
DARQL: Deep Analysis of SPARQLQueries∗

Angela Bonifati
Lyon 1 University

angela.bonifati@univ-lyon1.fr

Wim Martens
University of Bayreuth

wim.martens@uni-bayreuth.de

Thomas Timm
University of Bayreuth

thomas.timm@uni-bayreuth.de

ABSTRACT
In this demonstration, we showcase DARQL, the first tool for deep,
large-scale analysis of SPARQL queries. We have harvested a large
corpus of query logs with different lineage and sizes, from DBPedia
to BioPortal and Wikidata, whose total number of queries amounts
to 180M. We ran a wide range of analyses on the corpus, spanning
from simple tasks (keyword counts, triple counts, operator distribu-
tions), moderately deep tasks (projection test, query classification),
and deep analysis (shape analysis, well-designedness, weakly well-
designedness, hypertreewidth, and fractional edge cover). The key
goal of our demonstration is to let the users dive into the SPARQL
query logs of our corpus and let them discover the inherent charac-
teristics of the queries.

The entire corpus of SPARQL queries is stored in a DBMS. The
tool has a GUI that allows users to ask sophisticated analytical
queries on the SPARQL logs. These analytical queries can both be
directly written in SQL or composed by a visual query builder tool.
The results of the analytical queries are represented both textually
(as SPARQL queries) and visually. The DBMS performs the searches
within the corpus quite efficiently. To the best of our knowledge,
this is the first demonstration of this kind on such a large corpus
and with such a number of varied tests.

CCS CONCEPTS
• Information systems→Query languages for non-relational
engines;Query log analysis; •Theory of computation→Data-
base query languages (principles);

KEYWORDS
RDF, SPARQL, Conjunctive Queries, Query Analysis

1 INTRODUCTION
A plethora of SPARQL endpoints1 is proliferating on the Internet
thus allowing ordinary users to specify their queries either via APIs
or manually. This phenomenon is leading to a democratization of
query formulation. The queries are collected into log files by their
respective owners and represent a valuable resource for understand-
ing users’ preferences and needs in terms of query specification,
but also for guiding us in research on query language design, query
evaluation and benchmarking [1, 2].
∗This work is supported by the Deutsche Forschungsgemeinschaft under Grant No:
MA 4938/2–1.
1https://www.w3.org/wiki/SparqlEndpoints

This paper is published under the Creative Commons Attribution 4.0 International
(CC BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.
WWW ’18 Companion, April 23–27, 2018, Lyon, France
© 2018 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC BY 4.0 License.
ACM ISBN 978-1-4503-5640-4/18/04.
https://doi.org/10.1145/3184558.3186975

Motivated by previous studies on SPARQL log analysis [3, 4],
we could harvest a large and varied corpus of SPARQL query logs
amounting to a total of 180M queries [1], which is several orders of
magnitude more than earlier analytical studies on SPARQL query
logs. In this demonstration, we showcase DARQL, a tool for deep
and fast analysis of large SPARQL query logs. The tool comes
equippedwith an extensive set of pre-defined tests, including simple
tasks (keyword counts, triple counts, operator distributions), moder-
ately deep tasks (projection test, query classification), and deep anal-
ysis (shape analysis, well-designedness, weakly well-designedness,
hypertreewidth, and fractional edge cover). The primary goal of our
demonstration is to let the users dive into the SPARQL query logs of
our corpus and let them discover the inherent characteristics of the
queries. A secondary goal is to advertise DARQL as an easy-to-use
tool for SPARQL query analysis in the research community. Out
of the box, DARQL analyzes 62 properties per query. We believe
that DARQL will give researchers who want to dive into query log
analysis a significant head start. Indeed, in our former analytical
study [1] we only scratched the surface when it comes to finding
correlations between query properties.

We will demonstrate our tool by using queries from the same cor-
pus considered in [1]. Since many of these queries are not publicly
available, the demonstration may give visitors a unique opportu-
nity to get an idea of how queries actually look like in practice. We
release the tool itself at https://github.com/PoDMr/darql.

2 SYSTEM AND MAIN COMPONENTS
A query builder lets the user modify the features of the queries
under scrutiny to respectively enlarge or restrict the scope of the
analyzed portion of the corpus. Since our tool is deployed on top of
a relational DBMS with a web-based front end, each search on the
corpus corresponds to an SQL query issued on the database. The
user can also manually modify this query and rerun a deeper or
coarser analysis at will.

