
Bridging Theory and Practice with Query Log Analysis

Wim Martens
University of Bayreuth

wim.martens@uni-bayreuth.de

Tina Trautner
University of Bayreuth

tina.trautner@uni-bayreuth.de

ABSTRACT
Since large structured query logs have recently become avail-
able, we have a new opportunity to gain insights in the types
of queries that users ask. Even though such logs can be quite
volatile, there are various new observations that can be made
about the structure of queries inside them, on which we re-
port here. Furthermore, building on an extensive analysis
that has been done on such logs, we were able to provide
a theoretical explanation why regular path queries in graph
database applications behave better than worst-case com-
plexity results suggest at first sight.

1. INTRODUCTION
The recent availability of large logs of structured queries

provides new research opportunities for the database com-
munity. With millions of queries available for analysis, we
suddenly have a large amount of information that can help
us to identify interesting characteristics of real-world data-
base queries. Such characteristics can then guide our focus
when we want to study certain aspects of query evaluation or
optimization, or if we simply want to understand the types
of questions that users find interesting.

Database research has traditionally always had a strong
focus on searching for subclasses of query languages that
exhibit favorable computational properties. Well-known ex-
amples are the focus on conjunctive queries instead of full-
fledged query languages, Datalog as a subset of Prolog, myr-
iads of fragments of XPath or XQuery in the times of XML
research, or even set semantics of queries (i.e., select distinct
queries), as opposed to bag semantics.

Now that query logs are becoming available, we are ob-
taining hard data against which we can test or justify the
importance of some of the specific problems we have been
studying, and in which we may be able to discover new inter-
esting cases. A nice side-effect for researchers is that, once
we find a specific property of queries to be very prominent
in logs, we immediately have numbers that we can use to
motivate research on this specific property.

This paper is primarily based on the paper “Evaluation
and Enumeration Problems for Regular Path Queries” (pub-
lished in ICDT 2018), but also on “An Analytical Study of
Large SPARQL Query Logs” (published in VLDB 2018)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2008 ACM 0001-0782/08/0X00 ...$5.00.

However, there is also a snag: the query logs we currently
have exhibit very different characteristics depending on the
data source that is queried [5]. Due to the mixture of robotic
and user-generated queries, these characteristics can even
vary significantly on a day-to-day basis for the same query
log [4]. This has some very important consequences that
we need to keep in mind. First of all, we need to be care-
ful that we don’t focus too much on an aspect that is too
specific, i.e., we would overfit our research. Needless to say,
this is a delicate balance that is challenging to maintain.
Second, studies on query log analysis should not be used
to argue that some property of queries is not interesting.
This is for the simple reason that, even though we may have
“large” amounts of queries available, there is an even larger
amount of queries that we do not have available (or will be-
come important in the future) and we know nothing about.
The old-fashioned elegance of a problem therefore remains
extremely important for guiding research.

In this paper we report on some lessons learned from
analysing over half a billion queries, coming from DBpedia,
Semantic Web Dog Food, LinkedGeoData, BioPortal, Open-
BioMed, British Museum, and WikiData. We also illustrate
how some of the knowledge gained from this analysis could
be used in theoretical research to give an explanation why
certain types of queries seem to behave mostly unproblem-
atically in practice even though their worst-case complexity
is quite high.

2. ANALYSIS OF SPARQL LOGS
To the best of our knowledge, the first study on huge

logs of structured queries was done by Bonifati et al. [5].
The study had a total of about 180M SPARQL queries,
summarized in Table 1. The table mentions, for each of
the logs, its total number of queries (Total) and the num-
ber of queries that could be parsed using Apache Jena 3.0.1
(Valid). From the latter set, duplicates were removed, re-
sulting in the unique queries that could be parsed (Unique).
The queries come from DBpedia, LinkedGeoData (LGD),
BioPortal (BioP), OpenBioMed (BioMed), Semantic Web
Dog Food (SWDF), British Museum (BritM), and Wiki-
Data. The WikiData17 set is very small: it consists of the
user-submitted example queries from Wikidata in February
2017. This first study has since been extended with 170M
DBpedia queries [6] and 208M Wikidata queries [7], adding
up to more than 550 million queries. In this paper we will

https://www.wikidata.org/wiki/Wikidata:SPARQL_
query_service/queries/examples

Table 1: Query logs in the corpus of [5].

Source Total #Q Valid #Q Unique #Q

DBpedia9/12 28,534,301 27,097,467 13,437,966
DBpedia13 5,243,853 4,819,837 2,628,005
DBpedia14 37,219,788 33,996,480 17,217,448
DBpedia15 43,478,986 42,709,778 13,253,845
DBpedia16 15,098,176 14,687,869 4,369,781

LGD13 1,841,880 1,513,868 357,842
LGD14 1,999,961 1,929,130 628,640

BioP13 4,627,271 4,624,430 687,773
BioP14 26,438,933 26,404,710 2,191,152

BioMed13 883,374 882,809 27,030

SWDF13 13,762,797 13,618,017 1,229,759

BritM14 1,523,827 1,513,534 135,112

WikiData17 309 308 308

Total 180,653,910 173,798,237 56,164,661

primarily focus on the query logs in Table 1, but we will re-
port insights from the other studies [7, 6] whenever relevant.

