes of p. Then the overall idea of the direct
algorithm is the same as in Theorem 61.7, but it treats the output nodes of
p di↵erently. More precisely, it only allows an output node vi to be in a set
match(u) if u = ui.

Exercise 8.9. Prove that the restriction to Boolean queries in Corollary 62.5
can be lifted. Hint: Notice that one cannot just apply Proposition 62.1 since
the reduction to Boolean queries introduces wildcard nodes. Instead, general-
ize Definition 62.2 and Theorem 62.3.

Exercise 8.10. Prove that ' is valid if and only if p1 ✓ p2 in the proof of
Theorem 62.7.

Exercise 8.11. Consider conjunctive queries over trees, i.e., conjunctive queries
evaluated over tree structures, where the built-in relations are child and de-
scendant. What is the complexity of their evaluation problem?

Exercise 8.12. Show that the output of ComputeCore(p) (Algorithm 17
on page 512) is not unique up to isomorphism.

Exercise 8.13. Prove Theorem 63.2.

Exercise 8.14. Show that the pattern p in Figure 63.1 has no equivalent
proper subpattern.

Exercise 8.15. (a) Let TPQ-Minimization be the problem where, given a
Boolean TPQ q and integer k 2 N, the question is if there exists a TPQ
q0 such that q0 ⌘ q and |q0|  k. Prove that TPQ-Minimization is ⌃p

2 -
complete.

(b) Let TPQ-Minimality be the problem where, given a Boolean TPQ q, the
question is to answer true if q is minimal and false otherwise. Prove that
TPQ-Minimality is ⇧p

2 -complete.

Bibliographic Comments

To be done.

520 Bibliographic Comments

JSON formal model [5].
Say why we don’t have a PTIME lower bound for THM 59.4 (TPQ eval

in PTIME).
Our definitions of Core XPath and Conditional XPath have di↵erences

from XPath 1.0 in the W3C. XPath leashed has a paragraph about this.
XPath 1.0 does not have the axes next-sibling or previous-sibling. It
also does not allow nested union. I have no idea yet about other versions
of XPath. The paper [Navigational XPath: calculus and algebra (ten Cate /
Marx) defines Core XPath similar to how we do. There doesn’t seem to be a
unique definition of Core XPath in the literature. First definition was in the
Gottlob/Koch/Pichler VLDB 2002 paper?]

The proof of Theorem 59.2 comes from [12, Theorem 1]. The proof for
trees is by Carsten Lutz / Ulrike Sattler / Frank Wolter: Modal Logic and
the Two-Variable Fragment. It’s actually very similar.

The specifications for DTD and XML Schema require content models to be
deterministic, see [dtdspec] and [xmlschemaspec]. Formally, this constraint
can be abstracted as follows. Let r be a regular expression. Let r̄ stand for
the regular expression obtained from r by replacing, for every integer i and
alphabet symbol a, the i-th occurrence of a in r by ai (counting occurrences
from left to right). For example, for r = b⇤a(b⇤a)⇤ we have r̄ = b⇤1a1(b

⇤
2a2)

⇤.

Definition 63.1. A regular expression r is deterministic if there are no words
waiv and wajv0 in L(r̄) such that a 2 ⌃ and i 6= j.

Notice that the expression (a+ b)⇤a is not deterministic since both words
a2 and a1a2 are in L((a1 + b1)⇤a2). The equivalent expression b⇤a(b⇤a)⇤ is
deterministic. Brüggemann-Klein and Wood showed that not every regular
expression is equivalent to a deterministic one and, therefore, that the set of
deterministic regular expressions are strictly less expressive than the regular
expressions. The canonical iexample for a language that is not DRE-definable
is (a+ b)⇤b(a+ b) [BrueggemannKleinW-inc98]. Czerwinski et al. showed
that it is PSpace-complete in general to decide if the language of a given
regular expression is definable by a deterministic one.

Mention TATA book.

Part IX

Expressive Languages for Tree-Structured Data

523

In this part we move to more expressive languages for querying and spec-
ifying tree-structured data. In Chapter 64, we study monadic second-order
logic (MSO) on trees. Boolean MSO formulas can define precisely the regular
tree languages which, similarly to word languages, are also characterized by
finite automata. We will see a third characterization, namely through monadic
Datalog.

The idea of storing data as trees has led to the development of schema
languages for trees, based on ideas from extended context-free grammars and
regular tree languages. In Chapter 67 we define the structural core of the three
most widespread schema languages for XML, namely DTD, XML Schema, and
Relax NG and give some insights in their expressiveness.

We study queries and schema together in Chapter 68, where we look into
query optimization under schema information. Queries can indeed be opti-
mized more aggressively when schema information is taken into account, but
the computational complexity for problems such as satisfiability and contain-
ment with respect to schemas also increases.

64

Monadic Second Order Logic

In this chapter, we consider a significant extension of first-order logic over
trees with quantification over sets. This means that we will be able to write
formulae that say “there exists a set of nodes X such that . . . ” or “for every
set X of nodes . . . ”, which is not possible in first-order logic. The logic we
obtain in this manner is called monadic second-order logic or simply MSO.

In this chapter, we will define the syntax and semantics of MSO queries
over trees. In the next chapters, we study their connections to finite automata
over trees and monadic Datalog.

Monadic Second Order Logic over Trees

We assume a countably infinite set

SVar

of set variables, disjoint from Var and Nodes. Set variables will be denoted by
X, Y , Z, etc. Analogously to first-order logic over trees, formulae of monadic
second-order logic over trees will use relation symbols from the set

{Laba | a 2 Lab} [{Efc, Ens, Ed, Efs} ,

where Laba is the a-label relation. In the following, we abbreviate monadic
second-order logic as MSO.

Definition 64.1: Syntax of MSO over Trees

We define formulae of MSO over trees as follows:

• Every first-order formula over trees is an MSO formula over trees.

• If X 2 SVar and y 2 Var, i.e., X is a set variable and y is a first-order
variable, then X(y) is an MSO formula over trees.

526 64 Monadic Second Order Logic

• If '1 and '2 are MSO formulae over trees, then ('1^'2), ('1_'2),
and (¬'1) are MSO formulae over trees.

• If ' is an MSO formula over trees and X is a set variable, then
(9X ') and (8X ') are MSO formulae over trees.

To avoid notional clutter, we will omit brackets in the same manner as for FO
formulae over relational databases (Chapter 3). The set of free variables of a
formula ', denoted FV('), is defined as follows:

• FV(Laba(x)) = {x} for every a 2 Lab.

• FV(x = y) = FV(R(x, y)) = {x, y} for every R 2 {Efc, Ens, Ed, Efs}.
• FV(X(y)) = {X, y}.
• FV(¬') = FV(').

• FV('1 _ '2) = FV('1 ^ '2) = FV('1) [FV('2).

• FV(9x ') = FV(8 ') = FV(')� {x}.
• FV(9X ') = FV(8X ') = FV(') = {X}.

An MSO formula without free variables is called an MSO sentence.

Example 64.2: Monadic Second-Order Formulae

Consider the MSO formula over trees

9X
�
8z18z2 (Ens(z1, z2)! X(z1)$ X(z2))

�
^X(x) ^ ¬X(y) . (64.1)

The free variables of this formula are x and y.
Consider the FO-formula over trees

'c(x, y) = Efc(x, y) _ (9z Efc(x, z) ^ Efs(z, y)) ,

which is satisfied by nodes x and y if y is a child of x. The formulae

'root(x) = ¬9y Efc(y, x) and

'leaf(x) = ¬9y Efc(x, y)

are satisfied by x if x is the root or a leaf of a tree, respectively. Consider
the following MSO-formula over trees:

9x9y
✓
'root(x) ^ 'leaf(y)^

9X
�
8z18z2 ('c(z1, z2)! (X(z1)$ ¬X(z2)))

�
^X(x) ^X(y)

◆
(64.2)

64 Monadic Second Order Logic 527

This formula has no free variables.

Given a tree T = (V,Ec, Ens, lab), we define the notion of satisfaction of a
formula ' with respect to an assignment ⌘ for ' over T . Such an assignment
is a function from FV(') to V [2V such that ⌘(x) 2 V for every x 2 Var
and ⌘(X) ✓ V for every X 2 SVar. If X is a set variable and S ✓ V a set of
nodes of T , we use ⌘[X/S] to denote the assignment that modifies ⌘ by setting
⌘(X) = S. We are now ready for defining the semantics of MSO formulae over
trees.

Definition 64.3: Semantics of MSO over Trees

Given a tree T = (V,Ec, Ens, lab), an MSO formula ', and an assignment
⌘ for ' over T , we inductively define when ' is satisfied in T under
⌘, written (T, ⌘) |= ', as follows. We only highlight the parts of the
definition that are di↵erent from the definition of the semantics of FO
over trees:

• If ' = X(y) then (T, ⌘) |= ' if and only if ⌘(y) 2 ⌘(X).

• If ' = (9X), then (T, ⌘) |= ' if and only if (T, ⌘[S/X]) |= for
some S ✓ V .

• If ' = (8X), then (T, ⌘) |= ' if and only if (T, ⌘[S/X]) |= for
every S ✓ V .

Example 64.4: Monadic Second-Order Formulae

We give an intuitive description of the semantic meaning of the formulae
in Example 64.2:

• Formula (64.1) is satisfied by all nodes x and y that are siblings and
have an even number of nodes between them.

• Formula (64.2) is satisfied in every nonempty tree that has a path
from root to leaf of even length.

MSO Queries over Trees

Just like first-order queries over trees, monadic second-order queries over trees
are k-ary data graph queries, that is, they take a data graph G as input and
produce a set q(G) ✓ (Nodes[Const)k. We first define the syntax of first-order
queries over trees.

528 64 Monadic Second Order Logic

Definition 64.5: Monadic Second-Order Queries over Trees

A monadic second-order query over trees or MSO query over trees for
short is an expression of the form '(x̄), where ' is an MSO formula
over trees without free set variables, and x̄ is a tuple of free first-order
variables of ' such that each free variable of ' occurs in x̄ at least once.

We define size k'(x̄)k of an MSO query over trees '(x̄) as k'k+ kx̄k.
We now define the semantics of MSO queries over trees. Let '(x̄) be an

MSO query over trees. Given a labeled ordered tree T = (V,Ec, Ens, lab) and
a tuple ā of elements from Nodes, we say that T satisfies the query '(x̄) using
the values ā, denoted by T |= '(ā), if there exists an assignment ⌘ for ' over
T such that ⌘(x̄) = ā and (D, ⌘) |= '. We can now define the data model and
the output of MSO queries over trees. The data model defines the possible
inputs of the queries. For each data graph in the data model, we define the
output of the query.

Definition 64.6: Evaluation of MSO Queries over Trees

Given a labeled ordered tree T = (V,Ec, Ens, lab) and an MSO query
over trees q = '(x1, . . . , xk), where k � 0, the output of q on T is defined
as the set of tuples

q(T) = {ā 2 Nodesk | T |= '(ā)}.

The data model of FO queries over trees is the set of labeled ordered
trees.

65

Tree Automata

We now define tree automata, which are an extension of finite state automata,
geared towards trees. We assume that readers are familiar with the basic
theory of finite automata, regular expressions, and regular word languages.
We provide an introduction and a reminder of the standard notation in Ap-
pendix E.

