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Regular path queries (RPQs) are a central component of graph databases. We investigate decision and enu-

meration problems concerning the evaluation of RPQs under several semantics that have recently been

considered: arbitrary paths, shortest paths, paths without node repetitions (simple paths), and paths without

edge repetitions (trails).

Whereas arbitrary and shortest paths can be dealt with efficiently, simple paths and trails become computa-

tionally difficult already for very small RPQs. We study RPQ evaluation for simple paths and trails from a

parameterized complexity perspective and define a class of simple transitive expressions that is prominent in

practice and for which we can prove dichotomies for the evaluation problem. We observe that, even though

simple path and trail semantics are intractable for RPQs in general, they are feasible for the vast majority of

RPQs that are used in practice. At the heart of this study is a result of independent interest: the two disjoint

paths problem in directed graphs is W[1]-hard if parameterized by the length of one of the two paths.
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1 INTRODUCTION
Regular path queries (RPQs) are an important feature of graph database query languages. They

allow users to reason about complex connections in graphs by enabling them to express queries

and subqueries over arbitrarily long paths. Essentially, RPQs are regular expressions that are

matched against labeled directed paths in graph databases. Currently, the openCypher project

[45], the LDBC Graph Query Language Task Force [3], and the World Wide Web Consortium

(W3C) [54] are considering how RPQ evaluation can be formally defined for the development of

Neo4j’s Cypher [44, 47] and SPARQL 1.1 [53], respectively. Several popular candidates that are

being considered for the semantics of RPQs are arbitrary paths, shortest paths, simple paths, and
trails ([4, Section 4.4], [47]).

We briefly explain these semantics. Given a graph, an RPQ r considers directed paths for which

the labels on the edges form a word in the language of r . We call such paths candidate matches. The
different semantics restrict the kind of paths thatmatch the RPQ, i.e., should be returned as answers.

Arbitrary paths semantics imposes no restriction and returns every candidate match. Shortest paths
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semantics, on the other hand, only returns the shortest candidate matches, simple paths semantics

only returns candidate matches that do not have duplicate nodes, and trails semantics returns

candidate matches that do not have duplicate edges.

Under arbitrary paths semantics, the number of matches may be infinite if the graph is cyclic.

This may pose a challenge for designing the query language, even if one does not choose to return

all matching paths. Indeed, a popular semantics of RPQs is to return node pairs (x ,y) such that

there exists a matching path from x to y. Under bag semantics for node pairs,
1
where each (x ,y) is

returned as often as the number of matches from x to y, one needs to deal with the case where this

number is infinite.

Under shortest paths, simple paths, and trails semantics, the number of matching paths is always

finite, which simplifies the aforementioned design challenge. However, these three versions face

other challenges. Simple paths and trails semantics may present complexity issues. Two fundamental

issues are that, in directed graphs, the problems of

• counting the number of simple paths or trails and

• deciding if there exists a simple path or trail of even length

from a given source to target node are hard (#P-complete [51] and NP-complete [32], respectively).

Indeed, the first problem implies that evaluating the RPQ a∗ under bag semantics is #P-complete and

the second one implies that deciding if the RPQ (aa)∗ returns at least one answer is NP-complete.
2

Shortest paths semantics does not have these complexity issues, but it is unclear if its semantics

is always natural. For instance, under shortest paths semantics, if we ask how many paths exist

from x to y, then this number may decrease if a new, shorter, path is added.
3
For some queries, this

behavior may seem counter-intuitive to users.

Since there may be no one-size-fits-all solution, the openCypher project team recently proposed

to support several kinds of semantics for Cypher [47]. This situation motivated us to shed more

light on RPQ evaluation problems, focusing on the following aspects:

• We take into account a recent study that investigated the structure of about 250K RPQs

gathered from a wide range of SPARQL query logs [15]. It turns out that all these RPQs have

a relatively simple structure, which is remarkable because their syntax is not restricted by

the SPARQL recommendation.

• We do not only focus on decision problems but also on enumerating the answers to the RPQ.

• We investigate combined complexity, that is, problems in which the input consists of the

graph G and the RPQ r . We do this to obtain a precise idea about the complexity of RPQ

evaluation, both in terms of the data and the query.
4

Our main message is:

The complexity of RPQ evaluation under all four semantics (arbitrary path, shortest

path, simple path, or trail) is reasonable for the types of expressions occurring in query

logs. This holds both for decision versions and enumeration versions of RPQ evaluation.

More precisely, our contributions are the following:

(1) Taking into account the types of expressions occurring in the query logs of the study by

Bonifati et al. [15], we define the class of simple transitive expressions (STEs), which capture

1
SPARQL 1.1 uses an approach similar to such a bag semantics.

2
It is also known that answering the RPQ a∗ba∗ under simple path semantics is at least as difficult as the Two Disjoint
Paths problem [41].

3
Notice that each semantics only returns or counts the number of paths that match.

4
An alternative approach to the problem would be to study the so-called data complexity, but such an analysis considers the

query to be constant, which means that the complexity in terms of the RPQ can be arbitrarily high, even for tractability

results.
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over 99.99% of the expressions in the logs. The remainder of the expressions are unions of
STEs, except for one single expression.

(2) We then turn to RPQ evaluation as a decision problem. Since, in this case, RPQ evaluation

for arbitrary and shortest paths is known to be tractable, we first consider simple paths. This

problem is challenging because it contains special cases that are quite non-trivial. One such

case is testing if there exists a directed simple path of length exactly logn between two given

nodes in a graph with n nodes, which was shown to be in PTIME by Alon et al., using their

color coding technique [2]. The question if it can be decided in PTIME if there is a simple

path of length log
2 n has been open since 1995 [2]. Notice that these two problems are special

cases of RPQ evaluation under simple path semantics (i.e., evaluate the RPQs alogn and alog
2 n

in a graph where every edge has label a).
We therefore investigate RPQ evaluation from the angle of parameterized complexity where

we use the size of the RPQ as parameter (Sections 3.5, 4.2, and 5). We identify a property of

simple transitive expressions that we call cuttability and prove a dichotomy, showing that

the parameterized complexity for evaluating a class R of STEs is in FPT if R is cuttable and

W[1]-hard otherwise. Examples of cuttable classes of expressions are {aka∗ | k ∈ N} and
{(a + b)ka∗ | k ∈ N}. Examples of non-cuttable classes are {akb∗ | k ∈ N}, {akba∗ | k ∈ N},
and {ak (a + b)∗ | k ∈ N}.

(3) We then turn to trail semantics and prove a dichotomy similar to the one for simple path

semantics. Here we show that, if a class R of STEs is almost conflict free, the parameterized

complexity of evaluation for R is in FPT and W[1]-hard otherwise. It should be noted that

every cuttable class of expressions is also almost conflict free, which makes evaluation under

trail semantics slightly “easier” than under simple path semantics.

(4) At the core of the dichotomies are two results of independent interest (Sections 4.2 and 5).

The first is by the authors of [25], who showed that it can be decided in FPT if there is a

simple path of length at least k between two nodes in a graph (Theorem 4.6). The second

is proved in this article and states that the Two Disjoint Paths problem is W[1]-hard when

parameterized by the length of one of the two paths (Theorem 5.5).

(5) We then turn to enumeration problems. We first observe that enumeration of arbitrary or

shortest paths that match a given RPQ can be done in polynomial delay, i.e., such that the

time between consecutive answers is polynomial (Section 8). In terms of simple paths and

trails, we prove that the dichotomies on STEs carries over to the enumeration setting.

Related Work. RPQs on graph databases have been studied since the end of the 80’s [18, 19, 56].

Given a graph database G, an RPQ r , and two nodes s and t , there are several natural fundamental

problems associated to RPQ evaluation:

• The decision problem: Does r match a path from s to t in G?
• The counting problem: How many paths from s to t match r?
• The computation problem: Compute the set of paths from s to t that match r .

The decision problem is well known to be tractable for arbitrary and shortest paths by using

standard automata techniques. Mendelzon and Wood [41] studied the problem for simple paths.

They observed that the problem is NP-complete for a∗ba∗ and (aa)∗. These two results heavily rely

on the work of Fortune et al. [26], who showed NP-completeness of the two disjoint paths problem,

and LaPaugh and Papadimitriou [32], who showed that the even length simple path problem is

NP-complete.

Bagan et al. [7] provided a dichotomy for the data complexity of the decision problem. They

defined a class Ctract such that the problem is in PTIME for each language in Ctract and NP-complete

otherwise.
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The counting problem for arbitrary paths that match an RPQ r is #P-complete in general [30].
5

However, if the RPQ is represented by a deterministic automaton (or even an unambiguous one),

the counting problem is in PTIME [36], since it can be reduced to counting the number of paths

in a graph without a restriction on the edge labels. The complexity results for arbitrary paths

can easily be extended to shortest paths. Indeed, all words have equal length in Kannan et al.’s

#P-hardness proof [30]. Furthermore, the PTIME algorithm for RPQs represented by deterministic

or unambiguous automata also works if we need to count the words of a given length n.
The counting problem for simple paths is already #P-hard for the RPQ a∗. This immediately

follows from the classical result of Valiant [51], which states that counting the number of simple

paths between two given nodes in a graph is #P-complete.

Concerning the computation problem, Ackerman and Shallit [1] proved that one can enumerate

the words accepted by a given NFA in polynomial delay. This is easily extended to RPQ evaluation

w.r.t. arbitrary paths and shortest paths, as we observe in Section 8. Simple paths can be dealt with

using Yen’s algorithm [57], which is a method to enumerate all simple paths between two given

nodes in polynomial delay. We build on this result in Section 8.2.

Yen’s algorithm was generalized by Lawler [34] and Murty [43] to a tool for designing gen-

eral algorithms for enumeration problems. Lawler-Murty’s procedure has been used for solving

enumeration problems in databases in various contexts [27, 29, 31].

Further related work concerning RPQs on graph databases are studies about the complexity

of SPARQL 1.1 property paths [5, 36], which are relevant because property paths extend RPQs.

The relative expressive power of graph query languages using transitive closures, data value

comparisons, and branching was investigated in [35, 50]. Finally, we refer to [4, 8] for general

overviews of the wide literature on graph databases.

In terms of methodology, we were heavily inspired by a line of work initiated by Frank Neven [10,

11, 39]. A practical study on the shapes of regular expressions [10] motivated the study of simple
regular expressions and k-occurrence regular expressions or RE≤k [39] and later work on schema

inference, e.g., [11].
6
Similarly, a practical study on the use of complex types in schemas for XML

data [9] motivated inference algorithms for learning XML Schema [12] and the design of the BonXai

schema language [38].

This article is a full version and extension of our ICDT 2018 paper [40]. In addition to providing

detailed and non-trivial proofs that were absent in [40], it also includes an entirely new dichotomy

for RPQ evaluation under trail semantics (Theorem 3.7).

2 PRELIMINARIES
By Σ we always denote an alphabet, that is, a finite set. A (Σ-)symbol is an element of Σ. A word
(over Σ) is a finite sequence w = a1 · · ·an of Σ-symbols. The length of w , denoted by |w |, is its
number of symbols n. We denote the empty word by ε . For 0 ≤ i ≤ j ≤ n, we denote byw[i, j] the
substring ai · · ·aj ofw .

We assume familiarity with regular expressions and finite automata. The regular expressions we

use in this article are defined as follows: ∅, ε, and every Σ-symbol is a regular expression; and if

r and s are regular expressions, then (r · s), (r + s), and (r ∗) are regular expressions. To improve

readability, we use associativity and the standard priority rules to omit braces in regular expressions.

We usually also omit the outermost braces. The size |r | of a regular expression is the number of

5
Kannan et al. proved that counting the number of words accepted by a non-deterministic automaton for a finite language

is #P-complete. This result trivially extends to RPQ evaluation.

6
Later work used the term (extended) chain regular expressions to refer to the simple regular expressions from [39].
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occurrences of Σ-symbols in r . For example, |((a · b) · a)∗ | = 3. We define the language L(r ) of r as
usual.

We use the following standard abbreviations and alternative notations: (rs) abbreviates (r · s),
(r?) abbreviates (r + ε), and (r+) abbreviates (rr ∗). Furthermore, if S = {a1, . . . ,an} ⊆ Σ, then
we identify S with the expression (a1 + · · · + an). We allow S = ∅, in which case L(S) = ∅. As
such, L(Σ∗) contains every word and L(∅∗) = {ε}. For n ∈ N, we use rn to abbreviate the n-fold
concatenation r · · · r of r . We abbreviate (r?)n by r ≤n . In the context of graph databases, regular
path queries (RPQs) are regular expressions that can be evaluated on graphs and return an output.

In this article, we will blur the distinction between them (language acceptors vs. queries) and use

“regular expression” and RPQ as synonyms.

A non-deterministic finite automaton (NFA) N over Σ is a tuple (Q, Σ,δ ,QI ,QF ), where Q is a

finite set of states, Σ is a finite alphabet, δ : Q × Σ ×Q is the transition relation, QI ⊆ Q is the set

of initial states, and QF ⊆ Q is the set of accepting states. By δ ∗(w) we denote the set of states
reachable by N after readingw , that is, δ ∗(ε) = QI and, for every wordw and symbol a, we define
δ ∗(wa) = {q | (q′,a,q) ∈ δ and q′ ∈ δ ∗(w)}. The size of an NFA is |Q |, i.e., its number of states. We

define the language L(N ) of N as usual.

2.1 Graph Databases
We use edge-labeled directed graphs as abstractions for graph databases. A graph G (with labels

in Σ) will be denoted as G = (V ,E), where V is the finite set of nodes of G and E ⊆ V × Σ ×V is

the set of edges. We say that edge e = (u,a,v) goes from node u to node v and has label a. We use

a-edge to refer to an edge with label a and a-path to refer to a path that consists only of a-edges.
Sometimes we write an edge as (u,v) ∈ V ×V if the label does not matter. In this article, we assume

that graphs are directed, unless mentioned otherwise. Notice that our definition allows graphs to

have self-loops and multi-edges. The size of a graphG , denoted by |G |, is defined as |G | = |V | + |E |.
A path from node u to node v in G is a sequence

p = (v0,a1,v1)(v1,a2,v2) · · · (vn−1,an ,vn)

of edges in G such that u = v0 and v = vn . For 0 ≤ i ≤ n, we denote by p[i, i] (or p[i]) the node
vi and, for 0 ≤ i < j ≤ n, we denote by p[i, j] the subpath (vi ,ai+1,vi+1) . . . (vj−1,aj ,vj ). A path p
is simple if all nodes v0, . . . ,vn are pairwise different. It is a trail if it has no repeated edges, that

is, all triples (vi ,ai+1,vi+1) are pairwise different. The length of p, denoted by |p |, is the number

n of edges in p. By definition of paths, we consider two paths to be different if they are different

sequences of edges. In particular, if two paths go through the same nodes in the same order and use

the same edge labels, then they are the same, but if they use different edge labels, they are different.

For succinctness, we sometimes also denote the path p as the sequence of nodes v0v1 · · ·vn if the

labels do not matter. (For instance, if we want to quantify over all such paths or if the graph does

not contain two edges with different labels between the same two nodes.)

The set of nodes of path p is V (p) = {v0, . . . ,vn}. The word of p is a1 · · ·an and is denoted by

lab(p). Let L be a language, i.e., a set of words. Path p matches L if lab(p) ∈ L. If r is a regular

expression (resp. N is an NFA), we simplify notation and also say that p matches r (resp. p matches
N ) when p matches L(r ) (resp., L(N )). The concatenation of paths p1 = (v0,a1,v1) · · · (vn−1,an ,vn)
and p2 = (vn ,an+1,vn+1) · · · (vn+m−1,an+m ,vn+m) is simply the concatenation p1p2 of the two

sequences. Notice that the last node of p1 needs to be the same as the first node of p2.
For several enumeration problems, we will consider the radix order on paths. To this end, we

assume that there exists an order < on Σ. We extend this order to words and paths. For wordsw1

andw2, we say thatw1 < w2 in radix order if |w1 | < |w2 | or |w1 | = |w2 | andw1 is lexicographically

beforew2. For two paths p1 and p2, we say that p1 < p2 in radix order if lab(p1) < lab(p2).
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2.2 Enumeration Problems and Algorithms
An enumeration problem P is a (partial) function that maps each input i to a finite or countably

infinite set of outputs for i , denoted by P(i). Terminologically, we say that, given i , the task is to

enumerate P(i).
An enumeration algorithm for P is an algorithm that, given input i , writes a sequence of answers

to the output such that every answer in P(i) is written precisely once. If A is an enumeration

algorithm for an enumeration problem P, we say that A runs in polynomial delay if the time before

writing the first answer and the time between writing every two consecutive answers is polynomial

in |i |. By between answers, we mean the number of steps between writing the first symbol from an

answer until writing the first symbol of the next answer. We use the term preprocessing time to
refer to the computation time before writing the first answer.

2.3 Parameterized Complexity
Several of our results will involve parameterized complexity, on which we give a quick overview. We

follow the exposition of Cygan et al. [20] and refer to their work for further details. A parameterized
problem is a language L ⊆ Σ∗ × N where, as before, Σ is a fixed, finite alphabet. For an instance

(x ,p) ∈ Σ∗ × N, we call p the parameter. The size |(x ,p)| of an instance (x ,p) is defined as |x | + p.
A parameterized problem L is called fixed-parameter tractable if there exists an algorithm A, a

computable function f : N→ N, and a constant c such that, given (x ,p) ∈ Σ∗ ×N, the algorithmA
correctly decides whether (x ,p) ∈ L in time at most f (p) · |(x ,p)|c . The complexity class containing

exactly the fixed-parameter tractable problems is called FPT.

In terms of parameterized complexity, Downey and Fellows [22] introduced the W-hierarchy,

where FPT =W[0] and W[i] ⊆ W[j] for all i ≤ j. It is a standard assumption in parameterized

complexity theory that FPT ,W[1]. In order to prove W[1] hardness, we need the notion of fpt-
reduction. If L and L′ are two parameterized problems, an fpt-reduction from L to L′ is an algorithm

R that, given an instance (x ,k) of L, outputs an instance (x ′,k ′) of L′ such that

• (x ,k) is a yes-instance of L if and only if (x ′,k ′) is a yes-instance of L′,
• k ′ ≤ д(k) for some computable function д, and
• the running time of R is f (k) · |x |O (1) for some computable function f .

A famous complete problem for W[1] under fpt-reductions is k-Clique with parameter k [23].

3 MAIN RESULTS
We give an overview of computational problems that we will consider in the article. All these

problems are forms of the RPQ evaluation problem and their input will usually consist of two parts:

(a) a graph G, two nodes s and t in G, and
(b) an RPQ r .

As usual in database literature, part (a) is also called the data and part (b) the query. For a computa-

tional problem P and a set of RPQs R, we denote by P(R) the problem P where the RPQ r always
comes from R. When R is a singleton {r }, we also write P(r ) instead of P({r }).

If we study the combined complexity of a problem P, which will be the default in this article, then

the input to P consists of both (a) and (b). In some cases, we will also refer to the data complexity of

P, which means that we consider (b) to be fixed. Formally, under data complexity, each fixed RPQ r
gives rise to a different computational problem P(r ), for which the input is a graph G and nodes s
and t . As such, when we say that the data complexity of a problem P has a certain upper bound,

then it means that this upper bound holds for P(r ), for every RPQ r . Likewise, when we claim a

lower bound for the data complexity of P, it means that there exists an RPQ r such that P(r ) has
this lower bound.
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Fig. 1. A directed, edge-labeled graph

3.1 Main Problems
We now introduce the problems and the questions or the computational tasks that they ask:

(1) PathExistence: Is there a path from s to t that matches r?
(2) SimPathExistence: Is there a simple path from s to t that matches r?
(3) TrailExistence: Is there a trail from s to t that matches r?
(4) CountPaths: How many paths from s to t match r?
(5) CountShortestPaths: Among the paths from s to t that match r , how many are the shortest?

