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ABSTRACT
Tree pattern queries have been investigated in database the-
ory since more than a decade ago. They are a fundamen-
tal and flexible query mechanism and have been considered
in the context of querying tree structured as well as graph
structured data. We revisit their containment, validity, and
satisfiability problem, both with and without schema infor-
mation. We present a comprehensive overview of what is
known about the complexity of containment and develop
new techniques which allow us to obtain tractability- and
hardness results for cases that have been open since the
early work on tree pattern containment. For the tree pattern
queries we consider in this paper, it is known that the con-
tainment problem does not depend on whether patterns are
evaluated on trees or on graphs. This means that our results
also shed new light on tree pattern queries on graphs.

1. INTRODUCTION
Tree pattern queries are a fundamental building block

for many query- and specification languages for tree-
and graph-structured data. They have been studied
under many names: tree patterns, twig patterns, twig
queries, and XPath queries with child and descendant
axis. In the context of tree-structured data, they form
the core of XPath [6]. XPath is the main mechanism
for node selection in XQuery [10] and XSLT [28], the
most widely used query languages for XML. In addi-
tion, XPath is used for specifying integrity constraints
in XML Schema [22], the currently de facto schema
language for XML, and it is used in XLink [19] and
XPointer [18] for referencing elements in external doc-
uments. In the context of graphs, languages based on
tree patterns have become popular as well. Nested regu-
lar expressions [38] and Graph XPath [32], for example,
are heavily inspired on tree patterns and extend them
with extra navigational features, negation, or data value
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comparisons. Tree patterns similar to the ones we con-
sider in this paper are also used to speed up pattern
matching algorithms in graphs [14].

The containment problem for tree patterns and XPath
queries has long been recognized as an important prob-
lem in databases and has been heavily investigated [5,
23, 27, 34, 36, 41, 43]. In this paper we study the tree
patterns that were introduced by Miklau and Suciu [34].
These patterns have wildcards and allow navigation with
child and descendant axes. Even though many variants
and extensions of these patterns have been considered
in the literature (see, e.g., [4, 8, 17, 20, 25, 31]), a com-
plete picture of the complexity of containment for even
these basic kind of tree pattern queries is still lacking.

We revisit several variants of the containment prob-
lem for tree patterns. Since there is a renewed interest
in query languages for graphs, we note that the contain-
ment problem for the tree patterns we consider in this
paper does not depend on whether they are evaluated
on graphs or on trees [34] if no schema information is
present. We look into this correspondence more deeply
later in the paper. We also consider containment with
schema information (in the form of Document Type
Definitions or DTDs) and special cases of containment
that are interesting in their own right, such as validity
and satisfiability with respect to DTDs.

Since there are many problems that have a similar na-
ture as containment, such as, for example, XPath mini-
mization [29], consistent query answering [2], key infer-
ence [1], constraint implication [37], computing certain
answers in incomplete databases [4,24], we believe that
the techniques we develop may be applicable in such
closely related scenarios too.

Contribution. We denote the tree patterns as intro-
duced by Miklau and Suciu [34] by TPQ or TPQ(/, //, ∗).
Here, TPQ abbreviates tree pattern queries. We con-
sider several fragments, depending on features we allow
or disallow. The four features we consider are child
edges (/), (proper) descendant edges (//), wildcards (∗)
and branching. We use the term path queries or PQ to
refer to queries that do not have branching. Whenever
we talk about a fragment of TPQs in this paper, we
mean a class that is obtained from TPQs by disallowing
zero or more of the four aforementioned features.

We consider containment problems of TPQs with and
without schema information in the form of Document
Type Definitions (DTDs) [13]. In the cases where schema
information is present, we consider the variant where
the schema is part of the input as well as the variant
where the schema is fixed. Throughout the paper we
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consider two forms of containment, namely strong con-
tainment, in which the root of the pattern is required
to match the root of the tree, and weak containment,
which does not have this requirement.

Our main contributions are the following.
(1) For containment without schema information, we
complete the picture that was started by Miklau and Su-
ciu [34]. Miklau and Suciu showed, for every fragment
F of TPQs in which child edges are present, whether
containment for F-queries is in P or coNP-complete. In
addition, they also presented a number of results for
cases in which the queries can be from different frag-
ments, that is, containment of queries from fragment F1
in queries from fragment F2, but the picture was incom-
plete. One particular, non-trivial case that remained
open since this early work is the complexity of path
queries (that is, PQ(/, //, ∗)) in tree pattern queries
(that is, TPQ(/, //, ∗)). We prove that this problem
is solvable in P. In fact, we present, for every pair F1
and F2 of fragments of TPQs, whether the complexity of
containment of queries from F1 in queries of F2 is in P
or coNP-complete, for weak and for strong containment
(Section 3). We obtain new, non-trivial polynomial time
results as well as new coNP-completeness results. The
aforementioned containment of path queries in tree pat-
tern queries it the technically most involved one in the
section.
(2) We then turn to problems that involve DTD infor-
mation and present a complete overview of the complex-
ity of satisfiability and validity of fragments of TPQs
with schema information (Sections 4 and 5). More pre-
cisely we consider the weak and strong satisfiability or
validity problem for every fragment of TPQs, with re-
spect to a DTD or a fixed DTDs. For satisfiability, we
classify every such variant of the problem either in P or
we show that it is NP-complete. For validity, we show
that the problem is always either in P or EXPTIME-
complete. The EXPTIME-hardness goes back to weak
validity of TPQ(/, ∗) [9]; all other cases are in P.
(3) We present an almost complete overview of the most
general problem: containment of fragments of TPQ with
respect to DTD information (Section 6). We solve a
problem that has been open since a decade: contain-
ment of PQ(/) in PQ(/, ∗) with respect to DTDs, which
we prove to be EXPTIME-complete, even when the
DTD is fixed. This was listed as an open problem
in [36].1 The solution goes through a new variant of
tiling problem that we call triomino tiling and that
may be interesting in its own right. Tiling problems
are a commonly used tool for proving complexity lower
bounds and ask whether a region can be tiled using a
set of tile types, respecting certain horizontal and ver-
tical constraints. Triomino tiling unifies the horizontal
and vertical constraints, which allows us to check both
of them at the same time using a single gadget. This
property of triomino tiling is crucial for our proof.
(4) We discuss connections between containment of TPQs
over graphs and over trees (Section 7). When no schema
information is present, it was already observed [34] that
containment of TPQs over trees is the same problem
than containment of TPQs over graphs. That is, we

1Note to the reviewers: this problem was claimed to be in P
in the conference version of that paper, but this was revised
in the journal version.

have that TPQ q1 is contained in TPQ q2 over trees if
and only if it is contained over graphs. We present how
this observation can be extended when schema informa-
tion is present. We discuss several manners how DTDs
can be used to specify meta-information on graphs so
that the correspondence between trees and graphs also
holds for the satisfiability problem. Unfortunately, the
correspondence does not seem to carry over already for
the validity problem.

Throughout the paper, we summarize our results in
tables and present cases for which we prove new insights
(to the best of our knowledge) in bold. We stress that
the tables are optimized for looking up results and for
space in the paper. They often summarize many cases
in one cell, which is not optimal for clearly delineating
which cases were already known and which are newly
solved. Whenever we are aware of a known result that
is not implied by a result we prove, we mention it in the
text.

We found it striking that, when DTDs are involved,
we do not see any complexity difference between the
settings where the DTD is fixed or not. All our upper
bounds already hold when the DTD is part of the input
and all lower bounds hold for fixed DTDs. This shows
that, no matter which formalism one uses for describ-
ing schema- or meta-information, the hardness results
always hold as soon as the formalism is as expressive as
a DTD. In fact, the hardness results also hold for DTDs
defining unordered trees, as in [11].

Related Work. Containment and satisfiability of
TPQs was first investigated by Miklau and Suciu [34]
who showed, for example, that the containment prob-
lem is always in coNP and that its most general version
is coNP-complete. However, when one removes wild-
cards, descendant axes, or branching from TPQs, the
problem is in P. Satisfiability and containment of TPQs
with respect to DTDs was first studied by Neven and
Schwentick [36] and Wood [43]. The results of these
papers are surveyed in [39].

Benedikt et al. [5] considered satisfiability of many
fragments of XPath, among which also TPQs, with DTD
information in many variations, two of which we also
consider here (“DTD is fixed” and “DTD is part of the
input”). Since some of the query fragments they con-
sider have negation, some of their results imply upper
bounds on containment too. Geerts and Fan consider
satisfiability of queries with sibling axes [23], which is
similar to considering TPQs on words instead of trees.

There is a strong connection between minimization
of TPQs [21] and containment in the sense that a large
class of TPQs can be solved by a procedure that builds
on containment tests. However, it is not clear whether
all TPQs can be minimized in this way [29].

Conjunctive queries on trees [25] are closely related to
TPQs but can be graph-shaped instead of tree-shaped.
Their containment problems are harder than for TPQs.
Without schema information, the complexity jumps from
coNP to ΠP

2 [8] and, with schema information, from EX-
PTIME to 2EXPTIME [7].

Tree patterns representing XML with incomplete in-
formation [4] are also closely related to TPQs and, in
fact, are more expressive. For example, they allow nav-
igation in horizontal and vertical direction and have
variables to bind data values. Computing certain an-
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swers over such patterns can be viewed as a form of
containment [24]. For these more expressive patterns,
Barceló et al. [4] embark on a quest of understanding
the tractability frontier of query answering, which is a
quest similar to ours. Containment of such patterns was
studied in [17].

Finally, we note that the containment problem of tree-
pattern-like queries is also relevant on graphs (see, e.g.,
[31,44] and the references we already mentioned).

2. PRELIMINARIES
Here, we introduce the necessary definitions concern-

ing graphs, trees, tree pattern queries, and schemas. For
a finite set S, we denote by |S| its number of elements.

2.1 Trees and Tree Pattern Queries
We consider trees that are node-labelled, rooted, un-

ranked, and directed from the root downwards. When
we do not say that the trees are infinite, resp., un-
ordered, we assume that they have a finite number of
nodes, resp., the children of each node are ordered from
left to right. Our complexity results do not depend on
whether trees are ordered or not. For an arbitrary, pos-
sibly infinite set of labels Λ, we denote Λ-trees as tuples
t = (Nodes(t),Edges(t), labt), where Nodes(t) is the set
of nodes Edges(t) ⊆ (Nodes(t))2 the set of child edges
and labt : Nodes(t)→ Λ the labelling function. When t
is clear from the context, we sometimes just denote labt

by lab. The root of t will be denoted root(t). We define
the size of t, denoted by |t|, to be the number of nodes
of t. We denote a tree with root labelled a and subtrees
t1, . . . , tn as a(t1, . . . , tn). By TΛ we denote the set of all
ordered, finite Λ-trees. We often simply say trees when
Λ is clear from the context.

A path in tree t is a sequence of nodes v0 · · · vn such
that, for each i = 1, . . . , n, we have that (vi−1, vi) ∈
Edges(t). Paths therefore never run upwards, that is,
turn towards to the root of t. We say that v0 · · · vn is a
path from v0 to vn and that the length of the path is n.
The depth of a node v ∈ Nodes(t) is equal to the length
of the (unique) path from root(t) to v. The depth of a
tree t is then defined as the maximum of the depths of
all its nodes.

For a tree t and a node v ∈ Nodes(t), the subtree of
t at v, denoted by subtreet(v), is the tree induced by
all the nodes u such that there is a (possibly empty)
path from v to u. In particular, for any tree t and leaf
node v, subtreet(v) = labt(v) and, for any other node
u, subtreet(u) = labt(u)(subtreet(u1), . . . , subtreet(un)),
where u1, . . . , un are the children of u from left to right.

We will use tree pattern queries with wildcard. We
will denote the wildcard symbol by ∗. Following the
standard conventions, tree pattern queries match trees
that only bear labels that are different from ∗ and which
we call letters.

Definition 2.1 (Tree Pattern Queries). Let Λ
be a (possibly infinite) set of labels that contains the
wildcard ∗. A tree pattern query (with wildcards), or
TPQ, over Λ is a tuple q = (Nodes(q),Edges(q),Desc(q),
labq) where Nodes(q) is a finite set of nodes, Edges(q) ⊆
(Nodes(q))2 a finite set of edges, and labq : Nodes(q)→
Λ such that (Nodes(q),Edges(q), labq) is a tree over Λ.

a

∗

b

c c

a

a

a

c

a c

b

c

m

q t

Figure 1: Mapping m is a weak embedding of the
TPQ q in the tree t, but it is not a strong embedding,
as m(root(q)) 6= root(t). Notice that there exists also
a strong embedding of q in t.

Furthermore, Desc(q) ⊆ Edges(q) is the set of descen-
dant edges.

For a node v ∈ Nodes(q), let subqueryq(v) be the sub-
query of q rooted at v, that is, the nodes of subqueryq(v)
are precisely v and its descendants and its labels, edges,
and descendant edges are inherited from q. We refrain
from a formal definition.

Let t be a tree over some arbitrary set of labels ∆ that
does not contain the wildcard ∗. A (weak) embedding
of a TPQ q into t is a total mapping m from Nodes(q)
to Nodes(t) such that
• for every v ∈ Nodes(q) such that lab(v) 6= ∗, we

have lab(m(v)) = lab(v);
• for every v1, v2 ∈ Nodes(q)

– if (v1, v2) /∈ Desc, then (m(v1),m(v2)) ∈ Edges(t);
and

– if (v1, v2) ∈ Desc, then m(v1) is a proper an-
cestor of m(v2).

An embedding is a strong embedding if, additionally, it
maps the root of q to the root of t.

The (weak) language of q is denoted Lw(q) and con-
sists of all trees t for which there is a weak embedding
of q into t. The strong language of q is denoted Ls(q)
and is defined similarly but requires a strong embed-
ding. Notice that Ls(q) ⊆ Lw(q). In Figure 1, we give
an example of an embedding.

The set of all tree pattern queries is denoted by TPQ
or TPQ(/, //, ∗). In this notation, we refer to / as child
edges, to // as descendant edges, and ∗ as wildcards.
We consider fragments of TPQs that limit the features
they can use. If we omit /, then we only consider TPQs
q where Desc(q) = Edges(q), if we omit //, we assume
that Desc(q) = ∅, and if we omit ∗, we assume that
lab : Nodes(q) → ∆. By PQ we denote the set of path
queries, which are TPQs q that do not branch, that
is Edges(q) does not contain any (v, v1) and (v, v2) for
which v1 6= v2. We denote fragments of PQs similar to
TPQs. For example, PQ(/, ∗) is the set of path queries
that use child edges and wildcards.

