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ABSTRACT
With the adoption of RDF as the data model for Linked
Data and the Semantic Web, query specification from end-
users has become more and more common in SPARQL end-
points. In this paper, we conduct an in-depth analytical
study of the queries formulated by end-users and harvested
from large and up-to-date query logs from a wide variety
of RDF data sources. As opposed to previous studies, ours
is the first assessment on a voluminous query corpus, span-
ning over several years and covering many representative
SPARQL endpoints. Apart from the syntactical structure of
the queries, that exhibits already interesting results on this
generalized corpus, we drill deeper in the structural char-
acteristics related to the graph- and hypergraph represen-
tation of queries. We outline the most common shapes of
queries when visually displayed as pseudographs, and char-
acterize their (hyper-)tree width. Moreover, we analyze the
evolution of queries over time, by introducing the novel con-
cept of a streak, i.e., a sequence of queries that appear as
subsequent modifications of a seed query. Our study offers
several fresh insights on the already rich query features of
real SPARQL queries formulated by real users, and brings
us to draw a number of conclusions and pinpoint future di-
rections for SPARQL query evaluation, query optimization,
tuning, and benchmarking.
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1. INTRODUCTION
As more and more data is exposed in RDF format, we

are witnessing a compelling need from end-users to formu-
late more or less sophisticated queries on top of this data.
SPARQL endpoints are increasingly used to harvest query
results from available RDF data repositories. But how do
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these end-user queries look like? As opposed to RDF data,
which can be easily obtained under the form of dumps (DB-
pedia and Wikidata dumps [32, 33, 39]), query logs are often
inaccessible, yet hidden treasures to understand the actual
usage of these data. In this paper, we investigate a large cor-
pus of query logs from different SPARQL endpoints, which
spans over several years (2009–2017). In comparison to pre-
vious studies on real SPARQL queries [24, 3, 28, 29, 15],
which typically1 investigated query logs of a single source,
we consider a multi-source query corpus that is two orders
of magnitude larger. Furthermore, our analysis goes sig-
nificantly deeper. In particular, we are the first to do a
large-scale analysis on the topology of queries, which has
seen significant theoretical interest in the last decades (e.g.,
[9, 12, 14]) and is now being used for state-of-the-art struc-
tural decomposition methods for query optimization [1, 2,
18]. As a consequence, ours is the first analytical study on
real (and most recent) SPARQL queries from a variety of
domains reflecting the recent advances in theoretical and
system-oriented studies of query evaluation.

Our paper makes the following contributions. Apart from
classical measures of syntactic properties of the investigated
queries, such as their keywords, their number of triples and
operator distributions, which we apply to our new corpus, we
also mine the usage of projection in queries and subqueries
in the various datasets. Projection indeed is the cause of
increased complexity (from Ptime to NP-Complete) of the
following central decision problem in query evaluation [8,
7, 21]: Given a conjunctive query Q, a database D, and a
candidate answer a, is a an answer of Q on D?

We then proceed by considering queries under their graph-
and hypergraph structures. Such structural aspects of queries
have been investigated in theory for over two decades [12]
since they can indicate when queries can be evaluated ef-
ficiently. Recently, several studies on new join algorithms
leverage the hypergraph structure of queries in the contexts
of relational- and RDF query processing [1, 18]. Theoret-
ical research in this area traditionally focused on conjunc-
tive queries (CQs). For CQs, we know that tree-likeness
of their structure leads to polynomial-time query evaluation
[12]. For larger classes of queries, the topology of the graph
of a query is much less informative. For instance, if we ad-
ditionally allow SPARQL’s Opt operator, evaluation can be
NP-complete even if the structure is a tree [7]. For this rea-

1The exception is [15], where logs from the Linked SPARQL
Queries Dataset (LSQ) were studied, combining data from
four sources (from 2010 and 2014) that we also consider.



son, we focus our structural study on CQ-like queries.2 We
develop a shape classifier for such queries and identify their
most occurring shapes. Interestingly enough, these queries
have quite regular shapes. The overwhelming majority of
the queries is acyclic (i.e., tree- or forest-shaped). We dis-
covered that the cyclic queries mostly consist of a central
node with simple, small attachments (which we call flower).
In terms of tree- and hypertreewidth, we discovered that the
cyclic queries have width two, up to a few exceptions with
width three.

At this point we should make a note about interpreta-
tion of our results. Even though almost all CQ-like queries
have (hyper-)treewidth one, we do not want to claim that
queries of larger treewidth are not important in practice.
The overwhelming majority of the queries we see in the logs
are small and simple and we believe this to be typical for
SPARQL endpoint logs. For instance, the majority (>55%)
of the queries in our logs only use one triple. One of our
data sets, WikiData17 is not a SPARQL endpoint log and
we see throughout the paper that it has completely different
characteristics.

In order to gauge the performances of cyclic and acyclic
queries from a practical viewpoint, we have run a compara-
tive analysis of chain and cycle queries synthetically gener-
ated with an available graph and query workload generator
[5]. This experiment showed different behaviors of SPARQL
query engines, such as Blazegraph and PostgreSQL with
query workloads of CQs of increasing sizes (intended as num-
ber of conjuncts). It also lets us grasp a tangible difference
between chain and cycle queries in either query engine, this
difference being more pronounced for PostgreSQL. We may
interpret this result as a lack of maturity of practical query
engines for cyclic queries, thus motivating the need of spe-
cific query optimization techniques for such queries as in [1,
18].

Finally, we deal with the problem of identifying sequences
of similar queries in the query logs. These queries are then
classified as gradual modifications of a seed query, possibly
by the same user. We measure the length of such streaks
in three log files from DBpedia. We conclude our study
with insights on the impact of our analytical study of large
SPARQL query logs on query evaluation, query optimiza-
tion, tuning, and benchmarking.
Related Work. Whereas several previous studies have fo-
cused on the analysis of real SPARQL queries, they have
mainly looked at statistical features of the queries, such as
occurrences of triple patterns, types of queries, query frag-
ments and well-designed patterns [24, 3, 29, 15]. The only
early study that investigated the relationship between struc-
tural features of practical queries and query evaluation com-
plexity has been presented in [28]. However, they focus on
a limited corpus (3M queries from DBpedia 2010) and in
that sense their findings cannot be generalized. Our work
moves onward by precisely characterizing the occurrences of
conjunctive and non-conjunctive patterns under the latest
complexity results, by performing an accurate shape analy-
sis of the queries under their (hyper-)graph representation
and introducing the evolution of queries over time. USE-
WOD and DBpedia datasets have also been considered in
[4]. It takes into account the log files from DBpedia and

2We do consider extensions with Filter and Opt, but only
those for which we know that tree-likeness of their graph
ensures the existence of efficient evaluation algorithms.