(6) CountSimplePaths: Among the paths from s to t that match r , how many are simple?

(7) CountTrails: Among the paths from s to t that match r , how many are trails?

(8) EnumShortPaths: Enumerate the shortest of the paths from s to t that match r .
(9) EnumSimPaths: Enumerate the simple paths from s to t that match r .
(10) EnumTrails: Enumerate the trails from s to t that match r .

Here, all paths are assumed to be paths in G. We consider one problem with an additional input,

namely a number ℓ ∈ N, encoded in unary:

(11) EnumPaths: Enumerate the paths from s to t of length ℓ that match r .

The reason why we consider this extra input is because the paths can become arbitrarily large.

Without the extra input ℓ, the problem would trivially not be in polynomial delay, because, from a

certain point on, just writing the output cannot be done in polynomial time anymore.

Notice that each of these problems can be seen as a combination of two ingredients: a type of

computational problem and a type of path. Concerning the type of computational problem, we refer

to problems (1–3) as decision problems, problems (4–7) as counting problems, and problems (8–11)

as enumeration problems. Each of these considers arbitrary paths, shortest paths, simple paths, or
trails. We did not explicitly define a decision problem version for shortest paths, since this problem

is the same as PathExistence.

Example 3.1. The computational problems (4-7) have the following output on the graph in

Figure 1, nodes s and t , and RPQ r = a∗b(a + d)∗:

• CountPaths: infinite. There exists at least one matching path, at the beginning of which the

a-loop from s to v4 to s can be repeated arbitrarily often.

• CountShortestPaths: two. These paths are (s,a,v1)(v1,b,v2)(v2,a, s)(s,a,v3)(v3,a, t) and
(s,a,v1)(v1,b,v2)(v2,a, s)(s,a,v3)(v3,d, t).
• CountSimplePaths: zero. Every path from s to t that matches r uses the node s at least twice.
• CountTrails: six. The two shortest paths, the two shortest paths prefixed with (s,a,v4)(v4,a, s),
and the two shortest paths where we add the loop (s,a,v4)(v4,a, s) in the second visit to s ,
i.e., after the edge (v2,a, s).
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Decision Counting Enumeration

Arbitrary paths in PTIME [48] in FP [48] in polynomial delay [1]

Shortest paths in PTIME [48] in FP [48] in polynomial delay [1]

Simple paths in PTIME [48] #P-complete [51] in polynomial delay [48, 57]

Trails in PTIME [48] #P-complete [51] in polynomial delay [48, 57]

Table 1. Complexities of fundamental path problems in graphs

Decision Counting Enumeration

Arbitrary paths in PTIME (folklore) #P-complete [30] in polynomial delay (Cor. 8.2)

Shortest paths in PTIME (folklore) #P-complete [30] in polynomial delay (Cor. 8.2)

Simple paths NP-complete [41] #P-complete [30] intractable

Trails NP-complete #P-complete [30] intractable

Table 2. Complexities of fundamental RPQ evaluation problems

3.2 Complexity Background
We provide an overview of the complexities of the decision, counting, and enumeration problems

when considering the different types of paths. Table 1 summarizes the complexities in the case

where the RPQ does not play a role in the problems. Formally, we can do this by choosing the RPQ

to be Σ∗. In this section, we will call a problem tractable if, assuming that P , NP , there exists a
polynomial-time algorithm that produces a correct answer. In this sense, all the problems in Table 1

are tractable, except for the counting problems for simple paths and trails. The decision problems

are essentially four instances of the same problem, i.e., reachability. The counting problems for

arbitrary and shortest paths can be solved in FP (functional PTIME). Indeed, given a connectivity

matrix A, the matrix Ak
contains at entry (i, j) the number of paths of length k from node i to node

j. This matrix can be computed in PTIME. Using reachability tests (or an alternative algorithm to

detect loops), it can also be decided in PTIME if the number of paths from i to j is infinite. The
counting problem for simple paths is one of the first problems proved to be #P-complete [51]. The

problem for trails can be seen to be #P-complete by applying the standard split-graph reduction

(see Lemma 6.1(2) and [46, Theorem 2.1]). Enumeration of arbitrary and shortest paths was shown

to be in polynomial delay by Ackerman and Shallit [1]. Yen’s algorithm is well-known to enumerate

simple paths in polynomial delay [57] and can easily be adapted to work with trails using the

standard reduction to directed line graphs (see our Lemma 6.2(1) and [46, Theorem 2.2]).

This table changes significantly when RPQs enter the picture. Most notably: the decision problems

for simple paths and trails become NP-complete and the counting problems become #P-complete.

Concerning the decision problem, the case of arbitrary and shortest paths can be solved in PTIME

by finding arbitrary and shortest paths on a product between the graph database and an automaton

for the RPQ (see also [41, Lemma 1]). Mendelzon and Wood [41] proved that the decision problem

for simple paths is already NP-complete under data complexity [41]. More precisely, they show

that the problem is NP-hard already for the expressions (aa)∗ and a∗ba∗. The proofs are essentially
reductions from the even length simple paths problem [32] and the two disjoint paths problem

[26]. The NP-hardness result for data complexity can be carried over to trails using the split-graph

construction (see Lemma 6.1(1)), which splits every node in two.
7

7
We note that the RPQ also needs to be changed by applying this reduction. One can also adapt the reduction of Mendelzon

and Wood towards trails and obtain hardness for the expressions (aa)∗ and a∗ba∗.
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For completeness, we mention that Bagan et al. [7] investigated the data complexity of the

decision problem for simple paths in much more detail and provide a trichotomy for the complexity

of SimPathExistence. In particular, they define a class of RPQs Ctract such that SimPathExistence(r )
is in PTIME for all r ∈ Ctract and NP-complete otherwise.

Concerning the counting problem, Kannan et al. [30] proved that counting the number of words

of a given length n in the language of an NFA N over alphabet {0, 1} is #P-complete. The proof can

trivially be adapted to produce a regular expression rN such that L(rN ) = L(N ). If we consider the
graph consisting of nodes u0, . . . ,un and edges (ui−1, 0,ui ) and (ui−1, 1,ui ) for every i = 1, . . . ,n,
then the number of paths from u0 to un that match the RPQ rN is precisely the number of words of

length n in L(N ). Therefore, the counting problem for arbitrary paths and RPQs is #P-complete.

Since, on this particular graph, the answers for counting arbitrary paths, simple paths, and trails

are the same, and since all paths from u0 to un have the same length, all four counting problems

are #P-complete.

Concerning enumeration, we show in Corollary 8.2 that enumerating arbitrary and shortest

paths can be done in polynomial delay. (Essentially it can be done by a path enumeration algorithm

on a product of the graph and an NFA for the RPQ.) Since already the decision problems for simple

paths and trails are intractable, the enumeration problems are intractable as well.

Conclusion. From a theoretician’s point of view, considering simple paths or trails for RPQ

evaluation may seem computationally too complex, since already the simplest version of the

decision problem is NP-complete

• under data complexity and, moreover,

• for very small RPQs such as (aa)∗ and a∗ba∗.

In the next section, we will see that the types of RPQs that users ask are different from those that

lead to high worst-case complexity.

3.3 RPQs in Practice are Simple
Bonifati et al. [15] performed an extensive study on the structure of property paths in SPARQL query

logs. Syntactically, SPARQL property paths are extensions of RPQs, since they have additional

operators for wildcards and for following edges in the reverse direction. In Table 3, we provide a

summary of the types of property paths found in the data of [15]. That is, Table 3 is not the table

appearing in [15], but we went over the raw data again and aggregated the types of expressions

slightly differently. In the table, we use the following conventions:

• Lower case letters denote single symbols.

• Upper case letters denote sets of symbols.

• We denote a wildcard test by ⊔.8

• We do not distinguish between following an edge in the forward or backward direction.
9

• Each expression type also encompasses its symmetric form. For instance, when we write a∗b,
we count the expressions of the form a∗b and ba∗. We always list the variant that occurred

most often in the data. That is, a∗b occurred more often than ba∗.

Under Expression Type, the table summarizes which types of expressions are in Bonifati et al.’s data

set, sometimes parameterized by a number ℓ for which the next column describes the values that

were found. Relative describes which percentage of the 247,404 expressions fall into this expression

8
We treat every expression of the form !a (“match every label that is not a”) as a wildcard. In the total corpus, 17 expressions

use the operator “!” in a slightly more complex way than just !a, for instance, (!a+!b)∗ or (a+!a)∗, which boil down to

reachability tests in the graph and both of which we classified as ⊔∗.
9
That is, we treat the property path a the same way as ˆa. The operator ˆ was used in 306 expressions.
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Expression Type ℓ Relative STE?

(a1 + · · · + aℓ)
∗

2–4 29.10% yes

⊔ 25.48% yes
(∗)

a∗ 19.66% yes

a1 · · ·aℓ 2–6 8.66% yes

a∗b 7.73% yes

(a1 + · · · + aℓ) 1–6 6.61% yes

(a1 + · · · + aℓ)
+

1–2 1.54% yes

a1?a2? · · ·aℓ? 1–5 1.15% yes

a(b1 + b2)? 0.01% yes

a1a2? · · ·aℓ? 2–3 0.01% yes

a∗b? < 0.01% yes

Expression Type ℓ Relative STE?

abc∗ < 0.01% yes

A1 · · ·Aℓ 2–6 < 0.01% yes

(a1 + a2)? < 0.01% yes

⊔∗ < 0.01% yes
(∗)

⊔b∗ < 0.01% yes
(∗)

⊔? < 0.01% yes
(∗)

(ab∗) + c < 0.01% no

a∗ + b < 0.01% no

a + b+ < 0.01% no

a+ + b+ < 0.01% no

(ab)∗ < 0.01% no

Table 3. Structure of the 247,404 SPARQL property paths that were also used in the query logs investigated
by Bonifati et al. [15]. The structure is sometimes in terms of a variable ℓ ∈ N, for which the second column
indicated the values that were found in the logs. Relative indicates which percentage of the 247,404 property
paths have this structure.

type. We discuss STE? in the next section. Perhaps surprisingly, we see that the property paths

found in the query logs of Bonifati et al. are not very complex.

The query logs in the study of Bonifati et al. [15] came almost exclusively fromDBpedia, Semantic

Web Dog Food, LinkedGeoData, BioPortal, OpenBioMed, and the British Museum, ranging from

2009 until 2016. Since the logs had 56 million unique queries, property paths did not occur often,

i.e., in about 0.4% of the queries. However, this seems to be an artifact of the underlying data. In

a more recent study on Wikidata query logs, containing 35 million unique queries, a drastically

larger 38.94% of the queries use property paths [14]. Perhaps surprisingly, the types of expressions

found in that study are similar to those presented here.

3.4 Simple Transitive Expressions
We will define simple transitive expressions (STEs), with the intent of capturing the vast majority

of the expressions in Table 3. Intuitively, simple transitive expressions aim at capturing the most

basic navigation in graphs:

(1) first follow a path of length exactly k or at most k (for some k ∈ N),
(2) then do a transitive closure step,

(3) finally, follow a path of length exactly ℓ or at most ℓ (for some ℓ ∈ N).

All three steps are subject to label tests. Furthermore, any step can be omitted, so a simple transitive

expression can also express that paths must have length between k and k + ℓ. Formally, we define

them as follows.

Definition 3.2. An atomic expression is of the form A ⊆ Σ with A , ∅. A bounded expression is

a regular expression of the form A1 · · ·Ak or A1? · · ·Ak?, where k ≥ 0 and each Ai is an atomic

expression. Finally, a simple transitive expression (STE) is a regular expression

BpreT
∗Bsuff,

where Bpre and Bsuff are bounded expressions and T is ∅ or an atomic expression.

Notice that, by taking T = ∅, the subexpression T ∗ only matches ε and the STE defines a finite

language. We believe that STEs capture many RPQs that users ask in practice. In Table 3 the
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column STE? indicates whether the expression is an STE. Here, we write “yes
(∗)
” to indicate that the

expression is an STE if a wildcard is treated the same as a set of labels A. (Our algorithms indeed

can be generalized to incorporate wildcards.)

In total, we saw that only 20 property paths are not STEs or trivially equivalent to an STE (by

taking T = ∅ in the definition of STEs, for example). For instance, the expression type a1a2? · · ·aℓ?
is equivalent to an STE where Bpre = a1, T = ∅, and Bsuff = a2? · · ·aℓ?. In this sense, 99.992% of the

property paths in Table 3 correspond to STEs.

In fact, all expressions except for (ab)∗ are unions of STEs. Unions of STEs can be handled by

our evaluation algorithms for simple paths and trails by running it over each STE in the union

separately. The expression (ab)∗ is the only one left to which our techniques do not apply. It is

difficult to evaluate, because even the data complexity of SimPathExistence is NP-complete for

(ab)∗ [7]. Coincidentally, we discovered that the SPARQL query containing this expression was not

generated by an ordinary user, but by a researcher who was trying to test the robustness of the

SPARQL engine [52].

Proposition 3.3. The data complexity of SimPathExistence is in polynomial time for every STE.

Proof. The proposition states that, for every STE r , the complexity of SimPathExistence(r ) is
in polynomial time. This is an easy consequence of the work of Bagan et al. [7]. Following their

dichotomy for the data complexity of SimPathExistence, every STE is in the class which they call

Ctract and for which the problem is in polynomial time. □

3.5 Complexity Results on Simple Transitive Expressions
The main focus of the article will be a study of SimPathExistence and TrailExistence from a

parameterized complexity perspective. The reason why we focus on parameterized complexity is

that SimPathExistence is trivially NP-complete because it encompasses the NP-completeHamilton

Path problem. Indeed, given a graph G with n nodes and only a-edges, nodes s and t , and RPQ

an−1, the SimPathExistence problem asks if there is a Hamiltonian path from s to t in G. Using
Lemma 6.1(3), NP-completeness also follows for TrailExistence.
We can obtain a more precise view on the problem by looking at its parameterized complexity.

Alon et al. [2] proved that SimPathExistence for graphs with n nodes and RPQs of the form ak is

fixed-parameter tractable in k , using their famous color-coding technique. We note that a precise

view on the parameterized complexity of SimPathExistence subsumes long-standing open problems.

For instance, SimPathExistence is in PTIME if k = logn [2], but the question if SimPathExistence
is in PTIME if k = log

2 n has been open since 1995 [2].
10

3.5.1 Two Dichotomies for Simple Transitive Expressions. We will explain our main results w.r.t.

the parameterized complexity of SimPathExistence and TrailExistence, that is Theorem 3.5 and

Theorem 3.7. The instances (x ,p) of the problems will always be such that x encodes the graph G
and regular expression r , and the parameter p is |r |. For every problem (1–11) from Section 3.1, we

refer to its parameterized version by prefixing it with P. For instance, PSimPathExistence refers to
the parameterized version of SimPathExistence.

Likewise, we denote by PSimPathExistence(R) and PTrailExistence(R) the problems PSimPath-
Existence and PTrailExistencewhere the RPQ from the input always comes from the class of regular

expressions R. We will sometimes denote a class of RPQs by a regular expression r that uses a

10
Björklund et al. [13] showed that, under the Exponential Time Hypothesis (ETH), for any nondecreasing polynomial time

computable function f that tends to infinity there is no PTIME algorithm that can decide if there exists a simple path of

length Ω(f (n) log2 n) between two nodes in a graph of size n. Chen and Flum [17, Theorem 12] showed that, under the

ETH, deciding whether there exists a simple path of length log
2 n in an undirected graph cannot be in polynomial time.
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≥ c1 ≥ c2
s

k1 k2
t

Fig. 2. Assume r = A1 · · ·Ak1T
∗A′k2

· · ·A′
1
has left and right cut borders c1 and c2, respectively. Assume that

an arbitrary path from s to t matches r such that its length k1 prefix and length k2 suffix do not have loops
and are node disjoint. If, after removing all loops, (1) the length c1 prefix and length c2 suffix are still the same
and (2) the path still has length at least k1 + k2, then it matches r .

variable k . By doing so, we refer to the class of regular expressions obtained from r by replacing

k by every possible number from N. For example, akb∗ denotes the class of regular expressions
{b∗,ab∗,aab∗,aaab∗, . . .}. (We do this to be able to discuss some classes of expressions, using a

simple notation. If we use this convention, we will consistently denote the variable by “k”.)

Dichotomy for Simple Paths. We first define the notions that we need for the dichotomy for simple

paths.

Definition 3.4. Let r = BpreT
∗Bsuff be an STE. If Bpre = A1 · · ·Ak1 , then the left cut border c1 of r is

the largest value such that T ⊈ Ac1 if it exists and zero otherwise. If Bpre = A1? · · ·Ak1?, then the

left cut border is zero. Symmetrically, if Bsuff = A′k2 · · ·A
′
1
, then the right cut border c2 of r is the

largest value such that T ⊈ A′c2 if it exists and zero otherwise. (Notice that the indices in Bsuff are

reversed.) If Bsuff = A′k2? · · ·A
′
1
?, then the right cut border is zero.

We explain the intuition behind cut borders in Figure 2. For c ∈ N, an expression is c-bordered
if the sum of its left and right cut borders is c . We call a class R of STEs cuttable if there exists a
constant c ∈ N such that each expression in R is c ′-bordered for some c ′ ≤ c .

We can now prove a dichotomy on the complexity of PSimPathExistence(R) for classes of STEs
R, if R satisfies the following mild condition. We say that R can be sampled if there exists an

algorithm that, given k ∈ N, returns an expression in R that is k ′-bordered with k ′ ≥ k , and
“no” if there is no such expression. We need the condition that R can be sampled to prove the

W[1]-hardness. For this reason, this condition is no longer needed in the upper bound results

(Lemma 4.17 and Theorem 8.7).

Theorem 3.5. Let R be a class of STEs that can be sampled.
(a) If R is cuttable, then PSimPathExistence(R) is in FPT and
(b) otherwise, PSimPathExistence(R) is W[1]-hard.

The result will follow immediately from Lemma 4.17 and Lemma 5.6. Notice that the difference

between cuttable and non-cuttable classes of STEs can be subtle. For instance, akb∗ and ak (a + b)∗

are non-cuttable, but (a + b)ka∗ is cuttable. Looking back at Table 3, we see that abc∗ is 2-bordered
and all other STEs are either 0-bordered or 1-bordered. It therefore seems that cut borders in

practice are small and over 99% of the expressions fall on the tractable side of Theorem 3.5.

Dichotomy for Trails. We now present a dichotomy for trails which is, perhaps surprisingly,

slightly different in the sense that more classes of expressions fall on the tractable side. For in-

stance, PTrailExistence(akb∗) is in FPT because the a-path and the b-path can be evaluated in-

dependent of each other (no a-edge will be equal to a b-edge). On the other hand we have that

PTrailExistence(akba∗) is W[1]-hard.
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Definition 3.6. Let r = A1 · · ·Ak1T
∗A′k2 · · ·A

′
1
be an STE with left cut border c1 and right cut

border c2. We say that Ai with i ≤ c1 (resp., A
′
j with j ≤ c2) is a conflict position if Ai ∩T , ∅ (resp.,

A′j ∩T , ∅). We say that a class R of STEs is almost conflict free if there exists a constant c such
that each r ∈ R has at most c conflict positions.