2.2 Schemas
Throughout the paper, Σ ⊆ ∆ always denotes a finite

alphabet of letters. We use standard regular expressions
using the operators · (concatenation), + (disjunction),
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and ∗ (Kleene star). For a regular expression r, L(r) is
the language of the expression, and Labels(r) is the set
of labels occurring in r. The size of a regular expression
r, denoted by |r|, is defined as the length of its word
representation.

In this paper, schemas will be mild variations on Doc-
ument Type Definitions (DTDs), which we abstract as
extended context-free grammars.

Definition 2.2. A DTD is a tuple (Σ, d, Sd), where
Σ is a finite alphabet, d is a function that maps Σ-
symbols to regular expressions over Σ, and Sd ⊆ Σ is
the set of start symbols. For convenience we sometimes
denote (Σ, d, Sd) by d and say that a→ r is a rule in d
when d(a) = r.

A tree t satisfies d if its root is labelled by an element
of Sd and, for every node v with label a and children
v1, . . . , vn from left to right, the word lab(v1) · · · lab(vn)
is in the language defined by d(a). By L(d) we denote
the language of trees satisfying d. The size of a DTD is
|Σ|+|Sd|+|d| where |d| refers to the size of the represen-
tations of the regular string languages. Unless specified
otherwise, we represent all such regular string languages
by regular expressions. Hence, |d| is the sum of the sizes
of all expressions representing languages d(a) for a ∈ Σ.

We assume that all DTDs d in this paper are reduced,
which means that, for every a ∈ Σ there exists a tree in
L(d) that contains a. It is well known that, for a DTD
that is not reduced, one can find an equivalent reduced
one in polynomial time.

2.3 Main Decision Problems
We will investigate the complexities of containment,

satisfiability and validity of tree pattern queries, possi-
bly with schema information.

In the following, let p and q always denote TPQs and
let d denote a DTD. We say that p is weakly contained in
q, if Lw(p) ⊆ Lw(q). Similarly, p is strongly contained in
q if Ls(p) ⊆ Ls(q). We consider the following problems
for TPQs:

W-Containment S-Containment
Input: TPQs p, q Input: TPQs p, q
Q: Is Lw(p) ⊆ Lw(q)? Q: Is Ls(p) ⊆ Ls(q)?

We also consider weak and strong containment with
DTD, in which case we also consider validity and sat-
isfiability as special cases of containment.2 Weak con-
tainment with respect to a DTD is formally defined as
follows.

W-Containment with DTD
Input: TPQs p, q, DTD d
Q: Is Lw(p) ∩ L(d) ⊆ Lw(q)?

S-Containment is defined analogously to W-Con-
tainment, but it uses Ls instead of Lw everywhere in
the definition.

Satisfiability problems can be seen as a special case of
containment. For example, we have that Lw(p)∩L(d) 6⊆
∅ if and only if p is (weakly) satisfiable with respect to

2Notice that, without DTD, validity and satisfiability of
TPQs are trivial.

d. Formally, W-Satisfiability with respect to a DTD
asks, given a TPQ p and DTD d, whether Lw(p)∩L(d) 6=
∅. As before, we define S-Satisfiability analogously,
with Ls(p) instead of Lw(p). The same holds true for
the validity problem with DTDs, which asks whether
L(d) ⊆ L(q). So, formally, W-Validity with respect
to a DTD asks, given a TPQ q and a DTD d, whether
L(d) ⊆ Lw(q). Again, the corresponding S-Validity
problem is obtained by taking Ls(q) instead of Lw(q).

In the paper, we also consider variants of the problems
in which the DTD is fixed. When we consider a problem
with respect to a fixed DTD we actually refer to a set
of problems. When we prove a hardness bound for such
problems, it means that there exists a fixed DTD for
which the problem is hard. For example, when we say
that W-Containment of TPQ(//) in PQ(/) w.r.t. fixed
DTD is coNP-hard, then we mean that there exists a
fixed DTD df for which the problem that takes as input
a p ∈ TPQ(//) and q ∈ PQ(/) and asks whether Lw(p)∩
L(df ) ⊆ Lw(q) is coNP-hard. In fact, in this paper we
only show lower bounds for problems with fixed DTD.

Weak and Strong Containment. The next observa-
tion shows that S-Containment and W-Containment
are equivalent in the case where both queries are allowed
to have descendant edges; otherwise it allows us to only
present upper bounds for W-Containment and lower
bounds for S-Containment.

Observation 2.3. For all fragments F1 and F2 of
TPQs, there is a polynomial time reduction from S-
Containment of F1 in F2 to W-Containment of F1
in F2 (with or without DTD). If F1 and F2 both contain
//, then there is also a polynomial time reduction from
W-Containment of F1 in F2 to S-Containment of
F1 in F2 (with or without DTD).

The first reduction boils down to changing the root la-
bel of both patters to an unused root symbol r (and
appropriately updating the DTD). In the second reduc-
tion we attach a new r-labelled root with a descendant
edge above both patterns. Details are in the appendix.

For the sake of succinctness, when we claim a result
about a problem without saying that we mean the weak
or strong variant, it means that we claim the result for
both. Most often, this will simply be due to Observation
2.3, but sometimes it also just means that the reduction
or algorithm only needs a very small adjustment.

General Upper and Lower Complexity Bounds.
The containment problem of the most general class,
TPQ(/, //, ∗) is known to be in coNP, which was shown
by Miklau and Suciu [34]. If DTDs are involved, then
containment of TPQ(/, //, ∗) is in EXPTIME [36].

Regarding lower bounds, satisfiability with respect to
a DTD d is always at least as hard as the problem
of computing a reduced DTD equivalent to d. Since
this problem is P-hard (by a trivial reduction from the
emptiness problem of context-free grammars), all deci-
sion problems in this paper that involve DTDs in the
input are P-hard in general.

2.4 Queries with Output
We only consider boolean queries in this paper, i.e.,

queries that define a set of trees. It was shown by
Miklau and Suciu that, in the case where all patterns
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have the “/” operator, the containment problem of k-
ary node-selecting queries reduces to containment of
boolean queries (Proposition 1 in [34]). This argument
was extended by Neven and Schwentick to containment
problems with DTDs (Section 2.4 in [36]). Hence, all
our complexity results in which the pattern fragments
have “/” also hold for k-ary node-selecting TPQs on
trees.

3. CONTAINMENT WITHOUT SCHEMA
Containment of TPQs without schema information

was studied in the seminal paper of Miklau and Suciu
[34] which gives a fairly precise picture of the tractabil-
ity frontier. In particular, a main message of that pa-
per is that containment of TPQ(/, //, ∗) in TPQ(/, //, ∗)
is coNP-complete (see also Theorem 3.3), whereas the
problem becomes tractable if we remove wildcards, de-
scendant edges, or branching from both tree pattern
queries. When considering containment of queries p in
q and we allow p and q to come from different fragments,
then Miklau and Suciu show the following polynomial
time bounds.

Theorem 3.1 (Theorem 3 in [34]). The follow-
ing problems are in P:
(1) S-Containment of TPQ(/, ∗) in TPQ(/, //, ∗);
(2) S-Containment of TPQ(/, //, ∗) in TPQ(/, ∗);
(3) Containment of TPQ(/, //, ∗) in TPQ(/, //);
(4) Containment of TPQ(/, //, ∗) in PQ(/, //, ∗).

Notation-wise, we note that Miklau and Suciu [34] as-
sume that “/” is always present in TPQs, which is why
they do not explicitly have it in their notation.

In this paper, we prove the following new polynomial
time bounds. One of the new results allows child edges
in both patterns and, as such, also fills a remaining
gap in [34]. (Indeed, in the notation of Miklau and Su-
ciu, they solved the complexity of all containment prob-
lems p in q for all combinations of p and q coming from
XP{[],//,∗}, except the case where p is from XP{//,∗}.)

Theorem 3.2. The following problems are in P:
(1) Containment of PQ(/, //, ∗) in TPQ(/, //, ∗);
(2) Containment of TPQ(//, ∗) in TPQ(/, //, ∗);
(3) Containment of TPQ(/, //, ∗) in TPQ(//, ∗);
(4) W-Containment of TPQ(/, ∗) in TPQ(/, //, ∗)
Cases (3) and (4) are not very difficult. Case (3) is
proved by a rather standard argument involving canon-
ical trees and case (4) follows almost directly from the
corresponding S-Containment problem (Theorem 3.1(1)).
Cases (1) and (2) are much more involved, however.
Here it is useful to see how the patterns are divided
into islands, where an island is a part a pattern that
is connected by child edges. In case (2) we first con-
sider a tree t ∈ L(p) in which all letters of p are sep-
arated by long paths of nodes labelled by some fresh
letter. Observe that if in some island of q there are two
non-wildcard nodes either on different depth or labelled
by different letters then q cannot be embedded into t.
Thus it remains to consider patterns q whose islands
have non-wildcard nodes only on one depth and all la-
belled by the same letter. This case can be solved by
dynamic programming. Case (1) is the most complex
one. Let ptop and qtop be the topmost islands of p and q,
respectively. We first check whether L(ptop) ⊆ L(qtop).

DTD: fixed not fixed

PQ P [4.1(1)]

TPQ(/) NP-c [4.2(2)]

TPQ(//) P [4.1(2)] NP-c [4.2(1)]

TPQ(/, //) NP-c [4.2(2),(3)]

TPQ(/, ∗) NP-c [4.2(2),(3)]

TPQ(//, ∗) P [4.1(2)] NP-c [4.2(1),(3)]

TPQ(/, //, ∗) NP-c [4.2(3)])

Table 2: Complexity of satisfiability for fragments
of TPQs. Results in bold are new, to the best of our
knowledge.

If yes, it is easy to reduce the instance to instances for
subpatterns, which we solve recursively. If no, the crux
is to consider the pattern p′ obtained from p by replac-
ing all letters in its topmost island into wildcards. In
this case a nontrivial (and maybe even surprising) ob-
servation is that L(p) ⊆ L(q) if and only if L(p′) ⊆ L(q)
(after the w.l.o.g. assumption that no leaf of qtop con-
tains a wildcard); again, we can continue by recursion
with the simpler pattern p′.

Finally, we also strengthen the coNP lower bound
from Miklau and Suciu to the case where the right pat-
tern only uses child edges, but the lower bound only
holds for weak containment. For strong containment,
the complexity is in P by Theorem 3.2.

Theorem 3.3. The following problems are coNP-com-
plete:
(1) Containment of TPQ(/, //) in TPQ(/, //, ∗) [34];
(2) W-Containment of TPQ(/, //) in TPQ(/, ∗).

Proof sketch. The crux of the lower bound proof
for case (2) is the non-trivial behavior of the patterns
in Figure 2. Notice that Ls(Y ) ⊆ Ls(T ) ∪ Ls(F ), and
that there exists a tree in Ls(Y ) and Ls(T ) but not in
Ls(F ) (namely, ttrue) and there exists a tree in Ls(Y )
and Ls(F ) but not in Ls(T ) (namely, any tree repre-
sented by tfalse). These properties can be used to adapt
the coNP-hardness proof of Theorem 4 in [34] to show
that weak containment of TPQ(/, //) in TPQ(/, ∗) is
coNP-hard. Details are in the appendix.

Regarding the title of the paper, when one considers
TPQs to have four distinctive features (branching, wild-
cards, child edges, and descendant edges) and one con-
siders both weak and strong containment, one arrives
at a rather large3 amount of different cases to consider
for the containment problem. Each of these cases boils
down to a theorem mentioned here. We summarize all
cases in Table 1.

4. SATISFIABILITY WITH SCHEMA
We now turn to containment problems that take schema

information into account. The simplest such problems
are satisfiability problems. We provide two polynomial-
time results.

Theorem 4.1. The following problems are in P:
(1) Satisfiability of PQ(/, //, ∗) w.r.t. a DTD [5];
3About 2 × 144, but it depends on the definition of “differ-
ent”.
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PQ TPQ(/, //) TPQ(/, ∗) TPQ(//, ∗) TPQ(/, //, ∗)
PQ

TPQ(/) P [3.1(1), 3.2(1),(2),(4)]

TPQ(//)

TPQ(/, //) P [3.1(3),(4)] coNP-c [3.3(2)] / P [3.1(2)] coNP-c [3.3(1)]

TPQ(/, ∗) P [3.2(4)] / P [3.1(2)] P [3.2(4)] / P [3.1(1)]

TPQ(//, ∗) P [3.2(2)] / P [3.1(2)] P [3.2(3)] P [3.2(2)]

TPQ(/, //, ∗) coNP-c [3.3(2)] / P [3.1(2)] coNP-c [3.3(1)]

Table 1: Complexities for all combinations of F1 in F2, where F1 and F2 are fragments of TPQ. When two
complexities are listed, then the left one is for weak containment and the right one for strong containment.
Results in bold are new, to the best of our knowledge.

Y :

a

a

b

a

z

z

a

b

(a)

T :

a

a

∗

a

∗

∗

∗

b

(b)

F :

a

∗

a

∗

∗

∗

b

(c)

ttrue:

a

a

b

a

z

z

a

b

(d)

tfalse:

a

a

b

a

z

z

a

...

b

(e)

Figure 2: Gadgets for the proof of Theorem 3.3(2).

(2) Satisfiability of TPQ(//, ∗) w.r.t. a fixed DTD.

Case (1) immediately follows from a stronger result of
Benedikt et al. (Theorem 4.1 in [5]) that shows that the
problem remains in P even if unions are added. This
case can also be solved by a very simple intersection
test of tree automata. Case (2) of the above theorem
was recently proved for an injective semantics of TPQs
over trees [16]. The proof can be adapted for the non-
injective semantics we consider here.

Furthermore, in case (2) of the above Theorem, it
is crucial that the DTD is fixed. Indeed, Wood [43]
proved that it is NP-complete to decide whether the
language of a given regular expression e over alphabet
Σ contains a word that has every letter from Σ.4 This
means that it is already NP-hard to decide whether the
language defined by the DTD r → e, containing trees of
depth one, has a tree which contains every letter from
Σ \ {r}. The latter property can be easily expressed
by a TPQ(//). This implies case (1) of the following
theorem:

Theorem 4.2. The following problems are NP-complete:
(1) Satisfiability of TPQ(//) w.r.t. a DTD [43];
(2) Satisfiability of TPQ(/) w.r.t. a fixed DTD;
(3) Satisfiability of TPQ(/, //, ∗) w.r.t. a DTD [5].

