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ABSTRACT

Chisel is a tool for flexible manipulation of CSV-like data, mo-
tivated by the recent effort of the World Wide Web Consortium
(W3C) towards a recommendation for tabular data and metadata
on the Web. In brief, Chisel supports an expressive built-in schema
language for CSV-like data, that can handle both tabular and non-
tabular data. Furthermore, it supports a simple programming lan-
guage for transforming tabular and non-tabular CSV-like data.

In the demo, we showcase the system for specifying and validat-
ing schemas, building transformations, and setting up a pipeline for
automatic conversion of “wild” CSV-like data into structured tabu-
lar data. We present use cases for Chisel specifically targeted at
exemplifying the ease of specifying, modifying, and understanding
Sculpt schemas as well as extracting and transforming data.
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1 INTRODUCTION

Every block of data has structure inside and it is the
task of the data wrangler to extract it.

– Michelangelo (paraphrased)
Despite the availability of numerous standardized formats for

semi-structured and semantic web data such as XML, RDF, and
JSON, a very large percentage of data and open data published
on the Web remains in a CSV-like format. In fact, Jeni Tennison,
co-chair of the W3C CSV on the Web working group, claims that
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Figure 1: Chisel data wrangling process.

much of this data is very cumbersome to work with, i.e., “2/3rds of
CSV files on data.gov.uk aren’t machine readable [with standard
tools]” [9]. The current recommendations [6, 10] of the W3C for a
model and metadata format for tabular data deal with a subset of
CSV-like data but still cannot capture some data fragments in their
use case scenarios [8] where rows can have different numbers of
columns or where the number of columns in “well-formed” data is
not bounded by a constant.1 We refer to such data as non-tabular.
Conversely, we use the term tabular data to refer to data that is
more rigid and where every row has the same, fixed number of
columns. We note that the W3C recommendation for meta-data
for tabular data on the Web only focuses on tabular data.2 We use
the term well-formed to refer to data that satisfies the associated
schema. Well-formed data can therefore be tabular or non-tabular,
if the schema language can describe non-tabular data.

Our system Chisel supports a schema language that is powerful
enough to describe all data fragments in the W3C use cases. It also
supports a transformation language that can transform this data
into a more structured (e.g., tabular) format that can be handled
by other tools such as the W3C metadata format, SQL-on-Hadoop
systems, etc. Since we work with both a schema and a transfor-
mation language, it is easy to set up a pipeline that automatically
transforms new data that matches the schema. The source code and
the tool can be obtained at https://github.com/PoDMR/Chisel.

1The data can still be well-formed if there does not exist an a priori bound on the
number of columns, e.g., as in “row 1 is a sequence of temperature measurements”.
(We even found data containing rows with over 90.000 columns.)
2Actually, the CSV on the Web working group defined non-tabular data as out of scope
for the first recommendation [8, 3.3 Deferred requirements].
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Table 1: Fragment of a CSV-like file, inspired by Use Case 13 in [8].

1 2 3 4 5 6 7 8 9 10
1 subject predicate object provenance
2 :e4 type PER
3 :e4 mention "Bart" D00124 283-286
4 :e4 mention "JoJo" D00124 145-149 0.9
5 :e4 per:sibling :e7 D00124 283-286 173-179 274-281
6 :e4 per:age "10" D00124 180-181 173-179 182-191 0.9
7 :e4 per:parent :e9 D00124 180-181 381-380 399-406 D00101 220-225 230-233

TYPES
smallint: base="integer" minimum="0" maximum="500"
rdfIRI: base="IRI"
label: base="string"
docID: "D00" smallint
span: smallint "-" smallint
certainty: base="float" minimum="0" maximum="1.0"

REGIONS
provenanceRegion = col("provenance")/right*;
content = col("subject")/right*;

RULES
row(1) -> "subject" "predicate" "object" "provenance";
col("subject") -> rdfIRI;
col("predicate") -> rdfIRI | label;
col("object") -> rdfIRI | label;
provenanceRegion -> (docID span+ certainty?)*;
primary key rdfTriple: col("subject") {self, right, right/right};

Figure 2: Schema for files of the type in Table 1.