Source Total #Q Valid #Q Unique #Q

DBpedia9/12 28,534,301 27,097,467 13,437,966
DBpedia13 5,243,853 4,819,837 2,628,005
DBpedia14 37,219,788 33,996,480 17,217,448
DBpedia15 43,478,986 42,709,778 13,253,845
DBpedia16 15,098,176 14,687,869 4,369,781

LGD13 1,841,880 1,513,868 357,842
LGD14 1,999,961 1,929,130 628,640

BioP13 4,627,271 4,624,430 687,773
BioP14 26,438,933 26,404,710 2,191,152

BioMed13 883,374 882,809 27,030

SWDF13 13,762,797 13,618,017 1,229,759

BritM14 1,523,827 1,513,534 135,112

WikiData17 309 308 308

Total 180,653,910 173,798,237 56,164,661

Table 1: Sizes of query logs in our corpus.

SWDF reaching a total size of 3M. They mainly investigate
the number of triples and joins in the queries. Based on the
observation of [26] that typically SPARQL graph patterns
are typically chains or star-shaped, they also look at their
occurrences. They found very scarce chains and high cover-
age of almost-star-shaped graph patterns, but they do not
characterize the latter. To the best of our knowledge, we
are the first to carry out a comprehensive shape analysis on
such a large and diverse corpus of SPARQL queries.

2. DATA SETS
Our data set has a total of 180, 653, 910 queries, which

were obtained as follows. We obtained the 2013–2016 USE-
WOD query logs, DBPedia query logs for 2013, 2014, 2015
and 2016 directly from Openlink3, the 2014 British Museum
query logs from LSQ4, and we crawled the user-submitted
example queries from WikiData5 in February 2017. These
log files are associated with 7 different data sources from var-
ious domains: DBpedia, Semantic Web Dog Food (SWDF),
LinkedGeoData (LGD), BioPortal (BioP), OpenBioMed (Bio-
Med), British Museum (BritM), and WikiData.

Table 1 gives an overview of the analyzed query logs,
along with their main characteristics. Since we obtained
logs for DBpedia from different sources, we proceeded as
follows. DBpedia9/12 contains the DBpedia logs from USE-
WOD’13, which are query logs from 2009–2012. All other
DBpedia’X sets contain the query logs from the year ’X, be
it from USEWOD or from Openlink.6 We first cleaned the
logs, since some contained entries that were not queries (e.g.,
http requests). In the following we only report on the actual

3http://www.openlinksw.com
4http://aksw.github.io/LSQ/
5https://www.wikidata.org/wiki/Wikidata:SPARQL_
query_service/queries/examples
6We discovered that we received three log files from USE-
WOD as well as from Openlink, in the sense that only the
hash values used for anonymisation were different. These
duplicate log files were deleted prior to all analysis and are
not taken into account in Table 1.



SPARQL queries in the logs. For each of the logs, the ta-
ble summarizes the total number of queries (Total) and the
number of queries that we could parse using Apache Jena
3.0.1 (Valid). From the latter set, we removed duplicate
queries, resulting in the unique queries that we could parse
(Unique) and on which we focus in the remainder of the pa-
per 7. In summary, our corpus of query logs contains the
latest blend of USEWOD and Openlink DBPedia query logs
(the latter providing 51M more queries in the period 2013-
2016 than the USEWOD corpus), plus BritM and Wikidata
queries. We are not aware of other existing studies on such
a large and up-to-date corpus. Finally, although the online
WikiData example queries (Feb 13th, 2017) are a manually
curated set, there was one query that we could not parse.8

In the total unique data set, 2,496,806 queries (4.47%) do
not have a body. All these queries are Describe queries and
almost exclusively occur in DBpedia14– DBpedia16.

3. PRELIMINARIES
We recall some basic definitions on RDF and SPARQL

[27, 28]. We closely follow the exposition of [28].

RDF. RDF data consists of a set of triples 〈s, p, o〉 where we
refer to s as subject, p as predicate, and o as object. Accord-
ing to the specification, s, p, and o can come from pairwise
disjoint sets I (IRIs), B blank nodes, and L literals as fol-
lows: s ∈ I ∪ B, p ∈ I, and o ∈ I ∪ B ∪ L. For this paper,
the distinction between IRIs, blank nodes, and literals is not
important.

SPARQL. For our purposes, a SPARQL query Q can be
seen as a tuple of the form

(query-type, pattern P , solution-modifier).

We now explain how such queries work conceptually. The
central component is the Pattern P , which contains patterns
that are matched onto the RDF data. The result of this
part of the query is a multiset of mappings that match the
pattern to the data.

The solution-modifier allows aggregation, grouping, sort-
ing, duplicate removal, and returning only a specific window
(e.g., the first ten) of the multiset of mappings returned by
the pattern. The result is a list L of mappings.

The query-type determines the output of the query. It
is one of four types: Select, Ask, Construct, and Describe.
Select-queries return projections of mappings from L. Ask-
queries return a boolean and answer true if the pattern P
could be matched. Construct queries construct a new set
of RDF triples based on the mappings in L. Finally, De-
scribe queries return a set of RDF triples that describes the
IRIs in I and the blank nodes in L. The exact output of
Describe queries is implementation-dependent. Such queries
are meant to help users explore the data. With respect to
[28], we allow more solution modifiers and more complex
patterns, as explained next.

7We report in a related appendix [37] the results for the
Valid corpus, containing duplicates.
8The query was called “Public Art in Paris” and was mal-
formed (closing braces were missing and it had a bad aggre-
gate). It was still malformed on June 29th, 2017.

Patterns. Let V = {?x, ?y, ?z, ?x1, . . .} be an infinite set of
variables, disjoint from I, B, and L. As in SPARQL, we
always prefix variables by a question mark. A triple pattern
is an element of (I ∪ B ∪ V)× (I ∪ V)× (I ∪ B ∪ L ∪ V). A
property path is a regular expression over the alphabet I. A
property path pattern is an element of (I ∪B∪V)×pp× (I ∪
B∪L∪V), where pp is a property path. A SPARQL pattern
is an expression generated from the following grammar:

P ::= t | pp | Q | P1 And P2 | P Filter R
| P1 Union P2 | P1 Opt P2 | Graph iv P

Here, t is a triple pattern, pp is a property path pattern, Q
is again a SPARQL query, R is a so-called SPARQL filter
constraint, and iv ∈ I∪V. We note that property paths (pp)
and subqueries (Q) in the above grammar are new features
since SPARQL 1.1. SPARQL filter constraints R are built-
in conditions which can have unary predicates, (in)equalities
between variables, and Boolean combinations thereof. We
refer to the SPARQL 1.1 recommendation [16] and the liter-
ature [27] for the precise syntax of filter constraints and the
semantics of SPARQL queries. We write vars(P ) to denote
the set of variables occurring in P .

We illustrate by example how our definition corresponds
to real SPARQL queries. The following query comes from
WikiData [32] (“Locations of archaeological sites”, from [32]).

SELECT ?label ?coord ?subj

WHERE

{ ?subj wdt:P31/wdt:P279* wd:Q839954 .

?subj wdt:P625 ?coord .

