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Introduction

This is a release of parts 1, 2, and 4 of the upcoming book “Principles of
Databases”, which will be about the foundational and mathematical principles
of databases in its various forms. The first two parts focus on an overview of
the relational model, and on processing some of the most commonly occurring
relational queries. Forthcoming parts will focus on additional aspects of the
relational model and will cover tree-structured and graph-structured data as
well.

The general philosophy of the book is the following:

• We planned the book such that large parts of it are suitable for teaching.
A chapter roughly corresponds to the contents of a single lecture.

• For the ease of teaching and understanding the material, we may some-
times cut corners. If we want to give the reader a relatively quick insight
of a particular result, this sometimes means that we present a weaker form
of the result than the most general result known in the literature.

We have been teaching from this book ourselves, but the present version
will undoubtedly still have errors. If you find any errors in the book, or places
that you find particularly unclear, please let us know through the repository:
https://github.com/pdm-book/community. The new versions of the book,
including corrections, will be published in this repository.

What is Planned

The finished book will consist of the following parts:

(I) The Relational Model: The Classics

(II) Conjunctive Queries

(III) Fast Conjunctive Query Evaluation

https://github.com/pdm-book/community
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• Includes material on acyclic queries, treewidth and hypertreewidth,
and worst-case optimal join algorithms.

(IV) Expressive Languages

• Includes material on adding features found in most commonly used
query languages: union, negation, aggregates, and recursion.

(V) Uncertainty

• Includes material on incomplete information, probabilistic databases,
consistent query answering, and query answering in the presence of
ontologies.

(VI) Query Answering Paradigms

• Includes material on bag semantics, incremental maintenance, prove-
nance, top-k queries, distributed evaluation, and constant delay
query evaluation.

(VII) Mappings and Views

• Includes material on determinacy, data exchange, and ontology-
based data access.

(VIII) Tree-Structured Data

• Includes material on tree pattern queries, XPath, MSO, tree au-
tomata, monadic datalog, schema languages, and their static anal-
ysis.

(IX) Graph-Structured Data

• Includes material on various types of graph queries, their evaluation
and containment, property graphs, RDF, and SPARQL.

We will continue to release parts, not necessarily in the order presented here.
Furthermore, the ordering and contents of the chapters is preliminary and
may change in future versions.

What is Still Missing, Even From Released Parts

Let’s start by saying what is mainly there: in every chapter that we release,
we believe that the technical content is relatively stable. For every part that
we have released, two things still need work though:

Exercises. We have generated some initial ideas for exercises, but we are
aware that the exercises for the currently released parts still need work.
In fact, we are open to exercise suggestions.

Bibliography. We plan to accompany each part with references and a bibli-
ographic discussion. These are not implemented yet, even for Parts I–IV.
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Background

In this chapter, we introduce the mathematical concepts and terminology that
will be used throughout the book. These include:

• the relational model,

• queries and query languages, and

• computational problems central in the study of principles of databases.

Basic Notions and Notation

We begin with a brief discussion of the very basic mathematical notions and
notation that we are going to use in this book.

Sets

A set contains a finite or infinite number of elements (e.g., numbers, symbols,
other sets), without repetition or respect to order. The elements in a set S are
the members of S. We use the symbols ∈ and 6∈ to denote set membership and
nonmemberhip, respectively. For a finite set S, we write |S| for its cardinality,
that is, the number of elements in it. The set without elements is called the
empty set, written as ∅.

Given two (finite or infinite) sets S and T , we write:

• S ∪ T for their union {a | a ∈ S or a ∈ T},
• S ∩ T for their intersection {a | a ∈ S and a ∈ T}, and

• S − T for their difference {a | a ∈ S and a 6∈ T}.

We further say that

• S is equal to T , written S = T , when x ∈ S if and only if x ∈ T ,
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• S is a subset of T , written S ⊆ T , when x ∈ S implies x ∈ T , and

• S is a proper (or strict) subset of T , written S ( T , if S ⊆ T and S 6= T .

We write P(S) for the powerset of S, that is, the set consisting of all the
subsets of S. Analogously, we write Pfin(S) for the finite powerset of S, namely
the set consisting of all the finite subsets of S.

We write N for the set {0, 1, 2, . . .} of natural numbers. For i, j ∈ N, we
denote by [i, j] the set {k ∈ N | i ≤ k and k ≤ j}. We simply write [i] for [1, i].

Sequences and Tuples

A sequence of elements is a list of these elements in some order. We typically
identify a sequence by writing the list within parentheses. Recall that in a
set the order does not matter, but in a sequence it does. Hence, the sequence
(1, 2, 3) is not the same as (3, 2, 1). Similarly, repetition does not matter in a
set, but is does matter in a sequence. Thus, the sequence (1, 1, 2, 3) is different
than (1, 2, 3), while the set {1, 1, 2, 3} is the same as {1, 2, 3}. Finite sequences
are called tuples. A sequence with k ∈ N elements is a tuple of arity k, called
k-ary tuple (or simply k-tuple). Note that when k = 0 we get the empty tuple
(). We often abbreviate a k-ary tuple (a1, . . . , ak) as ā. Moreover, for a k-ary
tuple ā, we usually assume that its elements are (a1, . . . , ak). We say that
ā = (a1, . . . , ak) has the positions 1, . . . , k and that an element b occurs at
position i if b = ai. For example, 1 occurs at positions 1 and 3 in the tuple
(1, 2, 1, 4). Conversely, ā mentions a if a ∈ {a1, . . . , ak}.

For two sets S, T , we write S×T for the set of all pairs (a, b), where a ∈ S
and b ∈ T , called the Cartesian product or cross product of S and T . We can
also define the Cartesian product of k ≥ 1 sets S1, . . . , Sk, known as the k-fold
Cartesian product, which is the set of all tuples (a1, . . . , ak), where ai ∈ Si for
each i ∈ [k]. For the k-fold Cartesian product of a set S with itself we write

Sk = S × · · · × S︸ ︷︷ ︸
k

.

Functions

Consider two (finite or infinite) sets S and T . A function f from S to T ,
written f : S → T , is a mapping from (all or some) elements of S to elements
of T , i.e., for every a ∈ S, either f(a) ∈ T , in which case we say f is defined
on a, or f(a) is undefined, such that the following holds: for every a, b ∈ S on
which f is defined, a = b implies f(a) = f(b). We call f total if it is defined
on every element of S; otherwise, it is called partial. By default, we assume
functions to be total. When a function f is partial, we explicitly say this, and
write Dom(f) for the set of elements from S on which f is defined.

We say that a function f is

• injective (or one-to-one) if a 6= b implies f(a) 6= f(b) for every a, b ∈ S;
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• surjective (or onto) if, for every b ∈ T , there is a ∈ S such that f(a) = b,

• bijective (or one-to-one correspondence) if it is injective and surjective.

A useful notion is that of composition of functions. Given two functions
f : S → T and g : T → U , the composition of f and g, denoted g ◦ f ,
is the function from S to U defined as follows: g ◦ f(a) = g(f(a)) for every
a ∈ S. Another useful notion is that of union of functions. Given two functions
f : S → T and g : S′ → T ′ with f(a) = g(a) for every a ∈ S ∩ S′, the union
of f and g, denoted f ∪ g, is the function from S ∪ S′ to T ∪ T ′ defined as
follows: f ∪ g(a) = f(a) for every a ∈ S, and f ∪ g(a) = g(a) for every a ∈ S′.

Given a function f : S → T , for brevity, we will use the same letter f to
denote extensions of f on more complex objects (such as tuples of elements of
S, sets of elements of S, etc.). More precisely, if ā = (a1, . . . , ak) ∈ Sk, then
f(ā) = (f(a1), . . . , f(ak)). If R ⊆ S, then f(R) = {f(a) | a ∈ R}. Notice that
this convention also extends further, e.g., to sets of sets of tuples.

Graphs and Trees

A graph is a tuple
G = (V,E)

where V is a finite set of nodes. We distinguish between directed and undirected
graphs, which only differ in the way how we define their set E of edges.

• In directed graphs, we have that E ⊆ V × V .

• In undirected graphs, we have that E ⊆ {S ⊆ V | 1 ≤ |S| ≤ 2}.

An undirected path in a (directed or undirected) graph G is a non-empty
sequence of nodes

π = n0n1 · · ·nk
where

• if G is a directed graph, then (ni−1, ni) ∈ E or (ni, ni−1) ∈ E for every
i ∈ [k] and

• if G is an undirected graph, then {ni−1, ni} ∈ E for every i ∈ [k].

We say that π is from n0 to nn and has length n. (The path of length zero
is from n0 to n0.) A graph is connected if, for every pair of nodes n,m ∈ V ,
there is an undirected path from n to m.

A connected directed graph T = (V,E) is a tree if

• for every node n, there is at most one node m with (m,n) ∈ E (called the
parent of n) and

• there is exactly one node n (called the root of T ) without a parent.
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As is common in Computer Science (and as opposed to Biology), we graph-
ically depict trees with their root on top, such that all edges are directed
downward. As such, even if trees are directed, we do not put arrows on their
edges.

The Relational Model

To define tables in real-life databases, for example, by the create table state-
ments of SQL, one needs to specify their names and names of their attributes.
Therefore, to model databases, we need two disjoint sets

Rel of relation names and Att of attribute names.

We assume that these sets are countably infinite in order to ensure that we
never run out of ways to name new tables and their attributes. In practice, of
course, these sets are finite but extremely large: they are strings that can be
so large that one never really runs out of names. Theoretically, we model this
by assuming that these sets are countably infinite.

In create table declarations, one specifies types of attributes as well, for
example, integer, Boolean, string. In the study of the theoretical foundations
of databases, one typically does not make this distinction, and assumes that
all elements populating databases come from another countably infinite set

Const of values.

This simplifying assumption does not affect the various results on the com-
plexity of query evaluation, expressiveness of languages, equivalence of queries,
and many other subjects studied in this book. At the same time, it brings the
setting closer to that of mathematical logic, allowing us to borrow many tools
from it. It also allows us to significantly streamline notations.

The Named and Unnamed Perspective

There exist two standard perspectives from which databases can be defined,
called the named and the unnamed perspectives. While the named perspective
is closer to how databases appear in database management systems, and there-
fore more natural when giving examples, the unnamed perspective provides
a clean mathematical model that is easier to use for studying the principles
of databases. Importantly, the modeling power of those two perspectives is
exactly the same, which allows us to go back and forth between the two.

Named Perspective. Under the named perspective, attribute names are
viewed as an explicit part of a database. More precisely, a database tuple
is a function t : U → Const, where U = {A1, . . . , Ak} is a finite subset
of Att. The sort of t is U , and its arity is the cardinality |U | of U ; we
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say that t is k-ary if |U | = k. We usually do not use the function nota-
tion for database tuples in the named perspective, and denote them as
t = (A1 : a1, . . . , Ak : ak), meaning that t(Ai) = ai for every i ∈ [k]. No-
tice that, according to this notation, (A1 : a1, A2 : a2) and (A2 : a2, A1 : a1)
represent the same function t. A relation instance in the named perspec-
tive is a finite set S of database tuples of the same sort U , which we
also call the sort of the relation instance S and denote by sort(S). By
nRI (for named relational instances) we denote the set of all such relation
instances. A possibly infinite relation instance in the named perspective
is defined as the notion of relation instance, but without forcing it to be
finite. We write nRI∞ for the set of all possibly infinite relation instances
in the named perspective.

Database systems usually use a database schema that associates attribute
names to relation names. This can be formalized as follows.

Definition 2.1: Named Database Schema

A named (database) schema is a partial function

S : Rel→ Pfin(Att)

such that Dom(S) is finite. For R ∈ Dom(S), the sort of R under S
is the set S(R). The arity of R under S, denoted arS(R), is |S(R)|.

In other words, a named database schema S provides a finite set of re-
lation names, together with their (finitely many) attribute names. These
attribute names form the sort of the relation names under S, and their
number specifies the arity of the relation names under S. For arities 1, 2,
and 3, we speak of unary, binary, and ternary relation names, respectively.
We now introduce the notion of database instance of a named schema.

Definition 2.2: Database Instance (The Named Case)

A database instance D of a named schema S is a function

D : Dom(S)→ nRI

such that sort(D(R)) = S(R), for every R ∈ Dom(S).

We can also talk about possibly infinite database instances. Formally, a
possibly infinite database instance D of a named schema S is a function

D : Dom(S)→ nRI∞

such that sort(D(R)) = S(R), for every R ∈ Dom(S). This means that D
is either finite as in Definition 2.2, where each relation name of Dom(S) is
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mapped to a finite relation instance, or infinite in the sense that at least
one relation name of Dom(S) is mapped to an infinite relation instance.
Infinite database instances are obviously not a real-life concept, and we are
not interested in studying them per se. Having said that, they are a very
useful mathematical tool as they allow us to prove some results in a more
elegant way. In other words, infinite database instances are considered for
purely technical reasons, which will be revealed later in the book.

To avoid heavy notation, and because the name S of a schema is often not
important, we usually provide schema information without explicitly using
the symbol S. We write R[A1, . . . , Ak] instead of S(R) = {A1, . . . , Ak} for
the schema S in question. For example, we write

City[city_id, name, country]

to refer to a relation name City with attribute names city_id, name, and
country. Likewise, we write ar(R) instead of arS(R). We may even write
R[k] to indicate that the arity of R under the schema in question is k

Unnamed Perspective. Under the unnamed perspective, a database tuple
is an element of Constk for some k ∈ N. We denote such tuples using low-
ercase letters from the beginning of the alphabet, that is, as (a1, . . . , ak),
(b1, . . . , bk), etc., or even more succinctly as ā, b̄, etc. A relation instance
in the unnamed perspective is a finite set S of database tuples of the same
arity k. We say that k is the arity of S, denoted by ar(S). By uRI (for un-
named relation instances) we denote the set of all such relation instances.
A possibly infinite relation instance in the unnamed perspective is defined
as the notion of relation instance, but without forcing it to be finite. We
write uRI∞ for the set of all possibly infinite relation instances in the
unnamed perspective. The notion of unnamed database schema follows.

Definition 2.3: Unnamed Database Schema

An unnamed (database) schema is a partial function

S : Rel→ N

such that Dom(S) is finite. For a relation name R ∈ Dom(S), the
arity of R under S, denoted arS(R), is defined as S(R).

In simple words, an unnamed databases schema S provides a finite set of
relation names from Rel, together with their arity. We proceed to introduce
the notion of database instance of an unnamed database schema.

Definition 2.4: Database Instance (The Unnamed Case)

A database instance D of an unnamed schema S is a function
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D : Dom(S)→ uRI

such that ar(D(R)) = arS(R), for every R ∈ Dom(S).

Analogously, a possibly infinite database instance D of an unnamed schema
S is defined as a function of the form

D : Dom(S)→ uRI∞

such that ar(D(R)) = arS(R), for every R ∈ Dom(S). Recall that infinite
database instances are considered for purely technical reasons. As in the
named perspective, in order to avoid heavy notation, we write ar(R) in-
stead of arS(R) for the arity of R under S. We may even write R[k] to
indicate that the arity of R under the schema in question is k.

For a (named or unnamed) schema S, we write Inst(S) for the set of all
database instances of S. Notice that Inst(S) does not contain infinite database
instances. We also need the crucial notion of the active domain of a (possibly
infinite) database instance, which is, roughly speaking, the set of constants
that occur in it. Under the named perspective, we say that a database tuple
t : U → Const mentions a constant a ∈ Const if there exists A ∈ U such that
t(A) = a. Under the unnamed perspective, a database tuple (a1, . . . , ak) ∈
Constk mentions a ∈ Const if there exists i ∈ [k] such that ai = a. The active
domain of a (possibly infinite) database instance D of S is defined as the set

{a ∈ Const | there exists R ∈ Dom(S) such that

D(R) contains a database tuple that mentions a}.

Henceforth, for brevity, we simply refer to the domain instead of the active
domain of D, and denote it Dom(D). We will never use the term domain, and
the notation Dom(D), to refer to the domain of the function D, i.e., Dom(S).

Simplified Terminology and Notation

We will refer to a (possibly infinite) database instance as a (possibly infinite)
database, to a relation instance as a relation, and to a database tuple as a tuple.
In both the named and the unnamed perspectives, we will write RDi instead
of D(Ri). When it is clear from the context, we shall omit the superscript D,
and simply write Ri instead of RDi . This means that we will effectively use the
same notation for relation names and for relation instances. This is a common
practice that is used to simplify notation, and it will never lead to confusion;
when the instance is important, we will make it explicit.

Although database schemas are formally defined as partial functions, with
their domain being a finite subset of Rel, it is often convenient to tread them as
sets of relation names. Thus, we will usually tread a schema S as the finite set
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Dom(S). This means that whenever we write S = {R1, . . . , Rn}, we actually
mean that Dom(S) = {R1, . . . , Rn}. In the unnamed case, we may also write

S = {R1[k1], . . . , Rn[kn]}

for the fact that Dom(S) = {R1, . . . , Rn} and S(Ri) = ki, for each i ∈ [n].
Having this notation for schemas, we can then take, e.g., the union S1 ∪S2 of
two schemas S1 and S2 (providing that Dom(S1) and Dom(S2) are disjoint).

Analogously, databases of unnamed schemas can be seen as sets, in par-
ticular, as sets of facts. For a k-ary relation name R, and a tuple ā ∈ Constk,
we call R(ā) a fact. Since a fact is always a statement about a single tuple, we
simplify the notation R((a1, . . . , ak)) to R(a1, . . . , ak). We will usually tread
a (possibly infinite) database D of an unnamed schema S as the set of facts{

R(ā) | R ∈ S and ā ∈ RD
}
.

For example, we can write D = {R1(a, b), R1(b, c), R2(a, c, d)} as a shorthand
for RD1 = {(a, b), (b, c)} and RD2 = {(a, c, d)}. Note that the active domain of
D is precisely the set of constants occurring in {R(ā) | R ∈ S and ā ∈ RD}.

Named versus Unnamed Perspective

There is clearly a close connection between the two perspectives, which is
not surprising since both are mathematical abstractions of the same concept.
A (possibly infinite) database of a named schema can be transformed into a
semantically equivalent one of an unnamed schema, and vice versa. By seman-
tically equivalent, we mean databases that are essentially the same modulo
representation details. It is instructive to properly formalize this connection,
which will be used throughout the book. We do this for databases, but the
exact same constructions work also for possibly infinite databases.

From Named to Unnamed. Consider a named schema S, and assume that
there is an ordering l on the set of relation-attribute pairs {(R,A) | R ∈
Dom(S) and A ∈ S(R)}. We define the unnamed schema S′ : Rel→ N as
follows: Dom(S′) = Dom(S), and S′(R) = arS(R) for every R ∈ Dom(S).
Moreover, for every database D of S, a semantically equivalent database
D′ : Dom(S′)→ uRI of S′ is defined as follows: for every R ∈ Dom(S′),

D′(R) = {(a1, . . . , ak) | (A1 : a1, . . . , Ak : ak) ∈ D(R)

such that (R,A1) l (R,A2) l · · ·l (R,Ak)} .

From Unnamed to Named. Consider an unnamed database schema S. We
assume that Att contains an attribute name #i for each i ≥ 1. We define
the named schema S′ : Rel → Pfin(Att) as follows: Dom(S′) = Dom(S),
and S′(R) = {#1, . . . ,#arS(R)} for everyR ∈ Dom(S). Moreover, for every
database D of S, a semantically equivalent database D′ : Dom(S′)→ nRI
of S′ is defined as follows: for every R ∈ Dom(S′),
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D′(R) = {(#1 : a1, . . . ,#k : ak) | (a1, . . . , ak) ∈ D(R)} .1

Since the above connection between the two perspectives is useful in many
places in the book, we assume from now on that, whenever a named database
schema is used, the ordering l on relation-attribute pairs is available.

The unnamed perspective is usually mathematically more elegant, while
the named perspective is closer to practice. Therefore, we often define notions
in the book using the unnamed perspective, but illustrate them with examples
using the named perspective. When we do so, we use the following convention.
When we denote a relation name as R[A,B, . . .] of a named database schema
S in an example, we assume that the ordering of attributes in S is consistent
with how we write it in the example, that is, (R,A)l (R,B), etc. This allows
us to easily switch between the named and unnamed perspective in examples,
e.g., by being able to say that the “first” attribute of R is A.

Queries and Query Languages

Queries will appear throughout the book as both semantic and syntactic ob-
jects. As a semantic object, a query q over a schema S is a function that maps
databases of S to finite sets of tuples of the same arity over Const.

Definition 2.5: Queries and Query Languages

Consider a database schema S. A query of arity k ≥ 0 (or simply a k-ary
query) over S is a function of the form

q : Inst(S)→ Pfin(Constk).

A query language is a set of queries.

An important subject, which will be considered in the book, is to classify
query languages according to their expressive power. Two query languages L1

and L2 are equally expressive if L1 = L2. Furthermore, L1 is more expressive
than L2 if L2 ⊆ L1, and L1 is strictly more expressive than L2 if L2 ( L1.

Of course, queries as semantic objects must be given in some syntax. The
syntax of queries could be SQL, relational algebra, first-order logic, and Data-
log, to name a few. We proceed to explain some of our notational conventions
for queries. For the sake of the discussion, we focus on query languages that
are based on logic. To this end, we assume a countably infinite set

Var of variables,

1 Notice that under the assumption that (R,#i)l(R,#i+1) for every relation name
R ∈ S and i ∈ [S(R)− 1], one can translate a database D from the unnamed
perspective to the named perspective and back, and obtain D again.
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disjoint from Const, Rel, and Att. If ϕ is a logical formula and x̄ = (x1, . . . , xk) ∈
Vark is a tuple of variables, we will denote queries as ϕ(x̄). We will also use a
letter such as q to refer to the entire query, that is, q = ϕ(x̄). The purpose of
x̄ is to make clear what is the output of the query; we will also write q(x̄) to
emphasise that q has the output tuple x̄. More precisely, we will always define
for a database D and tuple ā = (a1, . . . , ak) ∈ Constk whether D satisfies ϕ
using the values ā, denoted by D |= ϕ(ā). Then, with the syntactic object
q = ϕ(x̄), we associate a semantic object that produces an output, i.e., a set
of k-ary tuples over Const, for each database D, defined as:

q(D) = {ā ∈ Constk | D |= ϕ(ā)} .

This semantic object will always be a query in the sense of Definition 2.5. In
other words, we will use the letter q to refer to both

• the syntactic object denoting a query (for example, a logical formula to-
gether with an output tuple), and

• the query itself (i.e., the function that maps databases to finite sets of
tuples of the same arity over Const).

A query of arity 0 is called Boolean. In this case, there are only two possible
outputs: either the singleton set {()} containing the empty tuple, or the empty
set {}. We interpret {()} as the Boolean value true, and {} as false. For
readability, we write q(D) = true in place of q(D) = {()}, and q(D) = false

in place of q(D) = {}. When denoting Boolean queries, we will often omit the
empty tuple () from the notation, i.e., write q = ϕ instead of q = ϕ().

A useful notion that we will use throughout the book, and, in particular,
for defining the syntax of query languages that are based on logic, is that of
relational atom. When R is a k-ary relation symbol and ū ∈ (Const ∪ Var)k,
R(ū) is a relational atom. Observe that the only difference between a fact
and a relational atom is that the former mentions only constants, whereas the
latter can mention both constants and variables. As for facts, since a relational
atom is always a statement about a single tuple, we simply write R(u1, . . . , uk)
instead of R((u1, . . . , uk)). Given a set of atoms S, we write Dom(S) for the set
of constants and variables in S. For example, Dom({R(a, x, b), R(x, a, y)}) =
{a, b, x, y}. We also write RS for the set of tuples {ū | R(ū) ∈ S}.

Key Problems: Query Evaluation and Query Analysis

Much of what we do in databases boils down to running queries on a database,
or statically analyzing queries. The latter is the basis of query optimization:
we need to be able to reason about queries, and to be able to replace a query
with a better behaved one that has the same output. We proceed to introduce
the main algorithmic problems associated with the above tasks. In their most
common form, they are parameterized by a query language L.
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Query Evaluation

We start with the query evaluation problem, or simply the evaluation problem,
that has the following form:

Problem: L-Evaluation

Input: A query q from L, a database D, a tuple ā over Const

Output: true if ā ∈ q(D), and false otherwise

Note that the evaluation problem is presented as a decision problem, that
is, a problem whose output is either true or false. Although in practice the
goal is to compute the output of q on D, in the study of the principles of
databases we are mainly interested in understanding the inherent complexity
of a query language. This can be achieved by studying the complexity of the
decision version of the evaluation problem, which in turn allows us to employ
well established tools from complexity theory such as the standard complexity
classes that can be found in Appendix B.

The complexity of the problem as stated above is referred to as combined
complexity of query evaluation. The term combined reflects the fact that both
the query q and the database D are part of the input.

Very often we shall deal with a different kind of complexity of query evalu-
ation, where the query q is fixed. This is referred to as data complexity since we
measure the complexity only in terms of the size of the database D, which in
practice, almost invariably, is much bigger than the size of the query q. More
precisely, when we talk about data complexity, we are actually interested in
the complexity of the problem q-Evaluation for some query q:

Problem: q-Evaluation

Input: A database D, and a tuple ā over Const

Output: true if ā ∈ q(D), and false otherwise

Thus, when we talk about the data complexity of L-Evaluation, we actually
refer to a family of problems, one for each query q from L. Nonetheless, we
shall apply the standard notions of complexity theory, such as membership in a
complexity class, or hardness and completeness for a class, to data complexity.
We proceed to precisely explain what we mean by that.

Definition 2.6: Data Complexity

Let L be a query language, and C a complexity class. L-Evaluation is

• in C in data complexity if, for every q from L, q-Evaluation is in C,
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• C-hard in data complexity if there exists a query q from L such that
q-Evaluation is C-hard, and

• C-complete in data complexity if L-Evaluation is in C in data com-
plexity, and C-hard in data complexity.

To reiterate, as we shall use these concepts many times in this book:

Combined Complexity of query evaluation refers to the complexity of the
L-Evaluation problem when all of q, D, and ā are inputs, and

Data Complexity refers to the complexity of L-Evaluation when its input
consists only of D and ā, whereas q is fixed. In other words, it refers to the
complexity of the family of problems {q-Evaluation | q is a query from L}
in the sense of Definition 2.6.

Query Containment and Equivalence

The basis of static analysis of queries is the containment problem. We say that
a query q is contained in a query q′, written as q ⊆ q′, if q(D) ⊆ q′(D) for
every database D; note that since queries return sets of tuples, the notion of
subset is applicable to query outputs. This is the most basic task of reasoning
about queries; note that containment is one part of equivalence. Indeed, q is
equivalent to q′, denoted q ≡ q′, if q ⊆ q′ and q′ ⊆ q. The equivalence problem
is the most basic one in query optimization, whose goal is to transform a query
q into an equivalent, and more efficient, query q′.

In relation to containment and equivalence, we consider the following de-
cision problems, again parameterized by a query language L.

Problem: L-Containment

Input: Two queries q and q′ from L
Output: true if q ⊆ q′, and false otherwise

Problem: L-Equivalence

Input: Two queries q and q′ from L
Output: true if q ≡ q′, and false otherwise

Observe that for the previous problems, the input consists of two queries.
Typically, queries are much smaller objects than databases. Therefore, for
the containment and equivalence problems, we shall in general tolerate higher
complexity than for query evaluation; even intractable complexity will often
be reasonable, given the small size of the input.
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Analyzing Computational Complexity

We will use two different cost models for analyzing the computational com-
plexity of problems.

Turing Machine models are typically associated with complexity classes
such as PTime, NP, PSpace, Space(log n), Πp

2 , etc.

Random-Access Machine models are usually used for analyzing the run-
time of efficient algorithms. For instance, if we say that n numbers can
be sorted in time O(n log n), then the intended underlying computational
model is a random-access machine model.

Throughout the book, we will assume the Turing Machine model for analyzing
the complexity of problems in terms of complexity classes, whereas we will
assume random-access models when it comes to proving that algorithms have
low complexity. The difference between the two will always be clear in the
formal statement, where we will always either

• refer to a concrete complexity class, such as PTime, NLogSpace, or
DLogSpace,2 in which case we assume Turing Machines; or

• we say that the problem “is solvable in” time O(f(n)) or space O(f(n))
for some function f , in which case we assume a random access machine
model.

Size of the Input

The complexity of algorithms is always analyzed in terms of the size of their
input. To this end we will define, throughout the book the size ‖o‖ of objects
o that we will consider for complexity analysis. We define the following.

• ‖∅‖ = ‖()‖ = 1.

• ‖u‖ = 1 for each u ∈ Const ∪ Var.

• For a nonempty set S = {e1, . . . , en}, we define ‖S‖ =
∑n
i=1 ‖ei‖.

• For a tuple ū = (u1, . . . , uk) or a fact R(ū) = R(u1, . . . , uk) with k ≥ 1,

we define ‖ū‖ = ‖R(ū)‖ =
∑k
i=1 ‖ui‖.

Therefore, if D is a nonempty database instance of schema S = {R1, . . . , Rn},
then

‖D‖ =

n∑
i=1

(
|D(Ri)| · (ar(Ri))

)
,

2 In this book, we usually denote complexity classes in small caps, see Appendix B.
Exceptions to this rule are well-known complexity classes for which fonts are
irrelevant, such as Πp

2 and #P.
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assuming that the arities of R1, . . . , Rn are nonzero.
Turing Machines and random-access machines perceive their inputs differ-

ently. Whereas a random-access machine can store a natural number n ∈ N
in a single register, a Turing Machine will store n as a word of O(log n) sym-
bols from its finite alphabet. In Appendix C, we discuss how databases and
queries are encoded for Turing Machines. For instance, storing a database D
on a Turing Machine costs space O(‖D‖ · log ‖D‖). Intuitively, the encoding
uses O(‖D‖) many constants, and we need O(log ‖D‖) space to encode each
such constant using the Turing Machine’s finite alphabet.

Since it is well known that the random access model and the Turing Ma-
chine model are equally efficient as long as polynomial differences do not mat-
ter, we sometimes do a random-access-style analysis for easier presentation,
even if the underlying computational model is a Turing Machine.

Further Background Reading

Should the reader find herself/himself in a situation “that she/he does not
have the prerequisites for reading the prerequisites” [7], rather than being
discouraged she/he is advised to continue with the main material, as it is
still very likely to be understood completely or almost completely. Should the
latter happen, the prerequisites can be supplemented by information from
many standard sources, some of which are listed below.

The book [1] covers the basics of database theory, while many database
systems texts cover design, querying, and building real-life databases, for ex-
ample, [5, 13, 15]. The basic mathematical background needed is covered in a
standard undergraduate “discrete mathematics for computer science” course;
moreover, a good source for this material is the book [14]. For additional in-
formation about computability theory, we provide a primer in Appendix B.
Furthermore, we refer the reader to [8, 10, 16]; standard texts on complexity
theory are [2, 12, 18]. For the foundations of finite model theory and descrip-
tive complexity, the reader is referred to [6, 9, 11].
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First-Order Logic

Database query languages are either declarative or procedural. In a declara-
tive language, one provides a specification of what a query result should be,
typically by means of logical formulae (sometimes presented in a specialized
programming syntax). In the case of relational databases, such languages are
usually based on first-order logic, which often appears in the literature under
the name relational calculus. In a procedural language, on the other hand, one
specifies how the data is manipulated to produce the desired result. The most
commonly used one for relational databases is relational algebra. We present
these languages next, starting with first-order logic.

Syntax of First-Order Logic

Recall that a schema S can be seen as a finite set of relation names, and
each relation name of S has an arity under S. Recall also that we assume a
countably infinite set of values Const called constants, and a countably infinite
set of variables Var. Constants will be typically denoted by a, b, c, . . ., and
variables by x, y, z, . . . (possibly with subscripts and superscripts). Constants
and variables are called terms. Formulae of first-order logic are inductively
defined using terms, conjunction (∧), disjunction (∨), negation (¬), existential
quantification (∃), and universal quantification (∀).

Definition 3.1: Syntax of First-Order Logic

We define formulae of first-order logic (FO) over a schema S as follows:

• If a is a constant from Const, and x, y are variables from Var, then
x = a and x = y are atomic formulae.

• If u1, . . . , uk are terms (not necessarily distinct), and R is a k-ary
relation name from S, then R(u1, . . . , uk) is an atomic formula.
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• If ϕ1 and ϕ2 are formulae, then (ϕ1 ∧ϕ2), (ϕ1 ∨ϕ2), and (¬ϕ1) are
formulae.

• If ϕ is a formula and x ∈ Var, then (∃xϕ) and (∀xϕ) are formulae.

The size ‖ϕ‖ of ϕ is defined to be the total number of constants, variables,
and symbols from {∧,∨,¬,=,∃,∀} occurring in ϕ. For example, the size of
(x = a ∨ x = b) is seven.

Formulae of the form x = a and x = y are called equational atoms. Fur-
thermore, as already mentioned in Chapter 2, formulae of the form R(ū) are
called relational atoms. Note that we allow repetition of variables in relational
atoms, for example, we may write R(x, x, y). We shall use the standard short-
hand (ϕ→ ψ) for ((¬ϕ)∨ψ) and (ϕ↔ ψ) for ((ϕ→ ψ)∧(ψ → ϕ)). To reduce
notational clutter, we will often omit the outermost brackets of formulae.

A crucial notion is that of free variables of a formula, which are essentially
the variables in a formula that are not quantified. Given an FO formula ϕ,
the set of free variables of ϕ, denoted FV(ϕ), is inductively defined as follows:

• FV(x = y) = {x, y}.
• FV(x = a) = {x}.
• FV(R(u1, . . . , uk)) = {u1, . . . , uk} ∩ Var.

• FV(ϕ1 ∨ ϕ2) = FV(ϕ1 ∧ ϕ2) = FV(ϕ1) ∪ FV(ϕ2).

• FV(¬ϕ) = FV(ϕ).

• FV(∃xϕ) = FV(∀xϕ) = FV(ϕ)− {x}.

If x ∈ FV(ϕ), we call it a free variable (of ϕ); otherwise, x is called bound.
An FO formula ϕ without free variables is called a sentence.

Example 3.2: First-Order Formulae

Consider the following (named) database schema:

Person [ pid, pname, cid ]

Profession [ pid, prname ]

City [ cid, cname, country ]

The Person relation stores internal person IDs (pid), names (pname),
and the ID of their city of birth (cid). The Profession relation contains
the professions of persons by storing their person ID (pid) and profession
name (prname). Finally, City contains a bit of geographic information by
storing IDs (cid) and names (cname) of cities, together with the country
they are located in (country). In what follows, we give some examples
of FO formulae over this schema. Consider first the FO formula:
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∃y∃z∃u1∃u2

(
Person(x, y, z)∧

Profession(x, u1) ∧ Profession(x, u2) ∧ ¬(u1 = u2)
)
. (3.1)

This formula has one free variable, that is, x. Consider now the formula

∃z
(
Person(x, y, z) ∧ ∀r∀s (¬City(z, r, s))

)
. (3.2)

The free variables of this formula are x, y. Finally, consider the formula

∃x∃z
(
Person(x, y, z)∧

(Profession(x, ‘author’) ∨ Profession(x, ‘actor’))
)
. (3.3)

This formula has one free variable, that is, y.

Semantics of First-Order Logic

Given a database D of a schema S, we inductively define the notion of satisfac-
tion of a formula ϕ over S in D with respect to an assignment η for ϕ over D.
Such an assignment is a function from FV(ϕ) to Dom(D)∪Dom(ϕ) ⊆ Const,
where Dom(ϕ) is the set of constants mentioned in ϕ. For example, for the
formula R(x, y, a), η is the function {x, y} → Dom(D)∪ {a}. In the following
definition (and also later in the book), we write η[x/u], for a variable x and
term u, for the assignment that modifies η by setting η(x) = u. Furthermore,
to avoid heavy notation, we extend η to be the identity on Const.

Definition 3.3: Semantics of First-Order Logic

Given a databaseD of a schema S, a formula ϕ over S, and an assignment
η for ϕ over D, we inductively define when ϕ is satisfied in D under η,
written (D, η) |= ϕ, as follows:

• If ϕ is x = y, then (D, η) |= ϕ if η(x) = η(y).

• If ϕ is x = a, then (D, η) |= ϕ if η(x) = a.

• If ϕ is R(u1, . . . , uk), then (D, η) |= ϕ if R(η(u1), . . . , η(uk)) ∈ D.

• If ϕ = ϕ1 ∧ ϕ2, then (D, η) |= ϕ if (D, η) |= ϕ1 and (D, η) |= ϕ2.

• If ϕ = ϕ1 ∨ ϕ2, then (D, η) |= ϕ if (D, η) |= ϕ1 or (D, η) |= ϕ2.

• If ϕ = ¬ψ, then (D, η) |= ϕ if (D, η) |= ψ does not hold.

• If ϕ = ∃xψ, then (D, η) |= ϕ if (D, η[x/a]) |= ψ for some constant
a ∈ Dom(D) ∪Dom(ϕ).

• If ϕ = ∀xψ, then (D, η) |= ϕ if (D, η[x/a]) |= ψ for each constant
a ∈ Dom(D) ∪Dom(ϕ).
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An assignment η for a sentence ϕ has an empty domain (since the domain
of η is FV(ϕ)), and thus it is unique. For this unique η, it is either the case
that (D, η) |= ϕ or not. If the former is true, then we simply write D |= ϕ and
say that D satisfies ϕ.

Example 3.4: Semantics of First-Order Formulae

We provide an intuitive description of the semantic meaning of the for-
mulae given in Example 3.2:

• Formula (3.1) is satisfied by all x such that x is the ID of a person
with two different professions.

• Formula (3.2) is satisfied by all x, y such that x and y are the ID and
name of persons for which their city of birth is not in the database.

• Formula (3.3) is satisfied by all y such that y is the name of a person
who is an author or an actor.

It is crucial to say that the semantics of FO are defined in a way that is well-
suited for database applications, but slightly departs from the logic literature.
In particular, the range of quantifiers is the set of constants Dom(D)∪Dom(ϕ)
(see the last two items of Definition 3.3), whereas in the standard definition is
the set of values Const. This is why η associates elements of Dom(D)∪Dom(ϕ)
to variables, while in the standard definition one would allow η to associate
arbitrary elements of Const to variables. The set Dom(D)∪Dom(ϕ) is called
the active domain of D and ϕ. Therefore, Definition 3.3 actually defines the so-
called active domain semantics, which is standard in the database literature.
The importance of the active domain semantics is revealed below where we
use FO to define database queries.

Notational Conventions

We introduce some notational conventions concerning FO formulae that would
significantly improve readability:

• Since conjunction is associative, we will omit brackets in long conjunctions
and write, for example, x1∧x2∧x3∧x4 instead of ((x1∧x2)∧x3)∧x4. We
follow the same convention for disjunction. We also omit brackets within
sequences of quantifiers.

• We often write ∃x̄ ϕ for ∃x1∃x2 . . . ∃xm ϕ, where x̄ = (x1, . . . , xm), and
likewise for universal quantifiers ∀x̄.

• We assume that ¬ binds the strongest, followed by ∧, then ∨, and fi-
nally quantifiers. For example, by ∃x¬R(x) ∧ S(x) we mean the formula
∃x ((¬R(x)) ∧ S(x)). We will, however, add brackets to formulae when
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we feel that it improves their readability. Notice that this precedence of
operators also influences the range of variables; e.g., by ∀xR(x)∧S(x) we
mean the formula ∀x (R(x) ∧ S(x)), as opposed to (∀xR(x)) ∧ S(x).

• Finally, we write x 6= y instead of ¬(x = y), and likewise for (x = a).

Equivalences

In the way FO is defined in Definition 3.1, some constructors are redundant.
For instance, we know by De Morgan’s laws that ¬(ϕ ∨ ψ) is equivalent to
¬ϕ∧¬ψ, and ¬(ϕ∧ψ) is equivalent to ¬ϕ∨¬ψ. Furthermore, the formula ¬∀xϕ
is equivalent to ∃x¬ϕ and ¬∃xϕ is equivalent to ∀x¬ϕ. These equivalences
mean that the full set of Boolean connectives and quantifiers is not necessary
to define all of FO. For example, one can just use ∨,¬, and ∃, or ∧,¬, and ∃,
and this will capture the full expressive power of FO. This is useful for proofs
that proceed by induction on the structure of FO formulae.

For some proofs in Part I of the book it will be convenient to assume
that constants do not appear in relational atoms. We can always rewrite FO
formulae to such a form via equalities, at the expense of a linear blow-up. For
instance, we can write R(x, a, b) as ∃xa∃xb R(x, xa, xb) ∧ (xa = a) ∧ (xb = b).

First-Order Queries

Recall that a k-ary query q produces a finite set of k-ary tuples q(D) ⊆ Constk,
for every database D. FO formulae can be used to define database queries. In
order to do this, we specify together with the formula ϕ a tuple x̄ of variables
that indicates how the output of the query is formed. As a simple example,
consider an atomic formula ϕ = R(x, y) and the tuple (x, y). Then the query
ϕ(x, y) would return the entire relation R from the database. Notice that the
query is actually R(x, y)(x, y), where the first occurrence of (x, y) is part of the
relational atom R(x, y), and the second occurrence specifies how the output
of the query is formed. To consider a few other examples, if ϕ = R(x, y), then
the query ϕ(x, x, y) returns all tuples (a, a, b) such that (a, b) is in the relation
R. Finally, if ϕ = R(x, x), then the query ϕ(x) returns all tuples (a) such that
(a, a) is in the relation R. The definition of FO queries follows.

Definition 3.5: First-Order Queries

A first-order query over a schema S is an expression of the form ϕ(x̄),
where ϕ is an FO formula over S, and x̄ is a tuple of free variables of ϕ
such that each free variable of ϕ occurs in x̄ at least once.

We define size ‖ϕ(x̄)‖ of a first-order query ϕ(x̄) as ‖ϕ‖+ ‖x̄‖.
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Let ϕ(x̄) be an FO query over S. Given a database D of S, and a tuple
ā of elements from Const, we say that D satisfies the query ϕ(x̄) using the
values ā, denoted by D |= ϕ(ā), if there exists an assignment η for ϕ over D
such that η(x̄) = ā and (D, η) |= ϕ. Having this notion in place, we can now
define what is the output of an FO query on a database.

Definition 3.6: Evaluation of First-Order Queries

Given a database D of a schema S, and an FO query q = ϕ(x1, . . . , xk)
over S, where k ≥ 0, the output of q on D is defined as the set of tuples

q(D) = {ā ∈ Constk | D |= ϕ(ā)}.

It is clear that q(D) ∈ P(Constk). However, to be able to say that q defines
a k-ary query over S in the sense of Definition 2.5, we need to ensure that
q(D) ∈ Pfin(Constk), i.e., the output of q on D is finite. This is guaranteed by
the following result, which is an immediate consequence of the active domain
semantics of FO (see Definition 3.3).

Proposition 3.7

Given a database D of a schema S, and an FO query q = ϕ(x1, . . . , xk)
over S, where k ≥ 0, it holds that

q(D) = {ā ∈ (Dom(D) ∪Dom(ϕ))k | D |= ϕ(ā)}.

Since, by definition, the set of values Dom(D) ∪ Dom(ϕ) is finite, Propo-
sition 3.7 implies that q(D) ∈ Pfin(Constk), and thus, q defines a k-ary query
over S in the sense of Definition 2.5.

Before we proceed further, let us stress that if we adopt the standard
semantics of FO from logic textbooks, which uses assignments η that associate
arbitrary elements of Const to variables, then there is no guarantee that q(D)
is finite. Consider, for example, the query q = ϕ(x) with ϕ = ¬R(x), and the
database D = {R(a), P (b)}. Under the standard FO semantics, the output of
q on D would be the set {(c) | c ∈ Const − {a}}, and thus infinite. On the
other hand, under the active domain semantics we have that q(D) = {(b)}.

Example 3.8: Evaluation of First Order Queries

A database D of the schema in Example 3.2 is depicted in Figure 3.1.
We proceed to evaluate the FO queries obtained from the FO formulae
given in Example 3.2 on D:

• Let q1 be the query ϕ1(x), where ϕ1 is the formula (3.1). Then

q1(D) = {(‘1’), (‘3’), (‘4’)}.
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Person

pid pname cid

1 Aretha MPH
2 Billie BLT
3 Bob DLT
4 Freddie ST

City

cid cname country

MPH Memphis United States
DLT Duluth United States
ST Stone Town Tanzania

Profession

pid prname

1 singer
1 songwriter
1 actor
2 singer
3 singer
3 songwriter
3 author
4 singer
4 songwriter

Fig. 3.1: A database of the schema in Example 3.2.

• Let q2 be the query ϕ2(x, y), where ϕ2 is the formula (3.2). Then

q2(D) = {(‘2’, ‘Billie’)}.

• Let q3 be the query ϕ3(y), where ϕ3 is the formula (3.3). Then

q3(D) = {(‘Aretha’), (‘Bob’)}.

Boolean First-Order Queries

FO sentences, that is, FO formulae without free variables, are used to define
Boolean queries, i.e., queries that return true or false, and hence the name
Boolean FO queries. By definition, the output of a query q on a database
D corresponds to a set of tuples, and thus, Boolean FO queries will be no
exception to this. We consider such queries to be of the form q = ϕ(), where
ϕ is an FO sentence, and () denotes the empty tuple. There are two cases:

• either q(D) consists of the empty tuple, that is, q(D) = {()}, which hap-
pens precisely when D |= ϕ, or

• q(D) is the empty set, which happens precisely when D |= ¬ϕ.

By convention, we write q(D) = true if D |= ϕ, and q(D) = false otherwise.
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Relational Algebra

Queries expressed in FO are declarative and tell us what the output of a query
should be. In this chapter, we introduce relational algebra, abbreviated RA,
which contrasts itself with FO because it is procedural, i.e., it specifies how
the output of queries can be obtained via a sequence of operations on the
data. Relational algebra is of significant practical importance in databases,
since database systems typically use relational-algebra-like representations of
queries to do query optimization, that is, to discover methods in which a given
query can be evaluated efficiently.

We present relational algebra in its most elementary form, in both the un-
named and the named perspective. The following table gives a quick overview
of the operators in the unnamed and named relational algebra.

(Unnamed) RA Named RA
Operator Name Symbol Symbol

selection σθ σθ
projection πα πα

Cartesian product ×
rename ρ

union ∪ ∪
difference − −

join onθ on

We explain these operators and their semantics next, in the definitions of the
unnamed and named RA. Since we will usually be working with the unnamed
perspective in this book, we will often abbreviate “unnamed RA” as “RA”.

Syntax of the Unnamed Relational Algebra

Under the unnamed perspective, RA consists of five primitive operations: se-
lection, projection, Cartesian product, union, and difference. Before giving the
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formal definitions of those operations, we first introduce the notion of condi-
tion over a set of integers that is needed for defining the selection operation.
A condition θ over {1, . . . , k}, for some k ≥ 0, is a Boolean combination of
statements of the form i

.
= j, i

.
= a, i 6 .= j, and i 6 .= a, where for a ∈ Const and

i, j ∈ [k]. Intuitively, a condition i
.
= j is used to indicate that in a tuple the

values of the i-th attribute and the j-th attribute must be the same, while
i 6 .= j is used to indicate that these values must be different. Moreover, a con-
dition i

.
= a is used to indicate that in a tuple the value of the i-th attribute

must be the constant a, while i 6 .= a is used to indicate that this value must be
different than a. Let us clarify that we use the symbols

.
= and 6 .=, instead of =

and 6=, to avoid writing statements such as “1 = 2”, which are likely to confuse
the reader. Notice that by using De Morgan’s laws to propagate negation, we
can define conditions as positive Boolean combinations of statements i

.
= j and

i 6 .= j, i.e., Boolean combinations using only conjunction ∧ and disjunction ∨.
For example, ¬

(
(1

.
= 2) ∨ (2 6 .= 3)

)
is equivalent to (1 6 .= 2) ∧ (2

.
= 3).

Definition 4.1: Syntax of Unnamed Relational Algebra

We inductively define RA expressions over a schema S, and their asso-
ciated arities, as follows:

Base Expressions. If R is a k-ary relation name from S, then R is an
atomic RA expression over S of arity k. If a ∈ Const, then {a} is an
RA expression over S of arity 1.

Selection. If e is an RA expression over S of arity k ≥ 0 and θ is a
condition over [k], then σθ(e) is an RA expression over S of arity k.

Projection. If e is an RA expression over S of arity k ≥ 0 and α =
(i1, . . . , im), for m ≥ 0, is a list of numbers from [k], then πα(e) is
an RA expression over S of arity m.

Cartesian Product. If e1, e2 are RA expressions over S of arity k ≥ 0
and m ≥ 0, respectively, then their Cartesian product (e1× e2) is an
RA expression over S of arity k +m.

Union. If e1, e2 are RA expressions over S of the same arity k ≥ 0, then
their union (e1 ∪ e2) is an RA expression over S of arity k.

Difference. If e1, e2 are RA expressions over S of the same arity k ≥ 0,
then their difference (e1 − e2) is an RA expression over S of arity k.

The size ‖e‖ of RA expression e is the total number of occurrences of relation
names, constants, natural numbers, and symbols from {σ, π,×,∪,−,∧,∨,¬,
.
=, 6 .=} in e. For instance, the size of σ1

.
=2(π(1,2)(R)) is eight.

Notice that in the definition of the projection operation, we allow m to be
0, in which case the list of integers α = (i1, . . . , im) is the empty list (). This
is useful for expressing Boolean queries.
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Semantics of Unnamed Relational Algebra

We proceed to define the semantics of RA expressions. We first need to define
the operation of projection over tuples. For a tuple ā = (a1, . . . , ak) ∈ Constk,
and a list α = (i1, . . . , im) of numbers from [k], the projection πα(ā) is defined
as the tuple (ai1 , ai2 , . . . , aim).1 Here are some simple examples:

π(1,3)(a, b, c, d) = (a, c) π(1,3,3)(a, b, c, d) = (a, c, c) π()(a, b, c, d) = ().

We also need the notion of satisfaction of conditions over tuples. We in-
ductively define when a tuple ā satisfies the condition θ, denoted ā |= θ:

ā |= i
.
= j if ai = aj ā |= i

.
= a if ai = a

ā |= i 6 .= j if ai 6= aj ā |= i 6 .= a if ai 6= a

ā |= θ ∧ θ′ if ā |= θ and ā |= θ′ ā |= θ ∨ θ′ if ā |= θ or ā |= θ′

ā |= ¬θ if ā |= θ does not hold

We are now ready to define the semantics of RA expressions.

Definition 4.2: Semantics of Unnamed RA Expressions

Let D be a database of a schema S, and e an RA expression over S. We
inductively define the output e(D) of e on D as follows:

• If e = R, where R is a relation name from S, then e(D) = RD.

• If e = {a}, for a ∈ Const, then e(D) = {a}.
• If e = σθ(e1), where e1 is an RA expression of arity k ≥ 0 and θ is a

condition over [k], then e(D) = {ā | ā ∈ e1(D) and ā |= θ}.
• If e = πα(e1), where e1 is an RA expression of arity k ≥ 0 and
α = (i1, . . . , im), for m ≥ 0, is a list of numbers from [k], then e(D)
is the m-ary relation {πα(ā) | ā ∈ e1(D)}.

• If e = (e1 × e2), where e1 and e2 are RA expressions of arity k ≥ 0
and ` ≥ 0, respectively, then e(D) = e1(D)× e2(D).

• If e = (e1 ∪ e2), where e1 and e2 are RA expressions of the same
arity k ≥ 0, then e(D) = e1(D) ∪ e2(D).

• If e = (e1 − e2), where e1 and e2 are RA expressions of the same
arity k ≥ 0, then e(D) = e1(D)− e2(D).

We sometimes use derived operations, one of them of special importance:

1 The projection πα(ū), where ū is tuple from (Const∪Var)k, is defined in the same
way. For example, π(1,3)(a, x, y, d) = (a, y) and π(1,3,3)(a, x, y, d) = (a, y, y). We
are going to apply the projection operator over tuples of constants and variables
in subsequent chapters such as Chapters 10 and 11.
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Join. Given a k-ary RA expression e1, an m-ary RA expression e2, and a
condition θ over {1, . . . , k+m}, the θ-join of e1 and e2 is denoted e1 onθ e2.
Its output on a database D is defined as

(e1 onθ e2)(D) = σθ(e1(D)× e2(D)) .

We note that RA expressions readily define queries on databases. Indeed,
if e is a RA expression, then the output of e on a database D is e(D). In the
remainder of the book, we will therefore sometimes also refer to e as a query.

Example 4.3: Unnamed RA Queries

Consider again the (named) database schema:

Person [ pid, pname, cid ]

Profession [ pid, prname ]

City [ cid, cname, country ]

The RA expression

π(1)

(
σ56 .=7

(
(Person on1

.
=4 Profession) on1

.
=6 Profession

))
returns the IDs of persons with at least two professions. The expression

π(1,2)(Person)− π(1,2)

(
Person on3

.
=4 City

)
returns the ID and name of persons whose city of birth does not appear
in the database. Finally, the expression

π(2)

(
σ(5

.
=‘author’)∨(5

.
=‘actor’)(Person on1

.
=4 Profession)

)
returns the names of persons that are author or actors.

Syntax of the Named Relational Algebra

Under the named perspective, the presentation changes a bit. Before giving
the formal definition, let us first note that the notion of condition, needed for
defining the selection operation, is now over a set of attributes, and not a set
of integers as in the case of unnamed RA. More precisely, a condition θ over a
set of attributes U ⊆ Att is a Boolean combination of statements of the form
A
.
= B, A

.
= a, A 6 .= B, and A 6 .= a, where a ∈ Const and A,B ∈ U .

Definition 4.4: Syntax of Named Relational Algebra

We inductively define named RA expressions over a schema S, and their
associated sorts, as follows:
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Base Expressions. IfR ∈ S, thenR is an atomic named RA expression
over S of sort S(R). If a ∈ Const and A ∈ Att, then {(A : a)} is a
named RA expression of sort {A}.

Selection. If e is a named RA expression of sort U and θ is a condition
over U , then σθ(e) is a named RA expression of sort U .

Projection. If e is a named RA expression of sort U and α ⊆ U , then
πα(e) is a named RA expression of sort α.

Join. If e1, e2 are named RA expressions of sort U1 and U2, respectively,
then their join (e1 on e2) is a named RA expression of sort U1 ∪ U2.

Rename. If e is a named RA expression of sort U , then ρA→B(e), where
A ∈ U and B ∈ Att − U , is a named RA expression of sort (U −
{A}) ∪ {B}.

Union. If e1, e2 are named RA expressions of the same sort U , then
their union (e1 ∪ e2) is a named RA expression of sort U .

Difference. If e1, e2 are named RA expressions of the same sort U , then
their difference (e1 − e2) is a named RA expression of sort U .

The size ‖e‖ of a named RA expression e is the total number of occur-
rences of relation names, constants, attribute names, and symbols from
{σ, π,on, ρ,∪,−,∧,∨,¬, .=, 6 .=} in e. For instance, the size of σA .=B(π(A,B)(R))
is eight.

Notice in the definition of the projection operation the contrast with the
unnamed perspective, where α is a list of numbers with repetitions.

Semantics of the Named Relational Algebra

The semantics of named RA expressions is defined similarly to the unnamed
case, with the main difference that e(D) is now a named relation instance.
Therefore, we only discuss rename and join, and leave the others as exercises.

Rename. If e = ρA→B(e1), where e1 is a named RA expression of sort U ,
A ∈ U , and B ∈ Att− U , then e(D) is the relation

{t | t(B) = t1(A) and t(C) = t1(C) for t1 ∈ e1(D) and C ∈ U − {A}}.

Note that renaming does not change the data at all, it only changes names
of attributes. Nonetheless, this operation is necessary under the named
perspective. For instance, consider two relations, R and S, the former with
a single attribute A and the latter with a single attribute B. Suppose we
want to find their union in relational algebra. The problem is that the
union is only defined if the sorts of R and S are the same, which is not
the case. To take their union, we can therefore rename the attribute of S
to be A, and complete the task by writing the expression

(
R∪ρB→A(S)

)
.
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Join. The other new primitive operator in the named perpective is join (also
known in the literature as natural join). It is simply a join of two relations
on the condition that their common attributes are the same. Formally, if
e = e1 on e2, where e1 and e2 are named RA expressions of sorts U1 and
U2, then e(D) is the set of tuples t such that

t(A) =


t1(A) if A ∈ U1,

t2(A) if A ∈ U2 − U1,

where t1 ∈ e1(D), t2 ∈ e2(D), and t1(A) = t2(A) for all A ∈ U1 ∩ U2. To
give an example, consider the relations R[A,B] and S[B,C]. Their join
R on S has attributes A,B,C, and consists of triples (a, b, c) such that
R(a, b) and S(b, c) are both facts in the database. Notice that, if R and S
have no common attributes, their join is their Cartesian product. For this
reason, we do not have the operator × in the named RA.

Similarly to the unnamed perspective, we can interpret named RA expres-
sions e as queries over databases D. However, since queries return tuples in
Constk according to Definition 2.5, and since e(D) is a named relation in-
stance, we still need to explain how we go from e(D) to a finite set of tuples
over Const. To this end, we will assume that the order l that we introduced in
Chapter 2 for translating between databases from the named to the unnamed
perspective, is also an order on Att, i.e., we assume that it is an oder on the
set Att ∪ (Rel× Att).2 We can now associate to e a query qe by defining that,
on database D, the output of qe on D is the set

qe(D) = {(a1, . . . , ak) | (A1 : a1, . . . , Ak : ak) ∈ e(D)

such that A1 lA2 l · · ·lAk} .

In the remainder of the book, we will usually not formally distinguish between
the RA expression e and the query qe. In particular, if we talk about the query
e, then we mean the query qe that we just defined.

Example 4.5: Named RA Queries

We provide named RA versions for the expressions given in Example 4.3.
The expression

π{pid}
(
σprname6 .=prname2

(
(Person on

Profession) on ρprname→prname2(Profession)
))

returns the IDs of persons with at least two professions. The expression

2 We can assume that A l (R,B) for all A,B ∈ Att and R ∈ Rel, although this is
inconsequential.
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π{pid,pname}(Person)− π{pid,pname}
(
Person on City

)
returns the ID and name of persons whose city of birth does not appear
in the database. Finally, the expression

π{pname}
(
σ(prname

.
=‘author’)∨(prname

.
=‘actor’)(Person on Profession)

)
returns the names of persons that are authors or actors.

Expressiveness of Named and Unnamed RA

We often use named RA in examples since it is closer to how we think about
real-life databases. On the other hand, many results are easier to state and
prove in unnamed RA. This comes at no cost since, as we discuss below, every
named RA query can be expressed in unnamed RA, and vice versa.

Let f be the function that converts a database D from the named to the
unnamed perspective, as presented in Chapter 2. Recall that this converts
each tuple t = (A1 : a1, . . . , Ak : ak) in D(R), for a relation name R of sort
{A1, . . . , Ak} (with (R,A1) l · · · l (R,Ak)), into a tuple t′ = (a1, . . . , ak) in
f(D)(R). Let qn be a named RA query, qu an unnamed RA query, and S a
named database schema. We say that qn is equivalent to qu under S if, for
every database D of S, we have that qn(D) = qu(f(D)).

Note that two queries can be equivalent under one schema but not equiva-
lent under another one. This is unavoidable since the order inside an unnamed
tuple depends on the names of the attributes (the order is defined by l). For
instance, if R is a binary relation name, then π(1)(R) is equivalent to π{B}(R)
over S1 = {R(B,C)} but not over S2 = {R(A,B)}.

The following theorem establishes that each named RA query can be trans-
lated into an equivalent unnamed RA query. We leave the statement of the
reverse direction and its proof as an exercise.

Theorem 4.6

Consider a named database schema S, and a named RA query qn. There
exists an unnamed RA query qu that is equivalent to qn under S.

Proof. We prove this by induction on the structure of qn. Assume that qn has
sort {A1, . . . , Ak} with A1 l · · · l Ak, where l is the ordering we used in
the definition of named RA queries. We proceed to explain how to obtain an
unnamed RA query qu that is equivalent to qn, which means that the i-th
attribute in the output of qu corresponds to the Ai-attribute in the output of
qn. In the remainder of the proof, whenever we write a set of attributes as a
set {A1, . . . , Ak}, we assume that A1 l · · ·lAk. The base cases are:
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• If qn = R, for a relation name R ∈ S of sort {A1, . . . , Ak}, then qu = R.

• If qn = {(A : a)}, then qu = {a}.

For the inductive step, assume that q′n and q′′n are named RA expressions of
sort U ′ = {A′1, . . . , A′k} and U ′′ = {A′′1 , . . . , A′′` }, respectively, and assume that
they are equivalent to the unnamed RA expressions q′u and q′′u , respectively.

• Let qn = σθ(q
′
n). Then qu = σθ′(q

′
u), where θ′ is the condition that is

obtained from θ by replacing each occurrence of attribute A′i with i, for
every i ∈ [k]. For example, if θ is the condition (A′1

.
= A′3) ∧ (A′2 6

.
= b),

then θ′ is the condition (1
.
= 3) ∧ (2 6 .= b).

• Let qn = πα(q′n) and α ⊆ U ′. Then qu = πα′(q
′
u), where α′ is the list of all

i ∈ [k] with A′i ∈ α.

• Let qn = (q′n on q′′n ). Then qu = πα (q′u onθ q′′u ), where θ is the conjunction
of all conditions i = j such that A′i = A′′j , for i ∈ [k] and j ∈ [`]. To define
α, let {A1, . . . , Am} = U ′ ∪ U ′′ and let g : [m]→ [k + `] be such that

g(i) =


j if Ai = A′j ,

k + j if Ai = A′′j and A′′j ∈ U ′′ − U ′ .

We now define α = (g(1), . . . , g(m)). Therefore, θ allows us to mimic the
natural join on q′n and q′′n , while πα is used for getting rid of redundant
attributes and putting the attributes in an ordering that conforms to l.

• Let qn = ρA→B(q′n), where A = A′i for some i ∈ [k]. Let j = |{i | A′ilB}|.
Then qu = πα(q′u), where α is obtained from (1, . . . , k) by deleting i and
reinserting it right after j if j > 0, and at the beginning of the list if j = 0.

• Finally, if qn = q′n∪q′′n , then qu = q′u∪q′′u , where q′u and q′′u are the unnamed
RA expressions that are obtained by the induction hypothesis for q′n and
q′′n , respectively. The case when qn = q′n − q′′n is analogous. ut
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Relational Algebra and SQL

In this chapter, we shed light on the relationship between relational algebra
and SQL, the dominant query language in the relational database world. It is
a complex language (the full descriptions takes many hundreds of pages), and
thus here we focus our attention on its core fragment.

A Core of SQL

We assume that the reader by virtue of being interested in the principles of
databases has some basic familiarity with relational databases and thus, by
necessity, with SQL. For now, we concentrate on the part of the language that
corresponds to relational algebra. Its expressions are basic queries of the form

SELECT [DISTINCT] <list of attributes>

FROM <list of relations>

WHERE <condition>

and we can form more complex queries by using expressions

Q1 UNION Q2 and Q1 EXCEPT Q2 .

If the queries Q1 and Q2 return tables over the same set of attributes, these
correspond to union and difference.

The list of relations provides relation names used in the query, and also
their aliases; we either put a name R in the list, or R AS R1, in which case R1

is used as a new name for R. This could be used to shorten the name, e.g.,

RelationWithAVeryLongName AS ShortName

or to use the same relation more than once, in which case different aliases are
needed. We shall do both in the examples very soon.



36 5 Relational Algebra and SQL

The list of attributes containts attributes of relation names mentioned in
FROM or constants. For example, if we had R AS R1 in FROM and R has an at-
tribute A, we can have a reference to R1.A in that list. The list of attributes
specifies the attributes that will compose the output of the query. For a con-
stant, one needs to provide the name of attribute: for example, 5 AS B will
output the constant 5 as value of attribute B.

The keyword DISTINCT is to instruct the query to perform duplicate elim-
ination. In general, SQL tables and query results are allowed to contain du-
plicates. For example, in a database containing two facts, R(a, b) and R(a, c),
projecting on the first column would result in two copies of a. We shall discuss
duplicates in Chapter 46. In this Chapter, we will always assume that SQL
queries only return sets, and omit DISTINCT from queries used in examples.

As conditions in this basic fragment we shall consider:

• equalities between attributes, e.g., R.A = S.B,

• equalities between attributes and constants, e.g., Person.name = ’John’,

• complex conditions built from these basic ones by using AND, OR, and NOT.

Example 5.1: SQL Queries

Consider the FO query ϕ1(x), where ϕ1 is the FO formula (3.1). This
can be written as the SQL query

SELECT P.pid

FROM Person AS P, Profession AS Pr1, Profession AS Pr2

WHERE P.pid = Pr1.pid

AND P.pid = Pr1.pid

AND NOT (Pr1.prname = Pr2.prname)

The formula ϕ1 mentions the relation name Person once, and the rela-
tion name Profession twice, and so does the above SQL query in the
FROM clause (assigning different names to different occurrences, to avoid
ambiguity). The first two conditions in the WHERE clause capture the use
of the same variable x in three atomic subformulae of ϕ1, whereas the
last condition corresponds to the subformula ¬(u1 = u2).

Consider now the query ϕ2(x, y), where ϕ2 is the FO formula (3.2),
which asks for IDs and names of people whose cities of birth were not
recorded in the City relation. This can be expressed as the SQL query:

SELECT Person.pid, Person.pname

FROM Person

EXCEPT

SELECT Person.pid, Person.pname

FROM Person, City
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WHERE Person.cid = City.cid

The first subquery asks for all people, the second subquery for those that
have a city of birth recorded, and EXCEPT is their difference. This query
returns people as pairs, consisting of their ID and their name.

Relational Algebra to Core SQL

We now show that (named) relational algebra queries can always be written as
Core SQL queries. Let e be a named RA expression. We inductively translate
e into an equivalent SQL query Qe as follows.