Size of Queries.
A first important discovery that was made in the logs

is about the size of queries. In [5], this was measured by
counting the number of subject-predicate-object triples in
the queries, which are the SPARQL counterpart of atoms
(or relational predicates) in relational databases. The dis-
tribution in these logs is extremely skewed: if we look in the
Unique queries, over 56% have only a single triple. Even
though there are queries with up to 229 triples, it is the case
that up to six triples are enough to capture over 90% of the
queries and, with up to twelve triples, we capture over 99%.
In Wikidata logs that were recently investigated [7], the dis-
tribution is less skewed, at least for the non-robotic queries.
Here, only 13% of the unique queries have a single triple.
Moreover, one needs up to 9 triples to capture over 90% and
up to 16 triples to capture over 99% of the queries.

Cyclicity.
These observations on the size of queries are important

if we want to understand cyclicity. Cyclicity and acyclicity
of queries is indeed a very important aspect of queries that
has received a huge amount of attention in the literature
(e.g., [11] and the references therein). An important reason
is that queries in practice are assumed to be only mildly
cyclic, which would be good news, since cyclic queries are
more complex to evaluate. Since our standard definitions of
cyclicity require a query to have at least three atoms to be
cyclic [1], and since 78% of the unique queries in Table 1 only
have up to two triples, we already know that the majority
must be acyclic. But the assumption that real world queries
are only mildly cyclic is also strongly confirmed when we
look deeper. Out of all the conjunctive queries, even 99.9%
are acyclic. Again, these numbers slightly shift when we
look into the non-robotic Wikidata queries mentioned be-
fore, where around 97.8% of the unique queries investigated
in [7] are acyclic. In terms of treewidth, we found queries in
the logs with treewidth up to five (if one also allows property

“Henry VIII”

?spouse1

?spouse2

?spouse3

?spouse4

?spouse5

?spouse6

Figure 1: Graphical representation of a highly cyclic
query: a 7-clique containing one constant and six
variables. All edges connecting to Henry VIII are
labeled “married-to” and all edges between the vari-
ables ?spouse1, . . . , ?spouse6 are labeled “! =”. The
query therefore searches for six different spouses of
Henry VIIIth. The query is inspired on a query we
found in the logs of Table 1.

paths). An interesting real-world query with treewidth five
can be found in Figure 1. (The subquery consisting of the
variables is a six-clique, which has treewidth five.)

Query Shapes.
Since so many queries in the logs are acyclic, it also makes

sense to look more closely at their structure. More pre-
cisely, one can consider the graph structure induced by the
subject-predicate-object triples in the queries by considering
each triple (x, y, z) and turning it into two nodes x and z,
connected by an undirected edge. (The construction of the
graph is actually more subtle – sometimes hypergraphs are
required. We refer to [5] for more details.)

For those queries that can be adequately represented as a
graph, the undirected version of this graph was considered
and it was investigated which fractions of the queries are a
single edge, a chain (a connected, acyclic sequence of edges),
a star (is a “central” node, to which chains can be attached),
or a tree. These shapes are intended to be cumulative, so
each shape generalizes the previous one. Considering the
unique conjunctive queries, it turns out that around 78.98%
are a single edge, 98.87% are a chain, 99.81% are a star,
and 99.90% are trees. A visual inspection of the remaining
queries showed that many of them can be seen as flowers,
which are a central node, to which trees or petals can be
attached. Here, a petal consists of two nodes u and v that
are connected by chains. This generalization allowed to cap-
ture 99.94% of the queries. Most of the remaining queries
consisted of multiple connected components. Generalizing
from flower queries to bouquet queries allowed to capture
essentially 100%. Here, a bouquet is a graph in which each
connected component is a flower.

Differences Between Logs.
Even though some trends can be identified in the logs,

there are also some drastic differences. This is a healthy
warning for us: we should not declare that we now un-
derstand what users are interested in. For instance, in the

BioP13 and BioP14 logs, 79.66% and 40.48% of the unique
queries use the GRAPH-operator, whereas this operator only
occurs in 2.71% of the total queries. Bielefeldt et al. [4] ob-
served huge differences in query volumes in Wikidata logs
over different days, mainly due to automatically generated
queries that, consequently, can have huge effect on the types
of queries in the logs. Finally, in the data of Table 1, less
than 1% of the queries use property paths, whereas this
grows to 38% of the unique queries in [7].

3. CASE IN POINT: PATH QUERIES
Regular path queries (RPQs) are a crucial feature of graph

database query languages, since they allow us to answer
queries that involve arbitrarily long paths in graphs using
regular expressions. We give an example. Consider the toy
graph database in Figure 2, which is loosely inspired on a
part of the Wikidata graph. Suppose that we want to find
artists who died at age 27, we can easily do so using a regular
path query. (These artists are known under the name “27
club”. The club has famous members such as Kurt Cobain,
Jimi Hendrix, Janis Joplin, Jim Morrison, and Amy Wine-
house.) For instance, we can retrieve the persons who died
at age 27 with a Cypher-like subquery of the form

CONSTRUCT (x)

MATCH (x:Person)-[:age-at-death]->(y:Integer)

WHERE y = 27

Likewise, artists can be found by the query

CONSTRUCT (x)

MATCH (x:Person)-[:occupation]->()

-[:subclassof*]->(y:Profession)

WHERE y.name = ’artist’

The second query asks for persons whose occupation is a pro-
fession that is connected with a subclassof-path to “artist”.
Here, we used the regular expression subclassof∗ to allow
arbitrarily long paths in which every edge is labeled with
subclassof. Since we may not know in advance how many
subclassof-edges we have to consider, it is very comfort-
able to be able to use the regular path query subclassof∗.
The example also illustrates the robustness of regular path
queries. Even when the graph database changes (e.g., by
introducing an additional profession such as “string instru-
mentalist”), the query still returns the correct results.