Observe that the class of almost conflict free STEs is larger than the class of cuttable STEs. For

instance, bka3baka∗ is almost conflict free, because every expression in the class has three conflict

positions, namely the positions corresponding to the three leftmost a’s. On the other hand, the left

cut borders are on position k + 4, which can become arbitrarily large.

We say that R can be conflict-sampled if there exists an algorithm that, given k ∈ N, returns an
expression in R that has k ′ conflict positions with k ′ ≥ k , and “no” if there is no such expression.

Our main dichotomy for trails is the following.

Theorem 3.7. Let R be a class of STEs that can be conflict-sampled.
(a) If R is almost conflict free, then PTrailExistence(R) is in FPT and
(b) otherwise, PTrailExistence(R) is W[1]-hard.

This theorem follows immediately from Lemma 7.3 and Lemma 7.4.

3.5.2 Results for Enumeration Problems. Concerning enumeration, we prove that both Theo-

rem 3.5(a) and Theorem 3.7(a) can be strengthened to give rise to FPT delay algorithms, i.e.,

algorithms in which the preprocessing time and delay between answers is fixed-parameter tractable.

We do not revisit hardness, because already the decision versions of the problems are hard.

3.5.3 Results for Counting Problems. We do not prove new results concerning counting problems,

because the picture is already relatively clear. Flum and Grohe [24, Theorem 5.1] showed that it

is #W[1]-complete to count simple paths of length k in a directed graph. They do not consider

dedicated source and target nodes s and t , but the problem of counting all paths of length k can

easily be reduced to counting all paths of length k + 2 between two nodes s and t : we simply add

two new nodes s and t and edges (s,v) and (v, t) for all v ∈ V . Notice that this also means that

counting the number of paths of length at least k is hard, since the number of paths of length k is

the number of paths of length at least k , minus those of length at least k + 1. As these hardness
results don’t use edge labels, the same hardness results apply for trails (using for example the

reduction from Perl and Shiloach [46]). These results imply that counting is already #W[1]-hard

for all classes of STEs that simply put a length constraint (length at most, at least, or exactly k) on
paths, both for simple paths and trails. Notice that, for FPT results with parameter k , it does not
matter if k is given in unary or binary.

3.6 What Does This Mean for Systems?
If we interpret Theorems 3.5 and 3.7 in the light of the real world property paths in Table 3 we can

observe the following.

Concerning simple paths semantics, Theorem 3.5 tells us that PSimPathExistence(R) is fixed-
parameter tractable for cuttable classes R. This result, together with the observation that the largest

cut border in Table 3 is two, and therefore very small, can be seen as an explanation why, in practice,

simple paths semantics usually does not bring systems to their knees, even though this would

theoretically be possible using regular expressions such as (aa)∗.
Looking closer, we prove that PSimPathExistence is in time 2

O ( |r |) · |V |c+3 · |E | in the worst

case (Lemma 4.17), where |r | is the size of the RPQ, c is the largest cut border in R, and |V | and
|E | are the number of nodes and edges in the graph, respectively. In Table 3, the largest value of

c in STEs or unions thereof is two (for abc∗), and |r | is relatively small. We also note that this is
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a worst-case bound. In most practical settings, we expect that the run-time of even more naive

evaluation algorithms will not come close to requiring |V |c+3 time for these simple expressions.

Indeed, a major complexity bottleneck in the evaluation algorithm is the subroutine that deals with

“simple paths of length at least k”, satisfying a label constraint given by the STE. For queries and

graphs in which this problem is efficiently solvable, we expect STE evaluation to be efficiently

possible as well.

The story for trails is similar. Here, we have that PTrailExistence(R) is fixed-parameter tractable

for even more classes R, namely those that are almost conflict-free. The precise complexity guar-

antees that we provide in this case are worse than for simple paths (run time 2
O ( |r |) · Ec+6 in

Lemma 7.3), but this is mainly because we have developed our methods for simple paths and then

adapted them for trails. In this complexity bound, c does not refer to the expressions’ cut border,

but to its number of conflict positions, which can be smaller (but cannot be larger). Again, a major

complexity bottleneck is the subroutine that deals with “trails of length at least k”, with label

constraints.

4 MAIN UPPER BOUND
4.1 Preliminary Technical Result: Downward Closed Languages
We first recall a useful result, Lemma 4.1, for which we need some definitions. A language is

downward closed if it is closed under taking subsequences, that is, for every wordw = a1 · · ·an ∈ L
and every sequence 0 < i1 < · · · < ik < n+ 1, we have that ai1 · · ·aik ∈ L.

11
The product of graphG

and NFA N = (Q, Σ,∆,QI ,QF ) is a graph (V
′,E ′)withV ′ = (V ×Q) and E ′ = {((u1,q1),a, (u2,q2)) |

(u1,a,u2) ∈ E and (q1,a,q2) ∈ ∆}. We denote this product by G × N . Notice that simple paths in

G × N may use nodes (u,q1) , (u,q2) and may therefore correspond to non-simple paths in G. We

will use the following lemma to deal with downward closed parts of STEs, to be more precise, with

bounded expressions of the form A1? · · ·Ak? and the transitive partT ∗ in the enumeration setting.

Lemma 4.1 (Theorem 5 in [41]). Let N be an NFA for a downward closed language. Let G be a
graph and s and t be nodes in G . Then we can decide if there is a simple path from s to t that matches
N in time O(|N | |G |).

Proof. The algorithm consists of two steps. First construct the product between N andG , which
takes time O(|N | |G |). Then, test if (t , f ) is reachable from (s, i) for some accepting state f and

initial state i . Indeed, (t , f ) is reachable from (s, i), if and only if there exists some path p from s to
t that matches N . Since L(N ) is downward closed, the simple path obtained from p by removing all

loops still matches N . □

Instead of reachability, we can use the algorithm of Ackerman and Shallit [1, Theorem 1] that

finds a minimal word in an NFA N in θ (|N |2n2) operations, where n is the length of the shortest

word in L(N ). As a result, we can prove that, if L(N ) is downward closed, it is possible to output a

smallest simple path in radix order that matches N in polynomial time. (If L(N ) is not downward
closed, then the smallest path that matches N is not necessarily simple.)

Proposition 4.2. Let N be an NFA such that L(N ) is downward closed. Given a graph G and two
nodes s and t , a shortest simple path from s to t inG that matches N can be found in timeO(|G | |N |) if
such a path exists. A smallest such path in radix order can be found in timeO(|G |2 |N |2 |V |2) if it exists.

11
The term downward closed comes from being closed under taking the smaller elements in the subsequence ordering which,

due to Higman’s Lemma, is a well quasi ordering.
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Proof. LetG be a graph. Concerning a shortest path, the algorithm from Lemma 4.1 can easily

be adjusted to return a shortest path, for instance, using breadth-first search for the reachability

test. This does not influence the time bound.

Concerning a smallest path in radix order, we first observe that each shortest path from s to t
in G that matches N is simple — otherwise we could obtain a shorter path by making the path

simple (i.e., removing edges that form a loop), and obtain a path that still matches N because L(N )
is downward closed. Clearly, if i and f are an initial and accepting state of N respectively, then

every shortest path from (s, i) to (t , f ) in G × N corresponds (replacing nodes (u,q) with u) to a

shortest path from s to t inG that matches N . Furthermore, each shortest path from s to t inG that

matches N corresponds to one or more paths in G × N .

So we can find a smallest simple path in radix order by viewingG×N as an NFA, using the method

of Ackerman and Shallit [1, Theorem 1] to find a smallest path in radix order, and then output

the corresponding path inG . We needO(|N | |G |) time to construct the product andO(|N |2 |G |2 |p |2)
time to compute a smallest path p in radix order in G × N . □

4.2 Representative Sets and Simple Paths with Length Constraints
To prove Theorem 3.5(a), we need the representative sets technique [25]. At their core, this technique

can be used to prove that the following parameterized problems are in FPT:

• PSimPathLength: Given an instance (G, s, t ,k) with parameter k ∈ N, is there a simple path

from s to t of length exactly k in G?
• PSimPathLength≥ : Given an instance (G, s, t ,k) with parameter k ∈ N, is there a simple path

from s to t of length at least k in G?

Before we explain the representative sets technique, we first restate some important results on

these problems: Alon et al. [2] proved that PSimPathLength is in FPT, using their famous color

coding technique. For the theorem statement, we assume that G = (V ,E).

Theorem 4.3 (Alon et al. [2]). PSimPathLength is in time 2O (k ) |E | log |V | and therefore in FPT.

Bagan et al. [6, Theorem 7] combine color coding and dynamic programming to prove that, given

graph G, nodes s , t , an NFA A, and a number k , deciding if there is a simple path from s to t of
length at most k that matches L(N ) can be done in time 2

O (k ) |N | |G | log |G |. In their proof they

actually show that it is in time 2
O (k ) |N | |G | log |V |. From this, the following can be inferred.

Lemma 4.4 (Immediate conseqence of Corollary 1 in Bagan et al. [6]). Let G = (V ,E) be
a graph, s , t be nodes of G, and N be an NFA accepting a finite language. It can be decided in time
2
O ( |N |) |G | log |V | if there exists a simple path from s to t in G, labeled with a word from L(N ).

Corollary 4.5. Let R be a class of STEs defining finite languages. Then PSimPathExistence(R) is
in FPT or, more precisely, in time 2O ( |r |) |G | log |V |.

PSimPathLength≥ can be shown to be in FPT by adapting methods from Fomin et al. [25].

They proved that testing the existence of simple directed cycles of length at least k is in FPT and

discovered that their technique also works for paths [21]. The following theorem is therefore by

the authors of [25].

Theorem 4.6 (Similar to Theorem 5.3 in [25]). PSimPathLength≥ is in FPT. More precisely, it is
in time 2O (k ) · |E | |V | log |V |.

We received a proof sketch of the result from Holger Dell [21] (who attributed the result to Fomin

et al., the authors of [25]). Next, we provide a self-contained generalization of Theorem 4.6 that

deals with edge labels, based on the proof sketch we received. Our contribution is the generalization
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of the approach towards the extra condition that checks the labels of the path. We emphasize that

the most complex part of the proof concerns the length constraints and is due to the authors of [25].

One way to test whether there exists a simple path from s to t of length at least k is to find a

simple path pk of length exactly k such that there is a path from the last node of pk to t that avoids
pk . But the number of such paths pk is n!/(k!(n − k)!). So naively testing and enumerating all paths

is not fixed-parameter tractable in k . We therefore need a way to decrease the number of such

paths we need to consider. We can do this using the following notion, originally introduced by

Monien [42].

Definition 4.7 (k-representative family [25]). Given a set of nodes V , an integer k ∈ N, and a

set S containing subsets of V , all of size ℓ, for some ℓ ∈ N, we say that a subfamily
ˆS ⊆ S is

k-representative for S if the following holds: for every set Y ⊆ V of size at most k , if there is a set

X ∈ S disjoint from Y , then there is a set X̂ ∈ ˆS disjoint from Y . We abbreviate this by
ˆS ⊆k

rep
S.

Intuitively, if one needs to be able to avoidk-element sets, it is sufficient to store ak-representative
set. Notice that each set S is trivially k-representative for itself. The crux is that we want to be able
to compute k-representative sets that are small. The condition that all sets in S have the same size

is just a technicality that allows us to simplify proofs later.

In the following, s,v are nodes and r is a regular expression of the formA1 · · ·Ak for some k ∈ N.
We define

Prs,v := {V (p) | there is a simple path p from s to v in G that matches r }.

Notice that, by definition of r , these simple paths from s to v in G have length k . Therefore, all sets
in Prs,v have exactly k + 1 elements.

We next show that representative sets P̂rs,v ⊆
k+1
rep

Prs,v exist for each node v ∈ V and can be

constructed in fixed parameter tractable time. We restate the relevant parts of Lemma 3.3 and

Corollary 4.16 from [25] since we need them in the proof. Lemma 4.8 states that the relation “is

a k-representative set for” is transitive. Corollary 4.9 gives a rough time and space bound for

computing k-representative sets.

Lemma 4.8 (Lemma 3.3 in [25] for directed graphs). Given a graph G = (V ,E) and a family S
of subsets of V . If ˆS ⊆krep S

′ and S′ ⊆krep S, then ˆS ⊆krep S.

Corollary 4.9 (Corollary 4.16 in [25], without weight function). There is an algorithm
that, given a family A of sets of size ℓ over a set V of nodes and an integer k , computes in time

O

(
|A| ·

(
k + ℓ

k

)k
· 2o(k+ℓ) · log |V |

)
a subfamily Â ⊆krep A such that |Â | ≤

(k+ℓ
ℓ

)
· 2o(k+ℓ).

We now adapt Lemma 5.2 in Fomin et al. [25] to show a time and space bound for representative

sets P̂rs,v ⊆
k
rep

Prs,v under label constraints. We will need this to deal with the bounded parts of STEs

later.

Lemma 4.10. For each regular expression r = A1 · · ·Aℓ and k ≥ ℓ, there is a collection of families
P̂rs,v ⊆

k
rep P

r
s,v with v ∈ V \ {s}, each of size at most

(k+ℓ+1
ℓ+1

)
· 2o(k+ℓ). This collection of families can be

computed in time O(8k+o(k) |E | log |V | + |r | |E |).

Proof. Fomin et al. use in their complexity analysis that, given (u,v), one can test if there exists

an edge from u to v in the graph in constant time. We first preprocess the graph so that, given

(u,v) ∈ V ×V and i ∈ {1, . . . , ℓ}, we can test in constant time whether there is an edge from u to
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v with a label in Ai . Such preprocessing consists of annotating each edge with a ℓ-bit vector and
takes time O(|r | |E |). (For each edge, and each Ai , test if the edge label is in Ai .)

We describe a dynamic programming algorithm. We assume w.l.o.g. that the nodes in V are

named {s,v1, . . . ,vn−1}. Let D be an ℓ × (n − 1) matrix where the rows are indexed with integers in

1, . . . , ℓ and the columns are indexed with nodes in {v1, . . . ,vn−1}. For i = 1, . . . , ℓ, we will denote
by ri the prefix A1 · · ·Ai of r . The entry D[i,v] will store a family P̂ris,v ⊆

k+ℓ−i
rep

Pris,v of size at most(k+ℓ+1
i+1

)
· 2o(k+ℓ). We fill the entries in the matrix D in increasing order of rows. For i = 1, we set

D[1,v] = {{s,v}} if G has an edge (s,a,v) with a ∈ A1 and D[1,v] = ∅ otherwise. Assume that we

have filled all the entries until row i − 1. For two families of sets A and B, we define

A • B = {X ∪ Y | X ∈ A, Y ∈ B, and X ∩ Y = ∅}.

We denote by ∃(u,Ai ,v) that there exists an edge (u,a,v) with a ∈ Ai . Let

N ri
s,v =

⋃
∃(u,Ai ,v)

P̂ri−1s,u • {v}.

Before we continue, we adapt Claim 5.1 in [25] such that it takes r into account, that is:

Claim 4.11. N
ri
s,v ⊆

k+ℓ−i
rep Pris,v

Proof. The proof is by induction on i . Let S ∈ Pris,v and Y be a set of size at most k + ℓ − i such
that S ∩ Y = ∅. We will show that there exists a set S ′ ∈ N ri

s,v such that S ′ ∩ Y = ∅. This will imply

the desired result. Since S ∈ Pris,v , there exists a simple path P = (s,u1) · · · (ui−1,v) in G such that

S = V (P) and the predicate ∃(ui−1,Ai ,v) is true. The existence of the path P[0, i − 1], the subpath
of P from s to ui−1, implies that X ′ = S \ {v} ∈ Pri−1s,ui−1 . Take Y

′ = Y ∪ {v}. Observe that X ′ ∩Y ′ = ∅

and |Y ′ | ≤ k + ℓ − i + 1. Since P̂ri−1s,ui−1 ⊆
k+ℓ−i+1
rep

Pri−1s,ui−1 by induction, there exists a set X̂ ′ ∈ P̂ri−1s,ui−1

such that X̂ ′ ∩ Y ′ = ∅. However, since ∃(ui−1,Ai ,v) and v < X̂
′
(because X̂ ′ ∩ Y ′ = ∅), we have

X̂ ′ • {v} = X̂ ′ ∪ {v} and X̂ ′ ∪ {v} ∈ N ri
s,v . Taking S ′ = X̂ ′ ∪ {v} suffices for our purpose. This

completes the proof of the claim. □

We fill the entry for D[i,v] for i ≥ 2 as follows. Observe that

N ri
s,v =

⋃
∃(u,Ai ,v)

D[i − 1,u] • {v}.

Let us denote by d−(v) the indegree of v , i.e., the number of edges that end in v . We already have

computed the family corresponding to D[i − 1,u] for all u. By construction, we have |P̂ri−1s,u | ≤(k+ℓ+1
i

)
2
o(k+ℓ)

and thus also |N
ri
s,v | ≤ d−(v)

(k+ℓ+1
i

)
2
o(k+ℓ)

. Furthermore, we can compute N
ri
s,v in

time O
(
d−(v)

(k+ℓ+1
i

)
2
o(k+ℓ)

)
. Recall that, due to the preprocessing, we can test if there’s an edge

with label in Ai in constant time. Now, we use Corollary 4.9 on N
ri
s,v , which contains sets of size

(i + 1), to obtain a (k + ℓ + 1 − (i + 1))-representative, i.e., (k + ℓ − i)-representative subfamily
ˆN
ri
s,v

of size at most

(k+ℓ+1
i+1

)
· 2o(k+ℓ) in time

O

(
d−(v)

(
k + ℓ + 1

i

)
2
o(k+ℓ) ·

(
(k + ℓ − i) + (i + 1)

k + ℓ − i

)k+ℓ−i
· 2o((k+ℓ−i)+(i+1)) · log |V |

)
.

By Claim 4.11, we know that N
ri
s,v ⊆

k+ℓ−i
rep

Pris,v . Thus, Lemma 4.8 implies that
ˆN
ri
s,v ⊆

k+ℓ−i
rep

Pris,v .

We define P̂ris,v = ˆN
ri
s,v and assign this family to D[i,v]. This completes the description and the

correctness of the algorithm.
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ALGORITHM 1: FLPS Algorithm with restricted STE

Input: Graph G = (V ,E), nodes s, t in G, regular expression rT ∗ with r = A1 · · ·Ak and T ⊆ Ai for all i
Output: Decide if there exists a simple path from s to t that maches rT ∗

1 for every v ∈ V do
2 Compute P̂rs,v ⊆

k+1
rep

Prs,v
3 for every X ∈ P̂rs,v do
4 V ′ ← (V \ X ) ∪ {v}

5 E ′ ← E ∩ (V ′ ×T ×V ′)

6 if there exists a path from v to t in (V ′,E ′) then
7 return YES

8 return NO

s

vk1

vk1+1

t
P

P ′

Q
s

vk1

vk1+1

vn−k−1

vn−k
vi

t
P

P ′

Q

R

Fig. 3. This figure shows how we partition a shortest simple path p in the proof of Lemma 4.12 if p is short
(left) or if p is long (right). Notice that V (P),V (Q), and V (R) are pairwise disjoint.

Notice that, if we keep the elements in the sets in the order in which they were built using

the • operation, then they directly correspond to paths. As such, every ordered set in our family

represents a path in the graph.