We state cases (1) and (2) here for the lower bound and
case (3) for the upper bound. We note that Benedikt
4In fact, Wood’s result is stronger. It also holds for expres-
sions that are deterministic or one-unambiguous, as required
in DTDs in practice.

et al. [5] proved that satisfiability of TPQ(/, ∗) with re-
spect to a fixed DTD is NP-complete, which is close
to Theorem 4.2(2). In fact, the hardness proof from
Benedikt et al. can be adapted so that it does not re-
quire wildcard [35], which would also imply Theorem 4.2(2).
However, the construction we present here can also be
used to show Theorem 6.3, which we do not know how to
do by tweaking the proof in [5]. We present a complete
overview of the complexity of satisfiability in Table 2.
We provide a proof sketch of case (2) of Theorem 4.2.

Proof sketch (case 2). The proof is by reduction
from 3-partition, which is known to be NP-complete
and is defined as follows. Given is a number B ∈ N (in
unary) and a multiset S of integers strictly between B

2

and B
4 (also in unary). The question is to determine

whether it is possible to partition S into |S|3 triples so
that the sum of the numbers in each triple is B. We note
that the question makes sense only when |S| is divisible

by 3, and the sum of all numbers in S is B · |S|3 .
We first reduce the problem to a problem that will be

more convenient for us and which we call 4-partition.
In this problem we are given a number 2K for some
K ∈ N, and a multiset S′ of cardinality 4 · 2L for some
L ∈ N, containing positive integers. The question to

answer is whether one can partition S′ into |S′|
4 sub-

multisets so that the sum of numbers in each of them
is 2K . In the appendix, we prove that 4-partition is
NP-complete.
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strong weak DTD fixed

PQ P [5.1]

TPQ(/, //) P [5.1] P

TPQ(/, ∗) P [5.1] EXPTIME-c [5.2] [5.1]

TPQ(//, ∗) P [5.1]

TPQ(/, //, ∗) EXPTIME-c [5.2]

Table 3: Complexity of validity for fragments of
TPQs w.r.t. a DTD.

We now reduce 4-partition to our problem. To this
end, consider an instance 2K , S′ (with |S′| = 4 · 2L) of
4-partition. We construct a fixed DTD d and pattern
p ∈ TPQ(/) such that p is strongly satisfiable w.r.t. d if
and only if there is a solution to the given instance of
4-partition.

The DTD is very simple: it just says that the alphabet
is {a, b, c, d, e} where each node labelled by a has exactly
two children, and each other node is a leaf.

We define sets Ti of (unordered) trees, inductively
on i, as follows. The set T0 consists of the four trees
with one node, with a label from {b, c, d, e}. When Ti
is known, we define Ti+1 to be all trees consisting of a
root labelled by a, which is attached to two different un-
ordered subtrees from Ti. Notice that each tree in Ti is
perfectly balanced: each leaf is at depth exactly i. The
trees in Ti can be also considered as tree patterns. Such
pattern strongly embeds into exactly one unordered tree
(itself) when taking the DTD restriction into account.
Indeed, we cannot add any other node, since each a may
have only two children and the leaf labels occur only at
the leaves. Furthermore, we cannot merge any two sub-
trees since they always have to be different. We fix the
smallest number M for which |TM | ≥ 2K+L. We have
that

|T0| = 4, |Ti+1| =
1

2
|Ti|(|Ti| − 1).

Notice that, as i increases, the number |Ti| is almost
squared, so |Ti| grows double-exponentially faster than
i. This means that, for sufficiently large instances, M
will be smaller than K + L, so we can use 2K+L trees
from TM to construct our pattern, and it will be poly-
nomial (recall that 2K is given in unary).

We are now ready to describe the pattern p. From
the root we create |S′| paths, each of length L (each of
them corresponds to one number from S′). At the end
of the path corresponding to a number k we create k
paths of length K. At the end of each such path, we
attach a tree from TM that occurs nowhere else in the
whole pattern p. Figure 3 has a graphical presentation
of p.

This concludes the reduction. We prove in the ap-
pendix that L(d) ∩ Ls(p) 6= ∅ if and only if L(d) ∩
Lw(p) 6= ∅ if and only if the instance of 4-partition
has a solution.

5. VALIDITY WITH SCHEMA
For the validity problem, we do not present any new

deep results, only an observation that closes a small gap
between the results that were presented by Hashimoto

a

a

a

...

a

a

...

a

a

...

a

· · · a

...

a

· · · a

a

...

a

a

...

a

a

...

a

· · · a

...

a

t1 t2 tk1 tm

|S′|

L

K

Figure 3: Structure of the pattern p in the proof of
Theorem 4.2(2). All the tj are different trees.

et al. [27] and Björklund et al. [9]. We summarize the
strongest results here, for the sake of completeness and
present a complete overview in Table 3.

Theorem 5.1. The following problems are in P:
(1) Validity of PQ(/, //, ∗) w.r.t. a DTD [27];
(2) Validity of TPQ(/, //) w.r.t. a DTD [27];
(3) S-Validity of TPQ(/, ∗) w.r.t. a DTD [27];
(4) Validity of TPQ(//, ∗) w.r.t. a DTD [27];
(5) Validity of TPQ(/, //, ∗) w.r.t. a fixed DTD.

Cases (1–4) are proved in Theorem 3 of [27]. Case (5)
can be efficiently solved due to the constant language
defined by the DTD; we prove it in the appendix. The
fixed DTD in case (5) is rather crucial. Without it,
weak validity for TPQ(/, ∗) immediately jumps to EX-
PTIME, as the following theorem shows.

Theorem 5.2 (Theorem 12 in [9]). W-Validity
of TPQ(/, ∗) w.r.t. a DTD is EXPTIME-complete.

From this theorem, we also immediately know that S-
Validity of TPQ(/, //, ∗) with respect to a DTD is
EXPTIME-complete.

6. CONTAINMENT WITH SCHEMA
The containment problem with schema information is

the most general problem we consider. The solutions for
Theorem 6.1(4) and Theorem 6.6 are technically most
involved results of this paper.

6.1 Polynomial Time Fragments

Theorem 6.1. The following are in P:
(1) Containment of PQ(/, //, ∗) in PQ(/, //);
(2) Containment of PQ(/, //, ∗) in TPQ(//, ∗);
(3) S-Containment of PQ(/, //, ∗) in TPQ(/, ∗);
(4) W-Containment of PQ(/, //, ∗) in TPQ(/);
all w.r.t. a DTD.

The proofs for cases (1), (2), and (3) rely on the follow-
ing observation.
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PQ (/), PQ (//), PQ (/,//) PQ (/,*) PQ (//,*) PQ (/,//,*)

PQ (/),

PQ (//) P [6.1(1)] and [36] EXPT.-c [6.6(1),(2)] P [6.1(2)]

PQ(/, //, ∗) / P [6.1(3)] EXPT.-c [6.6(1),(2)]

TPQ (/) EXPT.-c [6.6(1),(2)] / EXPT.-c [6.6(3),(4)]

TPQ (//) coNP-c [6.3,6.4(1)] / coNP-c coNP-c

TPQ(/, //, ∗) [6.3(1),(2), 6.4(3)] [6.3(3),(4),6.4(2)]

Table 4: Complexity of containment TPQs w.r.t. a DTD; right pattern is a PQ. When two complexities are
listed, the first is for weak containment and the second for strong containment. The results hold for the case
where the DTD is part of the input and for the case where the DTD is fixed. Fields in bold have at least one
new result, to the best of our knowledge.

TPQ (/) TPQ (//) TPQ (/,//) TPQ (/,*) TPQ (//,*) TPQ (/,//,*)

PQ (/)

PQ (//) P [6.1(4)] P [6.1(2)] in EXPT. EXPT.-c [6.6(1),(2)] P [6.1(2)]

PQ(/, //, ∗) / P [6.1(3)] / P [6.1(3)] EXPT.-c [6.6(1),(2)]

TPQ (/) coNP-h [6.3] EXPT.-c [6.6(1),(2)] / EXPT.-c [6.6(3),(4)]

TPQ (//) / coNP-c coNP-c coNP-h / coNP-c coNP-c

TPQ (/,//,*) [6.3,6.4(3)] [6.3,6.4(2)] [6.3] [6.3,6.4(3)] [6.3,6.4(2)]

Table 5: Complexity of containment TPQs w.r.t. a DTD; right pattern is a TPQ. Notation and remarks are
the same as in Table 4.

Observation 6.2. Let Σ be a finite alphabet and let
q be a query in (1) PQ(/, //); (2) TPQ(//, ∗); or in (3)
TPQ(/, ∗). Then we can construct in polynomial time a
non-deterministic tree automaton for the language TΣ \
Ls(q).

Cases (1)–(3) of Theorem 6.1 now follow by reduction
to the emptiness problem of non-deterministic tree au-
tomata. Indeed, for p ∈ PQ(/, //, ∗) and DTD d one
can construct in polynomial time a non-deterministic
tree automaton for Ls(p) ∩ L(d). This means that, in
all three cases, we can obtain in polynomial time a non-
deterministic tree automaton that accepts the empty
language if and only if Ls(p) ∩ L(d) ⊆ Ls(q). Since
emptiness testing of non-deterministic tree automata is
in P, this gives a P solution to the problem. The P
upper bounds for weak containment in cases (1) and
(2) are immediate from Observation 2.3. We note that
Neven and Schwentick [36] already showed that con-
tainment of PQ(/, //) in PQ(/, //) w.r.t. DTD is in P,
which is very close to Theorem 6.1(1).

Case (4), however involves a non-trivial argument.
Let p ∈ PQ(/, //, ∗), q ∈ TPQ(/), and let d be a DTD.
Notice that the automaton recognizing TΣ \Lw(q) may
be of exponential size, thus we have to proceed differ-
ently from cases (1)–(3). In a first stage, whenever in
q we have two siblings with the same label, we merge
them. Although this changes Lw(q), it is easy to see
that it does not influence the containment question. In
a second stage, we remove redundant subqueries of q.
Namely, it may happen that we can remove some sub-
query of q obtaining some q′, so that whenever q′ can be
embedded into a tree from L(d), then the whole q can
be embedded as well. After this cleaning stage, we have
one of two mutually exclusive situations. One possibil-
ity is that the pattern q is a path (or is very similar to a
path); then we have case (1). The opposite case is that
in q we have some branching. Then we can prove that

the containment never holds. Indeed, to obtain a tree t
from (Lw(p)∩L(d))\Lw(q) we are quite restricted only
while arranging the path into which p will be embedded.
However, into this path at most one path of q embeds.
Outside of this path in t we can place arbitrary sub-
trees satisfying d, so we place there subtrees into which
the rest of q cannot be embedded. Such subtrees exist,
since otherwise the rest of q would be redundant, but
all redundant subqueries were already removed during
the second stage.

In fact the most difficult part is to check whether q is
(weakly) equivalent to its part q′ w.r.t. our DTD d. At
first glance this looks hopeless, as this is just the W-
Containment problem of TPQ(/) in TPQ(/) w.r.t. a
DTD, which by Theorem 6.3 is in general coNP-hard.
Hopefully, our pattern q is not arbitrary: there are no
two siblings labelled the same (thanks to the first stage).
The crux of the proof is to reduce the equivalence prob-
lem in this special case to multiple smaller instances of
the (slightly generalized) containment question of PQ(/)
in TPQ(/) w.r.t. a DTD. Thanks to that, we can pro-
ceed by dynamic programming.

6.2 Hard Fragments
We will prove that there are two ingredients that

make the containment problem w.r.t. DTDs hard, even
when the DTD is constant. These two ingredients are
(1) branching in the left pattern and
(2) right patterns of the form //a/ ∗ / ∗ / · · · / ∗ /b.
Branching in the left pattern immediately renders con-
tainment with schema coNP-hard. The underlying rea-
son is that already satisfiability of TPQ(/) with a fixed
DTD is NP-complete (Theorem 4.2); and that our proof
can be adapted for the case where the left pattern only
has //-edges. The second source of hardness is when the
right pattern can express “there is an a-node which is
(exactly) k levels above a b-node”. In this case the com-
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plexity even jumps to EXPTIME, which is already the
highest possible complexity class for TPQ containment.
We found it rather surprising that such a seemingly in-
expressive query makes containment so hard even when
the DTD is fixed.

Theorem 6.3. The following are coNP-hard:
(1) Containment of TPQ(/) in PQ(/);
(2) Containment of TPQ(//) in PQ(/);
(3) Containment of TPQ(/) in PQ(//);
(4) Containment of TPQ(//) in PQ(//);
all w.r.t. a fixed DTD.

For cases (1)–(3), it does not follow from Observation 2.3
that weak and strong containment have the same com-
plexity, but we merged them for succinctness. The
proofs are very similar. Cases (1) and (3) are imme-
diate from Theorem 4.2(2). The other cases can be
obtained from adapting the proof of Theorem 4.2(2),
as follows. Recall that in this proof we were using a
DTD ensuring that each internal node (but no leaf) of
a tree is labelled by a, and we were reducing an in-
stance of the 4-partition problem into satisfiability of
a pattern p that has each leaf on the same depth, say
n. We notice that such pattern p is satisfiable if and
only if Lw(p′) ∩ L(d) 6⊆ Lw(q), where p′ is the pattern
obtained from p by changing all child edges into descen-
dant edges, and q is a path consisting of n + 1 nodes
labelled by a (connected either by child edges or by de-
scendant edges, depending on the considered fragment).
Indeed, any tree in Ls(p)∩L(d) is in Lw(p′) and not in
Lw(q) (because of the depth). On the other hand, any
tree t ∈ Lw(p′) ∩ L(d) \ Lw(q) has depth at most n, so
an embedding of p′ into t maps every descendant edge
into a child edge, and hence p embeds into t as well.
This gives a reduction to (the negation of) the problem
considered in case (2) or (4).

For many cases, we can also prove coNP-completeness:

Theorem 6.4. The following are coNP-complete:
(1) Containment of TPQ(/, //, ∗) in PQ(/, //);
(2) Containment of TPQ(/, //, ∗) in TPQ(//, ∗);
(3) S-Containment of TPQ(/, //, ∗) in TPQ(/, ∗);
all w.r.t. a DTD.

These coNP upper bounds follow from two observa-
tions. The first one is Observation 6.2. The second
one concerns S-Satisfiability of TPQ(/, //, ∗) in the
language of a tree automaton:

Observation 6.5. Satisfiability of a TPQ(/, //, ∗)
w.r.t. a non-deterministic tree automaton is in NP.