Regular path queries or RPQs started as an academic idea
in Cruz et al.’s seminal paper [8] and are nowadays part of
SPARQL, Cypher and Oracle’s PGQL. Although the main
idea behind RPQs is always to match regular expressions
against paths in a graph database, academic research and
real-world systems do not always agree on how this should
be done. The main difference lies in which paths should
be considered for matching, and the most considered candi-
dates are all paths or paths without repeated nodes or edges.
Whereas academic research most commonly allows all paths
(which allow polynomial time algorithms to test if a match-
ing path exists between two given nodes), graph database
systems usually revert to paths without repeated nodes or
edges. There seem to be different reasons why this is so.
First of all, this restriction always ensures that the number
of paths that can match is finite, so one does not have to
deal with infinity. Second, paths without repeated nodes
or edges gives the semantics that some users seem to pre-
fer [Lindaaker, personal communication]. From a theoretical

point of view, however, such paths very quickly lead to in-
tractability. Even testing if a matching path exists between
nodes is NP-complete, see Theorem 1.

3.1 Complexity of Simple Paths and Trails
We briefly want to explain some of the fundamental results

about RPQ evaluation against paths without repeated nodes
or edges. We use edge-labeled graphs as abstractions for
graph databases. To this end, let Σ be a set of labels. A
graph database (with labels in Σ) is a pair G = (V,E),
where V is the finite set of nodes of G and E ⊆ V × Σ× V
is the set of edges. We say that edge e = (u, a, v) is from
node u to node v and has label a. Notice that this definition
allows graphs to have self-loops and multiple edges from u
to v if they have different labels. The size of a graph G,
denoted by |G|, is defined as |G| = |V |+ |E|.

A path from node u to node v in G is a sequence

p = (v0, a1, v1)(v1, a2, v2) · · · (vn−1, an, vn)

of edges in G such that u = v0 and v = vn. By lab(p) we
denote the sequence a1 · · · an of labels on the edges of p. The
length of a path p is its number of edges. A path p is simple
if it has no repeated nodes, that is, all nodes v0, . . . , vn are
pairwise different. It is a trail if it has no repeated edges,
that is, every edge appears only once in p.

Regular path queries are abstracted as regular expres-
sions. Here, ε, and every Σ-symbol is a regular expression;
and if r and s are regular expressions, then so are (r · s),
(r+s), and (r∗). (To improve readability, we use associativ-
ity and the standard priority rules to omit braces in regular
expressions. We usually also omit the outermost braces.)
We use r? to abbreviate r + ε. The size |r| of a regular
expression is the number of occurrences of Σ-symbols in r.
For example, |((a · b) ·a)∗| = 3. We define the language L(r)
of r as usual. A path p matches r if lab(p) ∈ L(r), that
is, the sequence of labels on the edges of p is in the lan-
guage of r. The following two decision problems are central
to evaluation of regular path queries over simple paths and
trails.

SimPath(R)

Given: A graph G = (V,E), two nodes x, y ∈ V ,
and an RPQ r ∈ R.

Question: Is there a simple path from x to y in G
that matches r?

Trail(R)

Given: A graph G = (V,E), two nodes x, y ∈ V ,
and an RPQ r ∈ R.

Question: Is there a trail from x to y in G that
matches r?

We parameterized the problems with a class R of regular
expressions, so that we can discuss variants of these prob-
lems. (If R is just a single regular expression r, then we
simply write SimPath(r) instead of SimPath({r}), and anal-
ogously for Trail.)

Notice that any algorithm that is able to answer RPQs
(i.e., compute all matching paths) while considering simple
paths and trails, is able to solve these decision problems.
So, the complexity of these decision problems is important.
Notice that both problems are trivially in NP. Mendelzon

name: Jimi Hendrix
aka: James Marshall Hendrix

name: Marilyn Monroe
aka: Norma Jean Baker

name: Brian Jones
aka: Lewis Brian Hopkin Jones

name: Amy Winehouse
aka: Amy Jade Winehouse

name: guitarist

name: instrumentalist

name: musician

name: artist

name: singer

name: actor

occup
ation

occupation

occupation

occup
ationsubclassof

subclassof

subclassof

subclassof

subclassof

27

36

Integer

Integer

age
at d

eath

age at death

age at death

age at death

Person

Person

Person

Person

Profession

Profession

Profession

Profession Profession

Profession

occupation

occupation

Figure 2: A graph database (as a property graph), inspired on a fragment of WikiData

and Wood studied SimPath and discovered that it becomes
NP-hard very quickly [16]. Items (a) and (b) of the following
theorem come from their work:

Theorem 1. The following problems are NP-complete:
(a) SimPath((aa)∗) (b) SimPath(a∗ba∗)
(c) Trail((aa)∗) (d) Trail(a∗ba∗)

Items (c) and (d) can be obtained by easy reductions from
the two disjoint paths problem, using the standard split-
graph construction from Perl and Shiloach [18] or LaPaugh
and Rivest [12] and the same reductions as for simple paths
used by Mendelzon and Wood [16].