Since our only change was that we test ∃(u,Ai ,v) instead of the existence of an edge (u,v), the
time bound O

(
8
k+o(k ) |E | log |V |

)
[25, Lemma 5.2] carries over, modulo the additive O(|r | |E |) term

for preprocessing that we used to test ∃(u,Ai ,v) in constant time. The size bound is still guaranteed

by Corollary 4.9. □

Notice that Claim 4.11 will not work for arbitrary regular expressions. We used in the claim that

if there exists an edge (ui−1,a,v) with a ∈ Ai , then we can add v to any set X̂ ′ ∈ P̂ri−1s,ui−1 to obtain a

valid set in N
ri
s,v . For arbitrary regular expressions this is not the case, an example being (aa + bb).

4.3 Algorithms for Simple Paths
We now present an algorithm that solves PSimPathExistence for the case where the RPQ is of

the form A1 · · ·AkT
∗
and is 0-bordered, that is, T ⊆ Ai for all i , see Algorithm 1. The algorithm

computes, for every node v , a (k + 1)-representative set P̂rs,v in line 2 (for r = A1 · · ·Ak ) and

subsequently iterates over each set of nodes X in P̂rs,v to test if there is a path from v to t that
avoids X .

For the correctness of the algorithm, the next lemma is crucial.

Lemma 4.12. Let r1T ∗ be a 0-bordered expression with r1 = A1 · · ·Ak1 and let L(r2) be an arbitrary
finite language with words up to length k2. We define k = k1 + k2. Then, G = (V ,E) has a simple path
from s to t that matches r1T ∗r2 if and only if there exists a node v ∈ V and X ∈ P̂r1s,v ⊆k+1rep Pr1s,v , such
thatG has a simple path from s to t that matches r1T ∗r2 and with the first k1 + 1 nodes belonging to X .
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Proof. The if direction is straightforward. For the only-if direction, let p = (v0,a1,v1) · · ·
(vn−1,an ,vn) be a shortest simple path from s to t that matches r1T

∗r2. We first give the intuition

of the proof. We will partition p as depicted in Figure 3, depending on whether p is short or long.

Here, p is the path consisting of the solid edges. Since P and Q are disjoint, we will find a path P ′

with V (P ′) ∈ P̂r1s,v that is node-disjoint from Q . We then show that, if p is long, P ′ and R must be

disjoint, otherwise it will contradict p being a shortest path.

More precisely, we make the following case distinction. If |p | ≤ 2k1 + k2 + 1, we define P =
(v0,a1,v1) · · · (vk1−1,ak1 ,vk1 ) and Q = (vk1+1,ak1+2,vk1+2) · · · (vn−1,an ,vn). Clearly, P matches r1
and (vk1 ,ak1+1,vk1+1) ·Q matches T ∗r2. We have that V (P) ∈ Pr1s,vk

1

, we have |V (Q)| ≤ k + 1, and

V (P)∩V (Q) = ∅. Let P̂r1s,vk
1

be a (k+1)-representative set of Pr1s,vk
1

. Then there exists a setX ∈ P̂r1s,vk
1

withX ∩V (Q) = ∅. By definition of Pr1s,vk
1

, there exists a simple path P ′ from s tovk1 withV (P
′) = X

that matches r1. Therefore, P
′ · (vk1 ,ak1+1,vk1+1) ·Q is a simple path from s to t that matches r1T

∗r2.
Otherwise, we have |p | > 2k1 + k2 + 1. We define P = (v0,a1,v1) · · · (vk1−1,ak1 ,vk1 ), R =
(vk1+1,ak1+2,vk1+2) · · · (vn−k−2,an−k−1,vn−k−1), and Q = (vn−k ,an−k ,vn−k+1) · · · (vn−1,an ,vn). We

thus have

p = P · (vk1 ,ak1+1,vk1+1) · R · (vn−k−1,an−k ,vn−k ) ·Q .

Since p matches r1T
∗r2, we furthermore know that P matches r1, R matches T ∗, and Q matches

T ∗T k1r2.
12
Since |V (Q)| = k + 1, V (P) ∈ Pr1s,vk

1

, and V (P) ∩V (Q) = ∅, the definition of P̂r1s,vk
1

⊆k+1
rep

Pr1s,vk
1

guarantees, similar as in the previous case, the existence of a path P ′ from s to vk1 that

matches r1 with V (P
′) ∈ P̂r1s,vk

1

and V (P ′) ∩V (Q) = ∅. Let P ′ = (v0,a
′
1
,v ′

1
) · · · (v ′k1−1,a

′
k1
,vk1 ). If P

′

is disjoint from R, the path

p ′ = P ′ · (vk1 ,ak1+1,vk1+1) · R · (vn−k−1,an−k ,vn−k ) ·Q

is a simple path matching r1T
∗r2, and we are done.

We show that P ′ must be disjoint from R. Towards a contradiction, assume that there is an

i ∈ {1, . . . ,k1 − 1}
13
such that v ′i = vj ∈ V (R). We choose i minimal and build a new simple path

p ′ = (v0,a
′
1
,v ′

1
) · · · (v ′i−1,a

′
i ,v
′
i )(v

′
i ,aj+1,vj+2) · · · (vn−1,an ,vn). This path matches A1 · · ·AiT

∗T k1r2.
But since r1T

∗
is 0-bordered, we have T ⊆ Ai for all 1 ≤ i ≤ k1, so the new path matches r1T

∗r2.
Finally, we note that p ′ does not contain the edge (vk1 ,ak1+1,vk1+1), so p

′
is shorter than p, which

contradicts the assumption that p was a shortest path from s to t that matches r1T
∗r2. So P

′
must

be disjoint from R. □

Notice that we allow T = ∅ in Lemma 4.12. Since L(∅∗) = {ε}, this means that the lemma also

deals with the case where the expression is just A1 · · ·Ak1 . From the proof of Lemma 4.12 we can

also infer the following corollary, which states that shortest matching paths can also be found with

this method. It will be useful in Section 8.2.2 when considering enumeration problems.

Corollary 4.13. Let r1T ∗ be a 0-bordered expression with r1 = A1 · · ·Ak1 and let L(r2) be an
arbitrary finite language with words up to length k2. We define k = k1 + k2. Then, G = (V ,E)
has a simple path from s to t that matches r1T ∗r2 if and only if there exists a node v ∈ V and
X ∈ P̂r1s,v ⊆

k+1
rep Pr1s,v , such that G has a shortest simple path from s to t that matches r1T ∗r2 and with

the first k1 + 1 nodes belonging to X .

The following lemma states that Algorithm 1 is correct and runs in fixed parameter tractable

time.

12
The path Q does not necessarily match T k1r2, since r2 might contain words shorter than k2.

13
Since P and R are disjoint, we have v0, vk1 < V (R).
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ALGORITHM 2: Algorithm for 0-bordered STEs

Input: Graph G = (V ,E), nodes s, t in G, and 0-bordered regular expression r = A1 · · ·Ak1T
∗A′k2

· · ·A′
1

Output: Does there exist a simple path from s to t matching r?
1 for all v ∈ V do
2 Compute P̂r1s,v ⊆

k1+k2+1
rep

Pr1s,v in G with r1 = A1 · · ·Ak1 .

3 for all sets X ∈ P̂r1s,v do
4 V ′ ← (V \ X ) ∪ {v}

5 E ′ ← E ∩ (V ′ × Σ ×V ′)

6 for all u ∈ V ′ do
7 Compute P̂r2u,t ⊆

k2+1
rep

Pr2u,t in (V
′,E ′) with r2 = A′k2

· · ·A′
1
.

8 for all sets X ′ ∈ P̂r2u,t do
9 V ′′ ← (V ′ \ X ′) ∪ {u}

10 E ′′ ← E ′ ∩ (V ′′ ×T ×V ′′) ▷ (V ′′,E ′′) has only T -edges

11 if there exists a path from v to u in (V ′′,E ′′) then
12 return YES

13 return NO

Lemma 4.14. PSimPathExistence(R) is in FPT for the class R of 0-bordered STEs of the form r =
A1 · · ·AkT

∗. More precisely, it is in time 2O ( |r |) · |E | |V |2.

Proof. The problem can be solved using Algorithm 1. Its correctness follows directly from

Lemma 4.12 with r2 = ε . Using Lemma 4.10, we now show that the algorithm is indeed an FPT

algorithm.

We obtain from Lemma 4.10 that line 2 of Algorithm 1 takes O
(
8
k+o(k ) |E | log |V | + |r | |E |

)
time

for eachv ∈ V . Since we need to consider at most |V | ·
(
2(k+1)
k+1

)
· 2o(2(k+1)) setsX in line 3, the number

of such sets we need to consider throughout the entire algorithm is at most O(|V |4k+o(k )). Finally,
line 6 can be checked by a reachability test (say, depth-first search) in time O(|V | + |E |), so the

overall running time is bounded by

O
(
|V | · (8k+o(k ) |E | log |V | + |r | |E |) + 4k+o(k) · (|V |2 + |E | |V |)

)
,

which is clearly in FPT for the parameter k . □

We now extend the algorithm to 0-bordered STEs of the form A1 · · ·Ak1T
∗A′k2 · · ·A

′
1
. Since STEs

allow bounded expressions on both sides, we need to do more than simply apply Algorithm 1.

Instead, we will use a nesting thereof, which we present in Algorithm 2. The next Lemma shows

the correctness and running time of Algorithm 2.

Lemma 4.15. Let R be the class of 0-bordered STEs of the form r = A1 · · ·Ak1T
∗A′k2 · · ·A

′
1
. Then

PSimPathExistence(R) is in FPT. More precisely, it is solvable in time 2O ( |r |) · |V |3 |E |.

Proof. We prove that Algorithm 2 solves the problem in the required time. Recall that

Prs,v := {V (p) | there is a simple path p from s to v in G that matches r } .

Wefirst show correctness. Letk = k1+k2. Obviously,k ≤ |r |. Using Lemma 4.12 with r1 = A1 · · ·Ak1
and r2 = A′k2 · · ·A

′
1
, it suffices to consider paths in which the first k1 + 1 nodes belong to a set

X ∈ P̂r1s,v ⊆
k+1
rep

Pr1s,v for some v ∈ V . Then we need to find the rest of the path, that is, a simple path

from v to t that matches T ∗A′k2 · · ·A
′
1
and that does not use nodes in X \ {v}.
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We can apply Lemma 4.12 on the graph obtained from (V ′,E ′) by reversing all edges and using

the expression A′
1
· · ·A′k2T

∗ε . Hence, if such a path exists in (V ′,E ′), then there exists a node u such

that its last k2 + 1 nodes belong to a set X ′ ∈ P̂r2u,t ⊆
k2+1
rep

Pr2u,t . It then remains to test if there is a

path from v to u that matches T ∗ and avoids the nodes in (X ∪ X ′) \ {u,v}, which is done in line

11. This concludes the correctness proof.

We next show that the algorithm is indeed in FPT. Lemma 4.10 allows us to compute, after the

preprocessing phase which takes O(|r | |E |) time, P̂r1s,v on line 2 in time O(8k+o(k ) |E | log |V |) and

such that its size is at most

(
2k1+k2+2
k1+1

)
· 2o(k1+k2). Similarly, we can compute P̂r2u,t on line 7 in time

O(8k+o(k) |E | log |V |) and such that its size is at most

(
2k2+2
k2+1

)
· 2o(k2).

This means that we need to consider O(|V | · 4k+o(k )) many sets in line 3. Computing P̂r2u,t takes

time O
(
8
k+1+o(k+1) |E | log |V |

)
for each u ∈ V , so we have O(|V |2 · 4k+o(k ) · 8k+o(k) |E | log |V |) time

for this part and need to consider at most O(|V |2 · 4k+o(k) · 4k+o(k)) many sets in line 8. Finally, the

reachability test in line 11 is in O(|V | + |E |), so in sum we obtain a running time of

O
(
|r | |E | + |V |2 · 4k+o(k ) ·

(
8
k+o(k ) |E | log |V | + 4k+o(k ) · (|V | + |E |)

) )
.

□

The previous Lemma showed how to deal with 0-bordered STEs of the formA1 · · ·Ak1T
∗A′k2 · · ·A

′
1
.

The next Lemma generalizes this to all 0-bordered STEs.

Lemma 4.16. Let R be the class of 0-bordered STEs. Then PSimPathExistence(R) is in FPT. More
precisely, it is solvable in time 2O ( |r |) · |V |3 |E |.

Proof. We prove the lemma by case distinction on the form of r . Recall that

r = BpreT
∗Bsuff.

We differentiate between the forms of Bpre and Bsuff. There are two possible forms, that is (1)

B1? · · ·Bℓ? with ℓ ≥ 0 or (2) B1 · · ·Bℓ with ℓ ≥ 1. If Bpre and Bsuff are of form (1), the language of r
is downward closed. Therefore the entire problem reduces to a reachability problem on a product

betweenG and an NFA for r . According to Lemma 4.1, this problem can be solved in timeO(|G | |r |),
since it is possible to compute an NFA of size |r | for each STE r .
If Bpre and Bsuff are both of form (2), the result follows from Lemma 4.15, which internally uses

Algorithm 2, in time 2
O ( |r |) · |V |3 |E |. We now explain how Algorithm 2 can be changed to work

if Bpre is of form (2) and Bsuff of form (1). Assume we have r = A1 · · ·Ak1T
∗A′k2? · · ·A

′
1
?. Then

we replace everything from line 6 to line 12 with a test for a simple path from v to t matching

the downward closed language T ∗A′k2? · · ·A
′
1
?. The correctness is again by Lemma 4.12. For the

running time we observe that testing if there is a simple path matching T ∗A′k2? · · ·A
′
1
? is in time

O(|G | |r |) by Lemma 4.1, since the language is downward closed. The running time in this case is

therefore

O
(
|r | |E |+|V | ·

(
8
|r |+o( |r |) |E | log |V | + 4 |r |+o( |r |) · |G | |r |

))
.

The case r = A1? · · ·Ak1?T
∗A′k2 · · ·A

′
1
is symmetric. To see this, notice that it is equivalent to

deciding if there is a simple path from t to s that matches the reverse of expression r in the graph

G with all edges reversed. □

4.4 Main Upper Bound for Simple Paths
Lemma 4.17. Let c ∈ N be a constant and let R be the class of STEs with cut border at most c . Then

SimPathExistence(R) is in FPT. More precisely, it is in time 2O ( |r |) · |V |c+3 |E |.
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Proof. Let r ∈ R and let c1 and c2 be the left and right cut border of r , respectively. Hence,
r = A1 . . .Ac1r

′A′c2 · · ·A
′
1
. (If ci = 0, then the respective part of r is simply missing.) We can

compute, for all u,v ∈ V , all paths p1 from s to u matching A1 · · ·Ac1 and all paths p2 from v to t
matching A′c2 · · ·A

′
1
in time O(|V |c ).14 We then do a loop over all pairs (p1,p2) of such paths that

are node-disjoint. For the remainder of the proof, fix such a pair (p1,p2). We delete inG all nodes in

(V (p1) \ {u}) ∪ (V (p2) \ {v}). In the remaining graph, we search a path from u to v that matches

the rest of the regular expression. The rest r ′ can have one of the following forms.

• r ′ = Ac1+1 · · ·Ak1T
∗A′k2 · · ·A

′
c2+1,

• r ′ = A1? · · ·Ak1?T
∗A′k2 · · ·A

′
c2+1,

• r ′ = Ac1+1 · · ·Ak1T
∗A′k2? · · ·A

′
1
?, or

• r ′ = A1? · · ·Ak1?T
∗A′k2? · · ·A

′
1
?.

These are the only possibilities and each of them is 0-bordered. Thus, we can use Lemma 4.16,

which allows us to solve PSimPathExistence(r ′) in time 2
O ( |r ′ |) · |V |3 |E |. Since |r ′ | ≤ |r |, this shows

that PSimPathExistence(R) is in FPT. So we need 2
O ( |r ′ |) · |V |3 |E | time for each set of nodes of size

c1 + c2, and therefore have an overall time of 2
O ( |r |) · |V |c+3 |E |. □

5 MAIN LOWER BOUND: PARAMETERIZED TWO DISJOINT PATHS
We prove our main lower bound by considering variants of the TwoDisjointPaths problem [26].

A two-colored graph is a directed graph in which every edge is labeled a or b. We consider the

following parameterized problems:

• PTwoDisjointPaths: Given a graphG , nodes s1, t1, s2, t2, and parameter k ∈ N, are there simple

paths p1 from s1 to t1 and p2 from s2 to t2 such that p1 and p2 are node-disjoint and p1 has
length k?
• PTwoColorDisjointPaths: Given a two-colored graph G, nodes sa , ta , sb , tb , and parameter

k ∈ N, is there a simple a-path pa from sa to ta and a simple b-path pb from sb to tb such that

pa and pb are node-disjoint and pa has length k?

It is well-known that TwoDisjointPaths, the non-parameterized version of PTwoDisjointPaths, is
NP-complete [26].

We will prove that both PTwoColorDisjointPaths and PTwoDisjointPaths are W[1]-hard. The

latter result is stronger, but we start by provingW[1]-hardness for PTwoColorDisjointPaths, because
it makes the proof for PTwoDisjointPaths, which relies on it, easier to understand.

5.1 Two Colored Disjoint Paths
In this section, we prove the following theorem.

Theorem 5.1. PTwoColorDisjointPaths is W[1]-hard.

To prove the theorem, we use an adaptation of a proof of Slivkins [49, Theorem 2.1], who

proved that k-Edge-Disjoint-Paths with parameter k is W[1]-hard in directed acyclic graphs (DAG).

Furthermore, we use the idea of control nodes by Grohe and Grüber [28, Lemma 16], who showed

that Slivkins’ construction can be extended to show that k-Disjoint-Cycles is W[1]-hard.

Construction 1. (Construction of Gcol and kcol.) Given an input instance (G,k) of k-clique,
we construct a graph Gcol, nodes sa , ta , sb , tb , and parameter kcol such that (G,k) ∈ k-clique if and
only if (Gcol, sa , ta , sb , tb ,kcol) ∈ PTwoColorDisjointPaths. Let n be the number of nodes of G. The

14
For the purpose of the proof, it suffices to compute the paths without the edge labels here. For deciding whether there

exists a simple path, it suffices to know that there exist node-disjoint simple paths matching A1 · · ·Ac1 and A
′
c2 · · ·A

′
1
and

which nodes they use. We dropped the exact labels to have O ( |V |c ) complexity.
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Fig. 4. Internal structure of each of the gadgets Gi, j .
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Gi,1 Gi,2 Gi,3 Gi,n

Fig. 5. The b-edges in row i . The internal structure of the Gi, j is as in Figure 4.

graph Gcol contains kn gadgets Gi, j with i = 1, . . . ,k and j = 1, . . . ,n, each consisting of 2(k + 1)
nodes. Gadgets will be ordered in k rows, where row i has the gadgets Gi,1, . . . ,Gi,n . Furthermore,

Gcol contains k + 1 additional nodes r1, . . . , rk+1 that link the rows together, and k + 1 + k(k − 1)/2
control nodes c1, . . . ck+1 and ci1,i2 with 1 ≤ i1 < i2 ≤ k that will limit the number of disjoint paths

from row i − 1 to row i or from row i1 to i2, respectively. (The edge cases, c1 and ck+1, do not link

rows together but just serve as start and end node, respectively.) We define sa = c1, ta = ck+1,
sb = r1, and tb = rk+1. We will now explain how the nodes are connected inGcol. We will denote by

u
a
→ v that there is an a-edge from u to v (similar for b-edges). Each gadgetGi, j contains a disjoint

copy of 2(k + 1) nodes which we call u1,u2, . . . ,uk+1 and v1,v2, . . . ,vk+1. To simplify notation,

we sometimes give these nodes the same name (e.g., in Figures 5, 6, and 7), even though they are

different. One such gadget is depicted in Figure 4. To avoid ambiguity, we may also refer to node

uℓ in gadget Gi, j by Gi, j [uℓ]. Each gadget contains edges uℓ
a
→ vℓ (for every ℓ = 1, . . . ,k + 1) and

uℓ
b
→ uℓ+1 and vℓ

b
→ vℓ+1 (for every ℓ = 1, . . . ,k).