The proof of the observation is a rather standard “small
model” argument. The result follows immediately from,
e.g., Theorem 8 in [7]. We finish the proof of Theo-
rem 6.4 as follows. Observation 6.2 says that, in all
three cases, we can build a non-deterministic tree au-
tomaton for the language of all trees that satisfy the
DTD and do not satisfy the right pattern. In all three
cases, containment holds if and only if the left pattern
is not satisfiable w.r.t. this tree automaton, which is in
coNP by Observation 6.5.

The following theorem involves the technically most
difficult hardness proof of the paper. The proof goes
through a variant of tiling problems that we call tri-
omino tiling. Whereas standard tiling problems [42]

use horizontal and vertical constraints, triomino tiling
unifies these to a single kind of constraint in the shape
of an L-triomino.5 A triomino constraint restricts how
a cell, its horizontal neighbor and its vertical neighbor
can be tiled. Our main reason to go through triomino
tiling is because it allows us to check the horizontal and
vertical constraint at the same time, and using only the
right pattern. Since the triomino tiling problem may be
useful in its own respect, we briefly present it here. The
main technical difficulty in the proof is in the reduction
from triomino tiling to containment, however.

More precisely, a triomino tiling system is a tuple
S = (T,C, tf ) where T is a finite set of tile types, C ⊆
T 3 a set of triomino constraints, and tf ∈ T is a final
tile. An instance of corridor triomino tiling consists of
a word s ∈ T ∗. The question is if it is possible to find
an m ∈ N such that each cell in the |s| ×m rectangle
can be assigned a tile type and following constraints are
satisfied:
• the bottom row is tiled by s;
• the last tile is tf ; and
• for each triple (c1, c2, c3) such that c1 is a cell,
c2 its right neighbor, and c3 its top neighbor, we
have that (t1, t2, t3) ∈ C, where ti is the type that
is assigned to ci for every i = 1, 2, 3.

We present the problem in more detail in the appendix.
In our hardness proof, we actually reduce from a two-
player variant of corridor triomino tiling, tweaked ap-
propriately for our situation. This game variant of the
problem is EXPTIME-complete.

Theorem 6.6. The following are EXPTIME-complete:
(1) W-Containment of PQ(/) in a PQ(/, ∗);
(2) W-Containment of PQ(//) in a PQ(/, ∗);
(3) S-Containment of PQ(/) in a PQ(/, //, ∗);
(4) S-Containment of PQ(//) in a PQ(/, //, ∗);
all w.r.t. a fixed DTD.

7. TREES VERSUS GRAPHS
We explain how the complexity results in the paper

can be interpreted in the context of graph databases.
We consider two possible abstractions of graph databases
in this section. The first is a node-labelled graph and
the second is a node- and edge-labelled graph. We note
that the standard models of graph databases in the
literature are edge-labelled rather than node-labelled
(e.g., [3, 32, 33]), but this does not make a difference
when transferring our kind of results. In the node- and
edge-labelled model, edges will be triples consisting of
two nodes and a label (as usual) and nodes will be la-
belled by a function called type. The intuition is that if
a graph represents a social network, for example, we as-
sume that nodes already have information on whether
they represent a person, message, or photo. The re-
lations between nodes are modelled as directed edges,
e.g., person x likes message y is modelled as a directed
edge from node x to node y labelled likes, and nodes x
and y carry the type person and message respectively.
An example graph and its abstraction with types is pre-
sented in Figure 4.

5Readers familiar with Tetris may know the term tetromino,
which are the “blocks”, consisting of four squares, that ap-
pear in the game. A triomino has three squares.
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m1 I think I like John

p1

1991

John Doe

p2 1994

Jane Doe

likes

born

na
me

lik
es

born

name

posted

content

(a) A toy graph database about a social network.

message text

person

date

pname

person date

pname

likes

born

na
m
e

lik
es

born

nam
e

posted

content

(b) Abstraction of the graph database in (a), only
bearing node types and edge labels.

Figure 4: A graph database 4(a) and its abstraction
as a typed graph 4(b).

7.1 No Schema Information
First we explain the connection to the setting where

we do not consider DTDs. Let Γ be a finite alphabet of
types. A graph G over Γ is a triple (Nodes(G),Edges(G),
typeG) where Nodes(G) is a finite set of nodes, Edges(G) ⊆
(Nodes(G))2, and typeG : Nodes(G) → Γ. When G
is clear from the context, we often also denote typeG

as type. It is a rooted graph if it has a special node
root(G) ∈ Nodes(G).

A (weak) embedding m of a TPQ q (over the letters
Γ) on a graph G is defined analogously as on trees, ex-
cept that we consider type(m(v)) instead of lab(m(v))
and, if (v1, v2) ∈ Desc(q), then we require that there is
a directed path in G from m(v1) to m(v2). If G is a
rooted graph, then m is a strong embedding of q if it is
a weak embedding on G and m(root(q)) = root(G). We
can now define the weak and strong graph languages
of q analogously as we did over trees. The small dif-
ference is that the strong graph language is a set of
rooted graphs. Once these notions are established, the
definitions of S-Containment and W-Containment
of TPQs over graphs are again analogous as for trees.
The next proposition, which was already observed by
Miklau and Suciu [34], says that with these definitions,
the W-Containment and S-Containment problems
are independent of whether TPQs are interpreted over
graphs or over trees.

Proposition 7.1 (Section 5.3 in [34]). For all frag-
ments F1 and F2 of TPQs we consider in this paper,
the W-Containment (resp., S-Containment) prob-
lem of F1 in F2 over graphs is the same as the W-
Containment (resp., S-Containment) problem of F1
in F2 over trees.

The proposition implies that all complexity results in
Section 3 also hold for TPQs over node-labelled graphs.

If one considers graph databases [3], that is, graphs in
which the edges are triples coming from Nodes(G)×Σ×
Nodes(G), and one defines the semantics of TPQs as in
Libkin et al. [32], the proposition holds as well.

7.2 Typed Graphs and Schema Information
We extend Proposition 7.1 so that it also connects to

satisfiability w.r.t. DTDs. We have to adjust DTDs a
little bit since they are not the most natural model for
meta-information on graphs. We take some inspiration
from Shape Expressions [12,40]. However, a crucial dif-
ference with [12] is that we assume that nodes already
have types. That is, in a social network, nodes already
have types such as person or message associated to them.

We feel that there are two natural ways of interpret-
ing DTDs over typed graphs. In the first, the DTD
only reasons about the types of nodes. In the second
we consider graphs that have labelled edges and nodes
with associated types and the DTD reasons about pairs
consisting of node- and edge labels. We explain both
variants next.

Nodes Only. In the first variant, we say that a
graph G satisfies a DTD (Γ, d, Sd) under nodes-only se-
mantics if, for every node u of G with type(u) = a
and neighbors {v1, . . . , vn} = {v | (u, v) ∈ Edges(G)},
there exists a permutation σ of {1, . . . , n} such that
type(vσ(1)) · · · type(vσ(n)) ∈ L(d(a)). Finally, if root(G)
exists, we require that type(root(G)) ∈ Sd.

Formally, this means that we consider the neighbors
of a node in a graph to be unordered and, therefore,
we also consider the regular expressions in DTDs to de-
fine an unordered language. Here, we need to make a
brief discussion about complexity. Testing if a given
word (or multiset of labels) is in the language of an un-
ordered regular expression, that is, testing if the above
permutation σ exists, is NP-complete [30]. In fact, this
is a reason why unordered regular expressions do not
seem suitable out of the box for schemas for unordered
XML and why the research on the design of schema
languages for unordered XML considers restricted reg-
ular expressions, see [11]. However, NP-completeness
of this problem does not influence the complexity of
TPQ containment. The reason is that, since tree pat-
tern queries are already unordered, it does not matter
for the complexity of TPQ containment whether they
are interpreted on ordered or unordered structures.

We define the nodes-only semantics of TPQs to be the
same one as we used for Proposition 7.1. Then we have
the following correspondence between graphs and trees:

Proposition 7.2. For all fragments F of TPQs we
consider in this paper, under the nodes-only semantics
of DTDs and TPQs on graphs, the W-Satisfiability
(resp., S-Satisfiability) problem of F with respect to
DTDs over graphs is the same as the W-Satisfiability
(resp., S-Satisfiability) problem of F over trees.

We note that this proposition requires that the DTDs
are reduced, which is a condition we assume throughout
the paper. Unfortunately there is no longer a strong
correspondence for the Validity and Containment
problems. Actually, we think that already for Validity
the complexities may even be different. We comment on
this in the conclusions.

Nodes and Edges. The second way of tweaking
DTDs for graphs deals with node- and edge labels and
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is a little bit more technical. First we say how we see
such graphs. We let Γ be a finite alphabet of types as
before and we additionally consider a finite alphabet
Σ of edge labels, disjoint from Γ. A typed graph over
(Σ,Γ) is a tuple G = (Nodes(G),Edges(G), type) where
Nodes(G) and type : Nodes(G) → Γ are as before, but
Edges(G) ⊆ (Nodes(G)× Σ× Nodes(G)).

For typed graphs, we consider DTDs that also reason
about pairs of node- and edge labels. More precisely,
it uses the alphabet Γ ∪ (Σ × Γ) and its rules are of a
restricted form. We first provide an example.

Example 7.3. Consider the rules

person → (born, date)(name, pname)(posted,message)∗

(likes,message)∗(likes, person)∗

(born, date) → date
(name, pname) → pname
(posted,message) → message
(likes,message) → message
(likes, person) → person
message → (content, text)
(content, text) → text

When we don’t explicitly write a rule for a symbol s, we
implicitly assume to have the rule s→ ε. Notice the dif-
ference between rules that only have a type on the left
and rules that have a pair on the left. Intuitively, the
former rules define the kind of outgoing edges that are
allowed from nodes in the graph and the latter rules
say, for each edge, the type of node they should point
to. (We have these two kinds of rules due to the limited
expressive power of DTDs; a DTD can define only one
right-hand-side per left-hand symbol.) So, the reason is
that a DTD can only control the 1-neighborhood of a
node, not the 2-neighborhood.

On a typed graph, the first six rules express that each
person has an outgoing edges labelled born that points to
a node of type date and an outgoing edge labelled name
that points to a node of type pname. Furthermore, a
person can have outgoing edges labelled likes that can
point to nodes of type message or person and it can
have outgoing edges labelled posted that point to nodes
of type message. The last two rules express that each
message has an outgoing content edge to a text-node.
The typed graph in Figure 4(b) satisfies the DTD.

Formally, we say that a DTD is a graph DTD if it is
of the form (Γ ∪ (Σ × Γ), d, Sd) and the rules in d are
only of the form a → r with a ∈ Γ in r ∈ R(Σ × Γ) or
of the form (e, a)→ a for e ∈ Σ and a ∈ Γ.

A typed graph G satisfies d under nodes/edges seman-
tics if all the following hold:
• for every node u of G with type(u) = a and inci-

dent edges {e1, . . . , en} = {(u, ai, vi) | (u, ai, vi) ∈
Edges(G)}, there exists a permutation σ of {1, . . . , n}
such that (aσ(1), type(vσ(1))) · · · (aσ(n), type(vσ(n))) ∈
L(d(a));
• for every edge e = (u, a, v) of G, we have that
type(v) ∈ L(d((a, type(v)))); and
• if root(G) exists, then type(root(G)) ∈ Sd.

We now explain when a TPQ matches a graph un-
der nodes/edges semantics. Intuitively, this is done by
translating the graph to a node-labelled graph and then
take the same semantics as we already defined. For-
mally, let G = (Nodes(G),Edges(G), typeG). We asso-
ciate to G a node-labelled graph GN = (Nodes(GN ),

Edges(GN ), typeGN ) over Γ∪ (Σ×Γ), which is obtained
from G as follows:
• Nodes(GN ) := Nodes(G) ] {ne | e ∈ Edges(G)};
• Edges(GN ) := {(u, ne), (ne, v) | e = (u, a, v) ∈
Edges(G)};
• for every u ∈ Nodes(G), typeGN (u) := typeG(u);
• for every ne ∈ Nodes(GN ) with e = (u, a, v), we

define typeGN (ne) := (a, typeG(v)); and
• if root(G) exists, then root(GN ) := root(G).

We now say that G satisfies a TPQ q under nodes/edges
semantics if GN satisfies q. Notice that, as in graph
DTDs, the TPQ q uses letters from Γ ∪ (Σ× Γ).

Proposition 7.4. For all fragments F of TPQs we
consider in this paper, under the nodes/edges semantics
of DTDs and TPQs on graphs, the W-Satisfiability
(resp., S-Satisfiability) problem of F with respect to
DTDs over graphs is the same as the W-Satisfiability
(resp., S-Satisfiability) problem of F over trees.

Similarly to Proposition 7.2, this proposition does not
generalize to Validity or Containment. We are still
working on the question which complexity results carry
over.

8. DISCUSSION AND FUTURE WORK
We made significant progress in the investigation of

the complexity of containment of TPQs over trees. The
only table that still contains cases that are not yet clas-
sified as either “tractable” or complete for a complexity
class containing NP or coNP is Table 5.

In Section 7 we discussed a close correspondence be-
tween the containment problem for trees and the prob-
lem for graphs. In this respect, our biggest open ques-
tion is to which extent the results for trees can be carried
over to graphs for the containment and validity prob-
lems with schema information. We know that the va-
lidity problem is not the same for trees than for graphs.
For example, over trees, the query a//b is valid for the
DTD with rules a → a + b and b → ε, but this is not
true over graphs. The challenge consists of dealing with
schemas that are recursive, i.e., allow cycles in graphs.

In this work we presented a manageable amount of
existing and newly discovered results that seem to be
quite powerful for classifying the complexity of tree pat-
tern containment problems. Research is not about con-
sidering large amounts of cases and solving all of them
but, only as an illustration, when one would consider all
variations of TPQ fragments, weak/strong containment,
with fixed DTD or not as “different”, then the results
mentioned in this paper classify 856 different cases out
of 916 total as either in P or complete for a higher com-
plexity class.6 When one does not care about complete-
ness for the higher class, then 892 cases are classified.
Given the rich literature on tree pattern containment,
we feel that, in addition to the newly obtained techni-
cal results, our work also contributes in making a clearer
picture of the problem.
Acknowledgments. We thank Filip Murlak for point-
ing us to [16].

6OK, we admit that we are working on the insight that
classifies the remaining ones.
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APPENDIX
For an a ∈ Σ and a DTD (Σ, d, Sd) we denote by da the DTD (Σ, d, {a}), so L(da) always denotes the set of trees
that satisfy the rules of d but have a root with label a.