Definition 65.1: Nondeterministic Unranked Tree Automaton

A nondeterministic unranked tree automaton (NTA) is a quadruple

A = (Q,⌃, �, F) ,

where

• Q is a finite set of states,

• ⌃ ✓ Lab is a finite, non-empty set of labels,

• F ✓ Q is a set of accepting states, and

• � : Q⇥⌃ ! 2Q
⇤
is its transition function, which is such that �(q, a)

is a regular word language over Q for every a 2 ⌃ and q 2 Q.

Unless we say otherwise, we always assume that �(q, a) is represented by
a nondeterministic finite automaton (NFA) over words.

The term unranked comes from unranked trees, which are trees in which every
node may have an arbitrary number of children. This is opposed to ranked
trees in which the number of children of a node is determined by the node’s
label. This number of children is called the rank of the label in the literature.

The size of an NTA A, denoted kAk is defined as |Q|+
P

(q,a)2Q⇥⌃ kNq,ak,
where kNq,ak is the size of the NFA representing �(q, a) (we discuss kNq,ak in
Appendix E).

530 65 Tree Automata

^

¬

false

_

false false true

^

true true

qt

qt

qf

qt

qf qf qt

qt

qt qt

Fig. 65.1: A tree (left) and a run of the tree automaton of Example 65.2 over
the tree.

A run of A on a tree T = (V,Ec, Ens, lab) is a mapping � : V ! Q such
that, for every u 2 V with ordered sequence of children u1, . . . , un, we have
that

�(u1) · · ·�(un) 2 �(�(u), lab(u)) .
Notice that, when u has no children, this condition reduces to " 2 �(�(u), lab(u)).
A run is accepting if �(Root(T)) 2 F , that is, it maps the root to an accepting
state. A tree T is accepted by A if there exists an accepting run of A on T .
The set of all accepted trees is denoted by L(A) and is called the language of
A.

We extend the definition of � to trees by defining a function �⇤ as follows:

• �⇤(a) := {q | " 2 �(q, a)}; and
• �⇤(a(T1, . . . , Tn)) := {q | 9q1 2 �⇤(T1), . . . , 9qn 2 �⇤(Tn) with q1 · · · qn 2
�(q, a)}.

Notice that a tree T is accepted by A if and only if �⇤(T) \ F 6= ;.

Example 65.2: Unranked Tree Automaton

We give an example of a tree automaton A that recognizes tree repre-
sentations of Boolean formulas that evaluate to true (as in Figure 65.1,
left). The automaton has state set Q = {qt, qf} and accepting states
F = {qt}. The transition function is defined as follows (we use regular
expressions to denote the regular languages):

�(qt,^) = q⇤t �(qt,_) = q⇤fqt(qt + qf)⇤ �(qt,¬) = qf �(qt, true) = "
�(qf ,_) = q⇤f �(qf ,^) = q⇤t qf (qt + qf)⇤ �(qf ,¬) = qt �(qf , false) = "

A run ofA on a tree T in Figure 65.1(left) is depicted in Figure 65.1(right).
For every node u of T , the state �(u) appears on the position that cor-
responds to u in the tree on the right. For instance, if u is the rightmost
leaf of T , then �(u) = qt.

The languages that can be accepted by unranked tree automata form a
very robust class, known as the regular tree languages.

65 Tree Automata 531

Definition 65.3: Regular Tree Language

A set S of trees is called a tree language. If there exists an unranked tree
automaton A such that S = L(A), then S is also called a regular tree
language.

Algorithms on Tree Automata

We review some standard algorithms on tree automata. First we show that it
can be tested in linear time combined complexity if a given tree is accepted
by a given NTA.

Problem: NTA-Acceptance

Input: A labeled ordered tree T and an NTA A
Output: true if T 2 L(A) and false otherwise

Theorem 65.4

NTA-Acceptance can be decided in PTime.

Proof. The algorithm computes the sets �⇤(T 0) for all subtrees T 0 of T in a
bottom-up manner. For each leaf labeled a and each state q of A, it can be
tested in constant time if q 2 �⇤(a) by testing if " 2 L(Aq,a), where Aq,a is
the NFA for �(q, a).

For each internal node, rooting a subtree a(T1, . . . , Tn), we can test if q 2
�⇤(a(T1, . . . , Tn)) by testing if there is a word in (�⇤(T1) · · · �⇤(Tn))\L(Aq,a).
⇤

Next, we show that unions and intersections of tree automata can be con-
structed in time proportional to the product of the sizes of the two respective
automata.

Theorem 65.5

Let A1 and A2 be NTAs. Then NTAs for L(A1) \ L(A2) and L(A1) [
L(A2) can be constructed in time O(kA1kkA2k).

Proof. The result follows from a “product construction” for the involved au-
tomata. Let A1 = (Q1,⌃, �1, F1) and A2 = (Q2,⌃, �2, F2). We first explain
how to construct an automaton A for L(A1) \ L(A2). Here, A = (Q1 ⇥
Q2,⌃, �, F1 ⇥ F2), where �((q, q0), a) = {(q1, q01) · · · (qn, q0n) | q1 · · · qn 2 �(q, a)

532 65 Tree Automata

Algorithm 18 Computing the set R of reachable states of an NTA

1: R1 := {q 2 Q | 9a 2 ⌃ such that " 2 �(q, a)};
2: for i := 2 to |Q| do
3: Ri := {q 2 Q | there exists an a 2 ⌃ such that �(q, a) \ R

⇤
i�1 6= ;};

4: R := R|Q|;

and q01 · · · q0n 2 �(q0, a)}. If the NFAs for �(q, a) and �(q0, a) use k1 and k2 states
respectively, then an NFA for �((q, q0), a) with k1k2 states can be constructed.
The construction for L(A1)[L(A2) is analogous but uses (F1⇥Q2)[(Q1⇥F2)
as accepting states. We leave the proof of correctness as an exercise. ⇤

We now discuss the problem of testing whether a tree automaton accepts
at least one tree. This problem is an automata-theoretic version of satisfiability
in logic and is typically called non-emptiness, since it asks if the language of
the automaton is non-empty.

Problem: NTA-Non-Emptiness

Input: A non-deterministic tree automaton A
Output: true if L(A) 6= ; and false otherwise

Theorem 65.6

NTA-Non-Emptiness is in PTime.

Proof. Solving NTA-Non-Emptiness amounts to deciding if there exists a tree
T such that �⇤(T) contains an accepting state. Let A = (Q,⌃, �, F) be an
NTA. Algorithm 18 computes the set of states R := {q | 9 tree T such that
q 2 �⇤(T)} in a bottom-up manner. Clearly, L(A) 6= ; if and only if R\F 6= ;.
Note that Ri ✓ Ri+1 and R1 = {�⇤(a) | a 2 ⌃}. We argue that the algorithm
is in PTime. Clearly, R1 can be computed in linear time. Further, the for-loop
makes a linear number of iterations. Every iteration is a linear number of non-
emptiness tests of the intersection of an NFA with R⇤

i�1 where Ri�1 ✓ Q. As
emptiness for NFAs is in linear time, the latter is also in linear time. We leave
the proof of correctness as an exercise. ⇤

Equivalence of MSO and Tree Automata

We will prove that MSO sentences and tree automata are equally expressive
over binary labeled ordered trees, that is, labeled ordered trees in which every
node has zero or two children. The result also holds for general labeled ordered

65 Tree Automata 533

trees, but the proof for the binary case is less technical. The di↵erence between
the proofs for the binary and the general case mainly lies in the following
lemma, which shows that NTAs can be complemented. We denote the set of
binary trees with labels in ⌃ by T b

⌃ .

Lemma 65.7. Let A be an NTA such that L(A) ✓ T b
⌃. Then an NTA for

T b
⌃ � L(A) can be constructed in time O(2kAk).

Proof. Let A = (QA,⌃, �A, FA). The main idea of the proof is to compute
a powerset automaton for A and to complement it. More precisely, we first
construct an NTA B = (QB ,⌃, �B , FB) for L(A) as follows. Define QB = 2QA

and FB = {S | S \ FA 6= ;}. The transition function �B is defined such that,
for each tree T , �⇤B(T) = {S}, where S = �⇤A(T). That is, �B(S, a) = {" |
" 2 �(q, a) for every q 2 S} [{S1S2 | 8q 2 S, 9q1 2 S1, 9q2 2 S2 such that
q1q2 2 �A(q, a)}. Finally, the NTA for T b

⌃�L(A) is B = (QB ,⌃, �B , QB�FB).
We leave the proof of correctness as an exercise. ⇤

Definition 65.8: MSO-definable tree languages

Let S be a tree language. We say that S is MSO-definable if there exists
an MSO sentence ' such that S = {T | T |= '}.

Theorem 65.9

Let L be a set of trees using labels from a nonempty finite set ⌃. Then
L is MSO-definable if and only if it is regular.

Proof. We will prove the theorem for binary trees only. Therefore, let L be
a regular language of binary trees, which means that L is the language of an
NTA A = (Q,⌃, �, F). We can assume w.l.o.g. that Q = [n]. We construct
an MSO formula ' such that L = {T | T |= '}. Intuitively, ' expresses the
existence of an accepting run. For every i 2 [n], it uses a set variable Xi for
the set of nodes visited in state i. Consider the formulae

'1 =
�
8x (_ni=1Xi(x))

�
^
�W

i 6=j 8x (Xi(x)! ¬Xj(x))
�
,

'2 = 8x
�
¬(9y Efc(y, x))!

W
i2F Xi(x)

�
,

'3 =
V

a2⌃ 8x
�
Laba(x) ^ ¬(9y Efc(x, y))

�
!
W
"2�(i,a) Xi(x)), and

'4 =
V

a2⌃ 8x8x18x2

�
(Laba(x) ^ Efc(x, x1) ^ Ens(x1, x2))
! (

W
(k,`)2�(i,a)(Xi(x) ^Xk(x1) ^X`(x2)))

�
.

Formula '1 expresses that every node is assigned exactly one state, '2 ex-
presses that the root is assigned an accepting state, '3 expresses that the
leafs are labeled in accordance with �, and '4 expresses the internal nodes
are labeled in accordance with �. It is easy to show that A accepts a tree T

534 65 Tree Automata

if and only if there exist sets X1, . . . , Xn that satisfy '1, '2, '3, and '4. We
conclude this direction by defining

' = 9X1 · · · 9Xn ('1 ^ '2 ^ '3 ^ '4) .

For the other direction, let ' be an MSO-formula. Since the formulae
Efs(x, y) and Ed(x, y) are expressible in MSO using the relations Efc and
Ens, we assume that ' only uses the relations Efc and Ens. In fact, we can
assume w.l.o.g. that ' is generated by the grammar

' := Laba(x) | Efc(x, y) | Ens(x, y) | x = y | ' ^ ' | ¬' | 9x' | 9X ' ,

where a 2 ⌃.1 We will further simplify the syntax of MSO-formulae by elim-
inating the first-order variables. That is, we introduce another logic with the
same expressive power than MSO over trees that we call MSO0. The idea
is that MSO0 introduces some syntactic sugar, but constrains formulae else-
where. MSO0-formulae ' over �fcns are generated over the grammar

' := sing(X) | Laba(X) | X ✓ Y | Efc(X,Y) | Ens(X,Y) | ' ^ ' | ¬' | 9X ' ,

meaning respectively that X is a singleton; all variables in X are labeled a;
the set X is a subset of Y ; the sets X and Y are singletons {x}, {y} with
Efc(x, y); the sets X and Y are singletons {x}, {y} with Ens(x, y); and 9X'.
The semantics of these formulae can be defined in MSO over �fcns. For instance,
sing(X) can be written as 8x8y (X(x) ^ X(y)) ! (x = y) and Laba(X) as
8x(X(x) ! Laba(x)). Conversely, it is easy to show by structural induction
that each MSO-formula can be tranlated into an equivalent MSO0-formula.