Internally, the system consists of the following main compo-
nents:

• a batch processing system (for loading and analyzing query
logs, writing to files),

• a PostgreSQL 10 database, and
• a GUI served from a connecting back-end.

We refer to Figure 1 for a slightly more detailed overview. We
describe the main components next.

2.1 Loading and Analyzing Query Logs
We releaseDARQL as open source project and therefore also discuss
some aspects that will not be part of the demo, such as the batch pro-
cessing system. Before the user can start exploring queries through
the database interface, the queries need to be analyzed, dedupli-
cated, and stored into the system. To this end, we provide scripts

https://www.w3.org/wiki/SparqlEndpoints
https://doi.org/10.1145/3184558.3186975
https://github.com/PoDMr/darql


CLF
logs

Batch
processor

input

CSV/TSV
logs

input

Multi-line
delimited logs

input

Deduplicated
logsoutput

Files
(YAML)

output

Database
(PostgreSQL)

output

input

Spreadsheet
convert

Backend/APIread Front-end
for browser

serve

Figure 1: General architecture of the DARQL system.

that can handle three main log formats: CLF-based logs (Common
Log Format) used by most web servers, delimiter-based line log for-
mats (e.g. CSV, TSV), or multi-line delimited formats. Every query
in the log is parsed and stored into the database. For queries that
do not parse, we record this in the database and do not perform fur-
ther analysis. Every query that parses is run through an extensive
set of analytical tests: 1 parse test, 31 keyword tests (query type,
operators, solution modifiers, aggregation operators, . . . ), 8 simple
structural tests (property path, projection, . . . ), 4 well-designedness
tests, 3 classifications into different kinds of conjunctive queries, 11
complex shape tests for the structure of conjunctive queries (chain,
star, cycle, tree, flower,. . . ), and 4 value tests (number of triples of
the queries, hypertreewidth, fractional edge cover, and the origin
of the query logs). These tests include (but are not limited to) all
those that have been used in [1].

Prior to analysis, we test for duplicates in the query logs. We use
SHA-256 for hashing to detect potential duplicates. The strings of
queries are normalized by outputting them with the Jena parser,
which normalizes whitespace and formats the queries in a readable
form for our GUI. For some of the logs, we also need to add implicit
prefixes explicitly to make queries valid as standalone queries. If
we discover duplicate queries we do not re-run query analysis, but
simply record its occurrence by referring to the first occurrence and
store the new origin (log file and line number). As such, our system
can display, for each query, how many duplicates were found and
where.

The batch processing system can write output to either files or
databases. It also allows logs to be rewritten in different formats,
and deduplicated in a normalized form. The analysis output can be
transformed to spreadsheets.

2.2 Database
The database is a PostgreSQL 10 system that stores the results of
each analysis for every query. For duplicate log entries it stores
the origin of each entry. We tested the database with the dataset of
roughly 180M SPARQL queries from [1]. This dataset is about two
orders of magnitude larger than those found in earlier studies. We
used PostgreSQL 10 in order to utilize new parallelization features
for queries and joins, which after appropriate tuning resulted in
much faster query times compared to PostgreSQL 9.6.

We tested the system through a Web interface on our server2
and noticed that most queries that our Query Builder generates are
done in less than a second (e.g. 200ms).3 Count queries are generally
more expensive in PostgreSQL and take between 2–4 seconds on
large sets (50–100 million queries) and are faster if subsets are
smaller. In order to achieve this performance, we created a set of
indexes. Index creation can take up to 2–4 minutes.

All non-duplicate queries are stored in a single table Queries
with the information of analysis results as boolean or numeric
columns. Each query is assigned a unique id. Additionally, it con-
tains the string of the query, a hash of this string, and its origin
(data set, filename, line number in file). Duplicates are stored in a
table Duplicates, containing an id for the duplicate, a reference id
to the original query, and the origin of the duplicate.

2.3 User Interface
The user interface consists of several components that are con-
nected. The main ones are: (1) a query builder, (2) an SQL text
editor, (3) a query visualizer, (4) a SPARQL text display, and (5) a
query result table display.