Base Expressions. If e = R, and R has attributes A1, . . . , An, then Qe is

SELECT A1, . . . , An
FROM R

In fact, SQL has a shorthand * for listing all attributes of a relation name,
and the above query can be written as SELECT * FROM R.

If e = {(A : a)}, then Qe is simply

SELECT a AS A

Selection and Projection. Assume that e is translated into

SELECT A1, . . . , An
FROM R1, . . . , Rm
WHERE condition

• Then, σθ(e) is translated into

SELECT A1, . . . , An
FROM R1, . . . , Rm
WHERE condition AND Cθ

where Cθ expresses the condition θ in SQL syntax. For instance, if θ
is (A

.
= B) ∧ ¬(C

.
= 1) then Cθ is (A = B) AND NOT (C = 1).

• Furthermore, πα(e) is translated into

SELECT Ai1 , . . . , Aik
FROM R1, . . . , Rm
WHERE condition

where Ai1 , . . . , Aik are the elements from the set α.

Rename. Assume now that e is translated into
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SELECT . . . , Ri.Aj AS A, . . .
FROM R1, . . . , Rm
WHERE condition

Then, ρA→B(e) is translated into

SELECT . . . , Ri.Aj AS B, . . .
FROM R1, . . . , Rm
WHERE condition

Join, Union, and Difference. Assume now that e1 is translated into

SELECT A1, . . . , Ak, B1, . . . , Bp,
FROM R1, . . . , Rm
WHERE condition

and that e2 is translated into

SELECT A1, . . . , Ak, C1, . . . , Cs,
FROM S1, . . . , S`
WHERE condition′

where all the aliases R1, . . . , Rm, S1, . . . , S` are (renamed to be) distinct.

• The expression e1 on e2 is translated into

SELECT ne1(A1) AS A1, . . . , ne1(Ak) AS Ak,
ne1(B1) AS B1, . . . , ne1(Bp) AS Bp,
ne2(C1) AS C1, . . . , ne2(Cs) AS Cs,

FROM R1, . . . , Rm, S1, . . . , S`
WHERE condition AND condition′

AND ne1(A1) = ne2(A1) AND · · · AND ne1(Ak) = ne2(Ak)

where ne1(Ai) is the name of the attribute that was renamed as Ai
in the translation of e1. In other words, if we had R.A AS Ai in that
query, then ne1(Ai) = R.A, and the definition is similar for e2.

This can be easily illustrated via an example. Consider the relation
names R[A,B,D], S[B,C], T [A,C,D], and the two queries

SELECT A, C, D

FROM R, S AS S1

WHERE R.B = S1.B

and
SELECT A, B, D

FROM S AS S2, T
WHERE S2.C = T.C

Then, their join, having attributes A,B,C,D, is given by

SELECT R.A AS A, S2.B AS B, S1.C AS C, R.D AS D

FROM R, S AS S1, S AS S2, T

WHERE R.B = S1.B AND S2.C = T.C AND R.A = T.A AND R.D = T.D
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• If e = e1 − e2, then Qe is

(Qe1) EXCEPT (Qe2)

• Finally, if e = e1 ∪ e2, then Qe is

(Qe1) UNION (Qe2)

This completes the translation from (named) RA to Core SQL.

Core SQL to Relational Algebra

While the previous section explained how to write RA queries in SQL, this
section gives an intuition as to what happens when an SQL query is executed
on a DBMS. A declarative query is translated into a procedural query to be
executed. The real translation of SQL into RA is significantly more complex
and, of course, captures many more features of SQL (and thus, the algebra im-
plemented in DBMSs goes beyond the algebra we consider here). Nonetheless,
the translation we outline presents the key ideas of the real-life translation.

Assume that we start with the query

SELECT α1 AS B1, . . . , αn AS Bn
FROM R1 AS S1, . . . , Rm AS Sm
WHERE condition

where all relation names in FROM have been renamed so they are different, and
each αi is of the form Sj .Ap, that is, one of the attributes of the relation names
in the FROM clause. Let ρρρi be the sequence of renaming operators that rename
each attribute A of Ri to Si.A. Let ρρρout be the sequence of renaming operators
that forms the output, i.e., it renames each αi as Bi. Then, the translated
query in relational algebra follows:

ρρρout

(
π{α1,...,αn}

(
σcondition

(
ρρρ1

(
R1

)
on · · · on ρρρm

(
Rm
))))

.

Essentially the FROM defines the join, WHERE provides the condition for se-
lection, and SELECT is the final projection (hence, some clash of the naming
conventions in SQL and RA).

The translation is then supplemented by translating UNION to RA’s union
∪ and EXCEPT to RA’s difference −.
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Other SQL Features Captured by RA

A very important feature of SQL is using subqueries. In the fragment we are
considering, they are very convenient for a declarative presentation of queries
(although from the point of view of expressiveness of the language, they can
be omitted). Consider, for example, the query that computes the difference of
two relations R and S with one attribute A. We could use EXCEPT, but using
subqueries we can also write

SELECT R.A

FROM R

WHERE R.A NOT IN (SELECT S.A FROM S)

saying that we need to return elements of R that are not present in S, or

SELECT R.A

FROM R

WHERE NOT EXISTS (SELECT S.A FROM S WHERE S.A = R.A)

which asks for elements a of R such that there is no b in S satisfying a = b.
Both queries express the difference.

Example 5.2: Subqueries in SQL

Consider the query ϕ(x, y), where ϕ is the FO formula (3.2), which asks
for IDs and names of people whose cities of birth were not recorded in
the City relation. This can also be written as the SQL query:

SELECT P.pid, P.pname

FROM Person AS P

WHERE P.cid NOT IN (SELECT City.cid FROM City)

The above two forms of subqueries, using NOT IN and NOT EXISTS, corre-
spond to adding the following two types of selection conditions to RA, which,
nevertheless, do not increase the expressiveness of RA; see Exercise 1.5:

• ā ∈ e, where ā is a tuple of terms and e is an expression, checking whether
ā belongs to the result of the evaluation of e, and

• empty(e), checking if the result of the evaluation of e is empty.

In general, subqueries can be used in other clauses, and in fact they are
very commonly used in FROM. A simple example follows.
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Example 5.3: Subqueries in FROM

Consider the query ϕ(x), where ϕ is the FO formula (3.1), which asks
for people who have two different professions. This can be written as

SELECT PProfs.id

FROM

(SELECT P.pid AS id, Pr1.prname as pf1, Pr2.prname as pf2

FROM Person AS P, Profession AS Pr1, Profession AS Pr2

WHERE P.pid = Pr1.pid AND P.pid = Pr1.pid)

AS PProfs

WHERE NOT (PProfs.pf1 = PProfs.pf2)

In Example 5.3, the join of Person and Profession occurs in the subquery
in FROM, and the condition that two professions are different is applied to the
result of the join, which is given the name of PProfs. Again such addition does
not increase expressiveness (Exercise 1.6) but makes writing queries easier.

Other SQL Features Not Captured by RA

Bag Semantics. As mentioned already, SQL’s data model is based on bags,
i.e., the same tuple may occur multiple times in a database or output of a
query. Here we tacitly assumed that all relations are sets and each SELECT

is followed by DISTINCT to ensure that duplicates are eliminated. To see
how RA operations change in the presence of duplicates, see Chapter 46.

Grouping and Aggregation. An extremely common feature of SQL queries
is the use of aggregation and grouping. Aggregation allows numerical func-
tions to be applied to entire columns, for example, to find the total salary
of all employees in a company. Grouping allows such columns to be split
according to a value of some attribute; an example of this is a query that
returns the total salary of each department in a company. These features
will be discussed in more detail in Chapter 34.

Nulls. SQL databases permit missing values in tuples. To handle this, they
allow a special element null to be placed as a value. The handling of nulls
is very different though from the handling of values from Const, and even
the notion of query output changes in this case. These issues are discussed
in detail in Chapters 41 and 42.

Types. In SQL databases, attributes must be typed, i.e., all values in a col-
umn must have the same type. There are standard types such as numbers
(integers, floats), strings of various length, fixed or varying, date, time,
and many others. With the exception of the consideration of arithmetic
operations (Chapter 34), this is a subject that we do study in this book.
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Equivalence of Logic and Algebra

In this chapter, we prove that the declarative query language based on FO,
and the procedural query language RA have the same expressive power, which
is a fundamental result of relational database theory. Recall that we focus on
the unnamed version of RA for reasons that we explained earlier.

Theorem 6.1

The languages of RA queries and of FO queries are equally expressive.

The proof of Theorem 6.1 boils down to showing that, for a schema S, the
following statements hold:

(a) For every RA expression e over S, there exists an FO query qe such that
qe(D) = e(D), for every database D of S.

(b) For every FO query q over S, there exists an RA expression eq such that
eq(D) = q(D), for every database D of S.

In the proof of the above, we need a mechanism that allows us to substitute
variables in formulae. For an FO formula ϕ and variables {x1, . . . , xn}, we
denote by ϕ[x1/y1, . . . , xn/yn] the formula obtained from ϕ by simultaneously
replacing each xi with yi. We also use the notation ∃{x1, . . . , xn}ϕ for a set
of variables {x1, . . . , xn} as an abbreviation for ∃x1 · · · ∃xnϕ. Notice that the
ordering of quantification is irrelevant for the semantics of this formula.

From RA to FO

We first show (a) by induction on the structure of e. The base cases are:

• If e = R for R ∈ Dom(S), then the FO query is ϕe(x1, . . . , xar(R)), where
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ϕe = R(x1, . . . , xar(R))

with all the variables x1, . . . , xar(R) being different.

• If e is {a} with a ∈ Const, then the FO query is ϕe(x), where

ϕe = (x = a).

We now proceed with the induction step. Assume that e and e′ are RA
expressions over S for which we have equivalent FO queries ϕe(x1, . . . , xk) and
ϕe′(y1, . . . , y`), respectively. By renaming variables, we can assume, without
loss of generality, that {x1, . . . , xk} and {y1, . . . , y`} are disjoint.

• Let θ be a condition over {1, . . . , k}. Taking x̄ = (x1, . . . , xk), we induc-
tively define the formula θ[x̄] as follows:

– if θ is i
.
= j, i

.
= a, i 6 .= j, or i 6 .= a, then θ[x̄] is xi = xj , xi = a,

xi 6= xj , or xi 6= a, respectively,

– if θ = θ1 ∧ θ2, then θ[x̄] = θ1[x̄] ∧ θ2[x̄],

– if θ = θ1 ∨ θ2, then θ[x̄] = θ1[x̄] ∨ θ2[x̄], and

– if θ = ¬θ1, then θ[x̄] = ¬θ1[x̄].

Then, the FO query equivalent to σθ(e) is ϕσθ(e)(x̄) = ϕe(x̄) ∧ θ[x̄].

• Let α = (i1, . . . , ip) be a list of numbers from {1, . . . , k}. The FO query
equivalent to πα(e) is ϕπα(e)(xi1 , . . . , xip), where ϕπα(e) is the formula

∃({x1, . . . , xn} − {xi1 , . . . , xip}) ϕe.

Notice that, if α has repetitions, then (xi1 , . . . , xip) has repeated variables.
For example, if e = R, where R is binary, and α = (1, 1), then the FO
query is ϕe(x1, x1) with ϕe = ∃x2R(x1, x2).

• The FO query equivalent to e × e′ is ϕe×e′(x1, . . . , xk, y1, . . . , y`), where
ϕe×e′ is the formula

ϕe ∧ ϕe′ .

• Let e ∪ e′ be an RA expression, which is only well-defined if k = `. The
equivalent FO query is ϕe∪e′(x1, . . . , xk), where ϕe∪e′ is

ϕe ∨ (ϕe′ [y1/x1, . . . , yk/xk]).

• Let e − e′ be an RA expression, which is only well-defined if k = `. The
equivalent FO query is ϕe−e′(x1, . . . , xk), where ϕe−e′ is

ϕe ∧ ¬(ϕe′ [y1/x1, . . . , yk/xk]).

We leave the verification of the construction, that is, the inductive proof of
the equivalence of e and ϕe(x̄), to the reader. This concludes part (a).
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From FO to RA

For proving (b), we assume that relational atoms do not mention constants,
which we observed in Chapter 3 is always possible. We also consider a slight
generalization of FO queries that will simplify the induction: ϕ(x1, . . . , xn)
is an FO query even if the free variables of ϕ are a subset of {x1, . . . , xn}.
The semantics of such a query ϕ(x1, . . . , xn) is the usual semantics of the FO
query ϕ′(x1, . . . , xn), where ϕ′ is the formula ϕ∧ (x1 = x1)∧ · · · ∧ (xn = xn).

Let q be an FO query of the form ϕ(x1, . . . , xn). We can assume, without
loss of generality, that ϕ is in prenex normal form, that is, of the form

Qk · · ·Q1 ϕqf ,

where

• each Qj is of the form ∃yj or ¬∃yj ,
• ϕqf is quantifier-free and has (free) variables y1, . . . , ym,

• {x1, . . . , xn} = {yk+1, . . . , ym}, and

• ϕqf only uses the Boolean operators ∨ and ¬.

Let Dom(ϕ) = {a1, . . . , a`}. First, we build an RA expression Adom for
the active domain, that is,

Adom =
⋃̀
i=1

{ai} ∪
⋃

R[n]∈S

(
π1(R) ∪ · · · ∪ πn(R)

)
.

In the following, we denote by Adomi, for i ∈ N, the i-fold Cartesian product

Adom× · · · ×Adom︸ ︷︷ ︸
i

.

We construct for each subformula ψ of ϕ an RA query eψ. The induction
hypothesis consists of two parts.

(1) For each subformula ψ of ϕqf , the expression eψ has arity m and is equiv-
alent to the FO query ψ(y1, . . . , ym).

(2) For all the other subformulae ψ of ϕ, it holds that ψ = Qj · · ·Q1 ϕqf , for
j ∈ [k], FV(ψ) = {yj+1, . . . , ym}, and the expression eψ, which has arity
m− j, is equivalent to the FO query Qj · · ·Q1 ϕqf(yj+1, . . . , ym).

The inductive construction defines the expression



46 6 Equivalence of Logic and Algebra

eψ =



π1,...,m(σi1=m+1,...,ij=m+j(Adomm ×R)) if ψ is R(yi1 , . . . , yij )

σi .=j(Adomm) if ψ is yi = yj

σi .=a(Adomm) if ψ is yi = a

eψ1
∪ eψ2

if ψ is (ψ1 ∨ ψ2)

Adomm − eψ′ if ψ is ¬ψ′, and

ψ is a subformula of ϕqf

π2,...,m−j+1(eψ′) if ψ is ∃yj ψ′ and Qj = ∃yj
Adomm−j − π2,...,m−j+1(eψ′) if ψ is ¬∃yj ψ′

We leave the proof that the inductive construction gives an expression that is
equivalent to ϕ(yk+1, . . . , ym) to the reader. To obtain an expression equivalent
to ϕ(x1, . . . , xn), observe that xi ∈ {yk+1, . . . , ym} for every i ∈ [n]. Therefore,
there exists a function f : [n]→ [m− k] such that xi = yf(i) for every i ∈ [n].
This means that the expression π(f(1),...,f(n))eϕ is equivalent to ϕ(x1, . . . , xn).
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First-Order Query Evaluation

In this chapter, we study the complexity of evaluating first-order queries, that
is, FO-Evaluation. Recall that this is the problem of checking whether ā ∈ q(D)
for an FO query q, a database D, and a tuple ā over Const.

Combined Complexity

We first concentrate on the combined complexity of the problem, that is, when
the input consists of the query q, the database D, and the tuple ā.

Theorem 7.1

FO-Evaluation is PSpace-complete.

Proof. We start with the upper bound. We prove the result for the case where
ā is over Dom(D), and leave the extension to arbitrary tuples over Const as
an exercise. Consider an FO query q = ϕ(x̄), a database D, and a tuple ā
over Dom(D). We can assume, as discussed in Chapter 3, that the relational
atoms in ϕ do not contain constant values. We can also assume that the tuples
x̄ = (x1, . . . , xn) and ā = (a1, . . . , am) are compatible, that is, they have the
same length (i.e., n = m), and xi = xj implies ai = aj for every i, j ∈ [n].
Indeed, if x̄ and ā are not compatible, which can be easily checked using
logarithmic space, then ā 6∈ q(D) holds trivially. We can also assume that ϕ
uses only ¬, ∨, and ∃ (see Exercise 1.1).

By Definition 3.6, ā ∈ q(D) if and only if (D, η) |= ϕ with η being the
assignment for ϕ over D such that η(x̄) = ā. Therefore, to establish Theo-
rem 7.1, it suffices to show that the problem of checking whether (D, η) |= ϕ is
in PSpace. This is done by exploiting the recursive procedure Evaluation,
depicted in Algorithm 1. Notice that the algorithm performs simple Boolean
tests for determining its output values, like testing if R(η(x̄)) is an element of
D in line 1 or whether η(xi) = η(xj) in line 2. It is not difficult to verify that
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(D, η) |= ϕ if and only if Evaluation(ϕ,D, η) = true. It remains to argue
that Evaluation(ϕ,D, η) uses polynomial space.

Algorithm 1 Evaluation(ϕ,D, η)

Input: An FO formula ϕ, a database D, and an assignment η for ϕ over D.
Output: true if (D, η) |= ϕ, and false otherwise.

1: if ϕ is of the form R(x̄) then return R(η(x̄)) ∈ D
2: else if ϕ is of the form (xi = xj) then return η(xi) = η(xj)
3: else if ϕ is of the form (xi = a) then return η(xi) = a
4: else if ϕ is of the form ¬ϕ′ then return ¬Evaluation(ϕ′, D, η)
5: else if ϕ is of the form ϕ′ ∨ ϕ′′ then
6: return Evaluation(ϕ′, D, η) ∨ Evaluation(ϕ′′, D, η)
7: else if ϕ is of the form ∃xϕ′ then
8: return

∨
a∈Dom(D) Evaluation(ϕ′, D, η[x/a])

9: . η[x/a] extends η by setting η(x) = a.

Lemma 7.2. Evaluation(ϕ,D, η) runs in Space(O(‖ϕ‖2 · log ‖D‖)).

Proof. Observe that the total space used by Evaluation(ϕ,D, η) is its recur-
sion depth times the space needed by each recursive call. It is clear that the
recursion depth is O(‖ϕ‖). We proceed to argue, by induction on the structure
of ϕ, that each recursive call uses O(‖ϕ‖· log ‖D‖) space on a Turing Machine,
which in turn implies that the total space used by Evaluation(ϕ,D, η) is
O(‖ϕ‖2 · log ‖D‖).

• Assume first that ϕ = R(x̄). In this case, the algorithm checks whether
R(η(x̄)) ∈ D. The space needed to store η(x̄) on the work tape (adopting
the encoding discussed in Appendix C) is O(‖ϕ‖ · log ‖D‖). Furthermore,
as shown in Appendix C (see Lemma C.1), for a tuple t̄ over Dom(D), we
can check whether R(t̄) ∈ D using O(ar(R) · log ‖D‖) space if ar(R) > 0,
and O(log ‖D‖) space if ar(R) = 0. Therefore, in the worst-case where
ar(R) > 0, we can check whether R(η(x̄)) ∈ D using space

O(‖ϕ‖ · log ‖D‖) + O(ar(R) · log ‖D‖).

Since ar(R) ≤ ‖ϕ‖, the total space used is O(‖ϕ‖ · log ‖D‖).
• When ϕ = (xi = xj), the algorithm checks whether η(xi) = η(xj), which

can be done using O(‖ϕ‖·log ‖D‖) space by simply storing the tuples η(xi)
and η(xj) (adopting the encoding from Appendix C) on the work tape,
and then check that they are equal. The case ϕ = (xi = a) is analogous.

• When ϕ = ¬ϕ′, the algorithm computes the value ¬Evaluation(ϕ′, D, η),
which, by induction hypothesis, can be done using O(‖ϕ‖ · log ‖D‖) space.
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• When ϕ = ϕ′ ∨ ϕ′′, the algorithm computes Evaluation(ϕ′, D, η) ∨
Evaluation(ϕ′′, D, η), which, by induction hypothesis, can be done using
O(‖ϕ‖ · log ‖D‖) space.

• Finally, assume that ϕ = ∃xϕ′. In this case, the algorithm computes∨
a∈Dom(D) Evaluation(ϕ′, D, η[x/a]). This is done by iterating over the

constants of Dom(D) in the order provided by the encoding of D (see
Appendix C), and reusing the space used by the previous iteration. Thus,
it suffices to argue that computing the value Evaluation(ϕ′, D, η[x/a]),
for some value a ∈ Dom(D), can be done using O(‖ϕ‖·log ‖D‖) space. The
latter clearly holds by induction hypothesis, and the claim follows. ut

For the lower bound, we provide a reduction from QSAT, which we know
is PSpace-complete (see Appendix B). Consider an input to QSAT given by

ψ = ∃x̄1∀x̄2∃x̄3 . . . Qnx̄n ψ
′〈x̄1, . . . , x̄n〉,

where Qn = ∀ if n is even, and Qn = ∃ if n is odd. We assume that ψ′ is in
negation normal form, which means that negation is only applied to variables,
since QSAT remains PSpace-hard. We construct the database

D = {Zero(0),One(1)}

and the Boolean FO query

qψ = ∃x̄1∀x̄2∃x̄3 . . . Qnx̄n ψ
′′,

where ψ′′ is obtained from ψ′ by replacing each occurrence of the literal x
by One(x), and each occurrence of the literal ¬x by ¬One(x). For example,
if ψ′(x1, x2, x3) = (x1 ∧ x2) ∨ (¬x1 ∧ x3), then ψ′′ = (One(x1) ∧ One(x2)) ∨
(¬One(x1)∧One(x3)). It is not hard to verify that ψ is satisfiable if and only
if D |= qψ (we leave the proof as an exercise). ut

Note that q(D), for an FO query q = ϕ(x̄) and a database D, can also be
computed in polynomial space as follows: iterate over all tuples ā over Dom(D)
that are compatible with x̄, and output ā if and only if Evaluation(ϕ,D, η)
= true with η being the assignment for ϕ over D such that η(x̄) = ā. It is
easy to show that this procedure runs in polynomial space. This, of course,
relies on the fact that the running space of a Turing Machine with output is
defined without considering the output tape; see Appendix B for details.

Data Complexity

How can it be that databases are so successful in practice, even though Theo-
rem 7.1 proves that the most essential database problem is PSpace-complete,
a complexity class that we consider to be intractable? If we take a closer look
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at the lower bound proof of Theorem 7.1, we see that the entire difficulty of the
problem is encoded in the query. In fact, the database D = {Zero(0),One(1)}
consists of only two atoms, whereas the query q can be arbitrarily large. This is
in contrast to what we typically experience in practice, where databases are or-
ders of magnitude larger than queries, which means that databases and queries
contribute in different ways to the complexity of evaluation. This brings us to
the data complexity of FO query evaluation.

As discussed in Chapter 2, when we study the data complexity of query
evaluation, we essentially consider the query to be fixed, and only the database
and the candidate output are considered as input. Formally, we are interested
in the complexity of the problem q-Evaluation for an FO query q, which takes
as input a database D and a tuple ā over Dom(D), and asks whether ā ∈ q(D).
Recall that, by convention, we say that FO-Evaluation is in a complexity class
C in data complexity if q-Evaluation is in C for every FO query q.

Theorem 7.3

FO-Evaluation is in DLogSpace in data complexity.

Proof. Fix an FO query q = ϕ(x̄). Our goal is to show that q-Evaluation is in
DLogSpace. As for Theorem 7.1, we prove the result for the case where ā is
over Dom(D), and leave the extension to tuples over Const as an exercise.

Consider a database D, and a tuple ā over Dom(D). Observe that the
input word encoding D on a Turing Machine has length O(‖D‖ log ‖D‖). We
therefore need to prove that FO-Evaluation can be solved in Space(O(log(‖D‖
log ‖D‖))) = Space(O(log ‖D‖)). As explained in the proof of Theorem 7.1,
we can assume that the relational atoms in ϕ do not contain constants, the
tuples x̄ = (x1, . . . , xn) and ā = (a1, . . . , am) are compatible, and that ϕ uses
only ¬, ∨, and ∃. To prove our claim it suffices to show that checking whether
(D, η) |= ϕ with η being the assignment for ϕ over D such that η(x̄) = ā
is in DLogSpace. This is done by exploiting the procedure Evaluationϕ,
which takes as input D and η, and is defined in exactly the same way as the
procedure Evaluation given in Algorithm 1. It is straightforward to see that
(D, η) |= ϕ if and only if Evaluationϕ(D, η) = true. Moreover, from the
complexity analysis of Evaluation performed in the proof of Theorem 7.1,
and the fact that ϕ is fixed, we conclude that Evaluationϕ(D, η) runs in
space O(log ‖D‖), and the claim follows. ut

Theorem 7.3 essentially tells us that fixing the query indeed has a big im-
pact to the complexity of evaluation, which goes from PSpace to DLogSpace.
Actually, FO-Evaluation is in AC0 in data complexity, a class that is properly
contained in DLogSpace. The class AC0 consists of those languages that are
accepted by polynomial-size circuits of constant depth and unbounded fan-in
(the number of inputs to their gates). This is the reason why FO-Evaluation
is often regarded as an “embarrassingly parallel” task.
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Static Analysis

We now study central static analysis tasks for FO queries. We focus on sat-
isfiability, containment, and equivalence, which are key ingredients for query
optimization. As we shall see, these problems are undecidable for FO queries.
This in turn implies that, given an FO query, computing an optimal equivalent
FO query is, in general, algorithmically impossible.

Satisfiability

A query q is satisfiable if there is a database D such that q(D) is non-empty.
It is clear that a query that is not satisfiable it is not a useful query since its
output on a database is always empty. In relation to satisfiability, we consider
the following problem, parameterized by a query language L.

Problem: L-Satisfiability

Input: A query q from L
Output: true if there is a database D such that q(D) 6= ∅, and false

otherwise

Notice that satisfiability is, in a sense, the most elementary static analysis
question one can ask about a query: “does there exist a database at all for
which the query returns an answer?” Indeed, if there does not, then optimizing
the query is extremely simple: one can just always return the empty set of
answers, independently of the input database.

We are asking the satisfiability question focussing on finite databases. In
the case of possibly infinite databases, we know from a classical result in logic
that goes back in the 1930s, known as Church’s Theorem (sometimes called
Church-Turing Theorem), that checking for satisfiability is undecidable. The
problem remains undecidable even for finite databases, a result proved by
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Trakhtenbrot in the 1950s, i.e., several years after Church’s Theorem. In what
follows we present Trakhtenbrot’s Theorem.

Theorem 8.1: Trakhtenbrot’s Theorem

FO-Satisfiability is undecidable.

Proof. The proof is by reduction from the halting problem for Turing Ma-
chines; details on Turing Machines can be found in Appendix B. It is well-
known that the problem of deciding whether a (deterministic) Turing Machine
M = (Q,Σ, δ, s) halts on the empty word is undecidable. Our goal is to con-
struct a Boolean FO query qM such that the following are equivalent:

1. M halts on the empty word.

2. There exists a database D such that qM (D) = true.

The Boolean FO query qM will be over the schema

{≺[2],First[1],Succ[2]} ∪ {Symbola[2] | a ∈ Σ} ∪ {Head[2],State[2]}.

The intuitive meaning of the above relation names is the following:

• ≺(·, ·) encodes a strict linear order over the underlying domain, which will
be used to simulate the time steps of the computation of M on the empty
word, and the tape cells of M .

• First(·) contains the first element from the linear order ≺.

• Succ(·, ·) encodes the successor relation over the linear order ≺.

• Symbola(t, c): at time instant t, the tape cell c contains the symbol a.

• Head(t, c): at time instant t, the head points at cell c.

• State(t, p): at time instant t, the machine M is in state p.

Having the above schema in place, we can now proceed with the definition
of the Boolean FO query qM , which is of the form

ϕ≺ ∧ ϕfirst ∧ ϕsucc ∧ ϕcomp,

where ϕ≺, ϕfirst and ϕsucc are FO sentences that are responsible for defining
the relations ≺, First and Succ, respectively, while ϕcomp is an FO sentence
responsible for mimicking the computation of M on the empty word. The
definitions of the above FO sentences follow. For the sake of readability, we
write x ≺ y instead of the formal ≺(x, y).
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The Sentence ϕ≺

This sentence simply expresses that the binary relation ≺ over the underlying
domain is total, irreflexive, and transitive:

∀x∀y
(
¬(x = y)→ (x ≺ y ∨ y ≺ x)

)
∧

∀x¬(x ≺ x) ∧
∀x∀y∀z

(
(x ≺ y ∧ y ≺ z)→ x ≺ z

)
.

Note that irreflexivity and transitivity together imply that the relation ≺ is
also asymmetric, i.e., ∀x∀y ¬(x ≺ y ∧ y ≺ x).

The Sentence ϕfirst

This sentence expresses that First(·) contains the smallest element over ≺:

∀x∀y
(
First(x) ↔ (x = y ∨ x ≺ y)

)
The Sentence ϕsucc

It simply defines the successor relation over ≺ as expected:

∀x∀y
(

Succ(x, y) ↔
(
x ≺ y ∧ ¬∃z (x ≺ z ∧ z ≺ y)

))
.

The Sentence ϕcomp

Assume that the set of states of M is Q = {p1, . . . , pk}, where p1 = s is the
start state, p2 = “yes” is the accepting state, and p3 = “no” is the rejecting
state. The key idea is to associate to each state of M a distinct element of
the underlying domain, which in turn will allow us to refer to the states of
M . Thus, ϕcomp is defined as the following FO sentence; for a subformula ψ
of ϕcomp, we write ψ〈x̄〉 to indicate that FV(ψ) consists of the variables in x̄:

∃x1 · · · ∃xk
(∧

i,j∈[k] : i<j ¬(xi = xj) ∧ ϕstart〈x1〉 ∧ ϕconsistent〈x1, . . . , xk〉 ∧

ϕδ〈x1, . . . , xk〉 ∧ ϕhalt〈x2, x3〉
)
,

where

• ϕstart defines the start configuration sc(ε),

• ϕconsistent performs several consistency checks to ensure that the compu-
tation of M on the empty word is faithfully described,

• ϕδ encodes the transition function of M , and

• ϕhalt checks whether M halts.
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The definitions of the subformulae of ϕcomp follow.

The Formula ϕstart. It is defined as the conjunction of the following FO
formulae, expressing that the first tape cell contains the left marker

∀x
(
First(x) → Symbol.(x, x)

)
,

the rest of tape cells contain the blank symbol

∀x∀y
(
(First(x) ∧ ¬First(y)) → Symbolt(x, y)

)
,

the head points to the first cell

∀x (First(x) → Head(x, x)),

and the machine M is in state s

∀x (First(x) → State(x, x1)).

Note that we refer to the start state s = p1 via the variable x1.

The Formula ϕconsistent. It is defined as the conjunction of the following
FO formulae, expressing that, at any time instant x, M is in exactly one state

∀x

( k∨
i=1

State(x, xi)

)
∧

∧
i,j∈[k] : i<j

¬
(
State(x, xi) ∧ State(x, xj)

) ,

each tape cell y contains exactly one symbol

∀x∀y

( ∨
a∈Σ

Symbola(x, y)

)
∧

∧
a,b∈Σ : a6=b

¬
(
Symbola(x, y) ∧ Symbolb(x, y)

) ,

and the head points at exactly one cell

∀x
(
∃yHead(x, y) ∧ ∀y∀z

((
Head(x, y) ∧Head(x, z)

)
→ y = z

))
.

The Formula ϕδ. It is defined as the conjunction of the following FO formu-
lae: for each pair (pi, a) ∈ (Q− {“yes”, “no”})×Σ with δ(pi, a) = (pj , b,dir),

∀x∀y
((

State(x, xi) ∧Head(x, y) ∧ Symbola(x, y) ∧ ∃t (x ≺ t)
)
→

∃z∃w
(

Succ(x, z) ∧Move(y, w) ∧Head(z, w) ∧ Symbolb(z, y) ∧ State(z, xj)∧

∀u
(
¬(y = u)→

∧
c∈Σ

(
Symbolc(x, u)→ Symbolc(z, u)

))))
,
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where

Move(y, w) =


Succ(y, w) if dir =→,

Succ(w, y) if dir =←, and

y = w if dir = −.

The Formula ϕhalt. Finally, this formula checks whether M has reached an
accepting or a rejecting configuration

∃x (State(x, x2) ∨ State(x, x3)).

Recall that, by assumption, p2 = “yes” and p3 = “no”. Thus, the states “yes”
and “no” can be accessed via the variables x2 and x3, respectively.

This completes the construction of the Boolean FO query qcomp, and thus
of qM . It is not hard to verify that M halts on the empty word if and only if
there exists a database D such that q(D) = true, and the claim follows. ut

The proof of Theorem 8.1 relies on the finiteness of databases; it does not
work for possibly infinite databases. Assuming that the Turing Machine M
does not halt on the empty word, we can construct an infinite database D
such that qM (D) = true (we leave this as an exercise).1 As mentioned earlier,
Church’s Theorem shows the undecidability of the satisfiability problem for
FO queries over possibly infinite databases (see also Exercise 1.11).

We have seen in Chapter 6 that FO and RA have the same expressive power
(Theorem 6.1). This fact and Theorem 8.1 immediately imply the following.

Corollary 8.2

RA-Satisfiability is undecidable.

Containment and Equivalence

We now focus on the problems of containment and equivalence for FO queries:
given two FO queries q and q′, is it the case that q ⊆ q′ and q ≡ q′, respectively.
By exploiting Theorem 8.1, it is easy to show the following.

Theorem 8.3

FO-Containment and FO-Equivalence are undecidable.

1 The output of an FO query on an infinite database D is defined in the same way
as for databases (see Definition 3.6).
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Proof. The proof is by an easy reduction from FO-Satisfiability. Consider an
FO query q. From the proof of Theorem 8.1, we know that FO-Satisfiability is
undecidable even for Boolean FO queries. Consider the Boolean FO query

q′ = ∃x (R(x) ∧ ¬R(x)),

which is trivially unsatisfiable. It is easy to verify that q is unsatisfiable if and
only if q ≡ q′ (or even q ⊆ q′), and the claim follows. ut

The following is an easy consequence of the fact that FO and RA have the
same expressive power, and Theorem 8.3.

Corollary 8.4

RA-Containment and RA-Equivalence are undecidable.
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Homomorphisms

Homomorphisms are a fundamental tool that plays a very prominent role in
various aspects of relational databases. We introduce them here, because we
will use them in Chapter 10 to reason about functional dependencies. In this
chapter, we define homomorphisms and provide some simple examples.

Definition of Homomorphism

Homomorphisms are structure-preserving functions between two objects of
the same type. In our setting, the objects that we are interested in are (possi-
bly infinite) databases and queries. To talk about them as one we define ho-
momorphisms among (possibly infinite) sets of relational atoms. Recall that
relational atoms are of the form R(ū), where ū is a tuple that can mix vari-
ables and constants, e.g., R(a, x, 2, b). Recall also that we write Dom(S) for
the set of constants and variables occurring in a set of relational atoms S; for
example, Dom({R(a, x, b), R(x, a, y)}) = {a, b, x, y}.

The way that the notion of homomorphism is defined between sets of atoms
is slightly different from the standard notion of mathematical homomorphism,
namely constant values of Const should be mapped to themselves. The reason
for this is that, in general, a value a ∈ Const represents an object different
from the one represented by b ∈ Const with a 6= b, and homomorphisms, as
structure preserving functions, should preserve this information as well.

Definition 9.1: Homomorphism

Let S, S′ be sets of relational atoms over the same schema. A homomor-
phism from S to S′ is a function h : Dom(S)→ Dom(S′) such that:

1. h(a) = a for every a ∈ Dom(S) ∩ Const, and

2. if R(ū) is an atom in S, then R(h(ū)) is an atom in S′.
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If h(ū) = v̄, where ū, v̄ are tuples of the same length over Dom(S) and
Dom(S′), respectively, then h is a homomorphism from (S, ū) to (S′, v̄).
We write S → S′ if there exists a homomorphism from S to S′, and
(S, ū)→ (S′, v̄) if there exists a homomorphism from (S, ū) to (S′, v̄).

Example 9.2: Homomorphism

Assume that S and S′ are sets of relational atoms over a schema with a
single binary relation name R. In this way, we can view both S and S′ as
a graph: the set of nodes is the set of constants and variables occurring
in the relational atoms, and R(u, v) means that there exists an edge from
u to v. Unless stated otherwise, the elements in S and S′ are variables.

A homomorphism always exists. Let S′ = {R(z, z)}. The function
h : Dom(S) → Dom(S′) such that h(x) = z, for each x ∈ Dom(S),
is a homomorphism from S to S′ since R(h(x), h(y)) = R(z, z) is an
atom of S′, for every x, y ∈ Dom(S).

A homomorphism does not exist. Let S = {R(a, x)} and S′ =
{R(z, z)}, where a ∈ Const. In contrast to the previous example,
there is no homomorphism h from S to S′ since, by definition, h(a)
must be equal to a, while a 6∈ Dom(S′).

A homomorphism is easy to find. Let now S′ = {R(x, y), R(y, x)}.
Assume that a homomorphism h from S to S′ exists. As usual, h−1

stands for the inverse, i.e., h−1(x) = {z ∈ Dom(S) | h(z) = x}, and
likewise for h−1(y). The sets h−1(x) and h−1(y) are disjoint since
x 6= y. If we have an edge (z, w) in S, we know that the variables z
and w cannot belong to the same set h−1(x) or h−1(y); otherwise,
either R(x, x) or R(y, y) would be an atom in S by the definition
of the homomorphism. This means that S, viewed as a graph, is
bipartite: its nodes are partitioned into two sets such that edges can
only connect vertices in different sets. In other words, the nodes of
the graph given by S can be colored with two colors x and y. Thus, in
this case, checking for the existence of a homomorphism witnessing
S → S′ is the same as checking for the existence of a 2-coloring of
S, which can be done in polynomial time (by using, for example, a
coloring version of depth-first search).

A homomorphism is hard to find. We now add z to Dom(S′), and
let S′ = {R(x, y), R(y, x), R(x, z), R(z, x), R(y, z), R(z, y)}. Then, as
before, if h : Dom(S) → Dom(S′) is a homomorphism from S to
S′, and R(z, w) is an edge in S, then h(z) 6= h(w). In other words,
the nodes of the graph given by S can be colored with three colors
x, y and z. Therefore, in this case, checking for the existence of a
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homomorphism witnessing S → S′ is the same as checking for the
existence of a 3-coloring of S, which is an NP-complete problem.

Grounding Sets of Atoms

In several chapters, it will be convenient to have a mechanism viewing sets of
atoms as databases. This is done by converting a set of atoms S into a possibly
infinite database by replacing the variables occurring in S by new constants
not already in S.1 This process is called grounding, and can be easily defined
via homomorphisms.

Definition 9.3: Grounding

Let S be a set of relational atoms over a schema S. A possibly infinite
databaseD of S is called a grounding of S if there exists a homomorphism
from S to D that is a bijection.

Note that, in general, there is no unique grounding for a set of atoms.
Consider, for example, the set of atoms

S = {R(x, a, y), P (y, b, x, z)},

where a, b are constants and x, y, z are variables. The databases

D1 = {R(c1, a, d1), R(d1, b, c1, e1)} and D2 = {R(c2, a, d2), R(d2, b, c2, e2)}

with c1 6= c2, d1 6= d2, and e1 6= e2, are both groundings of S. On the other
hand, D1 and D2 are isomorphic databases, that is, they are the same up to
renaming of constants. This simple observation can be generalized to any set
of atoms. In particular, for a set of atoms S, it is straightforward to show that,
for every two groundingsD1 andD2 of S, there is a bijection ρ : Const→ Const
such that ρ(D1) = D2. Therefore, we can refer to:

• the grounding of S, denoted S↓, and

• the unique bijective homomorphism GS from S to S↓.

We conclude the chapter with a note on the difference between Dom(S)
and Dom(S↓) to avoid confusion later in the book. If S is a set of atoms, then
Dom(S) ⊆ Const ∪ Var, that is, it may contain both constants and variables.
On the other hand, by definition, Dom(S↓) contains only constants. Similarly,

RS is a set of tuples that may mention constants and variables, while RS
↓

is
a set of tuples that mention only constants.

1 Converting a database into a set of atoms by replacing constants with variables
is needed less often; this is discussed in Chapter 14.
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Functional Dependencies

In a relational databse system, it is possible to specify semantic properties
that should be satisfied by all databases of a certain schema, such as “ev-
ery person should have at most one social security number”. Such properties
are crucial in the development of transparent and usable database schemas for
complex applications, as well as for optimizing the evaluation of queries. How-
ever, the relational model as presented in Chapter 2 is not powerful enough
to express such semantic properties. This can be achieved by incorporating
integrity constraints, also known as dependencies.

One of the most important classes of dependencies supported by relational
systems is the class of functional dependencies, which can express that the
values of some attributes of a tuple uniquely (or functionally) determine the
values of other attributes of that tuple.

Example 10.1: Functional Dependencies

Consider the (named) database schema

Person [ pid, name, cid ]

We can express that the id of a person uniquely determines that person
via the functional dependency

Person : {1} → {1, 2, 3} ,

which states that whenever two tuples of the relation Person agree on the
first attribute, the id, they should also agree on all the other attributes.

Note that the form of dependency used in Example 10.1, where a set of
attributes determines the entire tuple, is of particular interest and is called a
key dependency. We may also say that the id attribute is a key of Person.
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Syntax and Semantics

We start with the syntax of functional dependencies.

Definition 10.2: Syntax of Functional Dependencies

A functional dependency (FD) σ over a schema S is an expression

R : U → V

where R ∈ S and U, V ⊆ {1, . . . , ar(R)}. If V = {1, . . . , ar(R)}, then σ
is called a key dependency, and we simply write key(R) = U .

Intuitively, an FD R : U → V expresses that the values of the attributes
U of R functionally determine the values of the attributes V of R, while a
key dependency key(R) = U states that the values of the attributes U of R
functionally determine the values of all the attributes of R. We proceed to
formally define the semantics of FDs. Note that in the following definition, by
abuse of notation, we write U and V in the projection expressions πU (·) and
πV (·) for the lists consisting of the elements of U and V in ascending order.

Definition 10.3: Semantics of FDs

A database D of a schema S satisfies an FD σ of the form R : U → V
over S, denoted D |= σ, if for each pair of tuples ā, b̄ ∈ RD,

πU (ā) = πU (b̄) implies πV (ā) = πV (b̄).

D satisfies a set Σ of FDs, written D |= Σ, if D |= σ for each σ ∈ Σ.

Note that the notion of satisfaction for FDs can be easily transferred to
finite sets of atoms by exploiting the notion of grounding of sets of atoms. In
particular, a finite set of atoms S satisfies an FD σ, denoted S |= σ, if S↓ |= σ,
while S satisfies a set Σ of FDs, written S |= Σ, if S↓ |= Σ.

Satisfaction of Functional Dependencies

A central task is checking whether a database D satisfies a set Σ of FDs.

Problem: FD-Satisfaction

Input: A database D of a schema S, and a set Σ of FDs over S

Output: true if D |= Σ, and false otherwise

It is not difficult to show the following result:
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Theorem 10.4

FD-Satisfaction is in PTime.

Proof. Consider a database D of a schema S, and a set Σ of FDs over S. Let
σ be an FD from Σ of the form R : U → V . To check whether D |= σ we need
to check that, for every ā, b̄ ∈ RD, πU (ā) = πU (b̄) implies πV (ā) = πV (b̄). It
is easy to verify that this can be done in time O(‖D‖2). Therefore, we can
check whether D |= Σ in time O(‖Σ‖ · ‖D‖2), and the claim follows. ut

The Chase for Functional Dependencies

Another crucial task in connection with dependencies is that of (logical) im-
plication, which allows us to discover new dependencies from existing ones. A
natural problem that arises in this context is, given a set of dependencies Σ
and a dependency σ, to determine whether Σ implies σ. This means checking
if, for every database D such that D |= Σ, it holds that D |= σ. Before formal-
izing and studying this problem, we first introduce a fundamental algorithmic
tool for reasoning about dependencies known as the chase. Actually, the chase
should be understood as a family of algorithms since, depending on the class
of dependencies in question, we may get a different variant. However, all the
chase variants have the same objective, that is, given a finite set of relational
atoms S, and a set Σ of dependencies, to transform S as dictated by Σ into
a set of relational atoms that satisfies Σ.

Consider a finite set S of relational atoms over a schema S, and an FD
σ = R : U → V over S. We say that σ is applicable to S with (ū, v̄), where
ū, v̄ ∈ RS ,1 if πU (ū) = πU (v̄) and πV (ū) 6= πV (v̄). Let πV (ū) = (u1, . . . , uk)
and πV (v̄) = (v1, . . . , vk). For technical convenience, we assume that there is
a strict total order < on the elements of the set Const ∪ Var such that a < x,
for each a ∈ Const and x ∈ Var, i.e., constants are smaller than variables
according to <. Let hū,v̄ : Dom(S)→ Dom(S) be a function such that

hū,v̄(w) =


ui if w = vi and ui < vi, for some i ∈ [k],

vi if w = ui and vi < ui, for some i ∈ [k],

w otherwise.

The result of applying σ to S with (ū, v̄) is defined as

S′ =

⊥ if there is an i ∈ [k] with ui 6= vi and ui, vi ∈ Const,

hū,v̄(S) otherwise.

1 Recall that tuples in RS can contain both constants and variables.
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Intuitively, the application of σ to S with (ū, v̄) fails, indicated by ⊥, whenever
we have two distinct constants from Const that are supposed to be equal to
satisfy σ. In case of non-failure, S′ is obtained from S by simply replacing
ui and vi by the smallest of the two, for every i ∈ [k]. Recall that, by our
assumption on <, if one of ui, vi is a variable and the other one is a constant,
then the variable is always replaced by the constant. The application of σ to

S with (ū, v̄), which results to S′, is denoted by S
σ,(ū,v̄)−−−−→ S′.

We are now ready to introduce the notion of chase sequence of a finite set
S of relational atoms under a set Σ of FDs, which formalizes the objective of
transforming S as dictated by Σ into a set of atoms that satisfies Σ.

Definition 10.5: The Chase for FDs

Consider a finite set S of relational atoms over a schema S, and a set Σ
of FDs over S.

• A finite chase sequence of S under Σ is a finite sequence s =
S0, . . . , Sn of sets of relational atoms, where S0 = S, and

– for each i ∈ [0, n − 1], there is an FD σ = R : U → V in Σ and

atoms R(ū), R(v̄) ∈ Si such that Si
σ,(ū,v̄)−−−−→ Si+1, and

– either Sn = ⊥, in which case we say that s is failing, or, for every
FD σ = R : U → V in Σ and atoms R(ū), R(v̄) ∈ Sn, σ is not
applicable to Sn with (ū, v̄), in which case s is called successful.

• An infinite chase sequence of S under Σ is an infinite sequence
S0, S1, . . . of sets of relational atoms, where S0 = S, and for each
i ≥ 0, there is an FD σ = R : U → V in Σ and atoms R(ū), R(v̄) ∈ Si
such that Si

σ,(ū,v̄)−−−−→ Si+1.

We proceed to present some fundamental properties of the chase for FDs.2

In what follows, let S be a finite set of relational atoms, and Σ a finite set
of FDs, both over the same schema S. It is not hard to see that there are no
infinite chase sequences under FDs.3 This is a consequence of the fact that
each non-failing chase application does not introduce new terms but only
equalizes them. Therefore, in the worst-case, the chase either will fail, or will
produce after finitely many steps a set of relational atoms with only one term,
which trivially satisfies every functional dependency.

Lemma 10.6. There is no infinite chase sequence of S under Σ.

2 Formal proofs are omitted since in Chapter 54 we are going to present the chase
for a more general class of dependencies than FDs, known as equality-generating
dependencies, and provide proofs there for all the desired properties.

3 As we discuss in Chapter 11, this is not the case for other types of dependencies,
in particular, inclusion dependencies.



10 Functional Dependencies 65

Although there could be several finite chase sequences of S under Σ, de-
pending on the application order of the FDs in Σ, we can show that all those
sequences either fail or end in exactly the same set of relational atoms.

Lemma 10.7. Let S0, . . . , Sn and S′0, . . . , S
′
m be two finite chase sequences of

S under Σ. Then it holds that Sn = S′m.

The above lemma allows us to refer to the result of the chase of S under
Σ, denoted by Chase(S,Σ), which is defined as Sn for some (any) finite chase
sequence S0, . . . , Sn of S under Σ. Notice that we do not need to define the
result of infinite chase sequences under FDs since, by Lemma 10.6, they do not
exist. Hence, Chase(S,Σ) is either the symbol ⊥, or a finite set of relational
atoms. It is not difficult to verify that in the latter case, Chase(S,Σ) satisfies
Σ. Actually, this follows from the definition of successful chase sequences.

Lemma 10.8. If Chase(S,Σ) 6= ⊥, then Chase(S,Σ) |= Σ.

A central notion is that of chase homomorphism, which essentially com-
putes the result of a successful finite chase sequence of S under Σ. Consider
such a chase sequence s = S0, S1, . . . , Sn of S under Σ such that

S0
σ0,(ū0,v̄0)−−−−−−→ S1

σ1,(ū1,v̄1)−−−−−−→ S2 · · ·Sn−1
σn−1,(ūn−1,v̄n−1)−−−−−−−−−−−−→ Sn.

Recall that Si = hūi−1,v̄i−1
(Si−1), for each i ∈ [n]. The chase homomorphism

of s, denoted hs, is defined as the composition of functions

hūn−1,v̄n−1
◦ hūn−2,v̄n−2

◦ · · · ◦ hū0,v̄0
.

It is clear that hs(S0) = hs(S) = Sn. Since, by Lemma 10.7, different finite
chase sequences have the same result, we get the following.

Lemma 10.9. Let s and s′ be successful finite chase sequences of S under Σ.
It holds that hs(S) = hs′(S).

Therefore, assuming that Chase(S,Σ) 6= ⊥, we can refer to the chase homo-
morphism of S under Σ, denoted hS,Σ . It should be clear that Chase(S,Σ) 6=
⊥ implies hS,Σ(S) = Chase(S,Σ).

By Lemma 10.6, Chase(S,Σ) can be computed after finitely many steps.
Furthermore, assuming that Chase(S,Σ) 6= ⊥, also the chase homomorphism
hS,Σ can be computed after finitely many steps. In fact, as the next lemma
states, this is even possible after polynomially many steps.

Lemma 10.10. Chase(S,Σ) can be computed in polynomial time. Further-
more, if Chase(S,Σ) 6= ⊥, then hS,Σ can be computed in polynomial time.

The last main property of the chase states that, if Chase(S,Σ) 6= ⊥, then
it acts as a representative of all the sets of atoms S′ that satisfy Σ and S → S′,
that is, there exists a homomorphism from S to S′.
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Lemma 10.11. Let S′ be a set of atoms over S such that (S, ū)→ (S′, v̄) and
S′ |= Σ. If Chase(S,Σ) 6= ⊥, then (Chase(S,Σ), hS,Σ(ū))→ (S′, v̄).

Note that the definition of the chase for FDs, as well as its main properties,
would be technically simpler if we focus on sets of constant-free atoms since in
this case there are no failing chase sequences. As we shall see, this suffices for
studying the implication problem for FDs. Nevertheless, we consider sets of
atoms with constants since the chase is also used in Chapter 18 for studying
a different problem for which the proper treatment of constants is vital.

Implication of Functional Dependencies

We now proceed to study the implication problem for FDs, which we define
next. Given a set Σ of FDs over a schema S and a single FD σ over S, we say
that Σ implies σ, denoted Σ |= σ, if, for every database D of S, we have that
D |= Σ implies D |= σ. The main problem of concern is the following:

Problem: FD-Implication

Input: A set Σ of FDs over a schema S, and an FD σ over S

Output: true if Σ |= σ, and false otherwise

We proceed to show the following result:

Theorem 10.12

FD-Implication is in PTime.

To show Theorem 10.12, we first show how implication of FDs can be
characterized via the chase for FDs. This is done by showing that checking
whether a set of FDs Σ implies an FD σ boils down to checking whether the
result of the chase of the prototypical set of relational atoms Sσ that violates
σ is a set of atoms that satisfies σ. Given an FD σ of the form R : U → V ,
the set Sσ is defined as {R(x1, . . . , xar(R)), R(y1, . . . , yar(R))}, where

• x1, . . . , xar(R), y1, . . . , yar(R) are variables,

• for each i, j ∈ {1, . . . , ar(R)} with i 6= j, xi 6= xj and yi 6= yj , and

• for each i ∈ {1, . . . , ar(R)}, xi = yi if and only if i ∈ U .

We can now show the following useful characterization:



10 Functional Dependencies 67

Proposition 10.13

Consider a set Σ of FDs over as schema S, and an FD σ over S. Then:

Σ |= σ if and only if Chase(Sσ, Σ) |= σ.

Proof. (⇒) By hypothesis, for every finite set of relational atoms S, it holds
that S |= Σ implies S |= σ. Observe that Chase(Sσ, Σ) 6= ⊥ since Sσ contains
only variables. Therefore, by Lemma 10.8, we have that Chase(Sσ, Σ) |= Σ.
Since, by Lemma 10.6, Chase(Sσ, Σ) is finite, we get that Chase(Sσ, Σ) |= σ.

(⇐) Consider now a database D of S such that D |= Σ, and with σ
being of the form R : {i1, . . . , ik} → {j1, . . . , j`}, assume that there are tuples
(a1, . . . , aar(R)), (b1, . . . , bar(R)) ∈ RD such that (ai1 , . . . , aik) = (bi1 , . . . , bik).
Recall also that Sσ is of the form {R(x1, . . . , xar(R)), R(y1, . . . , yar(R))}. Let
z̄ = (xj1 , . . . , xj` , yj1 , . . . , yj`) and c̄ = (aj1 , . . . , aj` , bj1 , . . . , bj`). It is clear
that (Sσ, z̄)→ (D, c̄). Since D |= Σ and Chase(Sσ, Σ) 6= ⊥, by Lemma 10.11

(Chase(Sσ, Σ), hSσ,Σ(z̄)) → (D, c̄).

Since, by hypothesis, Chase(Sσ, Σ) |= Σ, we can conclude that

(hSσ,Σ(xj1), . . . , hSσ,Σ(xj`)) = (hSσ,Σ(yj1), . . . , hSσ,Σ(yj`)),

which in turn implies that

(aj1 , . . . , aj`) = (bj1 , . . . , bj`).

Therefore, D |= σ, and the claim follows. ut

By Proposition 10.13, we get a simple procedure for checking whether a
set Σ of FDs implies an FD σ that runs in polynomial time:

if Chase(Sσ, Σ) |= σ, then return true; otherwise, return false.

We know that the set of atoms Chase(Sσ, Σ) can be constructed in polynomial
time (Lemma 10.10), and we also know that Chase(Sσ, Σ) |= σ can be checked
in polynomial time (Theorem 10.4), and Theorem 10.12 follows.
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Inclusion Dependencies

In this chapter, we concentrate on another central class of constraints sup-
ported by relational database systems, called inclusion dependencies (also
known as referential constraints). With this type of constraints we can express
relationships among attributes of different relations, which is not possible us-
ing functional dependencies that can talk only about one relation.

Example 11.1: Inclusion Dependencies

Having the (named) database schema

Person [ pid, pname, cid ]

Profession [ pid, prname ]

we would like to express that the values occurring in the first attribute of
Profession are person ids. This can be done via the inclusion dependency

Profession[1] ⊆ Person[1].

This dependency simply states that the set of values occurring in the
first attribute of the relation Profession should be a subset of the set of
values appearing in the first attribute of the relation Person.

Syntax and Semantics

We start with the syntax of inclusion dependencies.

Definition 11.2: Syntax of Inclusion Dependencies

An inclusion dependency (IND) σ over a schema S is an expression
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R[i1, . . . , ik] ⊆ P [j1, . . . , jk]

where k ≥ 1, R,P belong to S, and (i1, . . . , ik) and (j1, . . . , jk) are lists
of distinct integers from {1, . . . , ar(R)} and {1, . . . , ar(P )}, respectively.

Intuitively, an IND R[i1, . . . , ik] ⊆ P [j1, . . . , jk] states that if R(ā) belongs
to a database D, then in the same database an atom P (b̄) should exist such
that the i`-th element of ā coincides with the j`-th element of b̄, for ` ∈ [k].
The formal definition of the semantic meaning of INDs follows.

Definition 11.3: Semantics of INDs

A database D of a schema S satisfies an IND σ of the form R[i1, . . . , ik] ⊆
P [j1, . . . , jk] over S, denoted D |= σ, if for every tuple ā ∈ RD, there
exists a tuple b̄ ∈ PD such that

π(i1,...,ik)(ā) = π(j1,...,jk)(b̄).

D satisfies a set Σ of INDs, denoted D |= Σ, if D |= σ for each σ ∈ Σ.

Satisfaction of Inclusion Dependencies

A central task is checking whether a database D satisfies a set Σ of INDs.

Problem: IND-Satisfaction

Input: A database D over a schema S, and a set Σ of INDs over S

Output: true if D |= Σ, and false otherwise

It is not difficult to show the following result:

Theorem 11.4

IND-Satisfaction is in PTime.

Proof. Consider a database D of a schema S, and a set Σ of INDs over S. Let σ
be an IND from Σ of the form R[i1, . . . , ik] ⊆ P [j1, . . . , jk]. To check whether
D |= σ we need to check that, for every tuple (a1, . . . , aar(R)) ∈ RD, there
exists a tuple (b1, . . . , bar(P )) ∈ PD such that (ai1 , . . . , aik) = (bj1 , . . . , bjk). It
is not difficult to verify that this can be done in time O(‖D‖2). Therefore, we
can check whether D |= Σ in time O(‖Σ‖ · ‖D‖2), and the claim follows. ut
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The Chase for Inclusion Dependencies

As for FDs, the other crucial task of interest in connection with INDs is (log-
ical) implication. Unsurprisingly, the main tool for studying the implication
problem for INDs is the chase for INDs, which we introduce next.

Consider a finite set S of atoms over S, and an IND σ = R[i1, . . . , im] ⊆
P [j1, . . . , jm] over S. We say that σ is applicable to S with ū = (u1, . . . , uar(R))
if ū ∈ RS . Let new(σ, ū) = P (v1, . . . , var(P )), where, for each ` ∈ [ar(P )],

v` =


uik if ` = jk, for k ∈ [m],

x
σ,π(i1,...,im)(ū)

` otherwise,

with x
σ,π(i1,...,im)(ū)

` ∈ Var−Dom(S).1 The result of applying σ to S with ū is
the set of atoms S′ = S ∪{new(σ, ū)}. In simple words, S′ is obtained from S
by adding the new atom new(σ, ū), which is uniquely determined by σ and ū.

The application of σ to S with ū, which results in S′, is denoted S
σ,ū−−→ S′.

We are now ready to introduce the notion of chase sequence of a finite set
S of relational atoms under a set Σ of INDs, which formalizes the objective
of transforming S as dictated by Σ into a set of atoms that satisfies Σ.

Definition 11.5: The Chase for INDs

Consider a finite set S of relational atoms over a schema S, and a set Σ
of INDs over S.

• A finite chase sequence of S under Σ is a finite sequence s =
S0, . . . , Sn of sets of relational atoms, where S0 = S, and

1. for each i ∈ [0, n−1], there is σ = R[α] ⊆ P [β] in Σ and ū ∈ RSi

such that new(σ, ū) 6∈ Si and Si
σ,ū−−→ Si+1, and

2. for each IND σ = R[α] ⊆ P [β] in Σ and ū ∈ RSn , new(σ, ū) ∈ Sn.

The result of s is defined as the set of atoms Sn.

• An infinite chase sequence of S under Σ is an infinite sequence s =
S0, S1, . . . of sets of atoms, where S0 = S, and

1. for each i ≥ 0, there is σ = R[α] ⊆ P [β] in Σ and ū ∈ RSi such

that new(σ, ū) 6∈ Si and Si
σ,ū−−→ Si+1, and

2. for each i ≥ 0, and for each σ = R[α] ⊆ P [β] in Σ and ū ∈ RSi
such that σ is applicable to Si with ū, there exists j > i such
that new(σ, ū) ∈ Sj .

1 One could adopt a simpler naming scheme for these newly introduced variables.
For example, for each ` ∈ [ar(P )]− {j1, . . . , jm}, we could simply name the new
variable xσ,ū` . For further details on this matter see the comments for Part I.
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The result of s is defined as the set infinite set of atoms
⋃
i≥0 Si.

In the case of finite chase sequences, the first condition in Definition 11.5
simply says that Si+1 is obtained from Si by applying σ to Si with ū, while
σ has not been already applied to some Sj , for j < i, with ū. The second
condition states that no new atom, which is not already in Sn, can be derived
by applying an IND of Σ to Sn. Now, in the case of infinite chase sequences,
the first condition in Definition 11.5, as in the finite case, says that Si+1 is
obtained from Si by applying σ to Si with ū, while σ has not been already
applied before. The second condition is known as the fairness condition, and
it ensures that all the INDs that are applicable eventually will be applied.

We proceed to show some fundamental properties of the chase for INDs.2

In what follows, let S be a finite set of relational atoms, and Σ a finite set of
INDs, both over the same schema S. Recall that in the case of FDs we know
that there are no infinite chase sequences since a chase application does not
introduce new terms, but only equalizes terms. However, in the case of INDs,
a chase step may introduce new variables not occurring in the given set of
atoms, which may lead to infinite chase sequences. Indeed, this can happen
even for simple sets of atoms and INDs. For example, it is not hard to verify
that the single chase sequence of {R(a, b)} under {R[2] ⊆ R[1]} is infinite.

Although we may have infinite chase sequences, we can still establish some
favourable properties. It is clear that there are several chase sequences of S
under Σ depending on the order that we apply the INDs of Σ. However, the
adopted naming scheme of new variables ensures that, no matter when we
apply an IND σ with a tuple ū, the newly generated atom new(σ, ū) is always
the same, which in turn allows us to show that all those chase sequences
have the same result. At this point, let us stress that the result of an infinite
chase sequence s = S0, S1, . . . of S under Σ always exists.3 This can be shown
by exploiting classical results of fixpoint theory. By using Kleene’s Theorem,
we can show that

⋃
i≥0 Si coincides with the least fixpoint of a continuous

operator (which corresponds to a single chase step) on the complete lattice
(Inst(S),⊆), which we know that always exists by Knaster-Tarski’s Theorem
(we leave the proof as an exercise). We can now state the announced result.

Lemma 11.6. The following hold:

1. There exists a finite chase sequence of S under Σ if and only if there is
no infinite chase sequence of S under Σ.

2. Let S0, . . . , Sn and S′0, . . . , S
′
m be two finite chase sequences of S under

Σ. Then, it holds that Sn = S′m.

2 Formal proofs are omitted since in Chapter 45 we are going to present the chase
for a more general class of dependencies than INDs, known as tuple-generating
dependencies, and provide proofs there for all the desired properties.

3 This statement trivially holds for finite chase sequences.
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3. Let S0, S1, . . . and S′0, S
′
1, . . . be two infinite chase sequences of S under

Σ. Then, it holds that
⋃
i≥0 Si =

⋃
i≥0 S

′
i.

Lemma 11.6 allows us to refer to the unique result of the chase of S under
Σ, denoted Chase(S,Σ), which is defined as the result of some (any) finite or
infinite chase sequence of S under Σ. At this point, the reader may expect that
the next key property is that Chase(S,Σ) satisfies Σ. However, it should not
be overlooked that Chase(S,Σ) is a possibly infinite set of atoms, and thus,
we cannot directly apply the notion of satisfaction from Definition 11.3. Nev-
ertheless, Definition 11.3 can be readily applied to possibly infinite databases,
which in turn allows us to transfer the notion of satisfaction for INDs to sets
of atoms via the notion of grounding. In particular, a set of atoms S satisfies
an IND σ, denoted S |= σ, if S↓ |= σ, while S satisfies a set Σ of INDs, written
S |= Σ, if S↓ |= Σ. We can now formally state that Chase(S,Σ) satisfies Σ.
Let us clarify, though, that in the case where only infinite chase sequences
exist, this result heavily relies on the fairness condition.

Lemma 11.7. It holds that Chase(S,Σ) |= Σ.

The last crucial property states that Chase(S,Σ) acts as a representative
of all the finite or infinite sets of atoms S′ that satisfy Σ, and such that there
exists a homomorphism from S to S′, that is, S → S′.

Lemma 11.8. Let S′ be a set of atoms over S such that (S, ū)→ (S′, v̄) and
S′ |= Σ. It holds that (Chase(S,Σ), ū)→ (S′, v̄).

Implication of Inclusion Dependencies

We now proceed to study the implication problem for INDs. The notion of
implication for INDs is defined in the same way as for functional dependencies.
More precisely, given a set Σ of INDs over a schema S and a single IND σ
over S, we say that Σ implies σ, denoted Σ |= σ, if, for every database D of
S, we have that D |= Σ implies D |= σ. This leads to the following problem:

Problem: IND-Implication

Input: A set Σ of INDs over a schema S, and an IND σ over S

Output: true if Σ |= σ, and false otherwise

Although for FDs the implication problem is tractable (Theorem 10.12),
for INDs it turns out to be an intractable problem:
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Theorem 11.9

IND-Implication is PSpace-complete.

We first concentrate on the upper bound. We are going to establish a result,
analogous to Proposition 10.13 for FDs, that characterizes implication of INDs
via the chase. However, since the chase for INDs may build an infinite set of
atoms, we can only characterize implication under possibly infinite databases.
Given a set Σ of INDs over a schema S and a single IND σ over S, we say
that Σ implies without restriction σ, denoted Σ |=∞ σ, if, for every possibly
infinite database D of S, we have that D |= Σ implies D |= σ.

Given an IND σ of the form R[i1, . . . , ik] ⊆ P [j1, . . . , jk], the set Sσ is
defined as the singleton {R(x1, . . . , xar(R))}, where x1, . . . , xar(R) are distinct
variables. We can now show the following auxiliary lemma.