?subj rdfs:label ?label filter(lang(?label)="en")

}

The query uses the property path wdt:P31/wdt:P279*, lit-
eral wd:Q839954, and triple pattern ?subj wdt:P625 ?coord.
It also uses a filter constraint. In SPARQL, the And operator
is denoted by a dot (and is sometimes implicit in alternative,
even more succinct syntax).

Finally, we define conjunctive queries, which are a central
class of queries in database research and which we will build
on in the remainder of the paper. In the context of SPARQL,
we define them as follows.

Definition 3.1. A conjunctive query (CQ) is a SPARQL
pattern that only uses the triple patterns and the operator
And.

4. SHALLOW ANALYSIS
In this section we investigate simple syntactical properties

of queries.

4.1 Keywords
A basic usage analysis of SPARQL features was done by

counting the keywords in queries. The results are in Ta-
ble 2.9

The first block in Table 2 describes the type of queries.
In total, 87.97% of the queries are Select-queries, 4.97%
are Ask-queries, 4.59% Describe queries, and 2.47% Con-
struct queries. There are, however, tremendous differences

9We also investigated the occurrence of other operators
(Service, Bind, Assign, Data, Dataset, Values, Sample, Group
Concat), each of which appeared in less than 1% of the
queries. We omit them from the table for succinctness.



Element Absolute Relative

Select 49,409,913 87.97%
Ask 2,789,420 4.97%

Describe 2,578,311 4.49%
Construct 1,386,908 2.47%

Distinct 12,198,198 21.72%
Limit 9,545,249 17.00%

Offset 3,455,500 6.15%
Order By 1,159,231 2.06%

Filter 22,547,561 40.15%
And 15,863,942 28.25%

Union 10,465,706 18.63%
Opt 9,106,419 16.21%

Graph 1,519,899 2.71%
Not Exists 926,849 1.65%

Minus 766,380 1.36%
Exists 5,499 0.01%

Count 320,035 0.57%
Max 3,660 0.01%
Min 3,632 0.01%
Avg 263 < 0.01%
Sum 68 < 0.01%

Group By 168,444 0.30%
Having 12,276 0.02%

Table 2: Keyword count in queries

between the data sets. BioMed13 has less than 13% Se-
lect-queries and almost 85% Describe-queries, whereas LGD13
has 28% Select-queries and 71% Construct-queries. Even
within the same kind of data, we see significant differences.
DBpedia16 has 62% Select-queries (and 34% Describe-queries),
whereas DBpedia15 has 81.5% Select-queries and 11.5% Ask-
queries. The other DBpedia data sets have over 87.5% Select
queries.

The second block in Table 2 contains solution modifiers,
ordered by their popularity.10 Looking into the specific data
sets, we see the following things stand out. Almost all (97%)
of BritM14 queries use Distinct. This is similar, but to a
lesser extent in BioP13 (82%) and BioP14 (69%). In DBPe-
dia we again see significant differences. From ’12 to ’16, we
have 18%, 8%, 11%, 38%, and 8% of queries with Distinct
respectively.

Limit is used most widely in SWDF13 (47%) and LGD14

(41%). The most prevalent data sets for queries with Offset
are LGD14 (38%), LGD13 (13%), and DBpedia13 (12%).

Order By is used by far the most in WikiData (42%), which
may be due to the case that their queries are intended to
showcase the system and should produce a nice output. An-
other reason may be that the other query logs also contain
the “development process” of queries: Users start by asking
a query and gradually refine it until they have the one they
want. (We come back to this in Section 8).

The third block has keywords associated to SPARQL al-
gebra operators that occur in the body. We see that Fil-
ter, And, Union, and Opt are quite common.11 The next
commonly used operator is Graph but, looking closer at our

10The remaining solution modifier, Reduced, was only found
in 1.113 queries.

11Conjunctions in SPARQL are actually denoted by “.” or
“;” for brevity, but we group them under “And” in this paper
for readability.

data, we see that 95% of the queries using Graph originate
from BioP13 and BioP14. In these logs, 80% and 40% of
the queries use Graph, respectively. The use of Filter ranges
from 61% (LGD14) to 3% or less (BioMed13, BioP13).

The fourth block has aggregation operators. We were sur-
prised that these operators are used so sparsely, even though
aggregates are only supported since SPARQL 1.1 (March
2013) [16]. In all data sets, each of these operators was used
in 3% or less of the queries, except for LGD14 (31% with
Count) and WikiData17 (30% with Group By). We see a
higher relative use of aggregation operators in WikiData17

than in the other sets, which we believe may be due to the
fact that our WikiData17 set is not a query log. WikiData17
is in fact a wiki page that contains cherry-picked and user-
submitted queries, some of which are meant to highlight
features of the Wikidata data set.

4.2 Number of Triples in Queries
In order to measure the size of the queries belonging to

the datasets under study, we have counted the total number
of triples of the kind 〈s, p, o〉 contained in Select and Ask
queries. In this experiment, we merely counted the number
of triples contained in each query without further investi-
gating the possible relationships among them (such as join
conditions, unions etc.), which are under scrutiny later in
the paper. We focus solely on Select and Ask queries be-
cause these are the type of SPARQL statements that truly
query the data, as opposed to Describe statements (which
are exploratory) and Construct statements (which construct
data).12

The plot in the upper part of Figure 1 illustrates the re-
sults in terms of the percentages of Select and Ask queries
(per dataset) containing respectively from 0 triples to a
number of triples greater than 11. A first observation that
we can draw from Figure 1 is that for the majority of the
datasets, the queries with a low number of triples (from 0 to
2) have a noticeable share within the total amount of queries
per dataset. Whereas these queries are almost the only
queries present in the BioP13 and BioP14 datasets, they have
the least concentration in BritM14 and WikiData17. Both
datasets have in fact unique characteristics, BritM14 being
a collection of queries with fixed templates and WikiData17

being the most diverse dataset of all, gathering queries of
rather disparate nature that are representatives of classes
of real queries issued on Wikidata. Finally, DBpedia9/12–
DBpedia16, along with LGD14 and BioMed13 are the datasets
exhibiting the most complex queries with extremely high
numbers of triples exceeding 11.

We should note that BioMed13 has almost 85% Describe
queries and 2.42% Construct queries. The numbers reported
here only describe the remaining 12.87%. The table at the
bottom of Figure 1 shows the relative amounts of Select-
and Ask-queries per data set. It also shows the average
number of triples measured across all queries within each
dataset. We can notice a relative increase of this average
for DPpedia from year 2014 up to year 2016 and BioPortal
and LGD in between years 2013 and 2014. As expected,
BioMed, BritishM and Wikidata have also relatively high
average number of triples, compared to the other datasets
for the reasons previously exposed.

12For instance, 97% of the Describe statements in our corpus
do not have a body and therefore no triples.
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Datasets DBpedia9/12 DBpedia13 DBpedia14 DBpedia15 DBpedia16 LGD13 LGD14 BioP13 BioP14 BioMed13 SWDF13 BritM14 WikiData17

S/A 99.15% 91.88% 95.38% 93.05% 63.99% 29.01% 97.47% 100% 99.69% 12.87% 96.14% 98.64% 99.68%
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Figure 1: Percentages of queries exhibiting different number of triples (in colors) for each dataset (top), the
average numbers of triples of the queries for each dataset (Avg#T , bottom), and the percentage of Select/Ask-
queries (S/A, bottom).