We now explain how the gadgets Gi, j are connected within the same row, see Figure 5. In each

row i ∈ {1, . . . ,k}, node ri has two outgoing edges ri
b
→ Gi,1[u1] and ri

b
→ Gi,2[v1]. We also have

two incoming edges for ri+1, namelyGi,n−1[uk+1]
b
→ ri+1 andGi,n[vk+1]

b
→ ri+1. Furthermore, we

have the edges Gi, j [uk+1]
b
→ Gi, j+1[u1] and Gi, j [vk+1]

b
→ Gi, j+1[v1] for every j = 1, . . . ,n − 1. We

also add edgesGi, j [uk+1]
b
→ Gi, j+2[v1] for every j = 1, . . . ,n − 2. The latter edges ensure that every

b-labeled path from ri to ri+1 “skips” exactly one gadget Gi, j for some j = 1, . . . ,n.
We now explain how the gadgetsGi, j are connected in different rows via the control nodes ci and

ci1,i2 (Figure 6). We first consider the edges from row i to i+1. In each row i = 1, . . . ,k−1, and every

j = 1, . . . ,n, we add the edges Gi, j [vk+1]
a
→ ci+1 and ci+1

a
→ Gi+1, j [ui+2]. Furthermore, we add the

edges c1
a
→ G1, j [u2] and Gk, j [vk+1]

a
→ ck+1. We connect two rows i1, i2, with 1 ≤ i1 < i2 ≤ k , by

adding the edges Gi1, j [vi2 ]
a
→ ci1,i2 , and ci1,i2

a
→ Gi2, j [ui1 ] for all j = 1, . . . ,n.

The edges of the original graphG are modeled inGcol by adding the edgeGi2,x [vi1 ]
a
→ Gi1,y [ui2+1]

if and only if 1 ≤ i1 < i2 ≤ k , x , y, and (x ,y) ∈ E. This is illustrated in Figure 7.

Finally, we define kcol = k(k − 1)/2 · 5 + 3k . □
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Fig. 6. The a-edges from row i to row i + 1. (We assume n = 3 in the picture).
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Fig. 7. The a-edges in the gadgets and between gadgets Gi1,y , Gi1,z and Gi2,x , with i1 < i2 − 1, under the
assumption that (x ,y) ∈ E and (x , z) < E.

We denote by Ga
col

the subgraph of Gcol from Construction 1 that contains only the a-edges. We

now prove a lemma that summarizes useful properties of Ga
col
.

Lemma 5.2. The graph Ga
col has the following properties:

(a) Ga
col is a DAG. Moreover, there is a strict total order <c on all control nodes C such that, for every

path from a node v ∈ C to another node v ′ ∈ C where no intermediate vertex is in C, node v ′ is
the successor of v in <c . The smallest and largest nodes in <c are c1 to ck+1, respectively.

(b) Each path in Ga
col from c1 to ck+1 visits all control nodes, i.e., it contains all ci and ci1,i2 , with

i ∈ {1, . . . ,k + 1} and 1 ≤ i1 < i2 ≤ k . Furthermore, it visits the control nodes in the order <c .
(c) Each path inGa

col has length at most kcol. Its length is exactly kcol if and only if it is from c1 to ck+1.

(d) Each path in Ga
col of length kcol has at least one edge uℓ

a
→ vℓ in every row of Ga

col.

Proof. First observe that Ga
col

contains a fixed part that depends only on n and k , plus a set
of edges that represent edges in G, i.e., edges that are present in Gcol if and only if there exists a

corresponding edge in G. Therefore, every possible graph Gcol that the reduction produces is a
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subgraph of the case where G is a complete graph (i.e., if G has n nodes, it is the n-clique). Let
Ga
clique

denote the graph Ga
col

in the case where G is the n-clique.

We first prove part (a). We show that, ifGa
clique

has a cycle, then this cycle must contain a control

node. Indeed, within the same row, the graph Ga
clique

only has the edges from ui to vi in all the

gadgets. So, there cannot be a cycle that only contains nodes from a single row. Therefore, the cycle

must contain a path from some node in a row i1 to a node in row i2, for i1 < i2. Since every path in

Ga
clique

from row i1 to i2 with i1 < i2 contains at least one control node by construction, we have

that every cycle in Ga
clique

must contain a control node. It therefore remains to show that Ga
clique

contains no cycle that uses a control node. To this end, observe that the relation ≺ where n1 ≺ n2 if
and only if n1 , n2 and n2 is reachable from n1 is a strict total order

c1 ≺ c1,2 ≺ c1,3 ≺ . . . ≺ c1,k ≺ c2 ≺ c2,3 ≺ . . . ≺ ck−2,k ≺ ck−1,k ≺ ck ≺ ck+1 (†)

on the control nodes C. That is, the order is such that control nodes are reachable in Ga
clique

from

all “smaller” control nodes and none of the “larger” control nodes. Notice that ≺ satisfies the

requirements for <c . Part (b) follows from (a). By (a), the smallest and largest nodes in <c are c1 and
ck+1, respectively. Assume that p is a path from c1 to ck+1. Again by (a), p must visit every control

node, in the order <c .
We now prove part (c). First we prove that, between two consecutive

15
control nodes in Ga

clique
,

each path has a fixed length that depends only on the kind of control nodes. Then, sinceGa
clique

is a

DAG by part (a), we can simply concatenate paths to obtain the length of paths from c1 to ck+1,
showing (c). In this proof, when we consider a path that visits nodes in row i in Ga

clique
, then by

construction of Ga
clique

, the length of this path is independent of the gadget Gi, j that the path visits.

That is, the path’s length is the same for every j = 1, . . . ,n. To simplify notation, we therefore omit

the j in Gi, j [u] and write Gi [u] instead.
We first consider the length of paths between consecutive control nodes in the ordering (†).

Therefore, fix two such consecutive control nodes n1 and n2. We make a case distinction:

• n1 = ci and n2 = ci,i+1: Each path from ci to ci,i+1 is of the form ciGi [ui+1]Gi [vi+1]ci,i+1 and
therefore has length 3.

• n1 = ci, j and n2 = ci, j+1: Each path from ci, j to ci, j+1 with 1 ≤ i < j ≤ k − 1 is of the form ci, j
G j [ui ]G j [vi ]Gi [uj+1]Gi [vj+1]ci, j+1 and therefore has length 5.

• n1 = ci,k and n2 = ci+1: Each path from ci,k to ci+1 is of the form ci,kGk [ui ]Gk [vi ]Gi [uk+1]
Gi [vk+1]ci+1 and therefore has length 5.

• n1 = ck and n2 = ck+1: Each path from ck to ck+1 is of the form ckGk [uk+1]Gk [vk+1]ck+1 and
therefore has length 3.

Since ≺ is a strict total order, this means that each path from c1 to ck+1 in G
a
clique

has the same

length. We show that this length is exactly k(k − 1)/2 · 5 + 3k = kcol. The paths ci to ci,i+1
(i = 1, . . . ,k − 1) and ck to ck+1 sum up to length 3k . For a fixed i we have 5 · (k − i − 1) paths from
ci,i+1 to ci,k , which sum up to length 5(k(k − 1)/2) − 5k + 5 for i = 1, . . . ,k − 2. Finally, we need
to consider the paths from ci,k to ci+1, which, for i = 1, . . . ,k − 1, sum up to length 5k − 5. This
shows that each path Ga

clique
from c1 to ck+1 has length exactly kcol.

Since Ga
clique

is a DAG and every node in Ga
clique

is reachable from c1, and ck+1 is reachable from

all nodes and does not have outgoing edges in Ga
clique

, the longest paths in Ga
clique

are from c1 to

ck+1. This shows (c).

15
Control nodes x and y such that x <c y and there are no other control nodes in between.
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Due to (b) and (c) each path of length kcol in Ga
clique

contains ci for i = 1, . . . ,k + 1. Since each

path from ci to the next control node contains (Gi, j [ui+1],Gi, j [vi+1]), for a j ∈ {1, . . . ,n} we also
have (d). □

We are now ready to prove Theorem 5.1.

Proof of Theorem 5.1. We prove that (G,k) ∈ k-Clique if and only if (Gcol, sa , ta , sb , tb ,kcol) ∈
PTwoColorDisjointPaths. Let us first assume that the undirected graphG has a k-clique with nodes

{n1, . . . ,nk }. Then an a-path can go from c1 to ck+1 using only the gadgets Gi,ni with i = 1, . . . ,k .

The reason is that, since (ni1 ,ni2 ) ∈ E, the edges Gi2,ni
2

[vi1 ]
a
→ Gi1,ni

1

[ui2+1] exist for all i1 < i2.
Due to Lemma 5.2(c), this path has exactly kcol edges. The b-path, on the other hand, can go

from r1 to rk+1 and skip exactly Gi,ni for all i = 1, . . . ,k (using the diagonal edges in Figure 5).

Since it skips theseGi,ni , it is node-disjoint from the a-path and therefore we have a solution for

PTwoColorDisjointPaths.
For the other direction let us assume that there exists a simple a-path pa from c1 to ck+1 and a

simple b-path pb from r1 to rk+1 inGcol such that pa and pb are node-disjoint and pa has length kcol.
We show that G has a k-clique. Since every b-path from r1 to rk+1 goes through each row, that is,

from ri to ri+1 for all i = 1, . . . ,k , this is also the case for pb . By construction, pb must also skip

exactly one gadget in each row, using the diagonal edges in Figure 5. Indeed, this is the only way to

move from ri to ri+1 using only b-edges. Furthermore, for each gadgetGi, j that pb visits, it must be

the case that it either visits all nodes u1, . . . ,uk+1 or all nodes v1, . . . ,vk+1. (This is immediate from

Figure 4, showing all internal edges of a gadget.) Therefore, since pa and pb are node-disjoint, the

path pa cannot visit any gadgetGi, j already visited by pb . Therefore, pa , which goes from c1 to ck+1,
can only do so through the k skipped gadgets, call themGi,ni for i = 1, . . . ,k . Recall that the edges

Gi2,ni
2

[vi1 ]
a
→ Gi1,ni

1

[ui2+1] with i1 < i2 only exist if (ni1 ,ni2 ) ∈ E. As these edges are necessary for

the existence of the a-path from c1 to ck+1 that uses only the skipped gadgets, all nodes ni must be

pairwise adjacent in G. That is, they form a clique of size k in G. □

5.2 Two Disjoint Paths
The two colors in the proof of Theorem 5.1 play a central role: since the a-path cannot use any

b-edges and vice versa, we have much control over where the two paths can be. We now show that

the construction in Theorem 5.1 can be strengthened so that we do not need the two colors. To this

end, we replace the b-edges by long paths to ensure that all paths from sa to ta that have length at

most kcol cannot use b-edges.

Construction 2. We construct the graph Gnode from Gcol by replacing each b-edge with a

b-path of length kcol. (Even though PTwoDisjointPaths does not care about a-edges or b-edges,
we keep them to simplify the reasoning in the remainder of the proof.) We define s1 = sa , t1 = ta ,
s2 = sb , and t2 = tb . (Notice thatGcol hasO(k

2n) nodes whileGnode will haveO(k
2n · kcol) nodes.) □

Lemma 5.3. In Gnode, we have that
(a) every path from s1 to t1 has length at least kcol and
(b) every path from s1 to t1 has length exactly kcol if and only if it is an a-path.
(c) Furthermore, all properties of graph Ga

col from Lemma 5.2 also hold for Ga
node.

Proof. For part (a) we have two cases. If a path from s1 to t1 is an a-path, the result is immediate

from Lemma 5.2(c). If it uses at least one b-edge, then it uses at least kcol b-edges by construction.

Thus, the path will have length at least kcol.
For part (b), if a path from s1 to t1 has length exactly kcol, it uses at least one a-edge since t1 only

has incoming a-edges. If it used at least one b-edge, it would therefore use at least kcol + 1 edges
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which contradicts that the length is kcol. The converse direction is immediate from Lemma 5.2(c).

The last point is obvious since Ga
col

and Ga
node

are the same. □

Lemma 5.4. If (Gnode, s1, t1, s2, t2,kcol) ∈ PTwoDisjointPaths, then each solution p1,p2 is such that
p1 is an a-labeled path and p2 a b-labeled path.

Proof. It follows from Lemma 5.3 that p1 can only use a-edges. We now show that the path p2
from s2 to t2 can only use b-edges, that is, we show that it cannot use a-edges. There are three
types of a-edges in Gnode: (i) the ones from and to control nodes, (ii) “upward” edges that connect

row i2 to row i1 with i1 < i2, and (iii) edges from uℓ to vℓ in one gadget.

Notice that, by construction, p2 must visit nodes in row 1 and later also nodes in row k . To do so,

p2 cannot use edges from or to control nodes (type (i)), since, due to Lemma 5.2(b), p1 already visits

all control nodes. So p2 cannot go from row i to a row j with i < j via a-edges. This means that, if

i < j, then p2 can only go from row i to row j through ri+1 (and through nodes in row i + 1), since
every remaining path from row i to a larger row goes through ri+1. So, in order to go from row 1 to

row k , path p2 needs to visit all nodes r2, . . . , rk , in that order. This means that it is also impossible

for p2 to use edges of type (ii). Indeed, if p2 used an edge from row j to row i with j > i , then it

would need to visit ri+1 a second time to arrive back in row j . Finally, if p2 used an edge of type (iii)

in row i , then, by construction, it would have to visit every gadget in this row. But since p1 already
uses at least one edge from uℓ to vℓ in each row, see Lemma 5.2(d), this means that p2 cannot be
node-disjoint with p1. This completes the proof. □

Theorem 5.5. PTwoDisjointPaths is W[1]-hard.

Proof. We reduce from PTwoColorDisjointPaths, which is W[1]-hard due to Theorem 5.1.

We show that (Gcol, sa , ta , sb , tb ,kcol) ∈ PTwoColorDisjointPaths if and only if (Gnode, s1, t1, s2,
t2,kcol) ∈ PTwoDisjointPaths. If (Gcol, sa , ta , sb , tb ,kcol) ∈ PTwoColorDisjointPaths, then we can

use the corresponding paths in Gnode (where we follow the longer b-paths in Gnode instead of the

b-edges in Gcol).

Conversely, if (Gnode, s1, t1, s2, t2,kcol) ∈ PTwoDisjointPaths, it follows from Lemma 5.4 that

the paths p1 and p2 correspond to paths pa and pb that are solutions for (Gcol, sa , ta , sb , tb ,kcol) ∈
PTwoColorDisjointPaths. □

5.3 Main Lower Bound for Simple Paths
We are now ready to proof the hardness side of Theorem 3.5, i.e., Theorem 3.5(b).

Lemma 5.6. Let R be a class of STEs that can be sampled. If R is not cuttable, then the problem
PSimPathExistence(R) is W[1]-hard.

Proof. Let R be an arbitrary but fixed class of STEs that is not cuttable and that can be sampled.

We show that PSimPathExistence(R) is W[1]-hard by giving an FPT reduction from PTwoDisjoint-
Paths restricted to instances of the form (Gnode, s1, t1, s2, t2,kcol) from Construction 2. The problem

PTwoDisjointPaths is W[1]-hard due to Theorem 5.5.

Consider an input (Gnode, s1, t1, s2, t2,kcol) of PTwoDisjointPaths. We will construct an input

(Glab, s, t , r ) for PSimPathExistence(R) such that (Gnode, s1, t1, s2, t2,kcol) ∈ PTwoDisjointPaths if
and only if (Glab, s, t , r ) ∈ PSimPathExistence(R).

Since R is not cuttable and can be sampled, a k ′-bordered expression r ∈ R for some k ′ ≥ 2kcol+1
can be computed within time f (kcol), for some computable function f . Since r can be computed in

time f (kcol), we know that |r | ≤ f (kcol). Let klab be the maximum of the left and right cut border of

r . Since k ′ is the sum of the left and right cut borders, klab ≥ kcol + 1. Here we only consider the
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case that the left cut border is klab, i.e., T ⊈ Aklab , the other case is symmetric. We therefore know

that r is of the form

r = A1 · · ·Akcol · · ·Aklab · · ·Ak1T
∗A′k2 · · ·A

′
1

or r = A1 · · ·Akcol · · ·Aklab · · ·Ak1T
∗A′k2? · · ·A

′
1
? .

We now construct (Glab, s, t). Fix three wordsw1,w2, andw3 such that

• w1 ∈ L(A1 · · ·Akcol ),

• w2 ∈ L(Akcol+1 · · ·Aklab · · ·Ak1 ), and

• w3 ∈ L(A
′
k2
· · ·A′

1
).16

Notice that such words indeed exist. For the construction of Glab, we start with the graph Gnode.

The main idea is to have at most one edge with a label in Aklab that is reachable from s by a path of

length klab − 1. More formally, fix an x ∈ (T \Aklab ), which must exist due to choice of klab.

• We replace each b-edge in Gnode with an x-path of length klab (using klab − 1 new nodes for

each replacement). We need to do this, because klab is potentially much larger than kcol.
• We change the labels of the a-edges in Gnode such that each path from s1 to t1 is labeledw1.

Notice that the label for each such edge is well-defined. Indeed, by Lemma 5.2(c) we have that

each a-path from s1 to t1 has length exactly kcol. If there were an edge e on an a-path from s1
to t1 that is reachable from s1 through n1 edges and also through n2 edges, with n1 , n2, then,
since t1 is reachable from e , it means that there would be paths of different lengths from s1 to
t1.
• We add a path labeled w2 from t1 to s2. We refer to this path as the w2-labeled path in the

remainder of the proof.

• We add a path labeledw3 from t2 to a new node t , to which we will refer as thew3-labeled
path in the remainder of the proof.

The resulting tuple (Glab, s1, t , r ) serves as input for PSimPathExistence(R). This concludes the
reduction.

We now show that the reduction is correct. Therefore, we show that (Gnode, s1, t1, s2, t2,kcol) ∈
PTwoDisjointPaths if and only if (Glab, s1, t , r ) ∈ PSimPathExistence(R). If (Gnode, s1, t1, s2, t2,kcol)
∈ PTwoDisjointPaths with solution p1 and p2, then there exists a (unique) simple path from s1 to t
in Glab that contains the nodes V (p1) ∪V (p2) and matches r .
Conversely, if (Glab, s1, t , r ) ∈ PSimPathExistence(R), then there exists a simple path p from s1

to t in Glab that matches r . We will now prove the following:

(i) Consider the graph Ga
node

, obtained from Gnode by deleting all b-edges and nodes that have

no adjacent a-edges. The nodes of p[0,kcol] form a simple path from s1 to t1 in G
a
node

.

(ii) The path p[0,k1] ends in s2 and is labeledw1w2.

(iii) The path p is labeledw1w2w
′w3 withw

′ ∈ L(T ∗). Its suffix of length |w3 | starts in t2 and ends
in t .