Roughly, the demo will showcase the data wrangling process in
Figure 1. Chisel allows the user to define a schema for tabular or
non-tabular CSV-like data using the schema language Sculpt [5].
Building further on the schema, the user can define programs to
transform the data into more rigid tabular data. The validation
and transformation program then can be used to set up a “parse
and transform” pipeline. This pipeline enables automatic validation
and transformation of new input data into tabular data that corre-
sponds to a W3C Tabular Meta Data file (in JSON, which we can
automatically generate), allowing further processing by any tools
that adhere to the W3C Tabular Data on the Web initiative. Inter-
nally, Chisel uses an extension of the schema language Sculpt [5],
which is heavily based on parsing cells by regexes.

2 DEFINING SCHEMAS WITH CHISEL

We illustrate Chisel and Sculpt by means of one example, which
is inspired by Use Case 13 of the CSV on the Web Use Cases [8].
Table 1 shows an example CSV-file, to which we added row numbers
on the left and column numbers at the top. The original file uses tab
(\t) as a column delimiter and newline (\n) as row delimiter. The
rows and columns divide the document into cells. In this example,
rows can have different numbers of cells, e.g., row two has three
cells, whereas row three has five. In Use Case 13, which describes
a data extraction scenario, “a single row [. . . ] comprises a triple
(subject-predicate-object), one or more provenance references and
an optional certainty measure” [8]. In Table 1, we see that the
provenance information includes a document ID (e.g., the value
D00124), pairs of string offsets within the document (e.g., 283–286),
and an optional float representing a certainty measure (e.g., 0.9).
This information can be repeated for several documents as it is
the case in row seven. Since there may not be an a priori bound
on the number of columns that are needed for representing the
provenance information, the kind of data in Table 1 is non-tabular.

Sculpt [5] is designed for describing tabular and non-tabular
CSV-like data in a flexible way. For the implementation we extended
Sculpt by adding native data types (using the keyword TYPES),
primary and foreign keys, and a data transformation language.
Figure 2 contains an example schema for the data of Table 1. The
schema is divided into three parts, defined by the keywords TYPES,
REGIONS, and RULES.3

In TYPES the schema designer can define data types for the con-
tent in cells. The type definitions are based on the types used by
the W3C in [10] (users can add custom base types if desired).

The second part, REGIONS, is optional and builds on top of type
definitions to define named regions of cells in the data. It consists
of rules of the form

<name> = <region selection expression>
A region selection expression selects cells by navigating through
the table. For instance, our schema has the rule

provenanceRegion = col("provenance")/right*;
Here, the right hand side first selects the column of the cell match-
ing "provenance" (by the subexpression col("provenance")) and
then collects all cells zero or more steps to the right (using the
right* operator). In the data, the selected region is the rectangular
area with the cell in row 2, column 4 in its top left corner and
the cell in row 7, column 10 in the bottom right corner. In the re-
mainder of the schema, this area can be referred to by the name
provenanceRegion. Formally, the schema language allows proposi-
tional dynamic logic [3], a very powerful XPath-like [7] navigational
language, to define regions.

The last part, RULES, is the heart of the schema. It is a set of rules
of the form

<region selection expression>
-> <regular type expression>;

where <region selection expression> evaluates to a region R
(i.e., a set of cells) in the data and <regular type expression> is
a regular expression over constant values and types that describes
the permitted structure of R. The first rule in our example only uses
constant values and states that the first row of the data has four
cells, matching the strings "subject", "predicate", "object"
and "provenance" respectively. The second rule states that each
cell below the "subject" cell must be of type rdfIRI. The most
interesting rule is the fifth one, which says that every row4 in
the provenanceRegion region must match the expression (docID
span+ certainty?)*.5 In our sample data, this is indeed the case
as every row in the region is an iteration of blocks consisting of
docID, at least one span and an optional certainty. In general,
3There are further optional parts for defining delimiters, tokens, and transformation
programs. We come back to these later.
4Using a different arrow => instead of -> it is also possible to describe the entire region
by one expression, instead of describing each separate row (cfr. [5]).
5Our language has the power to add that the certainty value must be at least, say, 0.75.