Lemma 11.10. Consider a set Σ of INDs over schema S, and an IND σ over
S. It holds that Σ |=∞ σ if and only if Chase(Sσ, Σ) |= σ.

Proof. (⇒) By hypothesis, for every possibly infinite set of relational atoms
S, it holds that S |= Σ implies S |= σ. By Lemma 11.7, Chase(Sσ, Σ) |= Σ,
and therefore, Chase(Sσ, Σ) |= σ.

(⇐) Consider now a possibly infinite database D of S such that D |=
Σ, and with σ being of the form R[i1, . . . , ik] ⊆ P [j1, . . . , jk], assume that
there exists a tuple (a1, . . . , aar(R)) ∈ RD. Recall also that Sσ is of the form
{R(x1, . . . , xar(R))}. Let ȳ = (xi1 , . . . , xik) and b̄ = (ai1 , . . . , aik). It is clear
that (Sσ, ȳ)→ (D, b̄). Since D |= Σ, by Lemma 11.8

(Chase(Sσ, Σ), ȳ) → (D, b̄).

Since, by hypothesis, Chase(Sσ, Σ) |= σ, we can conclude that there exists a
tuple (z1, . . . , zar(P )) ∈ PChase(Sσ,Σ) such that

(xi1 , . . . , xik) = (zj1 , . . . , zjk),

which in turn implies that there exists (c1, . . . , car(P )) ∈ PD such that

(ai1 , . . . , aik) = (cj1 , . . . , cjk).

Therefore, D |= σ, and the claim follows. ut

Lemma 11.10 alone is of little use since it characterizes implication of
INDs under possibly infinite databases, whereas we are interested only in
(finite) databases. However, we can show that implication of INDs is finitely
controllable, which means that implication under finite databases (|=) and
implication under possibly infinite databases (|=∞) coincide.
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Theorem 11.11: Finite Controllability of Implication

Consider a set Σ of INDs over as schema S, and an IND σ over S. Then:

Σ |= σ if and only if Σ |=∞ σ.

Although the above theorem is crucial for our analysis, we do not discuss
its proof here (see Exercise 1.15). An immediate consequence of Lemma 11.10
and Theorem 11.11 is the following:

Corollary 11.12

Consider a set Σ of INDs over a schema S, and an IND σ over S. Then:

Σ |= σ if and only if Chase(Sσ, Σ) |= σ.

Due to Corollary 11.12, the reader may think that the procedure for check-
ing whether Σ |= σ, which will lead to the PSpace upper bound claimed in
Theorem 11.9, is simply to construct the set of atoms Chase(Sσ, Σ), and then
check whether it satisfies σ, which can be achieved due to Theorem 11.4. How-
ever, it should not be forgotten that Chase(Sσ, Σ) may be infinite. Therefore,
we need to rely on a finer procedure that avoids the explicit construction of
Chase(Sσ, Σ). We proceed to present a technical lemma that is the building
block of this refined procedure, but first we need some terminology.

Given an IND σ = R[i1, . . . , im] ⊆ P [j1, . . . , jm] and a tuple of variables
x̄ = (x1, . . . , xar(R)), we define the atom new?(σ, x̄) as the atom obtained
from new(σ, x̄) after replacing the newly introduced variables with the special
variable ? 6∈ {x1, . . . , xar(R)}, which should be understood as a placeholder for
new variables. Formally, new?(σ, x̄) = P (y1, . . . , yar(P )), where, for ` ∈ [ar(P )],

y` =

xik if ` = jk, for k ∈ [m],

? otherwise.

Given a set Σ of INDs, a witness of σ relative to Σ is a sequence of atoms
R1(x̄1), . . . , Rn(x̄n), for n ≥ 1, such that:

• Sσ = {R1(x̄1)},
• for each i ∈ [2, n], there is σi = Ri−1[αi−1] ⊆ Ri[αi] in Σ that is applicable

to {Ri−1(x̄i−1)} with x̄i−1 such that Ri(x̄i) = new?(σi, x̄i−1),

• Rn = P , and

• π(i1,...,im)(x̄1) = π(j1,...,jm)(x̄n).

A witness of σ relative to Σ is essentially a compact representation, which
uses only ar(R) + 1 variables, of a sequence of atoms of Chase(Sσ, Σ) that
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Algorithm 2 ImplicationWitness(Σ, σ)

Input: A set Σ of INDs over S and σ = R[i1, . . . , ik] ⊆ P [j1, . . . , jk] over S.
Output: true if there is a witness of σ relative Σ, and false otherwise.

1: if R = P and (i1, . . . , ik) = (j1, . . . , jk) then
2: return true

3: SO := {R(x̄)}, where x̄ = (x1, . . . , xar(R)) consists of distinct variables
4: S. := ∅
5: repeat
6: if σ′ = T [α] ⊆ T ′[β] ∈ Σ is applicable to SO with ȳ ∈ Dom(SO)ar(T ) then
7: S. := {new?(σ′, ȳ)}
8: if S. = ∅ then
9: return false

10: SO := S.
11: S. := ∅
12: Check := b, where b ∈ {0, 1}
13: until Check = 1
14: return (T ′ = P ∧ π(i1,...,ik)(x̄) = π(j1,...,jk)(z̄))

witnesses the following: starting from Sσ = {R(x1, . . . , xar(R))}, an atom
P (y1, . . . , yar(P )) with π(i1,...,im)(x1, . . . , xar(R)) = π(j1,...,jm)(y1, . . . , yar(P ))
can be obtained via chase applications, which means that Chase(Sσ, Σ) |= σ.
It is also not difficult to see that if Chase(Sσ, Σ) |= σ, then a witness of σ rela-
tive to Σ can be extracted from Chase(Sσ, Σ). This discussion is summarized
in the following technical lemma, whose proof is left as an exercise.

Lemma 11.13. Consider a set Σ of INDs over a schema S, and an IND σ
over S. Then, Chase(Sσ, Σ) |= σ iff there is a witness of σ relative to Σ.

By Corollary 11.12 and Lemma 11.13, we have that the problem of check-
ing whether a set Σ of INDs over a schema S implies a single IND σ over S,
boils down to checking whether a witness of σ relative to Σ exists. This is done
via the nondeterministic procedure depicted in Algorithm 2. Assume that σ
is of the form R[i1, . . . , ik] ⊆ P [j1, . . . , jk]. The algorithm first checks whether
R[i1, . . . , ik] = P [j1, . . . , jk], in which case a witness of σ relative to Σ trivially
exists, and returns true. Otherwise, it proceeds to nondeterministically con-
struct a witness of σ relative to Σ (if one exists). This is done by constructing
one atom after the other via chase steps, without having to store more than
two consecutive atoms. The algorithm starts from SO = {R(x1, . . . , Rar(R))};
SO should be understood as the “current atom”, which at the beginning is Sσ,
from which we construct the “next atom” S. in the sequence. The repeat-until
loop is responsible for constructing S. from SO. This is done by guessing an
IND σ′ ∈ Σ, and adding to S. the atom new?(σ′, ȳ) if σ′ is applicable to SO

with ȳ; note that ȳ is the single tuple occurring in SO. This is repeated until
the algorithm chooses to exit the loop by setting Check to 1, and check whether
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S. consists of an atom T ′(z̄) with T ′ = P and π(i1,...,ik)(x̄) = π(j1,...,jk)(z̄), in
which case it returns true; otherwise, it returns false.

It is easy to verify that Algorithm 2 uses polynomial space. This heavily
relies on the fact that the atoms generated during its computation contain
only variables from {x1, . . . , xar(R)} and the special variable ?, which in turn
implies that SO and S. can be represented using polynomial space. It also
takes polynomial space to check if R[i1, . . . , ik] = P [j1, . . . , jk] (see line 1), to
check if an IND is applicable to SO with ȳ (see line 6), and to check if T ′ = P
and π(i1,...,ik)(x̄) = π(j1,...,jk)(z̄) (see line 14). Therefore, IND-Implication is in
NPSpace, and thus in PSpace since NPSpace = PSpace.

A PSpace lower bound for IND-Implication can be shown via a reduction
from the following PSpace-hard problem: given 2-TM M that runs in linear
space, and a word w over the alphabet of M , decide whether M accepts input
w. The formal proof is left as Exercise 1.17.
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Exercises for Part I

Exercise 1.1. Let q be an FO query. Prove that one can compute in polyno-
mial time an FO query q′ that uses only ¬, ∨, and ∃ such that q ≡ q′.

Exercise 1.2. We say that a query q from a database schema S to a relation
schema S′ is C-generic, for some C ⊆ Const, if for every database D of S,
and for every bijection ρ : Const→ Const that is the identity on C, q(ρ(D)) =
ρ(q(D)). Show that an FO query ϕ(x̄) over a schema S is Dom(ϕ)-generic.

Exercise 1.3. The semantics of the rename and join operations in the named
RA has been defined in Chapter 4. Provide formal definitions for the semantics
of the other operations, i.e., selection, projection, union, and difference.

Exercise 1.4. State and prove the converse of Theorem 4.6.

Exercise 1.5. Prove that allowing conditions of the form ā ∈ e and empty(e)
in selection conditions of RA does not increase its expressiveness. In partic-
ular, show that selections with these new conditions can be expressed using
standard operations of RA.

Exercise 1.6. Prove that adding nested subqueries in the FROM clause does
not increase expressiveness. In particular, extend the translation from basic
SQL to RA that handles nested subqueries in FROM.

Exercise 1.7. The proofs of Theorems 7.1 and 7.3 only consider the special
case of FO-Evaluation where the input tuple ā is over Dom(D). In this case,
the complexity analysis is easier, because the size of ā is subsumed by the size
of the database. How can the proof be extended to FO-Evaluation in general,
i.e., allowing arbitrary tuples ā over Const?

Hint: If ā contains a value not in the active domain, what should FO-
Evaluation return?

Exercise 1.8. For showing that FO-Evaluation is PSpace-hard, we provided
a reduction from QSAT. In particular, for an input to QSAT given by ψ, we
constructed a database D and an FO query qψ (see the proof of Theorem 7.1).
Show that ψ is satisfiable if and only if D |= qψ.
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Exercise 1.9. For an integer k > 0, we write FOk for the class of FO queries
that can mention at most k variables. The evaluation problem for the class
of FOk queries, for some fixed k > 0, is defined as expected: given an FOk

query q, a database D, and a tuple ā, decide whether ā ∈ q(D). Show that
the evaluation problem for FOk queries, for a fixed k > 0, is in PTime.

Exercise 1.10. Let qM be the Boolean FO query constructed in the proof of
Theorem 8.1. Prove that if the Turing machine M on the empty word does
not halt, then there exists an infinite database D such that q(D) = true.

Exercise 1.11. Let FO-Unrestricted-Satisfiability be the unrestricted version
of FO-Satisfiability where we consider possibly infinite databases. In other
words, FO-Unrestricted-Satisfiability is defined as follows: given an FO query
q, is there a possibly infinite database D such that q(D) 6= ∅? Show that FO-
Unrestricted-Satisfiability is undecidable by adapting the proof of Theorem 8.1.

Exercise 1.12. Prove that FO-Containment remains undecidable even if the
left hand-side query is a Boolean query q = ∃x̄ ϕ, where ϕ is a conjunction of
relational atoms or the negation of relational atoms.

Exercise 1.13. The algorithms underlying Theorems 10.4 and 11.4 for check-
ing whether a database satisfies a set of FDs and INDs, respectively, were
designed with simplicity instead of efficiency in mind. Provide more efficient
algorithms for the problems FD-Satisfaction and IND-Satisfaction.

Exercise 1.14. Prove that the result of an infinite chase sequence of a finite
set of relational atoms under a set of INDs always exists.

Exercise 1.15. Prove Theorem 11.11. The non-trivial task is to show that
if Σ |=∞ σ does not hold, then also Σ |= σ does not hold. One can exploit
Lemma 11.10, which states that if Σ |=∞ σ does not hold, then Chase(Sσ, Σ)
does not satisfy σ. If Chase(Sσ, Σ) is finite, then we have that Σ |= σ does not
hold. The main task is, when Chase(Sσ, Σ) is infinite, to convert Chase(Sσ, Σ)
into a finite set S such that S |= Σ, but S does not satisfy σ.

Exercise 1.16. Prove Lemma 11.13.

Exercise 1.17. Prove that IND-Implication is PSpace-hard. To this end, pro-
vide a reduction from the following PSpace-hard problem: given 2-TM M
that runs in linear space, and a word w over the alphabet of M , decide whether
M accepts input w.
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To be done.
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Syntax and Semantics

Conjunctive queries are of special importance to databases. They express re-
lational joins, which correspond to the operation that is most commonly per-
formed by relational database engines. This is because data is typically spread
over multiple relations, and thus, to answer queries, one needs to join such re-
lations. Actually, conjunctive queries have the power of select-project-join RA
queries, which means that they correspond to a very common type of queries
written in Core SQL. The goal of this chapter is to introduce the syntax and
semantics of conjunctive queries.

Syntax of Conjunctive Queries

We start with the syntax of conjunctive queries.

Definition 13.1: Syntax of Conjunctive Queries

A conjunctive query (CQ) over a schema S is an FO query ϕ(x̄) over S
with ϕ being a formula of the form

∃ȳ
(
R1(ū1) ∧ · · · ∧Rn(ūn)

)
for n ≥ 1, where Ri(ūi) is a relational atom, and ūi a tuple of constants
and variables mentioned in x̄ and ȳ, for every i ∈ [n].

It is very common to represent CQs via a rule-like syntax, which is remi-
niscent of the syntax of logic programming rules. In particular, the CQ ϕ(x̄)
given in Definition 13.1 can be written as the rule

Answer(x̄) :– R1(ū1), . . . , Rn(ūn) ,

where Answer is a relation name not in S, and its arity (under the singleton
schema {Answer}) is equal to the arity of q. The relational atom Answer(x̄)
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that appears on the left of the :– symbol is called the head of the rule, while
the expression R1(ū1), . . . , Rn(ūn) that appears on the right of the :– symbol
is called the body of the rule. In general, throughout the book, we use the rule-
like syntax for CQs. Nevertheless, for convenience, we will freely interpret a
CQ as a first-order query or as a rule.

Example 13.2: Conjunctive Queries

Consider again the relational schema from Example 3.2:

Person [ pid, pname, cid ]

Profession [ pid, prname ]

City [ cid, cname, country ]

The following CQ can be used to retrieve the list of names of computer
scientists that were born in the city of Athens in Greece:

∃x∃z
(
Person(x, y, z) ∧ Profession(x, ‘computer scientist’) ∧

City(z, ‘Athens’, ‘Greece’)
)
.

In rule-like representation, this query is expressed as follows:

Answer(y) :– Person(x, y, z),Profession(x, ‘computer scientist’),

City(z, ‘Athens’, ‘Greece’).

A CQ q is Boolean if it has no output variables, i.e., x̄ is the empty tuple.
When we write a Boolean CQ as a rule, we simply write Answer as the head,
instead of Answer(). For example, the following Boolean CQ checks whether
there exists a computer scientist that was born in the city of Athens in Greece:

Answer :– Person(x, y, z),Profession(x, ‘computer scientist’),

City(z, ‘Athens’, ‘Greece’).

Semantics of Conjunctive Queries

Since CQs are FO queries, the definition of their output on a database can be
inherited from Definition 3.6. More precisely, given a database D of a schema
S, and a k-ary CQ q = ϕ(x̄) over S, where k ≥ 0, the output of q on D is

q(D) = {ā ∈ Dom(D)k | D |= ϕ(ā)} .

Notice that q(D) consists of tuples over Dom(D), not over Dom(D)∪Dom(ϕ).
This is because CQs do not allow for equational atoms, and thus, there is no
way for a constant of Dom(ϕ)−Dom(D) to appear in the output.
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Interestingly, there is a more intuitive (and equivalent) way of defining the
semantics of CQs when they are viewed as rules. The body of a CQ q of the
form Answer(x̄) :– body can be seen as a pattern that must be matched with
the database D via an assignment η that maps the variables in q to Dom(D).
For each such assignment η, if η applied to this pattern produces only facts
of D, it means that the pattern matches with D via η, and the tuple η(x̄) is
an output of q on D. We proceed to formalize this informal description.

Consider a database D and a CQ q of the form

Answer(x̄) :– R1(ū1), . . . , Rn(ūn) .

An assignment for q over D is a function η from the set of variables in q to
Dom(D). We say that η is consistent with D if

{R1(η(ū1)), . . . , Rn(η(ūn))} ⊆ D ,

where, for i ∈ [n], the fact Ri(η(ūi)) is obtained by replacing each variable x
in ūi with η(x), and leaving the constants in ūi untouched. The consistency of
η with D essentially means that the body of q matches with D via η. Having
this notion in place, we can define what is the output of a CQ on a database.

Definition 13.3: Evaluation of CQs

Given a database D of a schema S, and a CQ q(x̄) over S, the output of
q on D is defined as the set of tuples

q(D) = {η(x̄) | η is an assignment for q over D consistent with D} .

It is an easy exercise to show that the semantics of CQs inherited from
the semantics of FO queries in Definition 3.6, and the semantics of CQs given
in Definition 13.3, are equivalent, i.e., for a CQ q = ϕ(x̄) and a database D,

{ā ∈ Dom(D)k | D |= ϕ(ā)} =

{η(x̄) | η is an assignment for q over D consistent with D} .

Example 13.4: Evaluation of CQs

Let S be the schema from Example 3.2, which has been also used in
Example 13.2. Let D be the database of S shown in Figure 3.1; we recall
the relations Person and Profession in Figure 13.1. The following CQ q
can be used to retrieve the ids and names of actors:

Answer(x, y) :– Person(x, y, z),Profession(x, ‘actor’).

Observe that the assignment η for q over D such that

η(x) = ‘1’ η(y) = ‘Aretha’ η(z) = ‘MPH’
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Person

pid pname cid

1 Aretha MPH
2 Billie BLT
3 Bob DLT
4 Freddie ST

Profession

pid prname

1 singer
1 songwriter
1 actor
2 singer
3 singer
3 songwriter
3 author
4 singer
4 songwriter

Fig. 13.1: The relations Person and Profession for Example 13.4.

is consistent with D. Indeed, when applied to the body of q it produces
the facts Person(‘1’, ‘Aretha’, ‘MPH’) and Profession(‘1’, ‘actor’), both
of which are facts of D. On the other hand, the assignment η′ such that

η′(x) = ‘2’ η′(y) = ‘Billie’ η′(z) = ‘BLT’

is not consistent with D. When applied to the body of q, it generates
the fact Profession(‘2’, ‘actor’) that is not in D. It is straightforward to
verify that η is the only assignment for q over D that is consistent with
D, which in turn implies that the output of q on D is

q(D) = {(‘1’, ‘Aretha’)}.

If q is a Boolean CQ, then q(D) = true if and only if there is an assignment
for q over D that is consistent with D. In other words, q(D) = true if and
only if the body of the CQ matches with D via at least one assignment for q
over D. For instance, if in Example 13.4 we consider also the Boolean CQ q′

Answer :– Person(x, y, z),Profession(x, ‘actor’),

which is the Boolean version of q in Example 13.4, then q′(D) = true since
the assignment η is consistent with D. On the other hand, given the CQ q′′

Answer :– Person(x, y, z),Profession(x, ‘nurse’),

q′′(D) = false since there is no assignment η such that Person(η(x), η(y), η(z))
and Profession(η(x), ‘nurse’) are both facts of D.

Conjunctive Queries as a Fragment of FO

When CQs are seen as FO queries they use only relational atoms, conjunction
(∧), and existential quantification (∃). Thus, every CQ can be expressed using
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formulae from the fragment of FO that corresponds to the closure of relational
atoms under ∃ and ∧; we refer to this fragment of FO as FOrel[∧,∃]. Actually,
the converse is also true. Consider a query ϕ(x̄) with ϕ being an FOrel[∧,∃]
formula. It is easy to show that ϕ(x̄) is equivalent to a CQ. We first rename
variables in order to ensure that bound variables do not repeat (which leads to
an equivalent query), and then push the existential quantifiers outside. This
conversion can be easily illustrated via a simple example.

Example 13.5: From FOrel[∧,∃] Queries to CQs

Consider the FOrel[∧,∃] query ϕ(x) with

ϕ = (∃y R(x, a, y)) ∧ (∃y S(y, x, b)).

We first rename the second occurrence of y, and get the query ϕ′(x) with

ϕ′ = (∃y R(x, a, y)) ∧ (∃z S(z, x, b)).

We then push all the quantifiers outside, and get the CQ ϕ′′(x) with

ϕ′′ = ∃y∃z
(
R(x, a, y) ∧ S(z, x, b)

)
.

From the above discussion, we immediately get that:

Theorem 13.6

The languages of CQs and of FOrel[∧,∃] queries are equally expressive.

Notice that FOrel[∧,∃] is not the same as FO[∧,∃], that is, the fragment
of FO that allows only for conjunction (∧) and existential quantification (∃).
Fragments defined by listing a set of features of FO are assumed to be the
closure of all atomic formulae (including equational atoms) under those fea-
tures. Therefore, the fragment FO[∧,∃] allows also for equational atoms, which
means that the query ϕ(x, y) with ϕ = (x = y) is an FO[∧,∃] query. As we
shall see in the next chapter, though, ϕ(x, y) is not equivalent to a CQ.

Conjunctive Queries as a Fragment of RA

The class of CQs has the same expressive power as the fragment of RA that
is built from base expressions R ∈ Rel and allows for selection, projection, and
Cartesian product. Furthermore, conditions in selections are conjunctions of
equalities. Note that base expressions of the form {a} with a ∈ Const are not
included. This fragment of RA is called the select-project-join (SPJ) fragment.
Henceforth, we simply refer to the associated queries as SPJ queries. Recall
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that the join operation is actually a selection from the Cartesian product on
a condition that is a conjunction of equalities. We proceed to show that:

Theorem 13.7

The languages of CQs and of SPJ queries are equally expressive.

Proof. We first show how to translate a CQ q of the form

Answer(x̄) :– R1(ū1), . . . , Rn(ūn)

into an SPJ query. In fact, q can be expressed as the query

πα
(
σθ(q)

(
σθ(ū1)(R1)× σθ(ū2)(R2)× · · · × σθ(ūn)(Rn)

))
,

where conditions in selections, as well as the list of positions in the projections
are defined as follows:

• For each i ∈ [n], θ(ūi) is a conjunction of statements j
.
= a and j

.
= k,

where a ∈ Const and j, k ∈ [ar(Ri)], such that j
.
= a is a conjunct of θ(ūi)

if and only if the j-th component of ūi is the constant a, and j
.
= k is a

conjunct of θ(ūi) if and only if the j-th and the k-th components of ūi are
the same variable. If no constant occurs in ūi, and ūi consists of distinct
variables, then the selection is omitted; we have Ri instead of σθ(ūi)(Ri).

• The condition θ(q) is a conjunction of statements of the form j
.
= k, where

j, k ∈ [ar(R1) + · · ·+ ar(Rn)], such that j
.
= k is a conjunct of θ(q) if and

only if the following hold:

(i) if j = ar(R1) + · · · + ar(R`) + `′, for some ` ∈ [0, n − 1] and `′ ∈
[ar(R`+1)], then k > ar(R1) + · · ·+ ar(R`+1), and

(ii) the j-th and the k-th components of ū1ū2 . . . ūn are the same variable.

Item (i) states that j and k should be positions from different ūi tuples.

• Finally, α is a list of positions among ū1ū2 . . . ūn that form the output
tuple of variables x̄.

The correctness of the above translation is left as an exercise. Note that instead
of using the condition θ(q), one can replace the Cartesian products by θ-joins
(recall that the θ-join of relations R and S is defined as R onθ S = σθ(R×S)).
Here is a simple example that illustrates the above translation.

Example 13.8: From CQs to SPJ Queries

Consider the CQ q defined as

Answer(x, x, y) :– R1(x, z, z, a, x︸ ︷︷ ︸
ū1

), R2(a, y, z, a, b︸ ︷︷ ︸
ū2

), R3(x, y, z︸ ︷︷ ︸
ū3

) .

It is easy to verify that
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θ(ū1) = (4
.
= a) ∧ (1

.
= 5) ∧ (2

.
= 3)

θ(ū2) = (1
.
= a) ∧ (4

.
= a) ∧ (5

.
= b) ,

while the selection operation σθ(ū3) is omitted since neither a constant
nor a repetition of variables occurs in ū3.

The condition θ(q) essentially has to specify that in

ū1ū2ū3 = (x, z, z, a, x, a, y, z, a, b, x, y, z)

the variable x in ū1 and the variable x in ū3 are the same, the variable
z in ū1 and the variable z in both ū2 and ū3 are the same, and that the
variable y in ū2 and the variable y in ū3 are the same. This results in

θ(q) = (1
.
= 11) ∧ (5

.
= 11) ∧ (2

.
= 8) ∧ (2

.
= 13) ∧

(3
.
= 8) ∧ (3

.
= 13) ∧ (8

.
= 13) ∧ (7

.
= 12).

Finally, α corresponds to variable x repeated twice and variable y, i.e.,
α = (1, 1, 7). Summing up, the CQ q is expressed as

π(1,1,7)

(
σ(1

.
=11)∧(2

.
=8)∧(2

.
=13)∧(7

.
=12)

(
σ(4

.
=a)∧(1

.
=5)∧(2

.
=3)(R1) ×

σ(1
.
=a)∧(4

.
=a)∧(5

.
=b)(R2)×R3

))
.

For the sake of readability, we have eliminated (5
.
= 11) from θ(q) since

it can be derived from (1
.
= 11) in θ(q) and (1

.
= 5) in θ(ū1), and likewise

for conditions (3
.
= 8), (3

.
= 13) and (8

.
= 13) in θ(q).

We now proceed with the other direction, and show that every SPJ query
e can be expressed as a CQ qe. The proof is by induction on the structure of
e. We can assume that in e all selections are either of the form σi .=a or σi .=j
(because more complex selections can be obtained by applying a sequence of
simple selections). We also assume that all projections are of the form πı̄ that
exclude the i-th component; for instance, π2̄(R) applied to a ternary relation R
will transform each tuple (a, b, c) into (a, c) by excluding the second component
(again, more complex projections are simply sequences of these simple ones).

• If e = R, where R is a k-ary relation, then qe is the CQ ϕ(x̄) = R(x̄),
where x̄ is a k-ary tuple of pairwise distinct and fresh variables.

• If e is of arity k with qe = ϕ(x1, . . . , xk), where the xi’s are not necessarily
distinct, then

– qσi .=a(e) is the CQ obtained from qe by replacing each occurrence of
the variable xi by the constant a,

– qσi .=j(e) is the CQ obtained from qe by replacing each occurrence of

the variable xj with the variable xi, and
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– qπı̄(e) is the CQ ϕ(x1, . . . , xi−1, xi+1, . . . , xk) if xi occurs among the
xj ’s with j 6= i, and ∃xi ϕ(x1, . . . , xk) otherwise.

• If e1 is k-ary with qe1 = ϕ1(x1, . . . , xk) and ϕ1 = ∃z̄ ψ1, and e2 is m-
ary with qe2 = ϕ2(y1, . . . , ym) and ϕ2 = ∃w̄ ψ2, then q(e1×e2) is the CQ
ϕ(x1, . . . , xk, y1, . . . , ym) with ϕ = ∃z̄∃w̄ ψ1 ∧ ψ2; we assume that ψ1 and
ψ2 do not share variables.

This completes the construction of the CQ qe. The correctness of the above
translation is left as an exercise to the reader.

We conclude by explaining further the difference between the two cases of
handling projection. Consider the unary relations U , V and an RA expression
e = π1̄(σ1

.
=2(U × V )). First, notice that U × V is translated as ϕ(x, y) =

U(x)∧ V (y), since the expression U has to be translated as a relational atom
of the form U(z) where the variable z is fresh, and likewise for the expression
V ; thus, the occurrences of U and V in e have to be translated considering
distinct variables, in this case x and y. Then σ1

.
=2(U × V ) is translated as

ϕ(x, x) = U(x) ∧ V (x), since y is replaced with x. Finally, π1̄(σ1
.
=2(U × V ))

is obtained by eliminating the first occurrence of x as an output variable: the
CQ defining e is ψ(x) = U(x) ∧ V (x). On the other hand, the correct way to
define e′ = π2̄(U × V ) as a CQ is to existentially quantify over y in ϕ(x, y)
that defines U × V , that is, the CQ ψ′(x) with ψ = ∃y (U(x) ∧ V (y)). ut

The following is an immediate corollary of Theorems 13.6 and 13.7 that
relates the languages of FOrel[∧,∃] and SPJ queries.

Corollary 13.9

The language of FOrel[∧,∃] queries and the language of SPJ queries are
equally expressive.
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Homomorphisms and Expressiveness

As already discussed in Chapter 9, homomorphisms are a fundamental tool
that plays a key role in various aspects of relational databases. In this chapter,
we discuss how homomorphisms emerge in the context of CQs. In particular,
we show that they provide an alternative way to describe the evaluation of
CQs, and also use them as a tool to understand the expressiveness of CQs.

CQ Evaluation and Homomorphisms

We can recast the semantics of CQs using the notion of homomorphism. The
key observation is that the body of a CQ, written as a rule, can be viewed as
a set of atoms. More precisely, given a CQ q of the form

Answer(x̄) :– R1(ū1), . . . , Rn(ūn)

we define the set of relational atoms

Aq = {R1(ū1), . . . , Rn(ūn)}.

Thus, we can naturally talk about homomorphisms from CQs to databases.

Definition 14.1: Homomorphisms from CQs to Databases

Consider a CQ q(x̄) over a schema S, and a database D of S. We say that
there is a homomorphism from q to D, written as q → D, if Aq → D.
We also say that there is a homomorphism from (q, x̄) to (D, ā), written
as (q, x̄)→ (D, ā), if (Aq, x̄)→ (D, ā).

To define the output of a CQ q(x̄) on a database D (see Definition 13.3),
we used the notion of assignment for q over D, which is a function from the
set of variables in q to Dom(D). The output of q on D consists of all the tuples
η(x̄), where η is an assignment for q over D that is consistent with D, i.e.,
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{R1(η(ū1)), . . . , Rn(η(ūn))} ⊆ D.

Since, for i ∈ [n], Ri(η(ūi)) is the fact obtained after replacing each variable x
in ūi with η(x), and leaving the constants in ūi untouched, such an assignment
η corresponds to a function h : Dom(Aq)→ Dom(D), which is the identity on
the constants occurring in q, such that R(h(ūi)) = R(η(ūi)). But, of course,
this is the same as saying that h is a homomorphism from q to D. Therefore,
q(D) is the set of all tuples h(x̄), where h is a homomorphism from q to D,
i.e., the set of all tuples ā over Dom(D) with (q, x̄)→ (D, ā). This leads to an
alternative characterization of CQ evaluation in terms of homomorphisms.

Theorem 14.2

Given a database D of a schema S, and a CQ q(x̄) of arity k ≥ 0 over S,

q(D) = {ā ∈ Dom(D)k | (q, x̄)→ (D, ā)}.

Here is a simple example that illustrates the above characterization.

Example 14.3: CQ Evaluation via Homomorphisms

Let D and q be the database and the CQ, respectively, that have been
considered in Example 13.4. We know that q(D) = {(‘1’, ‘Aretha’)}. By
the characterization given in Theorem 14.2, we conclude that

(
q, (x, y)

)
→(

D, (‘1’, ‘Aretha’)
)
. To verify that this is the case, recall that we need to

check whether
(
Aq, (x, y)

)
→
(
D, (‘1’, ‘Aretha’)

)
, where

Aq = {Person(x, y, z),Profession(x, ‘actor’)}.

Consider the function h : Dom(Aq)→ Dom(D) such that

h(x) = ‘1’ h(y) = ‘Aretha’ h(z) = ‘MPH’ h(‘actor’) = ‘actor’.

It is clear that the following facts belong to D:

Person(h(x), h(y), h(z)) = Person(‘1’, ‘Aretha’, ‘MPH’)

Profession(h(x), h(‘actor’)) = Profession(‘1’, ‘actor’)

Moreover, h
(
(x, y)

)
= (‘1’, ‘Aretha’). Thus, h is a homomorphism from(

Aq, (x, y)
)

to
(
D, (‘11’, ‘Aretha’)

)
, witnessing that(

Aq, (x, y)
)
→
(
D, (‘1’, ‘Aretha’)

)
.



14 Homomorphisms and Expressiveness 95

Preservation Results for CQs

Some particularly useful properties of CQs are their preservation under vari-
ous operations, such as application of homomorphisms, or taking direct prod-
ucts. These properties will provide a precise explanation of the expressiveness
of CQs as a subclass of FO queries.

Preservation Under Homomorphisms

By saying that a query q is preserved under homomorphisms, we essentially
mean the following: if a tuple ā belongs to the output of q on a database D, and
(D, ā)→ (D′, b̄), then b̄ should belong to the output of q on D′. Although we
can naturally talk about homomorphisms among databases (since databases
are sets of relational atoms), there is a caveat that is related to the fact that
homomorphisms are the identity on constant values. Since Dom(D) ⊆ Const
for every database D, it follows that D → D′ if and only if D ⊆ D′. Thus,
the notion of homomorphism among databases is actually subset inclusion.
However, the intention underlying the notion of homomorphism is to preserve
the structure, possibly by leaving some constants unchanged.

To overcome this mismatch, we need a mechanism that allows us to convert
a database into a set of relational atoms by replacing constant values with
variables.1 To this end, for a finite set of constants C ⊆ Const, we define an
injective function VC : Const→ Const∪Var that is the identity on C. We then
write (D, ā)→C (D′, b̄) if (VC(D),VC(ā))→ (D′, b̄). Note that in VC(D) and
VC(ā) all constants, except for those in C, have been replaced by variables,
so the definition of homomorphism no longer trivializes to being a subset.

Example 14.4: Homomorphisms Among Databases

Consider the databases

D1 = {R(a, b), R(b, a)} D2 = {R(c, c)}.

If C1 = ∅, then we have that VC1(a) and VC1(b) are distinct elements of
Var, let say VC1(a) = x and VC1(b) = y. Hence,

VC1(D1) = {R(x, y), R(y, x)} VC1((a, b)) = (x, y),

from which we conclude that (D1, (a, b))→C1
(D2, (c, c)) since(

VC1
(D1),VC1

((a, b))
)
→
(
D2, (c, c)

)
.

On the other hand, if C2 = {a, b}, then

VC2(D1) = {R(a, b), R(b, a)} VC2((a, b)) = (a, b).

1 This is essentially the opposite of grounding a set of atoms discussed in Chapter 9.
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Therefore, it does not hold that (D1, (a, b))→C2
(D2, (c, c)), since it does

not hold that
(
VC2

(D1),VC2
((a, b))

)
→
(
D2, (c, c)

)
.

We can now define the notion of preservation under homomorphisms.

Definition 14.5: Preservation Under Homomorphisms

Consider a k-ary FO query q = ϕ(x̄) over a schema S. We say that q is
preserved under homomorphisms if, for every two databases D and D′

of S, and tuples ā ∈ Dom(D)k and b̄ ∈ Dom(D′)k, it holds that

(D, ā)→Dom(ϕ) (D′, b̄) and ā ∈ q(D) implies b̄ ∈ q(D′).

We then show the following for CQs.

Proposition 14.6

Every CQ is preserved under homomorphisms.

Proof. Consider a k-ary CQ q(x̄) over a schema S, and let C be the set of
constants in q. Assume that (D, ā) →C (D′, b̄) for some databases D,D′ of
S, and tuples ā ∈ Dom(D)k and b̄ ∈ Dom(D′)k. Assume also that ā ∈ q(D).
Let h be a homomorphism witnessing (VC(D),VC(ā))→ (D′, b̄). By Theorem
14.2, (q, x̄)→ (D, ā) via some h′. It holds that hq = VC◦h′ is a homomorphism
witnessing (q, x̄)→ (VC(D),VC(ā)) since hq is the identity on C; indeed, for
a ∈ C, VC(h′(a)) = a by definition. Observe that h ◦ hq is a homomorphism
from (q, x̄) to (D′, b̄), and thus, by Theorem 14.2, b̄ ∈ q(D′), as needed. ut

Another key property is that of monotonicity. A query q over a schema S
is monotone if, for every two databases D and D′ of S, we have that

D ⊆ D′ implies q(D) ⊆ q(D′).

We show that homomorphism preservation implies monotonicity of CQs.

Corollary 14.7

Every CQ is monotone.

Proof. Let q be a CQ over S, and C be the set of constants occurring in q.
Consider the databases D,D′ of S such that D ⊆ D′, and assume that ā ∈
q(D). It is clear that V−1

C is a homomorphism from (VC(D),VC(ā)) to (D′, ā)
and thus, (D, ā)→C (D′, ā). By Proposition 14.6, we get that ā ∈ q(D′). ut



14 Homomorphisms and Expressiveness 97

Preservation under Direct Products

The second preservation result stated here concerns direct products. We first
recall what a direct product of graphs is. Given two graphs G1 = (V1, E1) and
G2 = (V2, E2), their direct product G1⊗G2 has V1×V2 as the set of vertices,
i.e., each vertex is a pair (v1, v2) with v1 ∈ V1 and v2 ∈ V2. In G1 ⊗G2 there
is an edge between (v1, v2) and (v′1, v

′
2) if there is an edge from v1 to v′1 in E1

and from v2 to v′2 in E2. Note that the notion of direct product is different
from that of Cartesian product. Indeed, the Cartesian product of two binary
relations is a 4-ary relation, while their direct product is still binary.

The definition of direct products for databases is essentially the same,
modulo one small technical detail. Elements of databases come from Const.
For two constants a1 and a2, the pair (a1, a2) is not an element of Const, but
we can think of it as such. Indeed, since Const is countably infinite, there is a
pairing function, i.e., a bijection τ : Const×Const→ Const. A typical example,
assuming that Const is enumerated as c0, c1, c2, . . . , is to define τ(cn, cm) = ck
for k = (n+m)(n+m+ 1)/2 +m. Given a pairing function, we can think of
(a1, a2) as being in Const, represented by τ(a1, a2), and then simply extend
the previous definition to arbitrary databases as follows. Given two databases
D and D′ of a schema S, their direct product D⊗D′ is a database of S that,
for each n-ary relation name R in S, contains the following facts:

R
(
τ(a1, a

′
1), . . . , τ(an, a

′
n)
)

where R(a1, . . . , an) ∈ D and R(a′1, . . . , a
′
n) ∈ D′ .

Technically speaking, this definition depends on the choice of a pairing func-
tion, but this choice is irrelevant for FO queries (see Exercise 2.4).

We proceed to define the notion of preservation under direct products. We
do this for Boolean queries without constants, as this suffices to understand
the limitations of CQs. Exercises 2.6 and 2.7 explain how these results can be
extended to queries with constants and free variables, respectively.

Definition 14.8: Preservation under Direct Products

A Boolean FO query q over a schema S is preserved under direct products
if, for every two databases D and D′ of S, it holds that

D |= q and D′ |= q implies D ⊗D′ |= q.

We then show the following for CQs.

Proposition 14.9

Every Boolean CQ is preserved under direct products.

Proof. As stated earlier, for technical clarity, we only consider CQs that do
not mention constants, but the result holds even for CQs with constants (see
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Exercise 2.6). Let q be a Boolean CQ without constants over a schema S, and
let D,D′ be databases of S such that D |= q and D′ |= q. By Theorem 14.2,
there are homomorphisms h, g witnessing q → D and q → D′, respectively.
Define now f(x) = τ

(
h(x), g(x)

)
. Assume that R(u1, . . . , un) is an atom in q.

Then R(h(u1), . . . , h(un)) ∈ D and R(g(u1), . . . , g(un)) ∈ D′. Hence,

R
(
f(u1), . . . , f(un)

)
= R

(
τ(h(u1), g(u1)), . . . , τ(h(un), g(un))

)
belongs to D⊗D′, proving that f is a homomorphism from q to D⊗D′. Thus,
by Theorem 14.2, D ⊗D′ |= q, as needed. ut

Expressiveness of CQs

The above preservation results allow us to delineate the expressiveness bound-
aries of CQs. By Theorem 13.7, CQs and SPJ queries, that is, RA queries that
do not have inequality in selections, union (and disjunction in selection con-
ditions), and difference, are equally expressive. We prove that none of these
is expressible as a CQ. Also notice that in the definition of CQs we disallow
explicit equality: CQs correspond to FOrel[∧,∃] queries, i.e., FO queries based
on the fragment of FO that is the closure of relational atoms under ∃ and ∧.
Implicit equality is, of course, allowed by reusing variables. We show that by
adding explicit equality one obtains queries that cannot be expressed as CQs.

CQs cannot express inequality. This is because CQs with inequality are
not preserved under homomorphisms.2 Consider, e.g., the FO query

q1 = ∃x∃y
(
R(x, y) ∧ x 6= y

)
.

For D = {R(a, b)} and D′ = {R(c, c)}, we have that D →∅ D′. However,
D |= q1 while D′ 6|= q1. As a second example, consider the FO query

q2 = ∃x (S(x) ∧ x 6= a),

where a is a constant. Given D = {S(b)} and D′ = {S(a)}, we have that
D →{a} D′. However, D |= q2 while D′ 6|= q2.

CQs cannot express negative relational atoms. The reason is because
such queries are not monotone. Consider, for example, the FO query

q = ¬P (a),

where a is a constant. If we take D = ∅ and D′ = {P (a)}, then D ⊆ D′

but D |= q while D′ 6|= q.

2 Conjunctive queries with inequality are studied in-depth in Chapter 32.



14 Homomorphisms and Expressiveness 99

CQs cannot express difference. This is because difference is not mono-
tone. Consider, for example, the FO query

q = ∃x(P (x) ∧ ¬Q(x)).

For D = {P (a)} ⊆ D′ = {P (a), Q(a)}, we have that D |= q while D′ 6|= q.

CQs cannot express union. This is because such queries are not preserved
under direct products. Consider, for example, the FO query

q = ∃x (R(x) ∨ S(x)).

Let D = {R(a)} and D′ = {S(a)}. Then, D |= q and D′ |= q, but D⊗D′
is empty, and thus, D ⊗D′ 6|= q.

CQs cannot express explicit equality. This is because such queries are
not preserved under direct products. Consider, for example, the FO query

q = ∃x∃y (x = y).

Let D = {R(a)} and D′ = {S(a)}. Observe that D |= q and D′ |= q, but
D ⊗D′ 6|= q since D ⊗D′ is empty.





15

Query Evaluation

In this chapter, we study the complexity of evaluating conjunctive queries,
that is, CQ-Evaluation. Recall that this is the problem of checking whether
ā ∈ q(D) for a CQ query q, a database D, and a tuple ā over Dom(D). Recall
that for FO queries the same problem is PSpace-complete (Theorem 7.1). As
we show next, the complexity for CQs lies in NP.

Theorem 15.1

CQ-Evaluation is NP-complete.

Proof. We start with the upper bound. Consider a CQ q(x̄), a database D, and
a tuple ā ∈ Dom(D). By Theorem 14.2, ā ∈ q(D) if and only if (q, x̄)→ (D, ā).
Therefore, we need to show that checking whether there exists a homomor-
phism from (q, x̄) to (D, ā) is in NP. This is done by guessing a function
h : Dom(Aq)→ Dom(D), and then verifying that h is a homomorphism from
(Aq, x̄) to (D, ā), i.e., h is the identity on Dom(Aq) ∩ Const, and R(ū) ∈ Aq
implies R(h(ū)) ∈ D. Since both steps are feasible in polynomial time, we
conclude that checking whether (q, x̄)→ (D, ā) is in NP, as needed.

For the lower bound, we provide a reduction from a graph-theoretic prob-
lem, called Clique, which is NP-complete. Recall that a clique in an undirected
graph G = (V,E) is a complete subgraph G′ = (V ′, E′) of G, i.e., every two
distinct nodes of V ′ are connected via an edge of E′. We say that such a clique
is of size k ≥ 1 if V ′ consists of k nodes. The problem Clique follows:

Problem: Clique

Input: An undirected graph G, and an integer k ≥ 1

Output: true if G has a clique of size k, and false otherwise

Consider an input to Clique given by G = (V,E) and k ≥ 1. The goal is to
construct in polynomial time a database D and a Boolean CQ q such that G
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has a clique of size k if and only if D |= q. We construct the database

D = {Node(v) | v ∈ V } ∪ {Edge(v, u) | (v, u) ∈ E and v 6= u},

which essentially stores the graph G, but without loops of the form (v, v) that
may occur in E. We can eliminate loops, which is crucial for the correctness
of the CQ that we construct next, since they do not affect the existence of a
clique of size k in G, i.e., G has a clique of size k if and only if G′ obtained
from G after eliminating the loops has a clique of size k. We also construct

q = ∃x1 · · · ∃xk
( k∧
i=1

Node(xi) ∧
∧

i,j∈[k] : i 6=j

Edge(xi, xj)

)
,

which asks whether G has a clique of size k. It is clear that D and q can be
constructed in polynomial time from G and k. Moreover, it is easy to see that
G has a clique of size k if and only if D |= q, and the claim follows. ut

The data complexity of CQ-Evaluation is immediately inherited from FO-
Evaluation (see Theorem 7.3) since CQs are FO queries. Recall that, by con-
vention, CQ-Evaluation is in a complexity class C in data complexity if, for
every CQ query q, the problem q-Evaluation, which takes as input a database
D and a tuple ā over Dom(D), and asks whether ā ∈ q(D), is in C.

Corollary 15.2

CQ-Evaluation is in DLogSpace in data complexity.

Actually, as discussed in Chapter 7, FO-Evaluation, and thus CQ-Evaluation,
is in AC0 in data complexity, a class that is properly contained in DLogSpace.
Recall that AC0 consists of those languages that are accepted by polynomial-
size circuits of constant depth and unbounded fan-in.

Parameterized Complexity

As discussed in Chapter 2, queries are typically much smaller than databases
in practice. This motivated the notion of data complexity, where the cost
of evaluation is measured only in terms of the size of the database, while the
query is considered to be fixed. However, an algorithm that runs, for example,
in time O(‖D‖‖q‖), although is tractable in terms of data complexity since ‖q‖
is a constant, it cannot be considered to be really practical when the database
D is very large, even if the query q is small. This suggests that we need to
rely on a finer notion of complexity than data complexity for classifying query
evaluation algorithms as practical or impractical.

This finer notion of complexity is parameterized complexity, which is rele-
vant whenever we need to classify the complexity of a problem depending on
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some central parameters. In the context of query evaluation, it is sensible to
consider the size of the database and the size of the query as separate param-
eters when designing evaluation algorithms, and target algorithms that take
less time on the former parameter. For example, a query evaluation algorithm
that runs in time O(‖D‖ ·‖q‖2) is expected to perform better in practice than
an algorithm that runs in time O(‖D‖2 · ‖q‖). Moreover, if the difference be-
tween ‖D‖ and ‖q‖ is significant, as it usually happens in real-life, then even
an algorithm that runs in time O(‖D‖ · 2‖q‖) could perform better in practice
than an algorithm that runs in time O(‖D‖2 · ‖q‖).

Background on Parameterized Complexity

Before studying the parameterized complexity of CQ-Evaluation when consid-
ering the size of the database and the size of the query as separate parameters,
we first need to introduce some fundamental notions of parameterized com-
plexity. We start with the notion of parameterized problem (or language).

Definition 15.3: Parameterized Problem

Consider a finite alphabet Σ. A parameterization of Σ∗ is a polynomial
time computable function κ : Σ∗ → N. A parameterized problem (over
Σ) is a pair (L, κ), where L ⊆ Σ∗, and κ is a parameterization of Σ∗.

A typical example of such a problem is the parameterized version of Clique.

Example 15.4: Parameterized Clique

Recall that Clique is the set of pairs (G, k), where G is an undirected
graph that contains a clique of size k ≥ 1. Assume that graph-integer
pairs are encoded as words over some finite alphabet Σ. Let κ : Σ∗ → N
be the parameterization of Σ∗ defined by

κ(w) =

k if w is the encoding of a graph-integer pair (G, k),

1 otherwise,

for w ∈ Σ∗. We denote the parameterized problem (Clique, κ) as p-Clique.

The input to a parameterized problem (L, κ) over the alphabet Σ is a word
w ∈ Σ∗, and the numbers κ(w) are the corresponding parameters. Similarly to
(non-parameterized) problems that are represented in the form input-output,
we will represent parameterized problems in the form input-parameter-output.
For example, p-Clique is represented as follows:
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Problem: p-Clique

Input: An undirected graph G, and an integer k ≥ 1

Parameter: k

Output: true if G has a clique of size k, and false otherwise

Analogously, we can talk about the parameterized version of CQ-Evaluation,
where the parameter is the size of the query:

Problem: p-CQ-Evaluation

Input: A CQ q(x̄), a database D, and a tuple ā over Dom(D)

Parameter: ‖q‖
Output: true if ā ∈ q(D), and false otherwise

Recall that the motivation underlying parameterized complexity is to have
a finer notion of complexity that allows us to classify algorithms as practical or
impractical. But when an algorithm in the realm of parameterized complexity
is considered to be practical? This brings us to fixed-parameter tractability.

Definition 15.5: Fixed-Parameter Tractability

Consider a finite alphabet Σ, and a parametarization κ : Σ∗ → N of Σ∗.
An algorithm A with input alphabet Σ is an fpt-algorithm with respect
to κ if there exists a computable function f : N→ R+

0 , and a polynomial
p(·) such that, for every w ∈ Σ∗, A on input w runs in time

O
(
p(|w|) · f(κ(w))

)
.

A parameterized problem (L, κ) is fixed-parameter tractable if there is an
fpt-algorithm with respect to κ that decides L. We write FPT for the
class of all fixed-parameter tractable problems.

In simple words, (L, κ) is fixed-parameter tractable if there is an algorithm
that decides whether w ∈ L in time arbitrarily large in the parameter κ(w),
but polynomial in the size of the input w. This reflects the assumption that
κ(w) is much smaller than |w|, and thus, an algorithm that runs, e.g., in time
O(|w| · 2κ(w)) is preferable than one that runs in time O(|w|κ(w)).

Whenever we deal with an intractable problem, e.g., the problem of con-
cern of this chapter, i.e., CQ-Evaluation, it would be ideal to be able to show
that its parameterized version is in FPT. The reader may be tempted to think
that p-CQ-Evaluation is in FPT, and that this can be easily shown by exploit-
ing the algorithm for proving that CQ-Evaluation is in NP. It turns out that
this is not true. Consider a CQ q(x̄), a databaseD, and a tuple ā over Dom(D).
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To check if ā ∈ q(D), we can iterate over all functions h : Dom(Aq)→ Dom(D)
until we find one that is a homomorphism from (Aq, x̄) to (D, ā), in which case
we return true; otherwise, we return false. Since there are |Dom(D)||Dom(Aq)|

such functions, we conclude that this algorithm runs in time

O
(
‖D‖‖q‖ · r(‖D‖+ ‖q‖)

)
for some polynomial r(·); note that the size of ā is not included in the bound
since it is polynomially bounded by ‖D‖ and ‖q‖. Therefore, we cannot con-
clude that p-CQ-Evaluation is in FPT since the expression that describes the
running time of the above algorithm is not of the form O(p(‖D‖) · f(‖q‖)),
for some polynomial p(·) and computable function f : N → R+

0 , as required
by fixed-parameter tractability in Definition 15.5.

It is widely believed that there is no fpt-algorithm that decides the param-
eterized version of CQ-Evaluation. But then the natural question that comes
up is the following: how can we prove that a parameterized problem is not in
FPT? Several complexity classes have been defined in the context of param-
eterized complexity in order to prove that a parameterized problem is not in
FPT. Such classes are widely believed to properly contain FPT. This means
that if a parameterized problem is complete for one of those classes, then this
is a strong indication that the problem in question is not in FPT. Notice here
the analogy with classes such as NP and PSpace: it is not known whether
these classes properly contain PTime, but if a problem is complete for any
of them, then this is considered as a strong evidence that the problem is not
tractable. We proceed to define one of such classes, namely W[1], which will
allow us to pinpoint the exact complexity of p-CQ-Evaluation.

To define the class W[1], we need to introduce some auxiliary terminology.
Consider a schema S. Let X be a relation name of arity m ≥ 0 that does not
belong to S, and ϕ an FO sentence over S∪{X}. For a database D of S, and
a relation S ⊆ Dom(D)m, we write D |= ϕ(S) to indicate that D′ |= ϕ, where
D′ = D ∪ {X(ā) | ā ∈ S}. We further define the problem p-WDϕ as follows:

Problem: p-WDϕ

Input: A database D of the schema S, and k ∈ N
Parameter: k

Output: true if there exists S ⊆ Dom(D)m such that |S| = k and

D |= ϕ(S), and false otherwise

Notice that the sentence ϕ is fixed in the definition of p-WDϕ. Therefore,
a different FO sentence ψ of the form described above gives rise to a different
parameterized problem, dubbed p-WDψ. The last notion that we need before
introducing the class W[1] is that of FPT-reduction.

An FPT-reduction from a parameterized problem (L1, κ1) over Σ1 to a
parameterized problem (L2, κ2) over Σ2 is a function Φ : Σ∗1 → Σ∗2 such that
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the following holds: there are computable functions f, g : N → R+
0 , and a

polynomial p(·), such that, for every word w ∈ Σ∗1 :

1. w ∈ L1 if and only if Φ(w) ∈ L2,

2. Φ(w) can be computed in time p(|w|) · f(κ1(w)), and

3. κ2(Φ(w)) ≤ g(κ1(w)).

The first and the second conditions are natural. The third condition is needed
to ensure the crucial property that FPT is closed under FPT-reductions: if
there exists an FPT-reduction from (L1, κ1) to (L2, κ2), and (L2, κ2) ∈ FPT,
then (L1, κ1) ∈ FPT; the proof is left as an exercise.

We now have all the ingredients needed for introducing the class W[1].
Recall that universal FO sentences are FO sentences of the form ∀x1 · · · ∀xn ψ,
where ψ is quantifier free and FV(ψ) = {x1, . . . , xn}.

Definition 15.6: The Class W[1]

A parameterized problem (L, κ) is in W[1] if there exists a schema S, a
relation name X not in S, and a universal FO sentence ϕ over S∪ {X},
such that there exists an FPT-reduction from (L, κ) to p-WDϕ.

To give some intuition about the definition of W[1], we show that p-Clique
is in W[1]. We first define a universal FO sentence ϕ, and then show that there
exists an FPT-reduction from p-Clique to p-WDϕ. Assume that S consists of
the relation names Node[1] and Edge[2]. Let also Elem[1] be a relation name
not in S. We define the universal FO sentence ϕ over S ∪ {Elem}

∀x∀y
(
(Elem(x) ∧ Elem(y) ∧ x 6= y)→ Edge(x, y)

)
.

We proceed to show that there is an FPT-reduction from p-Clique to p-WDϕ.
Consider an input to p-Clique given by G = (V,E) and k ≥ 1. Let

D = {Node(v) | v ∈ V } ∪ {Edge(v, u) | (v, u) ∈ E and v 6= u}.

The sentence ϕ checks whether the nodes in the relation Elem form a clique.
Thus, G has a clique of size k if and only if there exists S ⊆ Dom(D) such
that |S| = k and D |= ϕ(S). It is also clear that (D, k) can be computed in
polynomial time. Therefore, the above reduction from p-Clique to p-WDϕ is
an FPT-reduction, which in turn implies that p-Clique ∈W[1].

Before we proceed with the parameterized complexity of CQ-Evaluation,
let us comment on the nomenclature of W[1]. The class W[1] is the first level
of a hierarchy of complexity classes W[t], for each t ≥ 1; hence the number 1.
More specifically, the class W[t] is defined in the same way as the class W[1],
but allowing the FO sentence ϕ in p-WDϕ to be of the form ∀x̄1∃x̄2 · · ·Qx̄t ψ,
where ψ is quantifier free, Q = ∃ if t is even, and Q = ∀ if t is odd. The W-
hierarchy is defined as the union of all the classes W[t], that is,

⋃
t≥1 W[t].
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Parameterized Complexity of CQ-Evaluation

We know that p-Clique is W[1]-complete, which means that p-Clique ∈W[1]
(this has been shown above), and every parameterized problem in W[1] can be
reduced via an FPT-reduction to p-Clique. We also known that FPT ⊆W[1],
and it is widely believed that this inclusion is strict (the status of the question
whether FPT 6= W[1] is comparable to that of PTime 6= NP). Thus, it is
unlikely that p-Clique ∈ FPT (as FPT is closed under FPT-reductions). We
use this result to prove that the same holds for p-CQ-Evaluation, thus providing
strong evidence that this problem is not fixed-parameter tractable.

Theorem 15.7

p-CQ-Evaluation is W[1]-complete.

Proof. For the lower bound, we show that there exists an FPT-reduction from
p-Clique to p-CQ-Evaluation. We use the same reduction as for the lower bound
in Theorem 15.1, which we recall here for the sake of readability. Consider an
input to p-Clique given by G = (V,E) and k ≥ 1. The database is

D = {Node(v) | v ∈ V } ∪ {Edge(v, u) | (v, u) ∈ E and v 6= u},

and the Boolean CQ is

q = ∃x1 · · · ∃xk
( k∧
i=1

Node(xi) ∧
∧

i,j∈[k] : i 6=j

Edge(xi, xj)

)
.

As discussed in the proof of Theorem 15.1, G has a clique of size k if and only
if D |= q, and D and q can be constructed in polynomial time from G and k.
To conclude that this is an FPT-reduction, it remains to show that the third
condition in the definition of FPT-reductions holds, i.e., ‖q‖ ≤ g(k) for some
computable function g : N → R+

0 . It is easy to verify that ‖q‖ ≤ c · log k · k2

for some constant c ∈ R+, and thus, p-CQ-Evaluation is W[1]-hard.
We now focus on the upper bound. For technical clarity, we consider only

constant-free Boolean CQs over a schema consisting of a single binary relation
name Edge. We leave the prove for the general case, where no restrictions are
imposed to the query and its schema, as an exercise.

We first define a universal FO sentence ϕ, and then show that there exists
an FPT-reduction from p-CQ-Evaluation to p-WDϕ. Consider the schema

S = {Const[1], Var[1], Edge1[2], Edge2[2]}.

Consider also the relation name Hom[2] that does not belong to S. We define
the universal FO sentence ϕ over S ∪ {Hom} as follows:
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∀x∀y∀z
(
(Hom(x, y) ∧Hom(x, z))→ y = z

)
∧

∀x∀y (Hom(x, y)→
(
Var(x) ∧ Const(y))

)
∧

∀x1∀y1∀x2∀y2

(
(Edge1(x1, y1) ∧Hom(x1, x2) ∧Hom(y1, y2))→ Edge2(x2, y2)

)
.

We show that there is an FPT-reduction from p-CQ-Evaluation to p-WDϕ.
Consider an input to p-CQ-Evaluation given by a constant-free Boolean CQ
q over the schema {Edge[2]}, and a database D of {Edge[2]}. Assuming that
{x1, . . . , xn} are the variables occurring in q, we define the database D′ as

D ∪ {Const(a) | a ∈ Dom(D)} ∪ {Var(ax1), . . . ,Var(axn)}
∪ {Edge1(axi , axj ) | Edge(xi, xj) is an atom occuring in q}

∪ {Edge2(a, b) | Edge(a, b) ∈ D}.

Roughly, the relation Const stores the constants occurring in D, the relation
Var stores the variables occurring in q, the relation Edge1 stores the atoms of
q, and the relation Edge2 stores the facts of D. We further define n = k, that
is, k is the number of variables occurring in q.

With the definitions of D′ and k in place, we can now explain the meaning
of the FO sentence ϕ. The first conjunct ∀x∀y∀z ((Hom(x, y)∧Hom(x, z))→
y = z) states that Hom represents a function, as only one value can be as-
sociated to x. The second conjunct states that Hom maps variables of q to
constants of D. Finally, the third conjunct states that Hom represents a homo-
morphism from q to D. Notice, however, that ϕ does not impose the restriction
that every variable occurring q has to be mapped to a constant of D, as this
requires a non-universal FO sentence of the form

∀x (Var(x)→ ∃y (Const(y) ∧Hom(x, y))).

Instead, the parameter k = n is used to force Hom to map every variable in
q to a constant of D, as n is the number of variables occurring in q.

Summing up, q(D) = true if and only if there is S ⊆ Dom(D′)2 with |S| =
k and D′ |= ϕ(S). It is also clear that D′ and k can be constructed from D and
q in polynomial time, and k ≤ ‖q‖. Thus, we have provided an FPT-reduction
from p-CQ-Evaluation to p-WDϕ, which shows that p-CQ-Evaluation ∈ W[1]
(for constant-free Boolean CQs over a single binary relation). ut
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Containment and Equivalence

We have seen in Chapter 8 that the satisfiability problem for FO and RA is
undecidable. In terms of query optimization, satisfiability is arguably the most
elementary task one can think of, since it simply asks whether a query has a
non-empty output on at least one database. Indeed, if a query is not satisfiable,
then we do not even need to access the database in order to compute its
output, which is trivially empty. Furthermore, for FO and RA, undecidability
of other static analysis tasks such as containment and equivalence immediately
follow from the undecidability of satisfiability.

On the other hand, the satisfiability problem for CQs is trivial. Indeed,
given a CQ q, there is always a database on which q has a non-empty output,
that is, the grounding A↓q of Aq (see Definition 9.3). This means that static
analysis for CQs is drastically different than for FO and RA, which in turn
indicates that we need to revisit the problems of containment and equivalence
in the case of CQs. This is the goal of this chapter.

Optimizing A Simple Query

We start by first illustrating the role of containment and equivalence for CQs
in query optimization by means of a simple example.

Example 16.1: A CQ with Redundancy

Consider again the relational schema

Person [ pid, pname, cid ]

Profession [ pid, prname ]

City [ cid, cname, country ]

from Chapter 3, and the CQ
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q = Answer(y) :– Person(x, y, z),Profession(x, ‘actor’),Profession(x,w)

over this schema. The query q asks for names of persons who are actors
and who have some profession. It is clear that q contains some redun-
dancy since, if a person is an actor, then this person also has a profession
(namely, being an actor). In fact, the CQ

q′ = Answer(y) :– Person(x, y, z),Profession(x, ‘actor’)

asks the same query, but in smarter way in the sense that it mentions
fewer relational atoms in its body. We make two observations:

(a) The query q′ is a part of q, that is, all atoms in the body of q′ belong
also to the body of q.

(b) In order to test if q and q′ are equivalent, we only need to test if
q′ ⊆ q. The other inclusion immediately follows from (a).

The above example suggests that the following simple strategy may be
useful for optimizing a CQ q. We write (q − R(ū)) for the CQ obtained by
deleting from the body of q the relational atom R(ū).

Algorithm 3 Optimize-By-Containment(q)

Input: A CQ q(x̄)
Output: A CQ q∗(x̄) that is equivalent to q(x̄), and may mention fewer atoms

1: while there exists an atom R(ū) in the body of q such that (q −R(ū)) ⊆ q do
2: q := (q −R(ū))

3: return q(x̄)

The approach in Algorithm 3 captures a very natural idea for optimizing
CQs: keep removing atoms from the body of the CQ as long as the resulting CQ
is equivalent to the original one. In order to carry out this strategy (and nu-
merous other, more intricate, optimization strategies), it is crucial that we are
able to effectively test containment, and thus equivalence, between CQs. We
therefore study in this chapter the closely related problems CQ-Containment
and CQ-Equivalence. We will retake Algorithm 3 in Chapter 17.

Containment

We first concentrate on CQ-Containment. We start by illustrating the notion
of containment for CQs via a simple example.
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Example 16.2: CQ Containment

Consider the CQ

q1 = Answer(y1) :– Person(x1, y1, z1),Profession(x1, ‘actor’),

City(z1, ‘Los Angeles’, ‘United States’)

asking for names of actors who live in Los Angeles, and the CQ

q2 = Answer(y2) :– Person(x2, y2, z2),Profession(x2, w2)

asking for persons who have a profession. It is easy to verify that q1 ⊆ q2

since q1 imposes the extra conditions that the returned persons are actors
who live in Los Angeles.

We proceed to show that checking for containment in the case of CQs is
decidable, but an intractable problem.

Theorem 16.3

CQ-Containment is NP-complete.

The proof of Theorem 16.3 relies on a useful characterization of contain-
ment of CQs in terms of homomorphisms, which we present below. Given two
CQs q(x̄) and q′(x̄′), we write (q′, x̄′) → (q, x̄) for the fact that there exists
a homomorphism from (Aq′ , x̄

′) to (Aq, x̄); we also write q → q′ to indicate
that Aq → Aq′ . Recall that Aq and Aq′ are the sets of atoms occurring in the
body of q and q′, respectively, when seen as rules.

We also remind the reader that for a set of atoms S, we write S↓ for the
grounding of S, which allows us to view S as a database. Such a grounding is
given by the bijective homomorphism GS from S to S↓ that replaces variables
in S by new constants; in particular, GS(S) = S↓.

Theorem 16.4: Homomorphism Theorem

Let q(x̄) and q′(x̄′) be CQs. Then:

q ⊆ q′ if and only if (q′, x̄′)→ (q, x̄).

Proof. (⇒) Assume that q ⊆ q′. Since GAq is a homomorphism, Theorem 14.2
implies GAq (x̄) ∈ q(GAq (Aq)). Since q ⊆ q′, we have GAq (x̄) ∈ q′(GAq (Aq)).
Applying Theorem 14.2 again, we conclude that there exists a homomorphism
h from (Aq′ , x̄

′) to (GAq (Aq),GAq (x̄)). Since GAq is bijective, G−1
Aq
◦ h is a

homomorphism from (Aq′ , x̄
′) to (Aq, x̄), as needed.
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(⇐) Conversely, assume that (q′, x̄′) → (q, x̄), and let h be a homomor-
phism from (Aq′ , x̄

′) to (Aq, x̄). Given a database D, assume that ā ∈ q(D).
By Theorem 14.2, there exists a homomorphism g from (Aq, x̄) to (D, ā). Since
homomorphisms compose, g ◦ h is a homomorphism from (Aq′ , x̄

′) to (D, ā)
and, thus, ā ∈ q′(D) by Theorem 14.2. Therefore, we have that q(D) ⊆ q′(D),
from which we conclude that q ⊆ q′. ut

The next example shows the usefulness of the Homomorphism Theorem.

