
Noname manuscript No.
(will be inserted by the editor)

Conjunctive Query Containment over Trees using1

Schema Information2

Henrik Björklund · Wim Martens ·3

Thomas Schwentick4

5

Received: date / Accepted: date6

Abstract We study the containment, satisfiability, and validity problems for7

conjunctive queries over trees with respect to a schema. We show that conjunc-8

tive query containment and validity are 2EXPTIME-complete with respect to9

a schema, in both cases where the schema is given as a DTD or as a tree10

automaton. Furthermore, we show that satisfiability for conjunctive queries11

with respect to a schema can be decided in NP. The problem is NP-hard12

already for queries using only one kind of axis. Finally, we consider conjunc-13

tive queries that can test for equalities and inequalities of data values. Here,14

satisfiability and validity are decidable, but containment is undecidable, even15

without schema information. On the other hand, containment with respect to16

a schema becomes decidable again if the “larger” query is not allowed to use17

both equalities and inequalities.18

1 Introduction19

In the context of relational databases, select-project-join queries are the most20

commonly used in practice. These queries are also known in database theory as21

conjunctive queries. The containment problem for conjunctive queries P and Q22

asks whetherQ returns (at least) all answers of P . Ever since the seminal paper23

A preliminary version of this work was presented at the 33rd International Symposium on
Mathematical Foundations of Computer Science.

Henrik Björklund
Ume̊a University, Department of Computing Science

Wim Martens
Universität Bayreuth, Institut für Informatik

Thomas Schwentick
Technische Universität Dortmund, Department of Computer Science

2 Henrik Björklund et al.

of Chandra and Merlin [14], conjunctive query containment has been a pivotal1

research topic; it is the most intensely researched form of query optimization2

in database theory. Moreover, the conjunctive query containment problem is3

essentially the same as the conjunctive query evaluation problem [14], and the4

Constraint Satisfaction Problem (CSP) in Artificial Intelligence [31].5

The rise of semi-structured data and XML initiated the investigation of6

conjunctive queries over trees [28]. As in the relational case, conjunctive queries7

over trees provide a very clean and natural querying formalism. XPath and8

(non-recursive) XQuery queries can both be naturally translated into conjunc-9

tive queries. However, as pointed out by Gottlob et al. [28], their applications10

are not at all limited to XML; they are also used for Web information ex-11

traction, as queries in computational linguistics, dominance constraints, and12

in higher-order unification.13

For conjunctive queries over trees, in contrast to the relational setting,14

evaluation is not the same problem as containment. In relational databases,15

containment P ⊆ Q holds if an only if there is a homomorphism from the16

canonical database of Q to the canonical database of P . Over trees, the exis-17

tence of such a homomorphism is a sufficient, but not a necessary condition18

for containment [7].19

Conjunctive query containment over trees is therefore investigated directly20

in [7], but was also treated more implicitly in the form of XPath 2.0 static anal-21

ysis in, e.g., [29,32,44]. We elaborate on the relation with these papers later. In22

a nutshell, XPath 2.0 puts syntactic constraints on conjunctive queries which23

sometimes limit them. The results in [7] were encouraging, as the complexi-24

ties (compared with acyclic queries) did not increase too much: they remained25

inside ΠP
2 .26

The present paper extends our previous work [7] in the sense that we27

now take schema information into account and that we consider queries that28

can test for equality and inequality of data values. In this framework, we29

study the complexities of the validity, satisfiability, and containment problems.30

Whereas our previous work outlined a quite complete picture of conjunctive31

query containment without schemas, one has to admit that, in practice, schema32

information is highly relevant. In XML, schema information is available for33

most documents and the chances of being able to optimize queries are much34

better when it is taken into account. On the other hand, as we will see in this35

paper, there is also a tradeoff: the worst case complexity of conjunctive query36

containment over trees is much higher with schema information than without.37

Our work can be summarized as follows. First, we study conjunctive queries38

that cannot compare data values. Our main technical result here is that the39

practically most relevant problem, conjunctive query containment with respect40

to a DTD, is already 2EXPTIME-hard for queries using only the Child and41

Child+ axes. We even strengthen this result to show that the validity problem42

of a conjunctive, positive fragment of XPath 2.0 queries with respect to a DTD43

is 2EXPTIME-hard. This result is quite surprising when one compares it to44

the known results for XPath 1.0 containment. For XPath 1.0, adding DTD in-45

formation to the problem usually “only” increases the complexity from coNP46

Conjunctive Query Containment over Trees using Schema Information 3

[38] to (at most) EXPTIME [40,37,8]. Here, however, the complexity immedi-1

ately jumps from ΠP
2 to 2EXPTIME when DTDs are taken into consideration.2

In particular, the problem can provably not be solved in polynomial space in3

general. On the other hand, it remains in 2EXPTIME even when conjunctive4

queries can use all axes and the much more expressive Relax NG schemas are5

considered.6

The picture again changes dramatically when we consider satisfiability in-7

stead of containment. Even for the most general conjunctive queries with re-8

spect to Relax NG schemas, the satisfiability problem is in NP. Unfortunately9

it is also NP-hard already for very simple cases using only DTD information.10

Finally, we turn to the containment problem for queries that can compare11

data values for equality (∼) and inequality (6∼). When data values are in-12

volved, static analysis problems are generally known to become undecidable13

very quickly. We show that conjunctive query containment is no exception: al-14

ready without schema information, it is undecidable. However, the good news15

is that even very slight restrictions of this most general case become decidable,16

even without increasing the complexity over the setting without data values.17

Boolean versus n-ary queries The conjunctive queries in our paper are boolean18

queries, i.e., they evaluate either to true or false on a tree. Our complexity19

results also carry over to containment for conjunctive queries that return an20

n-ary relation when evaluated on a tree; see Section 7.21

The remainder of the article is structured as follows. After introducing the22

basic material that will be used throughout the paper (Section 2), we prove23

that validity and containment of conjunctive queries over trees is 2EXPTIME-24

complete with respect to schemas in Section 3. We make a brief excursion to25

satisfiability of conjunctive queries over trees with respect to schema informa-26

tion in Section 4 and conclude the technical part of the paper by a study of27

containment of queries with data value comparisons in Section 5. In Section 628

we relate our results with XPath with path intersection. Section 7 explains29

how all our results carry over from boolean queries to higher-arity queries.30

We end by a discussion on related work, a remark on a result of Lakhsmanan31

(Section 8) and then move to the conclusions (Section 9).32

2 Preliminaries33

We consider rooted, ordered, finite, labeled, unranked trees, which are directed34

from the root downwards. That is, we consider finite trees in which nodes can35

have arbitrarily many children, which are ordered from left to right. We assume36

some infinite set of labels that contains all labels throughout the paper, but in37

most scenarios there is some finite alphabet Σ from which the labels of a tree38

or a query are chosen. We view a tree t as a relational structure with unary39

labeling relations a(·), and binary relations Child(·, ·) and NextSibling(·, ·).40

Here, a(u) expresses that u is a node with label a, and Child(u, v) (respectively,41

NextSibling(u, v)) expresses that v is a child (respectively, the right sibling) of42

4 Henrik Björklund et al.

u. We assume that each node carries exactly one label and write labt(u) for1

the unique label a such that a(u) holds in the tree t. We often omit t from2

this notation when t is clear from the context.3

In addition to Child and NextSibling, we use their transitive closures (de-4

noted Child+ and NextSibling+) and their transitive and reflexive closures (de-5

noted Child∗ andNextSibling∗). We further consider a binary relation Following,6

corresponding to the Following axis of XPath, which can be defined given the7

other relations by the formula8

Following(z1, z2) = ∃x∃y : Child∗(x, z1) ∧ NextSibling+(x, y) ∧ Child∗(y, z2).

We refer to the binary relations above as axes. We denote the set of nodes9

of a tree t by Nodes(t). By root(t) we denote the root node of t.10

2.1 Conjunctive Queries over Trees11

Let X = {x, y, z, . . . } be a set of variables. A conjunctive query (CQ) over12

an alphabet Σ is a positive existential first-order formula without disjunc-13

tion over a finite set of unary predicates a(x) with a ∈ Σ, and the binary14

predicates Child , Child+, Child∗, NextSibling, NextSibling+, NextSibling∗, and15

Following.1 In this paper, we will mainly focus on Boolean satisfaction of con-16

junctive queries. We will therefore consider conjunctive queries without free17

variables, and we also consider the constants true and false to be conjunctive18

queries. As our conjunctive queries do not contain free variables, we some-19

times omit the existential quantifiers to simplify notation. For a conjunctive20

query Q, we denote the set of variables appearing in Q by Var(Q). We use21

CQ(R1, . . . , Rk) or CQ(R) (where R = {R1, . . . , Rk}) to denote the fragment22

of CQs that uses only the unary alphabet predicates and the binary predicates23

R1, . . . , Rk. We use the terminology on valuations of a query from Gottlob et24

al. [28]. That is, let Q be a CQ, and t a tree. A valuation of Q on t is a total25

function θ : Var(Q) → Nodes(t). A valuation is a satisfaction if it satisfies26

the query, that is, if every atom of Q is satisfied by the assignment. A tree t27

models Q (t |= Q) if there is a satisfaction of Q on t. The language L(Q) of Q28

is the set of all trees that model Q.2 We denote the complement of L(Q) by29

L(Q).30

As usual, we refer by UCQ to the class of disjunctions (or: unions) of31

conjunctive queries with the same conventions regarding parameters as for32

CQ.33

1 We do not require CQs to be in prenex normal form. However, all formulas that we
construct in the paper can be put in prenex normal form by simply renaming the variables
and moving the quantifiers.

2 Notice that, as stated in the introduction, we assume that trees only take labels from a
finite alphabet Σ. Hence, for a conjunctive query Q, the set L(Q) also consists of trees over
alphabet Σ. In the rare cases where we consider trees without schema information, we state
this explicitly.

Conjunctive Query Containment over Trees using Schema Information 5

2.2 Schemas1

We abstract from Document Type Definitions (DTDs) as follows:2

Definition 1 A Document Type Definition (DTD) over an alphabet Σ is a3

triple D = (Alpha(D),Rules(D), start(D)) where Alpha(D) = Σ, start(D) ∈ Σ4

is the start symbol and Rules(D) is a set of rules of the form a → R, where5

a ∈ Σ and R is a regular expression over Σ. Here, no two rules have the same6

left-hand-side.7

A tree t satisfies D if (i) labt(root(t)) = start(D) and, (ii) for every u ∈8

Nodes(t) with label a and n children u1, . . . , un from left to right, there is a9

rule a → R in Rules(D) such that labt(u1) · · · lab
t(un) ∈ L(R). By L(D) we10

denote the set of trees satisfying D.11

We abstract from Relax NG schemas [16] by unranked tree automata,12

which are formally defined as follows:13

Definition 2 A nondeterministic (unranked) tree automaton (NTA) over an14

alphabet Σ is a quadruple A = (States(A),Alpha(A),Rules(A),Final(A)), where15

Alpha(A) = Σ, States(A) is a finite set of states, Final(A) ⊆ States(A) is16

the set of final states, and Rules(A) is a set of transition rules of the form17

(q, a) → R, where q ∈ States(A), a ∈ Alpha(A), and R is a regular expression18

over States(A).19

DTDs are strictly less expressive than Relax NG schemas. For instance,20

Relax NG schemas are powerful enough to require that two a-labeled nodes21

have differently labeled children, whereas DTDs cannot express this. For more22

precise characterizations on the expressiveness of DTDs, Relax NG schemas,23

and XML Schema (for which the expressiveness lies between DTD and Relax24

NG) we refer to [36].25

For simplicity, we denote the regular languages R in DTD or NTA rules by26

regular expressions. For our complexity results, it does not matter whether the27

languages R are represented by regular expressions or nondeterministic finite28

word automata.29

A run of A on a tree t is a labeling r : Nodes(t) → States(A) such that,30

for every u ∈ Nodes(t) with label a and children u1, . . . , un from left to right,31

there exists a rule (q, a) → R such that r(u) = q and r(u1) · · · r(un) ∈ L(R).32

Note that when u has no children, the criterion reduces to ε ∈ L(R), where33

ε denotes the empty word. A run is accepting if the root is labeled with an34

accepting state, that is, r(root(t)) ∈ Final(A). A tree t is accepted if there is35

an accepting run of A on t. The set of all accepted trees is denoted by L(A)36

and is called a regular tree language. We denote the complement of L(A) by37

L(A). In the remainder of the paper, we sometimes view the run r of an NTA38

on t as a tree over States(A), obtained from t by relabeling each node u with39

the state r(u).40

From now on, we use the word “schema” to refer to DTDs or NTAs.41

6 Henrik Björklund et al.

2.3 Our Problems of Interest1

We are primarily concerned with the following three decision problems:2

Definition 3 – Containment w.r.t. a schema: Given two CQs P and Q, and3

a schema S, is L(P) ∩ L(S) ⊆ L(Q)?4

– Validity w.r.t. a schema: Given a CQ Q and a schema S, is L(S) ⊆ L(Q)?5

– Satisfiability w.r.t. a schema: Given CQ Q and schema S, is L(Q)∩L(S) 6=6

∅?7

All the above problems are instances of the containment problem or its com-8

plement. More precisely, validity of Q is testing whether L(true)∩L(S) ⊆ L(Q)9

and satisfiability for Q is testing whether L(Q) ∩ L(S) 6⊆ L(false).10

We note that, for all these algorithmic problems, the alphabet Σ of possible11

labels is determined by the schema S.12

3 Validity and Containment13

In this section we prove that validity of conjunctive queries with respect to14

schemas is 2EXPTIME-complete. This holds when the schema is given as a15

non-deterministic tree automaton, as well as a DTD.16

3.1 Complexity Upper Bounds17

We first settle the upper bound for the containment problem. This is achieved18

through a standard translation of existential first-order logic into NTAs (see,19

e.g., [45] and, with a discussion of the upper bound, [24, Theorem 4.2]). To20

remain self-contained, we describe the construction in detail.21

Lemma 4 Let Q be a CQ. There exists an NTA A such that L(A) = L(Q)22

and A can be computed from Q in exponential time.23

Proof Essentially, when reading a tree, A guesses the positions where the24

variables of Q should be placed for a satisfaction of the query and checks25

whether the correct relations hold between the guessed positions. As Child+,26

NextSibling+, and Following can easily be expressed by constant-size formu-27

las only using Child, Child∗, NextSibling, and NextSibling∗, we only need to28

consider the latter four axes in this proof.29

Intuitively, a state of A is of the form (Xa, Xc, Xd), where Xa, Xc, and Xd30

are subsets of Var(Q) such that31

– Xa is the set of variables that A guesses to be placed on the ancestors of32

the current node,33

– Xc is the set of variables that A guesses to be placed on the current node,34

and35

– Xd is the set of variables that A guesses to be placed on descendants of the36

current node.37

Conjunctive Query Containment over Trees using Schema Information 7

Since A guesses a valuation of Q, we have that a variable of Q can never be1

placed on a node u and on a descendant of u at the same time. Hence, for each2

state (Xa, Xc, Xd), the pairwise intersections of Xa, Xc, and Xd are empty.3

In order to define A formally, we specify States(A), Final(A), and Rules(A).4

States(A): The state set of A is the maximal subset of 2Var(Q) × 2Var(Q) ×5

2Var(Q) such that the following conditions hold. For each (Xa, Xc, Xd) ∈6

States(A),7

(S1) the pairwise intersections of Xa, Xc, and Xd are empty,8

(S2) for each x, y ∈ Xc, the query Q does not contain atoms of the form9

a(x) and b(y) with a 6= b,10

(S3) for each x ∈ Xc and each y ∈ Var(Q) such that Child(y, x) is an atom11

in Q, we have y ∈ Xa, and12

(S4) for each x ∈ Xc and each y ∈ Var(Q) such that Child∗(y, x) is an atom13

in Q, we have y ∈ Xc ∪Xa.14

Final(A): A state (Xa, Xc, Xd) of A is in Final(A) if and only if15

(F1) Xa is empty; and16

(F2) Xc and Xd partition Var(Q), i.e., Var(Q) = Xc ⊎Xd.17

Rules(A): contains all rules of the form

ρ =
(

(Xa, Xc, Xd), a
)

→ R,

where18

(R1) for each x ∈ Xc, Q does not contain an atom of the form b(x) with19

b 6= a;20

(R2) R defines the language of all words (X1
a , X

1
c , X

1
d) · · · (X

n
a , X

n
c , X

n
d) for21

which the following holds:22

(a) Xd = X1
c ⊎ · · · ⊎Xn

c ⊎X1
d ⊎ · · · ⊎Xn

d ;23

(b) if x ∈ Xc and Q contains an atom Child(x, y) then there is an i in24

1, . . . , n with y ∈ X i
c;25

(c) for each i = 1, . . . , n, X i
a = Xa ∪Xc; and26

(d) for each i = 1, . . . , n, if x ∈ X i
c and Q contains an atom27

– NextSibling(x, y), then i < n and y ∈ X i+1
c ;28

– NextSibling∗(x, y), then there exists a j, i ≤ j ≤ n such that29

y ∈ Xj
c .30

In order to complete the proof of the lemma, we need to prove that31

(1) A can be constructed from Q in exponential time; and32

(2) L(A) = L(Q).33

Concerning (1), it is clear that States(A) and Final(A) can be computed
in time exponential in |Q|. For Rules(A), we prove that we can compute a
non-deterministic finite word automaton (NFA) N that accepts, for every
(Xa, Xc, Xd) ∈ States(A) and a ∈ Alpha(A), the language L(R) in the rule

ρ =
(

(Xa, Xc, Xd), a
)

→ R.