So, not only are SimPath and Trail NP-complete, they are
even NP-complete in cases where the regular path query
is fixed. Furthermore, the expressions for which this NP-
completeness holds can be very small. It is therefore no
surprise that, from a worst-case complexity perspective, it
seems to be a bad idea to build a query language for graph
databases on simple path or trail semantics. We note that
it is understood for which fixed regular expressions SimPath
and Trail are NP-complete [3, 13].

3.2 What About Query Logs?
Once query logs became available, we have been able to

analyze what kind of RPQs actually occur. The study of
Bonifati et al. [5] had 247k SPARQL property paths in
unique queries, which gave us a first impression. Syntac-
tically, SPARQL property paths are extensions of RPQs.
This is important, because it means that the types of regu-
lar expressions we will see are not syntactically constrained
by the query language. On top of the ordinary operators
for RPQs, SPARQL allows operators for wildcards and for
following edges in the reverse direction. This would not be
the case for Cypher, for example. (In Neo4j’s Cypher 3.2
manual, only single labels or wildcards were allowed below
Kleene stars [17]. Cypher 9 is becoming more liberal and
allows disjunction below a Kleene star, see [10, Figure 3:
Syntax of Cypher patterns]. In the near future, Cypher
plans to support full regular path queries [10].)

In Table 2, we provide a summary of the types of prop-
erty paths found in the data of [5]. That is, Table 2 is not
the table appearing in [5], but we went over the raw data

again and aggregated the types of expressions slightly dif-
ferently. We use the following conventions: (1) lower case
letters denote single symbols, (2) upper case letters denote
sets of symbols, (3) we denote a wildcard test by t, (4) we
do not distinguish between following an edge in the forward
or backward direction, (5) each expression type also encom-
passes its symmetric form. For instance, when we write a∗b,
we count the expressions of the form a∗b and ba∗. We always
list the variant that occurred most often in the data. That
is, a∗b occurred more often than ba∗. These conventions are
the same as in our conference paper [14].

Under Expression Type, the table summarizes which types
of expressions are in Bonifati et al.’s data set, sometimes
parameterized by a number ` for which the next column de-
scribes the values that were found. Relative describes which
percentage of the 247,404 expressions fall into this expres-
sion type. We discuss STE? in the next section.

In Table 2 we can immediately observe that the property
paths found in the query logs of Bonifati et al. are not very
complex and that the expressions mentioned in Theorem 1
only occur very rarely. In fact, the query (ab)∗ occured
only once and we found out that this query was posed by
a theoretician testing the robustness of the engine [Vrgoč,
personal communication].

Another thing to keep in mind is how to interpret the
classification in Table 2. After all, property paths do not
occur often in the logs of Table 1: only about 0.4% of the
queries have them. However, this seems to be an artifact
of the underlying data. Most of the property paths appear
in DBpedia queries, but DBpedia was designed when prop-
erty paths were not yet part of SPARQL. In a more recent
study on Wikidata query logs, containing 35 million unique
queries, a drastically larger 38.94% of the queries use prop-
erty paths [7]. Moreover, the structure of these property
paths shows a picture similar to what we see in Table 2 [7].

4. SIMPLE TRANSITIVE EXPRESSIONS
We now define a class of RPQs called simple transitive

expressions (STEs), with the intent of capturing the vast
majority of the expressions in Table 2, while avoiding the
problems discussed in Section 3.1. Intuitively, simple tran-

Expression Type ` Relative STE?

(a1 + · · ·+ a`)
∗ 2–4 29.10% yes

t 25.48% yes(∗)

a∗ 19.66% yes
a1 · · · a` 2–6 8.66% yes

a∗b 7.73% yes
(a1 + · · ·+ a`) 1–6 6.61% yes

(a1 + · · ·+ a`)
+ 1–2 1.54% yes

a1?a2? · · · a`? 1–5 1.15% yes
a(b1 + b2)? 0.01% yes
a1a2? · · · a`? 2–3 0.01% yes

a∗b? < 0.01% yes
abc∗ < 0.01% yes

A1 · · ·A` 2–6 < 0.01% yes
(a1 + a2)? < 0.01% yes

t∗ < 0.01% yes(∗)

tb∗ < 0.01% yes(∗)

t? < 0.01% yes(∗)

(ab∗) + c < 0.01% no
a∗ + b < 0.01% no
a + b+ < 0.01% no
a+ + b+ < 0.01% no

(ab)∗ < 0.01% no

Table 2: Structure of the 247,404 SPARQL prop-
erty paths that were also used in the query logs in-
vestigated by Bonifati et al. [5]. The structure is
sometimes in terms of a variable ` ∈ N, for which the
second column indicated the values that were found
in the logs. Relative indicates which percentage of
the 247,404 property paths have this structure.

sitive expressions aim at capturing very basic navigation in
graphs: first do some local navigation, followed by an op-
tional transitive step, and finally again some local naviga-
tion. The rationale is that, if we want to connect entities in
a graph database, then this is a natural way to navigate. Let
us again consider our running example of artists that died
at the age of 27. When we want to find out if a Person is an
artist, we first need to do some local navigation (following
an occupation-edge) and then perform a transitive reflex-
ive step (following an arbitrarily long path of subclassof-
edges). More precisely, simple transitive expressions allow
to:

1. first follow a path of length exactly k1 or at most k1

(for some k1 ∈ N),

2. then do a (reflexive) transitive closure step,

3. finally, follow a path of length exactly k2 or at most k2

(for some k2 ∈ N).