(iv) The subpath of p from s2 to t2 is an x-path.

We prove (i). By definition of r , the edge p[klab−1,klab] is labeled by some symbol inAklab . Therefore,

this symbol cannot be x . By construction of Glab, this edge is either an edge that was labeled a in

Gnode, an edge on thew2-labeled path, or an edge on thew3-labeled path (since all other edges are

labeled x ).
The w3-labeled path is not reachable from s1 with a path of length smaller than klab, so this

cannot be the case. Furthermore, thew2-labeled path starts in t1 and is therefore only reachable

with a path of length at least kcol (see Lemma 5.3), so we can also exclude that. Therefore, the first

kcol + 1 nodes must form an a-path in Gnode. From Lemma 5.2(c), we know that each path in Ga
node

16
We use w3 ∈ L(A′k2 · · ·A

′
1
) in case that r ends with A′k2 · · ·A

′
1
but also if it ends with A′k2? · · ·A

′
1
?.
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of length kcol goes from s1 to t1 which implies (i). Since all nodes (except s2) that belong to the

w2-labeled path of length k1 − kcol have only one outgoing edge, we have that p[0,k1] ends in s2
and must matchw1w2. This shows (ii).

Since p matches r = A1 · · ·Ak1T
∗A′k2 · · ·A

′
1
or r = A1 · · ·Ak1T

∗A′k2? · · ·A
′
1
?, and since each

word in A1 · · ·Ak1 has length k1, it follows that lab(p) = w1w2w
′
with w ′ ∈ L(T ∗A′k2 · · ·A

′
1
) ∪

L(T ∗A′k2? · · ·A
′
1
?).

By construction of Glab, the w3-labeled path is the unique path of length |w3 | leading to t .
Therefore, each path from s1 to t in Glab must end with the w3-labeled path which is from t2 to
t . Since w3 ∈ L(A′k2 · · ·A

′
1
) and |w3 | is the length of every word in L(A′k2 · · ·A

′
1
), we have that

lab(p) = w1w2w
′w3 wherew

′ ∈ L(T ∗). So we have (iii). Let p ′ be the part of p labeledw ′. It follows
from (ii) and (iii) that p ′ is a path from s2 to t2. Since it must be node-disjoint from p[0,kcol], which
is entirely in Ga

node
, it follows from Lemma 5.4 that p ′ cannot use edges that correspond to ones in

Ga
node

.

Therefore, p ′ consists only of edges labeled x . This shows that Gnode and kcol are in PTwo-
DisjointPaths, because p[0,kcol] corresponds to a path p1 and p ′ to p2, which are solutions to

PTwoDisjointPaths.
Finally, we note that the construction can indeed be done in FPT since the expression r ∈ R can

be determined in time f (kcol) for a computable function f , and all changes we made to the graph

are in time h(kcol) · |Gnode |, for a computable function h, which is FPT. Indeed, we only relabeled

all edges, replaced each edge at most once with klab new edges and added other paths of length at

most |r |. Since |r | ≤ f (kcol), we indeed have an FPT reduction. □

6 CONNECTION BETWEEN SIMPLE PATHS AND TRAILS
LaPaugh and Rivest [33, Lemma 1 and Lemma 2] and Perl and Shiloach [46, Theorem 2.1 and

Theorem 2.2] showed that there is a strong correspondence between trail and simple path problems

that we will use extensively and therefore revisit here. Since the statements of the results do not

precisely capture what we need, we have to be a bit more precise.

The Split Graph. The following construction is from LaPaugh and Rivest [33, Proof of Lemma 1].

Let (G, s1, t1, . . . , sk , tk ) be a graph G together with nodes s1, t1, . . . , sk , tk . We define split(G, s1, t1,
. . . , sk , tk ) as the tuple (G

′, s ′
1
, t ′
1
, . . . , s ′k , t

′
k ) obtained as follows. The graph G ′ is obtained from G

by replacing each node v by two nodes v in
and vout

. A directed edge is added from v in
to vout

. All

incoming edges of v become incoming edges of v in
and all outgoing edges of v become outgoing

edges ofvout
. For every si and ti , we define s

′
i = s

in

i and t ′i = touti . For a path p = (u1,u2) · · · (un−1,un)
in G, denote by split(p) the path

(u in
1
,uout

1
)(uout

1
,u in

2
) · · · (uoutn−1,u

in

n )(u
in

n ,u
out

n ).

The following Lemma is immediate from LaPaugh and Rivest’s construction.

Lemma 6.1. Let (G ′, s ′
1
, t ′
1
, . . . , s ′k , t

′
k ) = split(G, s1, t1, . . . , sk , tk ). Then the following hold:

(1) For every i = 1, . . . ,n, the path p = (si ,u1) · · · (un , ti ) is a simple path from si to ti in G if and
only if split(p) is a trail in G ′.

(2) For every i = 1, . . . ,n, the number of simple paths from si to ti in G equals the number of trails
from s ′i to t

′
i in G

′.
(3) There exist pairwise node disjoint simple paths of length ki from si to ti inG for every i = 1, . . . ,k

if and only if there exist pairwise edge disjoint trails of length 2ki + 1 from s ′i to t
′
i in G

′ for every
i = 1, . . . ,k .
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The Line Graph. We denote by line(G, s1, t1, . . . , sk , tk ) a variation on the line graph of G [33,

Proof of Lemma 2]. The line graph construction was used by LaPaugh and Rivest to reduce the edge

disjoint subgraph homeomorphism problem to the node disjoint subgraph homeomorphism problem.

More precisely, we denote by line(G, s1, t1, . . . , sk , tk ) the tuple (G
′, s1, t1, . . . , sk , tk ) obtained as

follows. LetG = (V ,E). The nodes of G ′ are {v(u1,u2) | (u1,u2) ∈ E} ∪ {s1, t1, . . . , sk , tk }. The edges
of G ′ are the disjoint union of

• {(v(u1,u2),v(u2,u3)) | (u1,u2) and (u2,u3) ∈ E},
• {(si ,v(si ,u)) | i = 1, . . . ,k and (si ,u) ∈ E}, and
• {(v(u,ti ), ti ) | i = 1, . . . ,k and (u, ti ) ∈ E}.

Lemma 6.2. Let (G ′, s1, t1, . . . , sk , tk ) = line(G, s1, t1, . . . , sk , tk ). Then the following hold:

(1) For every i = 1, . . . ,n, the path (si ,u1) · · · (un , ti ) is a trail from si to ti in G if and only if
(si ,v(si ,u1))(v(si ,u1),v(u1,u2)) · · · (v(un−1,un ),v(un,ti ))(v(un,ti ), ti ) is a simple path in G ′.

(2) For every i = 1, . . . ,n, the number of trails from si to ti in G equals the number of simple paths
from si to ti in G ′.

(3) There exist pairwise edge-disjoint trails of length ki from si to ti in G for every i = 1, . . . ,k if and
only if there exist pairwise node-disjoint simple paths of length ki + 1 from si to ti in G ′ for every
i = 1, . . . ,k .

Proof. Properties (1) and (2) are immediate from the construction. Property (3) follows from (1):

if we have edge-disjoint trails, then the same simple paths as obtained in (1) are node-disjoint and

the other way around. If they were not node-disjoint, at least two would share a node, say, v(u1,u2)
in G ′, but they only contain this node both if the corresponding trails in G have the edge (u1,u2),
so the trails in G wouldn’t be edge-disjoint. □

Adding Edge Labels. If we additionally consider edge labels and RPQs, the correspondence

between simple paths and trails is a bit more complex. We prove here that upper bounds transfer

from simple path problems to trail problems. This would be a version of Lemma 6.2 for labeled

graphs.

Notice that strengthening Lemma 6.1 for labeled graphs without changing the language of the

RPQ is impossible if FPT ,W[1]. To see this, we note that the expression akb∗ is conflict-free, but
not cuttable. This implies that PTrailExistence(akb∗) is in FPT while PSimPathExistence(akb∗) is
W[1]-hard (see Theorem 3.5 and Theorem 3.7). Since a strengthened version of Lemma 6.1 would

imply that PSimPathExistence(akb∗) is at most as hard as PTrailExistence(akb∗), such a lemma can

only exist when FPT = W[1].

Lemma 6.3. Let r be an RPQ, let σ be an arbitrary symbol in Σ, let G be a graph with labels in Σ,
and s, t nodes in G. Then there exist a graph H and nodes s ′, t ′ such that there exists a trail from s
to t in G that matches r if and only if there exists a simple path from s ′ to t ′ in H that matches the
RPQ σ · r . Furthermore, H , s ′, and t ′ can be computed using logarithmic space and H = (VH ,EH ) with
|VH | = O(|E |) and |EH | = O(|E |2).

Proof. Given G, s , and t , we will construct a graph H and nodes s ′ and t ′ such that there exists

a simple path from s ′ to t ′ in H matching the RPQ σ · r if and only if there exists a trail from

s to t matching r in G. In fact, (H , s ′, t ′) = line(G, s, t) with labels. More precisely, let σ ∈ Σ be

fixed. Let H = (VH ,EH ) with VH = {ve | e ∈ E} ∪ {s ′, t ′} and EH = {(v(u1,a1,u2),a1,v(u2,a2,u3)) |
(u1,a1,u2), (u2,a2,u3) ∈ E} ∪ {(s ′,σ ,v(s,a,u)) | (s,a,u) ∈ E} ∪ {(v(u,a,t ),a, t

′) | (u,a, t) ∈ E}. An
example of this reduction can be seen in Figure 8. From this construction, it immediately follows

that |VH | = O(|E |) and |EH | = O(|E |
2).
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Fig. 8. Example of a part of the reduction in Lemma 6.3. There exists a trail from s to t matching r in the
left graph G if and only if there exists a simple path from s ′ to t ′ matching σ · r in the right graph H . So we
effectively have to find a simple path that matches r in the right graph (H ) from s ′

1
= v(s,a,2) to t

′ or from
s ′
2
= v(s,e,3) to t

′.

We argue that this construction is correct. Indeed, assume there exists a path

p = (s,a0,v1)(v1,a1,v2) · · · (vk ,ak , t)

from s to t in G that matches r and has pairwise disjoint edges. Then the path

p ′ = (s ′,σ ,v(s,a0,v1))(v(s,a0,v1),a0,v(v1,a1,v2))(v(v1,a1,v2),a1,v(v2,a2,v3)) · · · (v(vk ,ak ,t ),ak , t
′)

is a simple path from s ′ to t ′ in H that matches σ · r . The other direction follows analogously

since each path from s ′ to t ′ in H that matches σ · r has this form and we can therefore find the

corresponding path from s to t in G. □

We note that, in the proof of Lemma 6.3, there is a clear correspondence between nodes in H
and edges inG . To be more precise, each node in H , except for s ′ and t ′, corresponds to exactly one

edge in G. We therefore obtain the following corollary:

Corollary 6.4. Let r be an RPQ, G a graph, and s , t nodes in G. Let (H , s ′, t ′) and σ · r be the
instance obtained from G, s , and t as in Lemma 6.3. Then there exists a bijection fsp from the set of
trails from s to t in G to the set of simple paths from s ′ to t ′ in H such that σ · lab(p) = lab(fsp (p)).
Moreover, fsp and f −1sp are computable in linear time.

Proof. Let p = (s,a1,u1)(u1,a2,u2) · · · (un−1,an , t) be a trail in G. Then we define fsp (p) =
(s ′,σ ,v(s,a1,u1))(v(s,a1,u1),a1,v(u1,a2,u2))(v(u1,a2,u2),a2,v(u2,a3,u3)) · · · (v(un−1,an,t ),an , t

′) inH . Since all

edges in p are pairwise different, the nodes v(s,a1,u1),v(u1,a2,u2), . . . ,v(un−1,an,t ) (and s
′
and t ′) must

be pairwise different. The mapping fsp is a bijection since each simple path p ′ from s ′ to t ′ in H has

such a form and we can therefore find the corresponding unique path f −1sp (p
′) from s to t in G. □

7 EVALUATION FOR TRAILS
In this section, we prove Theorem 3.7. To this end, we first consider the following fundamental

parameterized problems for trails:

• PTrailLength: Given a graph G, nodes s and t , and parameter k ∈ N, is there a trail from s to
t of length exactly k in G?
• PTrailLength≥ : Given a graph G, nodes s and t , and parameter k ∈ N, is there a trail from s
to t of length at least k in G?

By Lemma 6.2, the complexities of Theorems 4.3 and 4.6 carry over from simple paths to trails.
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Theorem 7.1. PTrailLength and PTrailLength≥ are in FPT. More precisely, PTrailLength is in time
2
O (k ) · |E |3 and PTrailLength≥ in time 2O (k ) · |E |4 log |E |.

Similarly, we can consider the trail version of the parameterized two disjoint paths problem,

where we require the paths to be edge-disjoint trails.

• PTwoDisjointTrails: Given a graph G , nodes s1, t1, s2, t2, and parameter k ∈ N, are there trails
p1 from s1 to t1 and p2 from s2 to t2 such that p1 and p2 are edge-disjoint and p1 has length k?

The following theorem is immediate from Theorem 5.5 and Lemma 6.1(3).

Theorem 7.2. PTwoDisjointTrails is W[1]-hard.

Next we will prove our main dichotomy for trails.

7.1 Upper Bound for Trails
Lemma 7.3. Let c ∈ N be a constant and let R be the class of STEs with at most c conflict positions,

that is, R is almost conflict-free. Then, PTrailExistence(R) is in FPT. More precisely, it is in time
2
O ( |r |) · |E |c+6.

Proof. On graph G, we use the construction from the proof of Lemma 6.3 to obtain a graph

H = (VH ,EH ) such that there is a trail from s to t matching r in G if and only if there is a simple

path from s ′ to t ′ matching σ · r in H (we can take σ to be an arbitrary label). So we need to decide

whether there exists a simple path matching σ · r in H . To this end, we will do the following:

(1) We relabel the expression r to a conflict-free expression r̃ . Then we enumerate all possible sets

S of nodes of size up to c and relabel H depending on S , obtaining the graph HS . We show that

there is a simple path from s ′ to t ′ in H that matches σ · r if and only if there is a set S such that

there is a simple path from s ′ to t ′ in HS that matches σ · r̃ .
(2) Using a simple brute force algorithm, we can get rid of σ .
(3) We prove that Algorithm 2 does not only work for 0-bordered STEs, but also for conflict-free

STEs when we restrict the graphs such that every node has only outgoing edges with the same

label. Such graphs are obtained from the construction in Lemma 6.3. This allows us to use the

methods from Lemma 4.16 to decide whether there exists a simple path matching r̃ .

From (1)–(3) we can then conclude that deciding whether there exists a trail from s to t matching

r with at most c conflict positions can be done using |VH |
c+1

applications of Lemma 4.16, more

precisely, |VH |
c
times for all different sets S and |VH | times from the brute force algorithm to get

rid of the σ . Since the time needed to find a simple path in Lemma 4.16 is 2
O ( |r |) · |VH |

3 |EH |, and
VH and EH are of size O(|E |) and O(|E |2), respectively (Lemma 6.3), we obtain a running time of

2
O ( |r |) · |E |c+6.
We start with (1). Let r1 = Bpre and r2 = Bsuff with r = r1T

∗r2. We change r1 and r2 by relabeling

the labels in conflict positions. Let c1 and c2 denote the left and right cut borders of r . In r1, we
replace each conflict position Ai , where i ≤ c1, with Ãi . Here, Ãi is (Ai \ T ) ∪ {ã | a ∈ Ai ∩ T },
where we assume w.l.o.g. that ã is a new symbol, not occurring in r . Analogously, we replace each
A′j , where j ≤ c2 with Ã

′
j , where Ã

′
j = (A

′
j \T )∪ {ã | a ∈ A

′
j ∩T }. We name the resulting expressions

r̃1, r̃2, and r̃ = r̃1T
∗r̃2 to avoid confusion. Notice that the relabeling affects only conflict positions,

thus at most c many Ai or A
′
j .

Then, we enumerate all subsets of up to c nodes in H . For each possible subset S , we generate
the graph HS by changing each edge (u,a,v) with u ∈ S and a ∈ T to (u, ã,v).
We prove that there is a simple path from s ′ to t ′ in H that matches σ · r if and only if there is

a set S such that there is a simple path from s ′ to t ′ in HS that matches σ · r̃ . Assume that there

is a simple path p = (s ′,σ ,v1)(v1,a1,v2) · · · (vℓ,aℓ, t
′) from s ′ to t ′ in H that matches σ · r . We
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choose I1 = {i | ai ∈ Ai ∩ T and i ≤ c1} and I2 = {ℓ + 1 − i | aℓ+1−i ∈ A′i ∩ T and i ≤ c2} and
S = {vi | i ∈ I1 ∪ I2}. Then, the path in HS consisting of the same nodes as p, in the same order, is a

simple path from s ′ to t ′ matching σ · r̃ in HS . Conversely, if there is a simple path from s ′ to t ′

matching σ · r̃ in HS , for some set S , the path using the same nodes in the same order in H will

match σ · r . This concludes (1).
For (2), we enumerate all nodes v ∈ VH with (s ′,σ ,v) ∈ EH . Since s

′
has no incoming edges by

construction, we cannot reach s ′ (unless we start in s ′) and therefore we do not need to explicitly

delete s ′.
For (3), we prove in the online version of this article that Algorithm 2 also works for conflict-free

STEs when the graphs are restricted to those where every node has only outgoing edges with the

same label. Its proof is similar to the one of Lemma 4.12. The crucial part is that Ã1 · · · Ãc1 (where c1
is the left cut border) and T have different labels. Since every node in HS has only outgoing edges

with the same labels, the first c1 nodes of a path matching Ã1 · · · Ãc1 must therefore be node-disjoint

from every path matching T ∗.
Thus, we can use the methods

17
from Lemma 4.16 to decide whether, for any set S from (1) and

node v from (2), there exists a simple path matching r̃ from v to t ′ in HS . □

7.2 Lower Bound for Trails
Lemma 7.4. Let R be a class of STEs that can be conflict-sampled. If R is not almost conflict free,

then PTrailExistence(R) is W[1]-hard.

Proof. The proof follows the lines of Lemma 5.6, i.e., we give a reduction from PTwoDisjoint-
Paths. Let (Gnode, s1, t1, s2, t2,kcol) be an instance from PTwoDisjointPaths. Since R is not almost

conflict-free and can be conflict-sampled, we can find an r ∈ R with at least 4kcol + 1 conflict

positions in time f (kcol), for some computable function f .
Let us assume that we have at least 2kcol+1 conflict positions inA1 · · ·Ac1 , where c1 is the left cut

border of r . The case where we have at least 2kcol + 1 conflict positions in A′c2 · · ·A
′
1
is symmetric.

Therefore, r is of the form

A1 · · ·Ak1T
∗A′k2 · · ·A

′
1
or A1 · · ·Ak1T

∗A′k2? · · ·A
′
1
?

Starting from Gnode, we will now split the nodes as in Lemma 6.1, and relabel the graph depending

on r . More precisely, fix three wordsw1,w2, andw3 such that

• w1 = a1 · · ·ac1 ∈ L(A1 · · ·Ac1 ), such that |w1 | ≥ 2kcol + 1 and ai ∈ Ai ∩ T in at least 2kcol
positions i ∈ {1, . . . , c1 − 1},
• w2 ∈ L(Ac1+1 · · ·Ak1 ), and

• w3 ∈ L(A
′
k2
· · ·A′

1
).18

Notice that, since A1 · · ·Ac1 has at least 2kcol + 1 conflict positions, we can indeed choosew1 such

that |w1 | ≥ 2kcol + 1 and ai ∈ Ai ∩T in at least 2kcol positions with i ≤ c1 − 1. We will refer to the

first 2kcol such positions as the conflict indices ofw1. If i is a conflict index, we refer to the symbol

ai as conflict symbol.
We explain how Gnode is changed. By definition of cut borders, we have that T ⊈ Ac1 . So we can

fix an x ∈ (T \Ac1 ).