Example 16.5: Homomorphism Theorem

Consider again the CQs q1 and q2 from Example 16.2, and recall that
q1 ⊆ q2. This is confirmed by the Homomorphism Theorem since

(q2, y2) → (q1, y1).

This is the case since the function h : Dom(Aq2)→ Dom(Aq1) defined as

h(x2) = x1 h(y2) = y1 h(z2) = z1 h(w2) = ‘actor’

is a homomorphism from (Aq2 , y2) to (Aq1 , y1).

An easy consequence of the Homomorphism Theorem is that the problem
CQ-Containment can be reduced to CQ-Evaluation.

Corollary 16.6

Let q(x̄) and q′(x̄′) be CQs. Then:

q ⊆ q′ if and only if GAq (x̄) ∈ q′(GAq (Aq)).

Proof. By Theorem 16.4, we conclude that

q ⊆ q′ if and only if (Aq′ , x̄
′)→ (Aq, x̄).

We can also show that

(Aq′ , x̄
′)→ (Aq, x̄) if and only if (Aq′ , x̄

′) → (GAq (Aq),GAq (x̄)).

Indeed, if (Aq′ , x̄
′)→ (Aq, x̄) is witnessed via h, then we have that GAq ◦ h is

a homomorphism from (Aq′ , x̄
′) to (GAq (Aq),GAq (x̄)). Conversely, assuming

that (Aq′ , x̄
′)→ (GAq (Aq),GAq (x̄)) is witnessed via g, G−1

Aq
◦ g is a homomor-

phism from (Aq′ , x̄
′) to (Aq, x̄). By Theorem 14.2, we get that

(Aq′ , x̄
′)→ (GAq (Aq),GAq (x̄)) if and only if GAq (x̄) ∈ q′(GAq (Aq)).

Consequently, we get that q ⊆ q′ if and only if GAq (x̄) ∈ q′(GAq (Aq)). ut
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By exploiting the Homomorphism Theorem, we can further show that the
problem CQ-Evaluation can be reduced to CQ-Containment, i.e., the opposite
of what Corollary 16.6 shows. In the proof of Corollary 16.6, we essentially
convert the CQ q into a database via the bijective homomorphism GAq . Now
we are going to do the opposite, i.e., convert a database into a CQ. As dis-
cussed in Chapter 14, we can convert a database D into a set of relational
atoms via the injective function VC : Const → Const ∪ Var, where C is a
finite set of constants. Recall that VC(D) is the set of relational atoms ob-
tained from D by replacing constants, except for those in C, with variables.
The following corollary, which establishes that CQ-Evaluation can be reduced
to CQ-Containment, is stated for Boolean CQs, as this suffices for the pur-
pose of pinpointing the complexity of CQ-Containment, but it can be easily
generalized to arbitrary CQs.

Corollary 16.7

Let q be a Boolean CQ, D a database, and qD the Boolean CQ such that
AqD = VC(D), where C = Dom(Aq) ∩ Const. Then:

D |= q if and only if qD ⊆ q.

Proof. By Theorem 14.2, we conclude that

D |= q if and only if q → D.

It is easy to show that

q → D if and only if q → qD.

Indeed, if q → D is witnessed via h, then we get that VC◦h is a homomorphism
from q to qD. Conversely, assuming that q → qD is witnessed via g, V−1

C ◦ g is
a homomorphism from q to D. By Theorem 16.4, we conclude that

q → qD if and only if qD ⊆ q.

From the above equivalences, we get that D |= q if and only if qD ⊆ q. ut

By Theorem 15.1, CQ-Evaluation is in NP, and thus, Corollary 16.6 implies
that also CQ-Containment is in NP. Moreover, since CQ-Evaluation is NP-hard
even for Boolean CQs (this is because the CQ that the reduction from Clique to
CQ-Evaluation builds in the proof of Theorem 15.1 is Boolean), Corollary 16.7
implies that CQ-Containment is NP-hard. Therefore, CQ-Containment is NP-
complete, which establishes Theorem 16.3.

Equivalence

We now focus on the equivalence problem: given two CQs q, q′, check whether
q ≡ q′, i.e., whether q(D) = q′(D) for every database D. We show that:
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Theorem 16.8

CQ-Equivalence is NP-complete.

Proof. Concerning the upper bound, it suffices to observe that

q ≡ q′ if and only if q ⊆ q′ and q′ ⊆ q,

which implies that CQ-Equivalence is in NP since, by Theorem 16.3, the prob-
lem of deciding whether q ⊆ q′ and q′ ⊆ q is in NP.

Concerning the lower bound, we provide a reduction from CQ-Containment.
In fact, CQ-Containment is NP-hard even if we consider Boolean CQs (this is
a consequence of the proof of Theorem 16.3). Consider two Boolean CQs

q = Answer :– R1(ū1), . . . , Rn(ūn) q′ = Answer :– R′1(ū′1), . . . , R′m(ū′m),

We assume that q, q′ do not share variables since we can always rename vari-
ables without affecting the semantics of a query. Let q∩ be the Boolean CQ

Answer :– R1(ū1), . . . , Rn(ūn), R′1(ū′1), . . . , R′m(ū′m),

which essentially computes the intersection of q and q′. In other words, for
every database D, q(D) ∩ q′(D) = q∩(D). It is straightforward to see that

q ⊆ q′ if and only if q ≡ q∩,

which in turn implies that CQ-Equivalence is NP-hard, as needed. ut
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Minimization

Query optimization is the task of transforming a query into an equivalent one
that is easier to evaluate. Since joins are expensive operations, we typically
consider an equivalent version of a CQ q with fewer atoms in its body, and
thus, with fewer joins to perform. Ideally, we would like to compute a CQ q′

that is equivalent to q, and is also minimal, i.e., it has the minimum number
of atoms. This brings us to the notion of minimization of CQs.

Definition 17.1: Minimization of CQs

Consider a CQ q over a schema S. A CQ q′ over S is a minimization of
q if the following hold:

1. q ≡ q′, and

2. for every CQ q′′ over S, q′ ≡ q′′ implies |Aq′ | ≤ |Aq′′ |.

In other words, q′ is a minimization of q if it is equivalent to q and has the
smallest number of atoms among all the CQs that are equivalent to q. It is
straightforward to see that every CQ q over a schema S has a minimization,
which is actually a query from the finite set (up to variable renaming)

Mq = {q′ | q′ is a CQ over S and |Aq′ | ≤ |Aq|}

that collects all the CQs over S (up to variable renaming) with at most |Aq|
atoms. Hence, to compute a minimization of q, we could, e.g., iterate over
all CQs of Mq in increasing order with respect to the number of body atoms,
until we find one that is equivalent to q. But now the following questions arise:

1. Is there a smarter procedure for computing a minimization of q instead of
naively iterating over the exponentially many CQs of Mq? In particular,
does the strategy of removing atoms from q as long as the resulting query
is equivalent to q (see Algorithm 3) lead to a minimization of q?
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2. Which minimization of q should be computed? Is there one that stands
out as the best?

The above questions have neat answers, which we discuss in detail in the
rest of the chapter. In a nutshell, one can indeed find minimizations of a CQ
q by removing atoms from its body. Moreover, although q may have several
minimizations, they are all the same (up to variable renaming). This implies
that no matter in which order we remove atoms from the body of q, we will
always compute the same minimization of q (up to variable renaming).

Minimization via Atom Removals

Consider a CQ q of the form Answer(x̄) :– R1(ū1), . . . , Rn(ūn). The CQ q′

obtained from q by removing the atom Ri(ūi), for some i ∈ [n], is

Answer(x̄′) :– R1(ū1), . . . , Ri−1(ūi−1), Ri+1(ūi+1), . . . , Rn(ūn),

where x̄′ is obtained from x̄ by removing every variable that is only mentioned
in the atom Ri(ūi). For example, if we remove the atom R(x) from the CQ
Answer(x, y) :– R(x), S(y), then we obtain the CQ Answer(y) :– S(y) as the
variable x is only mentioned in R(x). On the other hand, if we remove the
atom R(x) from the CQ Answer(x, y) :– R(x), T (x, y), then we obtain the CQ
Answer(x, y) :– T (x, y) since x occurs also in T (x, y).

The building block of minimization via atom removals is as follows: given
a CQ q(x̄), construct a CQ q′(x̄) by removing an atom R(ū) from the body of
q such that (q, x̄)→ (q′, x̄). Notice that the output tuple x̄ remains the same,
which means that the atom R(ū) either it does not contain a variable of x̄, or
it contains only variables of x̄ that occur also in atoms of Aq−{R(ū)}. In this
way, we actually construct a CQ that is equivalent to q. Indeed, since (q, x̄)→
(q′, x̄), we get that q′ ⊆ q (by Theorem 16.4). Moreover, (q′, x̄)→ (q, x̄) holds
trivially due to the identity homomorphism from Aq′ to Aq, and thus, q ⊆ q′
(again by Theorem 16.4). We then iteratively remove atoms as above until we
reach a CQ q′′(x̄) that is minimal, i.e., any CQ q′′′(x̄) that can be obtained by
removing an atom from the body of q′′ is such that (q′′, x̄)→ (q′′′, x̄) does not
hold. The CQ q′′ is typically called a core of q. The formal definition follows.

Definition 17.2: Core of a CQ

Consider a CQ q(x̄). A CQ q′(x̄) is a core of q if the following hold:

1. Aq′ ⊆ Aq,
2. (q, x̄)→ (q′, x̄), and

3. for every CQ q′′(x̄) with Aq′′ ( Aq′ , (q′, x̄)→ (q′′, x̄) does not hold.

The first condition in Definition 17.2 expresses that either q = q′, or q′ is
obtained by removing atoms from q but without altering the output tuple x̄,
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the second condition ensures that q ≡ q′, and the third condition states that
q′ is minimal. Here is an example that illustrates the notion of core of a CQ.

Example 17.3: Core of a CQ

Consider the Boolean CQ q1 defined as

Answer :– R(x, y), R(x, z).

The function h defined as h(x) = x, h(y) = y and h(z) = y is a ho-
momorphism from {R(x, y), R(x, z)} to {R(x, y)}. Therefore, q1 → q′1,
where q′1 is the Boolean CQ defined as

Answer :– R(x, y).

Since, by definition, a CQ must have at least one atom in its body, we
conclude that q′1 is a core of q1. Observe that the Boolean CQ q′′1

Answer :– R(x, z)

is also a core of q1 due to the homomorphism h′ defined as h(x) = x,
h(y) = z and h(z) = z. Therefore, a CQ may have several cores that are
syntactically different, depending on the order that atoms are removed.

Consider now the Boolean CQ q2 defined as

Answer :– R(x, y), R(y, z).

Observe that there is neither a homomorphism from {R(x, y), R(y, z)}
to {R(x, y)}, nor a homomorphism from {R(x, y), R(y, z)} to {R(y, z)}.
This means that there is no way to remove an atom from q2 and get an
equivalent CQ. Therefore, we conclude that q2 is its own core.

Finally, consider the CQ q3 defined as

Answer(x, y, z) :– R(x, y), R(x, z),

which is actually q1 with all the variables in the output tuple. By remov-
ing the atom R(x, z) from q3, we obtain the CQ q′3

Answer(x, y) :– R(x, y).

In this case, there is no homomorphism from (Aq3 , (x, y, z)) to (Aq′3 , (x, y))
since there is no way to map the ternary tuple (x, y, z) to the binary tu-
ple (x, y). Hence, q′3 is not equivalent to q3. The case where we remove
the atom R(x, y) from q3 is analogous. Therefore, q3 is its own core.

We proceed to show that the notion of core captures our original intention,
that is, the construction of a minimization of a CQ.
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Proposition 17.4

Every CQ q has at least one core, and every core of q is a minimization
of q.

Proof. We first show that a CQ q(x̄) has a core. If q is a core of itself, then the
claim follows. Assume now that this is not the case. This means that condition
(3) in the definition of core (Definition 17.2) is violated, which in turn implies
that there is a CQ q′(x̄) with Aq′ ( Aq such that (q, x̄) → (q′, x̄). If q′ is a
core of itself, then it is clear that q′ is a core of q. Otherwise, we iteratively
apply the above argument until we reach a core of q.

We now proceed to show that a core of q(x̄) is a minimization of it. We
first show a useful technical lemma:

Lemma 17.5. Consider a CQ q1(ȳ1), and assume that there is a CQ q2(ȳ2)
such that q1 ≡ q2 and |Aq2 | < |Aq1 |. Then, there is a CQ q3(ȳ1) such that

(q1, ȳ1)→ (q3, ȳ1) and Aq3 ( Aq1 .

Proof. By Theorem 16.4, we conclude that

(q1, ȳ1)→ (q2, ȳ2) and (q2, ȳ2)→ (q1, ȳ1).

Assume that these statements are witnessed via the homomorphisms h1 and
h2, respectively. Let q3(ȳ3) be the CQ such that

Aq3 = h2(Aq2) and ȳ3 = h2(ȳ2).

It is clear that ȳ3 = ȳ1 and Aq3 ⊆ Aq1 . Furthermore, since |Aq3 | ≤ |Aq2 | and
|Aq2 | < |Aq1 |, we conclude that |Aq3 | < |Aq1 |, and thus, Aq3 ( Aq1 . It remains
to show that (q1, ȳ1)→ (q3, ȳ1). Since homomorphisms compose, the latter is
witnessed via the homomorphism h2 ◦ h1. ut

Consider now a CQ q′(x̄) that is a core of q(x̄). Towards a contradiction,
assume that q′ is not a minimization of q. This implies that there exists a CQ
q′′ such that q′ ≡ q′′ and |Aq′′ | < |Aq′ |. By Lemma 17.5, we conclude that
there exists a CQ q′′′(x̄) such that (q′, x̄) → (q′′′, x̄) and Aq′′′ ( Aq′ . This
contradicts our hypothesis that q′ is a core of q, and the claim follows. ut

By Proposition 17.4, to compute a minimization of a CQ q, we simply need
to compute a core of it. This can be done via the simple iterative procedure
ComputeCore, given in Algorithm 4. Notice that this algorithm is a more
detailed reformulation of Algorithm 3. It is straightforward to show that, for
a CQ q, ComputeCore(q) terminates after finitely many steps. It is also not
difficult to show that the procedure ComputeCore is correct.

Lemma 17.6. Given a CQ q, ComputeCore(q) is a core of q.
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Algorithm 4 ComputeCore(q)

Input: A CQ q(x̄)
Output: A CQ q∗(x̄) that is a core of q(x̄)

1: S := Aq
2: while there exists R(ū) ∈ S such that each variable in x̄
3: occurs in Dom(S − {R(ū)}) and (S, x̄)→ (S − {R(ū)}, x̄) do
4: S := S − {R(ū)}
5: return q∗(x̄) :– R1(ū1), . . . , Rn(ūn), where S = {R1(ū1), . . . , Rn(ūn)}

Proof. At each iteration of the while-loop, the CQ q′(x̄) with Aq′ = S (which
is indeed a CQ since, by construction, every variable in x̄ occurs in Aq′) is
such that Aq′ ⊆ Aq and (q, x̄)→ (q′, x̄). Therefore, the CQ q∗(x̄) returned by
the algorithm is such that Aq∗ ⊆ Aq and (q, x̄) → (q∗, x̄). Furthermore, by
construction, for every CQ q′′(x̄) with Aq′′ ( Aq∗ , (q∗, x̄) → (q′′, x̄) does not
hold. Therefore, q∗ satisfies all the three conditions given in the definition of
core (Definition 17.2), and thus, it is a core of q, as needed. ut

Note that ComputeCore is a nondeterministic algorithm. Observe that
there may be several atoms R(ȳ) ∈ S satisfying the condition of the while loop
(in particular, the condition (S, x̄)→ (S − {R(ȳ)}, x̄)), but we do not specify
how such an atom is selected. In fact, the atom R(ȳ) of S that is eventually
removed from S at step 4 is chosen nondeterministically. Therefore, the final
result computed by the algorithm depends on how the atoms to be removed
from S are chosen, and thus, different executions of ComputeCore(q) may
compute cores of q that are syntactically different. This fact should not be
surprising as it has been already illustrated in Example 17.3 (see the queries
q′1 and q′′1 that are cores of q1). This leads to the second main question raised
above: is there a core of q that stands out as the best?

Uniqueness of Minimizations

It turns out that such a concept as the best core does not exist since a CQ has
a unique core (up to variable renaming). This is a consequence of the fact that
every CQ has a unique minimization (up to variable renaming). We proceed
to show the latter statement.

We say that two CQs q(x̄), q′(x̄′) are isomorphic if one can be turned into
the other via renaming of variables, i.e., if there is a bijection ρ : Dom(Aq)→
Dom(Aq′) that is a homomorphism from (Aq, x̄) to (Aq′ , x̄

′), and its inverse
ρ−1 is a homomorphism from (Aq′ , x̄

′) to (Aq, x̄). (Recall from Chapter 9 that
homomorphisms between sets of atoms are always the identity on constants.)
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Proposition 17.7

Consider a CQ q(x̄), and let q′(x̄′) and q′′(x̄′′) be minimizations of q.
Then q′ and q′′ are isomorphic.

Proof. We need to show that there is a bijection ρ : Dom(Aq′) → Dom(Aq′′)
that is a homomorphism from (Aq′ , x̄

′) to (Aq′′ , x̄
′′), and its inverse ρ−1 is a

homomorphism from (Aq′′ , x̄
′′) to (Aq′ , x̄

′). Since both q′ and q′′ are minimiza-
tions of q, we get that q ≡ q′ and q ≡ q′′, and thus, q′ ≡ q′′. By Theorem 16.4,

(q′, x̄′)→ (q′′, x̄′′) and (q′′, x̄′′)→ (q′, x̄′).

Assume that these statements are witnessed via the homomorphisms h and
g, respectively. We proceed to show a useful statement concerning h and g:

Lemma 17.8. The functions h and g are bijections.

Proof. We concentrate on h, and show that is both surjective and injective;
the proof for g is analogous. We give a proof by contradiction:

• Assume first that h is not surjective. This implies that there is a variable
z ∈ Dom(Aq′′) such that there is no variable y ∈ Dom(Aq′) with h(y) = z.
Let R(ū) ∈ Aq′′ be an atom that mentions z. We have that R(ū) 6∈ h(Aq′).
We define q′′′(x̄′′) as the CQ with Aq′′′ = h(Aq′). It is clear that (q′, x̄′)→
(q′′′, x̄′′) via h, and (q′′′, x̄′′)→ (q′, x̄′) via g. Therefore, by Theorem 16.4,
q′ ≡ q′′′. Since q′ ≡ q′′, we conclude that q′′ ≡ q′′′. Observe also that
Aq′′′ ( Aq′′ , which implies that |Aq′′′ | < |Aq′′ |. But this contradicts the
fact that q′′ is a minimization of q, and thus, h is surjective.

• Assume now that h is not injective. This implies that there are two dis-
tinct variables y, z ∈ Dom(Aq′) such that h(y) = h(z). Hence, g(h(y)) =
g(h(z)), which implies that g ◦h is a homomorphism from (q′, x̄′)→ (q′, x̄′)
that is not surjective. Therefore, there exists a variable u ∈ Dom(Aq′) such
that there is no variable v ∈ Dom(Aq′) with g(h(v)) = u. Let R(ū) ∈ Aq′
be an atom that mentions u. We have that R(ū) 6∈ g(h(Aq′)). We define
q′′′(x̄′) as the CQ with Aq′′′ = g(h(Aq′)). It is clear that (q′, x̄′)→ (q′′′, x̄′)
via g ◦ h. Observe also that Aq′′′ ( Aq′ . Hence, (q′′′, x̄′)→ (q′, x̄′) via the
identity homomorphism, which means that q′ ≡ q′′′ due to Theorem 16.4,
and |Aq′′′ | < |Aq′ |. But this contradicts the fact that q′ is a minimization
of q, which in turn implies that h is injective.

Since h is both surjective and injective, the claim follows. ut
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We are now ready to define the bijection ρ : Dom(Aq′)→ Dom(Aq′′). Let
f = g ◦ h. It is clear that f is a homomorphism from (Aq′ , x̄

′) to (Aq′ , x̄
′).

Since, by Lemma 17.8, both h and g are bijections, we can further conclude
that f is a bijection. This implies that there exists k ≥ 0 such that the function

fk = f ◦ · · · ◦ f︸ ︷︷ ︸
k

is the identity homomorphism from (Aq′ , x̄
′) to (Aq′ , x̄

′). Let ρ = h ◦ fk−1.
Since both h and fk−1 are bijections, we get that also ρ is a bijection. It is
also clear that ρ is a homomorphism from (Aq′ , x̄

′) to (Aq′′ , x̄
′′). Notice also

that g ◦ ρ = fk is the identity, which means that g is the inverse of ρ. Thus,
the inverse of ρ is a homomorphism from (Aq′′ , x̄

′′) to (Aq′ , x̄
′). Therefore, ρ

witnesses the fact that q′ and q′′ are isomorphic, and the claim follows. ut

From Proposition 17.4, which tells us that a core of a CQ q is a minimiza-
tion of q, and Proposition 17.7, we immediately get the following corollary:

Corollary 17.9

Consider a CQ q, and let q′ and q′′ be cores of q. It holds that q′ and q′′

are isomorphic.

Recall that different executions of the nondeterministic procedure Com-
puteCore on some input CQ q, may compute cores of q that are syntactically
different. However, Corollary 17.9 tells us that those cores differ only on the
names of their variables. In other words, cores of q computed by different exe-
cutions of ComputeCore(q) are actually the same up to variable renaming.
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Containment Under Integrity Constraints

As discussed in Chapters 10 and 11, relational systems support the specifi-
cation of semantic properties that should be satisfied by all databases of a
certain schema. This is achieved via integrity constraints, also called depen-
dencies. The question that arises is how static analysis, and in particular the
notion of containment of CQs, studied in Chapter 17, is affected in the pres-
ence of constraints. In this chapter, we study this question concentrating on
functional dependencies (FDs) and inclusion dependencies (INDs).

Functional Dependencies

We start with FDs, and illustrate via an example how containment of CQs is
affected if we focus on databases that satisfy a given set of FDs.

Example 18.1: Containment of CQs Under FDs

Consider the CQs q1 and q2 defined as

Answer(x1, y1) :– R(x1, y1), R(y1, z1), R(x1, z1)

Answer(x2, y2) :– R(x2, y2), R(y2, y2),

respectively. It is easy to verify that (q2, (x2, y2))→ (q1, (x1, y1)) does not
hold, and thus, we have that q1 6⊆ q2 by the Homomorphism Theorem.
For example, if we consider the database

D = {R(1, 2), R(2, 3), R(1, 3)},

then q1(D) = {(1, 2)} and q2(D) = ∅, so that q1(D) 6⊆ q2(D). Suppose
now that q1, q2 will be evaluated only over databases that satisfy the FD

σ = R : {1} → {2}.
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In particular, q1 and q2 will not be evaluated over the database D since
it does not satisfy σ. We can show that, for every database D′,

D′ |= σ implies q1(D′) ⊆ q2(D′).

To see this, consider an arbitrary database D′ that satisfies σ, and as-
sume that (a, b) ∈ q1(D′). By Theorem 14.2, we have that

(q1, (x1, y1)) → (D′, (a, b))

via a homomorphism h1. Since D′ |= σ and

{R(h1(x1), h1(y1)), R(h1(x1), h1(z1))} ⊆ D′,

it holds that h1(y1) = h1(z1). Since R(h1(y1), h1(z1)) ∈ D′, we get that

(q2, (x2, y2)) → (D′, (a, b))

via h2 such that h2(x2) = h1(x1) and h2(y2) = h1(y1) = h1(z1).

Our goal is to revisit the problem of containment for CQs in the presence
of FDs. More precisely, given two CQs q and q′, and a set Σ of FDs, we say
that q is contained in q′ under Σ, denoted by q ⊆Σ q′, if for every database D
that satisfies Σ, it holds that q(D) ⊆ q′(D). The problem of interest follows:

Problem: CQ-Containment-FD

Input: Two CQs q and q′, and a set Σ of FDs

Output: true if q ⊆Σ q′, and false otherwise

We proceed to show the following result:

Theorem 18.2

CQ-Containment-FD is NP-complete.

It is clear that the NP-hardness is inherited from CQ containment without
constraints (see Theorem 16.3). Recall that, by the Homomorphism Theorem,
checking whether a CQ q(x̄) is contained in a CQ q′(x̄′) in the absence of
constraints boils down to checking whether (q′, x̄′) → (q, x̄). Even though
this is not enough in the presence of FDs, we can adopt a similar approach
providing that we first transform, by identifying terms as dictated by the
FDs, the set of atoms Aq in q into a new set of atoms S that satisfies the
FDs, and the tuple of variables x̄ into a new tuple ū, which may contain also
constants, and then check whether (Aq′ , x̄

′) → (S, ū). This simple idea has
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been already illustrated by Example 18.1. Unsurprisingly, the transformation
of Aq and x̄ into S and ū, respectively, can be done by exploiting the chase for
FDs, which has been introduced in Chapter 10. For brevity, we simply write
Chase(q,Σ) instead of Chase(Aq, Σ), and hq,Σ instead of hAq,Σ . We now show
the following result by providing a proof similar to that of the Homomorphism
Theorem:

Theorem 18.3

Let q(x̄) and q′(x̄′) be CQs over a schema S, and Σ a set of FDs over S.
The following are equivalent:

1. q ⊆Σ q′.

2. Chase(q,Σ) 6= ⊥ implies (Aq′ , x̄
′)→ (Chase(q,Σ), hq,Σ(x̄)).

Proof. For brevity, let S = Chase(q,Σ) and ū = hq,Σ(x̄).
We first show that (1) implies (2). By hypothesis, q ⊆Σ q′. It is clear that,

if S 6= ⊥, then GS(ū) ∈ q(GS(S)). Since, by Lemma 10.8, S |= Σ, which means
that GS(S) |= Σ, we have that GS(ū) ∈ q′(GS(S)). By Theorem 14.2, there
exists a homomorphism h from (Aq′ , x̄

′) to (GS(S),GS(ū)). Clearly, G−1
S ◦h is

a homomorphism from (Aq′ , x̄
′) to (S, ū), as needed.

For showing that (2) implies (1) we proceed by case analysis:

• Assume first that S = ⊥. This implies that, for every database D of S such
that D |= Σ, there is no homomorphism from q to D; otherwise, there
is a successful finite chase sequence of q under Σ, which contradicts the
fact that S = ⊥. Therefore, for every database D of S such that D |= Σ,
q(D) = ∅, which in turn implies that q ⊆Σ q′.

• Assume now that S 6= ⊥. By hypothesis, we get that (Aq′ , x̄
′)→ (S, ū) via

a homomorphism h. Let D be an arbitrary database of S such that D |= Σ,
and assume that ā ∈ q(D). By Theorem 14.2, (q, x̄) → (D, ā). Since
D |= Σ, Lemma 10.11 implies that (S, ū) → (D, ā) via a homomorphism
g. Since homomorphisms compose, g ◦ h is a homomorphism from (q′, x̄′)
to (D, ā). By Theorem 14.2, ā ∈ q′(D), which implies that q ⊆Σ q′.

Since in both cases we get that q ⊆Σ q′, the claim follows. ut

The following is an easy consequence of Theorem 18.3 and Theorem 14.2.

Corollary 18.4

Let q(x̄) and q′(x̄′) be CQs over a schema S, and Σ a set of FDs over S.
With S = Chase(q,Σ), the following are equivalent:
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1. q ⊆Σ q′.

2. S 6= ⊥ implies GS(hq,Σ(x̄)) ∈ q′(GS(S)).

By Lemma 10.10, Chase(q,Σ) can be computed in polynomial time. More-
over, if Chase(q,Σ) 6= ⊥, then the chase homomorphism hq,Σ can be also com-
puted in polynomial time. Since CQ-Evaluation is in NP (see Theorem 15.1),
we conclude that CQ-Containment-FD is also in NP, and Theorem 18.2 follows.

Inclusion Dependencies

We now focus on INDs. We first illustrate via an example how containment
of CQs is affected if we focus on databases that satisfy a set of INDs.

Example 18.5: Containment of CQs Under INDs

Consider the CQs q1 and q2 defined as

Answer(x1, y1) :– R(x1, y1), R(y1, z1), P (z1, y1)

Answer(x2, y2) :– R(x2, y2), R(y2, z2), S(x2, y2, z2),

respectively. It is clear that (q2, (x2, y2)) → (q1, (x1, y1)) does not hold,
and thus, we have that q1 6⊆ q2 by the Homomorphism Theorem. Suppose
now that q1 and q2 will be evaluated only over databases that satisfy

σ1 = R[1, 2] ⊆ S[1, 2] and σ2 = S[2, 3] ⊆ R[1, 2].

We can show that, for every database D,

D |= {σ1, σ2} implies q1(D) ⊆ q2(D).

Consider an arbitrary database D that satisfies {σ1, σ2}, and assume
that (a, b) ∈ q1(D), or, equivalently, (q1, (x1, y1)) → (D, (a, b)) via a
homomorphism h1. This implies that R(h1(x1), h1(y1)) ∈ D. Since D |=
σ1, we get that D contains an atom of the form S(h1(x1), h(y1), c). But
since D |= σ2, we also get that D contains the atom R(h1(y1), c). Hence,

{R(h1(x1), h1(y1)), R(h1(y1), c), S(h1(x1), h1(y1), c)} ⊆ D.

This implies that (q′1, (x1, y1)) → (D, (a, b)), where q′1 is obtained from
q1 by adding certain atoms according to σ1 and σ2, i.e., q′1 is defined as

Answer(x1, y1) :– R(x1, y1), R(y1, z1), P (z1, y1), S(x1, y1, w1), R(y1, w1),
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where w1 is a new variable not in q1. Now observe that (q2, (x2, y2)) →
(q′1, (x1, y1)), which implies that (q2, (x2, y2)) → (D, (a, b)). By the Ho-
momorphism Theorem, (a, b) ∈ q2(D), and thus, q1(D) ⊆ q2(D).

Our goal is to revisit the problem of CQ containment in the presence of
INDs. Given two CQs q and q′, and a set Σ of INDs, q is contained in q′ under
Σ, denoted q ⊆Σ q′, if for every database D that satisfies Σ, q(D) ⊆ q′(D).
The problem of interest is defined as expected:

Problem: CQ-Containment-IND

Input: Two CQs q and q′, and a set Σ of INDs

Output: true if q ⊆Σ q′, and false otherwise

Although the complexity of CQ containment in the presence of FDs re-
mains NP-complete (Theorem 18.2), this is not true for INDs:

Theorem 18.6

CQ-Containment-IND is PSpace-complete.

We first focus on the upper bound. Recall again that, by the Homomor-
phism Theorem, checking whether a CQ q(x̄) is contained in a CQ q′(x̄′) in
the absence of constraints boils down to checking whether (q′, x̄′) → (q, x̄).
Although this is not enough in the presence of INDs, we can adopt a similar
approach providing that we first transform, by adding atoms as dictated by
the INDs, the set of atoms Aq occurring in q into a new set of atoms S that
satisfies the INDs, and then check whether (Aq′ , x̄

′)→ (S, x̄). This simple idea
has been already illustrated by Example 18.5. As expected, the transforma-
tion of Aq into S can be achieved by exploiting the chase for INDs, which has
been already introduced in Chapter 11.

We are going to establish a statement analogous to Theorem 18.3. However,
since the chase for INDs may build an infinite set of atoms, we can only
characterize CQ containment under possibly infinite databases. Notice that
here we refer to the output of a CQ over a possibly infinite database. Although
this is defined in the same way as for databases (Definition 13.3), we proceed
to give the formal definition for the sake of completeness.

Consider a possibly infinite database D and a CQ q of the form

Answer(x̄) :– R1(ū1), . . . , Rn(ūn) .

An assignment for q over D is a function η from the set of variables in q to
Dom(D). We say that η is consistent with D if

{R1(η(ū1)), . . . , Rn(η(ūn))} ⊆ D ,
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where, for i ∈ [n], Ri(η(ūi)) is the fact obtained after replacing each variable
x in ūi with η(x), and leave the constants in ūi untouched. Having this notion,
we can define what is the output of a CQ on a possibly infinite database.

Definition 18.7: Evaluation on Possibly Infinite Databases

Given a possibly infinite database D of a schema S, and a CQ q(x̄) over
S, the output of q on D is defined as the set of tuples

q(D) = {η(x̄) | η is an assignment for q over D consistent with D} .

We can naturally talk about homomorphisms from CQs to possibly infi-
nite databases. Actually, Definition 14.1 merely extends to possibly infinite
databases, which allows us to state a result analogous to Theorem 14.2:

Theorem 18.8

Given a possibly infinite database D of a schema S, and a CQ q(x̄) of
arity k ≥ 0 over S, it holds that

q(D) = {ā ∈ Dom(D)k | (q, x̄)→ (D, ā)}.

Consider two CQs q and q′, and a set Σ of INDs. We say that q is contained
without restriction in q′ under Σ, denoted q ⊆∞Σ q′, if for every possibly infinite
database D that satisfies Σ, q(D) ⊆ q′(D). For brevity, we write Chase(q,Σ)
instead of Chase(Aq, Σ). The next result is shown as Theorem 18.3.

Theorem 18.9

Let q(x̄), q′(x̄′) be CQs over schema S, and Σ a set of INDs over S. Then:

q ⊆∞Σ q′ if and only if (Aq′ , x̄
′)→ (Chase(q,Σ), x̄).

The above statement alone is of little use since we are interested in finite
databases. However, combined with the following result, known as the finite
controllability of CQ containment under INDs, we get the desired characteri-
zation of CQ containment under finite databases via the chase.

Theorem 18.10: Finite Controllability of Containment

Let q and q′ be CQs over a schema S, and Σ a set of INDs over S. Then:

q ⊆Σ q′ if and only if q ⊆∞Σ q′.

The above theorem is a deep result that is extremely useful for our analysis,
but whose proof is out of the scope of this book. An easy consequence of
Theorems 18.9 and 18.10, combined with Theorem 18.8, is the following:
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Corollary 18.11

Let q(x̄) and q′(x̄′) be CQs over a schema S, and Σ a set of INDs over
S. With S = Chase(q,Σ), the following holds:

q ⊆Σ q′ if and only if GS(x̄) ∈ q′(GS(S)).

Due to Corollary 18.11, the reader may be tempted to think that the
procedure for checking whether q ⊆Σ q′, which in turn will lead to the PSpace
upper bound claimed in Theorem 18.6, is to check whether GS(x̄) belongs to
the evaluation of q′ over S↓, where S = Chase(q,Σ). However, it should not be
forgotten that Chase(q,Σ) may be infinite. Hence, we need a finer procedure
that avoids the explicit construction of Chase(q,Σ). We present a lemma that
is the building block of this procedure, but first we need some terminology.

For an IND σ = R[i1, . . . , im] ⊆ P [j1, . . . , jm], a tuple ū = (u1, . . . , uar(R)),
and a set of variables V , newV (σ, ū) is the atom obtained from new(σ, ū) after
replacing each newly introduced variable with a distinct variable from V .
Formally, newV (σ, ū) = P (v1, . . . , var(P )), where, for each ` ∈ [ar(P )],

v` =

uik if ` = jk, for k ∈ [m],

x ∈ V otherwise,

such that, for each i, j ∈ [ar(P )]− {j1, . . . , jm}, i 6= j implies vi 6= vj .
1 Given

two CQs q(x̄), q′(x̄′) over a schema S, and a set Σ of INDs over S, a witness
of q′ relative to q and Σ is a triple (V,S, Q), where V is a sequence of (not
necessarily disjoint) sets of variables V1, . . . , Vn, for n ≥ 0, S is a sequence of
disjoint sets of relational atoms S0, . . . , Sn, and Q ⊆

⋃
i∈[0,n] Si, such that:

• |
⋃
i∈[n] Vi| ≤ 3 · |Aq′ | ·maxR∈S{ar(R)},

• for each i ∈ [n], Vi ∩ (Dom(Si−1) ∪Dom(S)) = ∅,
• for each i ∈ [0, n], |Si| ≤ |Aq′ |,
• S0 ⊆ Aq,
• for each i ∈ [n] and P (v̄) ∈ Si, there exists σ = R[α] ⊆ P [β] in Σ that is

applicable on Si−1 with some ū ∈ RSi−1 such that P (v̄) = newVi(σ, ū),

• for each i ∈ [n] and x ∈ Dom(Si)−Dom(Si−1), there is only one occurrence
of x in Si, i.e., it is mentioned only once by exactly one atom of Si,

• |Q| ≤ |Aq′ |, and

• GQ(x̄) ∈ q′(GQ(Q)).

1 We assume some fixed mechanism that chooses the variable v` from the set V
whenever ` ∈ [ar(P )]− {j1, . . . , jm}.
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Let S = Chase(q,Σ). Notice that GS(x̄) ∈ q′(GS(S)) holds due to the
existence of a set A ⊆ Chase(q,Σ) such that (Aq′ , x̄

′)→ (A, x̄). It is also not
difficult to see that the construction of A can be witnessed via a sequence
A0, A1, . . . , An of disjoint subsets of Chase(q,Σ), where each such set consists
of at most |Aq′ | atoms, A0 ⊆ Aq′ , An = A, and for each i ∈ [n], the atoms of
Ai are obtained from the atoms of Ai−1 via chase applications using INDs of
Σ. A witness of q′ relative to q and Σ should be understood as a compact rep-
resentation, which uses only polynomially many variables, of such a sequence
A0, A1, . . . , An of disjoint subsets of Chase(q,Σ). Therefore, the existence of
a witness of q′ relative to q essentially implies that GS(x̄) ∈ q′(GS(S)). Fur-
thermore, if GS(x̄) ∈ q′(GS(S)), then a witness of q′ relative to q and Σ can
be extracted from Chase(q,Σ). The above informal discussion is summarized
in the following technical lemma, whose proof is left as an exercise.

Algorithm 5 ContainmentWitness(q, q′, Σ)

Input: Two CQs q(x̄) and q′(x̄′) over S, and a set Σ of INDs over S.
Output: true if there is a witness for q′ relative to q and Σ, and false otherwise.

1: AO := A, where A ⊆ Aq with |A| ≤ |Aq′ |
2: A. := ∅
3: Q := A, where A ⊆ AO

4: V := {y1, . . . , ym} ⊂ Var−Dom(Aq) for some m ∈ [3 · |Aq′ | ·maxR∈S{ar(R)}]
5: repeat
6: repeat
7: if σ = R[α] ⊆ P [β] ∈ Σ is applicable on AO with ū ∈ Dom(AO)ar(R)

then
8: N := newV (σ, ū)
9: V := V −Dom({N})

10: A. := A. ∪ {N}
11: if |A.| < |Aq′ | then
12: Next := b, where b ∈ {0, 1}
13: else
14: Next := 1
15: until Next = 1
16: if A. = ∅ then
17: return false

18: V := V ∪ ((Dom(AO) ∩ Var)− (Dom(A.) ∪Dom(Q)))
19: AO := A.
20: A. := ∅
21: Q := Q ∪A, where A ⊆ AO

22: if |Q| < |Aq′ | then
23: Evaluate := b, where b ∈ {0, 1}
24: else
25: Evaluate := 1
26: until Evaluate = 1
27: return GQ(x̄) ∈ q′(GQ(Q))



18 Containment Under Integrity Constraints 131

Lemma 18.12. Let q(x̄) and q′(x̄′) be CQs over a schema S, and Σ a set of
INDs over S. With S = Chase(q,Σ), it holds that GS(x̄) ∈ q′(GS(S)) if and
only if there exists a witness of q′ relative to q and Σ.

By Corollary 18.11 and Lemma 18.12, we conclude that the problem of
checking whether a CQ q(x̄) is contained in a CQ q′(x̄′) under a set Σ of INDs
boils down to checking whether a witness of q′ relative to q andΣ exists. This is
done via the nondeterministic procedure shown in Algorithm 5. It essentially
constructs the sequence of sets of variables V1, . . . , Vn, and the sequence of
sets of atoms S0, . . . , Sn, required by a witness for q′ relative to q and Σ, one
after the other (if they exist), without storing more than two consecutive sets
of a sequence during its computation. It also constructs on the fly the set of
atoms Q. This is done by storing some of the atoms of a set Si (possibly none)
into Q before discarding it. Finally, the algorithm checks whether GQ(x̄) ∈
q′(GQ(Q)), in which case it returns true; otherwise, it returns false. We
proceed to give a bit more detailed description of Algorithm 5:

Initialization. The algorithm starts by guessing a subset of Aq with at most
|Aq′ | atoms, which is stored in AO (see line 1); AO should be seen as the
“current set” from which we construct the “next set” A. in the sequence.
It also guesses a subset of AO that is stored in Q (see line 3); this step is
part of the “on the fly” construction of the set Q. It also collects 3 · |Aq′ | ·
maxR∈S{ar(R)} variables not occurring in Aq in the set V (see line 4).

Inner repeat-until loop. The inner repeat-until loop (see lines 6 - 15) is
responsible for constructing the set A. from AO. This is done by guessing
an IND σ ∈ Σ and a tuple ū over Dom(AO), and adding to A. the atom
newV (σ, ū) if σ is applicable on the current set AO with ū. It also removes
from V the variables that has been used in newV (σ, ū) since they should
not be reused in any other atom of A. that will be generated by a sub-
sequent iteration. This is repeated until A. contains exactly |Aq′ | atoms,
which means that its construction has been completed, or the algorithm
nondeterministically chooses that its construction has been completed,
even if it contains less than |Aq′ | atoms, by setting Next to 1. Once A.
is in place, the algorithm updates V by adding to it the variables that
occur in the current set AO, but have not been propagated to A. and do
not occur in Q (see line 18). This essentially gives rise to the next set of
variables in the sequence of sets of variable under construction. Then AO

is not needed further, and we can reuse the space that it occupies. The
set A. becomes the current set AO (see line 19), while A. becomes empty
(see line 20). Then the algorithm guesses a subset of AO that is stored in
Q (see line 21); this step is part of the “on the fly” construction of Q.

Outer repeat-until loop. The above is repeated untilQ contains more than
|Aq′ | atoms (in the worst-case, 2 · |Aq′ | atoms), which means that its
construction has been completed, or the algorithm nondeterministically
chooses that its construction has been completed, even if it contains less
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than |Aq′ | atoms, by setting Evaluate to 1. The algorithm returns true if
GS′(x̄) ∈ q′(GS′(S

′)); otherwise, it returns false.

It is not difficult to verify that Algorithm 5 uses polynomial space, which
is actually the space needed to represent the sets AO, A., Q and V , as well
as the space needed to check whether an IND is applicable on AO with some
tuple ū ∈ Dom(AO)ar(R) (see line 7), and the space needed to check whether
GQ(x̄) ∈ q′(GQ(Q)) (see line 27). This shows that CQ-Containment-IND is in
NPSpace, and thus in PSpace since NPSpace = PSpace.

The PSpace-hardness of CQ-Containment-IND is shown via a reduction
from IND-Implication, which is PSpace-hard (see Theorem 11.9). Recall that
the IND-Implication problem takes as input a set Σ of INDs over a schema
S, and an IND σ over S, and asks whether Σ |= σ, i.e., whether for every
database over S, D |= Σ implies D |= σ. We are going to construct two CQs
q and q′ such that Σ |= σ if and only if q ⊆Σ q′.

Assume that σ = R[i1, . . . , ik] ⊆ P [j1, . . . , jk]. The CQ q is defined as

Answer(xi1 , . . . , xik) :– R(x1, . . . , xar(R)),

while the CQ q′ is defined as

Answer(xi1 , . . . , xik) :– R(x1, . . . , xar(R)), P (xf(1), . . . , xf(ar(R))),

where, for each m ∈ [ar(P )],

f(m) =

 i` if m = j`, where ` ∈ [k],

ar(R) +m otherwise.

The function f ensures that the variable at position j` in the P -atom of q′ is
xi` , i.e., the same as the one at position i` in the R-atom of q′, while all the
variables in the P -atom occurring at a position not in {j1, . . . , jk} are new
variables occurring only once in the P -atom, and not occurring in the R-atom.
It is an easy exercise to show that indeed Σ |= σ if and only if q ⊆Σ q′.
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Exercises for Part II

Exercise 2.1. Let q be the CQ given in Example 13.8. Express q as an RA
query using θ-joins instead of Cartesian product.

Exercise 2.2. Prove the correctness of the translation of a CQ into an SPJ
query, and the translation of an SPJ query into a CQ, given in the proof of
Theorem 13.7, which establishes that the languages of CQs and of SPJ queries
are equally expressive.

Exercise 2.3. For a CQ q, let eq be the equivalent SPJ query obtained by
applying the translation in the proof of Theorem 13.7. What is the size of eq
with respect to the size of q? Conversely, assuming that qe is the CQ obtained
after translating an SPJ query e into a CQ according to the translation in the
proof of Theorem 13.7, what is the size of qe with respect to the size of e?

Exercise 2.4. Prove that the choice of a pairing function in the definition of
direct product does not matter. More precisely, let ⊗τ be the direct product
defined using a pairing function τ . Then, for every Boolean FO query q, every
two databases D and D′, and every two pairing functions τ and τ ′, show that
D ⊗τ D′ |= q if and only if D ⊗τ ′ D′ |= q.

Exercise 2.5. Let q be a Boolean FO query without constants over a schema
S. Prove that the following are equivalent:

1. There exists a CQ q′ over S such that q ≡ q′, i.e., q(D) = q′(D) for every
database D of S.

2. q is preserved under homomorphisms and direct products.

Exercise 2.6. The goal of this exercise is to extend the notion of preservation
under direct products to queries with constants. To this end, we first refine
the definition of a pairing function. Let C ⊆ Const be a finite set of constants,
and τC a pairing function such that τC(a, a) = a for each a ∈ C. First, prove
that such a pairing function exists. Then, prove that for any two databases D
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and D′ of the same schema S, and for a Boolean CQ q over S that mentions
only constants from C, if D |= q and D′ |= q, then D ⊗ D′ |= q, where the
definition of ⊗ uses the pairing function τC .

Exercise 2.7. The goal is to extend further the notion of preservation under
direct products to queries with constants that are not Boolean. For a finite set
of constants C ⊆ Const, let τC be a pairing function defined as in Exercise 2.6.
Then, given two tuples ā = (a1, . . . , an) and b̄ = (b1, . . . , bn), define the n-ary
tuple ā ⊗ b̄ as

(
τC(a1, b1), . . . , τC(an, bn)

)
. Consider now an n-ary CQ q(x̄)

that mentions only constants from C. Show that if ā ∈ q(D) and b̄ ∈ q(D′),
then ā⊗ b̄ ∈ q(D ⊗D′), where ⊗ is defined with the pairing function τC .

Exercise 2.8. Use Exercise 2.6 to prove that the Boolean query q = ∃x (x =
a), where a is a constant, cannot be expressed as a CQ.

Exercise 2.9. Use Exercise 2.7 to prove that the query q = ϕ(x, y), where ϕ
is the equational atom (x = y), cannot be expressed as a CQ.

Exercise 2.10. Consider a parameterized problem (L1, κ1) over Σ1, and a pa-
rameterized problem (L2, κ2) over Σ2. Show that if there is an FPT-reduction
from (L1, κ1) to (L2, κ2), and (L2, κ2) ∈ FPT, then (L1, κ1) ∈ FPT.

Exercise 2.11. Recall that in the proof of the fact that p-CQ-Evaluation is in
W[1] (see Theorem 15.7), for technical clarity, we consider only constant-free
Boolean CQs over a schema consisting of a single binary relation name. Prove
that p-CQ-Evaluation is in W[1] even for arbitrary CQs.

Exercise 2.12. Show Corollary 16.7 for arbitrary (non-Boolean) CQs.

Exercise 2.13. Show that the binary relation ≡ over CQs is an equivalence
relation, i.e., is reflexive, symmetric, and transitive. Show also that the binary
relation ⊆ over CQs is reflexive and transitive, but not necessarily symmetric.

Exercise 2.14. Answer the following questions about CQs and their cores.

(i) Consider the Boolean CQ q1 over the schema {E[2]} defined as

Answer :– E(x1, y1), E(y1, z1), E(z1, w1), E(w1, x1), E(x2, y2), E(y2, x2).

Assume that E is used to represent the edge relation of a graph G. What
q1 checks for G? Compute the core of q1.

(ii) Consider the Boolean CQ q2 over the schema {R[1], S[1]} defined as

Answer :– R(x), S(x), R(y), S(y).

Compute the core of q2.
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(iii) Consider the CQ q3 over the schema {R[1], S[1]} defined as

Answer(x, y) :– R(x), S(x), R(y), S(y).

Prove that q3 is a core of itself.

Exercise 2.15. Let q(x̄) be a CQ, and q′(x̄) a core of q(x̄). Prove that there
is a homomorphism from (q, x̄) to (q′, x̄) that is the identity on Dom(Sq′).

Exercise 2.16. Recall that ComputeCore (see Algorithm 4) is nondeter-
ministic. Devise a deterministic algorithm that computes the core of a CQ,
and show that it runs in exponential time in the size of the input query.

Exercise 2.17. (a) Let CQ-Minimization be the problem where, given a Boolean
CQ q and integer k ∈ N, the question is if there exists a CQ q′ such that
q′ ≡ q and |q′| ≤ k. Prove that CQ-Minimization is NP-complete.

(b) Let CQ-Minimality be the problem where, given a Boolean CQ q, the ques-
tion is to answer true if q is minimal and false otherwise. Prove that
CQ-Minimality is coNP-complete.

Exercise 2.18. Let D be a database, and T = {ā1, . . . , ān} a set of m-ary
tuples over Dom(D), for m > 0. Show that there exists a CQ q(x̄) such that
q(D) = T if and only if the following hold:

1.
∏
i∈[n] āi appears in

∏
i∈[n]D, and

2. there is no tuple b̄ ∈ Dom(D)m − T such that
∏
i∈[n](D, āi)→ (D, b̄).

Exercise 2.19. The purpose of this exercise is to understand what happens if
we allow equalities of the form x = y or x = a in CQs. We define a conjunctive
query with equalities (CQ=) similarly to a CQ, but we additionally allow
equational atoms. Such queries can therefore be written as rules

Answer(x̄) :– R1(ū1), . . . , Rn(ūn), y1 = v1, . . . , yk = vk,

where {v1, . . . , vk} ⊆ Var ∪ Const.

1. Why are the queries Answer(x) :– x = y and Answer(x) :– x = a not
expressible as CQs?

2. Prove that (i) Theorem 15.1, (ii) Theorem 16.3, and (iii) Theorem 16.8
also hold for CQ=.

3. Prove that queries in CQ= can be minimized with a variant of Algorithm 4.

Exercise 2.20. Prove that the following problem is coNExpTime-complete:
given a database D, and a set T = {ā1, . . . , ān} of m-ary tuples over Dom(D),
for m > 0, check whether there exists a CQ q such that q(D) = T .
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Exercise 2.21. Prove that FO-Containment remains undecidable even if one
of the two input queries is a CQ.

Exercise 2.22. Prove Lemma 18.12.

Exercise 2.23. Prove that the reduction at the end of Chapter 18 from
IND-Implication to CQ-Containment-IND, which establishes that the latter is
PSpace-hard, is correct.



Bibliographic Comments for Part II

To be done.





Part III

Fast Conjunctive Query Evaluation





Motivation

Here we are interested in understanding when CQ evaluation can be solved
efficiently in combined complexity. In Theorem 15.1, we have shown that CQ
evaluation is NP-complete by reducing from an NP-complete problem over
graphs. It is known, on the other hand, that several NP-complete problems
over graphs become tractable if they are restricted to be nearly acyclic. As
we show in this part of the book, similar ideas can be applied to prove that
CQ evaluation is tractable when CQs are nearly acyclic. This is highly rele-
vant from a practical point of view, as such CQs appear often in real-world
applications.
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Acyclicity of Conjunctive Queries

We start by studying the notion of acyclicity for CQs, which has received
considerable attention in the database literature since the early 1980s. In this
chapter, we define acyclicity and present an algorithm to recognize it. In the
next chapter, we will present two algorithms that show that acyclic CQs can
be evaluated efficiently.

CQs and Hypergraphs

We have seen in Theorem 15.1 that the evaluation problem for CQs is NP-
complete. So, the reader may wonder why it is possible that database systems
are successful in practice even though its most fundamental problem on the
most common class of queries is NP-complete.

The crux is that the shape of a CQ plays a very important role in how
complex the query is to evaluate. For instance, assume that we have a database
D over the schema {E[2]}. Hence, D can be understood as a directed graph
where E is the edge relation. Evaluating the CQ

Answer :– E(x1, x2), E(x2, x3), E(x3, x4), E(x4, x1), E(x1, x3), E(x2, x4)

can be understood as matching a variant of the 4-clique, namely a graph of
the form

x1 x2

x3x4

in D. In fact, this correspondence between evaluation of CQs and graph
matching is precisely what we used in Theorem 15.1 to encode the Clique
problem into the CQ-Evaluation problem.
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However, CQs in practice are usually not shaped as cliques. Instead, tree-
shaped CQs are much more common. Since it is well-known that finding cliques
in graphs is computationally difficult, whereas finding tree-like structures in
graphs is much easier, it makes sense to study the evaluation problem of CQs
for which the associated graph is acyclic.

To make this precise, however, we need to consider a generalization of
(undirected) graphs that can deal with relations of arity three or more. Such
graphs are called hypergraphs.

Definition 20.1: Hypergraph

A hypergraph is a pair H = (V,E), where

• V is a finite set of nodes and

• E is a set of subsets of V , called hyperedges.

Acyclicity of Hypergraphs

Defining the notion of acyclicity for hypergraphs is not as simple as it is
for graphs. In fact, several natural, non-equivalent notions of acyclicity for
hypergraphs exist. We work here with one such a notion, often referred to as
α-acyclicity, which has received considerable attention in database theory.

We will call a hypergraph H acyclic if it admits a join tree, that is, if
its hyperedges can be arranged in the form of a tree, while preserving the
connectivity of elements that occur in different hyperedges.

Definition 20.2: Join Tree and Acyclic Hypergraph

Given a hypergraph H = (V,E), a tree T is a join tree of H if

• the nodes of T are precisely the hyperedges in E and,

• for each node v ∈ V , the set of nodes of T in which v is an element
forms a connected subtree of T .

Moreover, H is acyclic if H admits a join tree.

We refrain from formally introducing trees at this point in the book, since we
do not need them in a sophisticated manner at this point. That said, readers
who would like to have a formal definition can look at Chapter 58.1

1 In the terminology of Chapter 58, we use labeled unordered trees in which each
node n is also labeled with n.
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Example 20.3: Acyclic and Non-Acyclic Hypergraphs

Consider the following hypergraph H1 = (V1, E1):

a b c d

e

f

Thus, we have that V1 = {a, b, c, d, e, f} and E1 = {{a, b, c}, {b, c}, {c, d},
{b, e, f}}. It holds that H1 is an acyclic hypergraph, as the following tree
T1 is a join tree for H1:

{a, b, c}

{c, d}{b, c} {b, e, f}

In fact, we have that T1 is a join tree of H1 as the nodes of T1 are
precisely the hyperedges in E1, and for each v ∈ V1, the set of nodes of
T1 in which v occurs defines a connected subtree of T1. As an example of
this latter condition, if we consider v = c, then we obtained the following
subtree of T1 that is connected:

{a, b, c}

{c, d}{b, c}

On the other hand, consider a hypergraph H2 that extends H1 with the
hyperedge {c, e}. We have that H2 is not acyclic, as it is not possible to
construct a join tree for it. For instance, consider the extension T2 of T1

that is obtained by adding a node {c, e} and connecting it with the node
{a, b, c} of T1:
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{a, b, c}

{c, d}{b, c} {b, e, f} {c, e}

Then we have that T2 is not a join tree for H2 as the set of nodes of T2

in which e occurs do not define a connected subtree of T2:

{b, e, f} {c, e}

It is not hard to see that for undirected graphs, the notion of α-acyclicity
coincides with the usual notion of acyclicity that stems from graph theory
(i.e., tree-shaped or forest-shaped graphs).

Acyclicity of Conjunctive Queries

The notion of acyclic hypergraph is the key concept in the definition of acyclic
CQs. Each CQ q is naturally associated with a hypergraph Hq that represents
the structure of joins among its variables. In particular, if q is of the form

q(x̄) :– R1(ū1), . . . , Rn(ūn) ,

where ūi is a tuple of constants and variables for every i ∈ [n], then Hq =
(V,E) is a hypergraph such that

• its set V of vertices contains all variables mentioned in q and

• the hyperedges in E are precisely the sets of variables appearing in the
atoms of q, i.e., E = {Xi | i ∈ [n]}, where Xi is the set of variables
occurring in ūi.

Definition 20.4: Acyclicity of CQs

An acyclic conjunctive query (ACQ) is a conjunctive query q such that
its associated hypergraph Hq is acyclic.

Example 20.5: Acyclic and Non-Acyclic CQs

Consider the following CQ q1:

q1(x, y) :– R(x, y, z), T (y, z), S(y, w,w′), T (z, z′).

Then we have that Hq1 is the following hypergraph:
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x y z z′

w

w′

We know from Example 20.3 that Hq1 is an acyclic hypergraph, as Hq1

can be obtained from the hypergraph H1 in Example 20.3 by renaming
the nodes of H1. Therefore, we have that q1 is an acyclic CQ. In the
same way, we obtain that the following CQ q2:

q2(x, y) :– R′(x, y, z, a), T ′(y, z, a), S(y, w,w′), T ′(z, z′, b)

is acyclic as Hq2 = Hq1 . In particular, notice that constants a, b in q2

do not play any role in the construction of Hq2 . On the other hand, the
following CQ q3:

q3(x, y) :– R(x, y, z), T (y, z), S(y, w,w′), T (z, z′), T (z, w)

is not acyclic as the hypergraph Hq3 is not acyclic. Notice that this latter
fact is also obtained from Example 20.3, as Hq3 can be obtained from the
hypergraph H2 in Example 20.3 by renaming the nodes of H2. Finally,
consider the following CQ q4:

q4(x, y) :– R(x, y, z), R(y, y, z), T (y, z), S(y, w,w′), T (z, z′).

Then we have that q3 is an acyclic CQ since Hq3 = Hq1 . Notice that
this latter condition holds as the set of variable occurring in R(y, y, z) is
{y, z}, which is the same as the set of variables occurring in T (y, z).

Acyclicity Recognition

In the following chapter, we will show that ACQs can be evaluated efficiently.
But before doing so, it is important to explain why acyclicity itself can be
efficiently recognized. This follows from the existence of an equivalent defini-
tion of acyclicity in terms of an iterative process described in the following
proposition.
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Proposition 20.6: GYO Algorithm

A hypergraph H = (V,E) is acyclic if and only if all of its vertices can
be deleted by repeatedly applying the following two operations (in no
particular order):

1. Delete a vertex that appears in at most one hyperedge.

2. Delete a hyperedge that is contained in another hyperedge.

This characterization leads directly to a polynomial-time algorithm for
checking acyclicity of hypergraphs, and thus of CQs: Given a CQ q, we apply
operations (1) and (2) in the statement of Proposition 20.6 over Hq until a
fixpoint is reached. The query q is acyclic if and only if we are left with no
vertices. Interestingly, a simple extension of this algorithm also constructs a
join tree of Hq when q is acyclic (see Exercise 3.2). It is easy to see that the
algorithm runs in quadratic time in the size of Hq and, therefore, in the size
of the CQ q.

Example 20.7: Application of GYO Algorithm

Consider the hypergraph H1 in Example 20.3. As expected, by using the
previous algorithm we obtain that H1 is acyclic. In fact, all vertices of
H1 are deleted by applying the following sequence of operations: delete
vertex d (that appears only in hyperedge {c, d}), delete vertices e and f ,
delete hyperedges {b} and {c} (that are contained in hyperedge {b, c}),
delete hyperedge {b, c} (that is contained in hyperedge {a, b, c}), and
delete vertices a, b and c.

On the other hand, and also as expected, by applying the previous
algorithm on hypergraph H2 from Example 20.3, we obtain that H2 is
not acyclic. In fact, no matter what order is used when applying the two
operations of the algorithm, we reach the following fixed point:

b c

e

Notice that no operation can be applied to reduce this hypergraph, which
is intuitively correct as this hypergraph represents the canonical example
of an undirected graph that is not acyclic.
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It is important to mention that there are more sophisticated algorithms
that check whether a CQ q is acyclic and construct a join tree of Hq if the
latter is the case, in time O(‖Hq‖), that is, linear time. We will exploit this
fact later in the presentation of efficient evaluation algorithms for acyclic
conjunctive queries.
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Efficient Acyclic Conjunctive Query Evaluation

We will present two algorithms that show that acyclic CQs can be evalu-
ated efficiently. The first one, known as Yannakakis’s algorithm, makes use
of the decomposition of an acyclic CQ as a join tree, which was defined in
the previous chapter, while the second one is based on a simple consistency
criterion. Yannakakis’s algorithm achieves a relatively efficient running time
of O(‖D‖ · log ‖D‖ · ‖q‖), where D is the database and q is the query. On
the other hand, the algorithm based on the consistency criterion has the ad-
vantage that it does not require the CQ itself to be acyclic, only its core (as
defined in Chapter 17).

Semijoins and Acyclic CQs

The evaluation of acyclic CQs is tightly related to a particular relational
algebra operation, known as semijoin, which we describe next. Let D be a
database. Given CQs q(x̄) and q′(x̄′) and tuples ā ∈ q(D) and b̄ ∈ q′(D),
we call ā and b̄ consistent if they have the same value on each position that
contains a common variable of x̄ and x̄′. We then define the semijoin of q(D)
and q′(D), denoted by q(D) n q′(D), as the set of tuples ā ∈ q(D) that are
consistent with some tuple b̄ ∈ q′(D).

Example 21.1: Semijoin of Conjunctive Queries

Assume that D = {R(a, b, c), R(d, d, d), S(c, b, e), S(d, e, e)}, and that q
and q′ are the following CQs:

q(x, y, z) :– R(x, y, z)

q′(z, y, w) :– S(z, y, w).

Then we have that q(D) = {(a, b, c), (d, d, d)}, q′(D) = {(c, b, e), (d, e, e)},
and q(D) n q′(D) = {(a, b, c)}. In particular, we have that (a, b, c) is in
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q(D)nq′(D) since (a, b, c) belongs to q(D) and (a, b, c) is consistent with
the tuple (c, b, e) ∈ q′(D), as these two tuples have the same value b in
the position that corresponds to the variable y shared by (x, y, z) and
(z, y, w), and have the same value c in the position that corresponds to
the variable z shared by (x, y, z) and (z, y, w). Moreover, we have that
(d, d, d) is not in q(D)nq′(D) as this tuple is not consistent with any tu-
ple in q′(D). Finally, notice that q′(D)n q(D) = {(c, b, e)}, which shows
that, as opposed to the case of the join operator, n is not a commutative
operator.

We now explain the relationship between the CQs in ACQ and the semijoin
operator. Let q :– R1(ū1), . . . , Rn(ūn) be a Boolean ACQ, and consider an
arbitrary join tree T of Hq. Recall that the set of nodes of T is {Xi | i ∈ [n]},
where each Xi is the set of variables occurring in ūi. We see T as a rooted
and directed tree by arbitrarily choosing a root r and directing all edges away
from r. Therefore, we can naturally talk about the leaves of T and about the
children or descendants of a node in T . For every node s of T , we define the
following CQs for some i ∈ [n], assuming that s = Xi and that ȳi is a tuple
of pairwise distinct variables consisting exactly of the variables in Xi:

• A CQ qs(ȳi) :– Rj1(ūj1), . . . , Rjp(ūjp), where {Rj1(ūj1), . . . , Rjp(ūjp)} is
the set of of atoms of q such that Xj` = Xi for each ` ∈ [p].

• A CQ Qs(ȳi) whose set atoms is the union of those that appear in CQs
qs′ , where s′ is a descendant of s in T (including s itself).

Notice that Qs ⊆ qs for each node s of T . Moreover, if s is a (non-leaf) node
of T with children s1, . . . , sp, then the set of atoms of Qs is the union of the
atoms of Qs1 , . . ., Qsp , and the atoms of qs.

In what follows, we present a fundamental connection between the evalua-
tion of acyclic CQs and the semijoin operator. To understand this connection,
assume that q :– R1(ū1), . . . , Rn(ūn) is a Boolean ACQ, and suppose that T is
a rooted and directed join tree of Hq with root r = X`, for some ` ∈ [n]. Then
we have that Qr is a CQ of the form Qr(ȳ`) :– R1(ū1), . . . , Rn(ūn), which
means that Qr has the same body as q. Thus, for every database D, it holds
that

q(D) = true if and only if Qr(D) 6= ∅

and, therefore, an efficient algorithm for the evaluation of Qr can also be used
to evaluate q. We show in the next section that the followin proposition gives
us such an algorithm. The proposition tells us that Qr can be inductively
evaluated by computing semijoins while traversing T in a bottom-up manner,
provided that the CQ qs has been previously evaluated for every node s of T .
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Proposition 21.2

Let q be a Boolean ACQ, T a rooted and directed join tree of Hq and D
a database. Then for every node s of T ,

• if s is a leaf of T , then Qs(D) = qs(D) and

• otherwise, if the children of s in T are s1, . . . , sp, then

Qs(D) =

p⋂
i=1

(
qs(D) nQsi(D)

)
.

Proof. Assume that q :– R1(ū1), . . . , Rn(ūn) is the Boolean ACQ. Therefore,
the set of nodes of T is {Xi | i ∈ [n]}, where each Xi is the set of variables
occurring in ūi. If s is a leaf of T , then qs and Qs are the same CQ and, thus,
Qs(D) = qs(D).