All three steps are subject to label tests. Furthermore,
any step can be omitted, so a simple transitive expression
can also express that paths must have length between k1

and k1 + k2. In the following definition, we use sets A =
{a1, . . . , a`} ⊆ Σ to abbreviate disjunctions (a1 + · · ·+ a`).

Definition 2. An atomic expression is of the form A ⊆
Σ with A 6= ∅. A bounded expression is a regular expres-
sion of the form A1 · · ·Ak or A1? · · ·Ak?, where k ≥ 0 and
each Ai is an atomic expression. Finally, a simple transitive

expression (STE) is a regular expression

BpreT
∗Bsuff,

where Bpre and Bsuff are bounded expressions and T is ε or
an atomic expression.

A minor technicality is that we can take T = ε. This means
that T ∗ will only match the empty word, and therefore the
STE defines a finite language. In Table 2 the column STE?
indicates whether the expression is an STE. Here, we write
“yes(∗)” to indicate that the expression is an STE if a wild-
card is treated the same as a set of labels A. (Our algorithms
indeed can be generalized to incorporate wildcards.)

In total, we saw that only 20 property paths are not STEs
or trivially equivalent to an STE (by taking T = ε in the def-
inition of STEs, for example). For instance, the expression
type a1a2? · · · a`? is equivalent to an STE where Bpre = a1,
T = ε, and Bsuff = a2? · · · a`?. In this sense, 99.992% of the
property paths in Table 2 correspond to STEs.

In fact, all expressions in the table except for (ab)∗ are
unions of STEs. Unions of STEs can actually be handled in
the same way than STEs, by applying the STE evaluation
algorithm to each part of the union.

4.1 Dichotomies for STEs
Our main technical results are two dichotomies for eval-

uating STEs under simple path and trail semantics. That
is, we precisely characterize for which classes R of STEs the
problems SimPath for R and Trail for R are easy and for
which classes these problems are difficult. Here, “easy” and
“difficult” refer to complexities in parameterized complexity,
namely fixed-parameter tractable and W[1]-hard. Our results
will imply that SimPath and Trail are “easy” for the types of
expressions in Table 2 — except for (ab)∗. Furthermore,
the parameters on which the complexity can exponentially
depend are small.

Some Examples and Intuition.
We give a bit of intuition about our results. Throughout

the example, we use the following notation. The input graph
is always denoted as G, and it has n nodes and m edges. We
always denote the start and end nodes in the input of the
SimPath problem by x and y, respectively. We will abbrevi-
ate long concatenations with a power notation, that is, we
use rk to denote a sequence of k times the expression r. For
instance a4 denotes the expression aaaa. Let ak denote the
class {ak | k ∈ N} of STEs. We define the classes (a?)k,
aka∗, baka∗, and akba∗ analogously.

We now discuss the complexities of SimPath for these
classes. As a first example, we consider SimPath for (a?)k.
This problem is easy to solve: one can simply use an algo-
rithm that tests reachability with a-labeled edges. The crux
is that loops do not matter: if there is a path from x to y
that matches (a?)k then there is also a simple such path,
since removing loops does not change matching (a?)k.

This technique does not work for our second example:
SimPath for ak. However, Alon et al.’s color coding tech-
nique [2] can solve this problem in time 2O(k)m logn. Color
coding therefore shows that SimPath for ak is fixed-parameter
tractable, where the parameter is the size k of the RPQ: it
is an algorithm with complexity f(k) · p(|G|+ k), where f is
a computable function and p is a polynomial. The function
f is even single exponential in this case. Notice that, if P

≥ 3

x
y

Figure 3: Intuition behind cuttability, using bbba∗

6= NP, we cannot hope for f to be a polynomial function,
because SimPath for ak is at least as difficult as the Hamil-
tonian Path problem. (Indeed, the cases of SimPath for ak

where we give a graph G with only a-labeled edges and the
RPQ am+1 are equivalent to the Hamiltonian Path problem
for G.)

As a third example, we consider SimPath for aka∗. This
problem requires yet another technique, since color coding
is designed to work for fixed-length paths. It can be solved
in time 2O(k)(n2 + mn), however, using the representative
sets technique of Fomin et al. [9]. The representative sets
technique is nontrivial and addresses the following problem.
Assume that we try to deal with aka∗ naively by considering
all simple paths P of length k that start in x. For each such
path P , assuming it ends in some node xP , we could then
test reachability from xP to y while avoiding the nodes of P .
But this algorithm is too inefficient. We may have up to nk

different possibilities for P , which means that the running
time is not of the form f(k) · p(|G| + k) for a polynomial
p and computable function f . In other words, it does not
show that the problem is fixed-parameter tractable. This is
where the representative sets technique is useful. It shows
that the number of different paths P we have to consider
can be limited to 2O(k)n, which makes the problem fixed-
parameter tractable. The representative sets technique can
even be adapted so that it enumerates all the simple paths.