A. PROOFS FOR SECTION 2: PRELIMINARIES
Observation 2.3. For all fragments F1 and F2 of TPQs, there is a polynomial time reduction from S-Containment

of F1 in F2 to W-Containment of F1 in F2 (with or without DTD). If F1 and F2 both contain //, then there
is also a polynomial time reduction from W-Containment of F1 in F2 to S-Containment of F1 in F2 (with or
without DTD).

Proof. We first present a reduction from W-Containment to S-Containment. Suppose that we have patterns
p and q and a DTD d, and we want to check whether Lw(p) ∩ L(d) ⊆ Lw(q). Let > be a letter not appearing in
the patterns nor in the DTD. Let Sd be the set of root labels allowed by d. We create new patterns p′ and q′ by
attaching a new >-labelled root above p and q, respectively, using a descendant edge (recall that by assumption //
is in our fragment of TPQs). We also consider a DTD d′ obtained from d by adding the rule > → Sd, and changing
the set of allowed root labels into {>}. We claim that Lw(p) ∩ L(d) ⊆ Lw(q) if and only if Ls(p

′) ∩ L(d′) ⊆ Ls(q
′).

It remains to prove this claim.
Suppose that Lw(p)∩L(d) ⊆ Lw(q) and take a tree t ∈ Ls(p′)∩L(d′). Because of the DTD, the root of t has one

child, and the subtree t′ rooted in that child belongs to L(d). As t ∈ Ls(p′), we have t′ ∈ Lw(p), so by assumption
t′ ∈ Lw(q). Then obviously t ∈ Ls(q′).

Oppositely, suppose that Ls(p
′)∩L(d′) ⊆ Ls(q′) and take a tree t ∈ Lw(p)∩L(d). Consider t′ obtained from t by

attaching a new >-labelled root above t. We have t′ ∈ Ls(p′) ∩ L(d′), so t′ ∈ Ls(q′), and thus t ∈ Ls(q).
Without DTD the reduction looks more or less the same.
Now we turn into a reduction from S-Containment to W-Containment. Suppose that we have patterns p and

q and a DTD d, and we want to check whether Ls(p) ∩ L(d) ⊆ Ls(q). Let >, >OK , >BAD be letters not appearing
in the patterns nor in the DTD. Let Sd be the set of root labels allowed by d. Let Rp be the set of root labels
allowed by p intersected with Sd. Namely, when the root of p is labelled by a letter a, then Rp = {a} ∩ Sd; if this
is a wildcard, then Rp = Sd. Similarly, let Rq be the set of root labels allowed by q intersected with Sd. We have
several cases here.

The first case is that Rp ⊆ Rq: whenever the root of p can be mapped into some node, then also the root of q
can be mapped to this node. Then we change the root labels of both patterns into >. Also the set of root labels
allowed by the DTD becomes {>}. The rule for > will be > →

⋃
a∈Rp

La, where in d the rule for a was a → La.

It is easy to see that Ls(p) ∩ L(d) ⊆ Ls(q) if and only if Ls(p
′) ∩ L(d′) ⊆ Ls(q

′), where p′, q′, d′ denote the new
patterns and DTD. Moreover, due to the unique root label, the only embeddings of p′ or q′ into a tree in L(d′) are
strong embeddings. Thus it is enough to check whether Lw(p′) ∩ L(d′) ⊆ Lw(q′).

Another case is that Rp∩Rq = ∅. Then the containment holds exactly when Ls(p)∩L(d) = ∅. Now we take p′ and d′

as previously, but this time we change the root label of q into >BAD. Again we check whether Lw(p′)∩L(d′) ⊆ Lw(q′).
Recalling that all embeddings are strong, this will be the case exactly when Ls(p

′) ∩ L(d′) = ∅ (as q′ can never be
embedded), that is when Ls(p) ∩ L(d) = ∅.

The remaining case is that Rp ∩ Rq 6= ∅ and Rp 6⊆ Rq. This is possible only when the root of p is a wildcard
(and the root of q is labelled by some letter). Let us suppose first that child edges are allowed in F1. Then to
create p′ we attach above p an additional >-labelled root, using a child edge. To create q′ we change the root of
q into >OK (without attaching anything). In d′ the set of allowed roots is {>}; we add rules > → >OK + >BAD,
and >OK →

⋃
a∈Rp∩Rq

La, and >BAD →
⋃
a∈Rp\Rq

La, where a → La were the rules of d. Now to a tree t ∈ L(d)

corresponds a tree new(t) ∈ L(d′) obtained by replacing the root label to >OK if it was in Rp ∩ Rq and to >BAD
otherwise, and attaching a new >-labelled node above it. We see that every tree in L(d′) is of this form. We notice
that p strongly embeds into a tree t ∈ L(d) exactly when p′ embeds into new(t) (where every embedding is strong).
But also q strongly embeds into a tree t ∈ L(d) exactly when q′ embeds into new(t) (in particular, when the root
label of q is from Rp\Rq, then none of q and q′ can be embedded). Thus the problem is equivalent to testing whether
Lw(p′) ∩ L(d′) ⊆ Lw(q′).

The only remaining possibility is that the root of p is a wildcard, and p does not use child edges. Then Lw(p) =
Ls(p). We take p′ = p, and to create q′ we change the root of q into >OK . In the new DTD d′ the set of allowed
roots is now {>OK ,>BAD}, with the rules >OK →

⋃
a∈Rp∩Rq

La, and >BAD →
⋃
a∈Rp\Rq

La, where a → La were

the rules of d. This time to a tree t ∈ L(d) corresponds a tree new(t) ∈ L(d′) obtained only by replacing the root
label to >OK if it was in Rp ∩ Rq and to >BAD otherwise, without attaching anything. We see that every tree in
L(d′) is of this form, and that q strongly embeds into a tree t ∈ L(d) exactly when q′ embeds into new(t). Thus we
may test whether Lw(p′) ∩ L(d′) ⊆ Lw(q′).

Without DTD the reduction is much simpler. If the root labels of p and q are different letters, or the first is a
wildcard and the second is a letter, then surely Ls(p) 6⊆ Ls(q). Otherwise we have the same letters in both roots, or
in q we have a wildcard, and we can proceed as in the case Rp ⊆ Rq.

B. PROOFS FOR SECTION 3: CONTAINMENT WITHOUT SCHEMA
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B.1 Theorem 3.2: P Results

Theorem 3.2. The following problems are in P:
(1) Containment of PQ(/, //, ∗) in TPQ(/, //, ∗);
(2) Containment of TPQ(//, ∗) in TPQ(/, //, ∗);
(3) Containment of TPQ(/, //, ∗) in TPQ(//, ∗);
(4) W-Containment of TPQ(/, ∗) in TPQ(/, //, ∗).

B.1.1 General Notions
Let island be a part of a pattern that is connected by child edges. An island q is a parent of an island q′ if there

are nodes v in q and v′ in q′ such that there is a descendant edge from q to q′. Ancestor and descendant relations
on islands are defined as the transitive closure of parent relation and the inverse of ancestor relation, respectively.
The topmost island of a pattern p is the island containing the root of p.

We say that a pattern is normalized if every leaf of every island either is a root of the island or is labelled by a
letter (not by a wildcard).

Notice that every pattern can be turned into an equivalent one that is normalized. Indeed, consider a pattern q
and take some its node v that is a leaf of its island, is labelled by a wildcard, and is connected with its parent u via
a child edge. In this situation we could equally well consider the pattern q′ obtained from q by changing the child
edge between u and v into a descendant edge. Of course any embedding of q in a tree t is also a correct embedding
of q′ in this tree. Conversely, suppose that we have an embedding f of q′ into a tree t. Then as long as f(v) is not
a child of f(u), we can move f(v) to its parent and we still have a correct embedding (recall that v is a leaf of an
island, so it is connected with its children only via descendant edges). Thus we can assume that f(v) is a child of
f(u), and with this assumption f is also a correct embedding of q into the tree.

For a pattern p and for k ∈ N we denote by ∗k(p) the pattern obtained by appending a path of k wildcard nodes
above the root of p (using child edges).

Let us now recall the notion of canonical trees (canonical models) from [34]. Let p be a pattern, and ⊥ a fresh
letter (not appearing in any of patterns considered at the moment). A tree t is called a canonical tree of p if it is
obtained from p by replacing each descendant edge by a sequence of child edges going through new ⊥-labelled nodes
(possibly zero of them), and by replacing each wildcard by the ⊥ letter.

The main property of canonical models is that Lw(p) ⊆ Lw(q) if and only if each canonical tree of p belongs to
Lw(q). We implicitly use this property in our proofs.

B.1.2 Proof of Theorem 3.2(1): Containment of PQ(/, //, ∗) in TPQ(/, //, ∗) is in P
Notice that each canonical tree of p ∈ PQ(/, //, ∗) consists of a single path. Such a tree will be called a word.

For a word t, by cutk(t) we denote the subtree of t rooted in the node at depth k (we cut off k topmost nodes).
Recall that |t| denotes the number of nodes of t (if t is a word, this is just its length). Our algorithm is based on
the following lemma.

Lemma B.1. Let p = w//p′ ∈ PQ(/, //, ∗), let q ∈ TPQ(/, //, ∗) be normalized, and let qtop be the topmost island

of q. Suppose that Lw(w) 6⊆ Lw(qtop). Then Lw(p) ⊆ Lw(q) if and only if Lw(∗|w|(p′)) ⊆ Lw(q).

Before proving this lemma, let us see how it allows us to construct an algorithm. We will use dynamic program-
ming.7 For each node u of p, each node x of q (in fact it is enough to consider nodes x that are roots of islands),
and for each k such that the depth of ∗k(subqueryp(u)) is not greater than the depth of p, we will compute whether
Lw(∗k(subqueryp(u))) ⊆ Lw(subqueryq(x)). Let us describe a single step of this algorithm (recall that each pattern
can be turned into an equivalent normalized one).

Lemma B.2. Let p ∈ PQ(/, //, ∗), and let q ∈ TPQ(/, //, ∗) be normalized. Suppose that we know whether
Lw(∗k(subqueryp(u))) ⊆ Lw(subqueryq(x)) for each node u of p, each node x of q, and for each k such that the depth
of ∗k(subqueryp(u)) is not greater than the depth of p, if either ∗k(subqueryp(u)) or subqueryq(x) has less islands
than p or q, respectively. Then we can compute in polynomial time whether Lw(p) ⊆ Lw(q).

Proof. Let w be the topmost island of p, and qtop the topmost island of q. Let X be the set of roots of islands
of q being a child of qtop (in other words, nodes of q that are outside qtop , but their parents are in qtop). For a node
x, let d(x) denote its depth. First observe that if p = w then the situation is easy, since there is only one canonical
tree of p, and we can check whether it belongs to Lw(q) or not. Thus assume that p = w//p′. Consider the unique
canonical tree tw of w. We check whether qtop can be embedded into tw.

Suppose first that qtop cannot be embedded into tw. Then Lw(w) 6⊆ Lw(qtop). By Lemma B.1, Lw(p) ⊆ Lw(q) if

and only if Lw(∗|w|(p′)) ⊆ Lw(q). The latter is known by assumption, as ∗|w|(p′) has less islands than p.
Next, suppose that qtop can be embedded into tw. We concentrate on the embedding which maps the root of qtop

to a node of tw of the smallest possible depth; denote this depth m. For each x ∈ X by assumption we know whether

7We describe the algorithm using dynamic programming, but in fact it just performs a simple recursion (each partial result
is used only once).
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Lw(cutm+d(x)(p)) ⊆ Lw(subtreeq(x)). Notice that m+ d(x) ≤ |w| (the whole qtop can be embedded into tw starting

from the node at depth m, and x is just below some node of qtop), so the expression cutm+d(x)(p) makes sense. We
have two cases.

Suppose first that Lw(cutm+d(x)(p)) ⊆ Lw(subtreeq(x)) for each x ∈ X. We claim that then Lw(p) ⊆ Lw(q).
Indeed, take a canonical tree t of p. Since tw is a prefix of t, the island qtop can be embedded into t starting exactly

at the node at depth m. Moreover, for each x ∈ X we have cutm+d(x)(t) ∈ Lw(cutm+d(x)(p)) ⊆ Lw(subtreeq(x)),
which gives an embedding of subtreeq(x) into t starting at the node at depth m+ d(x) or lower. Together all these
embeddings give an embedding of q into t.

Contrarily, suppose that Lw(cutm+d(x)(p)) 6⊆ Lw(subtreeq(x)) for some x ∈ X. We claim that in this case
Lw(p) 6⊆ Lw(q). Indeed, there exists a canonical tree t of p for which cutm+d(x)(t) 6∈ Lw(subtreeq(x)). Since qtop
cannot be embedded anywhere higher than starting from depth m, the whole q cannot be embedded into t.

For the proof of Lemma B.1 we need the following auxiliary lemma.

Lemma B.3. Let q ∈ TPQ(/, //, ∗) be normalized. Let t and t′ be two words of the same length. Suppose that for
each node x whose labels in t and t′ differ, labels of all ancestors of x in t (but not necessarily in t′) do not appear
in q. Suppose also that cutk(t) ∈ Ls(q) and cutm(t′) ∈ Ls(q). Then as well cutmax(k,m)(t) ∈ Ls(q).

Proof. First let us see that the lemma holds when q is a single island. W.l.o.g. we can remove the top part of
t and assume that min(k,m) = 0. Moreover, for k ≥ m the lemma is trivial. Thus suppose that k = 0 < m. Let
d be the greatest depth at which labels of t and t′ differ. Since t ∈ Ls(q), and since in t we do not have letters
appearing in q at depths smaller than d, also in q we do not have letters at depths smaller than d (we have there
only wildcards). But then in the strong embedding of q into cutm(t′) only wildcards can be mapped to nodes having
different labels in t′ than in t. Thus labels of these nodes do not matter; we can strongly embed q also into cutm(t).

Now consider the general situation (many islands). We have two embeddings of q: f into t and g into t′. In the
new embedding h we map each node x of q into the lower of the nodes f(x) and g(x). By the single-island case, this
gives a correct embedding into t of each island separately. But obviously the descendant edges are also preserved
(notice that k < k′ and m < m′ implies max(k,m) < max(k′,m′) for any numbers k, k′,m,m′).

Proof of Lemma B.1. We always have Lw(p) ⊆ Lw(∗|w|(p′)); the nontrivial implication is that Lw(p) ⊆ Lw(q)
implies Lw(∗|w|(p′)) ⊆ Lw(q). Thus suppose that Lw(p) ⊆ Lw(q), and take a canonical tree t of ∗|w|(p′). Our aim
is to prove that q embeds into t. Now we will consider several trees, and we will analyze how p and q embed into
them. This will lead to the statement that indeed q embeds into t.