We can assume w.l.o.g. that ' is an MSO0 formula, that it does not re-use
variables, and that its variables are X1, . . . , Xn. For a subformula of ' with
free variables S, we will construct an NTA that accepts trees for which the
labels are pairs (a, f), where a 2 ⌃ and f 2 {0, 1}S , i.e., f is a function from
S to {0, 1}. Intuitively, such a tree T represents a tree T 0 over ⌃, together
with an assigment of the free variables, and the task of the NTA is to accept
precisely those that satisfy .

More precisely, let T be a tree over ⌃⇥{0, 1}S . We denote by T⌃ the tree
obtained from T by replacing each label (a, f) by a. We define ⌘T to be the
assigment obtained from T by mapping each free variable Xi to ⌘(Xi) = {u |
lab(u) = (a, f) and f(Xi) = 1}.

We now inductively define NTAs A that accept precisely the trees T
such that (T⌃ , ⌘T) |= . An NTA for Laba(Xi) tests that the tree has no
node labeled (b, f) with f(Xi) = 1 and b 6= a. An NTA for X ✓ Y is similar.
An NTA for Efc(Xi, Xj) tests that there is exactly one node u1 labeled (a, f1)
with f1(Xi) = 1, exactly one node u2 labeled (b, f2) with f2(Xj) = 1, and
that u2 is a child of u1. The NTAs for sing(X) and Ens(xi, xj) are similar.

1 For instance, subformulae Labb(x) with b /2 ⌃ can be replaced by Laba(x) ^
¬Laba(x) for some a 2 ⌃.

65 Tree Automata 535

For the inductive step, in the cases = ¬ 1 and = 1 ^ 2, we can
use Theorem 65.5 and Lemma 65.7. In the case = 9Xi 0, assume that we
have an NTA for 0. The NTA for reads labels (a, f) for which f(Xi) is
undefined. It guesses labels of the form (a, f 0) for which f and f 0 agree on
every free variable from , and then runs as if it would be the NTA for 0. ⇤

66

Monadic Datalog

We now establish another characterization of MSO-definable queries, namely
in terms of Datalog programs (see Chapter 35). We call a Datalog program ⇧
monadic if all intensional relations are unary. In the following, we will consider
monadic Datalog programs over the relations

{Laba | a 2 Lab} [{Efc, Ens, Ed, Efs} [{Leaf,LastSib} .

Given a tree T = (V,Ec, Ens, lab), we have that

• Laba = {v | lab(v) = a},
• Efc = {(u, v) | v is the first child of u},
• Ens = {(u, v) | v is the next siblig of u},
• Ed = {(u, v) | v is a descendant of u},
• Efs = {(u, v) | v is a following sibling of u},
• Leaf = {v | v is a leaf}, and
• LastSib = {v | v is a last sibling}.

A Boolean monadic Datalog program ⇧ recognizes a set L of trees if L = {T |
⇧(T) = true}. A set of trees L is recognizable by Boolean monadic Datalog
if there exists a Boolean monadic Datalog program ⇧ that recognizes L.

We will prove that the Boolean monadic Datalog queries are precisely
the Boolean MSO-definable queries. The equivalence between unary MSO-
definable queries and monadic Datalog queries is known to hold for unary
queries as well, but the result presented here is easier to prove.

Theorem 66.1

A set L of binary trees is MSO-definable if and only if it is recognizable
by a Boolean monadic Datalog program.

538 66 Monadic Datalog

Proof. Let (⇧, R1) be a monadic Datalog query, where edb(⇧) = �tree and
idb(⇧) = {R1, . . . , Rn}. Then, the MSO query can be defined as

' := 8R1 · · · 8Rn

^

⇢2⇧
'⇢ ,

where '⇢ is the first-order sentence associated to Datalog rule ⇢, that was
used for defining the model-theoretic semantics of Datalog in Chapter 35.

Conversely, let A = (Q,⌃, �, F) be an NTA. We define a Boolean monadic
Datalog program (⇧, R) that tests if there exists an accepting run of A on a
given tree T . To this end, (⇧, R) will have a unary predicate q for each q 2 Q
that will be satisfied in node u of T if and only if q 2 �⇤(T|u).

For every state q 2 Q and a 2 ⌃, let Nq,a = (Qq,a, Q, �q,a, Iq,a, Fq,a) be an
NFA for the language �(q, a). We can assume w.l.o.g. that Q and all state sets
Qq,a are pairwise disjoint. In the following, we will always use q, q0 to denote
states from Q and p, p0 to denote states from the sets Qq,a.

Notice that we can view all Nq,a as one automaton (QN , Q, �N , IN , FN),
where QN = [q2Q[a2⌃Qq,a, IN = [q,aIq,a, FN = [q,aFq,a, and �N is defined
as follows. For a given p 2 [q,aQq,a, we define �N (p, q) to be the set �q0,a(p, q)
for the unique q0 and a such that p 2 Qq0,a. We define Iq to be the set of states
reachable in N by reading q from an initial state, that is, Iq := {p | 9p0 2 IN
such that p 2 �N (p0, q)}.

For each transition such that " 2 �(q, a), the program ⇧ has the rule

q(x) :– Leaf(x) ^ Laba(x).

Next, we define rules that capture the computation of the automata Nq,a.
Therefore, the rules

p(x) :– Efc(y, x),Leaf(x), q(x). for every p 2 Iq
p(x) :– Efc(y, x), Efc(x, y0), q(x). for every p 2 Iq
p(x) :– Ens(y, x), p0(y),Leaf(x), q(x). for every p 2 �0(p0, q)
p(x) :– Ens(y, x), p0(y), Efc(x, y0), q(x). for every p 2 �0(p0, q)

are added to ⇧. The rules

q(x) :– Laba(x), E
fc(x, y),LastSib(y, y0), p(y0) for every p 2 Fi,a

test if the children of x can be visited in a sequence of states that is accepted
by Nq,a. Finally, the rules R() :– Root(x), q(x) for every q 2 F tests if the
root can be labeled with an accepting state. ⇤

67

Schemas for XML

Database schemas for tree-structured data follow a di↵erent approach from
those for relational data. The reason is that their task is more complex. Such
schemas in practice do not only describe how attributes are associated to
values, or which data types (integer, date, etc.) are allowed where, but they
also describe what is the admissible tree structure of the data. Since one can
follow di↵erent philosophies in how to specify all this information, there are
di↵erent formalisms for specifying schemas for XML data — these are called
schema languages. The most prominent schema languages are Document Type
Definition (DTD), XML Schema, and Relax NG. In this chapter, we explain
how these three languages describe the structure of labeled ordered trees. The
underlying ideas for all these languages come from context-free grammars (see
Appendix E for a quick refresher) and from tree automata, which we defined
in Chapter 65.

The first schema language for XML data is also the simplest and is called
Document Type Definition (DTD).

Definition 67.1: Document Type Definition

A Document Type Definition (DTD) over alphabet ⌃ is a triple

d = (⌃, ⇢, S) ,

where

• ⌃ ✓ Lab is a finite set of labels,

• ⇢ is a function from ⌃ to the set of regular expression over ⌃, and

• S ✓ ⌃ is a set of start labels.

In practice, the labels in⌃ are also called element names, which is a convention
that we will also follow.

540 67 Schemas for XML

<?xml version="1.0" encoding="UTF-8"?>
<inventory>
<category name="concert guitars">
<item>
<maker> Tandler </maker>
<model> Advanced Student </model>
<description> Spruce top,

Indian rosewood back and sides </description>
<price> Please ask </price>

</item>
<item>
<maker> Hanika </maker>
<model> Grand Concert </model>
<description> Spruce top,

Palo Escrito back and sides </description>
<price> 4299 </price>
<discount> 10 </discount>

</item>
[...]

</category>
[...]

</inventory>

Fig. 67.1: Fragment of an XML document representing the inventory of a store

inventory

category

item

maker model description price

item

maker model description price discount

. . .

. . .

Fig. 67.2: The tag structure of the data in Figure 67.1 as a sibling-ordered
tree

We now define the semantics of DTDs. Let T = (V,Ec, Ens, lab) be a la-
beled ordered tree. We say that T satisfies d if lab(Root(T)) 2 S and, for every
v 2 V with ordered sequence of children v1, . . . , vn, the word lab(v1) · · · lab(vn)
is in L(r), where r = ⇢(lab(v)). By L(d) we denote the set of trees that satisfy
d.

In real-world DTDs, ⇢ is usually written as a set of rules rather than a
function. We will follow this convention and write a! r if ⇢(a) = r. The size
of a DTD d is

P
a2⌃ k⇢(a)k.

67 Schemas for XML 541

Example 67.2

Throughout the chapter, we will illustrate schemas using a running ex-
ample as depicted in Figure 67.1. The data is an XML document de-
scribing the inventory of a store, which sells items that are classified
into categories. Each item has a maker, model, price, and optionally a
description and a discount. For space reasons, we only list one category,
in which we only list two items. (The reader can imagine further items
and categories where we have put the placeholder [...].)

Figure 67.2 depicts the tree structure induced by the nesting of the
tags in the XML document. It is at this level of abstraction that DTDs
operate.

A DTD describing such data can be defined with ⌃ = {inventory,
category, item, maker, model, description, price, discount} and S =
{inventory}. The function ⇢ is defined as follows:

inventory ! category⇤

category ! item⇤

item ! maker model description? price discount?

It describes that inventory should have zero or more category children
which, in turn, have zero or more item children. Each item has children
labeled maker, model, price and, optionally description and discount,
from left to right. The tree in Figure 67.2 satisfies this DTD.

Now assume that we want to express in our running example that each
category contains at least one item with a discount child. DTDs cannot express
this property,1 since they only associate a single regular expression to item.
Schema languages such as XML Schema and Relax NG solve this limitation
by extending DTDs with types.

Definition 67.3: Extended DTD

An extended DTD (EDTD) is a tuple

D = (⌃,�, ⇢, S, µ) ,

where

• ⌃ ✓ Lab is a finite set of labels,

• � ✓ Lab is a finite set of types,

1 In Theorem 67.9 we will learn a method to formally prove this.

542 67 Schemas for XML

• (�, ⇢, S) is a DTD over alphabet � , and

• µ : � ! ⌃.

Intuitively, a labeled ordered tree T = (V,Ec, Ens, lab) satisfies an EDTD if
there exists an assignment of types to the nodes in V such that the typed tree
is a derivation tree of the underlying DTD (�, ⇢, S).

Formally, for a tree T� using labels in � , let us denote by µ(T�) the tree
obtained from T� by replacing each label a 2 � with µ(a) 2 ⌃. Hence, µ(T�)
only uses labels in ⌃. We now say that T satisfies D if there exists a tree
T� such that T� 2 L((�, ⇢, S)) and µ(T�) = T . We call T� a witness for T .
Again, we denote the set of trees satisfying D by L(D).

The size of an EDTD D is the size of the underlying DTD (�, ⇢, S). In
examples, we denote EDTDs as sets of rules, just as we did before with DTDs.