Let us assume then that s is a non-leaf node of T with children s1, . . . , sp.
Moreover, assume s = X`, s1 = Xk1

, . . . sp = Xkp , where `, k1, . . . , kp are
pairwise distinct numbers in the set [n]. Then we have that ȳ`, ȳk1

, . . ., ȳkp
are the tuples of free variables of CQs Qs, Qs1 , . . ., Qsp , respectively. Let us
consider first an arbitrary tuple in Qs(D). By definition, such a tuple is of
the form h(ȳ`) for some homomorphism h from Qs to D. It is not hard to see
that h(ȳ`) ∈ qs(D) n Qsi(D) for every i ∈ [p]. Indeed, h(ȳ`) ∈ qs(D) since
Qs ⊆ qs, and h(ȳki) ∈ Qsi(D) since the atoms of Qsi are contained in those
of Qs. Moreover, h(ȳ`) and h(ȳki) are consistent by definition. We conclude
that h(ȳ`) ∈

⋂p
i=1

(
qs(D) nQsi(D)

)
.

Let us consider now an arbitrary tuple in
⋂p
i=1

(
qs(D) n Qsi(D)

)
. By

definition, such a tuple is of the form h(ȳ`) for some homomorphism h from
qs to D. Moreover, for each i ∈ [p], there is a homomorphism hi from Qsi
to D such that h(ȳ`) and hi(ȳki) are consistent; i.e., they have the same
values on positions where ȳ` and ȳki have common variables. We claim that
h′ = h ∪ h1 ∪ · · · ∪ hp is a well-defined homomorphism from Qs to D. Since
h′(ȳ`) = h(ȳ`), this shows that h(ȳ`) ∈ Qs(D) as desired.

We first show that h′ is well-defined. Take an arbitrary variable y in Qs. If
y occurs only in qs but not in any of the CQs Qsi (for i ∈ [p]), or if y occurs
only in one of the CQs Qsi (for i ∈ [p]) but not in qs, then clearly h′(y) is
well-defined. There are two other possibilities: y occurs in qs and in Qsi , for
some i ∈ [p], or y occurs in Qsi and Qsj , for some i, j ∈ [p] with i 6= j. We
only consider the latter case since the former can be handled analogously. By
definition of join trees, the nodes in T that contain y are connected, which
means that y ∈ s ∩ si ∩ sj . Therefore, we conclude that hi(y) = hj(y) = h(y)
since h(ȳ`) is consistent with both hi(ȳki) and hj(ȳkj ).
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We now prove that h′ is a homomorphism from Qs to D. Take an arbitrary
atom R(z̄) in Qs. Then, R(h′(z̄)) = R(h(z̄)) or R(h′(z̄)) = R(hi(z̄)) for some
i ∈ [p]. Thus, R(h′(z̄)) ∈ D because h and hi are homomorphisms. This
concludes the proof of the proposition. ut

Yannakakis’s Algorithm

Yannakakis’s algorithm uses the conditions in Proposition 21.2 to evaluate a
Boolean ACQ, as shown in Algorithm 6. The soundness and completeness of
the algorithm follows from Proposition 21.2—which justifies the correctness of
the inductive computation carried out in the while loop—and the fact that the
atoms of Qr are precisely those of q, from which we conclude that Qr(D) 6= ∅
if and only if q(D) = true.

Algorithm 6 Yannakakis(q,D)

Input: A Boolean ACQ q and a database D
Output: q(D)
1: T := a rooted and directed join tree of Hq
2: N := the set of nodes of T
3: r := the root of T
4: while N 6= ∅ do
5: Choose s ∈ N such that no child of s is in N
6: Compute qs(D)
7: if s is a leaf of T then
8: Qs(D) := qs(D)
9: else

10: Let s1, . . . , sp be the children of s in T
11: Qs(D) :=

⋂p
i=1

(
qs(D) nQsi(D)

)
12: N := N − {s}
13: return ¬

(
Qr(D) = ∅

)

We now analyze the complexity of the algorithm. We remarked at the end
of Chapter 20 that a join tree T of Hq can be computed in time O(‖Hq‖),
which is in time O(‖q‖). We show next that the remainder of the algorithm
can be implemented in time O(‖D‖· log ‖D‖·‖q‖). To see why this is the case,
we need the following observation (see Exercise 3.3): the cost of computing
q(D)n q′(D), given q(D) and q′(D), is time O(N logN) where N = ‖q(D)‖+
‖q′(D)‖. In particular, then, each qs(D), for a node s in T , can be computed
in time O(‖D‖ · log ‖D‖ · ‖qs‖). Therefore, the collection of all queries qs(D),
for s a node in T , can be computed in time O(‖D‖ · log ‖D‖ · ‖q‖).

Now, if s is a node of T with children s1, . . . , sp, we can compute Qs(D) =⋂
1≤i≤p qs(D) n Qsi(D) in time O(‖D‖ · log ‖D‖ · p). This follows from the

fact that ‖qs(D)‖ ≤ ‖D‖ and ‖Qsi(D)‖ ≤ ‖qsi(D)‖ ≤ ‖D‖, for each i ∈ [p].
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Therefore, we can inductively compute the collection of all queries Qs, for s
a node in T , in time O(‖D‖ · log ‖D‖ · ‖T‖) = O(‖D‖ · log ‖D‖ · ‖q‖).

In summary, we obtain the following result:

Theorem 21.3

ACQ-Evaluation can be solved in time O(‖D‖ · log ‖D‖ · ‖q‖).

Proof. We already proved in the analysis preceding the theorem that the
theorem holds for Boolean ACQs. Assume now that we are given a non-
Boolean ACQ q(x̄) :– R1(ū1), . . . , Rn(ūn), a database D, and a tuple ā over
Const of the same arity than x̄. We want to check whether ā ∈ q(D). We
start by turning q(x̄) into a Boolean ACQ by simultaneously replacing in
q(x̄) each free variable xi in x̄ = (x1, . . . , xk) by its corresponding value ai in
ā = (a1, . . . , ak). We denote this boolean CQ as qā. Clearly, qā is acyclic and,
in addition, ā ∈ q(D) if and only if qā(D) = true. ut

The Consistency Algorithm

While Yannakakis’s algorithm uses a join tree of an acyclic CQ q in order to
evaluate q over a database D in time O(‖D‖ · log ‖D‖ · ‖q‖), if we only aim
for tractability then there is no need for such a join tree to be computed.
In fact, below we present an algorithm that evaluates q on D in polynomial
time, only by holding the promise that q is acyclic (i.e., that a join tree of
q exists). The design of such an algorithm is based on a simple consistency
criterion, established in the following proposition, which characterizes when
q(D) = true for a Boolean ACQ q and a database D.

Proposition 21.4: Consistency Property

Let q :– R1(ū1), . . . , Rn(ūn) be a Boolean ACQ and D a database, and
qi(x̄i) :– Ri(ūi) be a CQ such that x̄i is the tuple obtained from ūi by
removing constants, for each i ∈ [n]. Then the following are equivalent:

1. q(D) = true.

2. There are nonempty sets S1 ⊆ q1(D), . . . , Sn ⊆ qn(D) such that

Si = Si n Sj for all i, j ∈ [n] .

That is, each tuple in Si is consistent with some tuple in Sj for all
i, j ∈ [n].

Proof. Assume first that q(D) = true, i.e., there is a homomorphism h from
q to D. In this case, we can choose Si to be {h(x̄i)}, for each 1 ≤ i ≤ n.
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For the other direction, assume that nonempty sets S1, . . . , Sn as described
in item 2 exist. Let T be an arbitrary rooted and directed join tree of q. One
can then prove by induction the following for each node s of T :

If s is the set Xi of variables occurring in x̄i, for i ∈ [n], then Si ⊆ Qs(D)
(see Exercise 3.5).

In particular, if the root r of T is the set Xj of variables occurring in x̄j , for
j ∈ [n], then Sj ⊆ Qr(D). Therefore, since Sj is nonempty we conclude that
Qr(D) is also nonempty. This implies that there is at least one homomorphism
from Qr to D. But the atoms of Qr and q are the same by definition, and
thus q(D) = true. ut

We are ready to present the consistency algorithm, which can be under-
stood as a greatest fixed-point computation that checks for the existence of
nonempty sets S1, . . ., Sn as described in item 2 of Proposition 21.4.

Algorithm 7 Consistency(q,D)

Input: A Boolean CQ q :– R1(ū1), . . . , Rn(ūn) in ACQ and a database D
Output: q(D)
1: Si := qi(D), for each i ∈ [n]
2: while Si 6= Si n Sj for some i, j ∈ [n] do
3: Si := Si n Sj

4: if Si 6= ∅ for every i ∈ [n] then return true

5: else return false

The algorithm initializes Si to be qi(D), for each i ∈ [n]. It then iteratively
deletes every tuple in Si that is not consistent with a tuple in Sj , for some j ∈
[n]. If some Si becomes emtpy during this procedure, the algorithm declares
q(D) = false. Otherwise, q(D) = true. The algorithm runs in polynomial
time, but not in time O(‖D‖ · log ‖D‖ · ‖q‖) as Yannakakis’s algorithm. Next,
we establish that it is sound and complete.

Proposition 21.5

Given a boolean CQ q in ACQ and a database D, we have that q(D) =
true if and only if Consistency(q,D) = true.

We leave the proof of Proposition 21.5 as an exercise for the reader.

Acyclicity of the Core

It is known that there are boolean CQs that are not acyclic, yet their core is
acyclic. (The reader is asked to prove this fact in Exercise 3.6). Interestingly,
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Unions of Conjunctive Queries

The first, and simplest, addition to conjunctive queries is union, which leads
to the language of union of conjunctive queries.

Definition 30.1: Union of Conjunctive Queries

A union of conjunctive queries (UCQ) over a schema S is an FO query
ϕ(x̄) over S where ϕ is a formula of the form

ϕ1 ∨ · · · ∨ ϕn

for n ≥ 1, where FV(ϕ) = FV(ϕi) and ϕi(x̄) is a CQ, for every i ∈ [n].

For notational convenience, we denote a UCQ q = ϕ(x̄) with ϕ = ϕ1∨· · ·∨
ϕn as q1∪ · · ·∪ qn, where qi is the CQ ϕi(x̄), for each i ∈ [n]. It is not difficult
to verify that, given a database D of a schema S, and a UCQ q = q1∪ · · · ∪ qn
over S, it holds that q(D) = q1(D) ∪ · · · ∪ qn(D).

Example 30.2: Union of Conjunctive Queries

Consider the relational schema from Example 3.2:

Person [ pid, pname, cid ]

Profession [ pid, prname ]

City [ cid, cname, country ]

The UCQ ϕ(y), where ϕ = ϕ1 ∨ ϕ2 with

ϕ1 = ∃x∃z
(
Person(x, y, z) ∧ Profession(x, ‘computer scientist’) ∧

City(z, ‘Athens’, ‘Greece’)
)
.

and
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ϕ2 = ∃x∃z
(
Person(x, y, z) ∧ Profession(x, ‘computer scientist’) ∧

City(z, ‘Putú’, ‘Chile’)
)
.

can be used to retrieve the list of names of computer scientists that were
born in the city of Athens in Greece, or in the city of Putú in Chile.

Union of Conjunctive Queries as a Fragment of FO

By definition, UCQs use only relational atoms, conjunction (∧), disjunction
(∨), and existential quantification (∃). Therefore, every UCQ can be expressed
using formulae from the fragment of FO that corresponds to the closure
of relational atoms under ∧, ∨ and ∃; we refer to this fragment of FO as
FOrel[∧,∨,∃]. Interestingly, we can show that the converse is also true, which
leads to the following expressive power result:

Theorem 30.3

The language of UCQs and the language of FOrel[∧,∨,∃] queries are
equally expressive.

Proof. As discussed above, by definition, a UCQ is trivially an FOrel[∧,∨,∃]
query. The interesting task is to show that an FOrel[∧,∨,∃] query ϕ(x̄) can
be equivalently expressed as a UCQ. This is done in three main steps:

• First, we propagate disjunction by using the following simple rules:

χ ∧ (ξ ∨ ψ) (χ ∧ ξ) ∨ (χ ∧ ψ) and ∃x (χ ∨ ψ) ∃xχ ∨ ∃xψ,

where χ, ξ and ψ are FO formulae. By applying the above rules, we can
convert the formula ϕ into an equivalent formula of the form

ϕ1 ∨ · · · ∨ ϕn

for n ≥ 1, where ϕi is a formula from FOrel[∧,∃], for each i ∈ [n].

• We then convert ϕi, for each i ∈ [n], into a formula of the form ∃x̄i ϕ′i,
where ϕ′i is a quantifier-free conjunction of relational atoms. This is done
in the same way as the transformation of an FOrel[∧,∃] query into a CQ
(see Example 13.5): we first rename variables in order to ensure that bound
variables do not repeat, and then push the existential quantifiers outside.

• After applying the above steps, we end up with a formula ψ of the form

ψ1 ∨ · · · ∨ ψn

where ψi = ∃x̄1 ϕ
′
i and ϕ′i is a quantifier-free conjunction of relational

atoms, for each i ∈ [n]. Observe also that during the above two steps we
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have not altered the set of free variable of ϕ, i.e., FV(ϕ) = FV(ψ). Hence,
ψ(x̄) is a syntactically valid FO query that is equivalent to ϕ(x̄). However,
it should not be overlooked that ψ(x̄) is not yet a UCQ since there is no
guarantee that FV(ψ) = FV(ψi), for each i ∈ [n]. In this final step, we
explain how ψ(x̄) can be converted into an equivalent UCQ.

Assume that we have access to a unary relation dom that stores all the val-
ues in the given database. In other words, we assume that every database
D comes with a unary relation dom such that, for every a ∈ Dom(D),
dom(a) ∈ D. In this case, it is easy to see that ψ′(x̄) with

ψ′ =

n∨
i=1

ψi ∧ ∧
y∈FV(ψ)−FV(ψi)

dom(y)


is a syntactically valid UCQ that is equivalent to ψ(x̄). Indeed, FV(ψ) =
FV(ψ′), each disjunct ψ′i of ψ is such that FV(ψ′) = FV(ψ′i), and ψ′i(x̄) is
a CQ. Moreover, for every database D equipped with the unary relation
dom, ψ(x̄)(D) = ψ′(x̄)(D). It remains to show that the relational atoms
of the form dom(·) in ψ′ can be eliminated with the help of disjunction.

Consider a formula of the form ∃ȳ χ ∧ dom(u), where χ is an arbitrary
formula over a schema S. It is easy to verify that it is equivalent to∨
R∈S

∨
i∈{1,...,ar(R)}

∃ȳ ∃z1 . . . ∃zar(R)−1 χ ∧R
(
z1, . . . , zi−1, u, zi, . . . , zar(R)−1

)
where z1, . . . , zi−1, zi+1, . . . , zar(R)−1 are new variables not occurring in χ.
Indeed, if a is a value that occurs in the input database, then a must occur
in a tuple of some relation R at some position i ∈ {1, . . . , ar(R)}. Using
this transformation, we can eventually eliminate all the relational atoms
of the form dom(·) in ψ′, and obtain a formula ψ′′ = ψ′′1 ∨ · · · ∨ ψ′′m such
that ψ′(x̄) and ψ′′(x̄) are equivalent queries, and ψ′′i (x̄) is a syntactically
valid CQ for each i ∈ [m], which in turn implies that ψ′′(x̄) is a UCQ. ut

Let FO[∧,∨,∃] be the fragment of FO that corresponds to the closure of
relational atoms and equational atoms under ∧, ∨ and ∃. This is known as the
existential positive fragment of FO, and is typically denoted as ∃FO+; hence,
from now on, by ∃FO+ we actually mean FO[∧,∨,∃]. In other words, ∃FO+ is
the fragment of FO obtained by explicitly adding equality to FOrel[∧,∨,∃]. It
is easy to show that the language of ∃FO+ queries is strictly more expressive
than the language of UCQs, and thus, by Theorem 30.3, also the language of
FOrel[∧,∨,∃] queries. Consider, for example, the ∃FO+ query q = ϕ(x) with
ϕ = (x = a), where a ∈ Const. Clearly, for every database D, q(D) = {(a)}
even if a 6∈ Dom(D). However, given a database D′ such that a 6∈ Dom(D′),
for every 1-ary UCQ q′, it holds that q′(D′) = ∅ since the output of a CQ,
and thus of a UCQ, on D′ consists of tuples of constants from Dom(D′).
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Observe that the ∃FO+ query q above uses equality among a variable and
a constant. It turns out that this is crucial for showing that ∃FO+ queries
form a strictly more expressive language than UCQs. Interestingly, the lan-
guage of queries based on FOrel,var=[∧,∨,∃], that is, the fragment of FO that
corresponds to the closure of relational atoms and equational atoms of the
form x = y, where both x and y are variables, under ∧, ∨ and ∃, has the same
expressive power as the language of UCQs.

Theorem 30.4

The language of UCQs and the language of FOrel,var=[∧,∨,∃] queries are
equally expressive.

Proof. By definition, a UCQ is trivially an FOrel,var=[∧,∨,∃] query. It remains
to show that an FOrel,var=[∧,∨,∃] query ϕ(x̄) can be equivalently expressed
as a UCQ. This is done by first observing that equational atoms that mention
only variables can be eliminated by using atoms of the form dom(·), where dom
is a unary relation that stores all the values in the given database. Indeed,
for each equational atom x = y in ϕ, we replace y by x everywhere in ϕ
and x̄, and add the atom dom(x) to the conjunction. To see why the latter
is needed, consider, for example, the query ψ(x, y) with ψ = (x = y). We
cannot just throw away the equational atom; instead, this query is equivalent
to ψ′(x, x) with ψ′ = dom(x). Hence, after the above transformation, we
obtain an FOrel[∧,∨,∃] query ϕ′(x̄′) that is equivalent to ϕ(x̄) over databases
equipped with the unary relation dom. Since, as discussed in the proof of
Theorem 30.3, dom(·) atoms can be eliminated with the help of disjunction,
we can convert ϕ′(x̄′) into an FOrel[∧,∨,∃] query ϕ′′(x̄′) that is equivalent to
ϕ(x̄) over all databases. Finally, by Theorem 30.3, we know that there exists a
UCQ that is equivalent to ϕ′′(x̄′), and thus to ϕ(x̄), and the claim follows. ut

We have seen that UCQs are not powerful enough for expressing every
∃FO+ query. We have also seen that the key reason for this is the fact that
UCQs, although can express equality among variables, cannot express equality
among variables and constants. The question that comes is whether the addi-
tion of equality among variables and constants to UCQs leads to a language
that can express every ∃FO+ query. A UCQ with variable-constant equality
ϕ(x̄) is defined as a UCQ with the only difference that a disjunct of ϕ can be
a conjunction of relational atoms and equational atoms of the form (x = a),
where x is a variable and a is a constant. By using the same ideas as in the
proofs of Theorems 30.3 and 30.4, it is easy to show the following:

Theorem 30.5

The language of UCQs with variable-constant equality and the language
of ∃FO+ queries are equally expressive.
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It is important to stress that the transformations described in the proofs of
the above expressive power results can be costly. Already, the transformation
of an FOrel[∧,∨,∃] query into a UCQ may lead to an exponentially sized
query. Consider, e.g., an FOrel[∧,∨,∃] query ϕ(x̄), where ϕ is of the form

(ϕ1 ∨ ϕ′1) ∧ · · · ∧ (ϕn ∨ ϕ′n)

and ϕi(x̄), ϕ′i(x̄) are CQs, for every i ∈ [n]. Representing ϕ(x̄) as a UCQ
requires transforming an FO formula in conjunctive normal form into an FO
formula in disjunctive normal form, resulting in a UCQ consisting of 2n CQs.
Consequently, even though UCQs and FOrel[∧,∨,∃] (or FOrel,var=[∧,∨,∃])
queries have the same expressive power, some problems related to them will
have different complexity (whenever the size of the query matters). The same
holds for UCQs with variable-constant equality and ∃FO+ queries.

Union of Conjunctive Queries as a Fragment of RA

We know, by Theorem 13.7, that the language of CQs has the same expressive
power as the language of SPJ queries. Recall that SPJ is the fragment of RA
that is built from base expressions R ∈ Rel (crucially, base expressions of the
form {a} with a ∈ Const are not included), and allows for selection, projection,
and Cartesian product. Furthermore, conditions in selections are conjunctions
of equalities. It should not come as a surprise the fact that by adding union to
SPJ we get a fragment of RA, called select-project-join-union (SPJU), that
has the same expressive power as UCQs.

Theorem 30.6

The language of UCQs and the language of SPJU queries are equally
expressive.

Proof. The fact that every UCQ can be expressed as an SPJU query immedi-
ately follows from Theorem 13.7, which shows that every CQ can be expressed
as an SPJ query. Indeed, a UCQ q1 ∪ · · · ∪ qn is equivalent to the SPJU query
e1∪· · ·∪en, where ei is an SPJ query that is equivalent to qi, for each i ∈ [n].

Consider now an SPJU k-ary query e. We proceed to show that e can be
expressed as a UCQ. This is done in three main steps:

• First, we propagate union through other operations to become the outer-
most operation by applying the following simple rules:

σθ(e1 ∪ e2) σθ(e1) ∪ σθ(e2)

πα(e1 ∪ e2) πα(e1) ∪ πα(e2)

e1 × (e2 ∪ e3) (e1 × e2) ∪ (e1 × e3).
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By applying the above rules, we get an SPJU query

e′ = e1 ∪ · · · ∪ en

where ei is an SPJ query, for each i ∈ [n].

• Let ϕi(x
1
i , . . . , x

k
i ) be the CQ that is equivalent to the SPJ query ei, for

each i ∈ [n]; such a CQ always exists due to Theorem 13.7. Let

ϕ = ϕ1 ∨ · · · ∨ ϕn.

• We finally convert ϕ into an FO formula ψ such that ψ(z1, . . . , zk), where
z1, . . . , zk are distinct variables not occurring in ϕ, is an FOrel,var=[∧,∨,∃]
query that is equivalent to the query e′, and thus, to the query e. This
suffices to show our claim since, by Theorem 30.4, we get that ψ(z1, . . . , zk)
can be equivalently expressed as a UCQ.

Consider an arbitrary disjunct ϕi of ϕ. Let Pϕi = {P1, . . . , P`}, where
` ≤ k is the number of distinct variables occurring in (x1

i , . . . , x
k
i ), be the

partition of the set of integers [k] such that, for every j, j′ ∈ [k], j, j′ belong

to the same set of Pϕi if and only if xji = xj
′

i . For example, with k = 5
and (x1

i , . . . , x
5
i ) = (x, y, x, z, y), Pϕi = {{1, 3}, {2, 5}, {4}}. Let ψi be the

formula obtained from ϕi as follows: for every set {j1, . . . , jm} ∈ Pϕi ,

replace in ϕi the variable xj1i (note that xj1i = xj2i = · · · = xjmi ) with the
variable zj1 , and add as a conjunct the conjunction of equational atoms∧

j∈{j2,...,jm}

(zj1 = zj).

It is easy to verify that ψ(z1, . . . , zk) with

ψ = ψ1 ∨ · · · ∨ ψn

is an FOrel,var=[∧,∨,∃] query that is equivalent to e′, as needed. ut

The following is an immediate corollary of Theorems 30.3, 30.4 and 30.6.

Corollary 30.7

The language of FOrel[∧,∨,∃] (or even FOrel,var=[∧,∨,∃]) queries and
the language of SPJU queries are equally expressive.

It should be clear that the inability of SPJ queries to state base expressions
of the form {a} with a ∈ Const it is crucial for the validity of Theorem 30.6. In-
deed, the addition of such base expressions to the SPJU fragment of RA leads
to the strictly more expressive language of positive relational algebra (RA+)
queries. Interestingly, by providing a proof similar to that of Theorem 30.6,
we can show that adding base expressions of the form {a} with a ∈ Const to
SPJU corresponds to the addition of variable-constant equality to UCQs.
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Theorem 30.8

The language of UCQs with variable-constant equality and the language
of RA+ queries are equally expressive.

The following is an immediate corollary of Theorems 30.5 and 30.8 that
relates the languages of ∃FO+ queries and RA+ queries.

Corollary 30.9

The language of ∃FO+ queries and the language of RA+ queries are
equally expressive.

Note that the transformations described in the proofs of the above expres-
sive power results (in particular, in the proof of Theorem 30.6) can be costly.
For example, given an SPJU query of the form

(e1 ∪ e′1)× · · · × (en ∪ e′n)

where ei, e
′
i are SPJ queries, for each i ∈ [n], after propagating the union

during the first step of the transformation in the proof of Theorem 30.6, we
get an SPJU query that is the union of 2n SPJ queries. Therefore, even though
UCQs and SPJU queries are equally expressive, some problems related to them
will have different complexity (whenever the size of the query matters). The
same holds for UCQs with variable-constant equality and RA+ queries.

Preservation Under Homomorphisms

We have already seen that CQs are preserved under homomorphisms (Proposi-
tion 14.6). In other words, given a k-ary CQ q = ϕ(x̄) over a schema S, for ev-
ery two databases D and D′ of S, and tuples ā ∈ Dom(D)k and b̄ ∈ Dom(D′)k,

(D, ā)→Dom(ϕ) (D′, b̄) and ā ∈ q(D) implies b̄ ∈ q(D′).

It is not difficult to show that preservation under homomorphisms extends to
UCQs with variable-constant equality (and thus, to ∃FO+ queries).

Proposition 30.10

Every UCQ with variable-constant equality is preserved under homo-
morphisms.
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Proof. Let q = ϕ(x̄) be a k-ary UCQ with variable-constant equality over a
schema S. Assume that ϕ = ϕ1 ∨ · · · ∨ ϕn, and let qi be the query ϕi(x̄), for
each i ∈ [n]; note that these queries are not CQs since they use equational
atoms. Consider two databases D and D′ of S, and tuples ā ∈ Dom(D)k and
b̄ ∈ Dom(D′)k such that (D, ā) →Dom(ϕ) (D′, b̄) and ā ∈ q(D). Since q(D) =⋃n
i=1 qi(D), it is clear that ā ∈ qi(D) for some i ∈ [n]. By providing a proof

similar to that of Proposition 14.6, which shows that CQs are preserved under
homomorphisms, we can show that qi is preserved under homomorphisms.
Therefore, b̄ ∈ qi(D), which in turn implies that b̄ ∈ q(D), as needed. ut

It is far more remarkable, though, that the converse is true, that is, every
FO query that is preserved under homomorphisms can be expressed as a UCQ
with variable-constant equality.

Theorem 30.11

Consider an FO query q that is preserved under homomorphisms. There
exists a UCQ with variable-constant equality that is equivalent to q.

This is a deep result whose proof is beyond the scope of this book, but it is
very important and found many applications in the foundations of databases.
An immediate corollary of Proposition 30.10 and Theorem 30.11 is that:

Corollary 30.12

The language of UCQs with variable-constant equality and the language
of FO queries preserved under homomorphisms are equally expressive.

It is important to stress that many preservation results known in logic are
true on arbitrary (finite or infinite) structures, but fail on finite structures.
Preservation results of this kind can be transferred to the database setting
only for possibly infinite databases, but not for (finite) databases, which is of
course what is of interest to us. Remarkably, Theorem 30.11 is a rare exception
that holds in the case of (finite) databases.

Query Evaluation

A general rule of thumb is that whatever is true about the evaluation of CQs,
is true about the evaluation of their unions. We illustrate this by analyzing
the combined complexity of evaluating UCQs and acyclic UCQs; concerning
the data complexity, both problems are in DLogSpace due to Theorem 7.3.
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Evaluation of UCQs

We first concentrate on UCQ-Evaluation. Recall that this is the problem of
checking whether ā ∈ q(D) for a UCQ q, a database D, and a tuple ā over
Dom(D). We show that indeed UCQ-Evaluation has the same (combined) com-
plexity as CQ-Evaluation.

Theorem 30.13

UCQ-Evaluation is NP-complete.

Proof. It is clear that the NP-hardness is inherited from CQ-Evaluation, which
we know is NP-hard (Theorem 15.1). We proceed to show the upper bound.
Consider a UCQ q(x̄) of the form q1 ∪ · · · ∪ qn, a database D, and a tuple
ā ∈ Dom(D). By Theorem 14.2, for i ∈ [n], ā ∈ qi(D) if and only if (qi, x̄)→
(D, ā). Thus, we need to show that checking whether there exists an integer
i ∈ [n] and a homomorphism from (qi, x̄) to (D, ā) is in NP. This is done
by guessing an integer i ∈ [n] and a function h : Dom(Aqi) → Dom(D), and
then verifying that h is a homomorphism from (Aqi , x̄) to (D, ā), i.e., h is the
identity on Dom(Aqi)∩Const, R(ū) ∈ Aqi implies R(h(ū)) ∈ D, and h(x̄) = ā.
Since all the above steps are feasible in polynomial time, the claim follows. ut

It is not difficult to show, by providing a proof similar to that of Theo-
rem 30.13, that evaluating UCQs with variable-constant equality remains in
NP. What is more interesting is the fact that evaluating ∃FO+ queries, as well
as RA+ queries, is also in NP. We have seen that every ∃FO+ can be converted
into an equivalent UCQ with variable-constant equality (Theorem 30.5); the
same holds for RA+ queries (Theorem 30.8). However, the conversion can be
very costly; it may take, in general, exponential time. Therefore, knowing that
evaluating UCQs with variable-constant equality is in NP does not immedi-
ately imply that evaluating ∃FO+ and RA+ queries is also in NP. Hence, one
has to adopt a more refined procedure than simply converting the given ∃FO+

or RA+ query into a UCQ with variable-constant equality (see Exercise 4.1).

Evaluation of Acyclic UCQs

We now consider the problem of evaluating acyclic UCQs, that is, UCQs of
the form q1 ∪ · · · ∪ qn, where, for each i ∈ [n], the CQ qi is acyclic. Recall that
a CQ is acyclic if its associated hypergraph is acyclic (Definition 20.4). We
further know that acyclic CQs can be efficiently evaluated. More precisely,
by Theorem 21.3, checking whether ā ∈ q(D) for an acyclic CQ query q, a
database D, and a tuple ā over Dom(D) is feasible in time O(‖D‖ · log ‖D‖ ·
‖q‖). It is easy to show that the same holds for acyclic UCQs.
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Theorem 30.14

Consider an acyclic UCQ q, a database D, and a tuple ā over Dom(D).
Checking whether ā ∈ q(D) is feasible in time O(‖D‖ · log ‖D‖ · ‖q‖).

Proof. We need to check whether ā ∈
⋃n
i=1 qi(D). By Theorem 21.3, for every

i ∈ [n], checking whether ā ∈ qi(D) is feasible in time O(‖D‖ · log ‖D‖ · ‖qi‖).
This implies that checking whether ā ∈

⋃n
i=1 qi(D) can be done in time

O

(
||D|| · log ‖D‖ ·max

i∈[n]
{||qi||}

)
.

Since maxi∈[n]{||qi||} ≤ ||q||, the total time used is

O(‖D‖ · log ‖D‖ · ‖q‖)

and the claim follows. ut
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Static Analysis of Unions of Conjunctive
Queries

In this chapter, we study the containment and equivalence problems for unions
of conjunctive queries, as well as the task of minimizing such queries.

Containment and Equivalence

We first focus on UCQ-Containment, the problem of deciding whether a UCQ
q is contained in a UCQ q′, that is, whether q(D) ⊆ q′(D) for every database
D. We show that it has the same complexity as CQ-Containment. But first we
present a useful result that characterizes when q is contained in q′ in terms of
containment of the individual CQs occurring in q and q′.

Proposition 31.1

Consider two UCQs q = q1∪· · ·∪qn and q′ = q′1∪· · ·∪q′m. The following
are equivalent:

1. q ⊆ q′.
2. For every i ∈ [n], there exists j ∈ [m] such that qi ⊆ q′j .

Proof. For showing that (1) implies (2), consider an arbitrary integer i ∈ [n].
We proceed to show that there exists j ∈ [m] such that qi ⊆ q′j . Assume that
ā ∈ qi(D) for some database D and tuple ā over Dom(D). Thus, ā ∈ q(D),
and, by hypothesis, we get that ā ∈ q′(D). The latter implies that there exists
j ∈ [m] such that ā ∈ q′j(D), which shows that qi ⊆ q′j , as needed.

For showing that (2) implies (1), assume that ā ∈ q(D) for some database
D and tuple ā over Dom(D). Clearly, there exists i ∈ [n] such that ā ∈ qi(D).
By hypothesis, there exists j ∈ [m] such that qi ⊆ q′j , and thus, ā ∈ q′j(D). The
latter implies that ā ∈ q′(D), which in turn shows that q ⊆ q′, as needed. ut

We are now ready to pinpoint the complexity of UCQ-Containment.
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Theorem 31.2

UCQ-Containment is NP-complete.

Proof. It is clear that the NP-hardness is inherited from CQ-Containment,
which we know is NP-hard (Theorem 16.3). Consider now two UCQs q = q1∪
. . .∪qn and q′ = q′1∪· · ·∪q′m. We proceed to show that checking whether q ⊆ q′
is in NP. We assume that, for i ∈ [n] and j ∈ [m], the output tuple of qi and
q′j is x̄ and x̄′, respectively. By the Homomorphism Theorem (Theorem 16.4)
and Proposition 31.1, to check whether q ⊆ q′ it suffices to do the following:

• for each i ∈ [n], guess an integer ji ∈ [m], and a function h : Dom(Aq′ji
)→

Aqi , and

• for each i ∈ [n], verify that hi is a homomorphism from (q′ji , x̄
′) to (qi, x̄).

Since both steps are feasible in polynomial time, we conclude that deciding
whether q ⊆ q′ is in NP, and the claim follows. ut

An immediate corollary of Theorem 31.2 is that the equivalence problem
for UCQs, that is, given two UCQs q, q′, check whether q ≡ q′, is in NP since
it boils down to two containment checks: q ⊆ q′ and q′ ⊆ q. The NP-hardness
is inherited from CQ-Equivalence (Theorem 16.8).

Corollary 31.3

UCQ-Equivalence is NP-complete.

Recall that query evaluation remains NP-complete even if we consider
FOrel[∧,∨,∃] and SPJU queries (or even ∃FO+ and RA+ queries), despite the
fact that these languages allow us to express UCQs in a more succinct way.
However, this is not true in the case of containment, where we can show that
the complexity increases. We illustrate this for SPJU-Containment, that is, the
problem of deciding whether an SPJU query is contained in another SPJU
query. The treatment for FOrel[∧,∨,∃], and the more expressive languages
∃FO+ and RA+, is similar and is left as an exercise (see Exercise 4.3).

We proceed to show that SPJU-Containment is Πp
2 -complete. This essen-

tially tells us that, given two SPJU queries e and e′, the problem of deciding
whether e 6⊆ e′ is in Σp

2 = NPNP, i.e., it can be solved via a nondeterminisitc
algorithm that runs in polynomial time assuming that it has access to an
oracle that can solve any problem in NP. In other words, the complement of
SPJU-Containment is Σp

2 -complete.1 To show this we need some preparation.
We associate to an SPJU query e a set of SPJ queries, denoted SPJ(e).

This is done by induction on the structure of e; essentially, for every union

1 This is actually the first time in the book that we encounter the complexity classes
Σp

2 and Πp
2 , which contain NP. For further details see Appendix B.
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e1 ∪ e2 that occurs in e, we look at possible ways of resolving this union, i.e.,
choosing e1 or e2. The set SPJ(e) is formally defined as follows:

SPJ(e) =



{R} if e = R

{σθ(e′′) | e′′ ∈ SPJ(e′)} if e = σθ(e
′)

{πα(e′′) | e′′ ∈ SPJ(e′)} if e = πα(e′)

{e′1 × e′2 | e′1 ∈ SPJ(e1) and e′2 ∈ SPJ(e2)} if e = e1 × e2

SPJ(e1) ∪ SPJ(e2) if e = e1 ∪ e2.

The following is easily shown by structural induction.

Proposition 31.4

Consider an SPJU query e, and assume that SPJ(e) = {e1, . . . , en}. For
every i ∈ [n], ei is an SPJ query, and e ≡ e1 ∪ · · · ∪ en.

It is clear that Proposition 31.4 provides an algorithm for solving the prob-
lem SPJU-Containment: given two SPJU queries e1 and e2, compute the sets
SPJ(e1) and SPJ(e2), and then check whether, for every e′1 ∈ SPJ(e1), there
exists e′2 ∈ SPJ(e2) such that e′1 ⊆ e′2; the latter is essentially a containment
check among two CQs, since an SPJ query can be easily converted into a CQ,
which can be performed using the algorithm underlying Theorem 16.3. How-
ever, this is a very naive algorithm, which only shows that SPJU-Containment
is in ExpTime. Indeed, it explicitly constructs the sets SPJ(e1) and SPJ(e2),
which are in general of exponential size, and then performs exponentially
many containment checks among SPJ queries. To establish the desired Πp

2

upper bound, we need to rely on a refined version of the above algorithm.
The key observation towards such a refined procedure is that finding a

query e′ ∈ SPJ(e), for an SPJU query e, amounts to “resolving” each union in
e. In other words, having the parse tree Te of the expression e, for every union
node in Te, with two subtrees under it, we keep only one of those subtrees,
while the other one is replaced by ⊥. The obtained tree T ′e is essentially the
parse tree of an SPJ query from SPJ(e). Consider, for example, the query

e = (e1 ∪ e2)× (e3 ∪ (e4 ∪ e5)),

where e1, . . . , e5 are ∪-free. One way to resolve the union nodes in Te is

(e1 ∪ ⊥)× (e3 ∪ ⊥),

which leads to e1 × e3 ∈ SPJ(e). Another way is

(⊥ ∪ e2)× (⊥ ∪ (⊥ ∪ e5)),
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which leads to e2 × e3 ∈ SPJ(e). If union occurs k times in e, this gives us
2k expressions that can result from resolving those union nodes, as each one
gives us two choices. From the above discussion, it is clear that we can guess
a way to resolve the union nodes in Te in polynomial time, or, in other words,
we can guess an SPJ query from SPJ(e) in polynomial time. This fact allows
us to devise the refined procedure for SPJU-Containment.

Before doing this, we need to establish an intermediate complexity result,
which will be crucial in the complexity analysis of this refined procedure.
Furthermore, it illustrates the fact that restricting the language of the left-
hand side query in the containment check has an impact on the complexity.

Proposition 31.5

Consider an SPJ query e, and an SPJU query e′. The problem of deciding
whether e ⊆ e′ is in NP.

Proof. By Proposition 31.4, it suffices to show that the problem of checking
whether there exists an SPJ query e′′ ∈ SPJ(e′) such that e ⊆ e′′ is in NP.
This is done by guessing an SPJ query e′′ from SPJ(e′), and a mapping h :
Dom(Aqe′′ )→ Dom(Aqe), where qe(x̄) and qe′′(ȳ) are the CQs obtained after
converting e and e′′ into CQs, which is always possible due to Theorem 13.7,
and then verifying that h is a homomorphism from (qe′′ , ȳ) to (qe, x̄). The
correctness of this procedure is guaranteed by the Homomorphism Theorem
(Theorem 16.4). Since both steps are feasible in polynomial time (recall that
an SPJ query from SPJ(e) can be guessed in polynomial time), we conclude
that checking whether e ⊆ e′ is in NP, and the claim follows. ut

Proposition 31.5 essentially tells us that SPJU-Containment remains NP-
complete whenever the left-hand side query in the containment check does
not use union. However, as already mentioned, the complexity increases when
considering the problem in its general form without any assumptions.

Theorem 31.6

SPJU-Containment is Πp
2 -complete.

Proof. Consider two SPJU queries e and e′. We proceed to show that checking
whether e 6⊆ e′ is inΣp

2 = NPNP, which in turn implies that SPJU-Containment
is in Πp

2 . By Proposition 31.4, it suffices to show that the problem of checking
whether there exists an SPJ query ê ∈ SPJ(e) such that ê 6⊆ e′ is in NPNP.
This is done by simply guessing an SPJ query ê from SPJ(e), and verifying
that ê 6⊆ e′. It is clear that the “guess” step can be performed in polynomial
time. Concerning the “verify” step, by Proposition 31.5, it can be performed
in constant time assuming that we have access to an oracle that can solve any
problem in NP. In particular, the oracle takes as input the queries ê and e′,
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and does the following: if ê ⊆ e′, then return false; otherwise, return true.
Therefore, checking whether e 6⊆ e′ is in NPNP, as needed.

To prove the Πp
2 -hardness one can provide a polynomial-time reduction

from the problem ∀∃QSAT (Exercise 4.2). ut
An immediate corollary of Theorem 31.6 is that the equivalence problem

for SPJU queries, that is, given two SPJU queries e, e′, check whether e ≡ e′,
is in Πp

2 since it boils down to two containment checks: e ⊆ e′ and e′ ⊆ e. The
Πp

2 -hardness is shown via an easy reduction from SPJU-Containment. Given
two SPJU queries e, e′ of arity k, e ⊆ q′ iff π(1,...,k)(e onθ e′) ≡ e, where

θ = (1
.
= k + 1) ∧ (2

.
= k + 2) ∧ · · · ∧ (k

.
= 2k).

We therefore conclude that:

Corollary 31.7

SPJU-Equivalence is Πp
2 -complete.

Minimization

In Chapter 17, we studied the notion of minimization of CQs, which aims to
provide equivalent CQs that are also minimal. More precisely, given a CQ q
over a schema S, a CQ q′ over S is a minimization of q if q ≡ q′, and for
every CQ q′′ over S, q′ ≡ q′′ implies |Aq′ | ≤ |Aq′′ |. We have also seen how
the minimization of a CQ, which is unique (up to variable renaming), can be
computed by simply removing atoms from its body. We proceed to discuss
how the ideas developed around CQ minimization can be extended to UCQs.
We start by defining the notion of minimization for UCQs.

Definition 31.8: Minimization of UCQs

Consider a UCQ q = q1 ∪ · · · ∪ qn over a schema S. A UCQ q′ = q′1 ∪
· · · ∪ q′m, for m ≤ n, over S is a minimization of q if the following hold:

1. q ≡ q′,
2. for every i ∈ [m], and CQ p over S, q′i ≡ p implies |Aq′i | ≤ |Ap|, and

3. for every UCQ q′′ = q′′1 ∪ · · · ∪ q′′` , q′ ≡ q′′ implies m ≤ `.

In simple words, q′ is a minimization of q if it is equivalent to q, each CQ
of q′ has the smallest number of atoms among all the CQs that are equivalent
to it, and q′ has the smallest number of CQs among all the UCQs that are
equivalent to it. We proceed to show that minimizations of a UCQ q can be
found by simply removing atoms from the body of its CQs (i.e., by computing
a core of its CQs), as well as removing CQs from it. Moreover, although q may
have several minimizations, they are all the same (up to variable renaming).
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Minimization via Atom and CQ Removals

We start be defining the notion of core for UCQs, which is a generalization of
the notion of core for CQs given in Definition 17.2.

Definition 31.9: Core of a UCQ

Consider a UCQ q(x̄) = q1 ∪ · · · ∪ qn. A UCQ q′(x̄) = q′1 ∪ · · · ∪ q′m is a
core of q if the following hold:

1. m ≤ n, and there is a set of integers {i1, . . . , im} ⊆ [n] such that, for
every j ∈ [m], q′j is a core of qij ,

2. for every i ∈ [n], there exists j ∈ [m] such that qi ⊆ q′j , and

3. for every i ∈ [m], there is no j ∈ [m]− {i} such that q′i ⊆ q′j .

The first condition in Definition 31.9 states that q′ can be obtained from q
by eliminating some of its CQs, and then computing a core of the remaining
CQs, the second condition ensures that q ≡ q′, and the third condition states
that q′ is minimal with respect to the number of CQs occurring in it. We show
that the notion of core captures our intention of constructing a minimization.

Proposition 31.10

Every UCQ q has at least one core, and every core of q is a minimization
of q.

Proof. We first show that we can always construct a core of q. Assuming that
q = q1 ∪ · · · ∪ qn, we first replace qi with a core of it, for each i ∈ [n], which
we know always exists by Proposition 17.4, and get a UCQ q′ = q′i ∪ · · · ∪ q′n.
If q′ is a core of itself, then the claim follows. Assume now that this is not the
case. This means that condition (3) in the definition of core (Definition 31.9)
is violated, which in turn implies that there exists i ∈ [n] such that q′i ⊆ q′j
for some j ∈ [n]−{i}. If q′′ obtained from q′ by removing the CQ q′i is a core
of itself, then it is clear that q′′ is a core of q. Otherwise, we iteratively apply
the above argument until we reach a core of q.

We now proceed to show that a core of q(x̄) = q1∪· · ·∪qn is a minimization
of it. Towards a contradiction, assume that q′(x̄) = q′1 ∪ · · · ∪ q′m is a core of
q but not a minimization of q. This implies that one of the following holds:

1. there exists i ∈ [n] and a CQ p such that q′i ≡ p and |Ap| < |Aq′i |, or

2. there exists a UCQ q′′ = q′′1 ∪ · · · ∪ q′′` such that q′ ≡ q′′ and ` < m.

Assuming (1) holds, by Proposition 31.1, we can conclude that there exists
a CQ p′(x̄) such that (q′i, x̄) → (p′, x̄) and Ap′ ⊆ Aq′i . This contradicts our
hypothesis that q′ is a core of q.



31 Static Analysis of Unions of Conjunctive Queries 229

Algorithm 12 ComputeCoreUCQ(q)

Input: A UCQ q(x̄) = q1 ∪ . . . ∪ qn
Output: A UCQ q∗(x̄) that is a core of q(x̄)

1: Q := ∅
2: for i = 1 to n do
3: Q := Q ∪ {ComputeCore(qi)}
4: while there are distinct CQs q′, q′′ ∈ Q such that q′ ⊆ q′′ do
5: Q := Q− {q′}
6: return q∗ =

⋃
q′∈Q q

′

Assume now (2). Since q′ ⊆ q′′, by Proposition 31.1 we get that, for every
i ∈ [m], there exists j ∈ [`] such that q′i ⊆ q′′j . Since ` < m, we conclude
that there exists i, i′ ∈ [m], with i 6= i′, and j∗ ∈ [`] such that q′i ⊆ q′′j∗ and
q′i′ ⊆ q′′j∗ . Now, since q′′ ⊆ q′, by Proposition 31.1 we get that, for each j ∈ [`],
there exists i ∈ [m] such that q′′j ⊆ q′i. Therefore, there exists i∗ ∈ [m] such
that q′′j∗ ⊆ q′i∗ . This implies that q′i ⊆ q′i∗ and q′i′ ⊆ q′i∗ . Consequently, there
exist i ∈ [m] and j ∈ [m]− {i} such that q′i ⊆ q′j , which again contradicts our
hypothesis that q′ is a core of q, and the claim follows. ut

By Proposition 31.10, computing a minimization of a UCQ boils down to
computing a core of it. This can be done by applying the iterative procedure
ComputeCoreUCQ, given in Algorithm 12, which in turn relies on Com-
puteCore, given in Algorithm 4, that computes the core of a CQ. It is clear
that, for a UCQ q, ComputeCoreUCQ(q) terminates after finitely many
steps. It is also easy to verify that ComputeCoreUCQ is correct.

Lemma 31.11. Given a UCQ q, ComputeCoreUCQ(q) is a core of q.

Let is clarify that ComputeCoreUCQ is a nondeterministic algorithm
since the procedure ComputeCore is nondeterministic. Moreover, there may
be several CQs satisfying the condition of the while loop (in particular, there
may be several CQs that must be removed from the set Q), but we do not
specify how such a CQ is selected. Actually, the CQ q′ of Q that is even-
tually removed from Q at step 5 is chosen nondeterministically. Therefore,
the final result computed by the algorithm depends on the computation of
ComputeCore at step 3, as well as how the CQs to be removed from Q
are chosen at step 5. Consequently, different executions of ComputeCore(q)
may compute cores of q that are syntactically different. However, as we dis-
cuss next, different minimizations of a UCQ q are isomorphic, which in turn
implies, due to Proposition 31.10, that different cores of q are isomorphic.

Uniqueness of Minimization

We say that two UCQs q(x̄) = q1 ∪ · · · ∪ qn and q′(x̄′) = q′1 ∪ · · · ∪ q′m are
isomorphic if one can be turned into the other via renaming of variables, i.e.,
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there is a bijection δ : {q1, . . . , qn} → {q′1, . . . , q′m}, which means that n = m,
such that, for every i ∈ [n], qi and δ(qi) are isomorphic.

Proposition 31.12

Consider a UCQ q(x̄), and let q′(x̄′) and q′′(x̄′′) be minimizations of q.
Then q′ and q′′ are isomorphic.

Proof. Assume that q′ = q′1 ∪ · · · ∪ q′n and q′′ = q′′1 ∪ · · · ∪ q′′n. We need to show
that there is a bijection δ : {q′1, . . . , q′n} → {q′′1 , . . . , q′′n} such that, for every
i ∈ [n], q′i and δ(q′i) are isomorphic. We first show an auxiliary lemma:

Lemma 31.13. There is a bijection τ : [n] → [n] such that, for each i ∈ [n],
q′i ≡ q′′τ(i), and there is no integer j ∈ [n]− {τ(i)} such that q′i ≡ q′′j .

Proof. To prove the claim, it suffices to show that, for each i ∈ [n]:

1. there exists j ∈ [n] such that q′i ≡ q′′j , and

2. for each j, k ∈ [n], q′i ≡ q′′j and q′i ≡ q′′k implies j = k.

We first show claim (1). Since q and q′ are minimizations of q, we conclude
that q ≡ q′ and q ≡ q′′, and thus, q′ ≡ q′′. By Proposition 31.1, we get
that, for each i ∈ [n], there exists j ∈ [n] such that q′i ⊆ q′′j . But, again by
Proposition 31.1, there exists k ∈ [n] such that q′′j ⊆ q′k. Necessarily, q′i = q′k;
otherwise, q′ is equivalent to the UCQ obtained from q′ after eliminating q′i
(since q′i ⊆ q′k), which contradicts the fact that q′ is a minimization of q.

We now prove claim (2). Towards a contradiction, assume that there exists
i ∈ [n], and distinct integers j, k ∈ [n] such that q′i ≡ q′′j and q′i ≡ q′′k . This
implies that the UCQ obtained from q′′ after eliminating one of the CQs q′′j
or q′′k (since q′′j ≡ q′′k ) is equivalent to q′′, which contradicts the fact that q′′ is
a minimization of q. This completes the proof of Lemma 31.13. ut

Having the bijection τ : [n]→ [n] provided by Lemma 31.13, we define the
bijection δ : {q′1, . . . , q′n} → {q′′1 , . . . , q′′n} as follows: for i ∈ [n], δ(q′i) = q′′τ(i). It

remains to argue that, for every i ∈ [n], q′i and δ(q′i) are isomorphic. It is clear,
by the definition of τ , that q′i ≡ δ(q′i). Moreover, since q′, q′′ are minimizations
of q, we conclude that the CQs q′i and δ(q′i) are minimizations of some CQ
(for example, of q′i or δ(q′i)). Therefore, by Proposition 17.7, we get that q′i
and δ(q′i) are isomorphic, and the claim follows. ut

From Proposition 31.10, which tells us that a core of a UCQ q is a mini-
mization of q, and Proposition 31.12, we get the following corollary:
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Corollary 31.14

Consider a UCQ q, and let q′ and q′′ be cores of q. It holds that q′ and
q′′ are isomorphic.

Recall that different executions of the nondeterministic procedure Com-
puteCoreUCQ on some UCQ q, may compute cores of q that are syntacti-
cally different. However, Corollary 31.14 tells us that those cores differ only on
the names of their variables. In other words, cores of q computed by different
executions of ComputeCoreUCQ(q) are the same up to variable renaming.





32

Unions of Conjunctive Queries with
Inequalities

It is not difficult to show that UCQs, or even UCQs with variable constant-
equality that are equally expressive to ∃FO+ queries, are not powerful enough
for expressing simple queries that involve negation such as the query

q = ∃x∃y (Edge(x, y) ∧ ¬(x = y)),

which essentially asks whether a graph has an edge (v, u) that is not a loop,
i.e., v and u are different nodes. Observe that q is not preserved under homo-
morphisms: for D = {R(a, b)} and D′ = {R(c, c)}, we have that D →∅ D′,
but D |= q while D′ 6|= q. On the other hand, we know by Proposition 30.10
that UCQs (even with variable-constant equality) are preserved under homo-
morphisms, which immediately implies that q cannot be expressed as a UCQ
(even with variable-constant equality).

This raises the question whether we can add negation to UCQs without
increasing the complexity of query evaluation, and, more importantly, without
losing the decidability of containment and equivalence. Of course, by adding
arbitrary negation to UCQs, which essentially means that we add negation
to FOrel[∧,∨,∃] queries, we obtain a language for which query evaluation is
PSpace-hard, while containment and equivalence are undecidable. Indeed, the
PSpace-hardness proof of Theorem 7.1, as well as the undecidability proof
of Theorem 8.3, hold even for FOrel[∧,∨,∃] queries. On the other hand, there
are examples of languages obtained by adding a tamed negation to UCQs,
and still enjoy the good computational properties of UCQs. The best known
such example is the language of UCQs with inequality, that is, UCQs that can
also use expressions of the form ¬(v = u) as the query q given above. In this
chapter, we introduce the language of UCQs with inequality, and study the
main computational problems: evaluation and containment.
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Conjunctive Queries with Inequality

Before we introduce and study UCQs with inequality, it is important to study
and understand first CQs with inequalities. Note that in the rest of the chapter
we write v 6= u as an abbreviation for ¬(v = u).

Syntax of Conjunctive Queries with Inequality

We start with the syntax of conjunctive queries with inequalities.

Definition 32.1: Syntax of CQs with Inequality

A conjunctive query with inequality (CQ 6=) over a schema S is an FO
query ϕ(x̄) over S where ϕ is a formula of the form

∃ȳ
(
R1(ū1) ∧ · · · ∧Rn(ūn) ∧ v1 6= v′1 ∧ · · · ∧ vm 6= v′m

)
for n ≥ 1 and m ≥ 0, where

• for each i ∈ [n], Ri(ūi) is a relational atom, and ūi a tuple of con-
stants and variables mentioned in x̄ and ȳ, and

• for each i ∈ [m], vi is a variable mentioned in ūk for some k ∈ [n],
and v′i is a variable mentioned in ūk for some k ∈ [n] or a constant.

Note that the second item of the definition requires that each variable that
participates in at least one inequality appears also in at least one relational
atom. This is a common assumption in CQs with inequality that, as we discuss
below, allows us to show that homomorphisms provide an alternative way to
describe the evaluation of CQs with inequality in the same way as for CQs.

It is common to represent CQs with inequality via a rule-like syntax. In
particular, the CQ 6= ϕ(x̄) given in Definition 13.1 can be written as the rule

Answer(x̄) :– R1(ū1), . . . , Rn(ūn), v1 6= v′1, . . . , vm 6= v′m ,

where Answer is a relation name not in S, and its arity (under the singleton
schema {Answer}) is equal to the arity of q. The relational atom Answer(x̄)
that appears on the left of the :– symbol is the head of the rule, while the
expression that appears on the right of the :– symbol is the body of the rule.
In general, we use the rule-like syntax for CQs. Nevertheless, for convenience,
we will freely interpret a CQ as an FO query or as a rule.

Semantics of Conjunctive Queries with Inequality

Since a CQ6= is an FO query, the definition of its output on a database can be
inherited from Definition 3.6. More precisely, given a database D of a schema
S, and a k-ary CQ 6= q = ϕ(x̄) over S, where k ≥ 0, the output of q on D is
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q(D) = {ā ∈ Dom(D)k | D |= ϕ(ā)} .

Recall that every variable that occurs in an inequality of q it also occurs in a
relational atom of q. For this reason, the output of q only consists of tuples
of constants from Dom(D). It is easy to verify that if we drop this condition,
then the output may mention constants that occur in the query but not in
the database. Consider, for example, the FO query q = ϕ(x) with

ϕ = ∃x (R(x) ∧ x 6= y ∧ a 6= b),

where x, y are variables and a, b are constants, which is not a CQ with in-
equality since y does not occur in a relational atom. Clearly, for D = {R(a)},
q(D) = {(b)}, while the constant b does not belong to Dom(D).

As for plain CQs, there is a more intuitive (and equivalent) way of defining
the semantics of CQs with inequality when they are viewed as rules. The body
of a CQ6= q of the form Answer(x̄) :– body can be seen as a pattern that must
be matched with the database D via an assignment η that maps the variables
in q to Dom(D). For each such assignment η, if η applied to this pattern
produces only facts of D, and at the same time respects all the inequalities, it
means that the pattern matches with D via η, and the tuple η(x̄) is an output
of q on D. We proceed to formalize this informal description.

Consider a database D and a CQ6= q of the form

Answer(x̄) :– R1(ū1), . . . , Rn(ūn), v1 6= v′1, . . . , vm 6= v′m .

An assignment for q over D is a function η from the set of variables in q to
Dom(D). We say that η is consistent with D if

Ri(η(ūi)) ∈ D and η(vj) 6= η(v′j)

for each i ∈ [n] and j ∈ [m], where the fact Ri(η(ūi)) is obtained by replacing
each variable x in ūi with η(x), and leaving the constants in ūi untouched.
The consistency of η with D essentially means that the body of q matches
with D via η. We can now define what is the output of a CQ6= on a database.

Definition 32.2: Evaluation of CQs with Inequality

Given a database D of a schema S, and a CQ 6= q(x̄) over S, the output
of q on D is defined as the set of tuples

q(D) = {η(x̄) | η is an assignment for q over D consistent with D} .

It is an easy exercise to show that the semantics of CQ6= inherited from
the semantics of FO queries in Definition 3.6, and the semantics of CQs given
in Definition 32.2, are equivalent, i.e., for a CQ q = ϕ(x̄) and a database D,

{ā ∈ Dom(D)k | D |= ϕ(ā)} =

{η(x̄) | η is an assignment for q over D consistent with D} .
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Evaluation and Homomorphisms

We proceed to discuss how homomorphisms emerge in the context of CQs
with inequality. In particular, we show that they provide an alternative way
to describe the evaluation of CQs with inequality. Given a CQ6= q of the form

Answer(x̄) :– R1(ū1), . . . , Rn(ūn), v1 6= v′1, . . . , vm 6= v′m ,

we define the sets of relational atoms and inequalities

A+
q = {R1(ū1), . . . , Rn(ūn)} and A−q = {v1 6= v′1, . . . , vm 6= v′m},

respectively. As usual, Dom(A+
q ) collects all the variables and constants oc-

curring in the relational atoms of A+
q . We further write Dom(A−q ) for the set

of constants occurring in A−q . Notice that there may be constants in Dom(A−q )
that do not occur in Dom(A+

q ) since, according to Definition 32.1, only the
variables (not the constants) that occur in an inequality must also occur in a
relational atom. Having the above sets in place, we can naturally talk about
homomorphisms from CQs with inequality to databases.

Definition 32.3: Homomorphisms from CQ6= to Databases

Consider a CQ 6= q(x̄) over a schema S, and a database D of S. We say
that there is a homomorphism from q to D, written as q → D, if there
exists a function h : Dom(A+

q )∪Dom(A−q )→ Dom(D)∪Dom(A−q ) that
is a homomorphism from A+

q to D, is the identity on Dom(A−q ), and, for
every v 6= u ∈ A−q , h(v) 6= h(u). We say that there is a homomorphism
from (q, x̄) to (D, ā), written as (q, x̄)→ (D, ā), if h(x̄) = ā.

To define the output of a CQ 6= q(x̄) on a database D (see Definition 32.2),
we used the notion of assignment for q over D, which is a function from the
set of variables in q to Dom(D). The output of q on D consists of all the tuples
η(x̄), where η is an assignment for q over D that is consistent with D, i.e.,

Ri(η(ūi)) ∈ D and η(vj) 6= η(v′j)

for each i ∈ [n] and j ∈ [m]. Since, for i ∈ [n], Ri(η(ūi)) is the fact obtained
after replacing each variable x in ūi with η(x), and leaving the constants in
ūi untouched, such an assignment η corresponds to a function h : Dom(A+

q )∪
Dom(A−q )→ Dom(D)∪Dom(A−q ), which is the identity on the set of constants
occurring in q, such that R(h(ūi)) = R(η(ūi)). But, of course, this is the same
as saying that h is a homomorphism from q to D. Therefore, q(D) is the set
of all tuples h(x̄), where h is a homomorphism from q to D, i.e., the set of
all tuples ā over Dom(D) with (q, x̄) → (D, ā). This leads to an alternative
characterization of CQ6= evaluation in terms of homomorphisms.
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Theorem 32.4

For a database D of a schema S, and a CQ 6= q(x̄) of arity k ≥ 0 over S,

q(D) = {ā ∈ Dom(D)k | (q, x̄)→ (D, ā)}.

Unlike plain CQs, CQs with inequality are not preserved under homomor-
phisms. This has been already illustrated at the beginning of the chapter via
the CQ 6= Answer :– Edge(x, y), x 6= y, which asks for the existence of an edge
in a graph that is not a loop. On the other hand, we can easily show that CQs
with inequality remain monotone, i.e., given a CQ6= q over a schema S, and
two databases D and D′ of S, D ⊆ D′ implies q(D) ⊆ q(D′).

Proposition 32.5

Every CQ 6= is monotone.

Proof. Let q(x̄) be a CQ 6= over a schema S. Consider the databases D,D′ of
S such that D ⊆ D′, and assume that ā ∈ q(D). By Theorem 32.4, we get
that (q, x̄)→ (D, ā). Since D ⊆ D′, we immediately get that (q, x̄)→ (D′, ā),
and thus, again by Theorem 32.4, ā ∈ q(D′), as needed. ut

The fact that CQs with inequality are monotone allows us to clarify the ex-
pressiveness boundaries of CQ 6=. In particular, we can show that the negation
allowed in CQ6= is indeed quite restricted. Note that the following arguments
have been already used in Chapter 14 to show that CQs cannot express neg-
ative relational atoms and difference.

CQ6= cannot express negative relational atoms. The reason is because
such queries are not monotone. Consider, for example, the FO query

q = ¬P (a),

where a is a constant. If we take D = ∅ and D′ = {P (a)}, then D ⊆ D′

but D |= q while D′ 6|= q.

CQ6= cannot express difference. This is because difference is not mono-
tone. Consider, for example, the FO query

q = ∃x(P (x) ∧ ¬Q(x)).

For D = {P (a)} ⊆ D′ = {P (a), Q(a)}, we have that D |= q while D′ 6|= q.
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Query Evaluation

We now proceed to study the complexity of CQ 6=-Evaluation, that is, the prob-
lem of checking whether ā ∈ q(D) for a CQ 6= query q, a database D, and a
tuple ā over Dom(D). We actually show that it has the same (combined)
complexity as CQ-Equivalence; concerning the data complexity, it is clear that
CQ6=-Evaluation is in DLogSpace due to Theorem 7.3.

Theorem 32.6

CQ6=-Evaluation is NP-complete.

Proof. It is clear that the NP-hardness is inherited from CQ-Evaluation, which
we know is NP-hard (Theorem 15.1). We proceed to show the upper bound.
Consider a CQ 6= q(x̄), a database D, and a tuple ā ∈ Dom(D). By Theo-
rem 32.4, ā ∈ q(D) if and only if (q, x̄)→ (D, ā). Therefore, we need to show
that checking whether there exists a homomorphism from (q, x̄) to (D, ā) is
in NP. This is done by guessing a function h : Dom(A+

q ) ∪ Dom(A−q ) →
Dom(D)∪Dom(A−q ) that is the identity on constants, and then verifying that
(i) h is a homomorphism from (A+

q , x̄) to (D, ā), and (ii) for every v 6= u ∈ A−q ,
h(v) 6= h(u). Since both steps are feasible in polynomial time, we conclude
that checking whether (q, x̄)→ (D, ā) is in NP, and the claim follows. ut

Containment

We now focus on CQ6=-Containment, the problem of deciding whether a CQ 6=

is contained in another CQ 6=. We show that this problem is decidable, but its
complexity is higher than CQ-Containment, that is, Πp

2 -complete.
Recall that for CQs (without inequality) the building block underlying the

procedure for checking containment is the Homomorphism Theorem (Theo-
rem 16.4) that provides a useful characterization of containment in terms of
homomorphisms: given two CQs q(x̄) and q′(x̄), q ⊆ q′ iff (q′, x̄′)→ (q, x̄). It
is not difficult to see, however, that this is no longer true once inequalities are
allowed. This can be easily shown via a simple example.

Example 32.7: The Homomorphism Theorem Fails for CQ6=

Consider the (Boolean) queries

q = Answer :– Edge(x, y)

q′ = Answer :– Edge(x′, y′), x′ 6= y′.

It is clear that q′ → q, that is, there is a homomorphism h from A+
q′ to

Aq with h(x′) 6= h(y′), but q 6⊆ q′: for D = {R(a, a)}, D |= q but D 6|= q′.
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This should not be surprising since the existence of an edge in a graph
does immediately imply that there is a non-loop edge.

As the above example illustrates, the key reason why a result similar to the
Homomorphism Theorem fails for CQs with inequality is because homomor-
phisms do not compose. In other words, q′ → q and q → D does not allow us
to conclude that q′ → D by simply composing homomorphisms. Observe that
after composing h′, where h′(x′) = x and h′(y′) = y, which witnesses the fact
that q′ → q, with h, where h(x) = h(y) = a, which witnesses that q → D, we
get the function g with g(x′) = g(y′) = a that is not a homomorphism from
q′ to D since the inequality is not preserved. The above discussion indicates
that we need a version of the Homomorphism Theorem that somehow ensures
the following: no matter how the homomorphism h, which witnesses the fact
that q → D, looks like, h ◦ h′ is a homomorphism from q′ to D.

For a CQ (without inequality) q(x̄), and a CQ 6= q′(x̄′), we write (q′, x̄′)→
(q, x̄) for the fact that there exists a homomorphism from (Aq′ , x̄

′) to (Aq, x̄),
which in turn is defined in exactly the same way as the notion of homomor-
phism from a CQ6= to a database (see Definition 32.3).