• As in Lemma 6.1, we split each node v into v in
and vout

. Furthermore, if v has an adjacent

(incoming or outgoing) a-edge inGnode, we label the edge from v in
to vout

with a. Otherwise,

17
That is, depending on the form of r̃ , we use a simple reachability test, Algorithm 2, or a mixture of both.

18
We use w3 ∈ L(A′k2 · · ·A

′
1
) in case that r ends with A′k2 · · ·A

′
1
but also if it ends with A′k2? · · ·A

′
1
?.
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we label it b. Observe that the resulting graph is the split graph ofGnode, with some additional

labels. We therefore call the resulting graph split(Gnode).

• We replace each b-edge of split(Gnode) by an x-path of length c1.
• We will now relabel the a-edges in split(Gnode) such that the resulting paths from s in

1
to tout

1

match w1. We do this in several steps. The conflict positions on w1 play a crucial role in

the graph and the substrings ofw1 between conflict indices will serve as “padding” on the

paths. Recall thatw1 has exactly 2kcol conflict indices {i1, . . . , i2kcol }. Furthermore, 2kcol is the
length of every a-path from s in

1
to t in

1
in split(Gnode) (due to the construction in Lemma 6.1

and Lemma 5.2(c)). Therefore, on each path from s in
1
to t in

1
, we can label the ℓ-th edge with

the conflict symbol aiℓ fromw1.

Since we only used the conflict indices ofw1 until now, we will still need to add padding to

the paths to ensure that every path from s in
1
to tout

1
matchesw1. Furthermore, for the reduction

to be correct, this padding needs to be done in a particular way, which we explain next. We

label (t in
1
,ac1 , t

out

1
) with ac1 ∈ Ac1 . (Sincew1 has 2kcol + 1 conflict positions, c1 is not a conflict

index.) All paths from s in
1
to tout

1
are of the form

u in
1
uout
1

u in
2
uout
2
· · ·u inkcol+1u

out

kcol+1

for some nodes u1, . . . ,ukcol+1 from Gnode. For the correctness of the reduction, it will be

crucial that, for each j = 2, . . . ,kcol, the edge between u inj to uoutj is labeled with a conflict

symbol, so we can only replace the edges from uoutj to u inj+1 with longer paths. Therefore,

for every j = 1, . . . ,kcol − 1, we replace each such edge (uoutj ,aiℓ ,u
in

j+1) with a path labeled

w[iℓ−1 + 1, iℓ+1 − 1] (where all internal nodes on these paths are new). Notice that, for each

such edge, we have that 2 ≤ ℓ ≤ 2kcol − 1, so iℓ−1 and iℓ+1 are indeed conflict indices of

w1. Additionally we replace (uoutkcol
,aiℓ ,u

in

kcol+1
) with the word w1[i2kcol , |w | − 1]. If the word

w1[1, i1 − 1] is non-empty, we replace the edge (s in
1
,ai1 , s

out) with a new path labeledw1[1, i1].
As a result, every path from s in

1
to tout

1
is now labeled withw1.

• We add a path labeledw2 from tout
1

to s in
2
, which we will call thew2-labeled path, and a path

labeledw3 from tout
2

to a new node t , which we will call thew3-labeled path.
This completes the construction. Call the resulting graph Gedge.

We will now prove correctness, that is, (Gnode, s1, t1, s2, t2,kcol) is a yes-instance from PTwo-
DisjointPaths if and only if there is a trail from s in

1
to t matching r in Gedge.

For the direction from left to right, let p1 = u1, . . . ,ukcol+1 be a simple path of length kcol from s1
to t1 and p2 a simple path from s2 to t2 inGnode, such that p1 and p2 are node-disjoint. By Lemma 6.1

the path split(p1) is a trail in split(Gnode). By construction, there is a unique path P1 from s in
1
to

tout
1

in Gedge that contains all the edges of split(p1). (Indeed, P1 is the path split(p1) with the extra

padding.) Moreover, this path P1 is a trail that matches w1. Likewise, the path P2 = split(p2) is
a trail in split(Gnode) and, by construction, also a trail in Gedge. Moreover, it matches T ∗ because
every edge is either labeled x or labeled with a conflict symbol. Since p1 and p2 are node-disjoint,
P1 and P2 are also node-disjoint and therefore edge-disjoint. Finally, if Pw2

and Pw3
are thew2- and

w3-labeled paths respectively, then P1Pw2
P2Pw3

is a trail from s in
1
to t that matches r .

For the other direction, let p be a trail from s in
1
to t in Gedge that matches r . We need some

additional notions. For a path p in Gedge, we denote by contract(p) the path in Gnode obtained from

p by removing the padding and contracting node pairs (u in,uout) back to u. Formally, if we view p
as a sequence u1 · · ·un of nodes, such a path is obtained from p by removing all nodes except those

in {uout | u ∈ Vnode} and replacing each such node uout by u. By definition of Gedge, the resulting

sequence of nodes is indeed a path in Gnode.

We will prove:
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(i) The path p1 = contract(p[0, c1]) is a simple path from s1 to t1 in Gnode. Moreover, p1 has
length kcol and each edge in p1 is labeled a (so it is even a path in Ga

node
).

(ii) The prefix of p of length k1 ends in s in
2
and is labeledw1w2.

(iii) The path p is labeledw1w2w
′w3 withw

′ ∈ L(T ∗). Thew3-labeled suffix of p starts in tout
2

and

ends in t .

We prove (i). By definition of r , the edge p[c1 − 1, c1] in Gedge is labeled by some symbol in Ac1 .

Therefore, this symbol cannot be x . By construction of Gedge, the only edges that are not labeled x

are either on some w1-labeled path from s in
1
to tout

1
, on the w2-labeled path, or on the w3-labeled

path. Since the w3-labeled path is not reachable from s1 by a path of length at most c1 and the

w2-labeled path starts in tout
1

and is therefore only reachable from s1 with a path of length at least

c1, the edge p[c1 − 1, c1] must be on one of thew1-labeled paths from s in
1
to tout

1
. Furthermore, the

entire path p[0, c1] must be a prefix of some w1-labeled path from s in
1
to tout

1
. Indeed, if this were

not be the case, then p[0, c1] would have to contain an x-path of length c1 (since we replaced every

b-edge in split(Gnode) by an x-path of length c1), which is impossible because it is too short for that.

This means that p1 = contract(p[0, c1]) is indeed a path in Gnode and every edge of p1 is labeled
a. Therefore, it is a path in Ga

node
. Since p[0, c1] has precisely 2kcol conflict indices and additionally

contains the edge (t in
1
,ac1 , t

out

1
), it contains precisely 2kcol+1 edges of the form (u

in,uout) or (uout,v in)

for some nodes u,v ∈ Vnode. Since, for each path p in Gnode, the length of split(p) is 2|p | + 1, this
means that the length of p1 is precisely kcol. This implies (i).

Since all nodes that belong to thew2-labeled path have only one outgoing edge, and since the

path has length k1 − c1, we have that p[0,k1] ends in s in
2
and must matchw1w2. This shows (ii).

Since p matches r = A1 · · ·Ak1T
∗A′k2 · · ·A

′
1
(the case r = A1 · · ·Ak1T

∗A′k2? · · ·A
′
1
? is analogous)

and each word inA1 · · ·Ak1 has length k1, it follows that lab(p) = w1w2w
′
withw ′ ∈ L(T ∗A′k2 · · ·A

′
1
).

By construction ofGedge, thew3-labeled path is the unique path of length |w3 | leading to t . Therefore,

each path from s in
1
to t inGedge must end with thew3-labeled path which is from tout

2
to t . Sincew3 ∈

L(A′k2 · · ·A
′
1
) and |w3 | is the length of every word in L(A′k2 · · ·A

′
1
), we have that lab(p) = w1w2w

′w3

wherew ∈ L(T ∗). So we have (iii).

Let p ′ be the part of p labeled w ′. It follows from (ii) and (iii) that p ′ is a path from s in
2
to tout

2
.

Let p2 = contract(p ′). First note that, by definition of Gedge, the resulting sequence of nodes is

indeed a path in Gnode. We show that p1 and p2 are node-disjoint. We first note that p[0, c1] and
p ′ contain v in

if only if they contain vout
, since they start in s in

1
and s in

2
and end in tout

1
and tout

2
,

respectively. Indeed, this is since v in
has only one outgoing edge and vout

only one incoming edge.

So, if vout
belongs to p[0, c1], it cannot be part of p

′
, otherwise p[0, c1] and p

′
both contain the edge

(v in,vout), which would contradict that p is a trail. The same holds for nodes vout
that belong to p ′.

This implies that p1 and p2 cannot share a node and are therefore node-disjoint. Together with (i),

we know that |p1 | = kcol, which implies that p1 and p2 are solutions to PTwoDisjointPaths.
Finally, we note that the construction can indeed be done in FPT since the expression r ∈ R

can be determined in time f (kcol) for a computable function f , and all changes we made to the

graphGnode are in time h(kcol) · |Gnode |, for a computable function h, which is FPT. Indeed, we only

relabeled all edges, replaced each edge at most once with c1 new edges, split each node at most

once into two new ones, and added other paths of length at most |r |. Since |r | ≤ f (kcol), we have
an FPT reduction. □

8 ENUMERATION PROBLEMS
We now turn our attention to enumeration problems.

ACM Trans. Datab. Syst., Vol. ?, No. ?, Article ?. Publication date: June ????.



?:36 Wim Martens and Tina Trautner

8.1 Enumeration of Arbitrary Paths and Shortest Paths
We first show that enumeration for arbitrary and shortest paths can be done in polynomial delay.

It is well known that PathExistence(R) is in PTIME for the complete class R of RPQs. Indeed,

one only needs to construct the product of the graph (G, s, t) and an NFA N for the RPQ and

test if (t ,qf ) is reachable from (s,q0), where q0 and qf are an initial and an accepting state of N ,

respectively. This favorable complexity carries over to EnumPaths and EnumShortPaths. At the
core lies the following result by Ackerman and Shallit.

Theorem 8.1 (Theorem 3 in [1]). Given an NFA N and a number ℓ ∈ N in unary, enumerating
the words in L(N ) of length ℓ can be done in polynomial delay.

This result generalizes a result of Mäkinen [37], who proved that the words of length ℓ in L(N )
can be enumerated in polynomial delay if N is deterministic. Ackerman and Shallit genereralized

this result to nondeterministic N and proved that, for a given length ℓ (which they call cross-section),
the lexicographically smallest word in L(N ) can be found in time O(|Q |2ℓ2), where Q is the set of

states on N . ([1], Theorem 1). They then prove that the set of all words of length ℓ can be computed

in timeO(|Q |2ℓ2+ |Σ| |Q |2x), where x is the sum of the length of the words of length ℓ ([1], Theorem
2). A closer inspection of their algorithm even shows that it has delay O(|Σ| |Q |2 |w |) where |w |
is the size of the next output. In fact, Ackerman and Shallit prove that the words in L(N ) can be

enumerated in radix order.

It is easy to extend the algorithm of Ackerman and Shallit to solve EnumPaths in polynomial

delay as follows. Assume that we want to enumerate the paths from s to t inG that match the RPQ

r . We construct an NFA Nr for r and take the product with G. We interpret G × Nr as an NFA and

define its set of initial states as {(s, i) | i is an initial state of Nr } and its set of accepting states as

{(t , f ) | f is an accepting state of Nr }. The product automaton therefore has states (u,q) where u
is a node from G and q a state from Nr . In the resulting automaton, we replace every transition

[(u1,q1),a, (u2,q2)] with [(u1,q1), (u1,a,u2), (u2,q2)]. Enumerating the words from the resulting

automaton corresponds to enumerating the paths from s to t that match r . Using Theorem 8.1, we

have the following corollary.

Corollary 8.2. EnumPaths and EnumShortPaths can be solved in polynomial delay.

For completeness, we note that counting the number of paths from s to t that match a given

regular expression r is #P-complete in general, even if G is acyclic, see [36, Theorem 4.8(1)] and [5,

Theorem 6.1].
19
The same holds for counting the number of shortest paths, since all paths in the

proof of [36, Theorem 4.8(1)] have equal length.

8.2 Enumeration of Simple Regular Paths
We now turn to enumerating simple paths with polynomial delay. A starting point is Yen’s algo-

rithm [57] for enumerating simple paths from a source s to target t , without label constraints. Yen’s
algorithm usually takes another parameter K and returns the K shortest simple paths. In the online

version of this article, we present a version for enumerating all simple paths and Algorithm 3 is

a variant thereof that enumerates all simple paths that match a regular expression r , in order of

increasing length.

We give a high-level explanation. We need the notion of derivatives of a language, see [16]. Given
a language L and a wordw , the derivative of L w.r.t.w is defined as

w−1L := {v | wv ∈ L}.

19
Arenas et al. [5] actually prove that the problem is spanL-complete. Although it is not known if spanL = #P, they are

equal under Cook reductions.
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ALGORITHM 3: Yen’s algorithm with regular expressions

Input: Graph G = (V ,E), nodes s, t , regular expression r
Output: The simple paths from s to t in G that match r

1 A← ∅ ▷ A is the set of paths already written to output

2 B← ∅ ▷ B is a set of candidate paths from s to t

3 p← a shortest simple path from s to t in G that matches r

4 while p , null do
5 output p
6 Add p to A

7 for i = 0 to |p | − 1 do
8 G ′ ← (V ′,E ′), where V ′ = V \V (p[0, i − 1]) and E ′ = E ∩ (V ′ ×V ′) ▷ V (p[0,−1]) = ∅

9 for every path p1 in A with p1[0, i] = p[0, i] do
10 Delete the edge p1[i, i + 1] in G

′ ▷ This also deletes p[i, i + 1] since p ∈ A

▷ G ′ now no longer has paths already in A

11 p2 ← a shortest simple path from p[i, i] to t in G ′ that matches (lab(p[0, i]))−1L(r )

12 Add p[0, i] · p2 to B

13 p ← a shortest path in B ▷ p ← null if B = ∅

14 Remove p from B

The first solution in Algorithm 3 is obtained by finding a shortest simple path p that matches r
(line 3). The next simple path must differ in some edge from p. So we search (if it exists), for all

i , a shortest simple path that shares the first i edges with p, but not the (i + 1)th edge. The first

part of the path is identical to p, while the rest must match the derivative of L w.r.t. lab(p[0, i]),
i.e., it must match (lab(p[0, i]))−1L(r ). All paths found in this way match r and one of the shortest

simple paths found this way is the next solution, which we again store in p. The next simple path

must again differ in some edge from the paths we already found. So we search again, for all i , for
a shortest simple path that shares the first i edges with the new p, but not the (i + 1)th edge. To

avoid rediscovering an old path, we also forbid other edges to appear in the new path (lines 9–10).

In the next theorem, we state that Yen [57] showed that Algorithm 3 works without regular

expressions, that is, for r = Σ∗.

Theorem 8.3 (Implicit in [57]). Given a graph G, nodes s and t , and r = Σ∗, Algorithm 3
enumerates all simple paths from s to t in polynomial delay.

Proof sketch. The original algorithm of Yen [57] finds, for a given G, s , t , and K ∈ N, the K
shortest simple paths from s to t in G. It has two differences with Algorithm 3, namely that it does

not take regular expressions into account (or assumes that r = Σ∗) and that it stops when K paths

are returned.

Let G = (V ,E). Yen does not prove that his algorithm has polynomial delay, but instead shows

that the delay is O(K |V | + |V |3).20 On lines 3 and 11, he uses an algorithm from [55] to find a

shortest, and therefore simple, path in time O(|V |2). (Instead, one can also use Dijkstra’s algorithm

or breadth-first search.) Notice that the derivative (lab(p[0, i]))−1L(r ) on line 11 is again Σ∗ since
r = Σ∗.

Unfortunately, K can be exponential in |G | in general. However, the reason why the algorithm

has K in the complexity is line 9, which iterates over all paths in A. If we do not store A as a linked

20
In [57], Section 5, he notes that computing path number k in the output costs, in his terminology,O (KN ) time in Step I(a)

and O (N 3) in Step I(b), with N = |V |.
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list as in [57] but as a prefix tree of paths instead, the algorithm only needs O(|V | + |E |) steps to
complete the entire for-loop on line 9 (without any optimizations). Indeed, if paths p and p ′′ share
the first i edges, they will share a path of length i from the root node in the prefix tree. So we

can find all forbidden (i + 1)th edges by forbidding all edges that start at the end of this path. We

therefore obtain delay O(|V |3 + |V | |E |) from Yen’s analysis. □

By inspecting Yen’s correctness proof, one can infer the following.

Remark 1. Yen’s algorithm is also correct if we store an arbitrary simple path from s to t in p on
line 3 and from p[i, i] to t in G ′ in p2 on line 11. For completeness, we provide a proof in the online
version of this article.

8.2.1 Enumeration for Downward Closed Languages. Yen’s algorithm can easily be adapted to solve

EnumSimPaths for regular languages, see Algorithm 3. In the case of languages that are closed

under taking subsequences (downward closed languages), we will see that the algorithm even runs

in polynomial delay. We want to make this more precise and also present a general method for

using (variations of) Algorithm 3 for enumeration problems with time guarantees.

Remark 2. Algorithm 3 makes two important calls to a black box algorithm for computing a shortest
simple path that matches a regular language, namely on lines 3 and 11. (There is another mention of
“shortest path” on line 13, but here we only need to find a shortest path stored in B. It is only important
for the ordering of the outputs and not for the correctness of the algorithm.)

We can generalize and formalize this remark as follows.

Lemma 8.4. Let R be a class of regular expressions. If there exist algorithms A1 and A2 that, when
given as input a graph G, nodes s and t , wordw , and r ∈ R, return in time f (n) (with f (n) ≥ n),
(1) a simple path from s to t in G that matches L(r ) if it exists and “no” otherwise and
(2) a simple path from s to t in G that matchesw−1L(r ) if it exists and “no” otherwise

respectively, then EnumSimPaths(R) is in delay O(|V | f (n)) with preprocessing time O(f (n)), where
n = |G | + |r |.

Furthermore, if A1 and A2 always return a shortest simple path (resp., a smallest simple path in
radix order), then the enumeration can be done in order of increasing length (resp., in radix order),
with the same time guarantees.

Proof. The algorithm for EnumSimPaths(R) consists of Algorithm 3, where we call A1 on

line 3, algorithm A2 on line 11, and choose an arbitrary path, shortest path, or smallest path in

radix order in B on line 13, depending on whether we want to enumerate in arbitrary order, order

of increasing length, or radix order, respectively. The correctness follows from Remark 1.

Clearly, we need time O(f (n)) to output the first path (if it exists). Then, Algorithm 3 does up to

|V | iterations in line 7. If we use a prefix tree as a data structure for A, we can insert or find a path

p in A in O(|V |) time. Thus we can also find the right node in the prefix tree and then delete the up

to |E | many outgoing edge in G line 10 in O(|V | + |E |). In line 11, we call algorithm A2.