Operator Set Absolute Relative

none 17,482,313 33.49%
F 9,936,557 19.04%
A 3,911,748 7.49%

A, F 3,261,138 6.25%
CPF subtotal 31,330,554 66.27%

O 542,900 1.04%
O, F 1,791,512 3.43%
A, O 1,728,907 3.31%

A, O, F 406,131 0.78%
CPF+O +4,469,450 +8.56%

G 1,380,764 2.65%
CPF+G +1,432,090 +2.74%

U 3,895,524 7.46%
U, F 198,693 0.38%
A, U 817,958 1.57%

A, U, F 812,381 1.56%
CPF+U +5,724,556 +10.97%

A, O, U, F 4,084,154 7.82%

Table 3: Sets of operators used in queries: Filter (F),
And (A), Opt (O), Graph (G), and Union (U)

Overall, we see that 56.45% of the Select and Ask-queries
in our corpus use at most one triple, 90.76% uses at most
six triples, and 99.32% at most twelve triples. The largest
queries we found came from DBpedia15 (209 and 211 triples)
and BioMed13 (221 and 229 triples).

4.3 Operator Distribution
In Table 2 we see that Filter, And, Union, Opt, and Graph

are used fairly commonly in the bodies of Select- and Ask
queries. We then investigated how these operators occur
together. In particular, we investigated for which queries

the body only uses constructs with these operators.13 14

The results are in Table 3, which has two kinds of rows.
Each white row has, on its left, a set S of operators from
O = {Filter,And,Opt,Graph,Union} and, on its right, the
amount of queries in our logs for which the body uses exactly
the operators in S (and none from O\S). The value for none
is the amount of queries that do not use any of the operators
in O (including queries that do not have a body).

Conjunctive patterns with filters are considered to be an
important fragment of SPARQL patterns, because they are
believed to appear often in practice [26, 38]

Definition 4.1. A conjunctive pattern with filters (CPF)
is a graph pattern that only uses triples and the operators
And and Filter.

Our logs contain 66.27% CPF patterns. Adding Opt to the
CPF fragment would increase its relative size with 8.56%,
resulting in 74.83% of our queries. (Similarly for Graph and
Union.)

Table 3 classifies 96.37% of the Select- and Ask queries in
our corpus. The remaining queries either use other combina-
tions from O (0.30%), use other features than those in O in
their body (3.33%) like Bind, Minus, subqueries or property
paths.

There is a close relationship between CPF patterns and
conjunctive queries that, in some cases, can be extended to
also include queries with Opt and Graph. We discuss this in
more detail in Section 5.

13There is one exception: For Wikidata, we removed SER-
VICE subqueries before the analysis (which appears in 222
of its queries and is used to change the language of the out-
put).

14This study closely follows a similar one [28] that was done
on a log from DBpedia 2010. Our numbers should be com-
pared to the numbers of ULog (the duplicate-free log) in
[28].



4.4 Subqueries and Projection
Only 304,234 (0.54%) queries in our corpus use subqueries.

The feature was most used in WikiData (9.74%), about an
order of magnitude more than in any of the other data sets.

Projection plays a crucial role in the complexity of query
evaluation. Many papers [7, 22, 19, 27, 28] define evaluation
as the following question: Given an RDF graph G, a graph
pattern P , and a mapping µ, is µ an answer to P when
evaluated on G? In other words, the question is to verify
if a candidate answer µ is indeed an answer to the query.
If P is a CQ, this problem is NP-complete if the queries
use projection [8, 7, 21], but its complexity drops to Ptime
if projection is absent [27, 7, 22].15 Therefore, the use of
projection has a huge influence of the complexity of query
evaluation.

Surprisingly, we discovered that at least 14.98% of the
queries use projection, which is about three times more than
what Picalausa and Vansummeren discovered in DBpedia
logs from 2010 [28]. The 14.98% consists of 13.12% Select
queries plus 1.86% Ask queries. Notice that the total number
of Ask queries (4.97%) is significantly higher, even though
they just return a Boolean value and one would intuitively
expect that almost all of them would use projection. The
reason is that most Ask queries do not use variables: they
ask if a concrete RDF triple is present in the data. Follow-
ing the test for projection in Section 18.2.1 in the SPARQL
recommendation [16], we classified these queries as not using
projection.

Due to the use of the Bind operator, there was a number
of queries (1.3%) where we could not determine if they use
projection or not. Therefore the number of queries with
projection lies between 14.98% and 16.28%.

5. STRUCTURAL ANALYSIS
SPARQL patterns of Select or Ask queries using only triple

patterns and the operators And, Opt, and Filter (and, in
particular, not using subqueries or property paths) received
considerable attention in the literature (see, e.g., [27, 19,
7, 20, 22]). We refer to such patterns as And/Opt/Filter
patterns or, for succinctness, AOF patterns. Our corpus
has 39.061.206 AOF patterns (74.83% of the Select- and Ask
queries).

In Section 6 we investigate the graph- and hypergraph
structure of AOF patterns. The graph structure gives us
a clear view on how such queries are structured and can
tell us how complex such queries are to evaluate. For a
significant portion of queries, however, the graph structure is
not meaningful to capture their complexity (cf. Example 5.1)
and we therefore need to turn to their hypergraph structure.
Since the graph structure may be easier to understand, we
use the graph structure whenever we can.

We provide some background on the relationship between
the (hyper)graph structure of queries and the complexity
of their evaluation. Evaluation of CQs is NP-complete in
general [8], but becomes Ptime if their hypertree width is
bounded by a constant [14]. Here, the hypertree width mea-
sures how close the query is to a tree (the lower the width,

15This difference can be understood as follows: If the query
tests the presence of a k-clique, then without projection we
are given a k-tuple of nodes and need to verify if they form a
k-clique. With projection, we need to solve the NP-complete
k-clique problem.

x1 x2 x3 x4
:a :b :c

x1 x3 x4 x5
x2 :a x2

x2 x1 x3

x4

x5

Figure 2: Canonical graphs and hypergraph for
queries in Example 5.1.

the closer the query is to a tree). Several state-of-the-art join
evaluation algorithms (e.g., [1, 18]) effectively use the hy-
pergraph structure of queries to improve their performance,
even in the context of RDF processing [2]. We establish in
Section 5.1 that there are significant performance differences
in today’s query engines, even when the hypertreewidth of
queries just increases from one to two.

Graph and Hypergraph of a Query. We first make more
precise what we mean by the graph and hypergraph of a
query. An (undirected) graph G is a pair (V,E) where V is
its (finite) set of nodes and E is its set of edges, where an
edge e is a set of one or two nodes, i.e., e ⊆ V and |e| = 1
or |e| = 2. A hypergraph H consists of a (finite) set of nodes
V and a set of hyperedges E ⊆ 2V , that is, a hyperedge is a
set of nodes.