Since the alphabet of N is States(A), we know that every symbol it reads34

satisfies (S1)–(S4). Furthermore, (R1) does not need to be checked by N ,35

8 Henrik Björklund et al.

but rather by the algorithm that constructs A, when deciding whether or not1

to define a transition rule of the form of ρ. Hence, we only have to enforce2

(R2.a)–(R2.d).3

We next describe N ’s accepting condition and the information that N
needs to remember when reading a word. As N only needs to maintain a
polynomial amount of information at the same time, it should be clear that
N needs only an exponentially large set of states. A state of N consists of
(X∪

c , X
∪
d , Yns, Yns∗), where the components are defined as follows. Suppose

that N has read the prefix

(X1
a , X

1
c , X

1
d) · · · (X

k
a , X

k
c , X

k
d)

of a word (X1
a , X

1
c , X

1
d) · · · (X

n
a , X

n
c , X

n
d). Then4

– X∪
c := X1

c ∪ · · · ∪Xk
c ,5

– X∪
d := X1

d ∪ · · · ∪Xk
d ,6

– Yns := {y | x ∈ Xk
c and NextSibling(x, y) occurs in Q}, and7

– Yns∗ := {y | ∃i with 1 ≤ i ≤ k such that x ∈ X i
c, y 6∈ X i

c ∪ · · · ∪ Xk
c , and8

NextSibling∗(x, y) occurs in Q}.9

When reading symbol (Xk+1
a , Xk+1

c , Xk+1
d), N checks whether10

– Xk+1
c ∩ (X∪

c ∪X∪
d) = ∅, to partially ensure (R2.a);11

– Xk+1
d ∩ (X∪

c ∪X∪
d) = ∅, to partially ensure (R2.a);12

– Xk+1
a = Xa ∪Xc, to ensure (R2.c); and13

– Yns ⊆ Xk+1
c , to ensure (R2.d)’s NextSibling-constraint.14

and it changes its state to (X ′∪
c , X

′∪
d , Y

′
ns, Y

′
ns∗) as follows:15

– X ′∪
c = X∪

c ∪Xk+1
c ;16

– X ′∪
d = X∪

d ∪Xk+1
d ;17

– Y ′
ns = {y | x ∈ Xk+1

c and NextSibling(x, y) occurs in Q};18

– Y ′
ns∗ = (Yns∗ −Xk+1

c) ∪ {y | x ∈ Xk+1
c , y 6∈ Xk+1

c , and NextSibling∗(x, y)19

occurs in Q}.20

Finally, N accepts if21

– Xd = X∪
c ∪ X∪

d , to ensure (R2.a), together with the above conditions on22

the transitions;23

– for each x ∈ Xc such that Child(x, y) occurs in Q, we have x ∈ X∪
c , to24

ensure (R2.b);25

– Yns = ∅, to ensure (R2.d)’s NextSibling constraints; and26

– Yns∗ ⊆ Xk
c , to ensure (R2.d)’s NextSibling∗ constraint.27

(2) A simple induction on the depth of a tree is sufficient to show that A28

recognizes the language L(Q) defined by the query. In particular, for every29

tree t, each satisfaction of Q on t induces an accepting run of the automaton30

A on t. �31

It is now easy to derive the following theorem, showing that containment32

of conjunctive queries with respect to NTAs is in 2EXPTIME. We note that33

Conjunctive Query Containment over Trees using Schema Information 9

this upper bound is not really new. It can be obtained by composing the expo-1

nential translation of [28] from CQs to Core XPath and the polynomial time2

translation of [44] from Core XPath expressions to two-way alternating tree3

automata. The result now follows as emptiness testing of two-way alternating4

tree automata is in EXPTIME [46]. However, we give this self-contained proof5

here, as the construction of Lemma 4 will be re-used in Lemma 18 later in the6

paper.7

Theorem 5 Containment of CQs w.r.t. an NTA is in 2EXPTIME.8

Proof We reduce the containment problem to testing intersection emptiness of9

three NTAs, whose sizes are at most doubly exponential in the size of the input.10

The result then immediately follows, as intersection emptiness testing for three11

NTAs is in PTIME (see, e.g., Theorem 19(1) in [34]). Let A be the schema12

NTA and let P and Q be the queries. According to Lemma 4, we can compute13

in exponential time two automata AP and AQ such that L(AP) = L(P) and14

L(AQ) = L(Q). It is well-known that the complement NTA AQ of AQ can15

be computed in exponential time from AQ (which is already exponentially16

large). Hence, the containment problem reduces to testing whether L(A) ∩17

L(AP) ∩ L(AQ) = ∅, where each of these three NTAs can be computed in18

doubly exponential time. �19

3.2 Complexity Lower Bounds20

In this section, we prove the following result.21

Theorem 6 Validity of CQ(Child,Child+) with respect to tree automata is22

2EXPTIME-complete.23

Furthermore, 2EXPTIME-hardness holds even if the tree automaton has a24

constant-size alphabet (we use nine different labels in the proof).25

The upper bound in Theorem 6 follows from Theorem 5. We show the26

corresponding lower bound by reduction from the word problem for alternating27

exponential space bounded Turing machines, which is 2EXPTIME-hard [13].28

The overall idea of our proof is as follows. Let M be a given alternating29

Turing machine (ATM) M and w a word of length n. For technical reasons,30

we first construct, in polynomial time, an ATM Mw which accepts the empty31

word if and only if M accepts w. From Mw we construct an NTA ACT that32

checks most important properties of (suitably encoded) computation trees t33

of Mw, except their consistency with respect to the transition relation of Mw.34

Furthermore, we construct a Boolean query QCT that is satisfied by a com-35

putation tree t in L(ACT) if and only if the transition relation of Mw is not36

respected by t. Altogether, QCT is valid with respect to ACT , if and only if37

there does not exist a consistent, accepting computation tree for Mw. Since38

2EXPTIME is closed under complementation, we conclude that validity of39

CQs with respect to NTAs is 2EXPTIME-hard.40

10 Henrik Björklund et al.

3.2.1 Alternating Turing Machines1

An alternating Turing machine (ATM) [13] is a tuple M = (Q,Σ, Γ, δ, q0)2

where Q = Q∀ ⊎ Q∃ ⊎ {qa} ⊎ {qr} is a finite set of states partitioned into3

the universal states Q∀, the existential states Q∃, an accepting state qa, and4

a rejecting state qr. The (finite) input and tape alphabets are Σ and Γ , re-5

spectively, with Σ ⊆ Γ . We assume that the tape alphabet contains a special6

blank symbol “ ”. The initial state of M is q0 ∈ Q. The transition relation δ7

is a subset of (Q× Γ)× (Q× Γ × {L,R, S}). The letters L, R, and S denote8

the directions left, right, and stay in which the tape head is moved.9

A configuration of M is a word w1qw2 where w1, w2 ∈ Γ ∗ and q ∈ Q. Here,10

w1qw2 denotes thatM ’s work tape contains the word w1w2, followed by blanks,11

that its tape head points to the first symbol of w2, and that M is in state12

q. The successor configurations of w1qw2 are defined as for standard Turing13

Machines. For configurations κ1, κ2, and transition τ , we denote by κ1 ⊢τ κ214

that M can move from κ1 to κ2 by performing transition τ . When q = qa or15

q = qr, we say that w1qw2 is a halting configuration. We can assume without16

loss of generality that no halting configuration has a successor configurations,17

and that each non-halting configuration has precisely two different successor18

configurations. Furthermore, we can assume without loss of generality that19

each halting configuration is of the form qw, i.e., M moves its head to the20

beginning of the tape before halting.21

A computation tree of M on an input word w is a (possibly infinite) tree t22

labeled with configurations of M , such that t’s root bears the label q0w and,23

for each node u labeled with w1qw2,24

– if q ∈ Q∃, then u has exactly one child v, which is labeled with a successor25

configuration of w1qw2,26

– if q ∈ Q∀, u has two children and, for each successor configuration w′
1q

′w′
227

of w1qw2, u has a child v labeled with w′
1q

′w′
2, and28

– if q ∈ {qa, qr}, then u is a leaf.29

A computation tree is accepting if all its branches are finite and each leaf is30

labeled with a configuration in state qa. The language L(M) accepted by M31

is the set of words w for which there exists an accepting computation tree of32

M on w.33

An ATM is said to be normalized if each universal step only affects the state34

of the machine, and additionally, the machine always goes from a universal35

state to an existential, or vice versa. To be more precise, if q ∈ Q∃ (resp.,36

q ∈ Q∀) and a ∈ Γ , then {p | ((q, a), (p, b,D)) ∈ δ} ⊆ Q∀ ∪ {qa, qr} (resp.,37

⊆ Q∃ ∪ {qa, qr}). Moreover, if q ∈ Q∀ and ((q, a), (p, b,D)) ∈ δ, then b = a38

and D = S. Any ATM can be reduced in polynomial time to a normalized39

ATM that accepts the same language. Thus, in the sequel, we assume that40

all ATMs are normalized. There is a (normalized) exponential space bounded41

ATM whose word problem is 2EXPTIME-hard [13].42

In our reduction, we will work with an ATM without input. In order to43

do this, given an ATM M whose word problem is 2EXPTIME-complete, and44

Conjunctive Query Containment over Trees using Schema Information 11

CT

r CT

r

CT

r

Fig. 1 A part of an encoded configuration tree. The CT -labeled nodes define the structure
of the actual configuration tree of Mw, while the subtrees with root label r encode the actual
configurations of Mw.

an input word w, we first construct an ATM Mw that, when given the empty1

word as input, works in space exponential in |w| and accepts if and only if M2

accepts w. This is achieved by letting Mw start by writing w on its work tape3

and return to the first tape position. After this, it simulates M .4

Let M be a normalized exponentially space bounded ATM and w ∈ Σ∗
5

an input for M of length n. Let Mw = (Q,Σ, Γ, δ, q0) be constructed from M6

and w as described above. We may assume that the non-blank portion of the7

tape of the computation of Mw on the empty word ε is never longer than 2n.8

3.2.2 The Encoding9

The NTA we construct from Mw will recognize encoded computation trees of10

Mw. We now descibe how this encoding works, i.e., how we represent compu-11

tation trees and configurations in the reduction.12

Encoding Computation Trees The encoding of computation trees is illustrated13

in Figure 1. More formally, let t be a computation tree of Mw. The encoded14

computation tree enc(t) is obtained from t by replacing each node u with a15

tree tu, where16

– the root(tu) is labeled CT ;17

– the leftmost child of root(tu) is labeled r (and is root of the subtree that18

encodes the actual configuration at u in t); and19

– for each child ui of u, root(tu) has a subtree enc(t/ui) where t/ui denotes20

the subtree of t rooted at ui.21

Hence, Figure 1 shows a fragment of an encoded computation tree representing22

a universal configuration (left), and its two successor configurations (right). We23

know that the CT -labeled node on top represents a universal configuration,24

because it has two CT -labeled children.25

Encoding Configurations We encode a configuration of Mw as a sequence of 2n26

configuration cells. Such a cell contains the content of a tape cell of Mw, plus27

some additional information. In particular, the configuration cell that encodes28

12 Henrik Björklund et al.

the tape cell currently visited by Mw also contains information about the1

current state. In addition, we need some information that will be used to verify2

that the transitions ofMw are respected. Before describing the details, we need3

the following convention for talking about transitions. If τ = ((q1, a), (q2, b,m))4

is a transition of Mw, then we say that q1 is the from-state of τ , that a is the5

read-symbol, q2 is the to-state, b is the write-symbol, and m is the direction.6

We use three types of configuration cells:7

– The set BCells of basic cells is equal to Γ . These cells represent tape cells8

that are not currently visited by the tape head and also were not visited9

in the last configuration.10

– The set CCells of current tape-head cells is equal to Γ × δ. These cells11

represent tape cells that are currently visited by the tape head. The letter12

from Γ represents the cell content, while the transition from δ represents13

the transition by which Mw arrived in the current configuration. (In the14

initial configuration, we can use an arbitrary element from δ.)15

– The set PCells of previous tape-head cells is equal to Γ × (Q×Γ ×{L,R}).16

These cells represent tape cells that were visited by the tape head in the17

previous configuration, and not in the current one. The letter from Γ rep-18

resents the current cell content, while the triple from Q × Γ × {L,R}19

represents the machine state in the previous configuration, the cell content20

in the previous configuration, and the direction, left or right, the tape head21

took when it left the cell. We call these the previous symbol, previous state,22

and direction of the cell, respectively.23

We use C = {c1, . . . , ck} = BCells ∪ CCells ∪ PCells to denote the set of all24

configuration cells.25

Configurations ofMw will be encoded by sequences of 2n configuration cells26

from C. For such a sequence to correctly encode a configuration, we require27

that exactly one of its configuration cells α = (a, τ) belongs to CCells. We also28

require the following:29

– If the direction of τ is S (for stay), then there are no cells from PCells in30

the encoding.31

– If the direction of τ is R (for right), then there is exactly one tile β from32

PCells in the sequence. It is placed to the left of α. The cell content of β,33

i.e., the current symbol it represents, is the write symbol of τ , its previous34

symbol is the read symbol of τ , its previous state is the from-state of τ and35

its direction is R. A symmetrical condition is imposed if the direction of τ36

is L.37

The reason for this somewhat convoluted encoding is that it enables us to38

propagate information from one configuration encoding to the next. Let Conf139

and Conf2 be two sequences of 2n configuration cells that correctly encode40

two configurations of Mw. We will argue how a few simple constraints can41

ensure that Conf2 encodes a valid successor configuration of Conf1. To this42

end, think of Conf2 as lying on top of Conf1 in the obvious manner (i.e., the43

leftmost configuration cell of Conf2 lying on top of the leftmost configuration44