Example 67.4

Continuing Example 67.2, we will define an EDTD that describes in-
ventories in which each category has at least one item with a discount
child. We take ⌃ as before and use � = {inventory, category, normal,
discounted, maker, model, description, price, discount}. For defining ⇢,
we will use a simplified notation, much like how schemas are written in
XML Schema or Relax NG: we use a[b] to denote a 2 ⌃ and b 2 �
with µ(b) = a, and we abbreviate a[a] by a. The mapping ⇢ can now be
defined as follows.

inventory ! category⇤

category ! item[normal]⇤ item[discounted]
(item[normal] + item[discounted])⇤

item[normal] ! maker model description? price
item[discounted] ! maker model description? price discount

The rule for category requires that at least one child is assigned the type
discounted. As we can see in the rule for item[discounted], this means
that the item must have a child with label discount. The (partial) tree
in Figure 67.3 shows how a witness for the tree in Figure 67.2 w.r.t. the
present EDTD can be found.

Figure 67.4a shows how the rule for category in Example 67.4 can be
defined in Relax NG (with a partial definition of the rule for the type “nor-
mal”). In Relax NG, element blocks are used to define the elements from ⌃
(and their content), whereas define blocks are used to define types. Since we
don’t need a special type for category, we can define it immediately using an
element block.

In Figure 67.4b, we try to mimic this behavior using XML Schema syn-
tax. However, the code fragment is not syntactically correct because it violates

67 Schemas for XML 543

inventory

category

normal

maker model description price

discounted

maker model description price discount

. . .

. . .

Fig. 67.3: A (partial) witness of the tree in Figure 67.2 for the EDTD in
Example 67.4

XML Schema’s Element Declarations Consistent (EDC) constraint, which for-
bids the occurrence of di↵erent types associated to the same element name in a
regular expression ⇢(t). So, the occurrence of both types normal and discount
associated to the same element name item is a violation of this constraint. We
formalize this constraint next.

Definition 67.5: Single-Type EDTDs

Let D = (⌃,�, ⇢, S, µ) be an EDTD. A regular expression r over � is
single-type if it does not contain distinct types t1 and t2 with µ(t1) =
µ(t2). We say that D is a single-type EDTD (stEDTD) when S does
not contain distinct types t1 and t2 with µ(t1) = µ(t2) and the regular
expression ⇢(t) is single-type for every t 2 � .

Although single-type EDTDs do not precisely capture the power of XML
Schema on the level of labeled ordered trees,2 they are a very useful theoretical
abstraction.

EDTDs are Equivalent to Tree Automata

We prove that EDTDs have the same expressiveness of tree automata. Fur-
thermore, EDTDs and tree automata can even be converted back and forth
in polynomial time. To this end, if D and D0 are tree automata, DTDs, or
EDTDs, we say that D is equivalent to D0 if L(D) = L(D0).

Theorem 67.6

Each EDTD D can be translated in time O(kDk) to an equivalent
NTA. Conversely, each NTA A over alphabet ⌃ can be translated in
O(kAkk⌃k2) time to an equivalent EDTD.

2 XML Schema has an additional restricion on the regular expressions in ⇢, which
we briefly discuss in the bibliographic notes.

544 67 Schemas for XML

<element name="category">
<zeroOrMore><ref name="normal"/></zeroOrMore>
<ref name="discounted"/>
<zeroOrMore>
<choice><ref name="normal"/><ref name="discounted"/></choice>

</zeroOrMore>
</element>

<define name="normal">
<element name="item"> ... </element>

</define>

(a) Relax NG code fragment corresponding to the EDTD rule for category

<element name="category">
<complexType>
<sequence>
<element name="item" type="normal"

minOccurs="0" maxOccurs="unbounded"/>
<element name="item" type="discounted"/>
<choice minOccurs="0" maxOccurs="unbounded">

<element name="item" type="normal"/>
<element name="item" type="discounted"/>

</choice>
</sequence>

</complexType>
</element>

<complexType name="normal">
<element name="item"> ... </element>

</complexType>

(b) Code fragment in XML Schema syntax (violating EDC), corresponding to the
EDTD of Example 67.4

Fig. 67.4: Fragments of Relax NG and XML Schema code

Proof. Let D = (⌃,�, ⇢, S, µ) be an EDTD. An equivalent NTA A =
(Q,⌃, �, F) is obtained by taking Q = � , F = S, and �(t, µ(t)) = ⇢(t) for
every type t 2 � .

Conversely, let A = (Q,⌃, �, F) be an NTA. An equivalent EDTD D =
(⌃,�, ⇢, S, µ) is obtained by taking � = Q⇥⌃, S = F ⇥⌃, and µ((q, a)) = a
for each type (q, a). Let L(q,a) denote the language obtained from �(q, a) by
replacing, in each word, every symbol p 2 Q by the disjunction

P
b2⌃(p, b).

Since �(q, a) is a regular language over Q, the language L(q,a) is also regular.

67 Schemas for XML 545

For every (q, a) 2 � , we define ⇢((q, a)) to be a regular expression for L(q,a).
We leave the proofs that D and A are equivalent as exercises to the reader. ⇤

Complexity of Validation

We now consider the problem of testing if a tree satisfies a given schema. Since
we have three types of schema languages (DTD, EDTD, and stEDTD), we
define the problem in a general form.

Problem: L-Validation

Input: A tree T and a schema D from the class L
Output: true if t 2 L(D) and false otherwise

Theorem 67.7

EDTD-Validation is in PTime.

Proof. This is an immediate consequence of Theorems 65.4 and 67.6. ⇤
We have the following corollary since DTDs and stEDTDs are special cases
of EDTDs.

Corollary 67.1. DTD-Validation and stEDTD-Validation are in PTime.

Expressiveness

We now investigate the expressiveness of DTDs, stEDTDs, and EDTDs. The
following is immediate from Theorem 67.6.

Theorem 67.8

EDTDs recognize precisely the regular tree languages.

If we want to characterize the languages that are definable by DTDs and
stEDTDs, we need the notion of subtree exchange. Let T = (V,Ec, Ens, lab)
and T 0 = (V 0, E0

#, E
0
!, lab0) be two trees, and let u 2 V . We assume w.l.o.g.

that V and V 0 are disjoint (otherwise, the nodes in V 0 can be renamed). We
denote by T [u T 0] the tree obtained by replacing the subtree T |u of T
rooted at u by the tree T 0. (We omit a formal definition, but T [u T 0] has
none of the nodes in Tu, all the nodes of T 0 and has the edge (v,Root(T 0))
instead of the edge (v, u).)

We say that a tree language L is closed under node-guarded subtree ex-
change, if the following holds. Whenever two trees T1, T2 2 L have nodes u1

and u2 respectively, with lab(u1) = lab(u2), then T1[u1 T2|u2] 2 L.

546 67 Schemas for XML

T1

u1

2 L

T2

u2

2 L

=)
u1

2 L

Fig. 67.5: Ancestor-guarded subtree exchange

Theorem 67.9

DTDs recognize precisely the regular tree languages that are closed under
node-guarded subtree exchange.

Proof. Observe that, by definition, every language recognized by a DTD is
closed under node-guarded subtree exchange. Conversely, letD = (⌃,�, ⇢, S, µ)
be an EDTD such that L(D) is closed under node-guarded subtree exchange.
We construct a DTD d = (⌃, ⇢d, Sd) as follows. Define Sd = {µ(t) | t 2 S}.
For a regular expression r over � , denote by µ(r) the expression obtained
from r by replacing each symbol t with µ(t). Then we define ⇢d(a) as the
disjunction of all µ(⇢(t)) over {t | µ(t) = a}. It is now easy to show that
L(d) = L(D). ⇤

We now provide a similar characterization for stEDTDs. For a tree
T = (V,Ec, Ens, lab) and node u 2 V , denote by ancestorlabT (u) the word
lab(u1) · · · lab(un), where u1 · · ·un is the path from Root(T) to u in T . A tree
language L is closed under ancestor-guarded subtree exchange, if the following
holds. Whenever two trees T1, T2 2 L have nodes u1 and u2 respectively, with
ancestorlabT1(u1) = ancestorlabT2(u2), then T1[u1 T2|u2] 2 L. We illustrate
the concept in Figure 67.5.

Theorem 67.10

stEDTDs recognize precisely the regular tree languages that are closed
under ancestor-guarded subtree exchange.

Proof. It is not di�cult to prove that every language definable by an stEDTD
is a regular language closed under ancestor-guarded subtree exchange, see
Exercise 9.5.

Conversely, let D = (⌃,�, ⇢, S, µ) be an EDTD such that L(D) is closed
under ancestor-guarded subtree exchange. We will construct a single-type
EDTD E such that L(E) = L(D). We will assume w.l.o.g. that D only
uses useful types, that is, for every type t 2 � , there exists a fixed tree

67 Schemas for XML 547

Tt 2 L((�, ⇢, {t})). We will make use of the following general property, which
immediately follows from the definition of EDTDs:

(†) If T1, T2 are trees in L(D) with witnesses T 0
1, T

0
2, respectively, such that

u1 in T1 and u2 in T2 have the same type in T 0
1 and T 0

2, respectively, then
T1[u1 T2|u2] 2 L(D).

For a word w 2 ⌃⇤ and a 2 ⌃, let types(wa) be the set of all types ta for
which there is a tree T 2 L(D) with witness T 0 2 L((�, ⇢, S)), and a node v

such that ancestorlabT (v) = wa and labT
0
(v) = ta. For each a 2 ⌃, let � (D, a)

be the set of all nonempty sets types(wa), with w 2 ⌃⇤. Clearly, each � (D, a)
is finite.

We next defineE = (⌃,�E , ⇢E , SE , µE). Its set of types �E is
S

a2⌃ � (D, a)
and its set of start types SE is {types(a) | a 2 ⌃}. For every type ⌧ 2 � (D, a),
set µE(⌧) = a. The mapping ⇢E maps each type types(wa) to the disjunction
of all ⇢(ta) for ta 2 types(wa), with each tb in ⇢(ta) with µ(tb) = b replaced
by types(wab). Notice that, by (†), the definition of the rules of ⇢E does not
depend on the actual choice of wa.

Clearly, E is single-type and L(D) ✓ L(E). We show that L(E) ✓ L(D).
To this end, let T 2 L(E) and let T 0 be a witness. We call a set N of nodes
of T well-formed, if (1) for each node v 2 N , all its ancestors are in N and
(2) if a child u of a node v is in N then all children of v are in N . The
singleton set N0 containing the root is well-formed. We say that a tree T1

agrees with T on a well-formed set N1 of nodes of T1, if N1 can be mapped
to a well-formed set of nodes N of T by a mapping m which respects the
child-relationship, the order of siblings, and the labels of nodes. By definition,
ancestorlab(v) = ancestorlab(m(v)) for every v 2 N .

As the trees in L(D) and L(E) have the same possible root labels, there
exists a tree T1 2 L(D) which agrees with T on N0. To complete the proof, it
is su�cient to prove the following.

Claim 67.2. If there exists a tree T1 2 L(D) which agrees with T = (V,Ec,
Ens, lab) on a well-formed set N with m(N) (V then there exists T2 2 L(D)
which agrees with T on a well-formed, strict superset of N .

For the proof of this claim, let T1 be as stated and let T 0
1 be its witness.

Let v 2 N be such that the children of m(v) are not in m(N) and let wa =
ancestorlabT1(v) = ancestorlabT (m(v)).