Algorithm 1 An example transformation program for the data in
Table 1. Here, content is the region, containing everything besides
the first row of the input file.
1: TRANSFORMATION PROGRAM
2: output("subject", "predicate", "object", "docID", "from", "to", "certainty");
3: for each (s,p,o,x) in content.is(rdfIRI, label, label, SOMETHING*)
4: if (x is empty) then output(s, p, o, "", "", "", "")
5: for each (doc, spans, cert) in x.split(docID, span*, certainty?)
6: for each (sp) in spans.split(span)
7: output(s, p, o, doc, sp.smallint<0>, sp.smallint<1>, cert)

Table 2: Output of Algorithm 1 when applied to the data

from Table 1.

1 2 3 4 5 6 7
1 subject predicate object docID from to certainty
2 :e4 type PER
3 :e4 mention "Bart" D00124 283 286
4 :e4 mention "JoJo" D00124 145 149 0.9
5 :e4 per:sibling :e7 D00124 283 286
6 :e4 per:sibling :e7 D00124 173 179
7 :e4 per:sibling :e7 D00124 274 281
8 :e4 per:age "10" D00124 180 181 0.9
9 :e4 per:age "10" D00124 173 179 0.9
10 :e4 per:age "10" D00124 182 191 0.9
11 :e4 per:parent :e9 D00124 180 181
12 :e4 per:parent :e9 D00124 381 380
13 :e4 per:parent :e9 D00124 399 406
14 :e4 per:parent :e9 D00101 220 225
15 :e4 per:parent :e9 D00101 230 233

region selection expressions are much more powerful than what
we showed in the example schema (cf. Figure 2). Region selection
expressions can select cells in tables in an XPath-like fashion, navi-
gating in directions right, left, up, down, using transitive closures
of these operators, and boolean combinations thereof. For the demo,
we implemented a version of propositional dynamic logic, which
is even more powerful than the navigational capabilities of XPath.
We refer the interested reader to [2, 5] for more details.

3 TRANSFORMING DATAWITH CHISEL

In addition to a highly flexible schema language, Chisel supports a
simple data transformation language, powerful enough to transform
non-tabular into tabular data. This is interesting since some data
is non-tabular in nature (Use Case 13, Table 1) whereas the W3C
meta-data format only deals with tabular data. (Of course, Chisel
can also do tabular to tabular transformations.) The basis of the
data transformations is a Sculpt schema against which the data is
validated first.

The control statements of the transformation language include
loops, output statements, and conditional statements (see, e.g., Algo-
rithm 1). In addition, if desired, Sculpt region selection expressions
can be used for complex navigation. Finally, programs can exploit
the TYPES of the schema to easily extract and manipulate substrings
of information in single cells.

For example, the program in Algorithm 1 transforms the non-
tabular data in Table 1 to the tabular data in Table 2. After writing
header information in line 2 of the algorithm, it enters a for-loop
that iterates over the region content defined in Figure 2. Using
content.is, it parses each row in content using the predefined
TYPES of the schema, where we allow the keyword SOMETHING as a
wildcard that matches any cell content. In the example program,

SOMETHING* matches an arbitrarily long list of cells with arbitrary
content, which is stored in the variable x. Likewise, the first cell
of each row, matching rdfIRI is stored in variable s, etc. The next
interesting part is the for-loop on line 5, where the list of cells x is
split into sublists, each consisting of docID, a list of span-cells, and
an optional certainty. Again, this uses the TYPES from Figure 2. (We
require the split to be unambiguous here.) In the innermost for-loop,
we iterate through the list of span-cells using the variable sp and
we can use sp.int<0> and sp.int<1> to address the two smallints
that are used in the schema to define the type span. Notice that the
transformation program outputs sp.int<0> and sp.int<1> in separate
columns in the output file (cf. columns 5 and 6 in Table 2). Such
parsing and manipulation of CSV-like input data into structured
output is much more cumbersome with standard programming
languages.