We turn to two cases where the edge labels become impor-
tant. First, consider SimPath(baka∗). Here, we can simply
enumerate all b-edges that start in x and then use the algo-
rithm for SimPath(aka∗) from there (and making sure that
we don’t visit x). This shows that SimPath(baka∗) is fixed-
parameter tractable.

Second, take SimPath(akba∗). At its core, this problem
is a variant of the Two Disjoint Paths problem. We are
essentially searching for two nodes x′ and y′ such that there
is a path P1 of length k from x to x′ and a path P2 from
y′ to y. Moreover, P1 and P2 should be node-disjoint and
there should be a b-edge from x′ to y′. Since we can prove
that this Two Disjoint Paths problem (with parameter k) is
W[1]-hard [14], it turns out that SimPath(akba∗) is hard as
well.

The central notion in our dichotomy for SimPath is cut
borders of STEs. We explain this notion intuitively, based on
two simple examples. Consider the expressions r1 = aaaa∗

and r2 = aaab∗. Assume that, as in Figure 3, we found a
path p (that may contain a loop) from x to y that matches r1.
Intuitively, if we want to test if the simple path p′ obtained
from p by deleting all loops still matches r1, we just need
to test if p′ has length at least three. For r2, however, we
additionally need to test that the loop does not occur in
the prefix of length 3 of p. For this reason, the cut border
of r2 will be equal to 3. We can prove that this notion of
cut border is indeed the crucial one for the complexity of
SimPath.

c` cr

x
k1 k2

y

c` : left cut border
cr : right cut border

Figure 4: Assume r = A1 · · ·Ak1T
∗A′k2

· · ·A′1 has left
and right cut borders c1 and c2, respectively. As-
sume that an arbitrary path from s to t matches r
such that its length k1 prefix and length k2 suffix do
not have loops and are node disjoint. If, after re-
moving all loops, (1) the length c1 prefix and length
c2 suffix are still the same and (2) the path still has
length at least k1 + k2, then it matches r.

Dichotomy for Simple Paths.
We now state our main result on SimPath and explain the

cut borders, cuttability, and the sampling condition after its
statement. (We only require the condition that R can be
sampled for the lower bound proof in part (b).)

Theorem 3. Let R be a class of STEs that can be sam-
pled.

(a) If R is cuttable, then SimPath(R) is solvable in time

2O(s)nc+3m, where c is the cut border of R.

(b) Otherwise, SimPath(R) cannot be solved in time f(s) ·
(n + m)c for a constant c and a computable function
f , unless FPT = W[1].

Here, n and m are the number of nodes and edges in the
graph, respectively, and s is the size of the regular expression.

Here, FPT is the class of problems that is fixed-parameter
tractable. It is a standard assumption in parameterized com-
plexity theory that FPT 6= W[1]. This assumption has a
similar calibre as the P 6= NP assumption in terms of deci-
sion problems.

We now explain cut borders, cuttability, and the condition
thatR can be sampled. To this end, the left (resp., right) cut
border of an STE r = A1 · · ·Ak1T

∗A′k2
· · ·A′1 is the largest

value i such that T has a symbol that is not in Ai (resp.,
A′i). If we have A1? · · ·Ak1? (resp., A′k2

? · · ·A′1?), then the
left (resp., right) cut border is 0. The cut border of r is the
sum of its left and right cut border. A class R of STEs is
cuttable if there exists a c ∈ N such that the cut border of
each expression r ∈ R is at most c. The intuition of cut
borders is explained in Figure 4: they characterize parts of
paths in which it is not allowed to remove loops to obtain a
simple path that still matches the expression.

Finally, we say that R can be sampled if there exists an
algorithm that, given a number k in unary, returns an ex-
pression from R that has cut border at least k. Notice that
this is a very weak restriction on R.

Notice that the difference between cuttable and non-cutta-
ble classes of STEs can be subtle. Using the same notation as
with our previous examples, the classes akb∗ and ak(a+ b)∗

are not cuttable, but (a+ b)ka∗ is. Looking back at Table 2,
we see that abc∗ is 2-bordered and all other STEs are either
0-bordered or 1-bordered. It therefore seems that cut bor-
ders in practice are small and over 99% of the expressions
fall on the tractable side of Theorem 3.

c` cr

x
k1 k2

y

c` : left cut border
cr : right cut border

× : conflict position

× ×× × × × ×

Figure 5: Visualization of the effect of conflict posi-
tions in a path that matches an STE r. If we would
start with an arbitrary path and remove loops, we
mainly need to be careful about labels behind the
cut borders that can be identical to labels in the
transitive part.

Dichotomy for Trails.
We now present a similar dichotomy for trails, obtained

in [15]. The dichotomy is, perhaps surprisingly, different
from the one in Theorem 3 in the sense that more classes
fall on the tractable side. For instance, SimPath(akb∗) is
intractable, whereas Trail(akb∗) is fixed parameter tractable
because the a-path and the b-path can be evaluated inde-
pendent of each other (no a-edge will be equal to a b-edge).
We explain conflict positions, almost conflict-freeness, and
conflict-sampling after the theorem statement. (The condi-
tion that R can be conflict-sampled is only needed for (b).)