By construction of E, the regular expression ⇢E(types(wa)) is a disjunctionP
t2types(wa)

⇢0(t), where ⇢0 is defined as ⇢ but, for every b 2 ⌃, has the type
types(wab) 2 �E instead of tb 2 � if µ(tb) = b. Let ta be such that the children
of m(v) are typed in T 0 according to a disjunct ⇢0(ta), with ta 2 types(wa).
Thus, there is a tree T3 2 L(D) with a node u such that ancestorlabT3(u) = wa
and the type of u is ta in the witness T 0

3 for T3.
Let v1, . . . , vn be the ordered sequence of children of m(v) in T and choose,

for each i 2 [1, n], a type f(vi) such that f(v1) · · · f(vn) matches ⇢(ta). Let T4

548 67 Schemas for XML

be obtained from T3 by (1) removing everything below u, (2) adding v1, . . . , vn
below u, and (3) adding for each child vi the subtree Tf(vi) which exists
because f(vi) is a useful type. Clearly, T4 2 L(D) by (†). Furthermore, by the
ancestor-closed subtree exchange property, the tree T2 resulting from T1 by
replacing the subtree rooted at v by the subtree of T4 rooted at u is in L(D),
too. ⇤

Exercises

Exercise 9.1. (a) Prove that the construction in Theorem 65.5 is correct.

(b) Prove that the algorithm in Theorem 65.6 is correct.

(c) Prove that the construction in Lemma 65.7 is correct.

Exercise 9.2. Prove that Lemma 65.7 also holds for general labeled ordered
trees. That is, let us denote by T⌃ the set of all labeled ordered trees with
labels in ⌃. Then, for every NTA A, we can construct an NTA for T⌃ �L(A)
in time O(2kAk).

Exercise 9.3. The cores of XML Schema and Relax NG, seen as grammars,
are a bit more involved than what we described in Chapter ??, even if we allow
arbitrary regular expressions. For XML Schema, it can be more accurately
defined as tuples (⌃, ⌧, R, S) where S ✓ ⌃ [(⌃ ⇥ ⌧) and R maps ⌃ [⌧ to
regular expressions over ⌃ [(⌃⇥ ⌧). For Relax NG, R maps ⌃ [⌧ to regular
expressions over ⌃ [⌧ [(⌃ ⇥ ⌧). Prove that this is equally expressive.

Exercise 9.4. Prove that the constructions in Theorem 67.6 are correct, that
is, prove that the EDTD D and automaton A are indeed equivalent in both
constructions.

Exercise 9.5. Prove that every language definable by an stEDTD is a regular
language closed under ancestor-guarded subtree exchange.

Hint: Use a partial function f : ⌃+ ! � that maps each “ancestor-string”
to the relevant type, i.e.,

• f(a) = t, where t 2 S is unique such that µ(t) = a and

• f(wa) = t, where f(w) = t0 and t is the unique type occurring in ⇢(t0)
with µ(t) = a.

Some ideas for exercises:

• Can we postpone canonical models to here?

562 Exercises

• Prove that minimal patterns are not unique in a strong sense?

• Prove that you cannot define “trees for which the deepest node is on even
depth” with a tree automaton.

• Prove that you cannot define “the tree has a unique b-labeled leaf” with
XSD (single-type EDTD).

• Turn a regular expression into a deterministic one?

Exercise 9.6. Prove that, given a TPQ p and EDTD D, you can construct
in polynomial time a Boolean TPQ pb and EDTD Db such that the following
are equivalent:

(1) There exists a tree T 2 L(D) such that p(T) is not empty.

(2) There exists a tree T 2 L(Db) such that T |= pb.

Hint: add children with unique labels to the output nodes of p.

Exercise 9.7. When reducing a DTD, it is important that steps 1 and 2 in
the proof of Lemma 68.1 are performed in that order. Show that, if the order
is reversed, the result is not always a reduced DTD.

Exercise 9.8. Prove that the NP-hardness of Theorem 68.2 also holds for
DTDs and tree patterns without descendant edges or wildcards. Hint: Try to
“flatten” the trees defined by the DTD.

Bibliographic Comments

To be done.

REFERENCES 597

References

[1] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases.
Addison-Wesley, 1995. isbn: 0-201-53771-0. url: http : / / webdam .
inria.fr/Alice/ (cit. on p. 19).

[2] Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern
Approach. Cambridge University Press, 2009 (cit. on p. 20).

[3] Catriel Beeri et al. “On the Desirability of Acyclic Database Schemes”.
In: J. ACM 30.3 (1983), pp. 479–513. url: https://doi.org/10.
1145/2402.322389 (cit. on p. 247).

[4] Hans L. Bodlaender. “A Linear-Time Algorithm for Finding Tree-
Decompositions of Small Treewidth”. In: SIAM J. Comput. 25.6 (1996),
pp. 1305–1317 (cit. on p. 247).

[5] Pierre Bourhis, Juan L. Reutter, and Domagoj Vrgoc. “JSON: Data
model and query languages”. In: Inf. Syst. 89 (2020), p. 101478 (cit. on
pp. 520, 564).

[6] Diego Calvanese et al. “Containment of Conjunctive Regular Path
Queries with Inverse”. In: KR 2000, Principles of Knowledge Repre-
sentation and Reasoning Proceedings of the Seventh International Con-
ference, Breckenridge, Colorado, USA, April 11-15, 2000. 2000, pp. 176–
185 (cit. on p. 593).

[7] Marco A. Casanova, Ronald Fagin, and Christos H. Papadimitriou. “In-
clusion Dependencies and Their Interaction with Functional Dependen-
cies”. In: J. Comput. Syst. Sci. 28.1 (1984), pp. 29–59. doi: 10.1016/
0022-0000(84)90075-8. url: https://doi.org/10.1016/0022-
0000(84)90075-8 (cit. on p. 89).

[8] Ashok K. Chandra and Philip M. Merlin. “Optimal Implementation of
Conjunctive Queries in Relational Data Bases”. In: Proceedings of the
9th Annual ACM Symposium on Theory of Computing, May 4-6, 1977,
Boulder, Colorado, USA. Ed. by John E. Hopcroft, Emily P. Friedman,
and Michael A. Harrison. ACM, 1977, pp. 77–90. doi: 10.1145/800105.
803397. url: https://doi.org/10.1145/800105.803397 (cit. on
p. 145).

[9] Hubie Chen and Vı́ctor Dalmau. “Beyond Hypertree Width: Decompo-
sition Methods Without Decompositions”. In: Principles and Practice of
Constraint Programming - CP 2005, 11th International Conference, CP
2005, Sitges, Spain, October 1-5, 2005, Proceedings. Vol. 3709. Lecture
Notes in Computer Science. Springer, 2005, pp. 167–181. url: https:
//doi.org/10.1007/11564751%5C_15 (cit. on p. 247).

[10] E. F. Codd. “A Relational Model of Data for Large Shared Data Banks”.
In: Commun. ACM 13.6 (1970), pp. 377–387. doi: 10.1145/362384.
362685. url: http://doi.acm.org/10.1145/362384.362685 (cit. on
p. 89).

http://webdam.inria.fr/Alice/
http://webdam.inria.fr/Alice/
https://doi.org/10.1145/2402.322389
https://doi.org/10.1145/2402.322389
https://doi.org/10.1016/0022-0000(84)90075-8
https://doi.org/10.1016/0022-0000(84)90075-8
https://doi.org/10.1016/0022-0000(84)90075-8
https://doi.org/10.1016/0022-0000(84)90075-8
https://doi.org/10.1145/800105.803397
https://doi.org/10.1145/800105.803397
https://doi.org/10.1145/800105.803397
https://doi.org/10.1007/11564751%5C_15
https://doi.org/10.1007/11564751%5C_15
https://doi.org/10.1145/362384.362685
https://doi.org/10.1145/362384.362685
http://doi.acm.org/10.1145/362384.362685

598 REFERENCES

[11] E. F. Codd. “Relational Completeness of Data Base Sublanguages”. In:
Research Report / RJ / IBM / San Jose, California RJ987 (1972) (cit.
on p. 89).

[12] Kousha Etessami, Moshe Y. Vardi, and Thomas Wilke. “First-Order
Logic with Two Variables and Unary Temporal Logic”. In: Inf. Comput.
179.2 (2002), pp. 279–295. doi: 10.1006/inco.2001.2953. url: https:
//doi.org/10.1006/inco.2001.2953 (cit. on pp. 520, 564).

[13] Ronald Fagin. “Degrees of Acyclicity for Hypergraphs and Relational
Database Schemes”. In: J. ACM 30.3 (1983), pp. 514–550. url: https:
//doi.org/10.1145/2402.322390 (cit. on p. 247).

[14] Ronald Fagin, Alberto O. Mendelzon, and Je↵rey D. Ullman. “A Sim-
plified Universal Relation Assumption and Its Properties”. In: ACM
Trans. Database Syst. 7.3 (1982), pp. 343–360. url: https://doi.org/
10.1145/319732.319735 (cit. on p. 247).

[15] Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Texts
in Theoretical Computer Science. An EATCS Series. Springer, 2006 (cit.
on p. 247).

[16] Hector Garcia-Molina, Je↵rey D. Ullman, and Jennifer Widom.Database
Systems - the Complete Book. Pearson Education, 2009. isbn: 978-0-13-
187325-4 (cit. on p. 19).

[17] Erich Grädel et al. Finite Model Theory and its Applications. Springer,
2008 (cit. on p. 20).

[18] Paul R. Halmos. Measure Theory. Springer, 1974 (cit. on p. 19).

[19] John E. Hopcroft, Rajeev Motwani, and Je↵rey D. Ullman. Introduction
to Automata Theory, Languages, and Computation. Addison-Wesley,
2003, pp. I–XIV, 1–521. isbn: 978-0-321-21029-6 (cit. on p. 20).

[20] Neil Immerman. Descriptive Complexity. Springer, 1999, pp. I–XVI, 1–
268. isbn: 978-1-4612-6809-3, 978-0-387-98600-5 (cit. on p. 20).

[21] Dexter Kozen. Automata and Computability. Springer, 1997. isbn: 978-
0-387-94907-9 (cit. on p. 20).

[22] Leonid Libkin. Elements of Finite Model Theory. Springer, 2004. isbn:
3-540-21202-7 (cit. on pp. 20, 358).

[23] Christos H. Papadimitriou. Computational Complexity. Addison-Wesley,
1994. isbn: 978-0-201-53082-7 (cit. on p. 20).

[24] Raghu Ramakrishnan and Johannes Gehrke. Database Management
Systems. McGraw-Hill, 2003. isbn: 978-0-07-115110-8 (cit. on p. 19).

[25] Neil Robertson and Paul D. Seymour. “Graph minors. II. Algorithmic
Aspects of Tree-Width”. In: Journal of Algorithms 7.3 (1986), pp. 309–
322 (cit. on p. 247).

[26] Kenneth H. Rosen. Discrete Mathematics and its Applications. McGraw-
Hill, 2006 (cit. on p. 20).

https://doi.org/10.1006/inco.2001.2953
https://doi.org/10.1006/inco.2001.2953
https://doi.org/10.1006/inco.2001.2953
https://doi.org/10.1145/2402.322390
https://doi.org/10.1145/2402.322390
https://doi.org/10.1145/319732.319735
https://doi.org/10.1145/319732.319735

REFERENCES 599

[27] Abraham Silberschatz, Henry F. Korth, and S. Sudarshan. Database
System Concepts. McGraw-Hill Book Company, 2005. isbn: 978-0-07-
295886-7 (cit. on p. 19).