Conjunctive Query Containment over Trees using Schema Information 13

cell of Conf1, etc.). We divide the set of constraints into two: a set of hor-1

izontal constraints ensuring consistency inside Conf1 and inside Conf2, and2

a set of vertical constraints ensuring consistency between Conf1 and Conf2.3

These constraints are similar to those used in tiling games [15]. Actually, the4

next part of our reduction constructs a special case of tiling games that is still5

2EXPTIME-complete.6

The set H(Mw) of horizontal constraints enforces the following rules:7

(H1) To the left of cells of the form (a, τ) ∈ CCells such that the direction of8

τ is R, there is always a cell β ∈ PCells such that9

– the direction of β is R,10

– the current symbol of β is the write symol of τ ,11

– the previous symbol of β is the read symbol of τ ,12

– the previous state of β is the from-state of τ .13

The converse also holds, i.e., such cells from CCells are the only ones14

allowed to the right of such cells from PCells.15

(H2) To the right of cells of the form (a, τ) ∈ CCells such that the direction16

of τ is L, there is always a cell β ∈ PCells such that17

– the direction of β is L,18

– the current symbol of β is the write symol of τ ,19

– the previous symbol of β is the read symbol of τ ,20

– the previous state of β is the from-state of τ .21

The converse also holds, i.e., such cells from CCells are the only ones22

allowed to the left of such cells from PCells.23

(H3) The only cell allowed to the right of a blank cell ∈ BCells is .24

The set V (Mw) of vertical constraints enforce the following rules.25

(V1) On top of a cell a ∈ BCells, the only allowed cells are a itself and any26

(b, τ) ∈ CCells such that the direction of τ is either L or R and b = a.27

(V2) On top of a cell (a, τ) ∈ CCells, the only allowed cells are28

– any β ∈ PCells such that the previous symbol of β is a and the29

previous state of β is the to-state of τ , and30

– any (b, τ ′) ∈ CCells such that the from-state of τ ′ is the to-state of τ ,31

the read letter of τ ′ is a, the write letter of τ ′ is b, and the direction32

of τ ′ is S.33

(V3) On top of a cell (a, (q, a′,m)) ∈ PCells, the only allowed cells are34

– b ∈ BCells such that b = a, and35

– any (b, τ) ∈ CCells such that b = a and the direction of τ is L or R.36

Condition (V1) encodes that Mw just moved to the current position from the37

left or from the right. The current position is not overwritten.38

Figure 2 shows an example of a valid transition from C1 to C2 with respect39

to the horizontal and vertical constraints.40

We now prove the following observation.41

Observation 7 Let Conf1 ∈ C∗ encode a configuration κ1 of Mw and let42

Conf2 ∈ C∗. Then, the following are equivalent:43

14 Henrik Björklund et al.

PCell

c

(q1, b, R)

CCell

a
(

(q1, b), (q2, c, R)
)

CCell

b
(

(q, e), (q1, b, S)
)

BCell

a

· · ·

· · ·

· · ·

· · ·

Fig. 2 A representation of a Turing Machine transition. The transition used is τ =
((q1, b), (q2, c, R)), i.e., the machine is in state q1, reads symbol b, writes a c, and moves
to the right. The encoding of the cell where the head originally was (the upper left cell)
“remembers” the previous state and tape symbol, so that the horizontal constraints can
verify that the transition τ was actually allowed from the previous configuration.

– Conf2 has exactly one cell (a, τ) from CCells and both H(Mw) and V (Mw)1

are satisfied.2

– Conf2 encodes a configuration κ2 of Mw such that κ1 ⊢τ κ2.3

Proof Let Conf1 = α1 · · ·αn and Conf2 = β1 · · ·βn, where each αi, βi ∈ C.4

We first assume that all the constraints (H1–H3,V1–V3) hold and that5

Conf2 has exactly one cell (a, τ) ∈ CCells, with τ = ((p1, b), (p2, c,m)). Since6

Conf2 has only one cell from CCells, we know from (H1) and (H2) that it also7

has at most one cell from PCells. For the remainder of the proof, we make a8

case distinction on whether a cell from PCells is present in Conf2 or not.9

Let us first consider the case where Conf2 has no cell from PCells. Since10

Conf1 encodes a configuration of Mw, we know that there is a unique i ∈11

{1, . . . , n} such that αi ∈ CCells. Since Conf2 has no cell from PCells, we12

know from (V2) that βi = (a, τ) is the unique cell from CCells in Conf2.13

Let (b0, ((q1, c0), (q2, a0,m
′))) be the cell from CCells in Conf1. From (V2) we14

get that b0 = b, q2 = p1, a0 = a, and m = S. This means that transition15

τ is possible from the configuration encoded by Conf1 and that the result of16

applying it is to write an a and let the tape head stay where it is. In all positions17

except i we know that Conf1 has a cell αj from BCells ∪ PCells. Constraints18

(V1) and (V3) therefore imply that, on top of each such cell αj is a cell βj19

that represents the same tape symbol. Thus we can conclude that Conf2 indeed20

represents a configuration that can be reached from the configuration encoded21

by Conf1 by applying transition τ .22

Next, we consider the case where Conf2 has exactly one cell from PCells.23

Let αi = (b0, ((q1, c0), (q2, a0,m
′))) be the unique cell from CCells in Conf1.24

The vertical constraints imply that cells from PCells are only allowed on top of25

cells from CCells. Thus βi is the unique cell from PCells in Conf2. Constraint26

(V2) implies that βi is of the form (y, (q2, x),m
′), for some y ∈ Γ and m′ ∈27

{L,R}. We assume that m′ = R (the other case is symmetrical).28

Conjunctive Query Containment over Trees using Schema Information 15

By constraint (H1), the cell to the right of the cell from PCells in Conf21

must belong to CCells. We know that this cell is (a, ((p1, b), (p2, c,m))). By2

using (H1) we know that y = c, x = b, q2 = p1, and m = m′ = R. This3

means that transition τ was possible from the configuration encoded by Conf14

and that τ writes a c and moves the head to the right. Thus βi in Conf2 (the5

unique cell from PCells) represents the correct tape symbol y = c. By the same6

argument as above, all other cells represent the same tape symbols in Conf27

as in Conf1 and we can conclude that Conf2 indeed represents a configuration8

that is reachable from the configuration encoded by Conf1 by applying τ .9

For the other direction, we assume that Conf2 encodes that we arrived at10

κ2 by τ = ((p1, b), (p2, c,m)) and that κ1 ⊢τ κ2. It follows immediately that11

Conf2 has exactly one cell from CCells and that this cell has the form (a, τ),12

for some a ∈ Γ . It is also immediate that the horizontal constraints (H1)–(H3)13

hold for Conf2. We have to show that (V1)–(V3) are satisfied as well. Let i be14

the index of the tape cell the machine head was visiting in κ1. Then all cells15

of Conf2 other than i and (possibly) i− 1 or i+ 1 will belong to BCells ∪ { }16

and will represent the same tape symbol as the corresponding cells in Conf1.17

Thus the vertical constraints hold for these cells.18

If m = S, i.e., if τ is a stay transition, then the vertical constraints trivially19

hold for the cells at indices i− 1 and i+1 as well and Conf2 will have (a, τ) at20

index i, which satisfies all the vertical constraints. If m = R the tape head will21

have moved right. In this case, Conf2 has a cell from PCells at index i and a22

cell from CCells at index i+1. The definition of encoding a transition ensures23

that the cell at index i represents the tape symbol c, i.e., the symbol that is24

written by τ . The tape symbols at indices i − 1 and i + 1 remain unchanged,25

which ensures that all vertical constraints are satisfied. The case for m = L is26

symmetrical. �27

Encoding Configurations as Trees The most crucial part of the reduction is to28

use the query to detect when the transition relation of Mw is violated. To be29

able to do this, the query must be able to navigate from a node representing30

tape cell i in one configuration tree to the node representing cell i in a successor31

configuration. We now describe how the configurations of Mw will be encoded32

as trees, thereby filling in the remaining structure of the empty r-rooted trees33

in Figure 1.34

Recall that C = {c1, . . . , ck} is the set of all distinct cell types we need to35

encode configurations of Mw. The size k of this set is polynomial in the size36

of Mw.37

As we can assume without loss of generality that Mw never uses more38

than 2n tape cells, we can encode configurations into the leaves of full binary39

trees of height n, where each leaf represents a configuration cell. For technical40

reasons, the configuration cells will not be represented by labels, but rather41

by configuration cell gadgets. Also, each node except the root will be equipped42

with a navigation gadget that signals whether the node is the left or right child43

of its parent.44

16 Henrik Björklund et al.

c

m

0

1

0

0

f

0

1

0

1
(a) A cell gadget encoding
configuration cell 2 in a sys-
tem with 4 possible configu-
ration cells, where configura-
tion cells number 2 and 4 are
not allowed on top of config-
uration cell 2.

r

s

s

p

0

1

s s

s

p

1

0

s s

p

0

1

s

(b) A tree containing skeleton nodes (labeled s).
Skeleton nodes that are the left (resp., right) s-child
of their parent have a p, 0, 1 (resp., p, 1, 0) gadget.

Fig. 3 Gadgets for the CQ validity proof.

A configuration tree is obtained from a full binary tree B of height n as1

follows. The root gets label r and the other nodes label s. The s-labeled nodes2

are called skeleton nodes. To each skeleton node v we attach a little gadget3

indicating whether v is a left or a right child in B. More precisely, we attach4

a path of length 3 labeled with p, 0, 1, respectively, to left children and a path5

labeled with p, 1, 0 to right children; see Figure 3(b).6

Thus, left and right children can be distinguished by the distance (1 or 2) of7

their 1-labelled gadget node from their p-labelled gadget node. More precisely,8

a skeleton node v at level i of a configuration tree and a skeleton node u at9

level i of a successor configuration tree are both left or both right children, if10

the nodes v1 and u1 with label 1 in their respective gadgets have a common11

ancestor which has distance i+ 4 from v1 and i+ 5 from u1.12

Each leaf skeleton node (one that has no skeleton node children) is equipped13

with a configuration cell gadget. We describe the gadget for configuration cell14

ci. The root of the gadget has label c (for cell) and has two children, labeled15

m (for me) and f (for forbidden), respectively. Under the m-labeled node a16

path of length k is attached. On this path, all nodes have label 0, except the17

i-th node from the top, which has label 1. Under the f -labeled node, there is18

also a path of length k, where k = |C|. Here, the jth node from the top has19

label 0 if and only if ci and cj fulfill the vertical constraints (V1)–(V3), i.e,20

if cj is allowed on top of ci. Otherwise, it has label 1; see Figure 3(a). This21

concludes the description of an encoded configuration tree.22

3.2.3 The Reduction23

We now explain how to construct the NTA ACT and the CQ QCT such that24

QCT is valid with respect to ACT if and only if Mw does not have an accepting25

run.26

Conjunctive Query Containment over Trees using Schema Information 17

CT

r

s

p

0

1

s s

p

1

0

s

p

0

1

s s

s

s

CT CT

r

s

p

0

1

s s

p

1

0

s

p

0

1

s s

s

s

CT

Fig. 4 An illustration of part of an encoded computation tree. Consider the two skeleton
nodes labeled with boldface s. They are both at level i = 3 in their respective configuration
trees. If, from the node with label one in the navigation gadget of the left boldface skeleton
node (also in boldface), we go upwards i+ 4 = 7 steps, we reach the root of the part of the
tree depicted here. From the other boldface 1 , if we go i+5 = 8 steps upward, we reach the
same node. This would not have been the case if one of the boldface s nodes, but not the
other, had been a right skeleton child of its parent.

The Automaton Definition The schema is represented by a nondeterministic1

tree automaton ACT . The automaton should accept a tree t if and only if it2

satisfies a number of properties that we explain next. For technical reasons,3

we need t to start at the root with a path of length k, where k is again the4

number of distinct configuration cells corresponding to Mw, to the first CT -5

labeled node. All nodes on this path have label I and each of them has exactly6

one child. Further more, ACT checks the following properties:7

1. The subtree rooted at the highest CT -labeled node is an encoded compu-8

tation tree. This involves the following steps.9

(a) Each CT -labeled node has exactly one child that is labeled r (i.e., the10

root of an encoded configuration tree).11

(b) Only configuration cell gadgets that correctly encode configuration cells12

and vertical constraints of V (Mw) appear.13

(c) Each encoded configuration tree is complete and has the correct height.14

(d) Each skeleton node has a correctly assigned navigation gadget.15

2. The CT -labeled nodes on even depth either have zero or two CT -labeled16

children; the CT -labeled nodes on odd depth either have zero or one CT -17

labeled child. This reflects the alternating universal and existential moves18

of Turing Machine Mw that is assured by the assumption that Mw is nor-19

malized. (Here, we are assuming that k is even, so that the path of I-labeled20

nodes above the highest CT -node has even length. If k is odd, the rules for21

odd and even depths are inversed.)22

18 Henrik Björklund et al.

3. For each CT -labeled node representing a universal configuration, the two1

child CT -labeled nodes represent two encoded configuration trees with two2

different labels from CCells. This means that the two encoded successor3

configurations are different. Recall that Mw is normalized, so that transi-4

tions leaving universal configurations only change the machine state.5

4. All horizontal constraints from H(Mw) are satisfied in the encoded config-6

urations.7

5. The leftmost configuration cell of the highest encoded configuration tree8

is the start configuration cell (, ((q0,), (q0, , S))). Recall that q0 is Mw’s9

start state, and that Mw’s computation starts with an empty tape. This10

verifies that the computation tree starts with the correct initial configura-11

tion of Mw.12

6. Each CT -labeled node without CT -labeled node children has a tree at-13

tached to it that encodes a final configuration, i.e., its leftmost configu-14

ration cell is of the form (a, ((q1, b), (q2, c,M))) ∈ CCells with q2 = qa.15

Recall that qa is the accepting state of Mw and that, before accepting, Mw16

moves its tape head entirely to the left. This verifies that each path in the17

strategy tree leads to an accepting configuration of Mw.18

To construct ACT , we construct an automaton for each of the above properties,19

and use the standard construction for accepting their intersection. Each prop-20

erty can be checked by a tree automaton whose size is polynomial in the size21

of the description of Mw — one can essentially hard code each property into22

an automaton. We briefly describe the automaton A3 for checking Property 3,23

as it is technically the most difficult one.24

If we think of A3 as a bottom up automaton, it starts by reading the con-25

figuration cell gadgets, and assigns states to their roots; if a gadget represents26

a configuration cell θ in CCells, A3 remembers the configuration cell in its27

state, i.e., it enters a state qθ. Otherwise, it assigns a neutral state s. When28

going up to the root of each encoded configuration tree, A3 simply propagates29

the state qθ upwards and checks that the encoded configuration subtree does30

not contain a second θ′ ∈ CCells. When A3 is at the root of an encoded con-31

figuration subtree, it propagates qθ up to the CT -labeled parent. In the next32

transition, when going from two CT -labeled children to a CT -labeled parent33

(see also Fig. 1), it tests whether it visited the two CT -labeled children in two34

different states qθ 6= qθ′ , i.e., whether the attached encoded configuration trees35

contained different configuration cells θ 6= θ′ from CCells. Together with the36

automaton for Property 2 which checks that CT -labeled nodes with one and37

two CT -labeled node children alternate correctly, this ensures Property 3.38

The query We first define a formula that states that two nodes r1 and r2 are
roots of two successive encoded configuration trees, i.e., encoded configuration
trees such that the second encodes the successor configuration of the first.