Most SPARQL patterns do not use variables as predicates,
that is, they use triple patterns (s, p, o) where p is an IRI.
We call such patterns graph patterns. Evaluation of graph
patterns is tightly connected to finding embeddings of the
graph representation of the query into the data.16 We define
the canonical graph of graph pattern P to be the following
graph: E = {{x, y}) | ` is a literal and (x, `, y) is a triple
pattern in P} and V = {x | (x, `, y) ∈ E or (y, `, x) ∈ E}.

Hypergraph representations can be considered for all AOF
patterns. The canonical hypergraph of a pattern P is defined
as E = {X | X is the set of blank nodes and variables
appearing in a triple pattern in P} and V = ∪e∈Ee.

Example 5.1. Consider the following (synthetic) queries:

ASK WHERE {?x1 :a ?x2 . ?x2 :b ?x3 . ?x3 :c ?x4}

ASK WHERE {?x1 ?x2 ?x3 . ?x3 :a ?x4 . ?x4 ?x2 ?x5}

Figure 2 (top left) depicts the canonical graph of the first
query, which is a sequence of three edges. (We annotated
the edges with their labels in the query to improve under-
standing.) The bottom left graph in Figure 2 shows why we
do not consider canonical graphs for queries with variables
on the predicate position in triples. The topological struc-
ture of this graph is, just as for the first query, a sequence
of three edges, which completely ignores the join condition
on ?x2. For this query, the canonical hypergraph in Figure
2 (right) correctly captures the cyclicity of the query.

5.1 Comparative Evaluation of Chain and Cy-
cle Queries

16In particular, it consists of finding embeddings of the di-
rected and edge-labeled variant of the graph, but we omit
the edge directions and -labels for simplicity. They do not
influence the structure and cyclicity of graph patterns.



We conducted a set of experiments aiming at compar-
ing the execution times of conjunctive queries whose their
corresponding canonical graphs exhibit specific shapes. We
have chosen chain and cycle queries in this empirical study.
A chain query (of length k) is a CQ for which the canoni-
cal graph is isomorphic to the undirected graph with edges
{x0, x1}, {x1, x2}, . . . , {xk−1, xk}. (The first query in Exam-
ple 5.1 is a chain query of length three.) A cycle query (of
length k) is a CQ for which the canonical graph is isomorphic
to {x0, x1}, . . . , {xk−1, x0}. These shapes have been selected
as representatives of the queries with hypertreewidth 1 and
2, respectively, and have also been used to compare the per-
formances of join algorithms in other studies, e.g., [18]. In
order to generate query workloads containing the aforemen-
tioned types of queries, we have used gMark [5], a publicly
available17 schema-driven generator for graph instances and
graph queries. We tuned gMark to generate diverse query
workloads, each containing 100 chain and cycle queries, re-
spectively.18 Each workload has been generated by using
chains and cycles of different length varying from 3 to 8. In
these experiments, we have considered and contrasted two
opposite graph database systems, namely PostgreSQL [36],
an open-source relational DBMS, and BlazeGraph [34], an
high-performance SPARQL query engine powering the Wiki-
media’s official query service [39] and thus used for Wikidata
real-world queries. We have run these experiments on 2-
CPUs Intel Xeon E5-2630v2 2.6 GHz server19 with 128GB
RAM and running Ubuntu 16.04 LTS. We used PostgreSQL
v.9.3 and Blazegraph v.2.1.4 for the experimental setup. We
employed the Bib use case in the gMark configuration [5] for
the schema of the generated graph (of size 100k nodes) and
of the generated queries as well. We employed the query
workloads in SQL and SPARQL as generated by gMark af-
ter elimination of empty unions (since gMark is geared to-
wards generating UCRPQs) and of the keyword Distinct in
the body of the queries. Since gMark allowed us to obtain
mixed workloads of Select/Ask queries and we wanted to
focus on one query type at a time, we manually replaced
the Select clauses with compatible Ask clauses (and, vice
versa for full workloads of Select queries, whose results are
comparable and omitted for space reasons). Figure 3 (top)
depicts the average runtime (in ns, logscale) of our work-
loads of chain (cycle, resp.) queries with length from 3 to 8
on Blazegraph (BG) and PostgreSQL (PG). We can observe
that the overall performance of BG is superior to that of PG.
Indeed, in PG many cycles queries are timed out (after 300s
per query) and we expect that the real overall performance
of PG is even worse than the results reported in Figure 3.
Figure 3 (bottom) reports the reached timeouts for work-
loads of cycle queries of various sizes when executed in PG.
It is worthwhile observing that for both systems the differ-
ence between average runtime of chain query workloads and
cycle query workloads is non negligible, thus confirming that
we cannot ignore the graph representation and the shape of
queries. This experiment also motivated us to dig deeper

17https://github.com/graphMark/gmark
18We recall that gMark can generate queries of four shapes:
chain, star, chain-star and cycle. We have thus cherry-
picked chain queries as representatives of queries with hy-
pertreewidth equal to 1.

19Every CPU has 6 physical cores and (with hyperthreading)
12 logical cores.
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Figure 3: Execution times (top) of diverse workload
of chain/cycle queries (of length 3,4,5,6) on Blaze-
graph (BG) and Postgresql (PG). Number of time-
outs per workload for CyclePG only (bottom). Cy-
clePG times include t/o of 300s (per query).

in the shape analysis of our query logs, which we report in
Section 6.

5.2 Classes of Queries for (Hyper)graphs
We now discuss the classes of queries for which we will in-

vestigate graph- and hypergraph structures in Section 6. To
the best of our knowledge, all the literature relating (hy-
per)graph structure of queries to efficient evaluation was
done on AOF patterns, which is why we only consider AOF
patterns here. The simplest such queries are the CQs, which
motivated the classical literature on query evaluation and
hypertree structure [8, 14]. We discovered that 54.58% of
the AOF patterns are CQs.

Next, we extend CQs with Filter and Opt such that the
relationship between efficient query evaluation and their (hy-
per)graph structure is still similar as for CQs. However, this
requires some care, especially when considering Opt [7, 27].

We first define a fragment of CPF patterns that can be
readily translated to CQs and can be evaluated similarly.
We say that a filter constraint R is simple if vars(R) contains
at most one variable or is of the form ?x =?y.20 (An almost
identical class of queries was also considered in [28].)

Definition 5.2. A conjunctive query with filters (CQF

query) is a CPF pattern that only uses simple filters.

In our corpus, 84.08% of the AOF patterns are in CQF.
We now additionally consider Opt. Pérez et al. [27] showed

that unrestricted use of Opt in graph patterns makes query

20If we encounter a filter constraint of the form ?x =?y, we
collapse the nodes ?x and ?y in the graph and hypergraph
of the query.