[28] Michael Sipser. Introduction to the Theory of Computation. PWS Pub-
lishing Company, 1997. isbn: 978-0-534-94728-6 (cit. on p. 20).

[29] Robert Endre Tarjan and Mihalis Yannakakis. “Simple Linear-Time Al-
gorithms to Test Chordality of Graphs, Test Acyclicity of Hypergraphs,
and Selectively Reduce Acyclic Hypergraphs”. In: SIAM J. Comput.
13.3 (1984), pp. 566–579. doi: 10.1137/0213035. url: https://doi.
org/10.1137/0213035 (cit. on p. 247).

[30] Moshe Y. Vardi. “The Complexity of Relational Query Languages (Ex-
tended Abstract)”. In: Proceedings of the 14th Annual ACM Sympo-
sium on Theory of Computing, May 5-7, 1982, San Francisco, Califor-
nia, USA. Ed. by Harry R. Lewis et al. ACM, 1982, pp. 137–146. doi:
10.1145/800070.802186. url: https://doi.org/10.1145/800070.
802186 (cit. on p. 89).

[31] Domagoj Vrgoč. “Querying graphs with data”. PhD thesis. University
of Edinburgh, 2014 (cit. on p. 593).

[32] Ingo Wegener. Complexity Theory. Springer, 2005. isbn: 978-3-540-
21045-0. doi: 10.1007/3- 540- 27477- 4. url: https://doi.org/
10.1007/3-540-27477-4 (cit. on p. 20).

[33] Mihalis Yannakakis. “Algorithms for Acyclic Database Schemes”. In:
Very Large Data Bases, 7th International Conference, September 9-
11, 1981, Cannes, France, Proceedings. IEEE Computer Society, 1981,
pp. 82–94 (cit. on p. 247).

https://doi.org/10.1137/0213035
https://doi.org/10.1137/0213035
https://doi.org/10.1137/0213035
https://doi.org/10.1145/800070.802186
https://doi.org/10.1145/800070.802186
https://doi.org/10.1145/800070.802186
https://doi.org/10.1007/3-540-27477-4
https://doi.org/10.1007/3-540-27477-4
https://doi.org/10.1007/3-540-27477-4

Part XI

Appendix: Theory of Computation

A

Big-O Notation

We write R+
0 for the set of non-negative real numbers, and R+ for the set of

positive real numbers. We typically measure the performance of an algorithm,
that is, the number of basic operations it performs, as a function of its input
length. In other words, the performance of an algorithm can be captured by
a function f : N ! R+

0 such that f(n) is the maximum number of basic
operations that the algorithm performs on inputs of length n. However, since
f may heavily depend on the details of the definition of basic operations, we
usually concentrate on the overall and asymptotic behaviour of the algorithm.
This is achieved via the well-known notion of big-O notation.

The big-O notation is typically defined for single variable functions such as
f above. However, in the database setting, where the input to key problems
usually consists of several di↵erent components, we generally have to deal
with multiple variable functions. For example, the performance of a query
evaluation algorithm, where the input consists of two distinct components,
the database and the query, can be captured by a function f : N2 ! R+

0 such
that f(n,m) is the maximum number of basic operations that the algorithm
performs on databases of size n and queries of size m. The notion of big-O
notation for multiple variable functions follows:

Definition 1.1: Big-O Notation

Let f, g : N` ! R+
0 , where ` � 1. We say that

f(x1, . . . , x`) is in O(g(x1, . . . , x`))

if there exist k 2 R+ and n0 2 N such that, for every (x1, . . . , x`) with
xi � n0 for some i 2 [`], we have f(x1, . . . , x`)  k · g(x1, . . . , x`).

Notice that when ` = 1, i.e., f, g are single variables function, Definition 1.1
coincides with the standard big-O notation for single variable functions.

604 A Big-O Notation

Sometimes we will use a variant of the big-O notation that hides logarith-
mic factors. This variant will be denoted with Õ instead of the usual letter
O. We define this notation as follows.

Definition 1.2: Big-O Notation Without Logarithmic Factors

Let f, g : N` ! R+
0 , where ` � 1. We say that

f(x1, . . . , x`) is in Õ(g(x1, . . . , x`))

if f(x1, . . . , x`) is in O

✓
g(x1, . . . , x`) · log

�
g(x1, . . . , x`)

�◆
.

B

Turing Machines and Complexity Classes

Many results in this book will provide bounds on computational resources
(time and space), or key database problems such as query evaluation. These
are often formulated in terms of membership in, or completeness for, complex-
ity classes. Those, in turn, are defined using the basic model of computation,
that is, Turing Machines. We now briefly recall basic concepts related to Tur-
ing Machines and complexity classes. For more details, the reader can consult
standard textbooks on computability theory and computational complexity.

Turing Machines

Turing Machines can work in two modes: either as acceptors, for deciding
whether an input string belongs to a given language (in which case we speak
of decision problems), or as computational devices that compute the value of a
function applied to its input. When a Turing Machine works as an acceptor, it
typically contains a read-write tape, a model of computation that is convenient
for defining time complexity classes, or a read-only input tape and a read-write
working tape, a model that is convenient for defining space complexity classes.
When a Turing Machine works as a computational device, it typically contains
a read-only tape where the input is placed, a read-write working tape, and a
write-only tape where the output computed by the Turing Machine is placed.

Turing Machines as Acceptors

We start with the definition of deterministic Turing Machines.

Definition 2.1: Deterministic Turing Machine

A (deterministic) Turing Machine (TM) is defined as a tuple

M = (Q,⌃, �, s) ,

606 B Turing Machines and Complexity Classes

where

• Q is a finite set of states, including the accepting state “yes”, and
the rejecting state “no”,

• ⌃ is a finite set of input symbols, called the alphabet of M , including
the symbols t (the blank symbol) and . (the left marker),

• � : (Q� {“yes”, “no”})⇥⌃ ! Q⇥⌃ ⇥ {!, ,�} is the transition
function of M , and

• s 2 Q is the start state of M .

Accepting and rejecting states are needed for decision problems: they de-
termine whether the input belongs to the language or not. Notice that, accord-
ing to �, the accepting and rejecting states do not have outgoing transitions.

A configuration of a TM M = (Q,⌃, �, s) is a tuple

c = (q, u, v) ,

where q 2 Q, and u, v are words in ⌃⇤ with u being always non-empty. If M
is in configuration c, then the tape has content uv and the head is reading
the last symbol of u. We use left markers, which means that u always starts
with .. Moreover, the transition function � is restricted in such a way that .
occurs exactly once in uv, and always as the first symbol of u.

Assume now that M is in a configuration c = (q, ua, v), where q 2 Q �
{“yes”, “no”}, a 2 ⌃ and u, v 2 ⌃⇤, and assume that �(q, a) = (q0, b, dir),
where dir 2 {!, ,�}. Then, in one step, M enters the configuration c0 =
(q0, u0, v0), where u0, v0 is obtained from ua, v by replacing a with b and moving
the head one step in the direction dir. By moving the head in the direction
“�” we mean that the head stays in its place. Furthermore, the head cannot
move left of the . symbol (the transition function � is restricted in such a way
that this cannot happen: if �(q, .) = (q0, a, dir), then a = . and dir 6=). For
example, if c = (q, .01, 100) and �(q, 1) = (q0, 0,), then c0 = (q0, .0, 0100).
In this case, we write c!M c0, and we also write c!m

M c0 if c0 can be reached
from c in m steps, and c !⇤

M c0 if c !m
M c0 for some m � 0 (we assume that

c!0
M c). Finally, if v = " and dir =!, then we insert an additional t-symbol

in our configuration, that is u0 = ubt and v0 = ".
A TM M receives an input word w = a1 · · · an, where n � 0 and ai 2

⌃ � {t, .} for each i 2 [n]. The start configuration of M on input w is
sc(w) = (s, ., w). We call a configuration c accepting if its state is “yes”, and
rejecting if its state is “no”. The TM M accepts (respectively, rejects) input
w if sc(w)!⇤

M c for some accepting (respectively, rejecting) configuration c.

Nondeterministic Turing Machines as Acceptors

We also use nondeterministic Turing Machines as acceptors, which are defined
similarly to deterministic ones, but with the key di↵erence that the a state-
symbol pair has more than one outgoing transitions.

B Turing Machines and Complexity Classes 607

Definition 2.2: Nondeterministic Turing Machine

A nondeterministic Turing Machine (NTM) is defined as a tuple

M = (Q,⌃, �, s) ,

where

• Q is a finite set of states, including the accepting state “yes”, and
the rejecting state “no”,

• ⌃ is a finite set of input symbols, called the alphabet of M , including
the symbols t (the blank symbol) and . (the left marker),

• � : (Q�{“yes”, “no”})⇥⌃ ! P(Q⇥⌃⇥{!, ,�}) is the transition
function of M , and

• s 2 Q is the start state of M .

Observe that for a given configuration c = (q, ua, v), where q 2 Q �
{“yes”, “no”}, a 2 ⌃ and u 2 ⌃⇤, several alternatives (q0, b, dir) can belong to
�(q, a), each one of which generates a successor configuration c0 as in the case
of (deterministic) TMs. If c0 is a possible successor configuration of c, then
we write c !M c0. Moreover, we write c !m

M c0 if there exists a sequence of
configurations c1, . . ., cm�1 such that c !M c1, c1 !M c2, . . ., cm�1 !M c0.
In this case, notice that it is possible that c!m

M c0 and c!n
M c0 with m 6= n.

Moreover, we write c !⇤
M c0 if there exists m � 0 such that c !m

M c0 (again,
we assume that c!0

M c).
Given an input word w for a NTM M , the start configuration sc(w) of

M , and accepting and rejecting configurations of M , are defined as in the
deterministic case. Moreover, M accepts input w if there exists an accepting
configuration c such that sc(w) !⇤

M c, and M rejects w otherwise (i.e., M
rejects w if there is no accepting configuration c such that sc(w)!⇤

M c).

2-Tape Turing Machines as Acceptors

We now define Turing Machines that, apart from a read-write working tape,
they also have a read-only input tape.

608 B Turing Machines and Complexity Classes

Definition 2.3: 2-Tape Deterministic Turing Machine

A 2-tape (deterministic) Turing Machine (2-TM) is defined as a tuple

M = (Q,⌃, �, s) ,

where

• Q is a finite set of states, including the accepting state “yes”, and
the rejecting state “no”,

• ⌃ is a finite set of input symbols, called the alphabet of M , including
the symbols t (the blank symbol) and . (the left marker),

• � : (Q� {“yes”, “no”})⇥⌃⇥⌃ ! Q⇥ {!, ,�}⇥⌃⇥ {!, ,�}
is the transition function of M , and

• s 2 Q is the start state of M .

A configuration of a 2-TM is a tuple

c = (q, u1, v1, u2, v2) ,

where q 2 Q and, for every i 2 {1, 2}, we have that ui, vi 2 ⌃⇤ and ui is not
empty. If M is in configuration c, then the input tape has content u1v1 and
the head of this tape is reading the last symbol of u1, while the working tape
has content u2v2 and the head of this tape is reading the last symbol of u2.
We use left markers, which means that ui always starts with .. Besides, the
transition function � is restricted in such a way that . occurs exactly once in
uivi, and always as the first symbol of ui.