In a typical usage scenario of the tool, the user employs the
query builder to select properties that she is interested in. Fig-
ure 2(a) shows a partial screenshot of the query builder. Under
“Query Types”, one can click if one wants to search for SELECT,
ASK, CONSTRUCT, or DESCRIBE queries. Likewise, we have cate-
gories for “Operators”, “Solution Modifiers”, “Well Designedness”,
“Shapes”, etc. As Figure 2(a) shows, groups of properties can be
folded and unfolded at need. Boolean properties can be set to True,
False, or N/A (don’t care). For numerical properties (e.g., number of
triples, hypertreewidth), we simply allow that the user enters the
desired number or range.

When the user clicks “Run”, the GUI automatically generates an
SQL query that fetches up to ten queries from our query logs and
displays it in the SQL text editor, see Figure 2(b) for an example
query. The SQL query in the editor is fully editable, in case the user
wants to refine the search.

Upon executing the SQL query, several things happen at once:

2A 2-CPU Intel Xeon E5-2630v2 2.6 GHz server with 128GB RAM and running Ubuntu
16.04 LTS.
3We discuss the Query Builder in more detail in Section 2.3.

2



(a) Screenshot of the Query builder, showing a few of the properties (with
“Solution Modifiers” unfolded)

(b) Automatically generated SQL query (this one fetches the SPARQL select-queries
with hypertreewidth two)

Figure 2: Query Builder and SQL text editor

• its results are shown in the query result table display (shown
in Figure 3(a));

• the first result is displayed in the SPARQL text display (shown
in Figure 3(b)) and

• the first result is visualized in the query visualizer (shown
in Figure 3(c) and 3(d)).

The entries in the result table display are clickable, so the user can
immediately select a query she is interested in (e.g., the second
entry in Figure 3(a)). When clicking a query, it is shown in the
SPARQL editor and visualized (e.g., Figure 3(b)–3(d)) show the
highlighted query from Figure 3(a) and two different visualizations).
Furthermore, the query visualiser has links for going to the previous
and next query. Additional properties of the currently displayed
query can be shown in a “Details” panel (for which we did not
provide a screenshot).

Figure 3(b) shows a query from the DBPedia 2016 (Jan. 17th)
log file, corresponding to one of the results of the SQL query in
Figure 2(b) on our database, fetching the queries of hypertreewidth
two. The visualizer automatically renders a visualization of the
query and can be configured to render the graph- and hypergraph
structure. For the graph structure, we only consider the subject-
object parts of SPARQL triples (and ignore the “predicate” part).
Although the graph structure of a query is usually rather simple, it
is often not sufficient to convey the full complexity of the query.
For instance, the graph in Figure 3(c) ignores the variables ?p1, ?p2,
and ?p3 from Figure 3(b).

(a) Query result table (second entry is highlighted).

(b) One of the queries in our log (in the SPARQL editor).

(c) Visualization of the graph of Figure 3(b)’s query.

(d) Visualization of the hypergraph of Figure 3(b)’s query.

Figure 3: Partial screenshots of our query viewer and visual-
izer for an example query.

The hypergraph structure captures this complexity more accu-
rately. Since we only had graph render libraries at our disposal, we
display a hyperedge {s,p,o} coming from SPARQL triple (s,p,o) as
a new node h (representing the identity of the hyperedge) which
we connect to nodes s , p, and o. We use the edges s → h and h → o
(in blue) and h → p (in orange). Figure 3(d) has such a visualization
for the SPARQL query in Figure 3(b).

The visualizer currently uses several graph layout algorithms
(cose, cose-bilkent, concentric, breadthfirst, grid, and circle) and
can readily switch between them. This gives users a quick idea of
the query’s structure.

3



Figure 4: Data sets panel from the GUI, showing the cur-
rently loaded queries.

Finally, we provide a datasets panel (shown in Figure 4), which
shows general statistics of the data that is currently in the database,
ordered by origin. The panel contains four columns: name of the
dataset (“originMajor”), total number of queries (“total”), number of
unique queries (“unique”), and finally the number of unique queries
that can be parsed (“unique_valid”). Duplicates are tested globally,
so we may classify a query from dbpedia_15 as a duplicate if it
already occured in dbpedia_12.

Of course, the GUI is such that it can show (and resize) all
these panels at the same time, in order to give the user a com-
plete overview. It also allows to hide the panels the user is currently
not interested in. The panels can be used as stacked tabs or as split
views with advanced layout capabilities found in IDEs.