Theorem 4. Let R be a class of STEs that can be conflict-
sampled.

(a) If R is almost conflict free, then Trail(R) is solvable

in time 2O(s) ·mc+6, where c is the number of conflict
positions in R.

(b) Otherwise, Trail(R) cannot be solved in time f(s)(n +
m)c for a constant c and a computable function f , un-
less FPT = W[1].

Here, n and m are the number of nodes and edges in the
graph, respectively, and s is the size of the regular expression.

If r = A1 · · ·Ak1T
∗A′k2

· · ·A′1 is an STE, we say that a
position left of the left cut border (resp., right of the right
cut border) is a conflict position if T and Ai (resp., A′i)
have a common symbol or, equivalently, have a non-empty
intersection. If we have A1? · · ·Ak1? (resp., A′k2

? · · ·A′1?),
then the left (resp., right) cut border is 0 and therefore there
are no cut positions. In Figure 5 we give a visual intuition
about the meaning of conflict positions. A class R of STEs
is almost conflict free if there exists a constant c ∈ N such
that each expression r ∈ R has at most c conflict positions.
The class akb∗ is not cuttable, but it is conflict-free because
{a} and {b} have an empty intersection. The point is that
an edge labeled by some symbol in {a} can never be the
same than an edge labeled by some symbol in {b}, since
their labels must be different. Therefore, we can evaluate
ak and b∗ separately.

A class R of STEs can be conflict-sampled if there exists
an algorithm that, given a number k in unary, returns an
expression r ∈ R with at least k conflict positions.

Extension to Enumeration of Paths.
Real-life graph databases are usually not primarily inter-

ested in solving decision problems, but in computing the

answers to a query. Enumeration algorithms can be seen
as a theoretical framework in which such problems can be
studied. Such algorithms typically consider the preprocess-
ing time and delay for computing the answers of a query.
Here, the preprocessing time is the time required before pro-
ducing the first answer (and possibly build a data structure
so that consecutive answers can be generated quickly) and
the delay is the time required between two consecutive an-
swers. In this framework, the requirement is usually that
each answer is returned only once.

The tractability results from Theorems 3(a) and 4(a) can
be extended to enumeration problems. Using an adaptation
of Yen’s algorithm [19] that works with labeled simple paths
(resp., labeled trails), it can be shown that the paths that
match the expressions can also be enumerated in such a way
that the delay between the answers roughly corresponds to
the upper bounds in Theorems 3(a) and 4(a).

Theorem 5. Let G = (V,E) be a graph, x and y be two
nodes in V , and R a set of STEs.

If R is cuttable, then the simple paths from x to y that
match r, for a given r ∈ R can be enumerated with 2O(s) ·
nc+3m preprocessing time and 2O(s) · nc+4m delay.

If R is almost conflict free, then the trails from x to y
that match r, for a given r ∈ R can be enumerated with
2O(s) ·mc+6 preprocessing time and 2O(s) ·mc+7 delay.

Core Techniques.
At the core of our tractability results lies the representa-

tive sets technique of Fomin et al. [9]. This technique can
be used to find simple paths and trails of length at least k
in time 2O(k)(n2 +nm), given a graph and the number k. If
regular path queries are involved, the technique is only com-
patible with certain languages, such as cuttable or conflict-
free STEs. The compatible languages have the property that
we only need to guard a constant number of nodes/edges at
the beginning and at the end of the path, to make sure that
the rest of the path does not re-use the same nodes/edges.

Indeed, we can show that for languages violating this
property, the problem becomes intractable. The reason is
that it becomes at least as hard as a parameterized version
of the two-disjoint paths problem. This parameterized prob-
lem asks: given a graph G, node pairs (x1, y1) and (x2, y2),
and parameter k ∈ N, are there two disjoint paths p1 from
x1 to y1 and p2 from x2 to y2 such that p1 has length k. (One
can consider node-disjoint or edge-disjoint paths here.) We
prove that this problem is W[1]-hard, both when node- or
edge disjointness is required.

4.2 What Does This Mean?
If we interpret Theorems 3 and 4 in the light of the real

world property paths in Table 2 we can observe the following.
Let n and m be the number of nodes and edges of the graph,
respectively.

Concerning simple paths, Theorem 3 gives us a running
time of 2O(s)nc+3m for regular path query evaluation, where
s is the size of the regular path query and c is the cut border.
This result, together with the observation that the largest
cut border in Table 2 is two, and therefore very small, can
be seen as an explanation why, in practice, simple path se-
mantics usually does not bring systems to their knees, even
though this would theoretically be possible using regular ex-
pressions such as (aa)∗. Since the evaluation problem under

simple path semantics generalizes the Hamilton Path prob-
lem (if s = n− 1), we cannot hope for a significantly better
complexity unless P = NP.

One should keep in mind that this is a worst-case bound.
In most practical settings, we expect that the run-time of
even more naive evaluation algorithms will not come close
to requiring nc+3 time for these simple expressions. For
instance, the nc factor comes from considering all paths that
start in a given node x and obey a label constraint. For
instance, for the expression abc∗, these are just the paths
that start in x and are labeled ab. While this can, in the
worst case, be n2 many paths, we expect this to be much
less in real databases.