(?A, name, ?N)

(?A, email, ?E) (?A, webPage, ?W)

(?A, name, ?N)

(?A, email, ?E)

(?A, webPage, ?W)

T1: T2:

Figure 4: Pattern trees that correspond to the
queries in Example 5.4

evaluation Pspace-complete, which is significantly more com-
plex than the NP-completeness of CQF queries. They dis-
covered that patterns that satisfy an extra condition called
well-designedness [27], can be evaluated much more effi-
ciently. Letelier et al. show that, in the presence of pro-
jection, evaluation of well-designed patterns is ΣP

2 -complete
[22].

Definition 5.3. A graph pattern P using only the oper-
ators And, Filter, and Opt is well-designed if for every oc-
currence i of an Opt-pattern (P1 Opt P2) in P , the variables
from vars(P2) \ vars(P1) occur in P only inside i.21

In our corpus, 98.53% of the AOF patterns are well-designed
(but do not necessarily have simple filters). Unfortunately,
it is not yet sufficient for well-designed patterns to have a
hypergraph of constant hypertreewidth for their evaluation
to be tractable [7]. However, Barceló et al. show that this
can be mended by an additional restriction called bounded
interface width. We explain this notion by example and refer
to [7] for details.

Example 5.4. The following patterns come from [27, 22]:
P1 = (((?A, name, ?N) Opt (?A, email, ?E))

Opt (?A, webPage, ?W ))
and P2 = ((?A, name, ?N)

Opt ((?A, email, ?E) Opt (?A, webPage, ?W )))
Figure 4 has tree representations T1 and T2 for P1 and P2,
respectively, called pattern trees. The pattern trees Ti are
obtained from the parse trees of Pi by applying a standard
encoding based on Currying [23, Section 4.1.1]. The encod-
ing only affects the arguments of the Opt operators in the
queries. If the query also uses And, then it should first be
brought in Opt-normal form [27] and then turned into a pat-
tern tree. The resulting pattern trees will then have a CQ
in each of its nodes.

Barceló et al. define pattern trees to be well-designed if,
for each variable, the set of nodes in which it occurs forms a
connected set. Notice that this is the case for T1 and T2. It
would be violated in T1 if the root would not use the variable
?A. Likewise, it would be violated in T2 if the node labeled
(?A, email, ?E) would not use the variable ?A.

The interface width of the pattern trees is the maximum
number of common variables between a node and its child.
Both trees in Figure 4 (and both queries P1 and P2) therefore
have interface width one. (Common variables are bold in
Figure 4.) If T1 would use variable ?W instead of ?N , then
its interface width would be two.

21Perez et al.’s definition also has a safety condition on the
filter statements of the patterns, but the omission of this
condition does not affect the results in this paper.

C
Q

C
QF

C
QO

F

0 %

20 %

40 %

60 %

80 %

100 %

11+

10

9

8

7

6

5

4

3

2

Figure 5: Size of CQ-like queries with at least two
triples.

Definition 5.5. A graph pattern P using only the oper-
ators And, Filter, and Opt is in CQOF if it has a well-designed
pattern tree with interface width 1.

Perhaps surprisingly, out of all queries that are well-designed
and have simple filters, we only found 310 queries that had
an interface width more than one. In fact, 93.87% of the
AOF patterns are CQOF queries.

6. SHAPE ANALYSIS
In this section we analyze the shapes of the canonical

graphs and the tree- and hypertree width of CQs, CQF

queries, and CQOF queries. We start with a note on the
size of these queries. Figure 5 shows the respective sizes of
these queries that have at least two triples. The fractions of
queries with one triple are 82%, 83.45%, and 75.52% for CQ,
CQF, and CQOF, respectively. Unsurprisingly, small queries
are more likely to be in one of these fragments and, there-
fore, simple queries are represented even more in these data
sets than in the overall data set. Nevertheless, we have CQs
and CQF queries with up to 81 triples and CQOF queries
with up to 229 triples.

6.1 Graph Structure
We analyse the graph structure of queries. Recall that

we only consider graph shapes for queries that do not use
variables in the predicate position of triples, for reasons ex-
plained in Section 5. We consider the remaining 6.96 million
queries in CQOF in Section 6.2.

We first recall or define the basic shapes of the canonical
graphs that we will study in this section. The shapes chains
and cycle are already defined in Section 5.1. A chain set
is a graph in which every connected component is a chain.
(So, each chain is also a chain set.)

A tree is an undirected graph such that, for every pair
of nodes x and y, there exists exactly one undirected path
from x to y. A forest is a graph in which every connected
component is a tree.

A star is a tree for which there exists exactly one node
with more than two neighbors, that is, there is exactly one



node u such that there exist u1, u2, and u3, all pairwise
different and different from u, for which {u, ui} ∈ E for
each i = 1, 2, 3.

Inspired by the results obtained with gMark on synthetic
queries, we proceeded with the analysis of the query logs
by looking at the encountered query shapes. Here, we con-
sider queries as edge-labeled graphs, as defined in Section 5.
In the next subsection we also investigate the hypergraph
structure.

We investigate CQs, CQF queries, and CQOF queries. The
last two fragments are interesting in that they bring under
scrutiny more queries than the plain CQ set of query logs (by
an increase of roughly 40% and 47%, respectively). We first
wanted to identify classical query shapes, such as all vari-
ants of tree-like shapes (single edges, chains, sets of chains,
stars, trees, and forests). The results are summarized in the
three tables in Table 4. From the analysis, we can draw
the following observations. While tree-shaped queries even
in their simple forms (chain of length 1 or single edges) are
very frequent, the only observed exception occurs with star
queries, which have very low occurrence with respect to the
other tree-like shapes.

Since simple queries are overrepresented in query logs (al-
ready over 80% of CQF patterns uses only one triple, for ex-
ample), it is no surprise that the overwhelming majority of
the queries is acyclic, i.e., a forest. However, we also wanted
to get a better understanding of the more complex queries
in the logs, so we also investigated the cyclic queries. Our
goal is to obtain a cumulative shape analysis where simpler
shapes are subsumed by more sophisticated query shapes,
with the latter reaching almost 100% coverage of the query
logs.

A first observation was that plain cycles are not very com-
mon. By visually inspecting the remaining cyclic queries, we
observed that many of them could be seen as a node with
simple attachments, which we call flower.

Definition 6.1. A petal is a graph consisting of a source
node s, target node t, and a set of at least two node-disjoint
paths from s to t. (For instance, a cycle is a petal that uses
two paths.) A flower is a graph consisting of a node x with
three types of attachments: chains (the stamens), trees that
are not chains (the stems), and petals.

An example of a real flower query posed by users in one of
our DBpedia logs is illustrated in Figure 6. It consists of
a central node with four petals (one of which using three
paths), ten stamens and zero stems attached.

We also considered sets of flowers, which we called flower
sets, to further increase the ratio of queries that could be
classified from the original logs. The number of flowers and
flower sets in the query logs overcome those of trees and
forests by roughly 0.05%, respectively for CQ, CQF and
CQOF , and for all the three fragments flowerSets queries
could get significantly closer to 100% coverage than plain
forests.