3 DEMO OVERVIEW
We believe that many visitors of the demo will be interested to
see how queries from actual SPARQL log files (DBPedia, BioPortal,
LGD, OpenBioMed, Semantic Web Dog Food, British Museum) look
like, since many of these log files are not publically available. Since
DARQL is very flexible, and immediately shows visualization such
as in Figures 3(c) and 3(d), we can do this interactively with visi-
tors of the demo. Nevertheless, we will also prepare the following
specific scenarios to stimulate such interaction.

Search for Complex Queries. Besides searching simple queries in
our large corpus, the tool allows us to quickly search for queries
by size (so the largest ones can be found quickly), with complex
structures (e.g., cyclic queries) and with advanced keywords. Since
our corpus encompasses a varied set of SPARQL log files coming
from disparate SPARQL endpoints, DARQL lets the users access
the lineage of the queries under inspection and have a perception
of what logs contain queries with certain complex characteristics.

Shape-Driven Exploration. Here we start by selecting a specific
shape (e.g., “star”) and show visitors on the visualizer how star-
shaped queries in the log files actually look like. This gives an
impression on the size, complexity, branching, and diameter of
such queries. The tool supports many different shapes to start from,
among which star, tree, chain, forest, flower, and cycle. We can also

start from a given hypertreewidth. (Queries with hypertreewidth
three are already quite complex and rare in the query logs.)

In fact we already used the front-end extensively for our study
of shapes in [1]: we gradually implemented more and more shape
tests and then visually inspected queries that were not classified
by any known shapes. So, this part of the tool has already been
heavily used behind-the-scenes in our own research.

Getting Statistics. We will demonstrate how statistics such as
“How many of the SELECT queries are conjunctive queries?” or
“How many of the construct-queries do a non-trivial insertion?”
can be computed. For every query that can be constructed with the
query builder, we can toggle if the tool should count the number
of the results, or if it should produce a sample of the answers.
Therefore, such statistics can be easily computed.

Most Popular Queries. Statistics on the logs can be easily com-
puted and lead to identify for instance the most (or the least) oc-
curring queries in the entire corpus or in a single log file or data
source. We can thus access the most (or less) popular queries in the
logs with a breakdown view on each individual log file, on each
individual data source (e.g., Wikidata, DBPedia, BioPortal etc.) or
on the entire corpus.

Expert Search in SQL. The predefined user interface only gener-
ated SQL queries to the database that test conjunctions of conditions.
Using the direct SQL interface, we show that if the user wants, also
more advanced conditions can be queried. For example, one can
search the union of all queries that have a minimum size and those
that have cycles.

Furthermore, it is possible to explore queries in the context of
time. Although only some logs have timestamps, most log files
have names that indicate a date. Figure 3(a) shows five queries
from January 17th, 2016, for example. Using the SQL editor, queries
coming from a specific date (or month, or year) can be found as
well. With this date, we could perform complex interesting queries
with a temporal aspect. For instance, we could inspect how many
queries were submitted on the same day, or try to find days or time
spans that have the most or least queries. Or, we could calculate
the time span (first and last occurrence) for duplicates of a query. A
user can design her own very complex log searches by formulating
them as queries in SQL.

To conclude, we want to give visitors of the demo the opportu-
nity to browse in our repository consisting of 180 million SPARQL
queries, gathered from 2007 to 2017 and ranging over a wide range
of sources. We also want to advertise DARQL itself as a useful tool
for analysing SPARQL logs. We believe that the tool is indeed useful
for analyzing large logs. The demo will show that most queries run
very fast, i.e., faster than a second.

REFERENCES
[1] Angela Bonifati, Wim Martens, and Thomas Timm. 2017. An Analytical Study of

Large SPARQL Query Logs. PVLDB 11, 2 (2017), 149–161.
[2] Mark Kaminski and Egor V. Kostylev. 2016. Beyond Well-designed SPARQL. In

International Conference on Database Theory (ICDT). 5:1–5:18.
[3] Francois Picalausa and Stijn Vansummeren. 2011. What Are Real SPARQLQueries

Like? In SWIM. ACM, New York, NY, USA, Article 7, 6 pages.
[4] Muhammad Saleem, Muhammad Intizar Ali, Aidan Hogan, Qaiser Mehmood, and

Axel-Cyrille Ngonga Ngomo. 2015. LSQ: The Linked SPARQL Queries Dataset.
In International Semantic Web Conference (ISWC). 261–269.

4


	Abstract
	1 Introduction
	2 System and Main Components
	2.1 Loading and Analyzing Query Logs
	2.2 Database
	2.3 User Interface

	3 Demo Overview
	References