Let tw be the canonical tree of w. We construct t1 by taking tw, appending a long path of ⊥-labelled nodes
(of some length n greater than the depth of q), and finally appending t. We have t1 ∈ Lw(p), so by assumption
t1 ∈ Lw(q). Recall that Lw(w) 6⊆ Lw(qtop); in particular qtop cannot consist of a single wildcard node. Thus by
normalization all leaves of qtop are letters, so in any embedding of qtop into t1 they are mapped either inside tw,
or inside t. In the former case in fact the whole qtop would be mapped into tw which would contradict with the

assumption Lw(w) 6⊆ Lw(qtop), so these leaves are indeed mapped inside t. Denote t2 = cut |w|(t1); notice that it
starts by a path of n ⊥-labelled nodes, below which we have the tree t. Because of the long distance before t, the
embedding of q into t1 does not use at all the nodes of tw, so in fact t2 ∈ Lw(q).

Next, we create t3: we take in t2 the first |w| nodes after the initial fragment of n ⊥-labelled nodes (that is the
first |w| nodes of t), and we change them into tw. Recall that this changed nodes were initially ⊥-labelled, since t
was a canonical tree of ∗|w|(p′). We notice that cutn(t3) ∈ Lw(p) ⊆ Lw(q). We are going to use Lemma B.3 for t2
(as t) and t3 (as t′). We have cutk(t2) ∈ Ls(q) for some k ≥ 0, and cutm(t3) ∈ Ls(q) for some m ≥ n, and we obtain
cutmax(k,m)(t2) ∈ Ls(q), so cutn(t2) ∈ Lw(q). Recalling that cutn(t2) = t, we are done.

B.1.3 Proof of Theorem 3.2(2): Containment of TPQ(//, ∗) in TPQ(/, //, ∗) is in P
Proof. First, suppose that in some island of q ∈ TPQ(/, //, ∗) we have two non-wildcard nodes that are either

on different depths or are labelled by different letters. Then surely the inclusion does not hold. Indeed, consider the
canonical tree t of p ∈ TPQ(//, ∗) in which all descendant edges are instantiated as a long chain of special letters,
longer than the size of q. Then all the non-special letters in t are further from each other than the size of q. Therefore
if in some two nodes of the same island of q there are letters, they have to be mapped to the same node of t. This
is impossible if these two nodes are on different depth or are labelled by different letters.

From now on we assume that q is normalized, and that in each island of q all non-wildcard nodes appear at the
same depth and are labelled by the same letter. To fix some terminology, let us call such pattern singular. Our
algorithm will perform dynamic programming: for each node u of p, each node x of q (it is enough to consider nodes
x that are roots of islands), and for each k such that the depth of ∗k(subqueryp(u)) is not greater than the depth of
p, we will compute whether Lw(∗k(subqueryp(u))) ⊆ Lw(subqueryq(x)). For u, x being roots of the patterns and for
k = 0 this solve the target problem. Thus it remains to prove the following claim (where as p we take any pattern
of the form ∗k(subqueryp(u)) of depth not greater than the depth of p, and as q we take any subtree of q).

Claim B.4. Let p ∈ TPQ(//, ∗), and let q ∈ TPQ(/, //, ∗) be singular. Let P ′ contain all queries of the form
∗k(subqueryp(u)) which are of depth not greater than the depth of p (where u iterates over all nodes of p). Suppose
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that for each p′ ∈ P ′ and for each proper subquery q′ of q we know whether Lw(p′) ⊆ Lw(q′). Then we can compute
in polynomial time whether Lw(p) ⊆ Lw(q).

Proof of Claim B.4. Suppose first that the topmost island of q consists of a single wildcard-labelled node. Let
R denote the set of all subqueries of p rooted just below the its root. We will observe the following property:

(♠) Lw(p) ⊆ Lw(q) if and only if for each child x of root(q) there exists a query p′ ∈ R such that Lw(p′) ⊆
Lw(subqueryq(x)).

It is easy to check whether the right side of this property holds using the assumptions of the claim (notice that
R ⊆ P ′), thus it remains to see that this property indeed holds.

For the right-to-left implication of (♠), suppose that for each child x of root(q) there exists a query p′ ∈ R such
that Lw(p′) ⊆ Lw(subqueryq(x)). Take a tree t ∈ Lw(p); by definition we have an embedding f of p into t. Let x
be a child of root(q), and let p′ ∈ R be such that Lw(p′) ⊆ Lw(subqueryq(x)). Then f maps p′ (a proper subquery
of p) into a proper subtree of t. Since Lw(p′) ⊆ Lw(subqueryq(x)), the pattern subqueryq(x) can be also embedded
into this subtree. By taking such embeddings for all children x of root(q), and by mapping root(q) into root(t), we
obtain an embedding of q into t.

Conversely, suppose that there is a child x of root(q) such that for each p′ ∈ R it holds Lw(p′) 6⊆ Lw(subqueryq(x)).
For each p′ ∈ R, let tp′ be a tree from Lw(p′) \Lw(subqueryq(x)). If the label of root(p) is not a wildcard, we denote
it as a; otherwise let a be an arbitrary letter. We construct t by taking a node labelled by a, and attaching below
it trees tp′ for all p′ ∈ R. Notice that t ∈ Lw(p). On the other hand, if there is an embedding of q into t, then
its part is an embedding of subqueryq(x) into some tp′ , which does not exist by assumption. Thus t witnesses that
Lw(p) 6⊆ Lw(q).

Next, consider the more interesting case, when the the topmost island of q contains some non-wildcard nodes. By
singularity they are all on the same depth n and all labelled by the same letter a. Normalization implies that each
leaf of this island is labelled by a; in particular all leaves are on depth n. Recall that the depth of a node was defined
so that the root of a tree is at depth 0. Let S be the set of those nodes u of p that

• have label a,

• are on depth at least n, and

• such that no ancestor of u at depth at least n has label a.

We have a property similar to (♠), but now instead of one set R we have more sets. Namely, for each u ∈ S, and
each i ∈ {1, . . . , n + 1}, let Ri(u) contain all subqueries of ∗n+1−i(subqueryp(u)) rooted just below its root. Note
that for all i < n+ 1 the set Ri(u) contains just one tree, namely ∗n−i(subqueryp(u)). Let also X be the set of those
nodes of q which are not in the topmost island, but whose parents are already in the topmost island (in other words,
in X we have roots of all islands that are children of the topmost island). Additionally, by d(x) we denote the depth
of a node x. For x ∈ X we see that d(x) ∈ {1, . . . , n+ 1}. We will observe the following property:

(♣) Lw(p) ⊆ Lw(q) if and only if there exists u ∈ S such that for each x ∈ X there exists a query p′ ∈ Rd(x)(u) such
that Lw(p′) ⊆ Lw(subqueryq(x)).

As previously, it is easy to check whether the right side of this property holds using the assumptions of the claim
(notice that Ri(u) ⊆ P ′ for each i ∈ {1, . . . , n+ 1} and each u ∈ S), thus it remains to see that this property indeed
holds.

For the right-to-left implication of (♣), fix a node u ∈ S such that for each x ∈ X there exists a query p′ ∈ Rd(x)(u)
such that Lw(p′) ⊆ Lw(subqueryq(x)). Take a tree t ∈ Lw(p); by definition we have an embedding f of p into t. Our
goal is to construct an embedding g of q into t. All a-labelled leaves of the topmost island of q will be mapped by g to
f(u), and the ancestors of these leaves will be mapped to appropriate ancestors of f(u). Recall that u, as an element
of S, has label a and is on depth at least n, hence f(u) as well, thus such embedding is correct. Next, for each x ∈ X
we should define g on the subtree rooted at x. Take some x ∈ X. The assumed right side of (♣) gives us a query
p′ ∈ Rd(x)(u) such that Lw(p′) ⊆ Lw(subqueryq(x)). A part of f gives us an embedding of subqueryp(u) into t. But

since f(u) is at depth at least n (and d(x) ≥ 1), we can as well embed the whole pattern ∗n+1−d(x)(subqueryp(u))
into t, by mapping the new wildcard nodes to appropriate ancestors of f(u). In particular p′, as a subquery of
∗n+1−d(x)(subqueryp(u)), is embedded into t, with its root mapped to a descendant of the (n + 1 − d(x))-ancestor8

of f(u). Since Lw(p′) ⊆ Lw(subqueryq(x)), also subqueryq(x) can be embedded into this subtree of t; this embedding
is taken as a part of g. Notice that the descendant relation between the parent of x and x is preserved, since the
parent of x is mapped to the (n+ 1− d(x))-ancestor of f(u).

Conversely, suppose that for each u ∈ S we can find an x ∈ X such that for each p′ ∈ Rd(x)(u) it holds Lw(p′) 6⊆
Lw(subqueryq(x)). First, for each u ∈ S we will construct a tree tu ∈ Lw(subqueryp(u)) \Lw(q) such that none of its
nodes at depth at most n− 1 has label a. Fix some u ∈ S, and take the node x ∈ X such that for each p′ ∈ Rd(x)(u)
it holds Lw(p′) 6⊆ Lw(subqueryq(x)). Let b be some letter other than a.

If d(x) = n+ 1, we construct tu as follows: for each p′ ∈ Rd(x)(u) we take a tree from Lw(p′) \ Lw(subqueryq(x));
above these trees we attach a node labelled by a, and above it we attach a path consisting of n nodes labelled by b.
We observe that, in this case, subqueryp(u) can be embedded into tu: the node u is mapped to the attached a-labelled
8As k-ancestor of a node u we denote the ancestor of u being at depth smaller by k.

16



node, and the subqueries rooted in the children of u, which are exactly the elements of Rd(x), are mapped to the
trees placed below this a-labelled node. On the other hand, any embedding of q into tu would give an embedding
of subqueryq(x) into some of the trees placed below our new a-labelled node, since this is the only node at depth n,
and x is at depth n+ 1. By assumption such embedding does not exist, so tu 6∈ Lw(q).

Suppose now that d(x) ≤ n. Now in Rd(x) we have exactly one element, which is p′ = ∗n−d(x)(subqueryp(u)). Take
a tree t′ ∈ Lw(p′) \Lw(subqueryq(x)). We can assume that t′ is a canonical tree of Lw(p′); thus it starts by a path of
n− d(x) letters other than a, under which we have an a-labelled node. We construct tu by attaching a path of d(x)
nodes labelled by b above t′. Of course subqueryp(u) can be embedded into tu. On the other hand, any embedding
of q into tu would give an embedding of subqueryq(x) into t′, since t′ is the only subtree which starts at depth d(x).
By assumption such embedding does not exist, so tu 6∈ Lw(q).

Till now for each u ∈ S we have constructed a tree tu ∈ Lw(subqueryp(u)) \ Lw(q) such that none of its nodes at
depth at most n− 1 has label a. Out of them we want to construct a tree t ∈ Lw(p) \Lw(q). We start from the tree
of p (that is in p we treat all descendant edges as normal edges), and for each u ∈ S we replace the subtree rooted
there by tu. Recall that no node in S is an ancestor of another node in S. It is clear that p can be embedded into t,
since subqueryp(u) can be embedded into tu for each u ∈ S. On the other hand, suppose that q was embedded into
t. Notice that an a-labelled node from topmost island of q, being on depth n, could not be mapped to any node of
t coming from the tree of p, as then this node (or some its ancestor) would be taken to S. Thus this a was mapped
inside some tu. But since at depths smaller than n in tu we do not have any a, in fact the whole q was embedded
inside tu, which contradicts with our assumption on tu.

B.1.4 Proof of Theorem 3.2(3): Containment of TPQ(/, //, ∗) in TPQ(//, ∗) is in P
Proof. Let tmin be the smallest canonical tree of p ∈ TPQ(/, //, ∗). We will show that if a pattern q ∈ TPQ(//, ∗)

embeds in tmin then it embeds in every canonical tree t of p. It is enough to finish the proof, as checking whether a
pattern embeds into a given tree can be done in polynomial time.

Let f be an embedding of q into tmin. Let t be some canonical tree of p. For every node n in tmin there is a
corresponding node in p, call it n′, and for every node n′ in p there is a corresponding node in t, call it n′′. Let us
define a function corr from nodes of tmin to nodes of t assigning for every node n the corresponding node n′′. We
construct embedding g of q into t as g(n) = corr(f(n)). Observe that if a node n1 is an ancestor of a node n2 in
tmin then also corr(n1) is an ancestor of corr(n2) in t. Therefore g is a correct embedding of q into t, which finishes
the proof.

B.1.5 Proof of Theorem 3.2(4): W-Containment of TPQ(/, ∗) in TPQ(/, //, ∗) is in P
Proof. Even for weak containment, we only need to check whether q ∈ TPQ(/, //, ∗) (weakly) embeds in the

unique canonical tree of p ∈ TPQ(/, ∗) This can be done in polynomial time since testing whether a tree t is in Lw(q)
is in P.

B.2 Theorem 3.3: coNP-completeness

Theorem 3.3. The following problems are coNP-complete:
(1) Containment of TPQ(/, //, ∗) in TPQ(/, //, ∗) [34];
(2) W-Containment of TPQ(/, //) in TPQ(/, ∗).
Proof. Item (1) was already proved in [34].
We now prove (2). Membership in coNP is immediate from case (1). The coNP-hardness proof is by an adaptation

of the proof of Theorem 4 in [34]. Theorem 4 in that paper claims that S-Containment of p1 ∈ TPQ(/, //) in
p2 ∈ TPQ(/, //, ∗) is coNP-complete. So we only need to show that the construction can be adapted by, at the same
time, going from strong containment to weak containment and removing all descendant edges from the pattern p2.

The pattern p2 in the proof in [34] contains descendant edges at two locations:
• at the root and
• in the gadgets F (yi) of tree patterns Ci.
The descendant edge at the root can disappear since we consider weak containment instead of strong containment.

The main trick in the present proof is to show how we can construct alternative gadgets for the Yi, T (yi), and F (yi)
in the proof of Miklau and Suciu, such that their construction still works but we do not use any descendant edge in
T (yi) and F (yi). Concretely, these gadgets look as depicted in Figure 5.

To see how these gadgets work in the construction of Miklau and Suciu, observe the following facts. The gadget
Yi is responsible for generating trees that represent the truth values true and false for a propositional variable xi,
just as in the proof of Miklau and Suciu. The tree that represents true is in part (d) of Figure 5 and the trees that
represent false are in part (e). We assume that there is at least one node on the dotted path in the trees in Figure
5(e).

Hence, each tree that represents true strongly matches T (yi) but does not strongly match F (yi) and each tree that
represents false strongly matches F (yi) but does not strongly match T (yi).