Assume that M is in a configuration c = (q, u1a1, v1, u2a2, v2), where
q 2 Q � {“yes”, “no”}, a1, a2 2 ⌃ and u1, v1, u2, v2 2 ⌃⇤, and assume that
�(q, a1, a2) = (q0, dir1, b, dir2), where diri is a direction, i.e., one of {!, ,�}.
Then in one step M enters configuration c0 = (q0, u0

1, v
0
1, u

0
2, v

0
2), where u

0
1, v

0
1 is

obtained from u1a1, v1 by moving the head one step in the direction dir1, and
u0
2, v

0
2 is obtained from u2a2, v2 by replacing a2 with b and moving the head

one step in the direction dir2. Recall that by moving the head in the direction
“�” we mean that the head stays in its place. Furthermore, the head cannot
move left of the . symbol (again, the transition function � is restricted in such
a way that this cannot happen). For example, if c = (q, .01, 100, ., ") and
�(q, 1, .) = (q0, , .,!), then c0 = (q0, .0, 1100, ., "). In this case, we write
c !M c0. We also write c !m

M c0 if c0 can be reached from c in m steps, and
c!⇤

M c0 if c!m
M c0 for some m � 0 (we assume that c!0

M c).
A 2-TM M receives an input word w = a1 · · · an, where n � 0 and ai 2

⌃�{t, .} for each i 2 [n]. The start configuration of M on input w is sc(w) =
(s, ., w, .,t). We call a configuration c accepting if its state is “yes”, and

B Turing Machines and Complexity Classes 609

rejecting if its state is “no”. The TM M accepts (respectively, rejects) input
w if sc(w)!⇤

M c for some accepting (respectively, rejecting) configuration c.

2-Tape Nondeterministic Turing Machines as Acceptors

As for TMs, we also have the nondeterministic version of 2-TMs.

Definition 2.4: 2-Tape Nondeterministic Turing Machine

A 2-Tape Nondeterministic Turing Machine (2-NTM) is a tuple

M = (Q,⌃, �, s) ,

where

• Q is a finite set of states, including the accepting state “yes”, and
the rejecting state “no”,

• ⌃ is a finite set of input symbols, called the alphabet of M , including
the symbols t (the blank symbol) and . (the left marker),

• � : (Q�{“yes”, “no”})⇥⌃⇥⌃ ! P(Q⇥{!, ,�}⇥⌃⇥{!, ,�})
is the transition function of M , and

• s 2 Q is the start state of M .

It is clear that, for a configuration c = (q, u1, a1v1, u2, a2v2), where q 2 Q�
{“yes”, “no”}, a1, a2 2 ⌃ and v1, v2 2 ⌃⇤, several alternatives (q0, dir1, b, dir2)
can belong to �(q, a1, a2), each one of which generates a successor configuration
c0 as in the case of 2-TMs. If c0 is a possible successor configuration of c, then
we write c !M c0. Moreover, we write c !m

M c0 if there exists a sequence of
configurations c1, . . ., cm�1 such that c !M c1, c1 !M c2, . . ., cm�1 !M c0.
In this case, notice that it is possible that c!m

M c0 and c!n
M c0 with m 6= n.

Moreover, we write c !⇤
M c0 if there exists m � 0 such that c !m

M c0 (again,
we assume that c!0

M c).
Given an input word w for a 2-NTM M , the start configuration sc(w) of

M , and accepting and rejecting configurations of M , are defined as in the
deterministic case. Moreover, M accepts input w if there exists an accepting
configuration c such that sc(w) !⇤

M c, and M rejects w otherwise (i.e., M
rejects w if there is no accepting configuration c such that sc(w)!⇤

M c).

Turing Machines as Computational Devices

If a 2-TM acts not as a language acceptor but rather as a device for computing
a function f , then a write-only output tape is added and the states “yes” and
“no” are replaced with a halting state “halt”; once the computation enters
the halting state, the output tape contains the value f(w) for the input w.

610 B Turing Machines and Complexity Classes

Definition 2.5: Turing Machine with Output

A Turing Machine with output (TMO) is a tuple

M = (Q,⌃, �, s) ,

where

• Q is a finite set of states, including the halting state “halt”,

• ⌃ is a finite set of input symbols, called the alphabet of M , including
the symbols t (the blank symbol) and . (the left marker),

• � : (Q� {“halt”})⇥⌃⇥⌃ ! Q⇥ {!, ,�}⇥⌃⇥ {!, ,�}⇥⌃
is the transition function of M , and

• s 2 Q is the start state of M .

If �(q, a1, a2) = (q0, dir1, b, dir2, c), then q0, dir1, b, dir2 are used exactly as
in the case of a 2-TM accepting a language. Moreover, if c 6= t, then c is
written on the output tape and the head of this tape is moved one position to
the right; otherwise, no changes are made on this tape. The start configuration
of a TMO M on input w is sc(w) = (s, ., w, ., ", ., "). The output of M on
input w is the word u such that sc(w)!⇤

M (“halt”, u1, v1, u2, v2, .u, ").

Complexity Classes

We proceed to introduce some central complexity classes that are used in this
book. Recall that R+

0 is the set of non-negative real numbers. Given a function
f : N! R+

0 , a TM (respectively, NTM) M is said to run in time f(n) if, for
every input w and configuration c, sc(w) !m

M c implies m  f(|w|).1 We
further say that M decides a language L if M accepts every word in L and
rejects every word not in L. Notice that this implies that M ’s computation is
finite on every input. We define the classes of decision problems

Time(f(n)) = {L | there exists a TM that decides L

and runs in time f(n)}

and

NTime(f(n)) = {L | there exists an NTM that decides L

and runs in time f(n)}.

We use Time(O(f(n))) for the union of all Time(g(n)) where g(n) 2 O(f(n)).
Furthermore, we use the following time complexity classes in this book:

1 The running time of a TMO is defined in the same way.

B Turing Machines and Complexity Classes 611

Definition 2.6: Time Complexity Classes

PTime =
S

k2N Time(nk) NP =
S

k2N NTime(nk)

ExpTime =
S

k2N Time(2n
k

) NExpTime =
S

k2N NTime(2n
k

)

2ExpTime =
S

k2N Time(22
nk

)

Given a function f : N! R+
0 , a 2-TM (respectively, 2-NTM) M is said to

run in space f(n) if, for every input w and configuration c = (q, u1, v1, u2, v2),
sc(w) !⇤

M c implies |u2v2|  f(|w|).2 We say that M decides a language L
if M accepts every word in L and rejects every word not in L. We define the
classes of decision problems

Space(f(n)) = {L | there exists a 2-TM that decides L

and runs in space f(n)}

and

NSpace(f(n)) = {L | there exists a 2-NTM that decides L

and runs in space f(n)}.

We write Space(O(f(n))) for the union of all Space(g(n)), where g(n) 2
O(f(n)). We further use the following space complexity classes in this book:

Definition 2.7: Space Complexity Classes

DLogSpace = Space(log n) NLogSpace = NSpace(log n)
PSpace =

S
k2N Space(nk) NPSpace =

S
k2N NSpace(nk)

ExpSpace =
S

k2N Space(2n
k

) NExpSpace =
S

k2N NSpace(2n
k

)

At this point, let us stress that we can always assume that the computation
of a space-bounded 2-TMM is finite on every input word. Intuitively, since the
space that M uses is bounded, the number of di↵erent configurations in which
M can be is also bounded. Therefore, by maintaining a counter that “counts”
the steps of M , we can guarantee that M will never fall in an unnecessarily
long computation, which in turn allows us to assume that the computation of
M is finite. Further details on this assumption can be found in any standard
textbook on computational complexity.

For a complexity class C, the class coC is defined as the set of complements
of the problems in C, that is, coC = {⌃⇤ � L | L 2 C}. It is known that

2 The running space of a TMO is defined without considering the output tape.
More precisely, for every input w and configuration c = (q, u1, v1, u2, v2, u3, v3),
sc(w) !⇤

M c implies |u2v2|  f(|w|).

612 B Turing Machines and Complexity Classes

DLogSpace ✓ NLogSpace ✓ PTime ✓ NP ✓ PSpace = NPSpace

✓ ExpTime ✓ NExpTime ✓ ExpSpace = NExpSpace ✓ 2ExpTime

PTime (ExpTime (2ExpTime

NP (NExpTime

and that

NLogSpace = coNLogSpace (PSpace (ExpSpace

However, it is still not known whether PTime (and in fact DLogSpace) is
properly contained in NP, whether PTime is properly contained in PSpace,
and whether NP equals coNP.

Key concepts related to complexity classes are reductions between prob-
lems, and hardness and completeness of problems. For precise definitions the
reader can consult any complexity theory textbook. A reduction between lan-
guages L and L0 over an alphabet ⌃ is a function f : ⌃⇤ ! ⌃⇤ such that
w 2 L if and only if f(w) 2 L0, for every w 2 ⌃⇤. Let C be one of the complex-
ity classes introduced above such that NP ✓ C or coNP ✓ C. A problem, i.e.,
a language L, is hard for C, or C-hard, if every problem L0 2 C is reducible to L
via a reduction that is computable in polynomial time. If L is also in C, then it
is complete for C, or C-complete. For the complexity classes NLogSpace and
PTime, the notions of hardness and completeness are defined in the same way,
but with the crucial di↵erence that we rely on reductions that are computable
in deterministic logarithmic space. This is because a reduction is meaningful
only within a class that is computationally stronger than the reduction.3

We say that a decision problem is tractable if it is in PTime. As such, prob-
lems that are hard for ExpTime are provably intractable. We call problems
that are hard for NP or coNP presumably intractable (if we cannot make a
stronger case and prove that they are not in PTime).

The most fundamental problem that is presumably intractable is the satis-
fiability problem of Boolean formulae. A Boolean formula is defined as follows:

• a variable x 2 Var is a Boolean formula, and

• if '1 and '1 are Boolean formulae, then ('1 ^ '2), ('2 _ '2), and (¬'1)
are Boolean formulae.

To define the semantics of such Boolean formulae, we need the notion of
truth assignment. A truth assignment for a set of variables V is a function
f : V ! {true, false}. Consider a Boolean formula ', and a truth assignment
f for the set of variables in '. We define when f satisfies ', written f |= ':

3 We could also define hardness for DLogSpace by using reductions that can be
computed via a computation even more restrictive than deterministic logarithmic
space, but this is not needed for the purposes of this book.

B Turing Machines and Complexity Classes 613

• If ' is a variable x, then f |= ' if f(x) = true.

• If ' = ('1 ^ '2), then f |= ' if f |= '1 and f |= '2.

• If ' = ('1 _ '2), then f |= ' if f |= '1 or f |= '2.

• If ' = (¬), then f |= ' if f |= does not hold.

We say that ' is satisfiable if there exists a truth assignment f for the set of
variables in ' such that f |= '. The Boolean satisfiability problem or SAT,
which is known to be an NP-complete problem, is defined as follows.

Problem: SAT

Input: A Boolean formula '
Output: true if ' is satisfiable, and false otherwise

It is actually the first problem that was proven to be NP-complete, a result
known as Cook-Levin Theorem that goes back to the 1970s.