4 DEMO OVERVIEW

Chisel’s implementationmainly consists of a region selection engine,
supporting propositional dynamic logic and a powerful automata
model, a schema validator for the extension of Sculpt, a schema
debugger that allows users to retrieve defective cells in the data if
it does not match the schema, and the transformation engine.

We give an overview of the actual demo where we showcase the
different abilities and features of Chisel. We also highlight how
attendees can interact with the system and perform all steps of the
Chisel data wrangling process, shown in Figure 1. We focus on the
following three scenarios:

(1) Chisel as an IDE for Sculpt: specification and validation of
Sculpt-like schemas;

(2) Chisel as a schema cleaning tool: analyzing and debugging
Sculpt-like schemas; and

(3) Chisel as a data transformation tool: transforming non-
tabular into tabular CSV files.

Specification and Validation. The purpose of this scenario is to
familiarize users with the Sculpt language and the basic Chisel
features for defining and validating Sculpt schemas. Attendees
can create schemas from scratch using real and artificial data. (E.g.,
any desired data set from the W3C Use Cases [8]). This scenario
also addresses basic features of the GUI (loading a schema, load-
ing a CSV file, associating them to one another), specification of
types, tokens, regions, and validation. We demonstrate how Chisel
can visualize how rules in the schema correspond to cells in the
document. For instance, one can click a cell in the CSV data, upon
which the types, tokens, and left-hand sides of rules that match the
cell are highlighted (even if the data is invalid). Conversely, one
can click a type, token, or a rule, and the cells that are matched by
it in the CSV data are highlighted. This visualization helps users
understand the schema and how it relates to the data, which is
crucial in fast and accurate development of schemas. As another
aid, we implemented highlighting features that allow users to see
the union or intersection of sets of cells that are selected by rules.

Analyzing and Debugging. Here we want to showcase Chisel’s
functionality to improve, clean, and debug a schema. When a CSV
file does not validate against a schema, Chisel reports on the spe-
cific places where the violations occur. Actually, when testing the



Figure 3: Screenshot of the system. The left tab has a Sculpt-like schema followed by a transformation program. The user

selected the provenanceRegion on the left, upon which the corresponding region in the CSV file (top right) is automatically

highlighted. The bottom right contains the output of the transformation program, as in Table 2.

system, in one case, such an error pointed us to a minor inconsis-
tency with whitespaces in a data set in Use Case 24 of the W3C
CSV Data on the Web Use Cases, as we can show in the demo.6

Chisel also allows to check if the data contains cells that are
not matched by any rule or token. Such cells are effectively uncon-
strained by the schema and can therefore take on any form which
might be an indication that the schema is still incomplete. Atten-
dees will be able to interactively explore the analysis and debug
features of Chisel.

Data transformation. Finally, we demonstrate Chisel’s ability
as a data transformation tool. This part of the demo shows how
we can leverage the schema information to easily implement trans-
formations (even beyond the scope of the W3C) on tabular and
non-tabular CSV-like data. Since Chisel can also automatically
generate a W3C Tabular Metadata file for the output (in JSON), it
can easily be used as a preprocessing tool for whatever technology
the W3C develops for transformations of tabular data.

Related Work. The philosophy of Sculpt is similar to that of
BonXai [4] a flexible rule-based language that facilitates the de-
velopment of XML Schema documents. Sculpt, as well as BonXai
are designed to be easy-to-use yet expressive schema languages.
Arenas et al. [1] define a language for validating and annotating
CSV-like data which, like Sculpt, is based on regular expressions,
but uses an orthogonal approach. It would be interesting to see if
and how ideas from Arenas et al. and ours can be combined.
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