In the above analysis, we have analyzed the shapes of
queries when the latter are represented as canonical graphs
as defined in Section 5, i.e., the nodes can be either variables
or constants. Constants are in fact necessary to fully char-
acterize query shapes, even though they do not play a major
role in query optimization, as variables do. For that reason,
we have rerun the above analysis on queries excluding con-
stants in order to identify the differences in the obtained

Figure 6: An example of flower query found in our
DBPedia query logs (we added arrows to indicate
the edge directions in the query; labels are omitted
for confidentiality reasons).

shape classification. The most significant observation here
was that 9.66 million single edge CQs (78.70% of the single
edge CQs) uses constants.

For the queries with cycles, we also investigate what is
the length of the shortest cycle in the query. We discovered,
for 39,471 queries, the shortest cycle has length three. For
6,561 and 5,733 queries, the shortest cycles had length 4 and
5, respectively. For 26 queries, the length was larger. We
found two queries for which the shortest cycle was 14, which
is the largest value we found.

6.2 Tree- and Hypertreewidth
It is well-known that the tree- or hypertreewidth of queries

are important indicators to gauge the complexity of their
evaluation. We therefore investigated the tree- and hyper-
treewidth the CQs, CQF- and CQOF queries. We do not
formally define tree- or hypertreewidth in this paper but
instead refer to an excellent introduction [13]. In the ter-
minology of Gottlob et al., we investigate the generalized
hypertree width of the canonical hypergraphs of queries.

Treewidth. All shapes we discussed in Section 6.1 have tree-
width at most two. Forests (and all subclasses thereof) have
treewidth one, whereas cycles, flowers, and flower sets have
treewidth two. We investigated the remaining queries by
hand and discovered that one query had treewidth three
and all others had treewidth two, see Table 4. From the
treewidth perspective, it is interesting to note that many
queries of treewidth two are flowers or flower sets (Defini-
tion 6.1), which are a very restricted fragment.

Hypertree Width. We recall that we only considered canon-
ical graphs for queries that do not use variables in the pred-
icate position of triple patterns. In CQOF, 6,959,510 queries
used this feature and therefore we must consider the hyper-
graph structure to correctly measure the cyclicity of these
queries. We determined their (generalized) hypertree width
with the tool detkdecomp from the Hypertree Decomposi-
tions home page [10].

Our results are as follows. All the remaining queries had
hypertree width one, except for 86 queries with hypertree
width two and eight queries with hypertree width three.

We also looked at the number of nodes in the hypertree



CQ

Shape #Queries Relative %

single edge 12,273,871 77.98%
chain 15,561,944 98.87%

chain set 15,570,042 98.93%
star 147,457 0.94%
tree 15,723,163 99.90%

forest 15,731,535 99.95%

cycle 4,550 0.03%
flower 15,730,043 99.94%

flower set 15,738,439 100.00%
treewidth ≤ 2 15,739,056 100.00%

treewidth = 3 1 0.00%
total 15,739,057 100.00%

CQF

#Queries Relative %

21,198,951 81.04%
25,403,669 97.12%
25,418,689 97.17%

702,228 2.68%
26,127,544 99.88%
26,143,128 99.94%

4,705 0.02%
26,135,676 99.92%
26,151,291 99.97%
26,157,879 100.00%

1 0.00%
26,157,880 100.00%

CQOF

#Queries Relative %

21,479,706 72.30%
26,887,865 90.50%
26,937,578 90.67%
2,654,497 8.94%

29,599,539 99.63%
29,651,600 99.81%

4,734 0.02%
29,614,330 99.68%
29,666,423 99.86%
29,708,967 100.00%

1 0.00%
29,708,968 100.00%

Table 4: Cumulative shape analysis of CQ, CQF , CQFO across all logs.

?subject nationality?subject birthPlace ?subject genre

?object genre?object birthPlace ?object nationality

Figure 7: The DBPedia query exhibiting tree width
equal to 3.

decompositions that the tool gave us, since this number can
be a guide for how well caching can be exploited for query
evaluation [18] (the higher the number, the better caching
can be exploited). For the queries with hypertree width one,
the number of nodes in the decompositions corresponds to
their number of edges, which can already be seen in Fig-
ure 5. (Nevertheless, we found several hundred queries with
more than 100 nodes in their hypertree decompositions, all
of them occurring in DBpedia15 and DBpedia16.) Finally,
we observed that the queries with hypertree width two and
three both had decompositions with up to ten nodes, respec-
tively.

7. PROPERTY PATHS
We found 247,404 property paths in our corpus. Although

property paths are therefore rare in relation to the entire
corpus, this is not so for every data set: 92 queries (29.87%)
in WikiData17 have property paths.

A large fraction of these property paths are extremely
simple. For instance, 63,039 property paths are !a (“follow
an edge not labeled a”) and 306 are ˆa (“follow an a-edge
in reverse direction”). In the following, we focus on the
remaining 184,059 property paths, which express queries on
the graph that do more than simply follow an edge (such
queries are sometimes called navigational queries).

Here, 66,262 (36%) use reverse navigation, i.e., the oper-
ator “ˆ”, within more complex expressions. In Table 5, we
present an overview of the property paths different from !a
and ˆa. In our classification, we treat ˆa and !a the same as
a literal. For instance, we classify a/b, (ˆa)/b, and (!a)/b all
as a1/ · · · /ak with k = 2. When ! appears in front of a more
complex expression (as in !(a|b)), we treat it separately. We

Expression Type Absolute Relative k

(a1| · · · |ak)∗ 72,009 39.12% 2–4
a∗ 48,636 26.42%

a1/ · · · /ak 21,435 11.65% 2–6
a∗/b 19,126 10.39%

a1| · · · |ak 16,053 8.72% 2–6
a+ 3,805 2.07%

a1?/ · · · /ak? 2,855 1.55% 1–5
a(b1| · · · |bk) 37 0.02% 2

a1/a2?/ · · · /ak? 31 0.02% 1–3
(a/b∗)|c 15 0.01%
a∗/b? 13 0.01%
a/b/c∗ 11 0.01%
!(a|b) 10 0.01%

(a1| · · · |ak)+ 10 0.01% 2
(a1| · · · |ak)(a1| · · · |ak) 5 < 0.01% 2–6

a?|b 2 < 0.01%
a∗|b 2 < 0.01%

(a|b)? 2 < 0.01%
a|b+ 1 < 0.01%
a+|b+ 1 < 0.01%
(a/b)∗ 1 < 0.01%

Table 5: Structure of navigational property paths in
our corpus

only found 10 expressions that use ! and are different from
the expression !a.

Furthermore, each row represents the expression type listed
on the left plus its symmetric form. For instance, when we
write a∗/b, we count the expressions of the form a∗/b and
b/a∗. The variant listed in the table is the one that occurred
most often in the data. That is, a∗/b occurred more often
than b/a∗.

Bagan et al. [6] proved a dichotomy on the data complex-
ity of evaluating property paths under a simple path seman-
tics, i.e., expressions can only be matched on paths in the
RDF graph in which nodes appear only once. They showed
that, although evaluating property paths under this seman-
tics is NP-complete in general, it is possible in Ptime if
the expressions belong to a class called Ctract. Remarkably,
we only found one expression in our corpus which is not in
Ctract, namely (a/b)∗.