A generalization of SAT is the satisfiability problem of quantified Boolean
formulae. For a Boolean formula ' and a tuple of variables x̄, we denote by
'hx̄i the fact that ' uses precisely the variables in x̄. A quantified Boolean
formula is an expression of the form

Q1x̄1Q2x̄2 · · ·Qnx̄n 'hx̄1, . . . , x̄ni ,

where, for each i 2 [n], Qi is either 9 or 8, and, for each i 2 [n � 1], Qi = 9
implies Qi+1 = 8 and Qi = 8 implies Qi+1 = 9. Assuming that Q1 = 9, we
say that is satisfiable if there exists a truth assignment for x̄1 such that for
every truth assignment for x̄2 there exists a truth assignment for x̄3, and so on
up to x̄n, such that the overall truth assignment satisfies . Analogously, we
can define when is satisfiable in the case Q1 = 8. The quantified satisfiability
problem or QSAT, also known under the name quantified Boolean formula or
QBF, which is the canonical PSpace-complete problem, is defined as follows:

Problem: QSAT

Input: A quantified Boolean formula
Output: true if is satisfiable, and false otherwise

Notice that SAT is the special case of QSAT where is of the form 9x̄'hx̄i.
Two special cases of QSAT will be particularly important for this book, namely
the ones with exactly one quantifier alternation:

614 B Turing Machines and Complexity Classes

Problem: 98QSAT

Input: A quantified Boolean formula = 9x̄18x̄2 'hx̄1, x̄2i
Output: true if is satisfiable, and false otherwise

Problem: 89QSAT

Input: A quantified Boolean formula = 8x̄19x̄2 'hx̄1, x̄2i
Output: true if is satisfiable, and false otherwise

We define ⌃p
2 as the class of decision problems reducible to 98QSAT in

polynomial time. Similarly, ⇧p
2 is the class of decision problems reducible to

89QSAT in polynomial time. Recall that QSAT is PSpace-complete. We know
that

PTime

NP
✓

coNP

✓ NP [coNP

✓

✓

⌃p
2

✓

⇧p
2

✓
PSpace

✓

✓

We finally remark that the smallest complexity class we consider here is
DLogSpace. In database theory, and especially in its logical counterpart,
that is, finite model theory, it is very common to consider parallel complexity
classes, of which the smallest one is AC0. These are circuit complexity classes,
and the machinery needed to define them is not TMs but rather circuits,
parameterized by their fan-in (the number of inputs to their gates), their size,
and their depth. Due to the notational overhead this incurs, we shall not be
using circuit-based classes in this book. The interested reader can consult
books on finite model theory and descriptive complexity to understand the
di↵erences between DLogSpace and classes such as AC0.

C

Input Encodings

To reason about the computational complexity of problems, we need to rep-
resent their inputs (such as databases, queries, and constraints) as inputs to
Turing Machines, that is, as words over some finite alphabet.

Encoding of Databases

For databases, the idea is that each value in the active domain can be encoded
as a number in binary, and then use further separator symbols that allows us
to faithfully encode the facts occurring in the database.

We assume a strict total order <Rel on the elements of Rel, and a strict total
order <Const on the elements of Const. Consider a schema S = {R1, . . . , Rn}
with Ri <Rel Ri+1 for each i 2 [n�1], and a database D of S with Dom(D) =
{a1, . . . , ak} and ai <Const ai+1 for each i 2 [k � 1]. We proceed to explain
how D is encoded as a word over the alphabet

⌃ = {0, 1,4,#, $,⇤}.

We first explain how constants, tuples, and relations are encoded:

• The constant ai 2 Dom(D), for i 2 [k], is encoded as the number i in
binary, and we write enc(ai) for the obtained word over {0, 1}.

• A tuple t̄ = (a1, . . . , a`) over Dom(D), for ` � 0, is encoded as the word

enc(t̄) =

8
<

:

⇤enc(a1)⇤ · · ·⇤enc(a`)⇤ if ` > 0,

⇤⇤ if ` = 0.

• A relation RD
i = {t̄1, . . . , t̄m}, for i 2 [n] and m � 0, is encoded as

enc(RD
i) =

8
<

:

$enc(t̄1)$ · · · $enc(t̄m)$ if m > 0,

$$ if m = 0.

616 C Input Encodings

We can now encode the database D as a word over ⌃ as follows:

enc(D) = 4enc(a1)4 · · ·4enc(ak)4#enc(RD
1)# · · ·#enc(RD

n)# .

The key property of the above encoding is that, for a database D of a
schema S, and a tuple t̄, given as their encodings enc(D) and enc(t̄), respec-
tively, we can check via a deterministic computation, which uses logarithmic
space in the size fo enc(D), whether t̄ 2 RD for some R 2 S. In what follows,
we write enc(i) for the binary representation of an integer i > 0.

Lemma C.1. Let S be the schema {R1, . . . , Rn} with R1 <Rel · · · <Rel Rn.
Consider a database D of S, a tuple t̄, and an integer i 2 [n], and let w be the
word .enc(D)[enc(t̄)[enc(i) over ⌃ [{.,t, [}. There exists a 2-TM M with
alphabet ⌃ such that the following hold:

1. M accepts w if and only if t̄ 2 RD
i , and

2. M runs in space O(ar(Ri)·log |enc(D)|) if ar(Ri) > 0, and O(log |enc(D)|)
if ar(Ri) = 0.

Proof. We first give a high-level description of the 2-TM M ; for brevity, we
write it for the symbol read by the head of the input tape:

1. Let ctr = 0 – this is a counter maintained on the work tape in binary.

2. While ctr 6= i do the following:

a) If it = #, then ctr := ctr + 1.

b) Move the head of the input tape to the right so that it reads the first
$ symbol of enc(RD

i).

3. Move the head of the input tape to the right so that it reads the first
⇤ symbol of enc(ū), where ū is the first tuple of RD

i (i.e., enc(RD
i) =

$enc(ū)$ · · · $), or the second $ symbol of enc(RD
i) in case RD

i is empty
(which means that enc(RD

i) = $$).

4. Erase the content of the work tape by replacing every symbol di↵erent
than t with t (since ctr is not needed further), and move its head after
the left marker ..

5. Repeat the following steps until it = # (which means that the relation
RD

i has been fully explored):

a) While it 6= $ do the following:

(i) Copy it to the work tape.

(ii) Move the head of both tapes to the right.

b) Assuming that .ut is the content of the work tape, if u = enc(t̄), then
halt and accept; otherwise:

C Input Encodings 617

(i) Move the head of the input tape to the right so that it reads the
first ⇤ symbol of the encoding of the next tuple of RD

i , or the
symbol # if the last tuple of RD

i has just been explored. In other
words, the head of the input tape reads the symbol to the right
of the last $ symbol read during the while loop of step (a).

(ii) Erase the content of the work tape by replacing every symbol
di↵erent than t with t (since the copied tuple is not needed
further), and move its head after the left marker ..

6. Halt and reject.

It is easy to verify that M accepts w if and only if enc(RD
i) is of the form

$ · · · $enc(t̄)$ · · · $, or, equivalently, t̄ 2 RD
i . It remains to argue thatM runs in

the claimed space. At each step of the computation of M , the work tape holds
either ctr , or the word enc(t̄) for some t̄ 2 RD

i . The value of ctr (represented
in binary) can be maintained using O(|enc(i)|) bits. The encoding of a tuple
of RD

i takes space O(ar(Ri) · log |Dom(D)|). Therefore, the space used is

O (log |enc(i)| + ar(Ri) · log |Dom(D)|) .

Since |enc(i)|  |enc(D)| and |Dom(D)|  |enc(D)|, we can conclude that the
above 2-TM on input w runs in space O(ar(Ri) · log |enc(D)|) if ar(Ri) > 0,
and O(log |enc(D)|) if ar(Ri) = 0, and the claim follows. ut

Note that the encoding described above is not the only way of encoding a
database as a word over a finite alphabet. We could employ any other encoding
as long as it enjoys the property established in Lemma C.1, without a↵ecting
the complexity results presented in this book.

Encoding of Queries and Constraints

Queries q and constraints � will most commonly be coming from a query
language and a class of constraints, respectively, for which we define the size
kqk or k�k throughout the book. Since queries and constraints of size n can
be encoded as words over a finite alphabet of length n log n, we define the
length of their Turing Machine encoding to be kqk log kqk and k�k log k�k,
respectively.

	Introduction
	Background
	Part I The Relational Model: The Classics
	First-Order Logic
	Relational Algebra
	Relational Algebra and SQL
	Equivalence of Logic and Algebra
	First-Order Query Evaluation
	Static Analysis
	Homomorphisms
	Functional Dependencies
	Inclusion Dependencies
	Exercises
	Bibliographic Comments

	Part II Conjunctive Queries
	Syntax and Semantics
	Homomorphisms and Expressiveness
	Query Evaluation
	Containment and Equivalence
	Minimization
	Containment Under Integrity Constraints
	Exercises
	Bibliographic Comments

	Part III Fast Conjunctive Query Evaluation
	Acyclicity of Conjunctive Queries
	Efficiently Evaluating Boolean ACQs
	Efficiently Evaluating General ACQs
	Treewidth
	Generalized Hypertreewidth
	The Necessity of Bounded Treewidth
	Approximations of Conjunctive Queries
	Bounding the Join Size
	Worst-Case Optimal Join Algorithms
	Leapfrog Triejoin
	Exercises
	Bibliographic Comments

	Part IV Expressive Languages
	Unions of Conjunctive Queries
	Static Analysis of Unions of Conjunctive Queries
	Unions of Conjunctive Queries with Inequalities
	The Limits of First-Order Queries: Recursion
	The Limits of First-Order Queries: Counting
	Adding Aggregates and Grouping
	Aggregates, Grouping, and Locality
	Adding Recursion: Datalog
	Expressiveness of Datalog Queries
	Datalog Query Evaluation
	Static Analysis of Datalog Queries
	Exercises
	Bibliographic Comments

	Part V Uncertainty
	Incomplete Databases
	Computing Certain Answers
	Probabilistic Databases
	Inconsistent Databases
	Knowledge-Enriched Databases
	Exercises
	Bibliographic Comments

	Part VI Query Answering Paradigms
	Bag Semantics
	Incremental Maintenance of Queries
	Provenance Computation
	Top-k Algorithms
	Distributed Evaluation with One Round
	Enumeration and Constant Delay
	Exercises
	Bibliographic Comments

	Part VII Mappings and Views
	Query Answering using Views
	Determinacy and Rewriting
	Mappings and Data Exchange
	Query Answering for Data Exchange
	Ontology-Based Data Access
	Exercises
	Bibliographic Comments

	Background for Tree- and Graph-Structured Data
	Background For Tree and Graph Structured Data

	Part VIII Tree-Structured Data
	Data Model
	First-Order Logic over Trees
	XPath
	Expressiveness of XPath
	Static Analysis of XPath
	Tree Pattern Queries
	Tree Pattern Query Containment and Equivalence
	Tree Pattern Query Minimization
	Exercises
	Bibliographic Comments

	Part IX Expressive Languages for Tree-Structured Data
	Monadic Second Order Logic
	Tree Automata
	Monadic Datalog
	Schemas for XML
	Static Analysis Under Schema Constraints
	Data Trees
	Static Analysis on Data Trees
	Exercises
	Bibliographic Comments

	Part X Graph-Structured Data
	Data Model and Queries
	Graph Query Evaluation
	Containment
	Querying Property Graphs
	RDF and SPARQL
	Exercises
	Bibliographic Comments

	Part XI Appendix: Theory of Computation
	Big-O Notation
	Turing Machines and Complexity Classes
	Input Encodings
	Tiling Problems
	Formal Languages