To conclude the proof, we add that the construction in Lemma 3 of [34] does not add any wildcards to the patterns
on the right, and only adds the single descendant edge at the root (which does not matter to us because we consider
weak containment). Formally, this means that we perform the same construction as in Lemma 3 of [34] but we do
not add the extra root nodes r and its incident edge. So we have a reduction from the complement of SAT in which
p1 ∈ TPQ(/, //) and p2 ∈ TPQ(/, ∗), which concludes the hardness proof.

17



Yi:

ai

ai

b

ai

z

z

ai

b

(a)

T (yi):

ai

ai

∗

ai

∗

∗

∗

b

(b)

F (yi):

ai

∗

ai

∗

∗

∗

b

(c)

“xi = true”:

ai

ai

b

ai

z

z

ai

b

(d)

“xi = false”:

ai

ai

b

ai

z

z

ai

...

b

(e)

Figure 5: Gadgets for the proof of Theorem 3.3.

C. PROOFS FOR SECTION 4: SATISFIABILITY WITH SCHEMA
Theorem 4.1(2). The following problems are in P:

(2) Satisfiability of TPQ(//, ∗) w.r.t. a fixed DTD.

Proof. Case (2) can be shown by an adaptation of the result from [16]. Theorem 5 there states, in our terminology,
that Satisfiability of TPQ(//, ∗) w.r.t. a fixed DTD is in P for the injective semantics. The proof can be modified
in such a way that it also works for the non injective semantics. One has to slightly modify the Definition 13 and
the proof of Lemma 14, no hard problems occur on that way.

Theorem 4.2(2). The following problems are NP-complete:
(2) Satisfiability of TPQ(/) w.r.t. a fixed DTD.

Proof. The problems belongs to NP, since this is a less general than case (3).
For NP-hardness of (2) we continue the proof from Section 4. First, we reduce the 3-partition problem to the

4-partition problem. Consider an instance B, S of the 3-partition problem. Out of it we create an instance of
the 4-partition problem as follows. As K we take the smallest number such that the sum of all the numbers in S

is smaller than 2K−2. Let also L be the smallest number such that 4 · |S|3 ≤ 4 · 2L. To the multiset S′ we take all

the numbers from S, and |S|3 times the number 2K −B, and 4 · 2L − 4 · |S|3 times the number 2K−2. Notice that the

new instance is of polynomial size. Of course when the original instance B, S has a solution, then the instance 2K ,
S′ as well: to each triple we append the number 2K − B, and we group the numbers 2K−2 by four. Suppose that
the instance 2K , S′ of the new problem has a solution. In this solution, the number 2K−2 cannot be grouped with
2K − B, because 2K−2 + 2K − B > 2K (we have B < 2K−2). A group consisting of some numbers from S, and a
number 2K−2 (one or two or three times) cannot exist, because the sum of numbers from S is smaller than 2K−2.
Thus the numbers 2K−2 are grouped by four. Each other group consists of some numbers from S, and the number
2K − B taken exactly once. Moreover in each group we have exactly 3 numbers from S: they sum to B, and each
of them is strictly between B

4 and B
2 . These triples give a solution to the instance B, S of the original problem.

In Section 4 we have already created a pattern p out of an instance 2K , S′ of the 4-partition problem. It remains
to prove that L(d)∩Ls(p) 6= ∅ if and only if the instance of 4-partition has a solution. Assume that there exists a
tree t in L(d) ∩Ls(p); fix some strong embedding of p into this tree. Notice that the number of trees from TM used
in p is 2K+L (which is the sum of all numbers in S′), and they are all attached on depth K +L. Thus in t at depth
K+L we have 2K+L nodes (which is the maximum), to each of them we exactly one node from p is mapped. Nodes
at depth L give us a partition of S′ to submultisets. Each node defines one submultiset: we look at the nodes of p
which are mapped to this node; they correspond to some elements of S′; we take them to the submultiset. This is
indeed a partition (each element is in exactly one submultiset). Moreover the sum of elements in each submultiset
is exactly 2K : these is exactly the number nodes at depth 2K+L attached below a node at depth 2L.

Similarly, when we have a solution of our instance, we can easily create a tree t in L(d) ∩ Ls(p).
Let us also observe that the same reduction works for W-Satisfiability, that is L(d) ∩ Lw(p) 6= ∅ if and only

if the instance of 4-partition has a solution. Indeed, if we have a tree into which p weakly embeds, then we can
restrict it to the subtree into which p strongly embeds, and obtain a tree from L(d) ∩ Ls(p).

D. PROOFS FOR SECTION 5: VALIDITY WITH SCHEMA
Theorem 5.1(5). The following problems are in P:
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(5) Validity of TPQ(/, //, ∗) w.r.t. a fixed DTD.

Proof. The proof is rather easy. Consider a fixed DTD d with an alphabet Σ of size n and a pattern p. It can be
easily checked in polynomial time whether L(d) is empty, then clearly d is valid. From now on we assume L(d) to be
nonempty. Observe that if there is a path in p which has length at least n then there are at least n+ 1 nodes on that
path and by pigeonhole principle some two of them are labelled equally, say by a letter a. However, there clearly
exists a tree in L(d) which has at most one letter a on every path. Otherwise it would mean that node labelled by a
enforces a descendant labelled by a, which implies that L(d) is empty. Therefore if there is any path in p of length
at least n then p is not valid. Now observe that for fixed k there is only fixed number of patterns which are labelled
by a fixed alphabet Σ of size n, have depth exactly k and none of their sibling subtrees are equal. Indeed, while
denoting the number of such a trees by N(k), we have N(0) = n, N(i) = n(2N(i−1) − 1)(2N(0)+N(1)+...+N(i−2)).
Then our polynomial algorithm works like that: it precomputes in a fixed time answers for all the trees up to depth
n which do not have equal sibling subtrees. Then if p has depth n or more it is not valid; otherwise we clean up p
by removing its equal sibling subtrees and check the precomputed answer for the cleaned pattern p.

E. PROOFS FOR SECTION 6: CONTAINMENT WITH SCHEMA

E.1 Theorem 6.1: P Results
Observation 6.2: Let Σ be a finite alphabet and let q be a query in (1) PQ(/, //); (2) TPQ(//, ∗); or in (3)

TPQ(/, ∗). Then we can construct in polynomial time a non-deterministic tree automaton for the language TΣ\Ls(q).
Proof. For the purpose of case (1) we first argue that there exists a polynomial size DFA A accepting the language

of words belonging to the Ls(q). That is shown in Theorem 4.1 in [26]. Then the proof is finished by the following
lemma, which is a folklore:

Lemma E.1. For every DFA A on words there exists a nondeterministic tree automaton B of polynomial size
w.r.t. the size of A which accepts all the trees, which have no path accepted by A.

Case (2) is based on the following observation. Suppose that we have a tree t = a(t1, . . . , tk), and a tree pattern
query q = b(//q1, . . . , //qm). When a = b or b = ∗, then t ∈ Ls(q) if and only if t ∈ Lw(q) if and only if for each j
there exists i such that ti ∈ Lw(qj). When a 6= b 6= ∗, then t 6∈ Ls(q) and t ∈ Lw(q) if and only if ti ∈ Lw(q) for some
i. We want to negate it. When a = b or b = ∗, then t 6∈ Ls(q) (or Lw(q)) if and only if there exists j such that for
each i it holds ti 6∈ L(qj). When a 6= b 6= ∗, then t 6∈ Lw(q) if and only if ti 6∈ Lw(q) for each i. This characterization
allows us to construct an automaton of polynomial size. Its states are nodes of the tree pattern q plus a few auxiliary
ones (when the automaton is in a state x in some node y, this means that the subtree rooted at y does not belong to
the language defined by the subpattern rooted at x). The transitions can be described polynomially as well, because
we always pass the same state to all children.

The proof of case (3) is pretty similar to the proof of case (2). We similarly assume t = a(t1, . . . , tk), and a tree
pattern query q = b(/q1, . . . , /qm). In the case a = b or b = ∗ it works the same; t ∈ Ls(q) if and only if for each
j there exists i such that ti ∈ Ls(qj). In case of a 6= b always t 6∈ L(q), in contrast to case (2). Based on that
observation we build an automaton for TΣ \ Ls(q) similarly as in case (2).

Theorem 6.1: The following are in P:
(1) Containment of PQ(/, //, ∗) in PQ(/, //);
(2) Containment of PQ(/, //, ∗) in TPQ(//, ∗);
(3) S-Containment of PQ(/, //, ∗) in TPQ(/, ∗);
(4) W-Containment of PQ(/, //, ∗) in TPQ(/);
all w.r.t. a DTD.

Proof of Theorem 6.1(1)-(3)
As already explained in Section 6, the proof follows from Observation 6.2.

Proof of Theorem 6.1(4): W-Containment of PQ(/, //, ∗) in TPQ(/) w.r.t. a DTD is in P
Let us first observe that the automaton recognizing TΣ \Lw(q) may be of exponential size, thus we have to proceed
differently from cases (1)–(3). Indeed, take for example the pattern q from Figure 6. Then, for all sets B,C ⊆
{0, . . . , n − 1} we can consider a tree T (B,C) consisting of a path of 2n a-labelled nodes, where additionally for
each i ∈ B the node at depth i has a b-labelled child, and for each i ∈ {0, . . . , n − 1} \ C the node at depth n + i
has a c-labelled child. Notice that T (B,B) for each set B belongs to TΣ \ Lw(q). But suppose that for two sets
B1, B2 of the same size the a-labelled nodes at depth n of T (B1, B1) and T (B2, B2) are labelled by the same state
in some runs of the NFA recognizing TΣ \Lw(q). Then this NFA would also accept T (B1, B2) which does not belong
to TΣ \ Lw(q). Thus the number of states required to recognize TΣ \ Lw(q) cannot be smaller than the number of
subsets of {0, . . . , n− 1} of size, say,

⌊
n
2

⌋
, that is exponential in n.

Before starting the proof, let us explain its overall structure. Let p ∈ PQ(/, //, ∗), q ∈ TPQ(/), and let d be
a DTD. In a first stage, whenever in q we have two siblings with the same label, we merge them. Although this
changes Lw(q), it is easy to see that it does not influence the containment question. In a second stage, we remove
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Figure 6: Pattern q for the proof of Theorem 6.1(4).

redundant subqueries of q. Namely, it may happen that we can remove some subquery of q obtaining some q′, so
that whenever q′ can be embedded into a tree from L(d), then the whole q can be embedded as well. After this
cleaning stage, we have one of two mutually exclusive situations. One possibility is that the pattern q is a path, or
is very similar to a path (namely, we consider a shape of patterns which we call a brush). Then the complement
of Lw(q) can be recognized by a finite automaton of polynomial size. We can construct this automaton, intersect
it with an automaton for Lw(p) ∩ L(d), and check for emptiness, as in cases (1)-(3). The opposite case is that in
q we have some branching. Then we can prove that the containment never holds. Indeed, to obtain a tree t from
Lw(p)∩L(d) we are quite restricted only while arranging the path into which p will be embedded; but into this path
at most one path of q embeds. Outside of this path in t we can place arbitrary subtrees (satisfying d), so we can
place there subtrees into which the rest of q cannot be embedded. Such subtrees exist, since otherwise the rest of q
would be redundant, so it should be removed during the second stage.

In fact the most difficult part is to check whether q is (weakly) equivalent to its part q′ w.r.t. our DTD d. At first
glance this looks hopeless, as this is just the W-Containment problem of TPQ(/) in TPQ(/) w.r.t. a DTD, which
by Theorem 6.3 is in general coNP-hard. Hopefully, our pattern q is not arbitrary: there are no two siblings labelled
the same (thanks to the first stage). The crux of the proof is to reduce the equivalence problem in this special case
to multiple smaller instances of the (slightly generalized) containment question of PQ(/) in TPQ(/) w.r.t. a DTD.
Thanks to that, we can proceed by dynamic programming.

In order to perform the dynamic programming, we need to slightly generalize the containment problem. In this
generalization, beside of patterns p ∈ PQ(/, //, ∗), q ∈ TPQ(/) and a DTD d, we also have two sets F (“forbidden”)
and R (“required”) of letters, describing the situation below the leaf of p. We define a language Ls(p, F,R) containing
these trees t into which p can be embedded so that no child of the image of the leaf of p is labelled by a letter from
F , and for each letter from R there is a child of the image of the leaf of p labelled by this letter. We also define
a language L>(q) containing trees t such that q can be embedded into a proper subtree of t. In the generalized
problem we ask whether Ls(p, F,R) ∩ L(d) ⊆ L>(q).

Notice that the W-Containment problem can be easily reduced to this problem. Indeed, we create a d′ having
all rules of d and the additional rule r → Sd, where r is a fresh letter and Sd is the set of root labels allowed by d.
We also take p′1 = r//p. Then L(p) ∩ L(d) ⊆ L(q) if and only if Ls(p

′, ∅, ∅) ∩ L(d′) ⊆ L>(q): trees in L(p) ∩ L(d)
are in one-to-one correspondence with trees in Ls(p

′, ∅, ∅) ∩ L(d′) by appending an additional r-labelled root, and q
embeds into an original tree exactly when it embeds into a proper subtree of the tree with an additional root. We
observe that d′ does not contain any requirement on the root label (only the pattern p′ ensures that the root label
is r). Thus in the sequel we only consider DTDs having this property.

As already mentioned, at the beginning we simplify the pattern q and the DTD d so that no node will have two
children with the same label. This is possible because p describes a single path. First, we simplify the DTD. For
a regular language L, by rd(L) (rd stands for “remove duplicated”) we denote the language of those words w such
that each letter appears in w at most once and there exists a word v ∈ L for which the set of letters appearing in
w is the same as the set of letters appearing in v. In other words, rd(L) contains sets of letters appearing in words
from L, where a set is written in any order but each letter at most once. For a DTD d, by rd(d) we denote the DTD
which for each rule a→ L of d has a rule a→ rd(L).

Lemma E.2. Let p ∈ PQ(/, //, ∗), let F and R be sets of labels, let d be a DTD, and let q ∈ TPQ(/). Then
Ls(p, F,R) ∩ L(d) ⊆ L>(q) if and only if Ls(p, F,R) ∩ L(rd(d)) ⊆ L>(q).

Proof. The proof is rather easy. Suppose that Ls(p, F,R) ∩ L(rd(d)) ⊆ L>(q), and take a tree t ∈ Ls(p, F,R) ∩
L(d). Fix some embedding f witnessing that t ∈ Ls(p, F,R). To obtain t′ ∈ L(rd(d)), if a node has many children
with the same label we remove all of them but one, ensuring that the image of f (that is a path) is not removed.
The path p can be still embedded in the same way, and the set of labels in the children of the image of its leaf is as
before, so t′ ∈ Ls(p, F,R). Then, by assumption t′ ∈ L>(q). Since we were only removing nodes, q can be embedded
in the same place in t.