Succ(r1, r2) ≡ ∃s1, s2 : r(r1) ∧ r(r2) ∧ CT (s1) ∧ CT (s2)

∧Child(s1, r1) ∧ Child(s2, r2) ∧Child(s1, s2)

Conjunctive Query Containment over Trees using Schema Information 19

∗ s

s s

s s

p s s

p s s

1 s s

1 s

ch
ild

+

ch
il
d
+

ch
il
d
i+

4

ch
ild

i
+
5

Φ
i (x, y)

(px)

(tx)

(py)

(ty)

Ψ
1(x

1 , y1)

Ψ
2(x

2 , y2)

Ψn−2(xn−2 , yn−2)
Ψn−1(xn−1 , yn−1)

Ψn(s1 , s2)

Fig. 5 Graphical representation of the queries Ψi(x, y) and SameCell(s1, s2) from the proof
of Theorem 6. The small labels in parentheses denote the variable names used in the proof.

Next, we define a formula to state that two nodes x and y belong to successive1

encoded configuration trees and are both at level i > 0 of their respective2

encoded configuration tree. Here, Childi(x, y) abbreviates the formula stating3

that y can be reached from x by following the Child -axis i times.4

Φi(x, y) ≡ ∃r1, r2 : s(x) ∧ s(y) ∧ Succ(r1, r2) ∧Childi(r1, x) ∧ Childi(r2, y)

Now we can express that x and y have the property Φi and, additionally, that5

they are either both left children of their parents, or both right children.6

Ψi(x, y) ≡ ∃px, py, tx, ty, z : Φi(x, y) ∧ p(px) ∧ p(py) ∧ 1(tx) ∧ 1(ty)

∧Child(x, px) ∧ Child(y, py) ∧ Child+(px, tx) ∧Child+(py, ty)

∧Childi+4(z, tx) ∧ Childi+5(z, ty)

For a graphical representation of the subquery Ψi(x, y) (and the subquery7

SameCell(s1, s2) defined below), see Figure 5.8

With the help of the above predicates, we can now express that two leaf
skeleton nodes belong to successive encoded configuration trees and that they
correspond to the same position in the configurations. Recall that n is the
depth of the encoded configuration trees.

SameCell(s1, s2) ≡

∃x1, . . . , xn−1, y1, . . . , yn−1 :
∧

1≤i<n−1

(Child(xi, xi+1) ∧Child(yi, yi+1))

∧Child(xn−1, s1) ∧ Child(yn−1, s2) ∧ Ψn(s1, s2) ∧
∧

1≤i≤n−1

Ψi(xi, yi)

20 Henrik Björklund et al.

Finally, we are ready to define our query QCT for the Turing Machine Mw,
which states that somewhere, a vertical constraint of V (Mw) is violated. Recall
that k is the number of configuration cells in CT .

QCT ≡ ∃s1, s2, t1, t2, f1,m2, p1, p2, z : SameCell(s1, s2)

∧ Child(s1, t1) ∧ Child(s2, t2) ∧ f(f1) ∧m(m2) ∧ 1(p1) ∧ 1(p2)

∧ Child(t1, f1) ∧Child(t2,m2) ∧Child+(f1, p1) ∧ Child+(m2, p2)

∧ Childn+k+3(z, p1) ∧ Childn+k+4(z, p2)

For a graphical representation of QCT , see Figure 6. Intuitively, it will match1

a computation tree if it can find two successive configurations such that there2

is a position i where the cell in the second configuration is not allowed on top3

of the first configuration according to the vertical constraints. It does this by4

inspecting the cell gadgets representing the position in the two configurations.5

In the higher configuration, it looks for a 1, matched by query variable p1,6

on the f -branch of the gadget, indicating that the corresponding cell is not7

allowed on top of the current one. It then verifies that the gadget in the second8

configuration has a 1, matched by p2 at the same depth of its m-branch,9

indicating that it is an instance of the forbidden cell.10

Summary This concludes the proof of Theorem 6. We have shown that given11

an EXPSPACE alternating Turing machine M and a word w, we can con-12

struct a nondeterministic tree automaton ACT and a CQ(Child ,Child+) QCT13

in polynomial time, such that QCT is valid with respect to ACT if and only if14

M has no accepting run on w. Since 2EXPTIME is closed under complement,15

this shows that CQ(Child ,Child+) validity (and thus also containment) with16

respect to an NTA is 2EXPTIME-hard.17

3.2.4 DTDs18

Actually, the 2EXPTIME lower bound from Theorem 6 can even be strength-19

ened to the case where the schema is just a DTD instead of a tree automaton.20

The main technical observation one has to make is stated in Lemma 8,21

which was probably first published in [43].22

Let A be an NTA. We define the annotated tree language of A to be the set23

of trees in L(A) that are annotated by accepting runs of A. More formally, the24

annotated tree language of A is the set of trees t over Alpha(A) × States(A)25

where26

– πAlpha(A)(t) ∈ L(A) and27

– πStates(A)(t) is an accepting run of A on πAlpha(A)(t).28

Here, πAlpha(A)(t) denotes the projection of t on Alph(A), that is, πAlpha(A)(t)29

is obtained from t by relabeling each label (a, q) to a. (Similarly, πStates(A)(t)30

relabels each (a, q) to q.)31

Conjunctive Query Containment over Trees using Schema Information 21

∗

∗

CT

r CT

r

s

p s

1 p

CT 1

r CT

r

s

c p s

f 1 p c

∗ 1 m

1 1

ch
ild

1

child 1

chil
d
1+

4

child 1+
5

ch
ild

n

child n

child
n+4

childn+5

chi
ld
n+

k+
3 childn+k+4

(x1)

(px)

(tx)

(r1)

(s1)

(r2)

(s2)

(y1)

(py)

(ty)

(p1)

(z)

(xn)

(t1)

(f1)
(tx)

(px)

(r1)

(s1)

(r2)

(s2)

(yn)

(py)

(ty)

(t2)

(m2)

(p2)

(z)

(z)

Fig. 6 Graphical representation of QCT from the proof of Theorem 6. The small labels in
parentheses denote the variable names used in the proof.

Lemma 8 ([43]) Given an NTA A, there exists a DTD DA that recognizes1

the annotated tree language of A. Moreover, DA can be constructed in quadratic2

time.3

Theorem 9 Validity of CQ(Child,Child+) with respect to a DTD is 2EXP-4

TIME-complete.5

Proof We describe the changes that have to be made to the proof of Theo-6

rem 6. Let DACT
be the DTD accepting the annotated tree language of ACT .7

Hence, DACT
defines trees over Alpha(ACT) × States(ACT). For our reduc-8

tion, we cannot simply use the set of annotated trees of ACT , as this would9

require disjunction over alphabet symbols in the definition of the conjunctive10

query QCT . Hence, the schema DTD DCT is obtained from DACT
by replacing11

22 Henrik Björklund et al.

each rule of the form (a, q) → L(a,q) where a ∈ {CT, r, s, p, 0, 1, c,m, f} with1

(a, q) → L(a,q) · a. Hence, we change L(DCT) such that, in each of its trees,2

each (a, q)-labeled node gets an a-labeled child.3

It remains to describe how QCT changes: here, we simply need to replace4

each atom of the form a(x) (where a ∈ {CT, r, s, p, 1,m, f}) with Child(x, y)∧5

a(y). The rest of the proof carries through. �6

Theorem 9 also implies that validity with respect to a DTD becomes 2EXP-7

TIME-complete for XPath patterns with the path intersection operator (as in8

XPath 2.0). We discuss this more precisely in Section 6.9

4 Satisfiability10

Satisfiability of CQs with respect to NTA has a drastically lower complexity11

than validity. In this section, we show that the problem is NP-complete. Fur-12

ther more, we show that the lower bound holds already for DTDs and CQs13

that only use one axis.14

4.1 Complexity Upper Bounds15

In this section, we show that testing satisfiability for CQs with respect to a16

nondeterministic tree automaton is in NP. The idea is a kind of small model17

property for such queries. The small model is obtained by fairly standard18

cutting and pumping techniques (see also, e.g., [7, Lemma 1] or [27, Theorem19

2, Theorem 3]). We start with the following lemma.20

Lemma 10 There is a polynomial p such that if a CQ Q is satisfiable with21

respect to an NTA A, then there is a tree t ∈ L(Q) ∩ L(A) and a satisfaction22

θ of Q on t such that for all variables x, y ∈ Var(Q), the length of the path23

from θ(x) to θ(y) is at most p(|A|, |Q|).24

Proof Let t be a tree such that t |= Q and t ∈ L(A), let θ be a satisfaction of25

Q on t, let T = {θ(x) | x ∈ Var(Q)}, and let r be an accepting run of A on26

t. Furthermore, let S be the set of nodes that are lowest common ancestors of27

some subset of T of size at least 2.28

Suppose that there exists a simple path ρ between two distinct vertices u29

and v in T ∪S such that u is an ancestor of v, there are no nodes in T ∪S on ρ,30

and the length of ρ is more than |States(A)|·|Σ|+1. Notice that all descendants31

in T of nodes on ρ are also descendants of v. Towards a contradiction, assume32

that w is the lowermost node on ρ that has a descendant w′ ∈ T that is not33

a descendant of v. Then w would be the lowest common ancestor of v and w′
34

and thus belong to S. In other words, no variable of Q is mapped by θ to any35

node in the subtrees that branch off from ρ.36

Then there are two distinct nodes w 6= u and w′ 6= v on ρ such that w is37

an ancestor of w′, r(w) = r(w′), and labt(w) = labt(w′). Let t′ be the tree38

obtained from t by replacing the subtree rooted at w with the one rooted at39

Conjunctive Query Containment over Trees using Schema Information 23

w′. Clearly, r restricted to t′ is still an accepting run of A and θ, restricted1

to t′, is still a satisfaction of Q. This process can be repeated until no nodes2

u, v ∈ T ∪ S can be found that satisfy the above condition. When this is3

achieved, the distance, for any x, y ∈ Var(Q), between θ(x) and θ(y), is at4

most 1 + |Var(Q)| · (|Σ| · |States(A)|+ 1). �5

Lemma 10 gives us the main machinery to prove the general NP upper6

bound on satisfiability:7

Theorem 11 Satisfiability of CQs with respect to an NTA is in NP.8

Proof We can assume w.l.o.g. that the NTA A is reduced, i.e., each state of A9

can be used in an accepting run.3 We know from Lemma 10 that if a query Q10

is satisfiable with respect to an NTA A, then there is a tree t ∈ L(A) and a11

satisfaction θ of Q on t such that for all x, y ∈ Var(Q), the distance between12

θ(x) and θ(y) is small (polynomial). In general, t can be exponentially large.13

If Q is satisfiable with respect to A, however, the NP algorithm can guess14

a polynomial size connected subset t′ of nodes of t and a valuation θ of Q15

on t′. The algorithm also guesses what states an accepting run r of A on t16

would assign to the nodes in t′. It then verifies that θ is a satisfaction of Q17

(in polynomial time), and that t′ can be extended to a tree in L(A) such that18

the states assigned to nodes are consistent with the transitions of A. The last19

check is done as follows. For each node v of t′ with label a and it’s assigned20

state q, let v1, . . . , vn be the children of v in t′, with labels a1, . . . , an and21

assigned states q1, . . . , qn, respectively. As A is reduced we only need to test22

whether there exist transition rules (qi, ai) → Li in A for each 1 ≤ i ≤ n, and23

that there exist z0, . . . , zn ∈ States(A)∗ such that there is a transition rule24

(q, a) → L in A with z0q1z1 · · · zn−1qnzn ∈ L. This last test can be performed25

in polynomial time by a sequence of n reachability tests on the automaton26

representing L. �27

4.2 Complexity Lower Bounds28

We show that our upper bound for satisfiability w.r.t. a schema is tight, in quite29

a strong sense. In particular, when considering a DTD as schema, satisfiability30

is NP-hard for queries using only a single axis, no matter which axis this is.31

For some axes, the result is already known:432

Theorem 12 (Wood [47]) Let Axis be any element of {Child, Child+, Child∗}.33

Then Satisfiability for CQs using only the relation Axis w.r.t. a DTD is NP-34

hard.35

3 Transforming an NTA to a reduced NTA can be done in polynomial time by first per-
forming an emptiness test for every state of A, followed by a reachability test. Section 4.2
of [35] describes an algorithm for reducing a DTD. The algorithm for NTAs is analogous.

4 To the best of our knowledge, the full proof is unpublished. For the convenience of our
readers, we provide Wood’s proof, which he kindly provided in a personal communication.

24 Henrik Björklund et al.

The proof relies on the following Lemma:1

Lemma 13 (Wood [47]) The following problem is NP-hard. Given a regular2

expression R over alphabet Σ, does L(R) contain a string that contains each3

Σ-symbol?4

Proof We reduce from Vertex Cover. Recall that for Vertex Cover we5

are given a graph G = (V,E) and a positive integer k ≤ |V |, and ask whether6

there is a subset V ′ ⊆ V such that |V ′| ≤ k and, for each edge (u, v) ∈ E,7

at least one of u and v belongs to V ′. Let G = (V,E) and k be an arbitrary8

instance of Vertex Cover. We will construct a regular expression R over a9

finite alphabet Σ such that there is a string in L(R) containing each Σ-symbol10

if and only if G has a vertex cover of size k or less.11

Let V = {v1, . . . , vn} and E = {e1, . . . , em}. For each 1 ≤ i ≤ n, let
Ei = {ei,1, . . . , ei,mi

} ⊆ E be the set of edges incident to vi. The alphabet Σ
is given by E ⊎ {#}, where each ei ∈ E, 1 ≤ i ≤ m, is viewed as a distinct
symbol. For each 1 ≤ i ≤ n, let si be the string ei,1 · · · ei,mi

. Let S be the
regular expression

s1 + · · ·+ sn.