Given a CQ6= q(x̄) of the form

Answer(x̄) :– R1(ū1), . . . , Rn(ūn), v1 6= v′1, . . . , vm 6= v′m ,

let Hq be the set of all functions h : Dom(A+
q ) ∪ Dom(A−q ) → Dom(A+

q ) ∪
Dom(A−q ) such that (i) h is the identity on constants, and (ii) for every v 6=
u ∈ A−q , h(v) 6= h(u). Intuitively, Hq collects all the possible ways that q can
be mapped to a database via a homomorphism. For a function h ∈ Hq, we
write h(q+) for the CQ (without inequality)

Answer(h(x̄)) :– R1(h(ū1)), . . . , Rn(h(ūn)) ,

i.e., the CQ obtained from q by eliminating the inequalities and then replacing
each term u with the term h(u). We are now ready to establish the version of
the Homomorphism Theorem for CQs with inequality.

Theorem 32.8

Let q(x̄) and q′(x̄′) be CQ 6=. The following are equivalent:

1. q ⊆ q′.
2. For each h ∈ Hq, (q′, x̄′)→ (h(q+), h(x̄)).

Proof. We first establish that (1) implies (2). Consider an arbitrary function
h ∈ Hq; for brevity, let p = h(q+). Note that p is a CQ without inequalities. By
definition of Hq, h is a homomorphism from (q, x̄) to (p, h(x̄)). Since GAp is a
bijective homomorphism from (p, h(x̄)) to (GAp(Ap),GAp(h(x̄))), we conclude
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that (GAp ∪µ) ◦h, where µ is the identity on the set of constants Dom(A−q′)−
Dom(Ap), is a homomorphism from (q, x̄) to (GAp(Ap),GAp(h(x̄))). By Theo-
rem 32.4, GAp(h(x̄)) ∈ q(GAp(Ap)). Since, by hypothesis, q ⊆ q′, we conclude
that GAp(h(x̄)) ∈ q′(GAp(Ap)). By applying again Theorem 32.4, we get that
there exists a homomorphism g from (q′, x̄′) to (GAp(Ap),GAp(h(x̄))). Since

GAp is a bijection, (G−1
Ap
∪µ′)◦g, where µ′ is the identity on the set of constants

Dom(A−q )−Dom(Ap), is a homomorphism from (q′, x̄′) to (p, h(x̄)).
We now proceed to show that (2) implies (1). Given a database D, assume

that ā ∈ q(D). By Theorem 32.4, there exists a homomorphism g from (q, x̄)
to (D, ā). Let h be a function from Dom(A+

q ) ∪Dom(A−q ) to itself such that

• h is the identity on constants,

• for every two variables x, y ∈ Dom(A+
q ), h(x) = h(y) iff g(x) = g(y), and

• for every variable x ∈ Dom(A+
q ), h(x) is a variable.

In simple words, h unifies the variables in q+ that are mapped by g to the
same constant of Dom(D). It is easy to verify that that such a function always
exists and belongs to Hq. It is also clear that (h(q+), h(x̄))→ (D, ā) witnessed
via a bijective homomorphism g′. Since h ∈ Hq, by hypothesis, there exists a
homomorphism h′ from (q′, x̄′) to (h(q+), h(x̄)). Since g′ is a bijection, we get
that (g′ ∪ µ) ◦ h′, where µ is the identity on the set of constants Dom(A−q′)−
Dom(Ah(q+)), is a homomorphism from (q′, x̄′) to (D, ā). By Theorem 32.4,
we get that ā ∈ q′(D), and the claim follows. ut

The next example illustrates how Theorem 32.8 is used in order to confirm
what has been discussed in Example 32.7.

Example 32.9: Application of Theorem 32.8

Consider again the CQs q and q′ given in Example 32.7, and recall that
q 6⊆ q′. This is confirmed by Theorem 32.8 since, for the function h ∈ Hq

with h(x) = h(y) = x, we can conclude that there is no homomorphism
from q′ to h(q). Indeed, the only way to map q′ to h(q) is via the function
g with g(x′) = g(y′) = x, which is not a homomorphism from q′ to h(q).

From Theorem 32.8, we immediately get a procedure for CQ6=-Containment:
given two CQs with inequality q(x̄) and q′(x̄′), return true if, for every func-
tion h ∈ Hq, (q′, x̄) → (h(q+), h(x̄)); otherwise, return false. However, this
naive approach only shows that CQ 6=-Containment is in ExpTime since Hq

consists, in general, of exponentially many functions, i.e., we need to perform
exponentially many homomorphism checks, while each one takes exponential
time. By providing a more clever procedure, we can establish the following.
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Theorem 32.10

CQ6=-Containment is Πp
2 -complete.

Proof. Consider two CQ6= q(x̄) and q′(x̄′). We proceed to show that checking
whether q 6⊆ q′ is in Σp

2 = NPNP, which in turn implies that CQ6=-Containment
is in Πp

2 . By Theorem 32.8, it suffices to show that the problem of checking
whether there exists a function h ∈ Hq such that there is no homomorphism

from (q′, x̄′) to (h(q+), h(x̄)) is in NPNP. This can be done by simply guessing a
function h from Hq, and the verifying that indeed there is no homomorphism
from (q′, x̄′) to (h(q+), h(x̄)). It is clear that the “guess” step is feasible in
polynomial time. Concerning the “verify” step, we first observe the following,
which can be easily shown via a simple guess-and-check algorithm:

Lemma 32.11. Given a CQ 6= q1(x̄1) and a CQ (without inequality) q2(x̄2),
the problem of deciding whether (q1, x̄1)→ (q2, x̄2) is in NP.

By Lemma 32.11, we conclude that the “verify” step can be performed in
constant time assuming we have access to an oracle that can solve any problem
in NP. In particular, the oracle takes as input the queries q′ and h(q+), and
does the following: if (q′, x̄′) → (h(q+), h(x̄)), then return false; otherwise,
return true. Therefore, checking whether q 6⊆ q′ is in NPNP, as needed.

For the Πp
2 -hardness of CQ 6=-Containment see Exercise 4.4. ut

With Theorem 32.10 in place, we can easily pinpoint the complexity of the
equivalence problem for CQ 6=: given two CQ 6= q and q′, check whether q ≡ q′,
i.e., whether q(D) = q′(D) for every database D. We show that:

Theorem 32.12

CQ6=-Equivalence is Πp
2 -complete.

Proof. For the upper bound, it suffices to observe that q ≡ q′ iff q ⊆ q′ and
q′ ⊆ q. This implies that CQ 6=-Equivalence is in Πp

2 since, by Theorem 32.10,
the problem of deciding whether q ⊆ q′ and q′ ⊆ q is in Πp

2 .
For the lower bound, we provide an easy reduction from CQ 6=-Containment

that is Πp
2 -hard (Theorem 32.10); in fact, this holds even for Boolean queries.

Given two Boolean CQ 6= q, q′, we can easily construct a CQ6= q∩ that computes
the intersection of q and q′, i.e., for every database D, q(D)∩ q′(D) = q∩(D),
by merging the bodies of q and q′; a similar construction has been already used
in the proof of Theorem 16.8 that deals with CQ-Equivalence. Since q ⊆ q′ iff
q ≡ q∩, we get that CQ 6=-Equivalence is Πp

2 -hard, and the claim follows. ut

Adding Union to CQ6=

We now proceed to add the union operator to CQs with inequality.
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Definition 32.13: Union of Conjunctive Queries with Inequality

A union of conjunctive queries with inequality (UCQ6=) over a schema S
is an FO query ϕ(x̄) over S where ϕ is a formula of the form

ϕ1 ∨ · · · ∨ ϕn

for n ≥ 1, where FV(ϕ) = FV(ϕi) and ϕi(x̄) is a CQ6=, for every i ∈ [n].

As for UCQs without inequality, for notational convenience, we denote a
UCQ 6= q = ϕ(x̄) with ϕ = ϕ1 ∨ · · · ∨ ϕn as q1 ∪ · · · ∪ qn, where qi is the CQ 6=

ϕi(x̄), for each i ∈ [n]. It is easy to verify that, given a database D of a schema
S, and a UCQ6= q = q1 ∪ · · · ∪ qn over S, q(D) = q1(D) ∪ · · · ∪ qn(D).

Example 32.14: Union of Conjunctive Queries with Inequality

Consider the relational schema from Example 3.2:

Person [ pid, pname, cid ]

Profession [ pid, prname ]

City [ cid, cname, country ]

The UCQ ϕ(y), where ϕ = ϕ1 ∨ ϕ2 with

ϕ1 = ∃x∃z
(
Person(x, y, z) ∧ Profession(x, ‘computer scientist’) ∧

City(z, w, ‘Greece’) ∧ w 6= ‘Athens’
)
.

and

ϕ2 = ∃x∃z
(
Person(x, y, z) ∧ Profession(x, ‘computer scientist’) ∧

City(z, w, ‘Chile’) ∧ w 6= ‘Santiago’
)
.

can be used to retrieve the list of names of computer scientists that were
born in Greece or Chile, but not in the capital city of the country.

Query Evaluation

We proceed with UCQ 6=-Evaluation, the problem of checking whether ā ∈ q(D)
for a UCQ 6= q, a database D, and a tuple ā over Dom(D). We show that it
has the same (combined) complexity as CQ6=-Evaluation; concerning the data
complexity, both problems are in DLogSpace due to Theorem 7.3.
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Theorem 32.15

UCQ 6=-Evaluation is NP-complete.

Proof. It is clear that the NP-hardness is inherited from CQ-Evaluation, which
we know is NP-hard (Theorem 15.1). We proceed to show the upper bound.
Consider a UCQ6= q(x̄) of the form q1 ∪ · · · ∪ qn, a database D, and a tuple
ā ∈ Dom(D). By Theorem 32.4, for i ∈ [n], ā ∈ qi(D) if and only if (qi, x̄)→
(D, ā). Thus, we need to show that checking whether there exists an integer
i ∈ [n] and a homomorphism from (qi, x̄) to (D, ā) is in NP. This is done
by guessing an integer i ∈ [n] and a function h : Dom(A+

qi) ∪ Dom(A−qi) →
Dom(D) ∪ Dom(A−qi), and then verifying that h is indeed a homomorphism
from (Aqi , x̄) to (D, ā), i.e., is a homomorphism from A+

qi to D, is the identity
on Dom(A−qi), for every v 6= u ∈ A−qi , h(v) 6= h(u), and h(x̄) = ā. Since all the
above steps are feasible in polynomial time, the claim follows. ut

Containment

We finally concentrate on UCQ 6=-Containment, the problem of deciding whether
a UCQ 6= q is contained in a UCQ6= q′, that is, whether q(D) ⊆ q′(D) for every
databaseD. We show that it has the same complexity as CQ6=-Containment. To
this ends, we first observe that Proposition 31.1 for UCQs (without inequal-
ity) holds also for UCQs with inequality. In fact, the proof of Proposition 31.1
only exploits the fact that, for a database D, and a UCQ q = q1 ∪ · · · ∪ qn,
q(D) =

⋃
i∈[n] qi(D). Since the latter property holds even for UCQs with

inequality, the very same proof shows the following.

Proposition 32.16

Consider two UCQ6= q = q1∪· · ·∪qn and q′ = q′1∪· · ·∪q′m. The following
are equivalent:

1. q ⊆ q′.
2. For every i ∈ [n], there exists j ∈ [m] such that qi ⊆ q′j .

We are now ready to pinpoint the complexity of UCQ 6=-Containment.

Theorem 32.17

UCQ 6=-Containment is Πp
2 -complete.

Proof. It is clear that the Πp
2 -hardness is inherited from CQ 6=-Containment,

which we know is Πp
2 -hard (Theorem 32.10). Consider now two UCQ 6= q =

q1∪ . . .∪ qn and q′ = q′1∪ · · ·∪ q′m. We proceed to show that checking whether
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q 6⊆ q′ is in Σp
2 = NPNP, which in turn implies that UCQ 6=-Containment is in

Πp
2 . We assume that, for i ∈ [n] and j ∈ [m], the output tuple of qi and q′j

is x̄ and x̄′, respectively. By Theorem 32.8 and Proposition 32.16, to check
whether q 6⊆ q′ it suffices to do the following:

• guess an i ∈ [n], and, for every j ∈ [m], guess a function hj ∈ Hqi , and

• for each j ∈ [m], verify that there is no homomorphism from (q′j , x̄
′) to

(hj(q
+
i ), hj(x̄)).

It is clear that the “guess” step is feasible in polynomial time. Moreover, by
Lemma 32.11, the “verify” step can be performed in polynomial time assuming
access to an oracle that can solve any problem in NP. In particular, for each
j ∈ [m], the oracle is called with input the queries q′j and hj(q

+
i ), and does the

following: if (q′j , x̄
′) → (hj(q

+
i ), hj(x̄)), then return false; otherwise, return

true. Therefore, deciding whether q 6⊆ q′ is in NPNP, as needed. ut

An immediate corollary of Theorem 32.17 is that the equivalence problem
for UCQs with inequality, that is, given two UCQ 6= q, q′, check whether q ≡ q′,
is in Πp

2 since it boils down to two containment checks: q ⊆ q′ and q′ ⊆ q.
The Πp

2 -hardness is inherited from CQ 6=-Equivalence (Theorem 32.12).

Corollary 32.18

UCQ 6=-Equivalence is Πp
2 -complete.
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The Limits of First-Order Queries

We have seen that the language of UCQs has the same expressive power as the
language of FOrel[∧,∨,∃] queries (Theorem 30.3), or even FOrel,var=[∧,∨,∃]
queries (Theorem 30.4). Adding variable-constant equality, i.e., allowing equa-
tional atoms of the form (x = a), where x is a variable and a a constant, to
the above languages, leads to the strictly more expressive language of ∃FO+

queries (Theorem 30.5). If we further add negation to ∃FO+ queries, we then
get the full power of FO queries, which is strictly more expressive than ∃FO+

queries. Indeed, universal quantification can be expressed by means of nega-
tion and existential quantification: ∀xϕ is equivalent to ¬∃x¬ϕ. In fact, prac-
tical languages, such as SQL, do not offer explicit universal quantification, but
instead express universal statements via negated existential statements.

We already know some interesting facts about the language of FO queries.
In terms of expressive power, it is equally expressive to the language of RA
queries (Theorem 6.1). This tells us that adding negation to ∃FO+ queries is
the same as extending RA+ queries with the difference operation, and allowing
inequalities in conditions. The problem of evaluating FO queries is PSpace-
complete in combined complexity (Theorem 7.1), and in DLogSpace in data
complexity (Theorem 7.3). On other hand, static analysis for FO queries,
unlike ∃FO+ queries or UCQ6=, is undecidable (Theorems 8.1 and 8.3).

We are now more interested in the limitations of FO queries, as they will
justify what practical languages need to add on top of the language of FO
queries. In this chapter, we present two fundamental inexpressibility results
concerning constant-free first-order queries:

• They cannot express nontrivial statements about cardinalities of sets (for
example, is the cardinality of a set even?).

• They cannot compare cardinalities of relations.

Let us stress that the results presented in this chapter do not hold for FO
queries with constants. This is discussed further in the comments for Part IV.
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An Easy Expressiveness Bound

We start by providing a rather preliminary result on the expressive power of
constant-free FO queries (Theorem 33.3), which in turn allows us to conclude
that such queries cannot express nontrivial statements about the cardinalities
of sets. Note that an FO sentence ϕ is called constant-free if it does not
mention any constants, that is, the set Dom(ϕ) is empty. We further call an
FO query ϕ(x̄) constant-free if ϕ is constant-free.

Let S = {R[1]}, i.e., is a schema consisting of a single unary relation name
R. Databases of S are essentially sets, i.e., they store the elements of a set R.
It is easy to see that two databases D and D′ of S with |D| = |D′| satisfy
exactly the same constant-free FO sentences over S, i.e., for every such FO
sentence ϕ over S, D |= ϕ iff D′ |= ϕ. This is because D and D′ are the same
up to renaming of constants. We can thus define for a sentence ϕ over S

µn(ϕ) =


1 if D |= ϕ, for every D ∈ Inst(S) with |D| = n

0 if D 6|= ϕ, for every D ∈ Inst(S) with |D| = n .

We can then show the following useful technical result:

Proposition 33.1

Consider a constant-free FO sentence ϕ over S = {R[1]}. There is k ∈ N
such that either µn(ϕ) = 1 for all n ≥ k, or µn(ϕ) = 0 for all n ≥ k.

To prove the above result we need a few basic notions and facts about first-
order logic. A (possibly infinite) set T of first-order sentences over a schema
S is called a first-order theory over S, or simply a theory over S. The notion
of satisfaction of an FO sentence by a database (see Definition 3.3) can be
naturally extended to possibly infinite databases. We call a possibly infinite
database of a schema S a model of a theory T over S if, for every sentence ϕ ∈
T , D |= ϕ. We further say that T is consistent if it has at least one model. We
know that a consistent theory T over S has always a countably infinite model
since S is finite and Const is countably infinite; the latter is a consequence of
a basic result in logic known as the Löwenheim-Skolem Theorem. A sentence
ϕ is a consequence of a theory T , written T |= ϕ, if every model of T satisfies
ϕ. We further know that if T |= ϕ, then there exists a finite subset T0 of T
such that T0 |= ϕ; this is known as the Compactness Theorem of first-order
logic. We are now ready to give the proof of Proposition 33.1.

Proof (of Proposition 33.1). Consider the theory T = {ψn | n ∈ N}, where

ψn = ∃x1 · · · ∃xn
∧

i,j∈[n] : i<j

¬(xi = xj),
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i.e., it states that there are n distinct elements. Clearly, T is consistent since
any possibly infinite database of S is a model of T . It is easy to show that:

Lemma 33.2. Either T |= ϕ or T |= ¬ϕ.

Proof. Notice that T |= ϕ and T |= ¬ϕ cannot be both true since in this case
there exists a possibly infinite database D of S such that D |= ϕ and D |= ¬ϕ,
which cannot be the case. Assume now that T 6|= ϕ and T 6|= ¬ϕ. This implies
that both theories T ∪ {ϕ} and T ∪ {¬ϕ} are consistent, and thus, they have
countably infinite models. Since there is only one countably infinite model, up
to isomorphism, we get a contradiction as it cannot satisfy both ϕ,¬ϕ. ut

We now proceed to show the claim by considering the two cases provided
by Lemma 33.2: either T |= ϕ or T |= ¬ϕ. Assume first that T |= ϕ. By the
Compactness Theorem, there exists a finite subset T0 of T such that T0 |= ϕ.
Let ψk be the sentence with the largest index k among the sentences of T0.
It is clear that ψk |= ϕ since ψk |= ψm whenever m ≤ k. Therefore, for every
database D of S with |D| ≥ k, D |= ϕ. This implies that µn(ϕ) = 1 for every
n ≥ k. Analogously, if T |= ¬ϕ, then we can show that there is k ∈ N such
that µn(ϕ) = 0 for every n ≥ k, and the claim follows. ut

We can use Proposition 33.1 to show that only simple properties of cardi-
nalities of sets can be expressed using constant-free FO queries. We proceed
to make this more precise. Given a set of integers C ⊆ N, let qC be a Boolean
query over the schema S = {R[1]} that asks whether the cardinality of the
input database is equal to an integer of C. In other words, for every database
D of S, D |= qC iff |D| ∈ C. Interestingly, we can precisely characterize when
qC is expressible as a constant-free FO query.

Theorem 33.3

Let C ⊆ N, and S be the schema {R[1]}. The following are equivalent:

1. There is a constant-free FO query q over S such that qC ≡ q.
2. Either C is a finite set, or N− C is a finite set.

Proof. We first prove that (1) implies (2). Since, by hypothesis, qC can be
expressed as a constant-free FO query, Proposition 33.1 implies that there is
an integer k ∈ N such that one of the following statements hold:

(i) For every D ∈ Inst(S) with |D| ≥ k, D |= qC .

(ii) For every D ∈ Inst(S) with |D| ≥ k, D 6|= qC .

Assuming that (i) holds, there are finitely many integers, let say i1, . . . , im, for
m ≥ 0, such that, given a database D′ of S with |D′| ∈ {i1, . . . , im}, D′ 6|= qC .
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This in turn implies that N−C is finite. Analogously, when (ii) holds, we can
show that C is finite, and statement (2) follows.

We now show that (2) implies (1). This is shown by constructing a Boolean
constant-free FO query q over S such that qC ≡ q. We first observe that, given
an integer k ∈ N, it is easy to construct an FO sentence ϕk over S that is
satisfied only by databases D over S with |D| = k; in particular, ϕk is

∃x1 · · · ∃xk

 k∧
i=1

R(xi) ∧
∧

i,j∈[k] : i<j

¬(xi = xj)

 ∧
∀x1 · · · ∀xk+1

k+1∧
i=1

R(xi)→
∨

i,j∈[k+1] : i<j

xi = xj

 ,

where the first conjunct states that |D| ≥ k, while the second conjunct states
that |D| ≤ k. By exploiting the fact that either C is finite, or N−C is finite,
the desired Boolean constant-free FO query q is defined as ϕ(), where

ϕ =


∨
i∈C ϕi if C is finite

¬
(∨

i∈N−C ϕi
)

if N− C is finite .

It is easy to verify that qC ≡ q, and the claim follows. ut

According to Theorem 33.3, it is impossible to check using a constant-free
FO query whether the cardinality of a set is even, or, more generally, whether
is divisible by some number n ∈ N. Such a query is of the form qC where C is
an infinite set, and thus, not expressible as a constant-free FO query.

Zero-One Law

Although Theorem 33.3 allows us to conclude that constant-free FO queries
cannot express nontrivial statements about the cardinalities of sets, it is not
powerful enough to tell us something about comparisons of cardinalities of re-
lations. We proceed to establish a stronger property of FO sentences than the
one established by Proposition 33.1 above, known as zero-one law, which will
allow us to derive inexpressibility results concerning cardinality comparisons.

We start by reformulating the definition of the function µn used above.
We assume that the values occurring in a database are integers in order to be
able to enumerate them. Then, for an FO sentence ϕ over a schema S, let

µn(ϕ) =
|{D ∈ Inst(S) | Dom(D) = [n] and D |= ϕ}|

|{D ∈ Inst(S) | Dom(D) = [n]}|
.

In simple words, µn(ϕ) is the proportion of databases of S with Dom(D) = [n]
that satisfy ϕ. Notice that this new definition of the function µn applies to
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arbitrary schemas, not only to those with a single unary relation. The intuition
behind the quantity µn(ϕ) can be described in purely probabilistic terms.
Consider the finite set of databases D of S with Dom(D) = [n]. Then µn(ϕ) is
the probability that a database one picks uniformly at random from this set
satisfies ϕ. Now, by taking the limit limn→∞ µn(ϕ), we essentially describe
the asymptotic behavior of the sequence (µi(ϕ))i>0; intuitively, it defines the
probability that a randomly picked database satisfies ϕ.

Definition 33.4: 0–1 Law

We say that an FO sentence ϕ over a schema S enjoys the 0–1 law if

lim
n→∞

µn(ϕ) ∈ {0, 1}.

Intuitively, if an FO sentence ϕ over a schema S enjoys the 0–1 law, then
it is either satisfied by almost all the databases of S, or violated by almost
all the databases of S. This is the case for constant-free FO sentences over a
schema with a single unary relation name. Observe that there exists only one
database D of S = {R[1]} with Dom(D) = [n]. Therefore, for a constant-free
FO sentence ϕ over S, Proposition 33.1 says that the sequence (µi(ϕ))i>0

eventually stabilizes, namely limn→∞ µn(ϕ) ∈ {0, 1}. Interestingly, this can
be shown for every constant-free FO sentence over an arbitrary schema.

Before showing this, let us stress that not all logical sentences enjoy the 0–1
law. There are, for example, FO sentences that mention constants that do not
enjoy the 0–1 law; this is discussed further in the comments for Part IV. An-
other example is the sentence ϕeven, expressed in a logical formalism that goes
beyond first-order logic,1 that checks whether the cardinality of a database of
the schema S = {R[1]} is even, i.e., for every database D of S, D |= ϕeven iff
|D| is even. Thus, µn(ϕeven) is 1 when n is even, and 0 when n is odd, which
means that the limit limn→∞ µn(ϕ) does not even exist.

Theorem 33.5: 0–1 Law

Every constant-free FO sentence enjoys the 0–1 law.

Proof. We shall not prove the result in its full generality, but instead consider
the special case of constant-free FO sentences over a schema S with two unary
relation names, i.e., S = {R[1], S[1]}.2 This special case builds on the proof
of Proposition 33.1, illustrates key elements in the proof of the 0–1 law, and
allows us to derive corollaries about cardinality comparisons.

1 The sentence ϕeven can actually be expressed using second-order logic that extends
first-order logic by allowing quantification over sets of domain elements.

2 Ideas on how to extend the proof to graphs, i.e., to schemas with a single binary
relation name, are explained in Exercise 4.12.



250 33 The Limits of First-Order Queries

The key elements are the same as in the general proof of the 0–1 law, and
are summarized in the next technical lemma:

Lemma 33.6. There exists a first-order theory T over S such that:

1. limn→∞ µn(ψ) = 1 for each ψ ∈ T , and

2. T has a unique, up to isomorphism, countably infinite model.

Before we give the proof of the lemma, let us explain how it can be used to
show that every constant-free FO sentence enjoys the 0–1 law. Let T be the
theory provided by Lemma 33.6. Condition (2) of the lemma, and the same
argument as in the proof of Lemma 33.2, show that for every constant-free
FO sentence ϕ, either T |= ϕ or T |= ¬ϕ. Consider now a constant-free FO
sentence ϕ over S. We proceed by case analysis:

• Assume that T |= ϕ. By the Compactness Theorem, ϕ is a consequence of
a finite subset {ψ1, . . . , ψm} of sentences of T . Since limn→∞ µn(ψi) = 1
for each i ∈ [m], we get that limn→∞ µn(

∧m
i=1 ψi) = 1. Therefore, we have

that limn→∞ µn(ϕ) = 1 since µn(ϕ) ≥ µn(
∧m
i=1 ψi).

• Assume now that T |= ¬ϕ. We apply the same argument to ¬ϕ, and
conclude that limn→∞ µn(¬ϕ) = 1, which implies that limn→∞ µn(ϕ) = 0.

Hence, limn→∞ µn(ϕ) ∈ {0, 1}. We proceed with the proof of Lemma 33.6.

Proof (of Lemma 33.6). We construct a theory T over S, and then show that
satisfies the conditions (1) and (2). For each k ∈ N, T contains the sentences

ψk(RS) = ∃x1 · · · ∃xn

 ∧
i,j∈[n] : i<j

¬(xi = xj) ∧
∧
i∈[n]

(R(xi) ∧ S(xi))

 ,

which states that, for a database D, RD ∩ SD has at least k elements,

ψk(RS̄) = ∃x1 · · · ∃xn

 ∧
i,j∈[n] : i<j

¬(xi = xj) ∧
∧
i∈[n]

(R(xi) ∧ ¬S(xi))

 ,

which states that RD − SD has at least k elements, and

ψk(R̄S) = ∃x1 · · · ∃xn

 ∧
i,j∈[n] : i<j

¬(xi = xj) ∧
∧
i∈[n]

(¬R(xi) ∧ S(xi))

 ,

which states that SD −RD has at least k elements.
We first observe that the theory T is consistent. Indeed, it has a countably

infinite model D such that RD∪SD = N (recall the assumption that the values
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occurring in a database are integers), and RD ∩ SD, RD − SD, and SD −RD
are countably infinite; for example, we can take RD = {3n, 3n+1 | n ∈ N} and
SD = {3n, 3n + 2 | n ∈ N}. Notice that any two such infinite databases are
isomorphic, and thus, up to isomorphism, T has only one countably infinite
model, satisfying condition (2) of Lemma 33.6.

We now prove that T satisfies the first condition. We show that, for each
integer k ∈ N, the sentences ψk(RS), ψk(RS̄), and ψk(R̄S) are true in almost
all databases of S. We do this as an illustration for the sentence ψk(RS). To
this end, we consider its negation stating that, for a database D, |RD ∩SD| <
k. We first provide an upper bound for µn(¬ψk(RS)):

• The numerator of µn(¬ψk(RS)) coincides with the number of different
ways that we can choose two sets R and S from [n] such that R∪S = [n]
and |R∩S| < k. For each j < k, we have

(
n
j

)
ways to choose an intersection

R ∩ S of cardinality less than k. Then we need to choose the elements of
R−S from the remaining n−j elements, and there are 2n−j ways of doing
so. The remaining elements must belong to S−R since R∪S = [n]. Thus,
there are

(
n
j

)
· 2n−j ways to choose two sets from [n] whose intersection

has exactly j elements, and whose union contains all the elements of [n].
This means that there are at most∑

j∈[0,k−1]

(
n

j

)
· 2n−j ≤ nk · 2n

ways of choosing two sets whose intersection has cardinality less than k.

• The denominator of µn(¬ψk(RS)) coincides with the number of ways to
choose two sets R and S from [n] such that R ∪ S = [n]. There are 3n

ways of doing so since, for each element of [n], there are 3 possibilities: it
can either belong to R ∩ S, or R− S, or S −R.

From the above analysis, we conclude that

µn(¬ψk(RS)) ≤ nk
(

2

3

)n
which means limn→∞ µn(¬ψk(RS)) = 0, and therefore

lim
n→∞

µn(ψk(RS)) = 1.

The proof for ψk(RS̄) and ψk(S̄R) are very similar. This shows that T satisfies
both conditions (1) and (2), and concludes the proof of Lemma 33.6. ut

This completes the proof of Theorem 33.5. ut

Theorem 33.5 allows us to establish inexpressibility results concerning car-
dinality comparisons. For � ∈ {<,≤,=}, let q� be a Boolean query over the
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schema S = {R[1], S[1]} that compares the cardinalities of the relations RD

and SD for a database D according to the comparison �. In other words, for
every database D of S, the query q� is true in D iff the comparison |RD|�|SD|
is true. We now show via a 0–1 law argument that none of the comparisons
|R| = |S|, or |R| < |S|, or |R| ≤ |S|, is expressible as a constant-free FO query.

Theorem 33.7

Let S = {R[1], S[1]}. For every � ∈ {<,≤,=}, there is no constant-free
FO query q over S such that q� ≡ q.

Proof. We prove the result for the case of q< via a 0–1 law argument; a very
similar argument works for q≤. The case of q= can be also shown via a 0–1
law argument, and is left as an exercise (see Exercise 4.9).

Let F=
n be the number of all databases D of S such that Dom(D) = [n] and

|RD| = |SD|; we define F<n and F>n likewise. From the proof of Theorem 33.5
we know that F=

n + F<n + F>n = 3n. Moreover, by symmetry, F<n = F>n , and
thus, F=

n + 2F<n = 3n. We first estimate the value F=
n . To have a database D

in which |RD| = |SD|, for every k ≤ bn/2c, we can pick k elements to belong
to RD − SD, from the remaining n − k elements we can pick k elements to
belong to SD −RD, and the remaining ones belong to RD ∩ SD. Hence

F=
n =

∑
k≤bn/2c

(
n

k

)(
n− k
k

)

and one can show (Exercise 4.11) that

lim
n→∞

F=
n

3n
= 0.

Assume now that there is a constant-free FO query q = ϕ() such q< ≡ q,
i.e., q expresses the condition |RD| < |SD|. Then

lim
n→∞

µn(ϕ) = lim
n→∞

F<n
3n

= lim
n→∞

3n − F=
n

2 · 3n
=

1

2
− lim
n→∞

F=
n

2 · 3n
=

1

2

which contradicts the 0–1 law, and the claim follows. ut



34

Adding Aggregates and Grouping

When the core of SQL was presented in Chapter 5, a commonly used feature of
it was omitted, namely aggregation. It is typically used together with grouping
to apply numerical functions to entire columns of a relation. Recall that one
of the relation names in the schema that we usually use in examples is

City [ cid, cname, country ]

If we want to know how many cities each country has, we can write in SQL

SELECT country, COUNT(cid) AS city_count

FROM City

GROUP BY country

For each value of the country attribute, it groups together all the tuples having
this value, and then counts the number of occurrences of cid in such a group
and outputs it as the value of the new attribute city count. Here, COUNT is an
aggregate function: it applies to a collection, and produces a single numerical
value. The standard aggregates of SQL, in addition to COUNT, are SUM and AVG

that compute the sum and the average of a collection of numbers, as well as
MIN and MAX that compute the minimum and the maximum.

Queries with aggregates are extremely common and useful in practice; for
example, “find the average grade for each class” or “find the total cost of
products sold to each country”. The addition of aggregate functions, however,
takes us out of the realm of FO and RA queries. Indeed, by Theorem 33.7,
we know that cardinality comparisons are not expressible via FO queries.
However, they are easily expressible with the help of aggregate functions:

SELECT DISTINCT 1 FROM R, S

WHERE (SELECT COUNT(*) FROM R) > (SELECT COUNT(*) FROM S)

outputs 1 if |R| > |S|, and nothing otherwise.
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In this chapter, we introduce a query language with aggregates and group-
ing based on RA. Of course one can also define a logical language with aggre-
gates, but this is cumbersome for the reasons that are explained below. Note
that in Chapter 35, we analyze queries that cannot be expressed even if we
have the powerful features of aggregates and grouping. Let us now discuss the
technical issues that arise due to aggregates:

Numerical Attributes. So far we assumed that database elements come
from a countably infinite set Const of values. With the addition of aggre-
gates, however, we can no longer make this assumption, as we need to
distinguish attributes that are numerical. For example, we can only apply
AVG over numbers. Thus, in the description of relational schemas, it is no
longer sufficient to simply state what the arity of each relation name is. In
addition, we need to provide information about attributes that are numer-
ical. The standard approach for solving this technical issue is to consider
two-sorted schemas: there will be columns populated by the usual values
from Const, and columns populated by values from a numerical domain
Num; e.g., the natural numbers N, or the integers Z, or the rationals Q.

Infinite Numerical Domains. The second issue manifests itself when we
deal with logical languages for aggregates. In Chapter 3, we defined the
satisfaction of a logical formula over the active domain of the database and
the formula (recall that Definition 3.3 defines the active domain seman-
tics of first-order logic). However, aggregates can produce new numerical
values that do not occur in the active domain. Therefore, the satisfaction
of formulae must be defined with respect to the entire infinite numeri-
cal domain Num. This leads to the situation where a logical formula ϕ
may be satisfied by an infinite number of assignments of values to its free
variables, and thus, the expression ϕ(x̄), for some tuple x̄ over the free
variables of ϕ, may not define a query since its output on a database may
be infinite. Although we can define a logical language with aggregates
that does not exhibit this problem, its syntax is cumbersome. Therefore,
we present the language with aggregates and grouping at the level of re-
lational algebra, where the above problem does not arise. We present an
extension of first-order logic with aggregates in Chapter 35 that uses a
relatively simple syntax, and show that RA with aggregates and grouping
translates to it. However, this logical language will not serve as the basis
for defining a query language with aggregates, but rather as a technical
tool for analyzing the expressive power of aggregates.

Two-Sorted Schemas, Databases and Queries

We first revisit the notions of database schema, database instance, and query
in order to take into account the fact that relations can now have both ordi-
nary and numerical values. These are actually straightforward adaptations of
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the definitions given in Chapter 2, but, for the sake of completeness and read-
ability, we proceed to properly introduce those notions. As usual, for technical
clarity, we adopt the unnamed perspective.

Each relation name R in a schema should come not simply with its arity k,
but rather with a tuple τ of arity k over {o, n}, where o indicates a column of
ordinary type taking values from Const, and n indicates a column of numerical
type taking values from a set of numerical values Num. The formal definition
of two-sorted database schemas follows.

Definition 34.1: Two-Sorted Database Schema

An two-sorted (database) schema is a partial function

S : Rel→ {o, n}k

for k ∈ N such that Dom(S) is finite. For a relation name R ∈ Dom(S),
the arity of R under S, denoted arS(R), is defined as k.

In order to avoid heavy notation, we write ar(R) instead of arS(R) for the
arity of R under S. We may even write R : τ to indicate that S(R) = τ . As
for plain schemas, a two-sorted schema can be naturally seen as a finite set of
relation names. We may also write S = {R1 : τ1, . . . , Rn : τn} for the fact
that Dom(S) = {R1, . . . , Rn} and S(Ri) = τi for each i ∈ [n].

The elements of database tuples are coming from the set of values Const,
and the set of numerical values Num, namely a two-sorted database tuple is an
element of (Const∪Num)k for some k ∈ N. A two-sorted relation instance is a
finite set S of two-sorted database tuples of the same arity k. We say that k
is the arity of S, denoted by ar(S). By tsRI (for two-sorted relation instances)
we denote the set of all such relation instances. The formal definition of a
database instance of a two-sorted schema follows.

Definition 34.2: Two-Sorted Database Instance

A database instance D of a two-sorted schema S is a function

D : Dom(S)→ tsRI

such that, for every R ∈ Dom(S), the following hold:

• ar(D(R)) = arS(R), and

• with S(R) = (τ1, . . . , τk) and D(R) = (a1, . . . , ak), ai ∈ Const if
τi = o, and ai ∈ Num if τi = n, for every i ∈ [k].

We will refer to a database instance of a two sorted schema as a two-sorted
database, or simply database whenever is clear that the underlying schema is
two-sorted. The active domain (or simply domain) of a two-sorted database
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D is defined in the same way as the active domain of a plain database given in
Chapter 2, and is denoted Dom(D); we will never use the term domain, and
the notation Dom(D), to refer to the domain of the function D, i.e., Dom(S).
A two-sorted database can be naturally seen as a finite set of facts.

We can now naturally define two-sorted queries as functions that map two-
sorted databases to finite sets of tuples of the same type over Const ∪ Num.
For a two-sorted schema S, we write Inst(S) for the set of all databases of S.

Definition 34.3: Two-Sorted Queries

Consider a two-sorted database schema S. A query of type (τ1, . . . , τk) ∈
{o, n}k, for k ≥ 0, over S is a function of the form

q : Inst(S)→ Pfin((Const ∪ Num)k)

such that, for every D ∈ Inst(S) with q(D) = (a1, . . . , ak), ai ∈ Const if
τi = o, and ai ∈ Num if τi = n, for every i ∈ [k].

Regarding the numerical domain Num, we assume that it comes with:

• (Numerical) predicates: a predicate P or arity k > 0 over Num is a subset
of Numk. For brevity, we say that P (a1, . . . , ak) holds if (a1, . . . , ak) ∈ P .
Examples of binary predicates are = and <.

• (Numerical) functions: a function of arity k > 0 over Num is a function of
the form f : Numk → Num. Examples of binary functions are + and ×.

• Aggregate functions or aggregates: an aggregate F over Num is a function
that maps bags (or multisets) of elements of Num to Num. In a bag, unlike
a set, an element can appear multiple times; e.g., {|1, 1, 2, 4|} is a bag that
has two occurrences of 1, and one occurrence of 2 and 4. We shall use the
brackets {| |} to distinguish bags from sets.

Let us stress that aggregates must be applied to bags rather than sets since
values in databases can repeat. Here is a simple example that illustrates this.

Example 34.4: Aggregates over Bags

Consider the two-sorted database

D = {R(a, 1), R(b, 1), R(c, 2), R(d, 4)}.

It is clear that the second column of RD is the bag

{|1, 1, 2, 4|}.

Assume now that we are interested in computing the average of the nu-
merical values occurring in the second column of RD. Applying the aver-
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age aggregate to {|1, 1, 2, 4|} will correctly produce the value 2. However,
if we apply it to the set {1, 2, 4}, we get an incorrect value 2.333 · · · .

Syntax of RA with Aggregates and Grouping

Assuming a set Ω of predicates, functions, and aggregates over the numerical
domain Num, we are going to define relational algebra with aggregates and
grouping, denoted RAAggr(Ω). Its expressions, unlike expressions of RA, will
be typed. The type of an expression is again a tuple over {o, n} indicating which
attributes of the output are ordinary and which are numerical. In addition to
the usual operations, we add the operations of selection based on numerical
predicates, applying functions, and applying aggregates.

Before giving the formal definition of RAAggr(Ω), we first need to introduce
some auxiliary notions. For a tuple τ = (τ1, . . . , τk) ∈ {o, n}k, where k ∈ N,
we inductively define (Ω, τ )-terms, and their associated types, as follows:

• Every a ∈ Const is an (Ω, τ )-term of type o.

• Every integer i ∈ [k] is an (Ω, τ )-term of type τi.

• If f is an m-ary numerical function from Ω, and t1, . . . , tm are (Ω, τ )-
terms of type n, then f(t1, . . . , tm) is an (Ω, τ )-term of type n.

We write τ(t) for the type of an (Ω, τ )-term t, and Var(t) for the set of all
integers that appear in t. An (Ω, τ )-condition θ is a Boolean combination of
statements of the form i

.
= j and i 6 .= j, for i, j ∈ [k], and P (i1, . . . , im), where

i1, . . . , im ∈ [k] and P is an m-ary predicate from Ω.

Definition 34.5: Syntax of RA with Aggregates and Grouping

Consider a set Ω of predicates, functions, and aggregates over Num. We
inductively define RAAggr(Ω) expressions over a two-sorted schema S,
and their associated types, as follows:

Base Expression. If R : τ belongs to S, then R is an RAAggr(Ω) ex-
pression over S of type τ .

Selection. If e is an RAAggr(Ω) expression over S of type τ , and θ is
an (Ω, τ )-condition, then σθ(e) is an RAAggr(Ω) expression over S of
type τ .

Projection. If e is an RAAggr(Ω) expression of type τ = (τ1, . . . , τk), for
k ≥ 0, and α = (t1, . . . , tm), for m ≥ 0, is a list of (Ω, τ )-terms, then
πα(e) is an RAAggr(Ω) expression over S of type (τ(t1), . . . , τ(tm)).

Cartesian Product. If e1, e2 are RAAggr(Ω) expressions over S of type
(τ1, . . . , τk) and (τ ′1, . . . , τ

′
m), for k,m ≥ 0, respectively, then (e1×e2)

is an RAAggr(Ω) expression over S of type (τ1, . . . , τk, τ
′
1, . . . , τ

′
m).
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Aggregation and Grouping. If e is an RAAggr(Ω) expression over S
of type τ = (τ1, . . . , τk), for k ≥ 0, α = (i1, . . . , im), for m ≥ 0, is a
list of integers from [k], and t1, . . . , t`, for ` ≥ 0, are (Ω, τ )-terms of
type n such that Var(ti) ∩ {i1, . . . , im} = ∅, for each i ∈ [`], then

Aggrα[F1(t1), . . . ,F`(t`)](e)

where F1, . . . ,F` are aggregates from Ω, is an RAAggr(Ω) expression
over S of type (τi1 , . . . , τim , n, . . . , n) with n repeated ` times.

Union. If e1, e2 are RAAggr(Ω) expressions over S of type τ , then (e1 ∪
e2) is an RAAggr(Ω) expression over S of type τ .

Difference. If e1, e2 are RAAggr(Ω) expressions over S of type τ , then
(e1 − e2) is an RAAggr(Ω) expression over S of type τ .

Concerning the base expression in Definition 34.5, observe the difference
with the definition of RA (Definition 4.1). In particular, in ordinary RA we
have base expressions {a} of arity 1, where a ∈ Const. Thus, one would expect
in Definition 34.5 base expressions of the form {a} of type o. However, such
base expressions would be redundant since every element of Const is a term,
and thus, are expressed via expressions of the form π(a)(R) of type o.

Semantics of RA with Aggregates and Grouping

The semantics of the standard relational algebra operations is the same as it
was presented in Chapter 4. For numerical selection conditions, P (i1, . . . , im)
is true in a tuple (a1, . . . , ak) iff i1, . . . , im correspond to columns of type n
and P (ai1 , . . . , aim) holds. For example, <(1, 3) is true in a tuple (a1, a2, a3)
iff the first and the third components are numerical and a1 < a3.

It remains to explain the new generalized projection, and aggregation with
grouping. We first provide informal explanations by means of SQL examples.

Example 34.6: Generalized Projection

Projection allows us compute functions on attributes and output them.
For example, for R[A,B,C] with (R,A)l(R,B)l(R,C), the SQL query

SELECT R.A+R.C, R.B*R.C

FROM R

is translated into the RAAggr(Ω) expression of type (n, n)

π(add(1,3),mult(2,3))(R)

assuming that Ω contains the binary functions add and mult such that
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add(x, y) = x+ y and mult(x, y) = x · y.

Grouping and aggregation can also be explained intuitively by using SQL
queries. In particular, Aggr(i1,...,im)[F1(t1), . . . ,F`(t`)](R) corresponds to

SELECT i1, . . . , im,F1(t1), . . . ,F`(t`)
FROM R

GROUP BY i1, . . . , im

assuming that the attributes of R are 1, . . . , k.

Example 34.7: Aggregation and Grouping

For a ternary relation R, the evaluation of

Aggr(1)[SUM(mult(2, 3))](R)

is illustrated below:

a 4 5
a 5 4
b 6 7
b 7 6

→ (GROUP BY)

a
4 5
5 4

b
6 7
7 6

→ (mult)

a
20
20

b
42
42

→ (SUM)
a 40
b 84

The GROUP BY clause does the grouping relative to the first attribute,
keeping duplicates if necessary. Then, the term values are computed,
again preserving duplicates; for example, for both tuples (4, 5) and (5, 4),
the result of the multiplication is 20, and thus two copies are kept. Fi-
nally, the aggregate sums up the values of those terms.

We now formally define the semantics of generalized projection, and ag-
gregation with grouping. We first need some auxiliary notions. Consider an
(Ω, τ )-term t, where τ = (τ1, . . . , τk) ∈ {o, n}k. A tuple ā = (a1, . . . , an) ∈
(Const∪Num)n, for n ≥ k, is compatible with t if, for every i ∈ Var(t), τi = o
implies ai ∈ Const, and τi = n implies ai ∈ Num. We define the evaluation of
t over a tuple ā = (a1, . . . , an) that is compatible with it, denoted eval(t|ā):

• if t = a with a ∈ Const, then eval(t|ā) = a,

• if t = i with i ∈ [k], then eval(t|ā) = ai, and

• if t = f(t1, . . . , tm), then eval(t|ā) = f
(
eval(t1|ā), . . . , eval(tm|ā)

)
.

Furthermore, given a two-sorted relation R of arity n ∈ N consisting of tuples
that are compatible with t, a list of integers α = (i1, . . . , im), for m ≥ 0, from
[n], and a tuple ā ∈ πα(R), we define the bag
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B(ā, R, t) = {| eval(t|c̄) | c̄ ∈ R and ā = πα(c̄) |} .

For instance, going back to Example 34.7, for t = mult(2, 3),

B((a), R, t) = {| eval(t|(a, 4, 5)), eval(t|(a, 5, 4)) |} = {| 20, 20 |} .

Definition 34.8: Semantics of Projection and Aggregation

Consider a set Ω of predicates, functions, and aggregates over Num. Let
D be a database of a two-sorted schema S, and e an RAAggr(Ω) over S.
We define the output e(D) of e on D as follows:

• If e = π(t1,...,tm)(e1), where e1 is an RAAggr(Ω) expression, then

e(D) = {(eval(t1|ā), . . . , eval(tm|ā)) | ā ∈ e1(D)} .

• If e = Aggr(i1,...,im)[F1(t1), . . . ,F`(t`)](e1), where e1 is an RAAggr(Ω)
expression, then{(
ā,F1

(
B(ā, R, tj1)

)
, . . . ,F`

(
B(ā, R, tj`)

)) ∣∣ ā ∈ π(i1,...,im)(e1(D))
}
.

It is clear that RAAggr(Ω) expressions readily define queries over two-sorted
schemas. Indeed, if e is an RAAggr(Ω) expression, then the output of e on a
two-sorted database D is e(D). We thus may refer to e as a query.

Here is another example, slightly more involved than the ones given above,
of expressing an SQL query as an RA query with aggregates and grouping.

Example 34.9: RA with Aggregates and Grouping

For R[A,B,C] with (R,A) l (R,B) l (R,C), the SQL query

SELECT R.A, SUM(R.B), AVG(R.B*R.C)

FROM R

GROUP BY R.A

HAVING SUM(R.B) > AVG(R.C)

is translated into the RAAggr(Ω) query

π(1,2,4)

(
σ2>3

(
Aggr(1) [SUM(2), AVG(3), AVG(mult(2, 3))] (R)

))
assuming Ω contains the predicate <, the numerical function mult, and
the aggregate functions SUM and AVG with the obvious meaning. The
aggregate expression groups by the first attribute, and computes the
sum of the second, and the averages of the third and the product of the
second and the third attributes, which then become the second, third,
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and fourth attributes. The selection σ2>3 enforces the condition in the
HAVING clause, and the projection outputs the attributes listed in SELECT.

Complexity of RA with Aggregates and Grouping

We proceed to study the complexity of evaluating RAAggr(Ω) queries for some
set Ω of predicates, functions, and aggregates over Num. Note that the query
evaluation problem for RAAggr(Ω) is defined in a slightly different way than
the query evaluation problem for the query languages that we have seen so
far. In particular, the input database is two-sorted, while the candidate tuple
mentions both constants from Const and values from Num.

Problem: RAAggr(Ω)-Evaluation

Input: A query e from RAAggr(Ω), a two-sorted database D, a tuple
ā over Const ∪ Num

Output: true if ā ∈ e(D), and false otherwise

We can also talk about the data complexity of RAAggr(Ω)-Evaluation. As
discussed in Chapter 2, when we study the data complexity of query evalua-
tion, we essentially consider the query to be fixed, and only the database and
the candidate output are part of the input. Formally, we are interested in the
complexity of e-Evaluation for an RAAggr(Ω) query e, which takes as input a
two-sorted database D and a tuple ā over Const ∪ Num, and asks whether
ā ∈ e(D). As usual, RAAggr(Ω)-Evaluation is in C in data complexity, for some
complexity class C, if e-Evaluation is in C for every RAAggr(Ω) query e.

Given an RAAggr(Ω) query e, to check whether ā ∈ e(D), we actually need
to compute e(D). Indeed, the only way to check if a numerical value equals
the output of an aggregate function is to compute the entire bag of values to
which the aggregate is applied. It is clear that the complexity of computing
e(D), and therefore, the complexity of RAAggr(Ω)-Evaluation, heavily relies
on how complex is to compute predicates, functions, and aggregates from Ω.
We concentrate on predicates, functions, and aggregates that are easily com-
putable, and show that, although evaluating RAAggr(Ω) queries is in general
intractable, it becomes tractable when we focus on data complexity.

We say that a k-ary predicate P is computable in polynomial time if, for
a tuple ā ∈ Numk, we can check in polynomial time whether P (ā) holds. We
also say that that a k-ary function f is computable in polynomial time if
f(ā) can be computed in polynomial time. Analogously, we can talk about
aggregates that are computable in polynomial time. By a simple inspection of
each operation of RAAggr(Ω), it is not difficult to show the following result:
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Theorem 34.10

Consider a set Ω of predicates, functions, and aggregates over Num that
are computable in polynomial time. Then RAAggr(Ω)-Evaluation is in Ex-
pTime, and in PTime in data complexity.



35

Inexpressibility of Recursive Queries

Aggregation and grouping are powerful features that allow us to express inter-
esting counting properties. There are some common queries nonetheless that
cannot be expressed even if aggregation and grouping are available. These
are queries requiring recursive computation, the subject of Chapters 36 – 39.
A canonical query of this type is reachability in directed graphs, i.e., given
a directed graph G, compute all the pairs of nodes (u, v) in G such that v
is reachable from u. This query can be computed by the following simple
algorithm: a node v is reachable from a node u if

1. there is an edge from u to v, or

2. there is an edge from u to some node w such that v is reachable from w.

This algorithm is indeed recursive since the second item defines reachability
in terms of itself. Such a description allows us to extract arbitrarily long paths
from the input graph. For example, in the graph with nodes {0, . . . , n}, and
edges (i, i+1) for all i ∈ [n−1], a node j is reachable from i iff i < j. Thus, the
reachability query will extract paths of any length from 1 to n. On the other
hand, we can show that no matter how we express the reachability query as
an RA query e with aggregates and grouping, e will be able to extract paths
up to a certain length that solely depends on e itself. This essentially tells us
that RA with aggregates and grouping cannot express the reachability query.
Our goal is to show this fact. We start by defining the reachability query.

Definition 35.1: The Reachability Query

The reachability query, denoted qreach, over S = {E : (o, o)} is defined
as the query of type (o, o) such that, for every database D of S, (a, b) ∈
qreach(D) iff E(a, b) ∈ D, or there are constants c1, . . . , cn ∈ Dom(D), for
n > 0, such that {E(a, c1), E(c1, c2), . . . , E(cn−1, cn), E(cn, b)} ⊆ D.

We can then show the following inexpressibility result:
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Theorem 35.2

Consider a numerical domain Num, and a set Ω of predicates, functions,
and aggregates over Num. There is no RAAggr(Ω) query e over the schema
S = {E : (o, o)} such that qreach ≡ e.

The rest of the chapter is devoted to showing the above theorem. Actually,
our main task is to prove a more powerful result, that is, we are going to
establish a locality property stating that an RAAggr(Ω) query can only “see”
up to a certain distance in the input database, determined by the query itself,
and thus is not be able to extract paths of arbitrarily many different lengths
as the reachability query does. Let us make this idea more precise.

Locality of Queries

Given a two-sorted database D, its Gaifman graph, denoted GD, is an undi-
rected graph whose nodes are the elements of Dom(D), and whose edges are
{a, b} such that a and b appear together in some fact of D, i.e., there is a fact
of the form R(. . . , a, . . . , b, . . .) in D. Given a, b ∈ Dom(D), the distance of a
and b in D, denoted dD(a, b), is the length of the shortest path in GD from a
to b; by convention, dD(a, a) = 0, and dD(a, b) =∞ if there is no path in GD
from a to b. For a tuple ā = (a1, . . . , an) over Dom(D), the distance of ā and
b in D, denoted dD(ā, b), is mini∈[n]{dD(ai, b)}. The radius-r ball of ā in D,
for r ≥ 0, denoted BDr (ā), is the set {b ∈ Dom(D) | dD(ai, b) ≤ r for i ∈ [n]}.
The radius-r neighborhood (or simply r-neighborhood) of ā in D, denoted
ND
r (ā), is the set of facts {R(b̄) ∈ D | b̄ is over BDr (ā)}, i.e., the set of all

facts of D that contain only elements of BDr (ā). The tuple ā should be un-
derstood as a tuple of distinguished elements in ND

r (ā). We say that two
r-neighborhoods ND

r (ā) and ND
r (b̄) are isomorphic if there exists a bijection

h : Dom(ND
r (ā))→ Dom(ND

r (b̄)) such that h(ā) = b̄, and R(c̄) ∈ ND
r (ā) im-

plies R(h(c̄)) ∈ ND
r (b̄). We can now define the notion of locality for queries.

Definition 35.3: Locality of Queries

A query q of type τ ∈ {o, n}k, for k ≥ 0, over a two-sorted schema
S is r-local, for r ≥ 0, if, for every database D of S, and every two
tuples ā, b̄ ∈ (Const∪Num)k such that ND

r (ā) and ND
r (b̄) are isomorphic,

ā ∈ q(D) iff b̄ ∈ q(D). A query is called local if it is r-local for some r ≥ 0.

We proceed to show that, as long as we concentrate on relations of ordinary
type, RA queries with aggregates and grouping of ordinary type, that is,
queries that output only constants of Const, are local.
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Theorem 35.4

Consider a numerical domain Num, and a set Ω of predicates, functions,
and aggregates over Num. Every RAAggr(Ω) query of type {o}k, for k ≥ 0,
over a schema S = {R1 : τ1, . . . , Rn : τn} such that, for each i ∈ [n],
τi ∈ {o}ki for ki ≥ 0, is local.

Note that Theorem 35.4 only talks about relations of ordinary type. What
if instead we consider arbitrary two-sorted relations that can have values from
Num? In this case there is no known result analogous to Theorem35.4. In fact,
proving such a result would resolve deep open problems in complexity theory
(see Exercise 4.18 for further explanations).

Before we give the proof of Theorem 35.4, let us explain how it is used in
order to obtain Theorem 35.2. It actually tells us that to show Theorem 35.2 it
suffices to show that the reachability query qreach is not local. By contradiction,
assume that qreach is r-local, for some r ≥ 0. Consider then the database D of
S = {E : (o, o)} consisting of the facts E(i, i + 1) for each i ∈ [0, 5r]. Then,
the r-neighborhoods ND

r (r, 4r) and ND
r (4r, r) are isomorphic. Indeed, each of

these r-neighborhoods is a disjoint union of two chains of length 2r, with the
distinguished elements in the middle of those chains. Therefore, by locality,
(r, 4r) ∈ qreach(D) iff (4r, r) ∈ qreach(D). This contradicts the fact that 4r is
reachable from r, but not vice versa; in other words, (r, 4r) ∈ qreach(D) and
(4r, r) 6∈ qreach(D). Therefore, qreach is not local, as needed.

The rather long proof of Theorem 35.4 consists of three main steps:

FO with Aggregates. We first present an extension of FO with aggregates,
and show that RA with aggregates and grouping translates to it. Note that
this logical language is a useful technical tool for showing Theorem 35.4,
but it cannot serve as the basis for defining a query language with aggre-
gates; further details are given below.

Counting Logic. We then express an RA query with aggregates and group-
ing, via its translation into the extension of FO with aggregates, in an
infinitary counting logic that is easier to analyze mathematically.

Locality of Counting Logic. We finally prove that the counting logic en-
joys a locality property analogous to that for RAAggr(Ω) queries stated in
Theorem 35.4, which in turn implies Theorem 35.4 itself.

For the sake of clarity, the second and third steps are focussing on queries and
logical formulae that do not mention ordinary constants from Const. Extend-
ing the proof to handle constants is the subject of Exercise 4.14.

First-Order Logic with Aggregates

Considering the set Ω of predicates, functions, and aggregates over the nu-
merical domain Num, we are going to define first-order logic with aggregates,
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denoted FOAggr(Ω). Similarly to RAAggr(Ω), the logical language FOAggr(Ω)
must be typed, in particular, each variable should come with its type. We
therefore assume that the set Var is partitioned into two infinite sets Varo and
Varn of variables of type o and n, respectively. We use x, y, z, . . . for variables
from Varo, which will be ranging over the set of constants Const, and ı, , . . .
for variables from Varn, which will be ranging over the numerical domain Num.

Definition 35.5: Syntax of FO with Aggregates

Consider a two-sorted schema S. We define Ω-terms (relative to S) with
their associated types, and FOAggr(Ω) formulae over S, by mutual induc-
tion as follows:

Ω-terms

• Each constant of Const and variable of Varo is an Ω-term of type o.

• Each value a ∈ Num is anΩ-term of type n, whose set of free variables
FV(a) is empty.

• Each variable ı ∈ Varn is an Ω-term of type n, whose set of free
variables FV(ı) is {ı}.

• If f is an m-ary numerical function from Ω, and t1, . . . , tm are Ω-
terms of type n, then f(t1, . . . , tm) is an Ω-term of type n, whose set
of free variables FV(f(t1, . . . , tm)) is FV(t1) ∪ · · · ∪ FV(tm).

• If ϕ is an FOAggr(Ω) formula over S, t is an Ω-term of type n, and
F is an aggregate of Ω, then

AggrF (ū) (ϕ, t)

where ū = (u1, . . . , uk) is a tuple of variables over Var such that
{u1, . . . , uk} ⊆ FV(t), and FV(t) ⊆ FV(ϕ), is an Ω-term of type n,
whose set of free variables FV(AggrF (ū) (ϕ, t)) is FV(ϕ)−{u1, . . . , uk}.

FOAggr(Ω) Formulae

• If a ∈ Const, and x ∈ Varo, then x = a is an atomic formula, whose
set of variables FV(x = a) is {x}.

• If x, y ∈ Varo, then x = y is an atomic formula, whose set of free
variables FV(x = y) is {x, y}.

• If t is an Ω-term of type n, and ı ∈ Varn, then ı = t is an atomic
formula, whose set of free variables FV(ı = t) is {ı} ∪ FV(t).

• If u1, . . . , uk are Ω-terms (not necessarily distinct) from Const ∪
Num∪Var, where ui is of type τi for each i ∈ [k], and R : (τ1, . . . , τk)
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belongs to S, then R(u1, . . . , uk) is an atomic formula, whose set of
free variables FV(R(u1, . . . , uk)) is {u1, . . . , uk} ∩ Var.

• If u1, . . . , uk are Ω-terms (not necessarily distinct) from Num∪Varn,
and P is a k-ary numerical predicate from Ω, then P (u1, . . . , uk) is
an atomic formula, whose set of free variables FV(P (u1, . . . , uk)) is
{u1, . . . , uk} ∩ Varn.

• If ϕ1 and ϕ2 are formulae, then (ϕ1∧ϕ2) and (ϕ1∨ϕ2) are formulae,
whose set of free variables FV(ϕ1 ∧ ϕ2) = FV(ϕ1 ∨ ϕ2) is FV(ϕ1) ∪
FV(ϕ2).

• If ϕ is a formula, then (¬ϕ) is a formula, whose set of free variables
FV(¬ϕ) is FV(ϕ).

• If ϕ is a formula and u ∈ Var, then (∃uϕ) and (∀uϕ) are formulae,
whose set of free variables FV(∃uϕ) = FV(∀uϕ) is FV(ϕ)− {u}.

We will omit the outermost brackets of FOAggr(Ω) formulae. To define the
semantics of FOAggr(Ω), we need the notion of assignment for Ω-terms and
formulae. Given an Ω-term t of type n, an assignment η for t is a function from
FV(t) to Const ∪ Num such that η(u) ∈ Const if u ∈ Varo, and η(u) ∈ Num
if u ∈ Varn. Similarly, given an FOAggr(Ω) formula ϕ, and a database D, an
assignment η for ϕ over D is a function from FV(ϕ) to Dom(D)∪Dom(ϕ)∪
Num, where Dom(ϕ) is the set of constants and numerical values occurring in
ϕ, such that η(u) ∈ Const if u ∈ Varo, and η(u) ∈ Num if u ∈ Varn. We write
η[u/a], for u ∈ Var and a ∈ Const ∪ Num, for the assignment that modifies η
by setting η(u) = a. To avoid heavy notation, we extend an assignment to be
the identity on Const ∪ Num. The semantics of FOAggr(Ω) follows.

Definition 35.6: Semantics of FO with Aggregates

Consider a two-sorted schema S. We define the value of Ω-terms (relative
to S) of type n, and the satisfaction of FOAggr(Ω) formulae over S, by
mutual induction as follows.

Value of Ω-terms

Let t be an Ω-term of type n, and η an assignment for t. The value of t
in a database D of S under η, denoted tD,η, is defined as follows:

• If t = a with a ∈ Num, then tD,η = a.

• If t = ı with ı ∈ Varn, then tD,η = η(ı).

• If t = f(t1, . . . , tm), then tD,η = f(tD,η1 , . . . , tD,ηm ).

• If t = AggrF (ū) (ϕ, t0), with H being the set of all assignments η′ for
ϕ over D that agree with η on FV(t0) such that (D, η′) |= ϕ, then

tD,η = F({||}) if H is infinite, otherwise tD,η = F
(
{|tD,η

′

0 | η′ ∈ H|}
)

.
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Satisfaction of FOAggr(Ω) Formulae

Let ϕ be a formula over S, and η an assignment for ϕ. We define when ϕ
is satisfied in a database D of S under η, written (D, η) |= ϕ, as follows:

• If ϕ is x = a, then (D, η) |= ϕ if η(x) = a.

• If ϕ is x = y, then (D, η) |= ϕ if η(x) = η(y).

• If ϕ is ı = t, then (D, η) |= ϕ if η(x) = tD,η.

• If ϕ is R(u1, . . . , uk), then (D, η) |= ϕ if R(η(u1), . . . , η(uk)) ∈ D.

• If ϕ is P (u1, . . . , uk), then (D, η) |= ϕ if (η(u1), . . . , η(uk)) ∈ P .

• If ϕ = ϕ1 ∧ ϕ2, then (D, η) |= ϕ if (D, η) |= ϕ1 and (D, η) |= ϕ2.

• If ϕ = ϕ1 ∨ ϕ2, then (D, η) |= ϕ if (D, η) |= ϕ1 or (D, η) |= ϕ2.

• If ϕ = ¬ψ, then (D, η) |= ϕ if (D, η) |= ψ does not hold.

• If ϕ = ∃uψ, then (D, η) |= ϕ if (D, η[u/a]) |= ψ for some a ∈
(Dom(D) ∪Dom(ϕ)) ∩ Const if u ∈ Varo, and a ∈ Num if u ∈ Varn.

• If ϕ = ∀xψ, then (D, η) |= ϕ if (D, η[x/a]) |= ψ for each a ∈
Dom(D) ∪ (Dom(ϕ) ∩ Const) if u ∈ Varo, and a ∈ Num if u ∈ Varn.

There is a crucial difference between first-order logic with aggregates, and
first-order logic as defined in Chapter 3. Given an FOAggr(Ω) formula ϕ, we
may have infinitely many assignments η for ϕ over a database D such that
(D, η) |= ϕ. Consider, for example, the formula ϕ = R(x) ∧ ( = ı + 1), and
the database D = {R(a)} with a ∈ Const. Assuming that Num is the set of
integers, for every η : {x, ı, } → {a}∪Num with η(x) = a and η() = η(ı) + 1,
(D, η) |= ϕ, and it is clear that there are infinitely many such assignments
since the numerical variables range over the infinite domain Num, and there
are infinitely many pairs of integers (i, j) such that j = i+1. This implies that
first-order logic with aggregates cannot be used to define a query language as
we did with ordinary FO in Chapter 3. Nevertheless, given an expression ϕ(ū),
where ϕ is an FOAggr(Ω) formula, and ū is a tuple over FV(ϕ) such that each
free variable of ϕ occurs in ū at least once, we can define the output of ϕ(ū) on
a database D, denoted ϕ(ū)(D), in the obvious way, but we cannot call ϕ(ū)
a query since ϕ(ū)(D) may be infinite. Indeed, the output of ϕ(x, ı, ), where
ϕ = R(x)∧ ( = ı+1), on D = {R(a)} is the infinite set of triples (a, i, j) with
j = i+ 1. One can define a logic with aggregates that can in turn be used to
define a query language, but the syntax is much more cumbersome.