The story for trails is similar. Here our upper bound ad-
mittedly gives less efficiency guarantees than the one for
simple paths, but this is mainly because we have developed
our methods for simple paths and then adapted them for
trails. Furthermore, the dichotomy shows that it is easier
to deal with trails than with simple paths: for every class
of queries for which we have fixed-parameter tractable al-
gorithms for simple path semantics, we also have them for
trail semantics, but not vice versa.

5. CONCLUSIONS
The results in Section 4 can be seen as a theoretical expla-

nation why evaluating certain queries (regular path queries
against simple paths and trails) in graph databases seems to
be less problematic in practice than theoretical results seem
to suggest. The main reason is that, in the query logs that
were considered in Section 2, the parameters that have a
drastic impact on the complexity of evaluation remain rela-
tively small.

In this sense, this paper showcases a line of work in which
query log analysis was useful. However, a lot of work still
remains to be done. First of all, the analysis of the logs
in Section 2 showed much more than just the distribution
of regular path queries. For instance, the shapes of queries
found in the logs may be useful to generate realistic bench-
marks. Second of all, the query log analysis from Section 2
itself is challenging too. For instance, in all the query logs
we have seen until now, the distribution of the queries (and
of interesting properties of queries) is extremely skewed. It
is not clear how we balance finding interesting aspects of
queries in logs with the fact that so many queries are ex-
tremely small, e.g., only have a single triple.

Furthermore, apart from having investigated successful
and timeout queries for Wikidata [7], we do not know much
about the combination of queries and data. For instance, it
could be very interesting to study which parts of the graph
are used for the evaluation of a query, and how large inter-
mediate results become. Such studies must be left to future
work.

Acknowledgments
In terms of methodology, we were heavily inspired by a line
of work initiated by Frank Neven. In 2004, Frank had the
idea to do a practical study on the shapes of regular expres-
sions in schemas for XML data. This study motivated theo-
retical work on simple regular expressions (later called chain
regular expressions), k-occurrence regular expressions and
later work on schema inference. We acknowledge the grant
4938/4-1 by the Deutsche Forschungsgemeinschaft (DFG).

6. REFERENCES
[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of

Databases. Addison-Wesley, 1995.

[2] N. Alon, R. Yuster, and U. Zwick. Color-coding.
Journal of the ACM, 42(4):844–856, 1995.

[3] G. Bagan, A. Bonifati, and B. Groz. A trichotomy for
regular simple path queries on graphs. In PODS,
pages 261–272, 2013.

[4] A. Bielefeldt, J. Gonsior, and M. Krötzsch. Practical
linked data access via SPARQL: the case of wikidata.
In LDOW@WWW, 2018.

[5] A. Bonifati, W. Martens, and T. Timm. An analytical
study of large SPARQL query logs. PVLDB,
11(2):149–161, 2017.

[6] A. Bonifati, W. Martens, and T. Timm. An analytical
study of large SPARQL query logs. The VLDB
Journal, 2019. Full version of [5], to appear.

[7] A. Bonifati, W. Martens, and T. Timm. Navigating
the maze of wikidata query logs. In WWW, pages
127–138, 2019.

[8] I. F. Cruz, A. O. Mendelzon, and P. T. Wood. A
graphical query language supporting recursion. In
SIGMOD Conference, pages 323–330, 1987.

[9] F. V. Fomin, D. Lokshtanov, F. Panolan, and
S. Saurabh. Efficient computation of representative
families with applications in parameterized and exact
algorithms. Journal of the ACM, 63(4):29:1–29:60,
2016.

[10] N. Francis, A. Green, P. Guagliardo, L. Libkin,
T. Lindaaker, V. Marsault, S. Plantikow, M. Rydberg,
P. Selmer, and A. Taylor. Cypher: An evolving query
language for property graphs. In SIGMOD
Conference, pages 1433–1445, 2018.

[11] G. Gottlob, G. Greco, N. Leone, and F. Scarcello.
Hypertree decompositions: Questions and answers. In
PODS, pages 57–74, 2016.

[12] A. S. LaPaugh and R. L. Rivest. The subgraph
homeomorphism problem. Journal of Computer and
System Sciences, 20(2):133 – 149, 1980.

[13] W. Martens, M. Niewerth, and T. Trautner. A
trichotomy for regular trail queries. CoRR,
abs/1903.00226, 2019.

[14] W. Martens and T. Trautner. Evaluation and
enumeration problems for regular path queries. In
ICDT, pages 19:1–19:21, 2018.

[15] W. Martens and T. Trautner. Dichotomies for
evaluating simple regular path queries. ACM
Transactions on Database Systems, 2019. Full version
of [14], to appear.

[16] A. O. Mendelzon and P. T. Wood. Finding regular
simple paths in graph databases. SIAM Journal on
Computing, 24(6):1235–1258, 1995.

[17] Neo4j. The neo4j developer manual v3.2.
https://neo4j.com/docs/developer-manual/3.2/,
2017.

[18] Y. Perl and Y. Shiloach. Finding two disjoint paths
between two pairs of vertices in a graph. Journal of
the ACM, 25(1):1–9, 1978.

[19] J. Y. Yen. Finding the k shortest loopless paths in a
network. Management Science, 17(11):712–716, 1971.