Then R = (S#)k−1S, that is, k concatenated occurrences of expression S,12

separated by #-symbols. This means that every word in L(R) is a concatena-13

tion of k strings of edge symbols, separated by #, where each string of edge14

symbols represent the edges incident to some vertex.15

Let V ′ = {vj1 , . . . , vjk} be a vertex cover of size k. We find a string w ∈16

L(R) by concatenating sj1 , . . . , sjk , separated by #. Since V ′ is a vertex cover17

for G, w must include every edge in E and hence every symbol in Σ.18

Let w ∈ L(R) be a string which includes every symbol in Σ. The string w19

must be of the form w = w1#w2# · · ·#wk, where each wi, 1 ≤ i ≤ k, is one of20

the n strings in L(S). Then each wi is equal to sji for some 1 ≤ ji ≤ n. Since21

w contains all symbols in Σ, the set V ′ = {vj1 , . . . , vjk} is a vertex cover for22

G and |V ′| ≤ k. �23

Remark 14 Wood’s Lemma [47] already holds if the regular expression is24

deterministic (sometimes also called one-unambiguous [12]). Intuitively, a reg-25

ular expression is deterministic if, when reading a word from left to right26

without looking ahead, it is always clear where in the expression the next27

symbol can be matched. In DTDs in practice, regular expressions must always28

be deterministic.29

Formally, deterministic regular expressions are defined as follows [12]. Let30

r̄ stand for the RE obtained from r by replacing, for every integer i and31

alphabet symbol a, the i-th occurrence of a in r by ai (counting occurrences32

from left to right). For example, for r = b∗a(b∗a)∗ we have r̄ = b∗1a1(b
∗
2a2)

∗.33

A regular expression r is deterministic (or one-unambiguous) if there are no34

words waiv and wajv
′ in L(r̄) such that a ∈ Σ and i 6= j. For instance, the35

expression (a + b)∗a is not deterministic since both words a2 and a1a2 are in36

L((a1+b1)
∗a2). The equivalent expression b∗a(b∗a)∗ is deterministic. Not every37

regular expression can be determinized, that is, converted to an equivalent38

Conjunctive Query Containment over Trees using Schema Information 25

deterministic regular expression. In fact, deciding if a given expression can be1

determinized is PSPACE-complete [17,33].2

Wood [47] remarks that it may be that the regular expressions in this3

construction are not deterministic. However, the only situation in which the4

regular expression cannot be rearranged so that it is deterministic is when5

there are two nodes which are adjacent to each other and nothing else. In this6

case, the problem is trivial if there are no other nodes. If there are other nodes,7

then the graph is disconnected in which case the problem can be decomposed.8

If we assume that the graph is connected then the regular expression can9

always be made deterministic.10

It is not hard to prove Theorem 12 given Lemma 13:11

Proof (of Theorem 12) By reduction from the problem in Lemma 13. Given12

a regular expression R over Σ, the DTD accepts all trees of depth 2 in which13

the children of the root form a string in L(R), and the CQ tests whether each14

Σ-symbol occurs below the root. �15

Notice that Wood’s proof already shows hardness for CQs for which the un-16

derlying graph is a tree or, even stronger, star-shaped. Indeed, Wood’s original17

result is on XPath queries, which are tree-shaped by design.18

For the remaining cases, we will reduce from the Shortest Common Su-19

persequence problem; or the Shortest Common Superstring problem,20

both of which are known to be NP-complete [42,25]. We say that s is a su-21

persequence of s0 if s0 can by obtained by deleting symbols from s, and s is22

a superstring of s0 if s0 can be obtained by deleting a prefix and a suffix of23

s. The Shortest Common Supersequence (respectively, Shortest Com-24

mon Superstring) problem asks, given a set of strings S, and an integer k,25

whether there exists a string of length at most k which is a supersequence26

(respectively, superstring) of each string in S.27

Theorem 15 Let Axis be an any element of {Child, Child+, Child∗, Next-28

Sibling, NextSibling+, NextSibling∗, Following}. Then, testing Satisfiability for29

CQ(Axis) w.r.t. a DTD is NP-hard.30

Proof Three cases are immediate from Theorem 12. We provide a proof for ev-
ery Axis in {NextSibling, NextSibling+,NextSibling∗, Following}. For NextSibling,
we reduce from Shortest Common Superstring, and for all other axes,
we reduce from Shortest Common Supersequence. To this end, let S
and k be an input of Shortest Common Superstring (resp., Short-

est Common Supersequence). We first provide the proofs for Axis in
{NextSibling,NextSibling+, Following}, and then explain how these can be
adapted for NextSibling∗. The DTD d for the former three cases has only one
rule, namely

r → (a1 + · · ·+ an)
k,

where Σ = {a1, . . . , an}. That is, the DTD defines trees of depth 2, in which31

the root has precisely k children. Let S = {b11 · · · b
n1

1 , . . . , b1m · · · bnm

m }. Then32

26 Henrik Björklund et al.

b11 b21 · · · b
n1

1

...
...

b1m b2m · · · b
nm
m

Fig. 7 Query for the proof of Theorem 15.

the query Q is defined as shown in Figure 7. Here, each arrow denotes Axis. It1

is easy to see that Q is satisfiable w.r.t. d if and only if Shortest Common2

Superstring (resp., Shortest Common Supersequence) has a solution3

for S and k if Axis is NextSibling (resp., Axis is NextSibling+ or Following).4

If Axis is NextSibling∗, we adjust the DTD to

r → ((a1 + · · ·+ an)#)k,

where # does not appear in any word in S. The query Q is adapted so that,5

likewise, between every pair of Σ-symbols, the symbol # must occur. �6

5 Queries with Data Values7

A data tree is a tree in which each node u carries, besides its label lab(u),8

a data value from a countably infinite data domain ∆ (see also [11]).5 We9

write u ∼ v if two nodes in a data tree have the same data value. Conjunctive10

queries over data trees can, in addition to the usual predicates, use the binary11

predicates ∼ and 6∼ with the obvious interpretation. We adopt our notation to12

denote CQ fragments for data values as follows: CQ(∼), CQ(6∼), and CQ(∼, 6∼)13

denote the CQs that use only data equality, only data inequality, and both,14

respectively, and in which all axes are allowed. For Q ∈ CQ(∼, 6∼), L(Q) is the15

set of all data trees t such that there exists a satisfaction of Q on t. Schemas16

do not constrain data values in any way, i.e., the set of data trees L(A) defined17

by an NTA A is defined precisely as in Section 2.2, but with “tree” replaced18

by “data tree”.19

Our problems of interest for queries with data values are the same problems20

as defined in Section 2.3, but with the new definition of L(Q). We first show21

that data values do not change the complexity of the satisfiability and validity22

problems.23

Theorem 16 Satisfiability of CQs(∼, 6∼) w.r.t. an NTA is NP-complete.24

The lower bound just follows from Theorem 15. For the upper bound, the25

proof of Lemma 10 and Theorem 11 straightforwardly carries over to data26

trees.27

The lower bound of the following theorem follows from Theorem 6. The28

upper bound follows from Theorem 20, which subsumes it.29

Theorem 17 Validity of CQ(∼, 6∼) w.r.t. an NTA is 2EXPTIME-complete.30

Conjunctive Query Containment over Trees using Schema Information 27

X \ Y ∼ 6∼ ∼, 6∼

∼ 2EXPTIME 2EXPTIME 2EXPTIME
6∼ 2EXPTIME 2EXPTIME undecidable

∼, 6∼ 2EXPTIME 2EXPTIME undecidable

Table 1 Decidability for Containment(X|Y).

Next, we consider containment w.r.t. a schema. We write

Containment(X |Y)

for the problem of determining whether L(P)∩L(A) ⊆ L(Q) for a query P ∈1

CQ(X), a query Q ∈ CQ(Y) and an NTA A. For instance, Containment(∼ |2

∼, 6∼) is about containment of queries with data equalities in queries with data3

equalities and inequalities.4

As can be seen in Table 1, the consideration of data values does not change5

the complexity of the query containment problem for queries P,Q, unless P is6

allowed to use data inequalities and Q to use both equalities and inequalities.7

In the latter case the problem is undecidable (Theorem 25).8

5.1 Complexity Upper Bounds9

The proofs of the upper bounds make use of transformations from certain10

non-data trees to data trees. We define these transformations next.11

We assume that ∆ contains pairwise distinct values d0, d1, d2, Given a12

finite alphabet Σ and n ∈ N, let Σn, denote the alphabet Σ × {d1, . . . , dn, ∗}.13

The set of (non-data) trees over Σn is denoted T (Σn).14

We define functions f 6∼ and f∼, mapping trees from T (Σn) to data trees.15

They leave the sets of vertices and edges unchanged. In a nutshell, both func-16

tions map nodes with label (a, di) to nodes with label a and data value di.17

They differ in how nodes with labels (a, ∗) are handled: f∼ maps all these18

nodes to nodes with label a and the same data value d0, whereas f 6∼ maps all19

those nodes to nodes with different data values. More formally, f∼ and f 6∼ fulfil20

the following conditions, for every tree t ∈ T (Σn), for some d0 6∈ {d1, . . . , dn}.21

1. If labt(v) = (a, di), for a ∈ Σ and i ∈ {1, . . . , n}, then node v of f∼(t) and22

f 6∼(t) have label a and data value di.23

2. If labt(v) = (a, ∗), for a ∈ Σ, then node v of f∼(t) has label a and data24

value d0.25

3. If labt(v) = (a, ∗), for a ∈ Σ, then node v of f 6∼(t) has label a and a data26

value that does not appear elsewhere in the tree.27

Lemma 18 Given a query Q in CQ(∼, 6∼) with n variables, one can construct28

NTAs A∼
Q and A6∼

Q in exponential time such that for each Σn-tree t it holds29

that30

5 We assume ∆ to contain all the data values we use in our proofs and examples.

28 Henrik Björklund et al.

(a) t ∈ L(A∼
Q) if and only if f∼(t) ∈ L(Q), and1

(b) t ∈ L(A6∼
Q) if and only if f 6∼(t) ∈ L(Q).2

Proof The proof is an extension of the proof of Lemma 4 and we use the3

notation and definitions from that proof. We give a proof for statement (b).4

The proof for statement (a) is very similar.5

Given Q ∈ CQ(∼, 6∼), we construct an NTA A over Σn such that t ∈ L(A)6

if and only if f 6∼(t) ∈ L(Q). A state of A has the form (Xa, Xc, Xd, F), where7

Xa, Xc, Xd are as in the proof of Lemma 4 and F : Var(Q) → {d1, . . . , dn, ∗}8

is a function. Formally, (Xa, Xc, Xd, F) ∈ States(A) if (Xa, Xc, Xd) fulfill the9

conditions (S1)–(S4) in the proof of Lemma 4 and additionally10

(S5) if x ∼ y is an atom of Q, then F (x) = F (y) and, if F (x) = ∗, then either11

both x and y belong to Xc, or none of them do, and12

(S6) if x 6∼ y is an atom of Q, then F (x) 6= F (y) or F (x) = F (y) = ∗ and not13

both of x and y belong to Xc.14

A state (Xa, Xc, Xd, F) is accepting if (Xa, Xc, Xd) satisfies conditions15

(F1)–(F2) of the proof of Lemma 4.16

Rules(A): contains all rules of the form17

ρ =
(

(Xa, Xc, Xd, F), (a, λ)
)

→ R, (†)

where (R1) and (R2) from the proof of Lemma 4 are satisfied, and18

(R3) for each x ∈ Xc, we have F (x) = λ;19

(R4) for each (X1
a , X

1
c , X

1
d , F

1) · · · (Xm
a , Xm

c , Xm
d , Fm) ∈ L(R), we have F 1 =20

· · · = Fm = F .21

For the same reasons as in the proof of Lemma 4, automaton A can be22

computed in exponential time. The function F increases the state space by a23

factor of at most |Var(Q)|n. Clearly, thanks to (R4), in each accepting run of24

A, all nodes have the same evaluation function F . We can therefore consider25

this function as independent of a particular node of t.26

We show that L(A) = {t ∈ T (Σn) | f 6∼(t) |= Q}. For the inclusion from left27

to right, let t ∈ L(A) with some accepting run r. We define the valuation θ of28

Q by letting θ(x) be the unique node v satisfying r(v) = (Xa, Xc, Xd, F) with29

x ∈ Xc, for some Xa, Xc, Xd, F . The proof of Lemma 4 immediately implies30

that with this valuation f 6∼(t) satisfies all atoms of Q not involving ∼. We31

claim that f 6∼(t) and θ also satisfy all ∼-atoms of Q.32

Indeed, if x ∼ y is an atom of Q, then, thanks to (S5), F (x) = F (y). Thus,33

x ∼ y is satisfied if F (x) ∈ {d1, . . . , dn}. If F (x) = ∗, again thanks to (S5),34

there must be a node v on which {x, y} ⊆ Xc holds, implying that x ∼ y holds.35

For atoms x 6∼ y we consider two cases: if F (x) = F (y) = ∗, (S6) guar-36

antees that θ(x) 6= θ(y) and by the definition of f 6∼(t) the two nodes have37

different data values. Otherwise, (S6) guarantees that F (x) 6= F (y) and again38

x 6∼ y is satisfied. Hence, f 6∼(t) |= Q.39

40

Conjunctive Query Containment over Trees using Schema Information 29

For the inclusion from right to left, let Q′ be the query resulting from Q1

by removing all (positive and negative) ∼-atoms. Let A′ be the NTA for Q′
2

as guaranteed by Lemma 4.3

Let t ∈ T (Σn) such that f 6∼(t) |= Q and let θ be a satisfaction ofQ on f 6∼(t).4

We define an evaluation function F by letting F (x) be the second component5

of the label of θ(x) in t, for each x ∈ Var(Q).6

Let t′ be the Σ-tree obtained from t by projecting all labels to Σ. It is easy7

to see that t′ |= Q′. Let r′ be an accepting run of A′ on t′ corresponding to θ,8

as it was established in the proof of Lemma 4.9

Let r be obtained from r′ by adding F as fourth component to each state10

r′(v) for nodes v of t. We claim that r is a run of A.11

First of all, we need to show that r only needs states that fulfil (S5) and12

(S6). The first statements of both conditions are immediately guaranteed by13

the definition of F and the fact that θ is a satisfaction of Q. The second14

statement of (S5) holds as well: the satisfaction of each atom x ∼ y by θ and15

the definition of f 6∼(t) guarantee that, in case F (x) = F (y) = ∗, we have16

θ(x) = θ(y), and therefore (S5) holds. Similarly for the second statment of17

(S6).18

In r′ it holds that, for each variable x, there exists exactly one node v with19

a state (Xa, Xc, Xd, F) with x ∈ Xc and v = θ(x). From this (R3) immediately20

follows. Condition (R4) is guaranteed by the construction of r. �21

We next show that if Q ∈ CQ(∼)∪CQ(6∼) then the containment test only22

needs to consider very particular trees.23

Let P be a query with variables from {x1, . . . , xn} and let td be a data24

tree matching P with satisfaction θ. Then we write gn(td, θ) for the Σn-tree25

resulting from td by assigning a label to every node v as follows. If labtd(v) = a,26

– then v gets label (a, dj), if j ∈ {1, . . . , n} is minimal with θ(xj) ∼ v, or27

– v gets label (a, ∗) if no such j exists.28

Lemma 19 Let P,Q ∈ CQ(∼, 6∼) and td be a data tree such that td |= P with29

satisfaction θ but td 6|= Q. Then the following hold.30

(a) f∼(gn(td, θ)) |= P and f 6∼(gn(td, θ)) |= P .31

(b) If Q ∈ CQ(∼) then f 6∼(gn(td, θ)) 6|= Q.32

(c) If Q ∈ CQ(6∼) then f∼(gn(td, θ)) 6|= Q.33

Proof Let P,Q, td, θ be as stated. It is straightforward that θ is a satisfaction34

for P on both f∼(gn(td, θ)) and f 6∼(gn(td, θ)).35

To show (b), let us assume that Q ∈ CQ(∼) and f 6∼(gn(td, θ)) |= Q. Since36

td and f 6∼(gn(td, θ)) only differ on their data values and ∼ on f 6∼(gn(td, θ)) is37

actually a refinement of ∼ on td, we can conclude that td |= Q, a contradiction.38