In line 13 we need to find a minimal path among the candidates in B. If we again use a prefix

tree as a data structure and start with |p | instead of the first node in p, we can always output the

leftmost path which is a minimal simple path. Finding and deleting are in time O(|V |). Thus, we
have a delay of O(f (n)) until the first output, and afterwards time O(|V |(|V | + |E | + f (n))). □

We will now use Lemma 8.4 to infer upper bounds on EnumSimPaths.

Proposition 8.5. Let R be the class of regular expressions defining downward closed languages.
Then EnumSimPaths(R) is in polynomial delay, even when the paths need to be enumerated in radix
order.
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Proof. We prove the existence of polynomial time algorithms A1 and A2 for the two problems

in Lemma 8.4, from which the result follows. Proposition 4.2 guarantees that we can find a smallest

path in radix order that matches r in time O(|G |2 |r |2 |V |2), which is sufficient for A1. For A2, it is

easy to construct an NFA N with L(N ) = L(r ) in polynomial time. We observe that, for each word

w , the derivativew−1L(N ) is again downward closed and we can compute an NFA for it in linear

time (by simply redefining the set of initial states). After that, we can again use the algorithm from

Proposition 4.2 to compute a smallest path in radix order. This concludes the description ofA2. □

Using Lemma 6.3, we can immediately show that the upper bound from Lemma 8.5 also holds

for trails.

Corollary 8.6. EnumTrails is in polynomial delay for regular expressions r such that L(r ) is
downward closed, even when the paths need to be enumerated in radix order.

Proof. Given r ∈ R and a graph G. We use Lemma 6.3 to construct (H , s1, t1), . . . , (H , sn , tn).
The algorithm in Lemma 8.5 allows us to enumerate all simple paths from si to ti in H that match r
in radix order. Therefore, we use n parallel instances of this algorithm to enumerate, for all i , all
simple paths from si to ti in H in radix order. Since each simple path in each H corresponds to a

trail in G, see Corollary 6.4, we can also output the corresponding trails in polynomial delay with

radix order. □

8.2.2 Enumeration for Simple Transitive Expressions. We show that Theorem 3.5(a) — the FPT part

— can be extended to enumeration problems. We do not need to prove any hardness results, since

hardness for enumeration problems immediately follows from the hardness of their decision version,

i.e., Theorem 3.5(b). To this end, a parameterized enumeration problem is defined analogously to

an enumeration problem, but its input is of the form (x ,k) ∈ Σ∗ × N. It is in FPT delay if the

preprocessing time (time before writing the first answer) and the time between writing every two

consecutive answers is bounded by f (k) · |(x ,k)|c for a constant c and a computable function f .
Notice that each problem in polynomial delay is also in FPT delay.

The goal of this section is to prove the following theorem.

Theorem 8.7. Let R be a cuttable class of STEs. Then PEnumSimPaths(R) is in FPT delay, even
when the paths need to be enumerated in radix order.

This theorem immediately implies that the enumeration versions of PSimPathLength and

PSimPathLength≥ (from Section 4.2) are in FPT delay.

Theorem 8.8. PEnumSimPathLength and PEnumSimPathLength≥ are in FPT delay, even when the
paths need to be enumerated in order of increasing length.

We now turn to proving Theorem 8.7. In fact, the proofs of the enumeration results are all along

the same lines and use Lemma 8.4. The FPT algorithms for the decision versions of the problems

can be used as A1 in Lemma 8.4. We also show that we can provide A2. To this end, we will prove

that each derivative language of an STE with cut border c is a union of STEs with cut border at

most c (see Lemma 8.9). Finally, we prove that both algorithmsA1 andA2 can be adjusted to return

the smallest matching path in radix order if it exists.

We first show that derivatives of STEs are unions of STEs with at most the same cut border.

Lemma 8.9. Let w ∈ Σ∗ and r be a c-bordered STE of size n. Then w−1L(r ) is a union of STEs
r1, . . . , rm that can be computed in time O(|w | |r |) such that
• m ≤ n and
• each ri is c ′-bordered for some c ′ ≤ c .
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Furthermore, if r is an STE with at most c conflict positions then, every STE in w−1L(r ) also has at
most c conflict positions.

Proof. Let r = B1 · · ·Bn be a c-bordered STE such that each Bi is either of the form A, A?, or T ∗

as in Definition 3.2. Letw ∈ Σ∗, Jw = {j | w ∈ L(B1 · · ·Bj )}. Then a regular expression forw−1L(r )
consists of the union

Σj ∈JwBj+1 · · ·Bn

and, ifw ∈ L(B1 · · ·Bj ) with Bj = T
∗
, we add Bj · · ·Bn to the union.

Clearly, the union is of size at most n, and since each expression Bj+1 · · ·Bn or Bj · · ·Bn is c ′-
bordered for some c ′ ≤ c by definition, the result follows. Since we can testw ∈ L(r ) in O(|w | |r |),
we can compute Jw and therefore also the derivatives in O(|w | |r |). □

Example 8.10. For the regular expression r = a∗aab and the wordw = aaa, the derivativew−1L(r )
is {a∗aab + aab + ab + b}.

Lemma 8.9 implies that we can strengthen Lemma 8.4 in the case of STEs.

Lemma 8.11. Let R be a class of STEs. If there exists an algorithm A that, when given as input a
graph G, nodes s and t , and r ∈ R, returns in time f (n) (with f (n) ≥ n),

a simple path from s to t in G that matches L(r ) if it exists and “no” otherwise,
then EnumSimPaths(R) is in delay O(|V | |r | f (n) + |r | · |V |3) with preprocessing time O(f (n)), where
n = |G | + |r |. Furthermore, ifA always returns a shortest simple path (resp., a smallest simple path in
radix order), then the enumeration can be done in order of increasing length (resp., in radix order),
with the same time guarantees.

Proof. Since we search for simple paths, we only need to compute derivatives for wordsw of

length at most |V |. Lemma 8.9 implies that we can compute a single such derivative in timeO(|V | |r |).
According to Lemma 8.9, each derivative of an STE with cut border c is a union of at most |r | many

STEs with cut border at most c . Therefore, we can use algorithm A to also solve problem (2) in

Lemma 8.4, by running it for each STE in the union separately. The smallest existing path in radix

order can be found by taking the smallest returned path overall, for each STE in the union. To be

precise, we needO(f (n)) time until the first output, and afterwards delayO(|V |(|r | · f (n)+ |r | · |V |2)).
Sincew is a prefix of lab(p), the algorithm needs to computew−1L at most |V | times in each of the

|V | iterations in line 7. □

If one is not interested in enumerating the simple paths in a particular order, then Lemma 8.11

and Lemma 4.17 immediately imply that EnumSimPaths(R) is in FPT delay for cuttable classes R

of STEs. (The algorithm for Lemma 4.17 can output a witnessing path if it exists.) (By Remark 1,

it is sufficient for the correctness of Yen’s algorithm to be given simple paths. This observation

propagates through Lemmas 8.4 and 8.11.) In the following, we will strengthen this to show that

enumeration is even possible in radix order.

Enumeration in Radix Order. In the remainder, we will show how the decision algorithm for

Theorem 3.5(a) can be adapted to return a smallest path in radix order. From now on, we refer to

such a path as a minimal path. We show that Algorithm 2, for computing a simple path matching a

0-bordered STE, can be adjusted to compute a minimal path.

Lemma 8.12. Let G be a graph, s and t nodes, and r = A1 · · ·Ak1T
∗A′k2 · · ·A

′
1
a 0-bordered STE. If

there exists a simple path from s to t matching r , then a shortest such path can be computed in time
2
O ( |r |) · |V |3 |E | and a minimal such path in time 2O ( |r | log |r |) · |V |6 |E |2.
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Proof. Since Algorithm 2 already solves the decision version of the problem, we only need to

show that it can be adapted to compute a shortest, resp., minimal path in the required time. We

first show that Algorithm 2 can output a shortest path. If Algorithm 2 returned ‘yes’, there exist

nodes x ,y ∈ V and sets X ∈ P̂r1s,x and X ′ ∈ P̂r2y,v , and a simple path p from x to y that matches T ∗

and is node disjoint from X and X ′ except for x and y. (See Lemma 4.12.) By definition of Pr1s,x , the

nodes in X ∈ P̂r1s,x form a path from u to x that matches r1 = A1 · · ·Ak1 . The construction of P̂r1s,x in

Lemma 4.10 allows us to order the elements in the sets such that they directly correspond to such a

path. (In fact, the construction is analogous to [25, Lemma 5.2], which also shows that a witnessing

path can be obtained.) So we can construct a path p1 from u to x that uses only nodes in X and

matches r1 and a path p2 from y to v that uses only nodes in X ′ and matches r2 = A′k2 · · ·A
′
1
. This

also holds for a shortest such path, see Corollary 4.13.

To output a minimal path, we need to make some small changes to Algorithm 2. That is, we

enumerate in line 2 all wordsw1 ∈ L(r1) and compute P̂w1

s,x ⊆
k1+k2+1
rep

Pw1

s,x for each such word. This

way we can ensure that we really considered each word and, in particular, each prefix of a minimal

simple path that matches r .21 We proceed analogously in line 7 for all wordsw2 ∈ L(r2).
Thus, we can use Algorithm 2 and iterate, for all words w1 and w2 and all nodes x ,y over

P̂w1

s,x ⊆
k+1
rep

Pw1

s,x in line 2 and P̂w2

y,t ⊆
w2

y,t in line 8. Then we find a minimal simple path from x to y

matching T ∗ in line 11 in time O(|G |2 |r |2 |V |2) with Proposition 4.2.

Concerning the time bounds, Algorithm 2 without changes has a running time of 2
O ( |r |) · |V |c+3 |E |,

see Lemma 4.15. Iterating over the words is in O(|r | |r |) and using Proposition 4.2 instead of

Lemma 4.1 and the reachability test for T ∗ adds a factor O(|G | |r |2 |V |2). Rewriting O(|r | |r |) into
2
O ( |r | log |r |)

yields the result. □

Finally, the following result implies Theorem 8.7.

Lemma 8.13. Let R be a class of STEs with cut border at most c . Then EnumSimPaths(R) is in FPT
delay with radix order, to be more precise, with 2

O ( |r | log |r |) · |V |c+6 |E |2 preprocessing time and delay
2
O ( |r | log |r |) · |V |c+7 |E |2. If we only need order of increasing length, the preprocessing is 2O ( |r |) · |V |c+3 |E |
and the delay is 2O ( |r |) · |V |c+4 |E |.

Proof. By Lemma 8.11, we only need to show the existence of an algorithm A that finds a

minimal path within the required time bound. To this end, let r ∈ R and let c1 and c2 be the left and
right cut border of r , respectively. Hence, r = A1 . . .Ac1r

′A′c2 · · ·A
′
1
. (If ci = 0, then the respective

part of r is simply missing.) We can compute, for all u,v ∈ V , all paths p1 from s to u matching

A1 · · ·Ac1 and all paths p2 from v to t matching A′c2 · · ·A
′
1
in time O(|V |c ).22 We then do a loop

over all pairs (p1,p2) of such paths that are node-disjoint. For each such pair, we will compute a

candidate path P(p1,p2). The overall idea of the algorithm is that it first computes all such candidate

paths and then, when it has iterated through all (p1,p2), takes the minimal one.

For the remainder of the proof, fix such a pair (p1,p2) and let pc1 and pc2 be the smallest paths (in

radix order) obtained from p1 and p2 by considering the edge labels in G. The subexpression r ′ of
r is of the form r ′ = B′

pre
T ∗B′

suff
and is 0-bordered. So we now search for a minimal simple path

matching r ′ from u to v . We first delete in G all nodes in (V (p1) \ {u}) ∪ (V (p2) \ {v}). Then, we
perform a case distinction on the form of r ′.

If r ′ = A1? · · ·Ak1?T
∗A′k2? · · ·A

′
1
?, its language L(r ′) is downward closed, so we can find a simple

path p matching r ′ that is a minimal path using Proposition 4.2 and take P(p1,p2) = pc1p pc2 .

21
If we start in Lemma 4.12 with a minimal simple path, we can replace P with a P ′ such that P ′ and R do not intersect. If

additionally P and P ′ match the same word, the new path must also be a smallest one in radix order.

22
For the purpose of the proof, it suffices to compute the paths without the edge labels here. We can find the labels on the

edges in p1 and p2 that are smallest words in the corresponding expressions in radix order later.
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For r ′ = Ac1+1 · · ·Ak1T
∗A′k2 · · ·A

′
c2+1, we know from Lemma 8.12 that we can compute a minimal

path p. We then define P(p1,p2) = pc1p pc2 .
If r ′ has another form, that is r ′ = Ac1+1 · · ·Ak1T

∗A′k2? · · ·A
′
1
? or r ′ = A1? · · ·Ak1?T

∗A′k2 · · ·A
′
c2+1,

we can also obtain a minimal simple path. In the first case, we again iterate over all words w1 ∈

Ac1+1 · · ·Ak1 , compute the minimal path in P̂w1

u,x ⊆
k ′
1
+1

rep
Pw1

u,x , and use Proposition 4.2 to find a

minimal path from x to t for the downward closed part. The other case is symmetric.

In each of the cases, the algorithm then iterates through all (p1,p2) and, for each such pair, adds

a candidate path. Finally, it outputs the smallest candidate path.

Concerning the running time, we need time O(|V |c ) to guess p1 and p2. To output a simple path

(not necessarily minimal), we need 2
O ( |r |) · |V |c+3 |E | time, see Lemma 4.17. This is also the time we

need to output shortest simple paths, since we can use the same algorithm. For minimal paths in

radix order, we use Proposition 4.2 with running time O(|G |2 |r |2 |V |2) instead of Lemma 4.1 with

running time O(|G | |r |) and instead of the reachability test for the T ∗ part. Furthermore, depending

on r , we might need to enumerate all wordsw1 ∈ L(Ac1 · · ·Ak1 ) andw2 ∈ L(A
′
k2
· · ·A′

1
), and compute

the rest of the algorithm depending on these words. Thus we need 2
O ( |r | log |r |) · |V |c+6 |E |2 time

overall in this case. The delay then follows from Lemma 8.11. □

8.3 Enumeration of Trails
The FPT result from Theorem 3.7 also carries over to enumeration problems. That is:

Theorem 8.14. Let R be a class of STE that is almost conflict-free. Then, PEnumTrails(R) is in FPT
delay, even when the paths need to be enumerated in radix order.

More precisely, we obtain the following delays:

Lemma 8.15. Let R be a class of STEs with at most c conflict positions. Then, PEnumTrails(R) is in
FPT delay with radix order, to be more precise, in 2

O ( |r | log |r |) · |E |c+11 preprocessing time and delay
2
O ( |r | log |r |) · |E |c+12. If we only need order of increasing length, the preprocessing is 2O ( |r |) · |E |c+6 and
the delay is 2O ( |r |) · |E |c+7.

Proof. By Corollary 6.4, we have a bijection between the trails matching a word w in G and

the simple paths matching σ ·w in H , where H is obtained from G as in Lemma 6.3. Here, σ is an

arbitrary label from Σ. Thus, we can use Lemma 8.11 onH = (VH ,EH ) to enumerate the simple paths

in the respective order and output the corresponding trails in G. We note that, due to Lemma 8.9,

derivatives of STEs with at most c conflict positions again have at most c conflict positions. The
computation time and size bounds can be found in Lemma 8.9.

So we need an algorithm that computes simple paths onH , matching σ · r and derivatives thereof
in the respective order. Notice that the existence of such an algorithm is not immediate from our

results on simple paths, since R is not necessarily cuttable. In fact, we need to relabel H and r as
in (1)–(3) from the proof of Lemma 7.3. In (1), we relabeled r and some edges of H . Concerning

the ordering of labels, we assume that, if a < b, then a < ã < b < ˜b. Notice that every Ai ,T , or A
′
i

has only a or ã but not both, so this ordering does not affect the minimality of the path that we

find. For every minimal path p matching σ · r in H there is a set S such that a minimal path in HS
matching σ · r̃ will use the same nodes in the same order as p. We can compute, for each set S , a
minimal path pS in HS , compare all such paths pS , and take the minimal one. In (2), we only get rid

of σ , so this will not change the minimality of a path. Finally, in (3), we use the same methods as in

Lemma 4.16, which can be used to output simple paths in the respective order, see Lemma 8.13.

Using the bijection between these simple paths and the trails in G, we can enumerate the trails.

So we can indeed output trails in the radix order or in order of increasing length. We now turn

to the running time. Combining the blow-ups from the construction in Lemma 6.3 and the multiple
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graphsHS we obtain from each different choice of S , we can find a shortest simple path that matches

σ · r̃ in time 2
O ( |r |) · |E |c+6 and a minimal simple path in time 2

O ( |r | log |r |) · |E |c+11. Together with
Lemma 8.11 this enables us to enumerate the simple paths and output the corresponding trails with

delay 2
O ( |r |) · |E |c+7 for order of increasing length and delay 2

O ( |r |) · |E |c+12 for radix order. □

9 CONCLUSIONS
We have provided an extensive overview of evaluation and enumeration problems for regular path

queries in graph databases under arbitrary paths, shortest path, simple path, and trail semantics.

Our two main technical results are two dichotomies on the parameterized complexity of evaluating

simple transitive expressions (STEs), which are a class of regular expressions powerful enough to

capture over 99.99% of the RPQs occurring in a recent practical study [15]. These dichotomies

apply to simple path and trail semantics. Under simple path semantics, the central property that we

require for a class of expressions so that evaluation is in FPT is cuttability, i.e., having bounded

cut borders (also see Figure 2). Looking at Table 3, we see that the cut borders for expressions in
practice are indeed very small: it is one for a∗b, two for abc∗, and zero in all other cases. Under

trail semantics, the central property for evaluation in FPT is almost conflict freeness, i.e., a constant
number of conflict positions. Looking again at the underlying data for Table 3, we discovered that

all STEs had zero conflict positions. (We needed to look deeper again, because some classes in

Table 3 aggregate others. For instance, “a∗b” also contains expressions of the form aa∗.)
Therefore, although evaluation under simple path and trail semantics of RPQs is known to be

hard in general, it seems that the RPQs that users actually ask are much less complex.
23
In fact,

since the vast majority (over 99%) of expressions in Table 3 has cut borders of at most two and no

conflict positions, our FPT results in Theorems 3.5 and 3.7 imply that evaluation for this majority

of expressions is in FPT with small parameter. Recall that, if P , NP, this is impossible even for

fixed expressions: evaluation for a∗ba∗ or (aa)∗ under simple path semantics is NP-complete.

Beyond STEs. From a theoretical perspective it would be interesting to see to what extent our

techniques can be used beyond STEs. We already observed that the FPT results extend to unions
of STEs. Here, we briefly touch on another related class of expressions. Let an extended STE be a

regular expression of the form

BpreT
∗
1
· · ·T ∗kBsuff,

where Bpre and Bsuff are as in Definition 3.2.

Similarly to Section 3.5.1, if Bpre = A1 · · ·Ak1 , we can define the left cut border to be the maximal

i with Ai ∩ Tj , ∅ for some j ∈ {1, . . . ,k}; and zero if Bpre = A1? · · ·Ak1? (analogously for the

right cut border). With these definitions, the lower bound proof in Lemma 5.6 directly works

for non-cuttable classes (that can be sampled) of these expressions and the FPT upper bound in

Lemma 4.17 directly works for cuttable classes. Concerning trail semantics, it seems that the bounds

do not immediately transfer and some more work is required. Another interesting direction would

be to investigate to which extent the dichotomies extend to two-way regular path queries.
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