We now show that that every RA query with aggregates and grouping can
be expressed via FO with aggregates.

Proposition 35.7

Consider an RAAggr(Ω) query e over a two-sorted schema S. There ex-
ists an FOAggr(Ω) formula ϕe over S, and a tuple ūe over FV(ϕe) that
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mentions all the variables of FV(ϕe), such that e(D) = ϕe(ūe)(D), for
every database D of S.

Proof. The proof is by induction on the structure of e. Most of the cases are
treated in the same way as in the proof of Theorem 6.1, in particular, the proof
that every RA query can be equivalently written as an FO query. We proceed
to discuss the two new case, namely generalized projection, and grouping
with aggregation. For an (Ω, τ )-term t, where τ = (τ1, . . . , τk) ∈ {o, n}k, and
a tuple of variables ū = (u1, . . . , uk) with ui being of type τi, for each i ∈ [k],
we write t(ū) for the Ω-term obtained from t by replacing each i ∈ Var(t)
with ui. We are now ready to proceed with the translations:

• Assume first that e is π(t1,...,tm)(e
′). By induction hypothesis, there exists

an FOAggr(Ω) formula ϕe′ , and a tuple ūe′ = (u1, . . . , uk) over FV(ϕe′),
such that ϕe′(ūe′) expresses e′. We define the FOAggr(Ω) formula

ϕe = ∃u1 · · · ∃uk

(
ϕe′ ∧

m∧
i=1

vi = ti(ūe′)

)
,

and the tuple ūe = (v1, . . . , vm) over FV(ϕe).

• Assume now that e is Aggr(i1,...,im)[F1(t1), . . . ,F`(t`)](e′); for the sake
of clarity, we assume that (i1, . . . , im) = (1, . . . ,m), but the same con-
struction can be applied to any list of integers. By induction hypothesis,
there exists an FOAggr(Ω) formula ϕe′ , and a tuple ūe′ = (u1, . . . , uk) over
FV(ϕe′), such that ϕe′(ūe′) expresses e′. We define the FOAggr(Ω) formula

ϕe = ∃wm+1 · · · ∃wk
(
ψe′ ∧

∧̀
i=1

vi = AggrFi(wm+1, . . . , wk) (ψe′ , ti(u1, . . . , um, wm+1, . . . , wk))

)
,

where ψe′ is obtained from ϕe′ by replacing ui with wi for each i ∈ [m+
1, k], and the tuple ūe = (u1, . . . , um, v1, . . . , v`) over FV(ϕe).

It is easy to verify the correctness of the above translations. ut

An Infinitary Counting Logic

We now proceed with the second step of the proof of Theorem 35.2, where the
goal is to express an RAAggr(Ω) query, by exploiting Proposition 35.7, into
a convenient infinitary counting logic. We proceed to introduce the counting
logic LC, and its sublogic LC, which we prove to be equivalent to LC. Recall
that, for the sake of clarity, in this step we focus on queries and formulae that
do not mention constants from Const. In what follows, every value of Num,
and every variable of Var, is a term of the respective type, and of rank 0.
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Definition 35.8: An Infinitary Counting Logic

Consider a two-sorted schema S. We define formulae of LC over S, and
their associated rank, by induction as follows:

• If x, y ∈ Varo, then x = y is an atomic formula with rank(x = y) = 0.

• If a ∈ Num, and ı ∈ Varn, then ı = a is an atomic formula with
rank(ı = a) = 0.

• If ı,  ∈ Varn, then ı =  is an atomic formula with rank(ı = ) = 0.

• If u1, . . . , uk are terms (not necessarily distinct), where ui is of type τi
for each i ∈ [k], and R : (τ1, . . . , τk) belongs to S, then R(u1, . . . , uk)
is an atomic formula with rank(R(u1, . . . , uk)) = 0.

• If Φ is a (possibly infinite) set of formulae, and k = supϕ∈Φ rank(ϕ)

is finite, then ψ =
(∧

ϕ∈Φ ϕ
)

and ψ′ =
(∨

ϕ∈Φ ϕ
)

are formulae with

rank(ψ) = rank(ψ′) = k.

• If ϕ is a formula, then (¬ϕ) is a formula with rank(¬ϕ) = rank(ϕ).

• If ϕ is a formula, ū = (u1, . . . , uk) is a tuple over Var, and n ∈ N,
then ψ =

(
∃≥nū ϕ

)
is a formula with rank(ψ) = rank(ϕ) + k.

We further define formulae of LC over S, and their associated rank, in the
same way as LC formulae, with the difference that only quantification
of the form ∃≥n x, where x is a single variable type o, is allowed:

• If ϕ is a formula of LC, x ∈ Varo, and n ∈ N, then ψ =
(
∃≥nxϕ

)
is

a formula of LC with rank(ψ) = rank(ϕ) + 1.

Let us stress that LC, and thus LC, consists of formulae of finite rank since
in the definition of the infinitary conjunctions and disjunctions we explicitly
restrict the rank to be finite; otherwise, we may get formulae of infinite rank,

e.g., if Φ = {ϕ1, ϕ2, . . .} with rank(ϕi) = i for each i > 0, then rank
(∨

ϕ∈Φ ϕ
)

is infinite. The set of free variables of an LC formula ϕ, denoted FV(ϕ), as well
as the semantics of LC, are defined in the expected way. Let us only discuss
the details in the case of a formula of the form ψ = ∃≥nū ϕ, which essentially
states that there exist at least n witnesses for ū. For an assignment η for ψ
over a database D, i.e., a function that maps FV(ψ) to Dom(D) ∪ Num, ψ is
satisfied in D under η, written (D, η) |= ψ, if there are at least n assignments
η′ for ϕ over D that agree with η on FV(ψ) such that (D, η′) |= ϕ. We can
use the shorthand ∃=nū ϕ to say that there are exactly n such assignments for
ϕ over D, that is, ∃≥nū ϕ∧¬∃≥n+1ū ϕ, which does not alter the rank. Given
an expression ϕ(ū), where ϕ is an LC formula, and ū is a tuple over FV(ϕ)
such that each free variable of ϕ occurs in ū at least once, we can define the
output of ϕ(ū) on a database D, denoted ϕ(ū)(D), in the obvious way.
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Proposition 35.9

Consider an FOAggr(Ω) formula ϕ over a two-sorted schema S, and a
tuple ū over FV(ϕ) that mentions all the variables of FV(ϕ). There exists
an LC formula ψ over S, with FV(ϕ) = FV(ψ), such that ϕ(ū)(D) =
ψ(ū)(D), for every database D of S.

Proof. We first show the statement for the counting logic LC.

Lemma 35.10. There is an LC formula ϕ� over S, with FV(ϕ) = FV(ϕ�),
such that ϕ(ū)(D) = ϕ�(ū)(D), for every database D of S.

Proof. We translate every Ω-term t of type n occurring in ϕ into an LC

formula αıt, where ı is a distinguished free variable of αıt. Intuitively, αıt states
that ı is the value of t, that is, (D, η) |= αıt iff tD,η = η(ı). We further translate
the formula ϕ into an LC formula ϕ� with FV(ϕ) = FV(ϕ�).

To ensure that ϕ� is indeed an LC formula, we need to show that it has
finite rank. To this end, we first need to transfer the notion of rank to Ω-terms
and FOAggr(Ω) formulae by mutual induction. Let t be an Ω-term:

• If t ∈ Num ∪ Var, then rank(t) = 0.

• If t = f(t1, . . . , tm), then rank(t) = maxi∈[m]{rank(ti)}.
• If t = AggrF (v̄) (ϕ′, t′), then rank(t) = max{rank(ϕ′), rank(t′)}+k, where
k is the arity of the tuple v̄.

Consider now an FOAggr(Ω) formula ϕ′:

• If ϕ′ is x = y, then rank(ϕ′) = 0.

• If ϕ′ is ı = t, then rank(ϕ′) = rank(t).

• If ϕ′ is R(v1, . . . , vk), then rank(ϕ′) = maxi∈[k]{rank(vi)}.
• If ϕ′ is ϕ1 ∧ ϕ2 or ϕ1 ∨ ϕ2, then rank(ϕ′) = max{rank(ϕ1), rank(ϕ2)}.
• If ϕ′ is ¬ϕ1, then rank(ϕ′) = rank(ϕ1).

• If ϕ′ is ∃v ϕ1 or ∀v ϕ1, then rank(ϕ′) = rank(ϕ1) + 1.

We are now ready to provide the translation of an Ω-term t of type n
occurring in ϕ, and of ϕ itself, into LC by mutual induction. In what follows,
given an LC formula χ, a variable ı ∈ FV(χ), and a value a ∈ Num, we write
χ[ı/a] for the formula obtained from χ after replacing ı with a.

Translation of an Ω-term t occurring in ϕ into an LC formula αıt

• If t = a with a ∈ Num, then αıt = (ı = a) of rank 0.

• If t = ı with ı ∈ Varn, then αıt = (ı = ı) of rank 0.
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• If t = f(t1, . . . , tm), then

αıt =
∨

(a1,...,am,am+1)∈Numm+1 :

f(a1,...,am)=am+1

 ∧
i∈[m]

αiti [i/ai] → ı = am+1


of rank maxi∈[m]{rank(αiti)} ≤ rank(t), where ı is a new numerical vari-
able not occurring in αiti , for each i ∈ [m].

• If t = AggrF (v̄) (ϕ′, t′), with B being the set of all bags (finite or infinite)
over Num, then

αıt =
∨
B∈B

(
χB ∧ ζB ∧ ı = F(B)

)
,

where ı is a new numerical variable not occurring in χB and ζB , and χB
and ζB are defined as follows. For B ∈ B, we write supp(B) for its support,
i.e., the set of elements that appear in it, and ](a,B) for the number of
occurrences of a in B. We then define

χB =
∧

a∈supp(B)

∃=](a,B)v̄

(
(ϕ′)� ∧ αt′ [/a]

)
stating that the values of t′, as v̄ ranges over tuples satisfying ϕ′, have
exactly the same multiplicities as in B, and

ζB = ∀v̄

(ϕ′)� →
∨

a∈supp(B)

αt′ [/a]


stating that only elements of B are values of t′ as v̄ ranges over tuples satis-
fying ϕ′. It is easy to verify that αıt is of rank max{rank((ϕ′)�), rank(αt′)}+
k ≤ max{rank(ϕ′), rank(t′)}+ k = rank(t), where k is the arity of the tu-
ple v̄. Moreover, it should be clear that αıt essentially states that, for some
bag B ∈ B, the values of t′ form exactly B, and the value of t is the value
of the aggregate F on B.

Translation of the formula ϕ into an LC formula ϕ�

• If ϕ is the atomic formula x = y or R(v̄), then ϕ� is precisely ϕ, and thus,
rank(ϕ�) = rank(ϕ).

• If ϕ is the atomic formula ı = t, then ϕ� is αıt with rank(ϕ�) ≤ rank(t).

• If ϕ is P (v1, . . . , vk), then ϕ� is

∨
(a1,...,ak)∈P

 ∧
i∈[k]

αivi [i/ai]


with rank(ϕ�) ≤ maxi∈[m]{rank(αivi)} ≤ rank(ϕ).



35 Inexpressibility of Recursive Queries 273

• If ϕ is ϕ1∧ϕ2, ϕ1∨ϕ2, ¬ϕ1, then ϕ� is ϕ�1∧ϕ�2, ϕ�1∨ϕ�2, ¬ϕ�1, respectively,
of with rank(ϕ�) = rank(ϕ).

• If ϕ is ∃v ϕ1, ∀v ϕ1, then ϕ� is ∃v ϕ�1, ¬∃v ¬ϕ�1, respectively, with rank(ϕ�) =
rank(ϕ).

This completes the translation of Ω-terms of type n occurring in ϕ, and of
ϕ itself. It can be verified that ϕ� is indeed an LC formula, with FV(ϕ) =
FV(ϕ�), such that ϕ(ū)(D) = ϕ�(ū)(D), for every database D of S. ut

We now proceed to show that the LC formula ϕ� provided by Lemma 35.10
can be converted into an LC formula ψ such that ϕ�(ū) and ψ(ū) have the
same output on every database of S, which will prove Proposition 35.9.

Lemma 35.11. There exists an LC formula ψ over S, with FV(ϕ�) = FV(ψ),
such that ϕ�(ū)(D) = ψ(ū)(D), for every database D of S.

Proof. To prove the claim, we need to replace quantifiers of the form ∃≥nv̄ ψ′
in ϕ� with ∃≥nxψ′, where x ∈ Varo, without increasing the rank. We explain
how this is done when v̄ is binary; the general proof is then by induction on
the arity of v̄, using the case when v̄ is binary as the base step.

Consider a subformula ∃≥n(v, w)ψ′ of ϕ�, where v, w ∈ FV(ψ′). The idea
of replacing this by simpler quantifiers is to say that there are at least k1 v’s
for which there exist exactly `1 w’s satisfying ψ′, and there are exactly k2 v’s
for which there exist exactly `2 w’s satisfying ψ′, and so on, with all the `i’s
being distinct in order to ensure that the same pair of values is never counted
twice. Formally, a finite set of pairs of integers {(k1, `1), . . . , (ks, `s)} is an
n-witness if

∑s
i=1 ki · `i ≥ n, and `i 6= `j for each i, j ∈ [s] with i 6= j. Let

Wn be the set of all n-witnesses, which is clearly infinite. Then, ∃≥n(v, w)ψ′

is replaced by the infinitary disjunction

∨
{(k1,`1),...,(ks,`s)}∈Wn

(
s∧
i=1

∃≥kiv ∃=`iwψ′

)

whose rank is rank(∃≥n(v, w)ψ′) = rank(ψ′) + 2.
According to the definition of LC, we can only quantify variables of type

o. Thus, we need to eliminate from the above infinitary disjunction the quan-
tifiers over numerical variables. This is done by using infinitary disjunctions
as follows: a formula of the form ∃≥nı ψ′′, where ı ∈ FV(ψ′′), is written as

∨
A⊆Num : |A|≥n

(∧
a∈A

ψ′′[ı/a]

)

whose rank is rank(∃≥nı ψ′′)−1. This completes the proof of Lemma 35.11. ut

By Lemma 35.10 and 35.11, we get an LC formula ψ, with FV(ϕ) = FV(ψ),
such that ϕ(ū)(D) = ψ(ū)(D), for every database D of S, as needed. ut
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Locality of Counting Logic

We proceed with the last step of the proof of Theorem 35.4. The goal is to
establish a locality property for the counting logic LC analogous to that for
RAAggr(Ω) queries stated in Theorem 35.4. Given an expression ϕ(ū), where ϕ
is an LC formula, and ū is a tuple over FV(ϕ) that mentions all the variables
of FV(ϕ), although is not a query, we can naturally apply the definition of
locality for queries (see Definition 35.3) to it. We proceed to show that every
such expression, as long as it is over a schema with relation names of ordinary
type, and its free variables are of ordinary type, is local.

Proposition 35.12

Consider an LC formula ϕ over a schema S = {R1 : τ1, . . . , Rn : τn} with
τi ∈ {o}ki and ki ≥ 0, for each i ∈ [n], of rank k such that FV(ϕ) ⊆ Varo,
and a tuple x̄ over FV(ϕ) that mentions all the variables of FV(ϕ). It
holds that ϕ(x̄) is (3k − 1)/2-local.

Proof. For clarity, we assume that S = {R : (o, o)}, but of course the proof
generalizes to arbitrary schemas {R1 : τ1, . . . , Rn : τn} with τi ∈ {o}ki and
ki ≥ 0, for each i ∈ [n]. We proceed by induction on the rank of ϕ.

For the base step, assume that rank(ϕ) = 0. This implies that ϕ is an
atomic formula x = y or R(x, y). It is clear that, for a database D of S, and
tuples ā, b̄ over Const, the fact that ND

0 (ā) and ND
0 (b̄) are isomorphic implies

that ā ∈ ϕ(x̄)(D) iff b̄ ∈ ϕ(x̄)(D). Therefore, ϕ is 0-local, as needed.
Assume now that rank(ϕ) = k for k > 0. We first observe that infinitary

conjunction and infinitary disjunction, as well as negation, do not alter local-
ity. More precisely, assuming that Φ is a (possibly infinite) set of formulae such
that, for each ψ ∈ Ψ , FV(ϕ) = FV(ψ) and ψ(x̄) is r-local, and ψ′ =

∧
ϕ∈Ψ ψ

or ψ′ =
∨
ψ∈Ψ ψ, then ψ′(x̄) is r-local. Analogously, if ψ is a formula such that

FV(ϕ) = FV(ψ) and ψ(x̄) is r-local, and ψ′ = ¬ψ, then ψ′(x̄) is r-local. Con-
sequently, it suffices to show that, for an arbitrary subformula ψ = ∃≥ny ψ′
of ϕ with rank(ψ) = k, ψ(x̄) is (3k − 1)/2-local. Clearly, rank(ψ′) = k − 1,
and thus, by induction hypothesis, ψ′(x̄, y) is (3k−1 − 1)/2-local. We proceed
to show the following key lemma; for brevity, let r = (3k−1 − 1)/2-local.

Lemma 35.13. It holds that ψ(x̄) is (3r + 1)-local.

Proof. Consider a database D of S, and two tuples ā, b̄ over Const such that
ND

3r+1(ā) and ND
3r+1(b̄) are isomorphic. We need to establish that ā ∈ ψ(x̄)(D)

iff b̄ ∈ ψ(x̄)(D). To this end, it suffices to show that there exists a bijection f
from Dom(D) to Dom(D) such that ND

r (ā, c) and ND
r (b̄, f(c)) are isomorphic,

for every c ∈ Dom(D). Indeed, if such a bijection exists, the claim follows.
Assuming that ā ∈ ψ(x̄)(D), we can find n elements of Dom(D) such that
(ā, ci) ∈ ψ′(x̄, y)(D), for each i ∈ [n]. But since ND

r (ā, c) and ND
r (b̄, f(c))
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are isomorphic, and f is a bijection, the distinct elements f(c1), . . . , f(cn) of
Dom(D) witness that b̄ ∈ ψ(x̄)(D), as needed. Likewise, we can show that
b̄ ∈ ψ(x̄)(D) implies ā ∈ ψ(x̄)(D) by using the bijection f−1 instead of f . The
rest of the proof is devoted to showing the existence of the bijection f .

Consider a database D′ of S′, and a constant d ∈ Dom(D′) such that, for
every e ∈ Dom(D′), dD(d, e) ≤ r. Let c ∈ Dom(ND

2r+1(ā)), and assume that
there exists a bijection µ : Dom(ND

r (c))→ Dom(D′) such that µ(c) = d, and
R(ē) ∈ ND

r (c) implies R(µ(ē)) ∈ D′, in which case we say that ND
r (c) and

(D′, d) are isomorphic. Since ND
3r+1(ā) and ND

3r+1(b̄) are isomorphic, let say
witnessed by the bijection h, we get that ND

r (h(c)) and (D′, d) are isomorphic.
Therefore, the number of constants c ∈ Dom(ND

2r+1(ā)) such that ND
r (c) is

isomorphic to (D′, d), and the number of constants c ∈ Dom(ND
2r+1(b̄)) such

that ND
r (c) is isomorphic to (D′, d), are the same. Hence, the same holds for

Dom(D)−Dom(ND
2r+1(ā)) and Dom(D)−Dom(ND

2r+1(b̄)).
Since the database D′ of S was chosen arbitrarily, we get that there is a bi-

jection f : Dom(D)−Dom(ND
2r+1(ā))→ Dom(D)−Dom(ND

2r+1(b̄)) such that
ND
r (c) and ND

r (f(c)) are isomorphic, for every c ∈ Dom(D)−Dom(ND
2r+1(ā)).

We extend f to all the elements of Dom(D) by letting f(c) = h(c), for every
c ∈ Dom(ND

2r+1(ā)). To conclude the proof, it remains to show that ND
r (ā, c)

and ND
r (b̄, f(c)) are isomorphic, for every constant c ∈ Dom(D). Assume

first that c ∈ Dom(ND
2r+1(ā)). Then, for every constant e ∈ Dom(ND

r (c)),
dD(ā, e) ≤ 3r+ 1, and thus, ND

r (ā, c) and ND
r (b̄, f(c)) are isomorphic since f

is the isomorphism h. Assume now that c 6∈ Dom(ND
2r+1(ā)). Then, ND

r (ā, c)
is the disjoint union of ND

r (ā) and ND
r (c). Hence, ND

r (b̄, f(c)) is the disjoint
union of ND

r (b̄) and ND
r (f(c)). Therefore, ND

r (ā, c) and ND
r (b̄, f(c)) are iso-

morphic since they are the disjoint union of isomorphic sets of facts. ut

It is straightforward to see that Proposition 35.12 follows by Lemma 35.13
since 3(3k−1 − 1)/2 + 1 = (3k − 1)/2. ut

We can now finalize the proof of Theorem 35.4. Consider an RAAggr(Ω)
query e of type {o}k, for k ≥ 0, over a schema S as in the statement of Theo-
rem 35.4. By Proposition 35.7 and Proposition 35.9, we get that there exists
an LC formula ϕe over S with FV(ϕe) ⊆ Varo, and a tuple x̄e over FV(ϕe)
that mentions all the variables of FV(ϕe), such that e(D) = ϕe(x̄e)(D), for
every database D of S. Therefore, by Proposition 35.12, we conclude that e
is (3k − 1)/2-local, where k is the rank of the formula ϕe, as needed.





36

Adding Recursion: Datalog

As discussed in Chapter 35, a serious limitation of relational algebra with
aggregates, and in fact all of the query languages encountered so far in the
previous chapters, is their inability to express recursive queries such as the
reachability query. In this chapter, we introduce a rule-based language, called
Datalog, that is powerful enough to express such queries. It can be seen as an
extension of UCQs with the key feature of recursion.

Syntax of Datalog

We start by defining the syntax of Datalog rules by using a rule-based syntax
similar to that of CQs when seen as rules.

Definition 36.1: Syntax of Datalog

A Datalog rule over a schema S is an expression of the form

R0(x̄) :– R1(ū1), . . . , Rn(ūn)

for n ≥ 1, where

• Ri ∈ S, for each i ∈ [0, n],

• Ri(ūi) is a relational atom, and ūi is a tuple of constants and vari-
ables, for each i ∈ [n],

• R0(x̄) is a relational atom, and x̄ is a tuple of variables, and

• each variable mentioned in x̄ is also mentioned in ūk for some k ∈ [n];
this is known as the safety condition.

A Datalog program over S is a finite set of Datalog rules over S.
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As we shall see, the key idea underlying Datalog queries is to declaratively
specify what the query output should be by means of a Datalog program. The
Datalog program that provides the specification of the reachability query over
directed graphs follows.

Example 36.2: Graph Reachability

Consider the following (named) database schema:

Edge [ node1, node2 ]

Reachable [ node1, node2 ]

The Edge relation stores the edges of the input directed graph G, and
the Reachable relation stores the pairs of nodes (v, u) of G such that
u is reachable from v. We can now inductively compute the Reachable
relation via the following Datalog program over the above schema:

Reachable(x, y) :– Edge(x, y)

Reachable(x, y) :– Reachable(x, z),Edge(z, y) .

The first rule, which is the base step of the inductive definition, simply
states that if there is an edge from x to y, then y is reachable from x.
The second rule, which corresponds to the inductive step, states that if z
is reachable from x and there is an edge from z to y, then y is reachable
from x. Notice that the second rule is recursive in the sense that the
definition of the relation Reachable depends on itself.

The relational atom that appears on the left of the :– symbol in a Datalog
rule is called the head of the rule, while the expression that appears on the right
of the :– symbol is called the body of the rule. Given a Datalog program Π
over a schema S, it is crucial to have a way to distinguish between the relation
names of S that appear only in the bodies of the rules of Π, and those that
appear in the head of at least one rule of Π. In particular, a relation name
R ∈ S occurring in the Datalog program Π is called:

• extensional if there is no rule of the form R(x̄) :– body in Π, that is, R
occurs only in rule-bodies, and

• intensional if there exists at least one rule of the form R(x̄) :– body in Π,
that is, R appears in the head of at least one rule of Π.

Intuitively, extensional relation names correspond to the input relations, while
intensional relation names correspond to the relations that are computed
by the Datalog program. The extensional (database) schema of Π, denoted
edb(Π), consists of the extensional relation names in Π, while the intentional
schema of Π, denoted idb(Π), is the set of all intentional relation names in Π.
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The schema ofΠ, denoted sch(Π), is the set of relation names edb(Π)∪idb(Π).
Note that sch(Π) is, in general, a subset of S since it might be the case that
some relation names of S do not appear in Π.

Semantics of Datalog

An interesting property of Datalog programs is the fact that their semantics
can be defined either declaratively by adopting a model-theoretic approach,
or operationally by following a fixpoint approach. In the model-theoretic ap-
proach, the Datalog rules are considered as logical sentences asserting a prop-
erty of the desired result, while in the fixpoint approach the semantics is
defined as a particular solution of a fixpoint procedure.

Model-Theoretic Semantics

Recall that a set Φ of first-order sentences over a schema S is called a first-
order theory over S, or simply a theory over S. A database of S is a model of
the theory Φ if, for every sentence ϕ ∈ Φ, D |= ϕ.1 The idea underlying the
model-theoretic approach is to consider a Datalog program Π as a first-order
theory ΦΠ over sch(Π) that describes the desired outcome of the program. In
other words, the desired outcome is a particular model of ΦΠ ; hence the name
model-theoretic semantics. However, there might be infinitely many models of
the theory ΦΠ , which means that the theory alone does not uniquely determine
the desired outcome of the program. It is therefore crucial to specify which
model is the intended outcome. We proceed to formalize the above discussion.
In particular, we are going to explain how a Datalog program is converted
into a first-order theory, and which model of this theory is the intended one.

Definition 36.3: From a Program to a Theory

Given a Datalog rule ρ of the form R0(x̄) :– R1(ū1), . . . , Rn(ūn), we write
ϕρ for the first-order sentence

∀x1 · · · ∀xm (R1(ū1) ∧ · · · ∧Rn(ūn) → R0(x̄)),

where x1, . . . , xm are the variables in ρ. Given a Datalog program Π, we
define the first-order theory ΦΠ over sch(Π) as {ϕρ | ρ ∈ Π}.

For brevity, we refer to the models of a Datalog program Π meaning the
models of the theory ΦΠ . Interestingly, the notion of satisfaction of a sentence
ϕρ, where ρ ∈ Π, by a database D of sch(Π), can be characterized by means of

1 The notion of first-order theory, together with the notion of model of such a
theory, have been already used in Chapter 33.



280 36 Adding Recursion: Datalog

homomorphisms. Similarly to CQs, the body of a Datalog rule can be viewed
as a set of atoms. More precisely, given a Datalog rule ρ of the form

R0(x̄) :– R1(ū1), . . . , Rn(ūn)

we define the set of relational atoms

Aρ = {R1(ū1), . . . , Rn(ūn)}.

We can thus talk about homomorphisms from rule-bodies to databases. It is
then easy to verify the following proposition that provides a useful character-
ization of rule satisfaction that will be used in our later proofs:

Proposition 36.4

Consider a Datalog rule ρ of the form R0(x̄) :– R1(ū1), . . . , Rn(ūn), and
a database D. The following are equivalent:

1. D |= ϕρ.

2. For every homomorphism h from Aρ to D, R0(h(x̄)) ∈ D.

It should be clear that a Datalog program Π admits infinitely many mod-
els. We proceed to explain how we choose the intended one. The idea is that
the intended model should not contain more atoms than needed for satisfying
ΦΠ . In other words, from all the models of ΦΠ , we choose the ⊆-minimal
ones, i.e., those models D such that, for every atom R(ā) ∈ D, it is the case
that D−{R(ā)} is not a model of ΦΠ . Based on this simple idea, we proceed
to define the semantics of a Datalog program on an input database.

Given a Datalog program Π and a database D of edb(Π), we define

MM(Π,D) = {D′ | D′ is a ⊆ -minimal model of Π and D ⊆ D′}.

We can show that MM(Π,D) contains exactly one database, which will give
rise to the semantics of Π on D. But first we need to establish an auxiliary
result. Let B(Π,D) be the union of D with the set of all relational atoms that
can be formed using relation names from idb(Π) and constants from Dom(D):

B(Π,D) = D ∪
{
R(ā) | R ∈ idb(Π) and ā ∈ Dom(D)ar(R)

}
.

We can show the following:

Lemma 36.5. Consider a Datalog program Π, and a database D of edb(Π).
It holds that B(Π,D) is a model of Π that contains D.

Proof. The fact that B(Π,D) contains D follows by definition. It remains to
show that B(Π,D) is a model of Π. Consider an arbitrary rule ρ ∈ Π of the
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form R0(x̄) :– R1(ū1), . . . , Rn(ūn), and assume that there is a homomorphism
h from Aρ to D. Due to the safety condition, every variable in x̄ occurs in Aρ.
This implies that h(x̄) is a tuple over Dom(D). Since R ∈ idb(Π) we conclude
that R(h(x̄)) ∈ B(Π,D), and thus B(Π,D) |= ϕρ. Consequently, B(Π,D) is a
model of ΦΠ , and thus, a model of Π, as needed. ut

We are now ready to show the claimed statement concerning MM(Π,D):

Proposition 36.6

Consider a Datalog program Π, and a database D of edb(Π). Then

|MM(Π,D)| = 1.

Proof. By Lemma 36.5, B(Π,D) is a model of Π that contains D. Therefore,
there exists a subset of B(Π,D) that belongs to MM(Π,D), which implies
that |MM(Π,D)| ≥ 1. Assume now that |MM(Π,D)| ≥ 2, and let D1, . . . , D`,
for ` ≥ 2, be its members. We proceed to show that the database

D∩ = D1 ∩ · · · ∩D`

is a model of Π that contains D, which contradicts the fact that D1, . . . , D` are
⊆-minimal. Since D ⊆ Di, for each i ∈ [`], we get that D ⊆ D∩. Consider now
a Datalog rule ρ ∈ Π of the form R0(x̄) :– R1(ū1), . . . , Rn(ūn), and assume
there exists a homomorphism h from Aρ to D∩. For each i ∈ [`], Di is a model
of Π, and thus, R0(h(x̄)) ∈ Di. Therefore, R0(h(x̄)) ∈ D∩, which means, due
to Proposition 36.4, that D∩ |= ϕρ. Hence, D∩ is a model of Π, as needed. ut

Having the above result in place, we are now ready to define the semantics
of a Datalog program on an input database.

Definition 36.7: Semantics of Datalog

Given a Datalog program Π, and a database D of edb(Π), the output of
Π on D, denoted Π(D), is the ⊆-minimal model of Π that contains D.

By Proposition 36.6, we get that Π(D) is uniquely determined by the pro-
gram and the database, and thus, Definition 36.7 provides a well-defined se-
mantics for Datalog programs. The crucial question that comes up is whether
we can devise an algorithm that computes the semantics of a Datalog program
Π on a database D. The next result provides such an algorithm. Let M(Π,D)
be all the subsets of B(Π,D) that are models of Π and contain D. Formally,

M(Π,D) = {D′ | D′ is a model of Π and D ⊆ D′ ⊆ B(Π,D)}.

Interestingly, the intersection of the databases occurring in M(Π,D) coincides
with the ⊆-minimal model of Π that contains D. By giving a proof similar to
that of Proposition 36.6, we can show that

⋂
M(Π,D) is a model of Π that

contains D, while the fact that is a ⊆-minimal model follows by construction.
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Theorem 36.8

Consider a Datalog program Π, and a database D of edb(Π). Then

Π(D) =
⋂

D′∈M(Π,D)

D′.

It is clear that Theorem 36.8 suggests the following procedure for comput-
ing the semantics of a Datalog program Π on a database D: construct all the
possible subsets of B(Π,D) that are models of Π and contain D, and then
compute their intersection. However, this is computationally a very expensive
procedure. As we shall see in the next section, the fixpoint approach provides
a more efficient algorithm for computing the database Π(D).

Fixpoint Semantics

We present an alternative way to define the semantics of Datalog that relies
on an operator called the immediate consequence operator. This operator is
applied on a database in order to produce new relational atoms. The model-
theoretic semantics presented above coincides with the smallest solution of a
fixpoint equation that involves the immediate consequence operator.

Definition 36.9: Immediate Consequence Operator

Consider a Datalog program Π, and a database D of sch(Π). A relational
atom R(ā) is an immediate consequence for Π and D if:

1. R(ā) ∈ D, or

2. There exists a rule ρ ∈ Π of the form R(x̄) :– R1(ū1), . . . , Rn(ūn)
such that (Aρ, x̄)→ (D, ā).

The immediate consequence operator of Π is defined as the function

TΠ : Inst(sch(Π)) → Inst(sch(Π))

such that

TΠ(D) = {R(ā) | R(ā) is an immediate consequence for Π and D}.

A database D of sch(Π) is called a fixpoint of TΠ if TΠ(D) = D.

The next lemma, which is easy to prove, collects some useful properties of
the TΠ operator that we are going to use below.

Lemma 36.10. Consider a Datalog program Π. The following hold:
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1. TΠ is monotone, i.e., for every two databases D and D′ of sch(Π), D ⊆ D′
implies TΠ(D) ⊆ TΠ(D′).

2. A database D of sch(Π) is a model of Π if and only if TΠ(D) ⊆ D.

3. Every fixpoint of TΠ is a model of Π.

We are now ready to establish the following crucial result, which states
that the model-theoretic semantics of a Datalog program on a database D
coincides with the ⊆-minimal fixpoint of TΠ that contains D.

Theorem 36.11

Consider a Datalog program Π, and a database D of edb(Π). It holds
that Π(D) is the ⊆-minimal fixpoint of TΠ that contains D.

Proof. We first show that Π(D) is a fixpoint of TΠ , i.e., TΠ(Π(D)) = Π(D).
Since Π(D) is a model of Π, Lemma 36.10 implies that TΠ(Π(D)) ⊆ Π(D).
By Lemma 36.10, TΠ is monotone, and thus, TΠ(TΠ(Π(D))) ⊆ TΠ(Π(D)).
Therefore, by Lemma 36.10, TΠ(Π(D)) is a model of Π that contains D.
But since Π(D) is the ⊆-minimal mode of Π that contains D, we immedi-
ately get that Π(D) ⊆ TΠ(Π(D)). Consequently, TΠ(Π(D)) = Π(D). By
Lemma 36.10, each fixpoint of TΠ that contains D is a model of Π that con-
tains D. Hence, Π(D) is the ⊆-minimal fixpoint of TΠ that contains D. ut

It remains to explain how the ⊆-minimal fixpoint of the TΠ operator that
contains the database D is constructed. This is essentially done by iteratively
applying the TΠ operator starting from the database D.

Definition 36.12: Application of the TΠ Operator

Consider a Datalog program Π, and a database D of edb(Π). We define

T 0
Π(D) = D and T i+1

Π (D) = TΠ(T iΠ(D)), for i ∈ N,

and we let
T∞Π (D) =

⋃
i≥0

T iΠ(D).

At first glance, the construction of T∞Π (D) requires infinitely many itera-
tions. However, since T∞Π (D) ⊆ B(Π,D), it is the case that T∞Π (D) is obtained
in at most |B(Π,D)| iterations. It is easy to verify that

T∞Π (D) = T
|B(Π,D)|
Π (D).

We now show the following result, which essentially states that the semantics
of a Datalog program Π on a database D can be computed by iteratively
applying the operator TΠ starting from D until a fixpoint is reached.
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Theorem 36.13

Consider a Datalog program Π, and a database D of edb(Π). It holds
that T∞Π (D) is the ⊆-minimal fixpoint of TΠ that contains D.

Proof. Recall first that the following hold:

T∞Π (D) = T
|B(Π,D)|
Π (D) and TΠ(T

|B(Π,D)|
Π (D)) = T

|B(Π,D)|
Π (D).

Therefore, T∞Π (D) is a fixpoint of TΠ that contains D. It remains to show
that T∞Π (D) is ⊆-minimal, or, equivalently, for every fixpoint D′ of TΠ that
contains D, T∞Π (D) ⊆ D′. Fix such a fixpoint D′. We can show via an easy
inductive argument that T iΠ(D) ⊆ D′, for every i ∈ N, which implies that
T∞Π (D) ⊆ D′. In fact, T 0

Π(D) ⊆ D′ since T 0
Π(D) = D. Moreover, T iΠ(D) ⊆ D′

implies TΠ(T iΠ(D)) = T i+1
Π (D) ⊆ TΠ(D′) = D′ by monotonicity of TΠ . ut

The next result is an immediate corollary of Theorems 36.11 and 36.13:

Corollary 36.14

Consider a Datalog program Π, and a database D of edb(Π). Then

Π(D) = T∞Π (D).

Datalog Queries

Recall that a k-ary query q produces a finite set of k-ary tuples q(D) ⊆ Constk,
for every database D. Datalog programs can be used to define queries. In order
to do this, we simply specify together with a Datalog program Π a relation
name R from idb(Π) that indicates the relation that collects the output of
the query. In other words, given a database D of edb(Π), after computing the
database Π(D), the output of the query is the set of tuples ā over Dom(D)
such that R(ā) ∈ Π(D). For example, the Datalog query over {Edge[2]} that
computes the pairs (v, u) such that u is reachable from v is (Π,Reachable),
where Π is the Datalog program over {Edge[2],Reachability[2]} given in Ex-
ample 36.2. The formal definition of Datalog queries follows.

Definition 36.15: Datalog Queries

A Datalog query over a schema S is a pair (Π,R), where Π is a Datalog
program over a schema S ∪ S′, with S′ being a schema disjoint from S,
such that edb(Π) ⊆ S, idb(Π) ⊆ S′, and R ∈ idb(Π).

Having the semantics of a Datalog program Π on a database D (see Def-
inition 36.7), we can naturally define what is the output of a Datalog query
(Π,R) on D; simply collect the tuples in the relation R after computing Π(D).
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Definition 36.16: Evaluation of Datalog Queries

Given a database D of a schema S, and a Datalog query q = (Π,R) over
S, the output of q on D is defined as the set of tuples

q(D) =
{
ā ∈ Constar(R) | R(ā) ∈ Π(D)

}
.

It is clear that the set q(D) belongs to P(Constar(R)). However, to be able
to say that q defines a query over S as in Definition 2.5, we need to ensure that
q(D) ∈ Pfin(Constar(R)), i.e., the output of q on D is finite. This is guaranteed
by the following result, which is an immediate consequence of Theorem 36.8,
and the fact that, for every database D′ ∈ M(Π,D), Dom(D′) = Dom(D).

Proposition 36.17

For a database D of schema S, and a Datalog query q = (Π,R) over S,

q(D) =
{
ā ∈ Dom(D)ar(R) | R(ā) ∈ Π(D)

}
.

Since Dom(D) is finite, Proposition 36.17 implies that q(D) ∈ Pfin(Constk),
and thus, q defines a query over S in the sense of Definition 2.5.

At the beginning of the chapter, we claimed that Datalog extends UCQs
with the feature of recursion. We can easily show that indeed Datalog leads to
a strictly more expressive language that is able to express recursive queries:

Theorem 36.18

The language of Datalog queries is strictly more expressive than the
language of UCQs.

Proof. From Theorem 35.2, we conclude that the reachability query on di-
rected graphs cannot by expressed as a UCQ, but we have already seen that
it can be easily expressed as a Datalog query. On the other hand, it is straight-
forward to see that every UCQ q(x̄) = q1∪· · ·∪qn can be equivalently written
as the Datalog query (Πq,Answer(x̄)), where Πq consists of the CQs q1, . . . , qn
seen as rules of the form Answer(x̄) : −body. ut

Recall from Chapter 30 that UCQs with variable-constant equality form a
strictly more expressive language than UCQs. It turns out that there exists a
UCQ with variable-constant equality that cannot be expressed as a Datalog
query, which means that Datalog and UCQs with variable-constant equality
form incomparable languages in terms of expressive power. This is because
UCQs with variable-constant equality may have in their output constants not
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from the domain of the database, which is not possible for Datalog queries
(Proposition 36.17). Consider, for example, the simple query q = ϕ(x) with

ϕ = (x = a),

where a is a constant. For D = {R(b)}, we get that q(D) = {(a)}.
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Expressiveness of Datalog Queries

We have already seen in the previous chapter that Datalog queries are strictly
more expressive than UCQs. We have also seen an easy inexpressibility result,
i.e., there are UCQs with variable-constant equality (in fact, the query ϕ(x)
with ϕ = (x = a)) that cannot be expressed as a Datalog query. The question
that comes up is how Datalog queries compare in terms of expressive power
with UCQs with inequality, and more generally, whether Datalog queries can
express negation, or at least a restricted form of negation.

Our goal in this chapter is to show that Datalog queries are inherently
positive. Note that the easy inexpressibility result that Datalog queries cannot
express ϕ(x) with ϕ = (x = a) relies on the property of Datalog queries
provided by Proposition 36.17, that is, the output of a Datalog query mentions
only constants from the domain of the database. However, this property is
not powerful enough to show that Datalog queries are inherently positive. We
proceed to establish that Datalog queries are preserved under homomorphisms
and monotone, and then use those properties to show that indeed Datalog
queries cannot express inequality, negative relational atoms, and difference.

Preservation Under Homomorphisms

The notion of preservation under homomorphisms for Datalog queries is de-
fined in the same way as for FO queries. For a Datalog program Π, we write
Dom(Π) for the set of constants occurring in the rules of Π.

Definition 37.1: Preservation Under Homomorphisms

Consider a Datalog query q = (Π,R) over a schema S. We say that q is
preserved under homomorphisms if, for every two databases D and D′

of S, and tuples ā ∈ Dom(D)ar(R) and b̄ ∈ Dom(D′)ar(R), it holds that
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(D, ā)→Dom(Π) (D′, b̄) and ā ∈ q(D) implies b̄ ∈ q(D′).

We proceed to show that Datalog queries are preserved under homomor-
phisms. The key idea underlying this result is that a Datalog query q over a
schema S can be converted into an equivalent UCQ q′ over S providing that
q′ can have infinitely many disjuncts, and each disjunct can be a CQ with in-
finitely many existentially quantified variables and conjuncts. Such CQs and
UCQs are called infinitary. The evaluation of infinitary CQs and UCQs is
defined in the same way as for CQs and UCQs, respectively. It is also easy to
show that every infinitary UCQ is preserved under homomorphisms; the proof
is essentially the same as the one of Proposition 30.10, which establishes that
UCQs are preserved under homomorphisms. Therefore, to show that Datalog
queries are preserved under homomorphisms it suffices to show that a Datalog
query over S can be converted into an equivalent infinitary UCQ over S.

Proposition 37.2

Consider a Datalog query q = (Π,R) over a schema S. There exists an
infinitary UCQ q′ = ϕ(x̄) over S with Dom(Π) = Dom(ϕ) and q ≡ q′.

For technical clarity, we show the above result only for Boolean queries.
Nevertheless, the given proof illustrates the key elements that are used in the
proof for non-Boolean queries, which we leave as an exercise. We first need to
introduce the basic notions of unification and unfolding.

We say that two atoms R(ū) and P (v̄) unify if the there exists a function
γ : Const ∪ Var → Const ∪ Var, which is the identity on Const and the set of
variables not mentioned in ū and v̄, such that R(γ(ū)) = P (γ(v̄)); γ is called
a unifier for R(ū) and P (v̄). Observe that for R(ū) and P (v̄) to unify it is a
necessary condition that R and P are the same relation names, and ū, v̄ have
the same arity. A most general unifier for R(ū) and P (v̄) is a unifier γ for
them such that, for every other unifier γ′ for R(ū) and P (v̄), there exists a
function θ : Const∪Var→ Const∪Var such that γ′ = θ ◦ γ. It is easy to show
that, for any two atoms R(ū) and P (v̄),

• if R(ū) and P (v̄) unify, then there is a most general unifier for them, and

• if γ1 and γ2 are most general unifiers for R(ū) and P (v̄), then, for every
relational atom S(w̄), it holds that S(γ1(w̄)) and S(γ2(w̄)) are the same
up to variable renaming.

These facts allow us to refer to the most general unifier for R(ū) and P (v̄).
We now proceed with the second basic notion, that is, the unfolding of a

CQ with a Datalog program, which relies on unification. Let q be the CQ

Answer :– R1(ū1), . . . , Rn(ūn)
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and ρ be the Datalog rule

P0(ȳ) :– P1(v̄1), . . . , Pm(v̄m).

We can always assume that q and ρ do not share variables since we can simply
rename the variables occurring in ρ without changing its semantic meaning.
Assume now that, for i ∈ [n], Ri(ūi) and P0(ȳ) unify, and let γ be their most
general unifier. The unfolding of q with ρ using γ, denoted qρ,γ , is the CQ

Answer :– R1(γ(ū1)), . . . , Ri−1(γ(ūi−1)),

Ri+1(γ(ūi+1)), . . . , Rn(γ(ūn)), P1(γ(v̄1)), . . . , Pm(γ(v̄m)).

Let {Ri1(ūi1), . . . , Ri`(ūi`)} be the set that collects all the relational atoms in
the body of q that unify with P0(ȳ), and let γij be the most general unifier
for Rij (ūij ) and P0(ȳ), for each j ∈ [`]. The unfolding of q with ρ, denoted
Unfoldρ(q), is defined the set of CQs {qρ,γi1 , . . . , qρ,γi`}. Now, for a Datalog
program Π, the unfolding of q with Π, denoted UnfoldΠ(q), is⋃

ρ∈Π
Unfoldρ(q).

Therefore, UnfoldΠ(·) can be seen as an operator that takes as input a CQ and
computes all the CQs that can be obtained by unfolding q with the Datalog
rules of Π. We can then define the set of all CQs that can be obtained starting
from q and exhaustively applying the UnfoldΠ(·) operator.

Definition 37.3: Application of the UnfoldΠ(·) Operator

Consider a Datalog program Π over S, and a CQ q over S. We define

Unfold0
Π(q) = {q} and Unfoldi+1

Π (q) =
⋃

q′∈UnfoldiΠ(q)

UnfoldΠ(q′)

for i ≥ 0, and let

Unfold∞Π (q) =
⋃
i≥0

UnfoldiΠ(q).

We are now ready to show Proposition 37.2.

Proof (of Proposition 37.2). We prove this for Boolean queries, i.e., we assume
that the Datalog query q = (Π,R) is Boolean, that is, ar(R) = 0. We further
assume, without affecting the generality of the proof, that there is exactly one
rule ρR ∈ Π of the form R() :– body, and there is no rule in Π that mentions
R in its body, i.e., we assume that the intensional relation name R occurs only
in the head of ρR. We can indeed make this assumption since we can always
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rewrite q into an equivalent Datalog query with the above property: construct
Π∗ by replacing every occurrence of the relation name R in Π with a new
relation name R∗ not occurring in sch(Π), and then consider the query

q∗ = (Π∗ ∪ {R() :– R∗()}, R)

It is clear that edb(Π) = edb(Π∗) and q(D) = q∗(D) for every D of edb(Π).
In what follows, let qR for the Boolean CQ such that AqR = AρR , i.e., qR is
the Boolean CQ that has as its body the body of the rule ρR.

We are now ready to define the desired infinitary UCQ over S by using the
UnfoldΠ(·) operator. We write Unfold∞Π (qR)|S for the subset of Unfold∞Π (qR)
that keeps only the CQs over S, that is, the CQs that use only relation names
from S. We then define the infinitary UCQ

qΠR =
⋃

q′∈Unfold∞Π (qR)|S

q′.

By construction, qΠR is an infinitary UCQ over S, and Π and qΠR mention
exactly the same constants. It remains to show that q and qΠR are equivalent,
i.e, for every database D of S, q(D) = qΠR (D). To this end, it suffices to show
that, for a database D of S, the following are equivalent:

1. AρR → Π(D).

2. There exists a sequence of CQs (qi)i∈[0,n], for some n ≥ 0, such that:

• q0 = qR,

• qi ∈ UnfoldΠ(qi−1), for each i ∈ [n], and

• Aqn → D.

The Direction (1)⇒ (2)

By hypothesis, there exists a sequence of databases (Di)i∈[0,n], for some n ≥ 0,
such that: (i) D0 = D, (ii) for each i ∈ [n], Di = Di−1 ∪ {P (ā)}, where
P (ā) ∈ TΠ(Di−1), i.e., there is ρi−1 ∈ Π of the form P (x̄) :– body such that
(Aρi−1 , x̄) → (Di−1, ā) via a homomorphism hi−1, and (iii) AρR → Dn. We
proceed to show the following auxiliary lemma:

Lemma 37.4. There exists a sequence of CQs (qi)i∈[0,n] such that:

• q0 = qR,

• qi = qi−1 or qi ∈ Unfoldρn−i(qi−1), for each i ∈ [n], and

• Aqi → Dn−i, for each i ∈ [n].

Proof. We proceed by induction on the length of (Di)i∈[0,n]. For the base case
the statement holds trivially since AρR → D0, which in turn implies that
AqR → D0. In other words, the desired sequence of CQs consists only of q0.

We proceed with the inductive step. By hypothesis, AρR → Dn via a
homomorphism µ, and thus, AqR → Dn via µ. We consider two cases:
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• Assume first that P (hi−1(x̄)) 6∈ µ(AAqR ), or P (hi−1(x̄)) ∈ µ(AAqR ) and
P (hi−1(x̄)) ∈ Dn−1. This implies that AqR → Dn−1. By induction hy-
pothesis, there exists a sequence of CQs (q′i)i∈[0,n−1], where q′0 = qR, and,
for each i ∈ [n− 1], q′i = q′i−1 or q′i ∈ Unfoldρn−i(q

′
i−1), and Aqi → Dn−i.

Therefore, the claim follows due to the sequence of CQs q′0, q
′
0, q
′
1, . . . , q

′
n−1.

• The interesting case is when P (hn−1(x̄)) ∈ Dn − Dn−1. It is clear that
there exists P (ū) ∈ AqR such that P (µ(ū)) = P (hn−1(x̄)), which means
that γ = µ ∪ hn−1 is a unifier for P (ū) and P (x̄). This implies that there
exists a most general unifier γ̂ for P (ū) and P (x̄). Let q̂ be the unfolding of
qR with ρn−1 using γ̂. We can show that Aq̂ → Dn−1. By definition of most
general unifiers, γ = θ ◦ γ̂ for some function θ : Const∪Var→ Const∪Var.
It is clear that θ is a homomorphism from Aq̂ to Dn−1 since γ maps Aρn−1

to Dn−1. Therefore, Aq̂ → Dn−1 as claimed above.

By induction hypothesis, there is a sequence of CQs (q′i)i∈[0,n−1], where
q′0 = q̂, and, for each i ∈ [n − 1], q′i = q′i−1 or q′i ∈ Unfoldρn−1

(q′i−1), and
Aqi → Dn−1. The claim follows due to the sequence of CQs qR, q

′
0, . . . , q

′
n−1.

This completes the proof of Lemma 37.4. ut

We can now complete the proof of the direction (1) ⇒ (2). Let (qi)i∈[0,n]

be the sequence of CQs provided by Lemma 37.4. Clearly, q0 = qR and Aqn →
Dn. However, it is not the case that qi ∈ UnfoldΠ(qi−1), for each i ∈ [n], due
to the fact that some CQs in (qi)i∈[0,n] are simply repeated. This can be easily
fixed by removing the redundant CQs. Let Ind be the set of indices{

ij | j ∈ [n] and qij 6∈ UnfoldΠ(qij−1)
}
.

Observe that 0 6∈ Ind, and that, for each k ∈ Ind, qk = qk−1. Therefore, the
sequence of CQs (q′i)i∈[0,m], where m ≤ n, obtained from (qi)i∈[0,n] by simply
removing the CQs {qk | k ∈ Ind} is such that q′0 = qR, q′i ∈ UnfoldΠ(q′i−1),
for each i ∈ [m], and Aq′m → D. This implies that (2) holds, as needed.

The Direction (2)⇒ (1)

We first establish the following auxiliary lemma:

Lemma 37.5. For every i ∈ [n], Aqi → Π(D) implies Aqi−1
→ Π(D).

Proof. By hypothesis, there exists a homomorphism h that maps Aqi to Π(D).
Since qi ∈ UnfoldΠ(qi−1), we conclude that qi ∈ Unfoldρ(qi−1) for some ρ ∈ Π
of the form P (x̄) :– body. This means that there exists an atom P (ū) ∈ Aqi−1

that unifies with P (x̄), and qi is the unfolding of qi−1 with ρ using the most
general unifier γ for P (x̄) and P (ū). We show that the function µ = h ◦ γ is
a homomorphism from Aqi−1 to Π(D), which witnesses that Aqi−1 → Π(D).

Since h maps Aqi to Π(D), we get that h maps γ(Aqi−1
−{P (ū)}) to Π(D),

i.e., µ maps Aqi−1
−{P (ū)} to Π(D). It remains to show that P (µ(ū)) ∈ Π(D).
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Since γ(Aρ) ⊆ γ(Aqi), we conclude that h maps γ(Aρ) to Π(D), i.e., µ is a
homomorphism fromAρ toΠ(D). This implies that P (µ(x̄)) ∈ Π(D). Observe
that P (µ(x̄)) = P (µ(ū)). Indeed, since γ(x̄) = γ(ū), we get that

P (µ(x̄)) = P (h(γ(x̄))) = P (h(γ(ū))) = P (µ(ū)),

which in turn implies that P (µ(ū)) ∈ Π(D), and the claim follows. ut

We can now complete the proof of the direction (2)⇒ (1). By hypothesis,
Aqn → D, and thus, Aqn → Π(D); the latter holds due to the monotonicity of
CQs (Corollary 14.7). By repeatedly applying Lemma 37.5, we get that Aq0 →
Π(D). Since q0 = qR and AqR = AρR , we conclude that AρR → Π(D). ut

By Proposition 37.2, and the fact that infinitary UCQs are preserved under
homomorphisms, we immediately get the following result:

Corollary 37.6

Every Datalog query is preserved under homomorphisms.

Another key property is that of monotonicity. Recall that a query q over
a schema S is monotone if, for every two databases D,D′ of S, we have that

D ⊆ D′ implies q(D) ⊆ q(D′).

We can show that homomorphism preservation implies monotonicity of Data-
log queries. In fact, the proof is exactly the same as the one of Corollary 14.7,
which establishes that every CQ is monotone.

Corollary 37.7

Every Datalog query is monotone.

Datalog Queries and Negation

We now delineate the expressiveness boundaries of Datalog queries. We show
that they cannot express inequality, negative relational atoms, and difference.

Datalog queries cannot express inequality. This is because already CQs
with inequality are not preserved under homomorphisms. Consider

q1 = ∃x∃y
(
R(x, y) ∧ x 6= y

)
.

For D = {R(a, b)} and D′ = {R(c, c)}, we have that D →∅ D′. However,
D |= q1 while D′ 6|= q1. As a second example, consider the CQ 6=
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q2 = ∃x (S(x) ∧ x 6= a),

where a is a constant. Given D = {S(b)} and D′ = {S(a)}, we have that
D →{a} D′. However, D |= q2 while D′ 6|= q2.

Datalog queries cannot express negative relational atoms. The reason
is because such queries are not monotone. Consider the query

q = ¬P (a),

where a is a constant. If we take D = ∅ and D′ = {P (a)}, then D ⊆ D′

but D |= q while D′ 6|= q.

Datalog queries cannot express difference. This is because difference is
not monotone. Consider, for example, the FO query

q = ∃x(P (x) ∧ ¬Q(x)).

For D = {P (a)} ⊆ D′ = {P (a), Q(a)}, we have that D |= q while D′ 6|= q.
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Datalog Query Evaluation

In this chapter, we study the complexity of evaluating Datalog queries, that
is, Datalog-Evaluation. This is the problem of checking whether ā ∈ q(D) for
a Datalog query q, a database D, and a tuple ā over Dom(D).

Combined Complexity

We first look at the combined complexity of the problem, i.e., when the input
consists of a Datalog query q = (Π,R), a database D of edb(Π), and a tuple
ā ∈ Dom(D)ar(R). Recall that the fixpoint approach for defining the semantics
of Datalog programs provides an algorithm for computing the database Π(D).
In particular, by Corollary 36.14, Π(D) = T∞Π (D), which in turn implies that

ā ∈ q(D) if and only if R(ā) ∈ T∞Π (D).

We proceed to analyze the time complexity of checking whether the fact R(ā)
belongs to T∞Π (D). Recall that for computing T∞Π (D) we need to apply the
TΠ operator at most |B(Π,D)| times. It is easy to verify that

|B(Π,D)| ≤ |sch(Π)| · |Dom(D)|ar(Π),

where ar(Π) is the maximum arity over all relation names of sch(Π). We now
analyze the time complexity of the i-th application of the TΠ operator. Let
maxvar and maxbody be the maximum number of variables and body atoms,
respectively, in a rule of Π. The i-th application of TΠ takes time

O(|Π| · |Dom(D)|maxvar ·maxbody · |T i−1
Π (D)|)

since, for each ρ ∈ Π, we need to consider all the possible functions h, which
are the identity on Const, from the variables and constants in ρ to Dom(D),
and then check whether h is a homomorphism from the set of atoms in the
body of ρ to T i−1

Π (D). Recall that |T i−1
Π (D)| ≤ |B(Π,D)|. Hence, each ap-

plication of TΠ takes exponential time. Summing up, we need to apply the
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TΠ operator exponentially many times, and each application takes exponen-
tial time. Consequently, T∞Π (D) can be computed in exponential time, which
implies that checking if R(ā) ∈ T∞Π (D) is feasible in exponential time.

One may think that there is a more clever procedure than naively comput-
ing T∞Π (D) that allows us to show that the complexity of Datalog-Evaluation
matches the complexity of UCQ-Evaluation, that is, NP-complete. However,
we can show that exponential time is the best that we can achieve.

Theorem 38.1

Datalog-Evaluation is ExpTime-complete.

Proof. We have already seen that Datalog-Evaluation is in ExpTime. We pro-
ceed to show that Datalog-Evaluation is ExpTime-hard. This is done by show-
ing that an arbitrary language L in ExpTime is polynomial time reducible to
Datalog-Evaluation. Let M = (Q,Σ, δ, s) be a (deterministic) Turing Machine
that decides L in exponential time; details on Turing Machines can be found
in Appendix B. The goal is, on input w, to construct in polynomial time in
|w| a database D, and a Boolean Datalog query q = (Π,Yes), i.e., Yes is a
0-ary relation name, such that

M accepts w if and only if q(D) = true.

We first describe the high level idea of the reduction.
Consider a pair (p, a) ∈ (Q − {“yes”, “no”}) × Σ. The transition rule

δ(p, a) = (p′, b,dir) expresses the following if-then statement:

if at some time instant t of the computation of M on w, we have that M is
in state p, the head points to the tape cell c, and c contains the symbol a

then at time instant t+1, we have that M is in state p′, the cell c contains b,
and the head points to the cell c′, where c′ is the cell right to c (respectively,
the cell left to c, c itself) if dir =→ (respectively, dir =←, dir = −).

We can naturally encode such an if-then statement via Datalog rules since
a Datalog rule is essentially an if-then statement. This in turn allows us to
describe the complete evolution of M on input w from its start configuration
sc(w) to configuration c that can be reached in 2m steps, where m = |w|k for
some k ∈ N. To achieve this, we need a way to refer to the i-th time instant of
the computation of M on w, and the i-th tape cell of M , where 0 ≤ i ≤ 2m−1.
This can be done by representing the time instances and the tape cells from
0 to 2m− 1 by tuples of size m over {0, 1}, on which the functions “next time
instant” and “next tape cell” are realized by means of a successor relation
Succm from a linear order �m on {0, 1}m. We now formalize this description.
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The Extensional and Intensional Schema

We begin by describing the extensional and intensional schema of Π. As we
shall see, there will be relations Succi, Firsti and Lasti, for each i ∈ [m], which
tell the successor, the first, and the last element from a linear order �i on
{0, 1}i, respectively, that will be inductively constructed by Π starting from
Succ1, First1 and Last1. The extensional schema edb(Π) is

{Succ1,First1,Last1},

where Succ1 is a binary relation name, and First1, Last1 are unary relation
names. The intensional schema idb(Π) is defined as

{Symbola | a ∈ Σ} ∪ {Head} ∪ {Statep | p ∈ Q} ∪
{Yes} ∪

⋃
i∈[2,m]{Succi,Firsti,Lasti} ∪ {�m},

where the arity of the relations names Symbola, Head, and �m is 2m, of
Statep is m, of Succi is 2i, of Firsti and Lasti is i, and of Yes is 0.

The intuitive meaning of the relation names of idb(Π), apart from Succi,
Firsti, Lasti, and �m that have been discussed above, is as follows:

• Symbola(t, c): at time instant t, the tape cell c contains the symbol a.

• Head(t, c): at time instant t, the head points at cell c.

• Statep(t): at time instant t, M is in state p.

• Yes(): M has reached an accepting configuration.

Having edb(Π) and idb(Π) in place, we can now proceed with the definition
of the database D and the Datalog program Π.

The Database D

We only need to store the relations Succ1, First1, and Last1, which form the
base case of the inductive definition of Succi, Firsti, and Lasti. In particular,

D = {Succ1(0, 1),First1(0),Last1(1)}.

The Program Π

The program Π, which is responsible for faithfully describing the evolution of
M on w starting from sc(w), is the union of the following five programs:

1. Π� that inductively constructs Succi, �i, and Firsti, for each i ∈ [m].

2. Πstart that constructs the start configuration sc(w) = (s, ., w,t, . . . ,t).

3. Πδ that simulates the transition function of M .

4. Πinertia that ensures that the tape cells that have not been changed at
time instant t keep their values at time instant t+ 1.
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5. Πaccept that checks whether M has reached an accepting configuration.

The definitions of the above Datalog program follow. For notational conve-
nience, we write x̄ for x1, . . . , xm, and x̄i for xi,1, . . . , xi,m.

The Program Π�. For each i ∈ [m− 1], we add the Datalog rules:

Succi+1(z, x̄, z, ȳ) :– Succi(x̄, ȳ),First1(z)

Succi+1(z, x̄, z, ȳ) :– Succi(x̄, ȳ),Last1(z)

Succi+1(z, x̄, v, ȳ) :– Succ1(z, v),Lasti(x̄),Firsti(ȳ)

Firsti+1(x, ȳ) :– First1(x),Firsti(ȳ)

Lasti+1(x, ȳ) :– Last1(x),Lasti(ȳ)

�m (x̄, ȳ) :– Succm(x̄, ȳ)

�m (x̄, z̄) :– �m (x̄, ȳ),Succm(ȳ, z̄).

The Program Πstart. Assuming that w = a0, . . . , a|w|−1, we add the rules:

States(x̄) :– Firstm(x̄)

Symbola0
(x̄, x̄) :– Firstm(x̄)

Symbola1
(x̄0, x̄1) :– Firstm(x̄0),Succm(x̄0, x̄1)

...

Symbola|w|−1
(x̄0, x̄i) :– Firstm(x̄0),Succm(x̄0, x̄1), . . . ,Succm(x̄|w|−2, x̄|w|−1)

Symbolt(x̄0, ȳ) :– Firstm(x̄0),Succm(x̄0, x̄1), . . . ,

Succm(x̄|w|−2, x̄|w|−1),�m (x̄|w|−1, ȳ)

Head(x̄, x̄) :– Firstm(x̄)

The Program Πδ. For each pair (p, a) ∈ (Q − {“yes”, “no”}) × Σ, with
δ(p, a) = (p′, b,dir), we add the following Datalog rules. For brevity, let

Φ(p,a)(x̄, ȳ, z̄) = Statep(x̄),Head(x̄, ȳ),Symbola(x̄, ȳ),Succm(x̄, z̄).

The following rules change the state from p to p′, and the symbol from a to
b at the next time instant of the computation:

Statep′(z̄) :– Φ(p,a)(x̄, ȳ, z̄)

Symbolb(z̄, ȳ) :– Φ(p,a)(x̄, ȳ, z̄).

The next rule, which is responsible for moving the head, depends on the
direction dir ∈ {→,←,−}. In particular, if dir =→, then we add the rule

Head(z̄, v̄) :– Φ(p,a)(x̄, ȳ, z̄),Succm(ȳ, v̄).

If dir =←, then we add the rule
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Head(z̄, v̄) :– Φ(p,a)(x̄, ȳ, z̄),Succm(v̄, ȳ).

Finally, if dir = −, then we add the rule

Head(z̄, ȳ) :– Φ(p,a)(x̄, ȳ, z̄).

The Program Πinertia. Recall that this program is responsible for, essen-
tially, copying the content of the tape cells that have not been affected during
the transition from time instant t to time instant t + 1. The following rule
achieves this for the tape cells coming before the current cell

Symbola(v̄, ȳ) :– Symbola(x̄, ȳ),Head(x̄, z̄),�m (ȳ, z̄),Succm(x̄, v̄).

The next rule does the same for the tape cells coming after the current cell

Symbola(x̄, ȳ) :– Symbola(x̄, ȳ),Head(x̄, z̄),�m (z̄, ȳ),Succm(x̄, v̄).

The Program Πaccept. Finally, we check whether M has reached an accept-
ing configuration via the Datalog rule

Yes :– State“yes”(x̄).