Therefore, f 6∼(gn(td, θ)) 6|= Q.39

The proof of (c) similarly uses the fact that ∼ on td is a refinement of ∼40

on f∼(gn(td, θ)). �41

We are now ready to state and prove our upper bound results.42

30 Henrik Björklund et al.

Theorem 20 Each of Containment(∼, 6∼ | ∼), Containment(∼, 6∼ | 6∼),1

Containment(∼ | ∼, 6∼), w.r.t. an NTA is 2EXPTIME-complete.2

Proof Hardness is immediate from Theorem 6.3

For the upper bound on Containment(∼, 6∼ | ∼) we observe that from4

Lemma 19 (a) and (b) it follows that if td is a counterexample to the contain-5

ment of P in Q w.r.t. an NTA A then f 6∼(gn(td, θ)) is a counterexample as6

well. The upper bound then easily follows by combining A6∼
P and A6∼

Q as defined7

in Lemma 18 with the NTA An which accepts a Σn-tree t if its Σ-projection is8

accepted by A. The former two automata are of at most exponential size, their9

deterministic counterparts are of at most doubly exponential size and therefore10

it can be tested in doubly exponential time whether L(A6∼
P)∩L(An) ⊆ L(A6∼

Q).11

The upper bound onContainment(∼, 6∼ | 6∼) follows similarly from Lemma12

19 (a) and (c).13

For the upper bound on Containment(∼ | ∼, 6∼) it suffices to observe,14

that if Q uses 6∼ but P does not, then P ⊆ Q holds if and only if L(A) = ∅15

because in this case trees in which all data values are the same never match16

Q. �17

Hence, ∼ and 6∼ do not increase the complexity of query containment as18

long as they do not co-occur in Q. We show next, that the picture changes19

dramatically if they do co-occur and P uses 6∼.20

5.2 Undecidability Results21

We now turn to the proof of undecidability of Containment(6∼ | ∼, 6∼) (and22

thus also: Containment(∼, 6∼ | ∼, 6∼)). We first prove that validity with re-23

spect to an NTA is undecidable for UCQ(∼, 6∼) and show how to adapt that24

to a reduction to Containment(6∼ | ∼, 6∼) later on.25

Theorem 21 Validity of UCQ(∼, 6∼) queries w.r.t. NTAs is undecidable.26

Proof Our proof, inspired by a proof from [40], is by a reduction from Post’s27

Correspondence Problem (PCP). In the proofs of Theorems 23 and 25 below,28

this reduction will be adapted for the respective settings. Some choices in29

the presentation of the reduction were made with these adaptations in mind.30

Readers should thus not be surprised if we do not always choose the most31

obvious option to express properties of trees.32

An instance of PCP over alphabet Γ = {a, b} is a sequence (w1, u1), . . . ,33

(wn, un) of pairs, where wi, ui ∈ Γ+, for i ∈ {1, . . . , n}. A solution to an in-34

stance is a non-empty sequence i1, . . . , im ∈ {1, . . . , n} such that wi1 . . . wim =35

ui1 . . . uim . It is known that the set of PCP instances for which a solution36

exists is undecidable [41].37

Given an instance R = (w1, u1), . . . , (wn, un) of PCP over alphabet Γ , we38

will construct a UCQ Q and an NTA A such that Q is valid with respect to39

A if and only if R has no solution.40

Conjunctive Query Containment over Trees using Schema Information 31

The set Σ of labels to be used by A and Q is defined as {r,#} ⊎ I ⊎ Γ ,1

where2

– r is the root label, # is a separator label, and3

– I = {I1, . . . , In} is a set of index labels.4

In this reduction, solution candidates will be encoded over unary trees.5

The automaton A only accepts unary trees, such that the labels of the tree,6

read from root to leaf, form a word in the language of the regular expression7

r ·
(

(I1 · w1) + · · ·+ (In · wn)
)+

·# ·
(

(I1 · u1) + · · ·+ (In · un)
)+

·#.

Thus, all data trees accepted by A can actually be seen as data words, i.e.,8

words where each position carries a label and a data value. In order to sim-9

plify the terminology in the rest of the proof, we will therefore use standard10

terminology for words to reason about these unary trees. The queries we con-11

struct will be stated as tree queries, but can be read as queries over words12

by interpreting Child as the next position predicate and Child+, Child∗as the13

transitive and the transitive and reflexive closure of Child , respectively.14

For a data word w and a label set X , let w|X be the word over X obtained15

from w by removing all data values and deleting all positions with labels not16

in X .17

If R has a solution, then there is a word rw#u# that is accepted by A18

such that w|Γ = u|Γ and w|I = u|I .19

The intuition behind our proof is as follows. We encode solution candidates20

for R by data words rw#u# such that the following conditions hold.21

(ENC1): No data value appears more than twice below the root.22

(ENC2): The occurence of r and the two occurrences of # have the same data23

value.24

(ENC3): If two positions are at corresponding positions in w|I and u|I , they25

have the same data value.26

(ENC4): If two positions are at corresponding positions in w|Γ and u|Γ , they27

have the same data value.28

(ENC5): The length of w|I equals the length of u|I and the length of w|Γ29

equals the length of u|Γ .30

(ENC6): If two positions have the same data value, they carry the same label,31

unless one carries r and the other #.32

If a data word satisfies the requirements (ENC1)–(ENC6), we say that it is a33

good encoding. We construct Q such that it matches every word accepted by34

A that is not a good encoding. We further show that R has a solution if and35

only if there exists a good encoding that is accepted by A. Hence, Q is valid36

w.r.t. A if and only if R has no solution.37

32 Henrik Björklund et al.

We are next going to define the subqueries of query Q. We can express1

that (ENC1) or (ENC2) is violated by2

Q1 ≡ ∃u, x, y, z : r(u) ∧ Child+(u, x) ∧ Child+(x, y)

∧Child+(y, z) ∧ u ∼ x ∧ x ∼ y ∧ y ∼ z

Q2,r ≡ ∃x, y : r(x) ∧#(y) ∧ Child+(x, y) ∧ x 6∼ y

Q2,# ≡ ∃x, y : #(x) ∧#(y) ∧Child+(x, y) ∧ x 6∼ y

For the remaining conditions we use a binary auxiliary query Separated(x, y)3

that expresses that x is in the first half of the word and y in the second.64

Separated(x, y) ≡ ∃x′, x′′, y′ : #(x′) ∧#(x′′) ∧#(y′)

∧Child+(x, x′) ∧ Child+(x′, x′′) ∧Child+(y′, y)

We next define a query Qw,u parameterized by two words w, u over Σ ∪ {∗}5

which will be used to express violations of conditions (ENC3) and (ENC4).6

In a nutshell, Qw,u expresses that there are positions x1 and y1 of the first7

and second half, respectively, that have the same data value, the subwords8

starting at x1 and y1 match w and u, but their end-positions have different9

data values. Queries of this form will catch many data words that fail to be10

good encodings.11

Let v = v1 · · · vk and z = z1 · · · zℓ be words over Σ ∪ {∗} for some k, ℓ ≥ 2.12

Then we define13

Qv,z ≡ ∃x1, . . . , xk, y1, . . . , yℓ : Separated(x1, y1) ∧ x1 ∼ y1 ∧ xk 6∼ yℓ

∧
k−1
∧

i=1

Child(xi, xi+1) ∧
k
∧

i=1

vi(xi) ∧
ℓ−1
∧

i=1

Child(yi, yi+1) ∧
ℓ
∧

i=1

zi(yi)

Here, ∗(x) has to be interpreted as TRUE.14

We can express that condition (ENC3) is violated by the disjunction of the15

following queries.16

– Qr∗,#∗, expressing that the first I-position after the root and the first17

I-position after the first #, respectively, have different data values.18

– QIiwi∗,Iiui∗, for each i ∈ {1, . . . , n}, expressing that the I-pair following19

some I-pair with equal data values has different data values.20

We note that A makes sure that in all cases the two ∗-positions carry labels21

from I. Notice that these two queries have size polynomial in the PCP instance.22

Violations of condition (ENC4) can be expressed similarly, but there are23

more cases to distinguish due to the possible I-symbols between two Γ -symbols.24

We use the following queries.25

6 This definition is done with the proof of Theorem 23 in the back of our minds and
therefore more complicated than a reader might have expected. In this proof, the reader
should think of x′ and y′ as being mapped to the same node.

Conjunctive Query Containment over Trees using Schema Information 33

– Qr∗∗,#∗∗, expressing that the first Γ -position after the root and the first1

Γ -position after the first #-position, have different data values.2

– Qσ1σ2,τ1τ2 for each combination of σ1, σ2, τ1, τ2 ∈ Γ expressing that a Γ -3

pair with identical data values is immediately followed by a Γ -pair with4

different data values.5

– Qσ1σσ2,τ1τ2 for each combination of σ1, σ2, τ1, τ2 ∈ Γ and σ ∈ I, express-6

ing that a Γ -pair with identical data values is followed by a Γ -pair with7

different data values, but there is an intermediate I-position in the v-word.8

– Qσ1σ2,τ1ττ2 for each combination of σ1, σ2, τ1, τ2 ∈ Γ and τ ∈ I, analo-9

gously, with an intermediate I-position in the z-word.10

– Qσ1σσ2,τ1ττ2 for each combination of σ1, σ2, τ1, τ2 ∈ Γ and σ, τ ∈ I, analo-11

gously, with intermediate I-positions in both words.12

As will be detailed below, (ENC5) does not require an extra query.13

Finally, violations of (ENC6) are expressed by the queries14

Qσ:τ ≡ ∃x, y : σ(x) ∧ τ(y) ∧ x ∼ y,

for every pair (σ, τ) ∈ Σ2 with σ 6= τ and (σ, τ) 6∈ {(r,#), (#, r)}.15

Query Q is the disjunction of all the CQs for (ENC1)–(ENC6) defined16

above.17

We now show that L(A) − L(Q) 6= ∅ if and only if R has a solution. For18

the if-direction, let i1, . . . , im be a solution for R. Let w = Ii1 ·wi1 . . . Iim ·wim19

and u = Ii1 ·ui1 . . . Iim ·uim . Let s be a data word with label sequence rw#u#20

such that (ENC1)–(ENC6) hold for s. Clearly, s is accepted by A. It is easy to21

verify that none of the disjuncts of Q is satisfied by s. Thus we can conclude22

that s ∈ L(A)− L(Q).23

For the only-if-direction, assume that data word s belongs to L(A)−L(Q).24

We show that s encodes a solution to R. Since s is accepted by A, we know that25

its label sequence has the form rw#u#, with w ∈ [(I1 ·w1) + · · ·+ (In ·wn)]
+

26

and u ∈ [(I1 · u1) + · · ·+ (In · un)]
+. So, both w and u are non-empty words.27

Furthermore, failure of Q1 and Q2 ensure (ENC1) and (ENC2).28

Since neither Qr∗,#∗ nor any of the QIiwi∗,Iiui∗ queries match s, we can29

conclude that the first two I-positions have the same data value and, whenever30

two I-positions have the same data value, the next two I-positions have the31

same data values as well. We note that thanks to A, the pair following an32

I-pair needs to be an I-pair or the pair of #-positions. Altogether, (ENC3)33

holds and |w|I | = |u|I |. (ENC4) and |w|Γ | = |u|Γ | follow in the same fashion.34

Thus, (ENC5) holds as well. Finally, (ENC6) holds, since none of the formulas35

Qσ:τ matches s.36

We can conclude that w|I = u|I and w|Γ = u|Σ and that thus R has a37

solution. �38

By some extra work and a different way of encoding solution candidates, the39

proof of Theorem 21 can be extended to show that Containment(6∼ | ∼, 6∼)40

is undecidable. To this end, we need the following lemma.41

34 Henrik Björklund et al.

Q1 Q2 Qk

T ′ T ′ T ′

T

T ′

T

P

T ′

T

Qi

GQ GP GQi

Fig. 8 Gadgets used in the proof of Lemma 22.

Lemma 22 Given P,Q1, . . . , Qk ∈ CQ(∼, 6∼), and an NTA A, queries P ′, Q′ ∈1

CQ(∼, 6∼) and an NTA A′ can be computed such that L(P)∩L(A) ⊆ L(Q1)∪2

· · · ∪ L(Qk) if and only if L(P ′) ∩ L(A′) ⊆ L(Q′).3

Proof This proof is an adaptation of a proof from [38]. Given CQs Q1, . . . , Qk4

and automaton A, we construct CQs P ′, Q′, and NTA A′ such that P ′ ⊆ Q′
5

w.r.t. A′ if and only if P ⊆ Q1 ∪ · · · ∪ Qk w.r.t. A. We assume that all input6

queries are satisfiable, even with respect to A, which can be tested in NP.7

Furthermore, all queries should have pairwise disjoint variable sets.8

The main idea is in Figure 9. Query P is inside the GP -gadget in P ′ and9

the queries Qi are inside the GQi
-gadgets in Q′. Intuitively, P ′ and Q′ work10

together as follows. Imagine that a tree t matches P ′ and has the sequence11

of 2k − 1 S-nodes as indicated in P ′. The middle S-node in this sequence is12

attached to a subtree in L(GP). Now, in order for Q′ to also match t, one of13

the (k many) S-nodes in Q′ must match the middle S-node in t, which means14

that one of the GQi
matches the tree in L(GP).15

We now discuss the construction in detail. Figure 8 describes a number of16

query gadgets that we will need in the reduction. The double lines have an17

extended meaning here; e.g., the double line from T ′ to Q1 means that there18

is a variable x such that the query contains the atom T ′(x) and, for every19

variable y in the copy of Q1, the atom Child+(x, y). The arrows between the20

T ′-labeled nodes in GQ indicate NextSibling predicates. The gadget GQi
is21

parameterized by i. It is crucial but easy to see that, for every i, GQ ⊆ GQi
.22

Figure 9 shows how copies of the gadgets are put together to form queries P ′
23

and Q′. Each copy of a gadget is unique, i.e., for each new copy, the variables24

are renamed. The automaton A′ checks the following properties.25

1. There are exactly 2k − 1 nodes with label S and 2k − 1 nodes with label26

T .27

2. There are exactly k · 2(k − 1) + 1 nodes with label T ′.28

3. The root has label R and has exactly one child. This child has label S.29

4. Each S-labeled node, except one, has one S-labeled child.30

5. Each S-labeled node has exactly one child labeled T .31

6. Each T -labeled node has exactly k children, each labeled T ′, except the T -32

labeled node that is child of the kth S-labeled node, counted from the root.33

Conjunctive Query Containment over Trees using Schema Information 35

P ′ Q′

R

S

GQ

S

GQ S

GP S

GQ

S

GQ

k
−
1
tim

es

k
−
1
tim

es

R

S

GQ1 S

GQ2

S

GQk

Fig. 9 Queries P ′ and Q′ from the proof of Lemma 22.