Streak length #DBP’14 #DBP’15 #DBP’16

1–10 42,272 167,292 199,375
11–20 3,732 24,001 37,402
21–30 2,425 4,813 17,749
31–40 884 667 5,849
41–50 283 162 1,998
51–60 88 40 711
61–70 26 8 357
71–80 15 4 129
81–90 5 1 54

91–100 4 0 27
>100 5 0 24

Table 6: Length of streaks in three single-day log
files

8. EVOLUTION OF QUERIES OVER TIME
In a typical usage scenario of a SPARQL endpoint, a user

queries the data and gradually refines her query until the de-
sired result is obtained. In this section, we analyse to which
extent such behavior occurs. The results are very prelimi-
nary but show that, in certain contexts, it be interesting to
investigate optimization techniques for sequences of similar
queries.

We consider a query log to be an ordered list of queries
q1, . . . , qn. We introduce the notion of a streak, which in-
tuitively captures a sequence of similar queries within close
distance of each other. To this end we assume the exis-
tence of a similarity test between two queries. We then say
that queries qi and qj with i < j match if (1) qi and qj are
similar and (2) no query qi′ with i < i′ < j is similar to
qi. A streak (with window size w) is a sequence of queries
qi1 , . . . , qik such that, for each ` = 1, . . . , k−1, we have that
i`+1 − i` ≤ w and qi`+1 matches qi` .

In theory, it is possible for a query to belong to multiple
streaks. E.g., it is possible that q1 and q2 do not match,
but query q3 is sufficiently similar to both. In this case, q3
belongs to both streaks starting with q1 and with q2.

In the present study, we used Levenshtein distance as a
similarity test. More precisely, we said that two queries
are similar if their Levenshtein distance, after removal of
namespace prefixes, is at most 25%.22 We removed names-
pace prefixes prior to measuring their Levenshtein distance,
because they introduce superficial similarity. As such, we
require queries to be at least 75% identical starting from
the first occurrence of the keywords Select, Ask, Construct,
or Describe. We took a window size of 30.

Since the discovery of streaks was extremely resource-
consuming, we only analysed streaks in randomly selected
log files from DBpedia14, DBpedia15, and DBpedia16. The
sizes of these three log files, each reflecting a single day of
queries to the endpoint, were 273MiB, 803MiB, and 1004MiB
respectively. For the ordering of the queries, we simply con-
sidered the ordering in the log files, since the logs are sorted
over time.

Using window size 30, the longest streak we found had
length 169 and was in the 2016 log file. When we increased
the window size, we noticed that it was still possible to ob-
tain longer streaks. We believe that a more refined analysis

22We normalized the measure by dividing the Levenshtein
distance by the length of the longer string.

on the encountered streaks can be carried out when tuning
the window size and deriving more complex metrics on the
similarity of the queries within each streak. These issues
are, however, subject of further research, which we plan to
pursue in future work.

Wim:
Additional material:

• The logs contain 34.137 streaks that have at least one
valid query.

• 1.614 have at least one erroneous query. (946 error →
correct, 1.557 correct → error, 889 both).

9. CONCLUSIONS AND DISCUSSION
We have conducted an extensive analytical study on a

large corpus of real SPARQL query logs. Our corpus is
inherently heterogeneous and consists of a majority of DB-
pedia query logs along with query logs on biological datasets
(namely BioPortal and BioMed datasets) and geological data-
sets (LGD), query logs on bibliographic data (SWDF), and
query logs from a museum SPARQL endpoints (British Mu-
seum). We have completed this corpus with the example
queries from Wikidata (Feb. 2017), which are cherry picked
from real SPARQL queries on this data source. The major-
ity of the datasets exhibit similar characteristics, such as for
instance the simplicity of queries amounting to 1 or 2 triples.
The only exception occurs with British Museum and Wiki-
data datasets (Figure 1), where the former is a set of queries
generated from fixed templates and the latter is a query wiki
rather than a query log. Clearly, the DBpedia datasets are
the most voluminous and recent in our corpus, thus making
their results quite significant. For instance, despite the fact
that single triple queries are numerous in these datasets,
more complex queries (with 11 triples or more) have lots
of occurrences (up to 21% of the total number of queries
for DBpedia13). Moreover, we observed that most of the
analyzed queries across all datasets are Select/Ask queries,
which range between 91% and 99.88% for all datasets ex-
cept DBpedia16 and LGD13, that have lower percentages.
Therefore, we focused on such queries in the remainder of
the paper since these queries turn out to be the queries that
users most often formulate in SPARQL query endpoints.
We have further examined the occurrences of operator dis-
tributions and the number of projections and subqueries.
This analysis lets us address a specific fragment, namely the
And/Opt/Filter patterns (AOF patterns). For such patterns,
we derived the graph- and hypergraph structures and ana-
lyzed the impact of the structure on query evaluation. We
simulated real chain and cycle query logs with a synthetic
generator by building diverse workloads of Ask queries and
measured their average runtime in two systems, Blazegraph,
used by the Wikimedia foundation, and PostgreSQL. In
both systems, the difference between average performances
of such different query shapes are perceivable. We decided
to dig deeper in the shape analysis in order to classify these
queries under general query shapes as canonical graphs and
characterize their tree-likeness as hypergraphs. We believe
that this shape analysis can serve the need of fostering the
discussion on the design of new query languages for graph
data, as pursued by the LDBC Graph Query Language Task
Force [30, 11, 31]. It can also inspire the conception of novel



query optimization techniques suited for these query shapes,
along with tuning and benchmarking methods. For instance,
we are not aware of existing benchmarks targeting flowers
and flower sets. The analysis on property paths showed
that these are not yet widely used in the entire corpus, even
though they are numerous in the Wikidata corpus. A recent
discussion (July 6th, 2017) in a Neo4J working group [35]
concerned the support of full-fledged regular path queries
in OpenCypher. This discussion, and other discussions on
standard graph query languages [30, 11, 31] could benefit
from our analysis, devoted to find which property paths are
actually used most often when ordinary users have the power
of regular expressions. Finally, we performed an study on
the way users specify their queries in SPARQL query logs,
by identifying streaks of similar queries. This analysis is
for instance crucial to understand query specification from
real users and thus usability of databases, which is an hot
research topic in our community [17, 25]. Our analysis has
been carried out with scripts in different languages, amount-
ing to a total of roughly 9, 000 source lines of code (SLOC).
We plan to make these scripts publicly available in the next
months.
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[22] A. Letelier, J. Pérez, R. Pichler, and S. Skritek. Static
analysis and optimization of semantic web queries.
ACM Trans. Database Syst., 38(4):25:1–25:45, 2013.

[23] W. Martens and J. Niehren. On the minimization of
XML schemas and tree automata for unranked trees.
J. Comput. Syst. Sci., 73(4):550–583, 2007.
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