It is not difficult to verify that D and Π can be constructed from M and
w in polynomial time. It is also not hard to see that Π faithfully describes
the computation of M on input w. This means that, with q = (Π,Yes), M
accepts w if and only if q(D) = true (we leave the proof as an exercise). ut

Data Complexity

We now concentrate on the data complexity of Datalog-Evaluation. As dis-
cussed in Chapter 2, when we study the data complexity of query evaluation,
we essentially consider the query to be fixed, and only the database and the
candidate output are considered as input. Formally, we are interested in the
complexity of the problem q-Evaluation for a Datalog query q, which takes as
input a database D and a tuple ā over Dom(D), and asks whether ā ∈ q(D).
As usual, by convention, we say that Datalog-Evaluation is C-complete in data
complexity for a complexity class C if q-Evaluation is in C for every Datalog
query q, and there exists a Datalog query q such that q-Evaluation is C-hard.
We show that fixing the query has an impact on the complexity of the problem,
that is, Datalog-Evaluation, from provably intractable, becomes tractable.

Theorem 38.2

Datalog-Evaluation is PTime-complete in data complexity.
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Proof. The upper bound follows from the analysis performed at the beginning
of the chapter. Fix a Datalog query q = (Π,R). Given a database D of edb(Π),
and a tuple ā over Dom(D), the analysis performed above shows that T∞Π (D)
can be computed in time O(|Dom(D)|k) for some k ∈ N that solely depends
on q, which implies that checking whether R(ā) ∈ T∞Π (D) is feasible in time
O(|Dom(D)|k). Therefore, q-Evaluation is in PTime, as needed.

For the lower bound we provide a reduction from a standard PTime-hard
problem known as monotone circuit value. For n ∈ N, an n-input, single-output
monotone Boolean circuit is a directed acyclic graph C with exactly n nodes
without incoming edges, the sources, and exactly one node without outgoing
edges, the sink. All the nodes that are not sources are labeled with either ∧
or ∨ (¬ is not allowed, hence the term monotone). We write C(v1, . . . , vn) to
indicate that the i-th source of C is the node vi, for i ∈ [n]. An input to such a
Boolean circuit C(v1, . . . , vn) is a tuple (w1, . . . , wn) ∈ {0, 1}n. The output of
C(v1, . . . , vn) on (w1, . . . , wn), denoted C(w1, . . . , wn), is defined as expected.
Formally, we recursively assign to every node v a value bv as follows:

• bvi = wi, for each i ∈ [n], and

• for every node u 6∈ {v1, . . . , vn}, assuming that the two incoming edges of
u are coming from u1 and u2, bu = bu1

� bu2
, where � is the label of u.

The output C(w1, . . . , wn) is defined as bvs , where vs is the sink of C. We are
now ready to introduce the monotone circuit value problem:

Problem: MCVP

Input: An n-input, single-output monotone Boolean circuit C(v̄),
and a tuple w̄ ∈ {0, 1}n, where n ∈ N

Output: true if C(w̄) = 1, and false otherwise

Our goal is to show that there exists a Datalog query q such that MCVP can
be reduced in q-Evaluation via a reduction that is computable in deterministic
logarithmic space. Intuitively, the query q should specify a generic procedure
for evaluating monotone Boolean circuits. This can be straightforwardly done
via the query q = (Π,Yes), where Π is the Datalog program

True(x) :– Or(x, y, z),True(y)

True(x) :– Or(x, y, z),True(z)

True(x) :– And(x, y, z),True(y),True(z)

Yes :– Sink(x),True(x).

We now proceed to show that MCVP can be reduced in q-Evaluation via a
reduction that is computable in deterministic logarithmic space. Consider an
instance of MCVP, i.e., an n-input, single-output monotone Boolean circuit
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C(v1, . . . , vn), and a tuple w̄ = (w1, . . . , wn) ∈ {0, 1}n, for an integer n ∈ N.
For brevity, we write ui = uj ∧ uk for the fact that the node ui is labeled by
∧, and its incoming edges are coming from the nodes uj and uk; analogously,
we write ui = uj ∨ uk. We define the database DC,w̄ of edb(Π) as follows:

{True(vi) | i ∈ [n] and wi = 1}
∪ {And(ui, uj , uk) | ui, uj , uk are nonsource nodes of C, and ui = uj ∧ uk}
∪ {Or(ui, uj , uk) | ui, uj , uk are nonsource nodes of C, and ui = uj ∨ uk}
∪ {Sink(vs) | vs is the sink of C}.

It is clear that the database DC,w̄ can be computed in deterministic logarith-
mic space in the size of C and w̄. It is also easy to verify that

C(w̄) = 1 if and only if q(DC,w̄) = true.

Therefore, q-Evaluation is PTime-hard, and the claim follows. ut





39

Static Analysis of Datalog Queries

In this chapter, we discuss central static analysis tasks for Datalog queries that
are important for query optimization purposes. In fact, we consider the three
fundamental tasks that we have also studied for first-order and conjunctive
queries, namely satisfiability, containment, and equivalence. We also discuss a
new static analysis task, known as boundedness, that is relevant for recursive
query languages such as Datalog. In simple words, a Datalog query is bounded
if it can be equivalently rewritten as a Datalog query without recursion.

As we shall see, we can effectively check whether a Datalog query is satis-
fiable. On the other hand, the problem of checking whether a Datalog query
is contained into (or is equivalent to) another Datalog query, as well as the
problem of checking whether a Datalog query is bounded, are undecidable.

Satisfiability

We start by considering the satisfiability problem: given a Datalog query q =
(Π,R), is there a database D of edb(Π) such that q(D) 6= ∅? We proceed to
show that this problem is decidable:

Theorem 39.1

Datalog-Satisfiability is decidable.

Proof. We prove the result for constant-free Datalog queries, that is, Datalog
queries such that the rules occurring in the program do not mention constants,
and leave the general case as an exercise. Consider such a query q = (Π,R).
We first characterize the satisfiability of q via a very simple database. Let

DΠ = {P (?, . . . , ?) | P ∈ edb(Π)},

where ? is a value from Const. We can show the following lemma:
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Lemma 39.2. It holds that q is satisfiable if and only if q(DΠ) 6= ∅.

Proof. It is clear that if q(DΠ) 6= ∅, then q is satisfiable witnessed by the
simple database DΠ . Assume now that q is satisfiable. This implies that there
exists a database D over edb(Π) such that q(D) 6= ∅. Let h : Dom(D)→ {?}
be the function that maps each constant occurring in D to ?. Clearly, h(D) ⊆
DΠ , which in turn allows us to show that h(Π(D)) ⊆ Π(DΠ); the latter can
be shown via an easy inductive argument. Therefore, R(?, . . . , ?) ∈ Π(DΠ),
which in turn implies that {?}ar(R) ∈ q(DΠ), and the claim follows. ut

Lemma 39.2 leads to the following simple procedure for checking whether
the Datalog query q = (Π,R) is satisfiable:

if {?}ar(R) ∈ q(DΠ), then yes; otherwise, no.

By Theorem 38.1, checking whether {?}ar(R) ∈ q(DΠ) is decidable, which in
turn implies that Datalog-Satisfiability is decidable, and the claim follows. ut

Containment and Equivalence

We now concentrate on the containment problem for Datalog: given two Dat-
alog queries q1 = (Π1, R1) and q2 = (Π2, R2) over a schema S (in particular,
with edb(Π1) = edb(Π2)), is it the case that q1 ⊆ q2. We can show that:

Theorem 39.3

Datalog-Containment is undecidable.

The above result is shown via a reduction from a known undecidable prob-
lem, namely containment for context-free grammars. A context-free grammar
is a set of production rules that describe how to produce words over a certain
alphabet. Consider, for example, the grammar G consisting of the rules

S → AA A → a A → b.

The first rule states that we can replace S with AA, while the other two rules
state that A can be replaced with a or b. Assuming that S is the starting point
of the production, and {a, b} is the underlying alphabet, the above grammar
produces the words aa, ab, ba, bb. Let us formalize the above discussion.

A context-free grammar (CFG) is a tuple (N,T, P, S), where

• N is a finite set, the non-terminal symbols,

• T is a finite set disjoint from N , the terminal symbols,

• P is a finite subset of N × (N ∪ T )∗, the production rules, and

• S ∈ N , the start symbol.
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For any two words v, w ∈ (N ∪ T )∗, we say that v directly yields w, written
v ⇒ w, if there exists (x, y) ∈ P and z1, z2 ∈ (N ∪ T )∗ such that v = z1xz2

and w = z1yz2. Now, for any two words v, w ∈ (N ∪ T )∗, we say that v yields
w, written as v ⇒∗ w, if there exists k ≥ 1, and words z1, . . . , zk ∈ (N ∪ T )∗

such that v = z1 ⇒ z2 · · · ⇒ zk = w. The language of G, denoted L(G), is the
set of words {w ∈ T ∗ | S ⇒∗ w}, that is, all the words w over T that can be
obtained starting from S and applying production rules of P .

Given two context-free grammars G1 and G2, we say that G1 is contained
in G2, denoted G1 ⊆ G2, if L(G1) ⊆ L(G2). The containment problem for
context-free grammars is defined as expected:

Problem: CFG-Containment

Input: Two context-free grammars G1 and G2

Output: true if G1 ⊆ G2, and false otherwise

Proof (of Theorem 39.3). We provide a reduction from CFG-Containment to
Datalog-Containment. In other words, given two context-free grammars G1 and
G2, the goal is to construct two Datalog queries q1 and q2 such that G1 ⊆ G2

if and only if q1 ⊆ q2. We first explain how to transform a CFG into a Datalog
query. Let us clarify that, in what follows, given a CFG G = (N,T, P, S), we
assume that P is a finite subset of N × ((N − {S}) ∪ T )∗ − {ε}, where ε
denotes the empty string. In other words, there is no rule in P that produces
the empty string, and the start symbol does not occur in the right-hand side of
a rule. This does not affect the generality of our proof since CFG-Containment
remains undecidable even with the above simplifying assumptions.

We proceed to define the Datalog program ΠG, where G = (N,T, P, S) is
a CFG. The extensional schema edb(ΠG) and intensional schema idb(ΠG) are

{SymbolA | A ∈ T} and {SymbolA | A ∈ N},

respectively, where all the relations are binary. For each production rule in P

(A,A1 · · ·An),

for n ≥ 1, we add to ΠG the Datalog rule

SymbolA(x1, xn+1) :– SymbolA1
(x1, x2),SymbolA2

(x2, x3), . . . ,

SymbolAn(xn, xn+1).

We finally define the Datalog query qG = (ΠG,SymbolS).

Example 39.4: From CFG to Datalog

Consider the CFG G = (N,T, P, S), where N = {A,S}, T = {a, b}, and
P = {(S,Aa), (A, abA), (A, aa)}. The Datalog program ΠG is
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SymbolS(x1, x3) :– SymbolA(x1, x2),Symbola(x2, x3)

SymbolA(x1, x4) :– Symbola(x1, x2),Symbolb(x2, x3),SymbolA(x3, x4)

SymbolA(x1, x3) :– Symbola(x1, x2),Symbola(x2, x3),

while the query qG = (ΠG,SymbolS).

To show the correctness of the above construction, we need to introduce
the notion of proof tree of an atom from a Datalog program. Roughly speak-
ing, such a proof tree explains how an atom can be derived from a Datalog
program, i.e., it provides a proof for that atom. As we shall see below, this no-
tion is closely related to the notion of derivation tree in context-free languages
that essentially explains how a word can be derived from a CFG.

Consider an atom R(ā), with ā ∈ Constar(R), and a Datalog program Π.
A proof tree of R(ā) from Π is a labeled rooted tree T = (V,E, λ), where λ
is a function from V to the set of atoms that can be formed using relations
from sch(Π) and constants from Const, such that

1. assuming that v ∈ V is the root node of T , λ(v) = R(ā), and

2. for each internal node v ∈ V with children u1, . . . , un for n ≥ 1, there exists
a rule ρ ∈ Π of the form R0(x̄0) :– R1(x̄1), . . . , Rn(x̄n), and a function h
from the constants and variables in ρ to Const, which is the identity on
Const, such that λ(v) = R0(h(x̄0)) and λ(ui) = Ri(h(x̄i)), for each i ∈ [n].

We say that the sequence of atoms R1(ā1), . . . , Rn(ān) is induced by the proof
tree T if, assuming that the leaf nodes of T are v1, . . . , vn (in this order), then
λ(vi) = Ri(āi), for each i ∈ [n]. Given a database D of edb(Π), a proof tree of
R(ā) from Π and D is a proof tree T = (V,E, λ) of R(ā) from Π such that,
for each v ∈ V , λ(v) ∈ B(Π,D), i.e., λ(v) is an atom with a relation from
sch(Π) and constants from Dom(D), and for each leaf node v of T , λ(v) ∈ D.

Example 39.5: Proof Tree

Consider the Datalog program ΠG obtained from the CFG G as in Ex-
ample 39.4. A proof tree of the atom SymbolS(c1, c6) from ΠG and

D ⊇ {Symbola(c1, c2),Symbolb(c2, c3),Symbola(c3, c4),

Symbola(c4, c5),Symbola(c5, c6)}

is the following one
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SymbolS(c1, c6)

SymbolA(c1, c5)

Symbola(c1, c2) Symbolb(c2, c3) SymbolA(c3, c5)

Symbola(c3, c4) Symbola(c4, c5)

Symbola(c5, c6)

Clearly, the above proof tree induces the sequence of atoms

Symbola(c1, c2),Symbolb(c2, c3),Symbola(c3, c4),

Symbola(c4, c5),Symbola(c5, c6).

It is an easy exercise to show the following lemma:

Lemma 39.6. Consider a Datalog query q = (Π,R), a database D of edb(Π),
and a tuple ā ∈ Dom(D)ar(R). The following are equivalent:

1. ā ∈ q(D).

2. There exists a proof tree of R(ā) from Π and D.

The next technical lemma makes apparent the intention underlying the
transformation of a CFG G to a Datalog program ΠG.

Lemma 39.7. Consider a CFG G = (N,T, P, S), and two words a1 · · · an ∈
T ∗ and c1 · · · cn+1 ∈ Const∗, for n ≥ 1. The following are equivalent:

1. a1 · · · an ∈ L(G).

2. There exists a proof tree of SymbolS(c1, cn+1) from ΠG that induces the
sequence of atoms Symbola1

(c1, c2), . . . ,Symbolan(cn, cn+1).

The proof of the above lemma, which is left as an exercise, relies on the
correspondence between proof trees and derivation trees in context-free lan-
guages. For example, the following tree is a derivation tree of the word abaaa
from the CFG G given in Example 39.4

S

A

a b A

a a

a
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The correspondence between the proof tree of the atom SymbolS(c1, c6) given
above, and the derivation tree of the word abaaa should be apparent. By
exploiting the above technical lemmas, we can now show the following result:

Proposition 39.8

Consider the CFGs Gi = (Ni, Ti, Pi, Si) for i ∈ {1, 2}. Then

G1 ⊆ G2 if and only if qG1 ⊆ qG2 .

Proof. We only show the ‘if’ direction; the ‘only if’ direction is shown analo-
gously. Consider a database D of edb(ΠG1

), and assume that (c, d) ∈ qG1
(D).

By Lemma 39.6, there exists a proof tree of SymbolS1
(c, d) from ΠG1

and D.
Assume that this proof tree induces the sequence of atoms

s = Symbola1
(c1, c2),Symbola2

(c2, c3), . . . ,Symbolan(cn, cn+1),

where c = c1, d = cn+1, and a1 · · · an ∈ T ∗1 . By Lemma 39.7, we conclude
that a1 · · · an ∈ L(G1). Since, by hypothesis, G1 ⊆ G2, we get that a1 · · · an ∈
L(G2). By Lemma 39.7, there exists a proof tree of SymbolS2

(c1, cn+1) from
ΠG2 that induces the sequence of atoms s. Since the atoms in s are atoms of
D, Lemma 39.6 implies that (c, d) ∈ qG2

(D), and the claim follows. ut

Since CFG-Containment is undecidable, Proposition 39.8 implies the same
for Datalog-Containment. This completes the proof of Theorem 39.3. ut

Let us now turn our attention on the equivalence problem: given two Dat-
alog queries q and q′, is it the case that q ≡ q′. By exploiting the fact that
the containment problem is undecidable, we can easily show the following:

Theorem 39.9

Datalog-Equivalence is undecidable.

Proof. It suffices to reduce Datalog-Containment to Datalog-Equivalence. Con-
sider two Datalog queries q1 = (Π1, R1) and q2 = (Π2, R2), where edb(Π1) =
edb(Π2). We assume, without loss of generality, that idb(Π1) ∩ idb(Π2) = ∅.
We define the Datalog query

q12 = (Π1 ∪Π2 ∪ {R12(x̄) :– R1(x̄), R12(x̄) :– R2(x̄)}, R12),

where R12 is a new relation not occurring in sch(Π1) ∪ sch(Π2). It is easy to
verify that q1 ⊆ q2 if and only if q12 ≡ q2, and the claim follows. ut
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Boundedness

As discussed in Chapter 36, given a Datalog program Π, and a database D of
edb(Π), the semantics of Π on D, i.e., the database Π(D), can be computed
by repeatedly applying the immediate consequence operator TΠ of Π starting
fromD until a fixpoint is reached; in fact, by Corollary 36.14,Π(D) = T∞Π (D).
We have also seen that the construction of T∞Π (D) does not require infinitely
many iterations. Actually, there exists an integer k ≤ |B(Π,D)| such that
T∞Π (D) = T kΠ(D). The smallest integer k such that T∞Π (D) = T kΠ(D) is called
the stage of Π and D, denoted stage(Π,D).

Given a Datalog programΠ, it is generally the case that, for some arbitrary
database D over edb(Π), the integer stage(Π,D) depends on both Π and D.
This essentially means that the Datalog program Π is inherently recursive, or,
in other words, the depth of recursion of Π is unbounded. On the other hand,
if there is a uniform upper bound (i.e., a bound that depends only on Π) for
stage(Π,D), then the recursion of Π is bounded, which actually means that
Π is non-recursive despite the fact that syntactically may look recursive. The
following example illustrates that a bounded (seemingly recursive) Datalog
program can be replaced by an equivalent non-recursive Datalog program.

Example 39.10: Program Boundedness

Consider the Datalog program Π consisting of the rules

P (x, y) :– R(x), P (z, y) P (x, y) :– S(x, y).

Notice that Π is syntactically recursive due to the first rule (P depends
on itself). However, Π is bounded, and equivalent to the program

P (x, y) :– R(x), S(z, y) P (x, y) :– S(x, y),

that is non-recursive. We can safely replace the atom P (z, y) in the first
rule with the atom S(z, y), which leads to a non-recursive program, since
it does not share any variable with the atom R(x).

Boundedness for Datalog programs is defined as expected:

Definition 39.11: Program Boundedness

A Datalog program Π is bounded if there exists k ∈ N such that, for
every database D of edb(Π), stage(Π,D) ≤ k.

As explained above, boundedness essentially removes from Datalog pro-
grams the feature of recursion. Therefore, it should not come as a surprise the
fact that a Datalog query (Π,R), where Π is bounded, can always be written
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as a UCQ. An interesting question at this point is whether the opposite holds,
namely whenever a Datalog query (Π,R) is equivalent to a UCQ, then Π is
bounded. It is easy to see that, in general, this is not the case.

Example 39.12: Program Boundedness and UCQs

Consider the Datalog query q = (Π,R), where Π consists of the rules

P (x, y) :– S(x, y)

P (x, y) :– P (x, z), S(z, y)

R(x, y) :– S(x, y)

R(x, y) :– T (x, y).

It is clear that Π is not bounded due to the first two rules that compute
the transitive closure of the binary relation P . On the other hand, q is
equivalent to the UCQ q′ = ϕ(x, y) with

ϕ = S(x, y) ∨ T (x, y).

Indeed, for every database D of edb(Π) = {S, T}, q(D) = q′(D) since
the relation name R depends only on S and T .

Observe that the key reason why the query q = (Π,R) from Example 39.12
can be written as a UCQ, despite the fact that Π is not bounded, is because
the relation name R does not depend on a recursive relation name, but only
on non-recursive ones (in this case, on the extensional relation names S and
T ). This leads to the notion of boundedness of relation names.

Given a Datalog program Π, and a database D of edb(Π), analogously
to the stage of Π and D, for a relation name R ∈ idb(Π) we define the
stage of R with respect to Π and D as the smallest integer k with RT

∞
Π (D) =

RT
k
Π(D), denoted stageΠ,D(R). Considering again the Example 39.12, although

the stage of Π and D is not bounded, stageΠ,D(R) = 1. This essentially tells
that, even though the program Π may be inherently recursive, the part of it
that is responsible for computing the relation R is actually non-recursive. We
can now define when a Datalog query (instead of a program) is bounded.

Definition 39.13: Query Boundedness

A Datalog query q = (Π,R) is bounded if there exists a k ∈ N such that,
for every database D of edb(Π), stageΠ,D(R) ≤ k.

The notion of query boundedness essentially removes from Datalog queries
the feature of recursion. Therefore, it should be expected that a bounded Dat-
alog query (Π,R) can always be written as a UCQ, even if Π is not bounded.
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What is more interesting, though, is the fact that query boundedness, unlike
program boundedness, characterises the fragment of Datalog queries that can
be written, not only as UCQs, but actually as FO queries.

Theorem 39.14

Let q = (Π,R) be a Datalog query over S. The following are equivalent:

1. q is bounded.

2. There exists an FO query q′ over S such that q ≡ q′.
3. There exists a UCQ q′′ over S such that q ≡ q′′.

Proof. We discuss how (1) implies (2) can be shown, and leave the formal proof
as an exercise. We know from Proposition 37.2 that there is an infinitary UCQ
q′ over S such that q ≡ q′. Recall that q′ is defined by exhaustively applying
the UnfoldΠ(·) operator, introduced in Chapter 37, starting from a certain
CQ qR obtained from q, and then keeping only the infinitary CQs over S.1

Now, in the case of bounded Datalog queries, it can be shown that q′ is an
ordinary UCQ over S, and thus, an FO query over S. This is due to the fact
that the UnfoldΠ(·) operator, starting from qR, it constructs a CQ over S after
finitely many steps, in fact, in at most k steps, where k ≥ 0 is the integer that
bounds stageΠ,D(R), for every database D of edb(Π).

We now proceed to show the direction (2) implies (3). By hypothesis, there
is an FO query q′ over S such that q ≡ q′. By Corollary 37.6, we get that q′ is
preserved under homomorphisms. This in turn implies, due to Theorem 30.11,
that there is a UCQ with variable-constant equality q̂ over S such that q′ ≡ q̂.
It remains to explain how the equational atoms in q̂ can be eliminated. Since
q ≡ q̂, by Proposition 36.17, we get that, for every database D of S, q̂(D)
consists of tuples over Dom(D), i.e., it is not possible to have a value in the
output of q̂ on D that occurs in q̂ but not in D. Assuming that q̂ = ϕ(x̄), we
then conclude the following: if a variable y in ϕ occurs in an equational atom,
but not in a relational atom, then y is not among the free variables of ϕ, i.e.,
y is not mentioned in x̄. This observation allows us to eliminate an equational
atom (y = a) from ϕ by simply replacing each occurrence of y with a, and
then removing (y = a) from ϕ. This eventually leads to a UCQ q′′ over S such
that q̂ ≡ q′′, and thus, q ≡ q′′, as needed.

We finally show that (3) implies (1). Consider an arbitrary database D of
edb(Π), and a tuple ā over Dom(D). It suffices to show that R(ā) ∈ Π(D)
implies R(ā) ∈ T kΠ(D) for some k ∈ N that does not depend on D and ā.
Indeed, if this is the case, then, for every databaseD of edb(Π), stageΠ,D(R) ≤
k, which means that q is bounded. By hypothesis, there exists a UCQ q′′, let
say of the form q1∪· · ·∪qn, such that q ≡ q′′. Therefore, if R(ā) ∈ Π(D), which

1 Note that the proof of Proposition 37.2 was given for Boolean queries, but it can
be extended to non-Boolean queries; this extension was left as an exercise.
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means that ā ∈ q(D), then ā ∈ q′′(D). Let m be the maximum number of
atoms occurring in the CQs q1, . . . , qn, that is, m = maxi∈[n]{|Aqi |}. It is clear
that there is a database D′ ⊆ D with |D′| ≤ m such that ā ∈ q′′(D′). Since
q ≡ q′′, ā ∈ q(D′), which implies that R(ā) ∈ Π(D′) or R(ā) ∈ T∞Π (D′). Recall

that T∞Π (D′) = T
|B(Π,D′)|
Π (D′) with |B(Π,D′)| ≤ |sch(Π)| · |Dom(D′)|ar(Π),

where ar(Π) is the maximum arity over all relation names of sch(Π). Since

|D′| ≤ m, we get that |Dom(D′)| ≤ m · ar(Π). Observe that T
|B(Π,D′)|
Π (D′) ⊆

T
|B(Π,D′)|
Π (D). Therefore, R(ā) ∈ T kΠ(D) for some k ∈ N that does not depend

on D and ā (it only depends on q′′ and Π), and the claim follows. ut

It is clear that checking whether a Datalog program or query is bounded
are important static analysis tasks that are relevant for optimization purposes.

Problem: Datalog-PBoundedness

Input: A Datalog program Π

Output: true if Π is bounded, and false otherwise

Problem: Datalog-QBoundedness

Input: A Datalog query q

Output: true if q is bounded, and false otherwise

It turns out that both problems are undecidable. It can be shown via a re-
duction from the Post Correspondence Problem, a classical undecidable prob-
lem, that checking whether a Datalog program is bounded is undecidable. This
can be then easily transferred to query boundedness via an easy reduction.
Consider a Datalog program Π. We define the Datalog query q = (Π∪{ρ}, R),
where, assuming that idb(Π) = {P1, . . . , Pn}, ρ is the Datalog rule

R(x1
1, . . . , x

1
ar(P1), . . . , x

n
1 , . . . , x

n
ar(Pn)) :– P1(x1

1, . . . , x
1
ar(P1)), . . . ,

Pn(xn1 , . . . , x
n
ar(Pn))

and R is a (ar(P1) + · · ·+ ar(Pn))-ary relation name not occurring in idb(Π).
It is easy to see that Π is bounded iff q is bounded. We then have that:

Theorem 39.15

Datalog-PBoundedness and Datalog-QBoundedness are undecidable.
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Exercises for Part IV

Exercise 4.1. Prove that query evaluation for ∃FO+ and RA+ is in NP.

Exercise 4.2. Prove that SPJU-Containment containment is Πp
2 -hard.

Exercise 4.3. Prove that containment for ∃FO+ and RA+ is Πp
2 -complete.

Exercise 4.4. Prove that CQ 6=-Containment is Πp
2 -hard.

Exercise 4.5. The language CQ< is defined in the same way as CQ6= (see
Definition 32.1), but instead of 6= we use <, assuming that there is an order on
the set of constant Const from which database entries are drawn. Analogously,
we can define the language UCQ<. Prove that the problem of containment
remains decidable for CQ< and UCQ<.

Exercise 4.6. The class BCCQ consists of Boolean combinations of CQs,
i.e., queries obtained by repeatedly applying the operations of union (q1∪ q2),
intersection (q1 ∩ q2), and difference (q1 − q2) to CQs of the same arity with
the obvious semantics. Prove that containment for BCCQs is decidable.

Exercise 4.7. Prove that the sentences ψk(RS̄) and ψk(R̄S), used in the
proof of Theorem 33.5, are true in almost all databases of S = {R[1], S[1]}.

Exercise 4.8. In general, Theorem 33.5 (0–1 law) does not hold if we focus on
a restricted class C of databases, i.e., for an FO sentence ϕ, µn(ϕ) is defined by
considering only databases from the class C. Let C⊆ be the class of databases
D of the schema S = {R[1], S[1]} such that SD ⊆ RD. Adapt the proof of
Theorem 33.5, given in Chapter 32, to show that the 0–1 law holds even if
we focus on the class of databases C⊆. Use this result to show that the parity
query q over S, which checks whether the cardinality of the relation B is even,
is not expressible as an FO query if we focus on the class of databases C⊆.

Exercise 4.9. Use Exercise 4.8 (not just the result but the proof that you
produced) to infer the following: for every Boolean FO query q over the schema
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S = {R[1], S[1]}, there exist numbers k ≥ 0 and m ≥ 0 such that, for every
database D of S, D |= q iff |SD| ≥ k and |RD − SD| ≥ m.

Use this fact to derive Theorem 33.7 when � is =, i.e., to show that the
query q= over S, which checks whether, for a database D of S, |RD| = |SD|,
cannot be expressed as a constant-free FO query over S.

Exercise 4.10. Let ϕ≥() be the constant-free FO query over S = {R[1], S[1]}
such that, for every database D of S, D |= ϕ≥() iff |RD| ≥ |SD|. Analogously,
we define the constant-free FO queries ϕ>() and ϕ=() over S. Show that

lim
n→∞

µn(ϕ≥) =
1

2
and lim

n→∞
µn(ϕ>) =

1

2
.

Also show that
lim
n→∞

µn(ϕ=) = 0.

Exercise 4.11. Recall the estimate used in the proof of Theorem 33.7

F=
n =

∑
k≤bn/2c

(
n

k

)(
n− k
k

)
.

Show that

lim
n→∞

F=
n

3n
= 0.

Exercise 4.12. Recall that Theorem 33.5 (0–1 law) was shown for the spea-
cial case of constant-free FO sentences over a schema with two unary relation
names. Prove the result for the schema S = {E[2]} with a single binary re-
lation name (i.e., for undirected graphs). Recall that you need to construct a
theory T which has a unique, up to isomorphism, countable model, and whose
sentences are true in almost all databases of S. Such a theory T has sentences
ψk,m that express the following: for every two disjoint sets X and Y of nodes
of cardinalities k and m, respectively, there exists a node z such that there
are edges (z, x) for each x ∈ X, and there is no edge (z, y) for y ∈ Y . While
the proof of condition 2 of Lemma 33.6 follows the same ideas as those we
saw, the proof of condition 1 is more elaborate and requires ideas not seen in
this book; the interested reader is advised to consult [11].

Exercise 4.13. Give an example of an FO sentence with constants for which
Theorem 33.5 (0–1 law) does not hold. A much more difficult task is to show
that, for every FO sentence ϕ with constants, limn→∞ µn(ϕ) exists, and is a
rational number with the denominator being of the form 2k for some k ≥ 0.

Exercise 4.14. Recall that Theorem 35.2 was shown for RAAggr(Ω) without
constants. Extend the proof to the version of RAAggr(Ω) that allows the use
of constants from Const. This is done in the following four steps:
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1. First extend LC and LC with constants from Const, and show that a trans-
lation of an RAAggr(Ω) expression that uses constants from {c1, . . . , cn} (
Const into LC, and then into LC, can be carried out in such a way that
only constants from {c1, . . . , cn} are present in formulae.

2. Next, prove a locality result for the extension of LC with constants. Con-
sider an expression ϕ(x̄), where ϕ is an LC formula using constants from
{c1, . . . , cn} over a schema S = {R1 : τ1, . . . , Rn : τn} with τi ∈ {o}ki and
ki ≥ 0, for each i ∈ [n], such that FV(ϕ) ⊆ Varo, and x̄ is a tuple over
FV(ϕ) that mentions all the variables of FV(ϕ). There exists r ≥ 0 such
that, for a database D of S, and tuples ā, b̄ over Dom(D), if ND

r (ā, c̄) is
isomorphic to ND

r (b̄, c̄), for c̄ = (c1, . . . , cn), then either both ā, b̄ belong
to ϕ(x̄)(D), or none of them belongs to ϕ(x̄)(D).

3. Finally, using the above locality result for the extension of LC with con-
stants, show that a modified version of the reachability query (that incor-
porates constants from {c1, . . . , cn}) still violates locality.

Exercise 4.15. Use the translation of Theorem 35.7 to find syntactic restric-
tions on FOAggr(Ω) that lead to a logical formalism that can be used to define
a query language, i.e., to ensure that the output of an expression ϕ(ū), where
ϕ is a formula from the restricted formalism, and ū a tuple of variables over
FV(ϕ) that mentions all the variables of FV(ϕ), on a database is always finite.

Exercise 4.16. Recall that Proposition 35.12 was shown for the schema S =
{R : (o, o)}. Generalize the proof to arbitrary schemas {R1 : τ1, . . . , Rn : τn}
with τi ∈ {o}ki and ki ≥ 0, for each i ∈ [n].

Exercise 4.17. There is a different notion of locality, known in the literature
as Hanf-locality (as opposed to Gaifman-locality used in Chapter 35). Given
two databases D and D′ of a two-sorted schema S, and tuples ā and ā′ of
the same arity over Dom(D) and Dom(D′), respectively, we write (D, ā) ∼r
(D′, ā′) if there is a bijection f : Dom(D) → Dom(D′) such that, for every
b ∈ Dom(D), ND

r (ā, b) is isomorphic to ND′

r (ā′, f(b)). Note that, in particular,
(D, ā) ∼r (D′, ā′) implies |Dom(D)| = |Dom(D′)|. A query q of type τ ∈
{o, n}k, for k ≥ 0, over S is Hanf-local if there exists r ≥ 0 such that, for every
ā, ā′ ∈ (Const ∪ Num)k, (D, ā) ∼r (D′, ā′) implies ā ∈ q(D) iff ā′ ∈ q(D′).

Prove Theorem 35.4 for Hanf-locality instead of Gaifman locality. To do
so, show, by extending the argument in the proof of Proposition 35.12, the
following: for an LC formula ϕ over a schema S = {R1 : τ1, . . . , Rn : τn} with
τi ∈ {o}ki and ki ≥ 0, for each i ∈ [n], such that FV(ϕ) ⊆ Varo, and a tuple
x̄ over FV(ϕ) that mentions all the variables of FV(ϕ), ϕ(x̄) is Hanf-local.

Exercise 4.18. Consider a restriction of LC where infinitary connectives are
not allowed, we have quantification over variables of both types, and we
have counting terms ]xϕ(x, ȳ) counting the number of elements of the input
database satisfying ϕ. Concerning the semantics, is defined in the expected
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way with the crucial restriction that numerical variables can only range over
the values [0, n−1], where n is the number of elements in the input database.

Prove that, for every expression ϕ(), where ϕ is a sentence from this re-
stricted logic, there exists a Boolean RAAggr(Ω) query e, where Ω contains <,
+, and ·, and the summation aggregate

∑
, such that, for every database D

of a schema S, ϕ()(D) = e(D) for the following two cases:

1. S = {R1 : τ1, . . . , Rn : τn} such that, for each i ∈ [n], τi ∈ {n}ki for
ki ≥ 0, i.e., we focus on databases where all elements are of type n.

2. S = {R1 : τ1, . . . , Rn : τn} such that, for each i ∈ [n], τi ∈ {o}ki for
ki ≥ 0, i.e., we focus on databases where all elements are of type o, and
we have access to an order relation < over the constants of Const.

The importance of these results stems from the fact the restricted logic we
defined captures a uniform version of a complexity class called TC0 (this
stands for threshold circuits of constant depth). TC0 has not been separated
from others above it such as PTime or NLogSpace. In particular, this means
that bounds on the expressivity of RAAggr(Ω) cannot be proved either over
ordered non-numerical domains, or numerical domains, without resolving deep
problems in complexity theory.

Exercise 4.19. A path system is a tuple P = (V,R, S, T ), where V is a finite
set of nodes, R ⊆ V × V × V , S ⊆ V and T ⊆ V . A node v ∈ V is admissible
if v ∈ T , or there are admissible nodes u,w ∈ V such that (v, u, w) ∈ R.

Show that the set of admissible nodes for P can be computed via a Datalog
query. In other words, there exists a Datalog query q = (Π,A), where A
is unary relation, such that, for every path system P , q(DP ) is the set of
admissible nodes for P , where DP stores P in the obvious way, i.e., V, S and
T via unary relations, and R via a ternary relation.

Exercise 4.20. An undirected graph G = (V,E) is 2-colorable if there exists
a function f : V → {0, 1} such that (v, u) ∈ E implies f(v) 6= f(u).

Show that non-2-colorability is expressible via a Datalog query, i.e., there
exists a Datalog query q = (Π,Yes), where Yes is a 0-ary relation, such that,
for every undirected graph G, q(DG) = true if and only if G is not 2-colorable,
where DG stores G via the binary relation Edge(·, ·).

Exercise 4.21. Prove Theorem 36.8.

Exercise 4.22. Prove Lemma 36.10.

Exercise 4.23. Show that the query that asks whether an undirected graph
is 2-colorable is not expressible via a Datalog query. To do so, exploit the fact
that Datalog queries are monotone.
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Exercise 4.24. Prove that there exists a monotone query that is not express-
ible via a Datalog query. The proof should not rely on any complexity-theoretic
assumption. (It is very easy to show that this holds under the assumption that
PTime 6= NP.)

Exercise 4.25. A Datalog program Π is called linear if, for every rule ρ ∈ Π,
the body of ρ mentions at most one relation from idb(Π). A Datalog query
(Π,R) is linear if Π is linear.

Show that there is no linear Datalog query that computes the set of admis-
sible nodes for a path system P . The proof should not rely on any complexity-
theoretic assumption. (It is easier to show this statement if we assume that
NLogSpace 6= PTime.

Exercise 4.26. The predicate graph of a program Π is the directed graph
GΠ = (V,E), where V consists of the relations of sch(Π), and (P,R) ∈ E if
and only if there exists a rule ρ ∈ Π of the form

R(x̄) :– . . . , P (ȳ), . . .

We call Π non-recursive if GΠ is acyclic. A Datalog query (Π,R) is non-
recursive if Π is non-recursive.

Show that, for every non-recursive Datalog query q = (Π,R), there exists
a finite UCQ q′ such that, for every database D of edb(Π), q(D) = q′(D).

Exercise 4.27. Let D and q be the database and the Datalog query, respec-
tively, constructed from the Turing machine M and the input word w in the
proof of Theorem 38.1. Show that M accepts w if and only if q(D) = true.

Exercise 4.28. A Datalog program Π is called guarded if, for every rule ρ ∈
Π, the body of ρ has an atom that contains (or “guards”) all the variables
occurring in ρ. A Datalog query (Π,R) is guarded if Π is guarded.

Prove that the ExpTime-hardness shown in Theorem 38.1 holds even if
we focus on guarded Datalog queries.

Exercise 4.29. Consider a Datalog query q = (Π,R), where the arity of the
relations of sch(Π) is bounded by some integer constant, a database D of
edb(Π), and a tuple ā of arity ar(R) over Dom(D). Show that the problem of
deciding whether ā ∈ q(D) is NP-complete.

Exercise 4.30. Consider a Datalog query q = (Π,R), where sch(Π) consists
only of 0-ary relations, and a database D of edb(Π). Show that the problem
of deciding whether q(D) = true is PTime-complete.

Exercise 4.31. Show that the evaluation problem for linear Datalog queries
is PSpace-complete in combined complexity, and NLogSpace-complete in
data complexity.

Exercise 4.32. Show that the evaluation problem for non-recursive Datalog
queries is PSpace-complete in combined complexity, and in DLogSpace in
data complexity.
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Part X

Appendix: Theory of Computation





A

Big-O Notation

We write R+
0 for the set of non-negative real numbers, and R+ for the set of

positive real numbers. We typically measure the performance of an algorithm,
that is, the number of basic operations it performs, as a function of its input
length. In other words, the performance of an algorithm can be captured by
a function f : N → R+

0 such that f(n) is the maximum number of basic
operations that the algorithm performs on inputs of length n. However, since
f may heavily depend on the details of the definition of basic operations, we
usually concentrate on the overall and asymptotic behaviour of the algorithm.
This is achieved via the well-known notion of big-O notation.

The big-O notation is typically defined for single variable functions such as
f above. However, in the database setting, where the input to key problems
usually consists of several different components, we generally have to deal
with multiple variable functions. For example, the performance of a query
evaluation algorithm, where the input consists of two distinct components,
the database and the query, can be captured by a function f : N2 → R+

0 such
that f(n,m) is the maximum number of basic operations that the algorithm
performs on databases of size n and queries of size m. The notion of big-O
notation for multiple variable functions follows:

Definition 1.1: Big-O Notation

Let f, g : N` → R+
0 , where ` ≥ 1. We say that

f(x1, . . . , x`) is in O(g(x1, . . . , x`))

if there exist k ∈ R+ and n0 ∈ N such that, for every (x1, . . . , x`) with
xi ≥ n0 for some i ∈ [`], f(x1, . . . , x`) ≤ k · g(x1, . . . , x`).

Notice that when ` = 1, i.e., f, g are single variables function, Definition 1.1
coincides with the standard big-O notation for single variable functions.





B

Turing Machines and Complexity Classes

Many results in this book will provide bounds on computational resources
(time and space), or key database problems such as query evaluation. These
are often formulated in terms of membership in, or completeness for, complex-
ity classes. Those, in turn, are defined using the basic model of computation,
that is, Turing Machines. We now briefly recall basic concepts related to Tur-
ing Machines and complexity classes. For more details, the reader can consult
standard textbooks on computability theory and computational complexity.

Turing Machines

Turing Machines can work in two modes: either as acceptors, for deciding
whether an input string belongs to a given language (in which case we speak
of decision problems), or as computational devices that compute the value of a
function applied to its input. When a Turing Machine works as an acceptor, it
typically contains a read-write tape, a model of computation that is convenient
for defining time complexity classes, or a read-only input tape and a read-write
working tape, a model that is convenient for defining space complexity classes.
When a Turing Machine works as a computational device, it typically contains
a read-only tape where the input is placed, a read-write working tape, and a
write-only tape where the output computed by the Turing Machine is placed.

Turing Machines as Acceptors

We start with the definition of deterministic Turing Machines.

Definition 2.1: Deterministic Turing Machine

A (deterministic) Turing Machine (TM) is defined as a tuple

M = (Q,Σ, δ, s) ,
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where

• Q is a finite set of states, including the accepting state “yes”, and
the rejecting state “no”,

• Σ is a finite set of input symbols, called the alphabet of M , including
the symbols t (the blank symbol) and . (the left marker),

• δ : (Q− {“yes”, “no”})×Σ → Q×Σ × {→,←,−} is the transition
function of M , and

• s ∈ Q is the start state of M .

Accepting and rejecting states are needed for decision problems: they de-
termine whether the input belongs to the language or not. Notice that, accord-
ing to δ, the accepting and rejecting states do not have outgoing transitions.

A configuration of a TM M = (Q,Σ, δ, s) is a tuple

c = (q, u, v) ,

where q ∈ Q, and u, v are words in Σ∗ with u being always non-empty. If M
is in configuration c, then the tape has content uv and the head is reading
the last symbol of u. We use left markers, which means that u always starts
with .. Moreover, the transition function δ is restricted in such a way that .
occurs exactly once in uv, and always as the first symbol of u.

Assume now that M is in a configuration c = (q, ua, v), where q ∈ Q −
{“yes”, “no”}, a ∈ Σ and u, v ∈ Σ∗, and assume that δ(q, a) = (q′, b,dir),
where dir ∈ {→,←,−}. Then, in one step, M enters the configuration c′ =
(q′, u′, v′), where u′, v′ is obtained from ua, v by replacing a with b and moving
the head one step in the direction dir. By moving the head in the direction
“−” we mean that the head stays in its place. Furthermore, the head cannot
move left of the . symbol (the transition function δ is restricted in such a way
that this cannot happen: if δ(q, .) = (q′, a,dir), then a = . and dir 6=←). For
example, if c = (q, .01, 100) and δ(q, 1) = (q′, 0,←), then c′ = (q′, .0, 0100).
In this case, we write c→M c′, and we also write c→m

M c′ if c′ can be reached
from c in m steps, and c →∗M c′ if c →m

M c′ for some m ≥ 0 (we assume that
c→0

M c). Finally, if v = ε and dir =→, then we insert an additional t-symbol
in our configuration, that is u′ = ubt and v′ = ε.

A TM M receives an input word w = a1 · · · an, where n ≥ 0 and ai ∈
Σ − {t, .} for each i ∈ [n]. The start configuration of M on input w is
sc(w) = (s, ., w). We call a configuration c accepting if its state is “yes”, and
rejecting if its state is “no”. The TM M accepts (respectively, rejects) input
w if sc(w)→∗M c for some accepting (respectively, rejecting) configuration c.

Nondeterministic Turing Machines as Acceptors

We also use nondeterministic Turing Machines as acceptors, which are defined
similarly to deterministic ones, but with the key difference that the a state-
symbol pair has more than one outgoing transitions.



B Turing Machines and Complexity Classes 497

Definition 2.2: Nondeterministic Turing Machine

A nondeterministic Turing Machine (NTM) is defined as a tuple

M = (Q,Σ, δ, s) ,

where

• Q is a finite set of states, including the accepting state “yes”, and
the rejecting state “no”,

• Σ is a finite set of input symbols, called the alphabet of M , including
the symbols t (the blank symbol) and . (the left marker),

• δ : (Q−{“yes”, “no”})×Σ → P(Q×Σ×{→,←,−}) is the transition
function of M , and

• s ∈ Q is the start state of M .

Observe that for a given configuration c = (q, ua, v), where q ∈ Q −
{“yes”, “no”}, a ∈ Σ and u ∈ Σ∗, several alternatives (q′, b,dir) can belong to
δ(q, a), each one of which generates a successor configuration c′ as in the case
of (deterministic) TMs. If c′ is a possible successor configuration of c, then
we write c →M c′. Moreover, we write c →m

M c′ if there exists a sequence of
configurations c1, . . ., cm−1 such that c →M c1, c1 →M c2, . . ., cm−1 →M c′.
In this case, notice that it is possible that c→m

M c′ and c→n
M c′ with m 6= n.

Moreover, we write c →∗M c′ if there exists m ≥ 0 such that c →m
M c′ (again,

we assume that c→0
M c).

Given an input word w for a NTM M , the start configuration sc(w) of
M , and accepting and rejecting configurations of M , are defined as in the
deterministic case. Moreover, M accepts input w if there exists an accepting
configuration c such that sc(w) →∗M c, and M rejects w otherwise (i.e., M
rejects w if there is no accepting configuration c such that sc(w)→∗M c).

2-Tape Turing Machines as Acceptors

We now define Turing Machines that, apart from a read-write working tape,
they also have a read-only input tape.
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Definition 2.3: 2-Tape Deterministic Turing Machine

A 2-tape (deterministic) Turing Machine (2-TM) is defined as a tuple

M = (Q,Σ, δ, s) ,

where

• Q is a finite set of states, including the accepting state “yes”, and
the rejecting state “no”,

• Σ is a finite set of input symbols, called the alphabet of M , including
the symbols t (the blank symbol) and . (the left marker),

• δ : (Q−{“yes”, “no”})×Σ×Σ → Q×{→,←,−}×Σ×{→,←,−}
is the transition function of M , and

• s ∈ Q is the start state of M .

A configuration of a 2-TM is a tuple

c = (q, u1, v1, u2, v2) ,

where q ∈ Q and, for every i ∈ {1, 2}, we have that ui, vi ∈ Σ∗ and ui is not
empty. If M is in configuration c, then the input tape has content u1v1 and
the head of this tape is reading the last symbol of u1, while the working tape
has content u2v2 and the head of this tape is reading the last symbol of u2.
We use left markers, which means that ui always starts with .. Besides, the
transition function δ is restricted in such a way that . occurs exactly once in
uivi, and always as the first symbol of ui.

Assume that M is in a configuration c = (q, u1a1, v1, u2a2, v2), where
q ∈ Q − {“yes”, “no”}, a1, a2 ∈ Σ and u1, v1, u2, v2 ∈ Σ∗, and assume that
δ(q, a1, a2) = (q′,dir1, b,dir2), where diri is a direction, i.e., one of {→,←,−}.
Then in one step M enters configuration c′ = (q′, u′1, v

′
1, u
′
2, v
′
2), where u′1, v

′
1 is

obtained from u1a1, v1 by moving the head one step in the direction dir1, and
u′2, v

′
2 is obtained from u2a2, v2 by replacing a2 with b and moving the head

one step in the direction dir2. Recall that by moving the head in the direction
“−” we mean that the head stays in its place. Furthermore, the head cannot
move left of the . symbol (again, the transition function δ is restricted in such
a way that this cannot happen). For example, if c = (q, .01, 100, ., ε) and
δ(q, 1, .) = (q′,←, .,→), then c′ = (q′, .0, 1100, ., ε). In this case, we write
c →M c′. We also write c →m

M c′ if c′ can be reached from c in m steps, and
c→∗M c′ if c→m

M c′ for some m ≥ 0 (we assume that c→0
M c).

A 2-TM M receives an input word w = a1 · · · an, where n ≥ 0 and ai ∈
Σ−{t, .} for each i ∈ [n]. The start configuration of M on input w is sc(w) =
(s, ., w, .,t). We call a configuration c accepting if its state is “yes”, and
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rejecting if its state is “no”. The TM M accepts (respectively, rejects) input
w if sc(w)→∗M c for some accepting (respectively, rejecting) configuration c.

2-Tape Nondeterministic Turing Machines as Acceptors

As for TMs, we also have the nondeterministic version of 2-TMs.

Definition 2.4: 2-Tape Nondeterministic Turing Machine

A 2-Tape Nondeterministic Turing Machine (2-NTM) is a tuple

M = (Q,Σ, δ, s) ,

where

• Q is a finite set of states, including the accepting state “yes”, and
the rejecting state “no”,

• Σ is a finite set of input symbols, called the alphabet of M , including
the symbols t (the blank symbol) and . (the left marker),

• δ : (Q−{“yes”, “no”})×Σ×Σ → P(Q×{→,←,−}×Σ×{→,←,−})
is the transition function of M , and

• s ∈ Q is the start state of M .

It is clear that, for a configuration c = (q, u1, a1v1, u2, a2v2), where q ∈ Q−
{“yes”, “no”}, a1, a2 ∈ Σ and v1, v2 ∈ Σ∗, several alternatives (q′,dir1, b,dir2)
can belong to δ(q, a1, a2), each one of which generates a successor configuration
c′ as in the case of 2-TMs. If c′ is a possible successor configuration of c, then
we write c →M c′. Moreover, we write c →m

M c′ if there exists a sequence of
configurations c1, . . ., cm−1 such that c →M c1, c1 →M c2, . . ., cm−1 →M c′.
In this case, notice that it is possible that c→m

M c′ and c→n
M c′ with m 6= n.

Moreover, we write c →∗M c′ if there exists m ≥ 0 such that c →m
M c′ (again,

we assume that c→0
M c).

Given an input word w for a 2-NTM M , the start configuration sc(w) of
M , and accepting and rejecting configurations of M , are defined as in the
deterministic case. Moreover, M accepts input w if there exists an accepting
configuration c such that sc(w) →∗M c, and M rejects w otherwise (i.e., M
rejects w if there is no accepting configuration c such that sc(w)→∗M c).

Turing Machines as Computational Devices

If a 2-TM acts not as a language acceptor but rather as a device for computing
a function f , then a write-only output tape is added and the states “yes” and
“no” are replaced with a halting state “halt”; once the computation enters
the halting state, the output tape contains the value f(w) for the input w.
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Definition 2.5: Turing Machine with Output

A Turing Machine with output (TMO) is a tuple

M = (Q,Σ, δ, s) ,

where

• Q is a finite set of states, including the halting state “halt”,

• Σ is a finite set of input symbols, called the alphabet of M , including
the symbols t (the blank symbol) and . (the left marker),

• δ : (Q−{“halt”})×Σ×Σ → Q×{→,←,−}×Σ×{→,←,−}×Σ
is the transition function of M , and

• s ∈ Q is the start state of M .

If δ(q, a1, a2) = (q′,dir1, b,dir2, c), then q′,dir1, b,dir2 are used exactly as
in the case of a 2-TM accepting a language. Moreover, if c 6= t, then c is
written on the output tape and the head of this tape is moved one position to
the right; otherwise, no changes are made on this tape. The start configuration
of a TMO M on input w is sc(w) = (s, ., w, ., ε, ., ε). The output of M on
input w is the word u such that sc(w)→∗M (“halt”, u1, v1, u2, v2, .u, ε).

Complexity Classes

We proceed to introduce some central complexity classes that are used in this
book. Recall that R+

0 is the set of non-negative real numbers. Given a function
f : N→ R+

0 , a TM (respectively, NTM) M is said to run in time f(n) if, for
every input w and configuration c, sc(w) →m

M c implies m ≤ f(|w|).1 We
further say that M decides a language L if M accepts every word in L and
rejects every word not in L. Notice that this implies that M ’s computation is
finite on every input. We define the classes of decision problems

Time(f(n)) = {L | there exists a TM that decides L

and runs in time f(n)}

and

NTime(f(n)) = {L | there exists an NTM that decides L

and runs in time f(n)}.

We use Time(O(f(n))) for the union of all Time(g(n)) where g(n) ∈ O(f(n)).
Furthermore, we use the following time complexity classes in this book:

1 The running time of a TMO is defined in the same way.
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Definition 2.6: Time Complexity Classes

PTime =
⋃
k∈N Time(nk) NP =

⋃
k∈N NTime(nk)

ExpTime =
⋃
k∈N Time(2n

k

) NExpTime =
⋃
k∈N NTime(2n

k

)

2ExpTime =
⋃
k∈N Time(22n

k

)

Given a function f : N→ R+
0 , a 2-TM (respectively, 2-NTM) M is said to

run in space f(n) if, for every input w and configuration c = (q, u1, v1, u2, v2),
sc(w) →∗M c implies |u2v2| ≤ f(|w|).2 We say that M decides a language L
if M accepts every word in L and rejects every word not in L. We define the
classes of decision problems

Space(f(n)) = {L | there exists a 2-TM that decides L

and runs in space f(n)}

and

NSpace(f(n)) = {L | there exists a 2-NTM that decides L

and runs in space f(n)}.

We write Space(O(f(n))) for the union of all Space(g(n)), where g(n) ∈
O(f(n)). We further use the following space complexity classes in this book:

Definition 2.7: Space Complexity Classes

DLogSpace = Space(log n) NLogSpace = NSpace(log n)
PSpace =

⋃
k∈N Space(nk) NPSpace =

⋃
k∈N NSpace(nk)

ExpSpace =
⋃
k∈N Space(2n

k

) NExpSpace =
⋃
k∈N NSpace(2n

k

)

At this point, let us stress that we can always assume that the computation
of a space-bounded 2-TM M is finite on every input word. Intuitively, since the
space that M uses is bounded, the number of different configurations in which
M can be is also bounded. Therefore, by maintaining a counter that “counts”
the steps of M , we can guarantee that M will never fall in an unnecessarily
long computation, which in turn allows us to assume that the computation of
M is finite. Further details on this assumption can be found in any standard
textbook on computational complexity.

For a complexity class C, the class coC is defined as the set of complements
of the problems in C, that is, coC = {Σ∗ − L | L ∈ C}. It is known that

2 The running space of a TMO is defined without considering the output tape.
More precisely, for every input w and configuration c = (q, u1, v1, u2, v2, u3, v3),
sc(w)→∗M c implies |u2v2| ≤ f(|w|).
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DLogSpace ⊆ NLogSpace ⊆ PTime ⊆ NP ⊆ PSpace = NPSpace

⊆ ExpTime ⊆ NExpTime ⊆ ExpSpace = NExpSpace ⊆ 2ExpTime

PTime ( ExpTime ( 2ExpTime

NP ( NExpTime

and that

NLogSpace = coNLogSpace ( PSpace ( ExpSpace

However, it is still not known whether PTime (and in fact DLogSpace) is
properly contained in NP, whether PTime is properly contained in PSpace,
and whether NP equals coNP.

Key concepts related to complexity classes are reductions between prob-
lems, and hardness and completeness of problems. For precise definitions the
reader can consult any complexity theory textbook. A reduction between lan-
guages L and L′ over an alphabet Σ is a function f : Σ∗ → Σ∗ such that
w ∈ L if and only if f(w) ∈ L′, for every w ∈ Σ∗. Let C be one of the complex-
ity classes introduced above such that NP ⊆ C or coNP ⊆ C. A problem, i.e.,
a language L, is hard for C, or C-hard, if every problem L′ ∈ C is reducible to L
via a reduction that is computable in polynomial time. If L is also in C, then it
is complete for C, or C-complete. For the complexity classes NLogSpace and
PTime, the notions of hardness and completeness are defined in the same way,
but with the crucial difference that we rely on reductions that are computable
in deterministic logarithmic space. This is because a reduction is meaningful
only within a class that is computationally stronger than the reduction.3

We say that a decision problem is tractable if it is in PTime. As such, prob-
lems that are hard for ExpTime are provably intractable. We call problems
that are hard for NP or coNP presumably intractable (if we cannot make a
stronger case and prove that they are not in PTime).

The most fundamental problem that is presumably intractable is the satis-
fiability problem of Boolean formulae. A Boolean formula is defined as follows:

• a variable x ∈ Var is a Boolean formula, and

• if ϕ1 and ϕ1 are Boolean formulae, then (ϕ1 ∧ ϕ2), (ϕ2 ∨ ϕ2), and (¬ϕ1)
are Boolean formulae.

To define the semantics of such Boolean formulae, we need the notion of
truth assignment. A truth assignment for a set of variables V is a function
f : V → {true, false}. Consider a Boolean formula ϕ, and a truth assignment
f for the set of variables in ϕ. We define when f satisfies ϕ, written f |= ϕ:

3 We could also define hardness for DLogSpace by using reductions that can be
computed via a computation even more restrictive than deterministic logarithmic
space, but this is not needed for the purposes of this book.
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• If ϕ is a variable x, then f |= ϕ if f(x) = true.

• If ϕ = (ϕ1 ∧ ϕ2), then f |= ϕ if f |= ϕ1 and f |= ϕ2.

• If ϕ = (ϕ1 ∨ ϕ2), then f |= ϕ if f |= ϕ1 or f |= ϕ2.

• If ϕ = (¬ψ), then f |= ϕ if f |= ψ does not hold.

We say that ϕ is satisfiable if there exists a truth assignment f for the set of
variables in ϕ such that f |= ϕ. The Boolean satisfiability problem or SAT,
which is known to be an NP-complete problem, is defined as follows.

Problem: SAT

Input: A Boolean formula ϕ

Output: true if ϕ is satisfiable, and false otherwise

It is actually the first problem that was proven to be NP-complete, a result
known as Cook-Levin Theorem that goes back to the 1970s.

A generalization of SAT is the satisfiability problem of quantified Boolean
formulae. For a Boolean formula ϕ and a tuple of variables x̄, we denote by
ϕ〈x̄〉 the fact that ϕ uses precisely the variables in x̄. A quantified Boolean
formula ψ is an expression of the form

Q1x̄1Q2x̄2 · · ·Qnx̄n ϕ〈x̄1, . . . , x̄n〉 ,

where, for each i ∈ [n], Qi is either ∃ or ∀, and, for each i ∈ [n − 1], Qi = ∃
implies Qi+1 = ∀ and Qi = ∀ implies Qi+1 = ∃. Assuming that Q1 = ∃, we
say that ψ is satisfiable if there exists a truth assignment for x̄1 such that for
every truth assignment for x̄2 there exists a truth assignment for x̄3, and so on
up to x̄n, such that the overall truth assignment satisfies ψ. Analogously, we
can define when ψ is satisfiable in the case Q1 = ∀. The quantified satisfiability
problem or QSAT, also known under the name quantified Boolean formula or
QBF, which is the canonical PSpace-complete problem, is defined as follows:

Problem: QSAT

Input: A quantified Boolean formula ψ

Output: true if ψ is satisfiable, and false otherwise

Notice that SAT is the special case of QSAT where ψ is of the form ∃x̄ ϕ〈x̄〉.
Two special cases of QSAT will be particularly important for this book, namely
the ones with exactly one quantifier alternation:
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Problem: ∃∀QSAT

Input: A quantified Boolean formula ψ = ∃x̄1∀x̄2 ϕ〈x̄1, x̄2〉
Output: true if ψ is satisfiable, and false otherwise

Problem: ∀∃QSAT

Input: A quantified Boolean formula ψ = ∀x̄1∃x̄2 ϕ〈x̄1, x̄2〉
Output: true if ψ is satisfiable, and false otherwise

We define Σp
2 as the class of decision problems reducible to ∃∀QSAT in

polynomial time. Similarly, Πp
2 is the class of decision problems reducible to

∀∃QSAT in polynomial time. Recall that QSAT is PSpace-complete. We know
that

PTime

NP
⊆

coNP

⊆ NP ∪ coNP

⊆

⊆

Σp
2

⊆

Πp
2

⊆
PSpace

⊆

⊆

We finally remark that the smallest complexity class we consider here is
DLogSpace. In database theory, and especially in its logical counterpart,
that is, finite model theory, it is very common to consider parallel complexity
classes, of which the smallest one is AC0. These are circuit complexity classes,
and the machinery needed to define them is not TMs but rather circuits,
parameterized by their fan-in (the number of inputs to their gates), their size,
and their depth. Due to the notational overhead this incurs, we shall not be
using circuit-based classes in this book. The interested reader can consult
books on finite model theory and descriptive complexity to understand the
differences between DLogSpace and classes such as AC0.
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Input Encodings

To reason about the computational complexity of problems, we need to rep-
resent their inputs (such as databases, queries, and constraints) as inputs to
Turing Machines, that is, as words over some finite alphabet.

Encoding of Queries and Constraints

Queries and constraints will most commonly be coming from a query language
and a class of constraints, respectively, defined by a formal syntax. We thus
associate a query and a set of constraints with its parse tree, which, of course,
can be easily encoded as a word over a finite alphabet.

Encoding of Databases

For databases, the idea is that each value in the active domain can be encoded
as a number in binary, and then use further separator symbols that allows us
to faithfully encode the facts occurring in the database.

We assume a strict total order <Rel on the elements of Rel, and a strict total
order <Const on the elements of Const. Consider a schema S = {R1, . . . , Rn}
with Ri <Rel Ri+1 for each i ∈ [n−1], and a database D of S with Dom(D) =
{a1, . . . , ak} and ai <Const ai+1 for each i ∈ [k − 1]. We proceed to explain
how D is encoded as a word over the alphabet

Σ = {0, 1,4,#, $,�}.

We first explain how constants, tuples, and relations are encoded:

• The constant ai ∈ Dom(D), for i ∈ [k], is encoded as the number i in
binary, and we write enc(ai) for the obtained word over {0, 1}.

• A tuple t̄ = (a1, . . . , a`) over Dom(D), for ` ≥ 0, is encoded as the word

enc(t̄) =

�enc(a1)� · · ·�enc(a`)� if ` > 0,

�� if ` = 0.



506 C Input Encodings

• A relation RDi = {t̄1, . . . , t̄m}, for i ∈ [n] and m ≥ 0, is encoded as

enc(RDi ) =

$enc(t̄1)$ · · · $enc(t̄m)$ if m > 0,

$$ if m = 0.

We can now encode the database D as a word over Σ as follows:

enc(D) = 4enc(a1)4· · ·4enc(ak)4#enc(RD1 )# · · ·#enc(RDn )# .

The key property of the above encoding is that, for a database D of a
schema S, and a tuple t̄, given as their encodings enc(D) and enc(t̄), respec-
tively, we can check via a deterministic computation, which uses logarithmic
space in the size fo enc(D), whether t̄ ∈ RD for some R ∈ S. In what follows,
we write enc(i) for the binary representation of an integer i > 0.

Lemma C.1. Let S be the schema {R1, . . . , Rn} with R1 <Rel · · · <Rel Rn.
Consider a database D of S, a tuple t̄, and an integer i ∈ [n], and let w be the
word .enc(D)[enc(t̄)[enc(i) over Σ ∪ {.,t, [}. There exists a 2-TM M with
alphabet Σ such that the following hold:

1. M accepts w if and only if t̄ ∈ RDi , and

2. M runs in space O(ar(Ri)·log |enc(D)|) if ar(Ri) > 0, and O(log |enc(D)|)
if ar(Ri) = 0.

Proof. We first give a high-level description of the 2-TM M ; for brevity, we
write it for the symbol read by the head of the input tape:

1. Let ctr = 0 – this is a counter maintained on the work tape in binary.

2. While ctr 6= i do the following:

a) If it = #, then ctr := ctr + 1.

b) Move the head of the input tape to the right so that it reads the first
$ symbol of enc(RDi ).

3. Move the head of the input tape to the right so that it reads the first
� symbol of enc(ū), where ū is the first tuple of RDi (i.e., enc(RDi ) =
$enc(ū)$ · · · $), or the second $ symbol of enc(RDi ) in case RDi is empty
(which means that enc(RDi ) = $$).

4. Erase the content of the work tape by replacing every symbol different
than t with t (since ctr is not needed further), and move its head after
the left marker ..

5. Repeat the following steps until it = # (which means that the relation
RDi has been fully explored):

a) While it 6= $ do the following:
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(i) Copy it to the work tape.

(ii) Move the head of both tapes to the right.

b) Assuming that .ut is the content of the work tape, if u = enc(t̄), then
halt and accept; otherwise:

(i) Move the head of the input tape to the right so that it reads the
first � symbol of the encoding of the next tuple of RDi , or the
symbol # if the last tuple of RDi has just been explored. In other
words, the head of the input tape reads the symbol to the right
of the last $ symbol read during the while loop of step (a).

(ii) Erase the content of the work tape by replacing every symbol
different than t with t (since the copied tuple is not needed
further), and move its head after the left marker ..

6. Halt and reject.

It is easy to verify that M accepts w if and only if enc(RDi ) is of the form
$ · · · $enc(t̄)$ · · · $, or, equivalently, t̄ ∈ RDi . It remains to argue that M runs in
the claimed space. At each step of the computation of M , the work tape holds
either ctr , or the word enc(t̄) for some t̄ ∈ RDi . The value of ctr (represented
in binary) can be maintained using O(|enc(i)|) bits. The encoding of a tuple
of RDi takes space O(ar(Ri) · log |Dom(D)|). Therefore, the space used is

O (log |enc(i)| + ar(Ri) · log |Dom(D)|) .

Since |enc(i)| ≤ |enc(D)| and |Dom(D)| ≤ |enc(D)|, we can conclude that the
above 2-TM on input w runs in space O(ar(Ri) · log |enc(D)|) if ar(Ri) > 0,
and O(log |enc(D)|) if ar(Ri) = 0, and the claim follows. ut

Note that the encoding described above is not the only way of encoding a
database as a word over a finite alphabet. We could employ any other encoding
as long as it enjoys the property established in Lemma C.1, without affecting
the complexity results presented in this book.