This node has exactly one child, labeled T ′. We call this the distinguished1

T -labeled node.2

7. Each T ′-labeled node has exactly one child.3

8. The tree rooted at the grandchild of the distinguished T -labeled node is4

accepted by A.5

Assume that P ⊆ Q1 ∪ · · · ∪ Qk w.r.t. A. Consider a tree t ∈ L(P ′) ∩ L(A′).6

Let s1, . . . , sk, . . . , s2k−1 be the S-labeled nodes of t, ordered by increasing7

distance from the root. For j ∈ {1, . . . , 2k− 1}, let tj be the tree rooted in the8

T -labeled child of sj . For each j ∈ {1, . . . , 2k − 1} − {k}, we note that since9

GQ matches in the subtree rooted at the T -labeled child of sj , so does GQi
,10

for every i ∈ {1, . . . , k}.11

Query GP must match in tk. Since tk only has one T -labeled node, any12

such matching must assign the topmost variable of GP to the root of tk. This13

means that P must match in the tree t′k, rooted in the sole grandchild of the14

root of tk. Since A must accept t′k, we conclude that Q1 ∪ · · · ∪ Qk matches15

in t′k, i.e., there is an i ∈ {1, . . . , k} such that Qi matches in t′k. This, in turn,16

means that GQi
matches in tk.17

We can now construct a matching of Q in t. The gadgets GQ1
, . . . , GQi−1

18

match in tk−i+1, . . . , tk−1, respectively,GQi
matches in tk, and GQi+1

, . . . , GQk
19

match in tk+1, . . . t2k−i, respectively.20

Assume, on the other hand, that P 6⊆ Q1 ∪ · · · ∪ Qk w.r.t. A. Let p be a21

tree in (L(P) ∩ L(A)) − L(Q1 ∪ · · · ∪ Qk). Let t be a tree in L(P ′) ∩ L(A′),22

whose existence is guaranteed by our assumption, and define tk and t′k as23

above.Replace t′k by p in t. The resulting tree tp still belongs to L(P ′)∩L(A′),24

36 Henrik Björklund et al.

a b

b b

b b

a b

(a)

b

a b b

b b

b

b b b

a b

(b)

u

z3

z1 z2 x

z3

z1 z2 y

z3

z1 z2 z

∼

∼

∼

(c)

Fig. 10 Trees and queries used in the proof of Theorem 23.

since p is accepted by A and P matches in p. But since no Qi, for i ∈ {1, . . . , k}1

matches in p, there is no matching of Q′ in tp. Thus P
′ 6⊆ Q′ w.r.t. A′. �2

Theorem 23 Containment(6∼ | ∼, 6∼) is undecidable.3

Proof It would be tempting to conclude Theorem 23 directly from Theorem 214

and Lemma 22, since Theorem 23 shows undecidability of validity, that is,5

basically, query containment with TRUE (and thus a query without ∼) as6

the left-hand query. However, the reduction in the proof of Lemma 22 might7

introduce ∼-atoms in P ′ through the pattern GQ, which has to fulfill GQ ⊆8

GQi
, for every i.9

Therefore, we modify the proof of Theorem 21, apply Lemma 22, and do10

some final adaptations. Given an instance R of PCP , we first construct a11

query Q that is a disjunction of CQs and an automaton A such that Q is valid12

w.r.t. A, if and only if R has no solution. To remove the disjunction in Q, we13

then use a modification of the construction in the proof of Lemma 22.14

Altogether, we construct queries P6∼ ∈ CQ(6∼) and Q∼, 6∼ ∈ CQ(∼, 6∼), and15

NTA A′ such that Q is valid w.r.t. A if and only if L(P6∼)∩L(A′) ⊆ L(Q∼, 6∼).16

We first describe how we modify the encoding of solution candidates for R17

from the proof of Theorem 21. We modify the unary trees used in that proof18

as follows. Each node gets a new extra leftmost child. The new nodes inherit19

their label from their parent node. The “old” nodes all get a new “blank” label20

(see Figure 10(a) and 10(b)).21

Clearly, the automaton A can be adapted to take care of this new shape22

of trees. The disjuncts Qi of the query Q are transformed into queries Q′
i that23

reflect the change of the encoding as follows. Each atomic formula a(x), for24

a ∈ Σ is replaced by ∃x′Child(x, x′)∧a(x′), where x′ is a fresh variable. At the25

same time, for each original variable z of Qi a new atom blank(z) is added,26

ensuring that these variables can only be matched by (“original”) nodes on27

the backbone of the tree. It is easy to see that a formula Qi holds on an “old”28

Conjunctive Query Containment over Trees using Schema Information 37

b

σ b b τ

(a)

b
x1 = y1

w1
b b

w2
b

b

wk−1
b b

wk
b

b

u2
b

b

uℓ−1
b b

uℓ
b

b u1

(b)

b

b

b

b

z3

u, x, y, z z2

z1

(c)

Fig. 11 Data trees witnessing the satisfiability of all queries Q 6∼
j in the proof of Theorem 23.

encoding of a solution candidate if and only if Q′
i holds on its “new” encoding.1

The first query Q1 (corresponding to (ENC1)) is modified even further, by2

replacing Child+(u, x) with3

∃z1, z2, z3 : Child+(u, z1) ∧ Following(z1, z2) ∧ Child(z3, z2) ∧ Child(z3, x),

and Child+(x, y) and Child+(y, z) by the same kind of gadget.4

The resulting query Q′
1 is depicted in Figure 10(c). We note that the latter5

modification does not change the semantics on the intended trees, resulting6

from a solution candidate by the above “new” encoding.7

The NTA A′ and the query Q∼, 6∼ = Q′ are obtained from the adapted8

automaton A and the disjunction of the queries Q′
i just as in the proof of9

Lemma 22.10

We still need to define P∼. To this end, let P ′ be the query that would11

be obtained from applying the proof of Lemma 22 to Q′
1 ∪ · · · ∪ Q′

m and12

A. From the construction of Lemma 22, we have that P ′ contains several13

occurrences of the gadget GQ′ , which can contain data equalities. We change14

GQ′ to G6∼
Q′ ∈ CQ(6∼) such that, for each i ≤ m, we have G6∼

Q′ ⊆ Q′
i.To this15

end, we replace subqueries Q′
j in GQ′ by subqueries Q 6∼

j , in which every atom16

x ∼ y is replaced7 by x = y. Clearly, Q 6∼
j ⊆ Q′

j holds, for every j. However, to17

mimic the proof of Lemma 22, we need to make sure that GQ′ , and therefore18

each of the new queries Q 6∼
j , is satisfiable by some data tree (not necessarily19

of the shape of encodings of solution candidates).20

For queries of the form Qσ:τ this is actually very easy: Q′
σ:τ is the following21

query (in prenex form and after identification of y and x):22

∃x, x1, x2 : Child(x, x1) ∧ σ(x1) ∧ Child(x, x2) ∧ τ(x2),

7 Of course, the resulting equality atoms can be removed by suitable variable renaming.

38 Henrik Björklund et al.

which is satisfiable as Figure 11(a) illustrates. Queries Q 6∼
j resulting from for-1

mulas of the form Qw,u are satisfiable as well, as the reader may conclude from2

Figure 11(b).3

Since neither Q2,r nor Q2,# do contain any ∼-atoms, the only remaining,4

but also the most complicated, case is query Q 6∼
1 . However, as Figure 11(c)5

illustrates, Q′
1 is also satisfiable by mapping its variables as indicated.6

Altogether, we have described a reduction from PCP to Containment(6∼7

| ∼, 6∼) and we can conclude that the latter is undecidable. �8

5.3 Containment without schema information9

It actually turns out that if both queries can use ∼ and 6∼, the schema au-10

tomaton from Theorem 23 can be eliminated. Thus containment for CQ(∼, 6∼)11

queries is undecidable even without schema information.12

For the proof, we first show a counterpart of Lemma 22.13

Lemma 24 The problem to determine whether L(P) ⊆ L(Q1) ∪ · · · ∪ L(Qk)14

for given queries P,Q1, . . . , Qk from CQ(∼, 6∼), is reducible to containment15

for CQ(∼, 6∼) queries.16

Proof The proof is analogous to the proof of Lemma 3 in [38] (and quite similar17

to the proof of Lemma 22). �18

Theorem 25 Containment for CQ(∼, 6∼) queries is undecidable.19

Proof The proof is similar to the proof of Theorem 23 in that it modifies the
proof of Theorem 21 and combines it with (the new) Lemma 24. Given an
instance

(w1, u1), . . . , (wn, un)

of PCP over alphabet Γ = {a, b}, we construct a CQ(∼, 6∼) query P and a20

disjunction Q of CQ(∼, 6∼) queries, such that P ⊆ Q if and only if (w1, u1), . . . ,21

(wn, un) has no solution.22

As before, we let Σ = {r,#} ⊎ I ⊎ Γ . In the absence of an NTA, there are23

two additional aspects that we have to use the queries to take care of:24

(1) The structure of any solution candidate, i.e., it should be a word matching25

the regular expression26

r · [(I1 · w1) + · · ·+ (In · wn)]
+ ·# · [(I1 · u1) + · · ·+ (In · un)]

+ ·#.

(2) Since we no longer have a schema that determines the set of labels that27

can occur in trees, we cannot ensure that two nodes have the same label28

by a disjunction over all pairs of non-equal labels, as we did in the proof29

of Theorem 21. Therefore, we use data values to encode the labels of Σ.30

Conjunctive Query Containment over Trees using Schema Information 39

We first describe how to achieve (1). Let Σ = {σ1, . . . , σm} with σ1 = r and1

σm = #. The query P guarantees that the tree has a path that starts with2

positions with pairwise distinct data values which carries all symbols from3

Σ − {#}, beginning with r, and has at least two occurrences of #:4

P ≡ ∃x1, . . . , xm−1, y1, y2 :
m−2
∧

i=1

Child(xi, xi+1) ∧
m−1
∧

i=1

σi(xi) ∧
∧

1≤i<j≤m−1

xi 6∼ xj

∧Child+(xm−1, y1) ∧ Child+(y1, y2) ∧#(y1) ∧#(y2).

As in the proof of Theorem 21, we use the query Q to ensure (ENC1)–(ENC6).5

Furthermore, to make sure that solution candidates do not branch, we add the6

following query as a disjunct to Q.7

∃x, y : NextSibling(x, y)

To ensure that only the first position has label r we also add8

∃x, y : Child(x, y) ∧ r(y).

For every i ∈ {1, . . . , n} we must make sure that Ii is followed by wi (if in the9

first half of the solution candidate) followed by Ij (for some j) or #. To this10

end, we write one query for every possible deviation from this pattern. I.e., for11

every word s in Γ |wi| − {wi} we write a query that matches the pattern Ii · s,12

and for every a ∈ Σ, we write a query that matches the pattern Ii · wi · a.13

However, we can not do this directly, since, as already mentioned above, we14

can not exhaustively enumerate all labels that might occur in a tree. Therefore,15

we need to modify the queries described in the previous paragraph along the16

same lines as we modify the other queries from the proof of Theorem 21 to17

achieve (2), as explained next.18

The idea for (2) is very simple. The new encoding uses two (consecutive)19

positions y, z to encode one position x of the old encoding of a solution candi-20

date (with the exception of the m− 1 first positions and the two #-positions).21

Position y is responsible for the data value d of x and therefore just has d as22

data value. Position z encodes the label σj of position x by carrying the same23

data value as the j-th position of the path (i.e., the position to which xj is24

mapped in P above). The labels of y and z are thus irrelevant. The queries25

Qi and the queries that shall ensure the pattern of solution candidates have26

to be adapted accordingly, in a straightforward manner.27

We note that the application of Lemma 24 to P and Q1, . . . , Qk might28

introduce ∼-atoms in P ′. �29

6 Conjunctive Queries versus XPath 2.030

Actually, it is technically not difficult to write the queries of our lower bound31

proofs as XPath 2.0 queries (see, e.g., [6,44]) adhering to the grammar32

40 Henrik Björklund et al.

locpath ::= ‘/’ locpath | locpath ‘/’ locpath | locstep
locpath ∩ locpath

locstep ::= axis ‘::’ ntst ‘[’ bexpr ‘]’ . . . ‘[’ bexpr ‘]’
bexpr ::= bexpr ‘and’ bexpr | locpath.
axis ::= ‘self’ | ‘child’ | ‘parent’ | ‘descendant’ |

‘descendant-or-self’ | ‘ancestor’ |
‘ancestor-or-self’ | ‘following’ |
‘following-sibling’ | ‘preceding’ |
‘preceding-sibling’.

1

where “locpath” is the start production and “ntst” denotes Σ-symbols label-2

ing document nodes or the star ‘∗’ that matches all tags (“node tests”). All3

operators come from Core XPath 1.0, except for the path intersection operator4

‘∩’ which is from XPath 2.0. The semantics of the path intersection operator5

can be found in [44]. Essentially, a locpath returns a binary relation on a tree,6

and path intersection returns the intersection of two binary relations.7

The most challenging query is the query QCT from the proof of Theorem 6.
Recall that QCT is graphically presented in Figure 6 in Section 3.2.3, which
significantly helps for understanding the XPath 2.0 query.

QCT ≡
n
⋂

i=0

Φi

We define the queries used in QCT :

Φ0 = 1/parentn+k+3:: ∗ /childn+k+4::1

For 1 ≤ i ≤ n, we define Φi as8

Φi = 1/ancestor::f/parent::t/parent::s/

(Ψ1
i ∩ Ψ2

i)/

child::t/child::m/descendant::1

where Ψ1
i is defined as9

Ψ1
i = ./child::p/descendant::1/parenti+4:: ∗ /

childi+5::1/ancestor::p/parent::s

and Ψ2
i is defined as10

Ψ2
i = ./parenti::r/parent::CT/

child::CT/child::r/childi::s

The XPath 2.0 version of query QCT can also be adapted accordingly for the11

proof of Theorem 9, using predicate expressions.12

Conjunctive Query Containment over Trees using Schema Information 41

a

b c

e

d
x1 x2 x3

a

b c

e

∗

d
x1 x2 x3

X2X1 X3

Fig. 12 How to reduce from n-ary queries to 0-ary queries.

7 Boolean versus N-ary Queries1

Until now, we always considered conjunctive queries without free variables.2

This means that we only looked at whether a tree models the query or not3

instead of considering queries that return n-tuples. One can also consider n-ary4

conjunctive queries, i.e., CQs with n free variables, returning a n-ary relation5

when evaluated on a tree. For two n-ary queries P and Q, P is contained in6

Q if, for every tree t, the relation returned by P is a subset of the relation7

returned by Q.8

First, notice that, for testing whether a query is satisfiable or not, it does9

not matter whether a query is Boolean or n-ary. So all our results on satisfia-10

bility carry over to n-ary queries.11

Second, all our other results concern conjunctive queries that can use the12

Child -axis. Using a technique of Kimelfeld and Sagiv [30], one can reduce13

containment for such n-ary queries to containment of Boolean queries. For14

instance, consider the left query P (x1, x2, x3) in Figure 12. The reduction does15

two things. First of all, it introduces for each free variable xi, a new variable16

x′
i and adds the atoms Child(xi, x

′
i) ∧Xi(x

′
i) to the query, where Xi is a new17

label. Second, for each leaf node v of the query8 that does not correspond to18

a free variable, it adds a new variable v′ and adds the atom Child(v, v′) to the19

query. For example, for the query P (x1, x2, x3), we obtain the query P ′ on the20

right of Figure 12. Here, nodes u labeled with ∗ in the figure are nodes for21

which the query does not have a label, i.e., does not have an atom of the form22

a(u). It is now easy to see that, for two queries P (x) and Q(x)9 with n free23

variables, P is contained in Q if and only if L(P ′) ⊆ L(Q′), where P ′ and Q′.24

Indeed, the proof is analogous to the one in [30].25

One can generalize this reasoning to incorporate schemas. Such schemas26

would, e.g., allow the labels Xi as leaf child of every node.27

8 For the purpose of the reduction, a node v of the query is a leaf node if and only if the
query does not have any atom of the form Child(v, w) or Child+(v, w).

9 We can assume w.l.o.g. that the free variables are the same in P and Q.

42 Henrik Björklund et al.

8 Related Work1

We discuss the relation of our paper to some of the above mentioned work.2

Most relevant to us are the papers by ten Cate and Lutz [44], by David [20]3

(which evolved independently from ours), and by Lakshmanan et al. [32]. The4

connection with Hidders’ work [29] is explained more elaborately in [7]. Hidders5

considers XPath 2.0 satisfiability, but does not take schema information into6

account. Ten Cate and Lutz study query containment for expressive fragments7

of XPath 2.0, which is closely related to our conjunctive queries. They also8

take schema information into account (at least for DTDs and XML Schema9

Definitions) and get 2EXPTIME-completeness, but their queries are much10

more powerful. They have negation, disjunction, and union while conjunctive11

queries do not.12

The precise relation between our conjunctive queries and XPath 2.0 is13

not entirely obvious. Conjunctive queries are at least as expressive as the14

XPath 2.0 fragment that consists of Core XPath 1.0 without union, disjunc-15

tion or negation, but augmented with the XPath 2.0 path intersection op-16

erator (see [44]). This implies that our upper bound proofs also apply to17

this XPath 2.0 fragment. On the other hand, such XPath expressions are18

syntactically constrained and cannot use path intersection arbitrarily. Our19

lower bound proofs can, however, also be adapted to these XPath 2.0 ex-20

pressions. In this light, our results significantly strengthen the lower bound21

proof of Theorem 27 in [44] when DTD information is considered. Ten Cate22

and Lutz consider Core XPath 2.0 queries with path intersection and verti-23

cal navigation (denoted CoreXPath↓,↑(∩) in their paper) and prove that path24

containment w.r.t. DTD information is 2EXPTIME-complete (Theorem 2725

and Proposition 6 in [44]). Their proof uses negation and union in queries,26

but our lower bound proof in Section 6 shows that, in the presence of DTDs,27

containment for CoreXPath↓,↑(∩) queries is 2EXPTIME-hard, even when the28

queries do not use union or negation. (Without DTD information, contain-29

ment of CoreXPath↓,↑(∩) without union or negation drops to ΠP
2 [7], since30

this fragment of CoreXPath↓,↑(∩) is a subclass of conjunctive queries over31

trees.)32

David studies the complexity of satisfiability for Boolean combinations of33

data tree patterns with respect to DTDs [20]. Different fragments are inves-34

tigated, and the complexity results range from NP to undecidable. This for-35

malism is on the surface quite similar to CQs with data value predicates, but36

there are some decisive differences. First, the data tree patterns are always37

tree-shaped, like XPath queries without path intersection. Second, the seman-38

tics used in [20] is injective, i.e., two variables cannot be assigned the same39

node, unlike the one for CQs. This means that boolean combinations of data40

tree patterns are in general more expressive but exponentially less succinct41

than CQs.42

Conjunctive queries over trees are closely related to the tree patterns in-43

vestigated in the context of incomplete XML [3,21,27]. The incomplete trees44

introduced in [3] are tree-shaped but have variables with which they can test45

Conjunctive Query Containment over Trees using Schema Information 43

data value equality. When investigated in a setting where one can express that1

each node carries a unique data value, a data value equality test between two2

nodes therefore expresses that the nodes are the same. For this reason, some3

of our proofs on queries with data value tests (Section 5) can be adapted to4

show similar results about incomplete trees (see, e.g., [21]). In particular, the5

proof of Theorem 8.1 in [21] builds on the proof of our Theorem 25.6

In XML data exchange, the pattern queries for specifying the relationship7

between source data and target data are similar to conjunctive queries over8

trees [9,23,22]. The topic of XML data exchange is treated in depth in [2],9

Part 3.10

Datalog programs that operate on trees and that natively use relations11

such as Child and Descendant are closely connected to conjunctive queries12

over trees as well. In fact, such Datalog programs are usually more powerful13

than conjunctive queries over trees and, therefore, our lower bound proofs can14

be used to obtain lower bounds for Datalog query containment, see, e.g., [4,1,15

10].16

Furthermore, there is a large amount of work on static analysis for XPath17

1.0 (see, e.g., [5,18,19,26,37,38,40,47]). XPath 1.0 relates to our conjunctive18

queries in a similar way as XPath 2.0, except that XPath 1.0 does not have a19

path intersection operator. In other words, complexity lower bounds for XPath20

1.0 sometimes carry over to conjunctive queries. We indicated this in the paper21

whenever relevant.22

Lakshmanan et al. study satisfiability, with and without schema informa-23

tion, of tree pattern queries, where the tree patterns are also equipped with a24

node identity operator and can compare data values. 10 The results of the pa-25

per do not overlap much with our results on satisfiability, since they consider a26

limited, non-recursive, form of DTDs. However, their claim [32, Theorem 3.2]27

that query satisfiability for queries with structural constraints, Value Based28

Constraints (VBCs) and no wildcards is in PTIME, seems to be wrong in the29

light of our findings. Indeed, by adapting the proof of our Lemma 15, we can30

conclude that this problem is NP-hard, as shown next. We state the lemma in31

the terminology of [32] but the main construction in our NP-hardness proof32

for the same problem can be understood from our definitions.33

Lemma 26 Query satisfiability for queries with structural constraints, Value34

Based Constraints (VBCs) and no wildcards is NP-hard.35

Proof We give a reduction from Shortest Common Supersequence. Thereto,36

let S and k be an input of Shortest Common Supersequence. Let S =37

{b11 · · · b
1
n1
, . . . , bm1 · · · bmnm

} be a set of strings over some alphabet. Then the38

query Q is defined as shown in Figure 13. The idea is that a common super-39

sequence for S must be formed in the data values of a length k string, that40

is enforced by the right hand side of Figure 13. The confluency in the bottom41

#-labeled node is obtained via structural constraints, which allow to identify42

10 Here, structural constraints include node identities and VBCs allow comparison of data
values to constants.

44 Henrik Björklund et al.

#

a (val = b11) · · · a (val = bm1) a

a (val = b1
2
) · · · a (val = bm

2
) a

...
...

...

a (val = b1n1
) · · · a (val = bmnm

) a

#

k
tim

es

Fig. 13 Query Q for the proof of Lemma 26. Each single arrow denotes the Child-axis, and
each double arrow denotes the Child+-axis.

nodes (see [32]). All nodes, apart from the two #-labeled nodes bear the alpha-1

bet label a. Finally, the val = x equations denote the value-based constraints2

— they say that the value at the current node must be equal to x.3

It is easy to see that Q is satisfiable if and only if Shortest Common4

Supersequence has a solution for S and k. �5

9 Conclusion6

We studied the query containment and the validity problem for conjunctive7

queries over trees (1) relative to a schema and (2) taking into account data val-8

ues. It turned out that in the presence of a schema the complexity of the prob-9

lem drastically increases. Thus, even though the query language does not have10

neither negation nor disjunction, it shares the bad complexity (2EXPTIME)11

of the language in [44].12

Not surprisingly, with equalities and inequalities on data values the con-13

tainment problem even becomes undecidable. Nevertheless, a slight restriction14

on the occurrence of inequalities yields a decidable problem.15

Although conjunctive queries are a very natural query language, future re-16

search should identify tractable fragments, in particular with other restrictions17

than acyclicity (see, e.g., [39]). We found it interesting to observe that, from18

the lower bound proof of Theorem 6, we can conclude that there does not exist19

an exponential-size tree automaton recognizing the complement language of a20

conjunctive query.21

Corollary 27 In general, there does not exist an exponential-size nondeter-22

ministic tree automaton recognizing L(Q), where Q is a CQ(Child,Child+).23

Proof Towards a contradiction, assume that, for every conjunctive query Q,24

there exists an exponential-size NTA AQ for L(Q). This means that, if there25

is a counterexample for the containment problem P ⊆ Q w.r.t. NTA A, there26

always exists a counterexample of exponential depth. However, this would27

Conjunctive Query Containment over Trees using Schema Information 45

imply, according to the proof of Theorem 6, every EXPSPACE alternating1

Turing Machine has an accepting computation tree of at most exponential2

depth, which is a contradiction. �3

Finally, we point out that some of our lower bound proofs (Theorems 6, 9,4

12, and 15) use non-fixed alphabets. It is not yet clear if the proofs can also5

be adapted for alphabets of constant size.6

Acknowledgments7

This work was supported by grant number MA 4938/2–1 from the Deutsche8

Forschungsgemeinschaft (Emmy Noether Nachwuchsgruppe) and the Swedish9

Research Council grant 621-2011-6080.10

References11

1. S. Abiteboul, P. Bourhis, A. Muscholl, and Z. Wu. Recursive queries on trees and data12

trees. In International Conference on Database Theory (ICDT), pages 93–104, 2013.13

2. M. Arenas, P. Barceló, L. Libkin, and F. Murlak. Foundations of Data Exchange.14

Cambridge University Press, 2014.15

3. P. Barceló, L. Libkin, A. Poggi, and C. Sirangelo. XML with incomplete information.16

J. ACM, 58(1):4, 2010.17

4. M. Benedikt, P. Bourhis, and P. Senellart. Monadic datalog containment. In Interna-18

tional Colloquium on Automata, Languages, and Programming (ICALP), pages 79–91,19

2012.20

5. M. Benedikt, W. Fan, and F. Geerts. XPath satisfiability in the presence of DTDs. J.21

ACM, 55(2), 2007.22

6. A. Berglund, S. Boag, D. Chamberlin, M. F. Fernández, M. Kay, J. Robie, and J. Siméon.23

XML Path Language (XPath) 2.0. Technical report, World Wide Web Consortium,24

January 2007. http://www.w3.org/TR/xpath20/.25

7. H. Björklund, W. Martens, and T. Schwentick. Conjunctive query containment over26

trees. J. Comput. Syst. Sci., 77(3):450–472, 2011.27

8. H. Björklund, W. Martens, and T. Schwentick. Validity of tree pattern queries with28

respect to schema information. In Mathematical Foundations of Computer Science29

(MFCS), pages 171–182, 2013.30

9. M. Bojanczyk, L. A. Kolodziejczyk, and F. Murlak. Solutions in XML data exchange.31

J. Comput. Syst. Sci., 79(6):785–815, 2013.32

10. M. Bojanczyk, F. Murlak, and A.Witkowski. Containment of monadic datalog programs33

via bounded clique-width. In International Colloquium on Automata, Languages, and34

Programming (ICALP), pages 427–439, 2015.35

11. M. Bojanczyk, A. Muscholl, T. Schwentick, and L. Segoufin. Two-variable logic on data36

trees and XML reasoning. J. ACM, 56(3), 2009.37

12. A. Brüggemann-Klein and D. Wood. One-unambiguous regular languages. Inf. Comput.,38

142(2):182–206, 1998.39

13. A.K. Chandra, D.C. Kozen, and L.J. Stockmeyer. Alternation. J. ACM, 28(1):114–133,40

1981.41

14. A.K. Chandra and P.M. Merlin. Optimal implementation of conjunctive queries in42

relational data bases. In STOC, pages 77–90, 1977.43

15. B. S. Chlebus. Domino-tiling games. JCSS, 32(3):374–392, 1986.44

16. J. Clark and M. Murata. Relax NG specification. http://www.relaxng.org/spec-45

20011203.html, December 2001.46

46 Henrik Björklund et al.

17. W. Czerwinski, C. David, K. Losemann, and W. Martens. Deciding definability by de-1

terministic regular expressions. In International Conference on Foundations of Software2

Science and Computation Structures (FOSSACS), pages 289–304. Springer, 2013.3

18. W. Czerwinski, W. Martens, M. Niewerth, and P. Parys. Minimization of tree pattern4

queries. In Symposium on Principles of Database Systems (PODS), pages 43–54, 2016.5

19. W. Czerwinski, W. Martens, P. Parys, and M. Przybylko. The (almost) complete guide6

to tree pattern containment. In Symposium on Principles of Database Systems (PODS),7

pages 117–130, 2015.8

20. C. David. Complexity of data tree patterns over XML documents. In MFCS, pages9

278–289, 2008.10

21. C. David, A. Gheerbrant, L. Libkin, and W. Martens. Containment of pattern-based11

queries over data trees. In International Conference on Database Theory (ICDT), pages12

201–212, 2013.13

22. C. David, P. Hofman, F. Murlak, and M. Pilipczuk. Synthesizing transformations from14

XML schema mappings. In International Conference on Database Theory (ICDT),15

pages 61–71, 2014.16

23. C. David, L. Libkin, and F. Murlak. Certain answers for XML queries. In Symposium17

on Principles of Database Systems (PODS), pages 191–202, 2010.18

24. Jörg Flum, Markus Frick, and Martin Grohe. Query evaluation via tree-decompositions.19

J. ACM, 49(6):716–752, 2002.20

25. J. Gallant, D. Maier, and J. A. Storer. On finding minimal length superstrings. JCSS,21

20(1):50–58, 1980.22

26. F. Geerts and W. Fan. Satisfiability of XPath queries with sibling axes. In DBPL,23

pages 122–137, 2005.24

27. A. Gheerbrant, L. Libkin, and T. Tan. On the complexity of query answering over25

incomplete XML documents. In ICDT, pages 169–181, 2012.26

28. G. Gottlob, C. Koch, and K. U. Schulz. Conjunctive queries over trees. J. ACM,27

53(2):238–272, 2006.28

29. J. Hidders. Satisfiability of XPath expressions. In DBPL, pages 21–36, 2003.29

30. B. Kimelfeld and Y. Sagiv. Revisiting redundancy and minimization in an XPath30

fragment. In Extending Database Technology (EDBT), pages 61–72, 2008.31

31. P. G. Kolaitis and M. Y. Vardi. Conjunctive-query containment and constraint satis-32

faction. JCSS, 61(2):302–332, 2000.33

32. L. V. S. Lakshmanan, G. Ramesh, H. Wang, and Z. Zhao. On testing satisfiability of34

tree pattern queries. In VLDB, pages 120–131, 2004.35

33. P. Lu, J. Bremer, and H. Chen. Deciding determinism of regular languages. Theory of36

Computing Systems, pages 1–43, 2014.37

34. W. Martens and F. Neven. On the complexity of typechecking top-down XML trans-38

formations. Theoretical Computer Science, 336(1):153–180, 2005.39

35. W. Martens, F. Neven, and T. Schwentick. Complexity of decision problems for XML40

schemas and chain regular expressions. SIAM J. Comput., 39(4):1486–1530, 2009.41

36. W. Martens, F. Neven, T. Schwentick, and G.J. Bex. Expressiveness and complexity of42

XML schema. ACM Trans. Database Syst., 31(3):770–813, 2006.43

37. M. Marx. Conditional XPath. ACM TODS, 30(4):929–959, 2005.44

38. G. Miklau and D. Suciu. Containment and equivalence for a fragment of XPath. J.45

ACM, 51(1):2–45, 2004.46

39. F. Murlak, M. Oginski, and M. Przybylko. Between tree patterns and conjunctive47

queries: Is there tractability beyond acyclicity? In Mathematical Foundations of Com-48

puter Science (MFCS), pages 705–717, 2012.49

40. F. Neven and T. Schwentick. On the complexity of XPath containment in the presence50

of disjunction, DTDs, and variables. LMCS, 2(3), 2006.51

41. E.L. Post. A variant of a recursively unsolvable problem. Bull. AMS, 52(4):264–268,52

1946.53

42. K.J. Räihä and E. Ukkonen. The shortest common supersequence problem over binary54

alphabet is NP-complete. Theoretical Computer Science, 16(2):187–198, 1981.55

43. M. Takahashi. Generalizations of regular sets and their application to a study of context-56

free languages. Inf. Control, 27(1):1–36, 1975.57

44. B. ten Cate and C. Lutz. The complexity of query containment in expressive fragments58

of XPath 2. J. ACM, 56(6), 2009.59

Conjunctive Query Containment over Trees using Schema Information 47

45. James W. Thatcher and Jesse B. Wright. Generalized finite automata theory with an1

application to a decision problem of second-order logic. Mathematical Systems Theory,2

2(1):57–81, 1968.3

46. Moshe Y. Vardi. Reasoning about the past with two-way automata. In Automata, Lan-4

guages and Programming, 25th International Colloquium, ICALP’98, Aalborg, Den-5

mark, July 13-17, 1998, Proceedings, pages 628–641, 1998.6

47. P. T. Wood. Containment for XPath fragments under DTD constraints. In ICDT, 2003.7

Full version, obtained through personal communication.8