The opposite direction is similar, but this time we have to duplicate subtrees: when a node according to d requires
multiple children with some label, we duplicate the subtree rooted in the child with that label. If q can be embedded
after such duplication, it could be embedded also before the duplication.
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It is not clear how the size of rd(d) is related to the size of d, possibly it is exponential. Thus we use rd(d) only
in the argumentation, but all actual calculations are done using the original DTD d.

Next, we simplify the pattern q ∈ TPQ(/). Suppose that some its node has two children with the same label.
Then we glue these children together (we remove the subtrees rooted in these children, and we create a new child
having as subtrees all subtrees of the two removed children). We repeat this operation as long as it is possible; the
obtained pattern is denoted rd(q). It has the property that none of its nodes has a sibling with the same label.

Lemma E.3. Let p ∈ PQ(/, //, ∗), let F and R be sets of labels, let d be a DTD, and let q ∈ TPQ(/). Then
Ls(p, F,R) ∩ L(rd(d)) ⊆ L>(q) if and only if Ls(p, F,R) ∩ L(rd(d)) ⊆ L>(rd(q)).

Proof. Notice that each node of a tree t satisfying rd(d) has at most one child with each label, so q is always
embedded into t in such a way that children with the same label are mapped to the same node. Thus for such trees
q and rd(q) are equivalent.

Unlike for DTDs, we can easily compute rd(q) in polynomial time, so in the sequel we can assume that in q no
node has two children with the same label.

Before describing how our dynamic-programming algorithm works, we say how to solve the base case of brush
patterns. A pattern in TPQ(/) is called a brush if each its node either has only one child, or is a leaf, or all its
children are leaves. In other words, a brush is an arbitrary long path ended by a node having arbitrarily many
children being leaves.

Lemma E.4. Let p ∈ PQ(/, //, ∗), let F and R be sets of labels of size at most one, let d ∈ DTD, and let
q ∈ TPQ(/) be such that none of its nodes has a sibling with the same label. If q is a brush, we can decide in
polynomial time whether Ls(p, F,R) ∩ L(rd(d)) ⊆ L>(q).

Proof. The shape of q allows us to construct an automaton of polynomial size recognizing the complement of
L(q). Thus we can construct an automaton recognizing trees in Ls(p, F,R)∩L(d) \L>(q), and test for its emptiness
(thanks to Lemma E.2 it does not matter whether we use d or rd(d)).

Next, for q ∈ TPQ(/) we define a set X(q) of some
”
subpatterns” of q. These will be the patterns to which we

descend from q in a single step of our dynamic programming. For each node u of q such that each node of q other
than u is an ancestor or a descendant of u,

• to X(q) we take the pattern obtained from q by removing all nodes except u, ancestors of u, and children of u,
and

• for each child v of u to X(q) we take the pattern obtained from q by removing all nodes except v, ancestors of
v, and descendants of v,

• but we do not take q itself to this set (even if it is obtained by the above rules).

We also define the transitive closure of the X operation: let X+(q) be the smallest set such that X(q) ⊆ X+(q)
and X(q′) ⊆ X+(q) for each q′ ∈ X+(q). Notice that there are only polynomially many patterns in X+(q): there
are patterns containing all ancestors and children of a fixed node u of q, and patterns containing all ancestors and
descendants of a fixed node v of q and all paths ending in some node v of q.

We remark that the in fact our proofs would work equally well for other definitions of X(q); we have somehow
arbitrarily chosen this one. The only important thing is that X+(q) is of polynomial size, and that X(q) is nonempty
when q is not a brush.

Let us now describe the dynamic programming approach for computing whether Ls(p, ∅, ∅) ∩ L(rd(d)) ⊆ L>(q).
Namely, for each path p′ from the root of q to some its node (a pattern in PQ(/)), for each q′ ∈ X+(q), and for all sets
F , R of size at most one containing labels appearing somewhere in q we compute whether Ls(p

′, F,R)∩L(rd(d)) ⊆
L>(q′). Let us emphasize that p′ is a path in q, not in p.

It remains to prove the following lemma, describing a single step of our algorithm.

Lemma E.5. Let p ∈ PQ(/, //, ∗), let F and R be sets of labels of size at most one, let d be a DTD without
requirements on the root label, and let q ∈ TPQ(/) be such that none of its nodes has a sibling with the same label.
Suppose that for each path p′ from the root of q to some its node, for each q′ ∈ X+(q), and for all sets F ′, R′ of size
at most one containing labels appearing somewhere in q we know whether Ls(p

′, F ′, R′) ∩ L(rd(d)) ⊆ L>(q′). Then
we can compute in polynomial time whether Ls(p, F,R) ∩ L(rd(d)) ⊆ L>(q).

Proof. We have one of four cases:

• If q is a brush, we use Lemma E.4.

• Let ⊥ be a pattern consisting of a single node labelled by a letter not appearing in d. Using Lemma E.4 we
check whether Ls(p, F,R) ∩ L(rd(d)) ⊆ L>(⊥), which simply means that Ls(p, F,R) ∩ L(rd(d)) = ∅. If this is
the case, then surely Ls(p, F,R) ∩ L(rd(d)) ⊆ L>(q).

• Next, for each q′ ∈ X(q) we check whether L(q′) ∩ L(rd(d)) = L(q) ∩ L(rd(d)) using Lemma E.6. If this is the
case for some q′, then as well L>(q′)∩L(rd(d)) = L>(q)∩L(rd(d)), thus Ls(p, F,R)∩L(rd(d)) ⊆ L>(q) if and
only if Ls(p, F,R) ∩ L(rd(d)) ⊆ L>(q′); we replace q by the smaller pattern q′, and we repeat the above steps.
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• Otherwise, q is not a brush, Ls(p, F,R)∩L(rd(d)) 6= ∅, and L(q′)∩L(rd(d)) 6= L(q)∩L(rd(d)) for each q′ ∈ X(q).
In this case Lemma E.7 implies that Ls(p, F,R) ∩ L(rd(d)) 6⊆ L>(q).

Now we have to give the two missing ingredients, that is Lemmas E.6 and E.7. Lemma E.6 contains the key idea of
the solution. It says that for q and for q′ ∈ X(q) (two patterns in TPQ(/)), the equivalence question can be reduced
to multiple smaller instances of the containment question of PQ(/) in TPQ(/). This result highly depends the fact
that in q no two siblings have the same label; without this assumption the equivalence question (which is in fact a
containment question) would be coNP-hard by Theorem 6.3.

Lemma E.6. Let q ∈ TPQ(/) be such that none of its nodes has a sibling with the same label, let q′ ∈ X(q), and
let d be a DTD without requirements on the root label. Suppose that for each path p ∈ PQ(/) from the root of q to
some its node, and for all sets F , R of size at most one containing labels appearing somewhere in q we know whether
Ls(p

′, F ′, R′)∩L(rd(d)) ⊆ L>(q′). Then we can check in polynomial time whether L(q′)∩L(rd(d)) = L(q)∩L(rd(d)).

Proof. As a first step, we check whether L(q′)∩L(rd(d)) is empty or not. Instead of doing this directly, we notice
that L(q′)∩L(rd(d)) 6= ∅ if and only if L(q′)∩L(d) 6= ∅. Indeed, for a tree in L(q′)∩L(rd(d)), by duplicating some
of its subtrees, and reordering siblings, we can obtain a tree in L(q′) ∩ L(d). Oppositely, take a tree in L(q′) ∩ L(d)
and some embedding of q′ into t. It is important that no two siblings of q′ have the same label. Thanks to that,
whenever in t two siblings have the same label, we can remove a subtree rooted in one of them without removing any
node in the image of the embedding. Proceeding in this way we can obtain a tree in L(q′)∩L(rd(d)). Knowing this,
we can check whether L(q′)∩L(rd(d)) = ∅ using an automaton construction: the language L(q′)∩L(d) is recognized
by an automaton of polynomial size; we can check for its emptiness.

It always holds L(q′) ∩ L(rd(d)) ⊇ L(q) ∩ L(rd(d)). Notice that if L(q′) ∩ L(rd(d)) = ∅, the answer is immediate.
Below we suppose that L(q′)∩L(rd(d)) is nonempty, and we consider two cases corresponding to two possible shapes
of q′.

Suppose that q′ was constructed by the first rule in the definition of X(q); let u be the node used in this rule. We
claim that L(q′) ∩ L(rd(d)) 6= L(q) ∩ L(rd(d)) if and only if there exists a node x present in q but not present in q′

for which Ls(p(parent(x)), {lab(x)}, ∅) ∩ L(rd(d)) 6⊆ L>(q′), where p(parent(x)) is the path in q from its root to the
parent of x. For each x this is known from the assumption of the lemma, so it remains to prove this claim.

Concentrate first on the right-to-left implication: suppose that such x exists. Let y be the parent of x, and let z be
the child of u belonging to p(y) (observe that y is a proper descendant of u). Take a tree t ∈ Ls(p(y), {lab(x)}, ∅) ∩
L(rd(d)) \L>(q′). Let f be the (unique) strong embedding of p(y) into t. Take also a tree t0 ∈ L(q′)∩L(rd(d)) that
has the smallest possible number of nodes. Then t0 6∈ L>(q′), as otherwise we could restrict to the proper subtree
into which q′ embeds and obtain a smaller tree in L(q′) ∩ L(rd(d)). Let g be the (unique) embedding of q′ into t0.
We create t′ as follows: in t0 we remove the subtree rooted at g(z), and in its place we put the subtree of t rooted
at f(z). We see that t′ ∈ L(rd(d)) by construction: in a tree in L(rd(d)) we replace a subtree by a tree in L(rd(d))
rooted at a node with the same label. We also see that q′ embeds into t′: the entire image of g is taken to t′ (only its
leaf g(z) is replaced by a node with the same label). Recall the nice property of trees in L(rd(d)) that there are no
two siblings with the same label. Suppose that q could be embedded to t′. If the root of q was mapped to the root
of t′, then necessarily z was mapped to g(z)/f(z), so x was mapped to a child of f(y). This contradicts with the
property that no child of f(y) has label lab(x). If the root of q was mapped below the root of t′, then this mapping
in fact maps q either into t or into t0: the first branching point of q, that is u, is not mapped above the gluing point,
that is g(z)/f(z) (recall that the path of t0 from its root to g(z) is labelled in the same way as the path of t from
its root to f(z)). This would mean that either t ∈ L>(q′) or t0 ∈ L>(q′), which contradicts with our assumptions.
Thus we have L(q′) ∩ L(rd(d)) 3 t′ 6∈ L(q) ∩ L(rd(d)).

Now let us see the left-to-right implication. Take a tree t ∈ L(q′) ∩ L(rd(d)) \ L(q) that has the smallest possible
number of nodes. Then t 6∈ L>(q′), as otherwise we could restrict to the proper subtree into which q′ embeds and
obtain a smaller tree in L(q′)∩L(rd(d))\L(q). To find x we successively remove nodes of q which are not present in q′;
at some moment we have a pattern which still does not embed into t, but after removing a node x it already embeds
into t. Let us fix an embedding f of this pattern without x into t. In particular its part embeds the path p(parent(x))
into t. Moreover, no child of f(parent(x)) is labelled by lab(x), as otherwise the pattern with x would also embed
into t. It means that t ∈ Ls(p(parent(x)), {lab(x)}, ∅), thus Ls(p(parent(x)), {lab(x)}, ∅) ∩ L(rd(d)) 6⊆ L>(q′).

Similarly we deal with q′ constructed by the second rule in the definition of X(q); let u and v be the nodes used
there. We claim that L(q′) ∩ L(rd(d)) 6= L(q) ∩ L(rd(d)) if and only if there exists a node x present in q but not
present in q′ such that

• x is a child of u and Ls(p(parent(x)), {lab(x)}, {lab(v)}) ∩ L(rd(d)) 6⊆ L>(q′), or

• x is not a child of u and Ls(p(parent(x)), {lab(x)}, ∅) ∩ L(rd(d)) 6⊆ L>(q′).

For each x this is known from the assumption of the lemma, so it remains to prove this claim.
Concentrate first on the right-to-left implication: suppose that such x exists. Take a tree t0 ∈ L(q′) ∩ L(rd(d))

that has the smallest possible number of nodes (we have assumed that this set is nonempty). Then t0 6∈ L>(q′), as
otherwise we could restrict to the proper subtree into which q′ embeds and obtain a smaller tree in L(q′)∩L(rd(d)).
Let g be the (unique) embedding of q′ into t0. We have two cases; suppose first that x is a child of u. Take a tree
t ∈ Ls(p(u), {lab(x)}, {lab(v)}) ∩ L(rd(d)) \ L>(q′). Let f be the (unique) strong embedding of p(u) into t. We
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create t′ as follows: in t0 we remove all subtrees rooted at the children of g(u) other than g(v), and in their place
we put all subtrees of t rooted at the children of f(u) other than the one having label lab(v) (notice that such child
exists since lab(v) is taken to the set R). We see that t′ ∈ L(rd(d)) by construction: in t′ every “triangle” of a node
and all its children comes either from t or from t0. We also see that q′ embeds into t′: the entire image of g is
taken to t′ (as it contains only v, ancestors of g(v), and descendants of g(v)). Suppose that q could be embedded
into t′. If the root of q was mapped to the root of t′, then necessarily x was mapped to a child of g(u). But in
t′ the set of labels in the children of g(u) is as the set of children of f(u) in t. This contradicts with the property
that no child of f(u) has label lab(x). If the root of q was mapped below the root of t′, then this embedding in
fact embeds q either into t or into t0: the first branching point of q, that is u, is not mapped above the children of
g(u) (recall that the path of t0 from its root to g(u) is labelled in the same way as the path of t from its root to
f(u)). But both in t and in t0 the pattern q′ does not embed anywhere below the root, so q as well. Thus we have
L(q′) ∩ L(rd(d)) 3 t′ 6∈ L(q) ∩ L(rd(d)).

Next, suppose that x is not a child of u. Let y be the parent of x, and let z be the child of u belonging to p(y). If
t0 6∈ L(q), we are done: we have L(q′) ∩ L(rd(d)) 3 t0 6∈ L(q) ∩ L(rd(d)). Thus we assume that t0 ∈ L(q); let now
g be the embedding of the whole q into t0. Take a tree t ∈ Ls(p(y), {lab(x)}, ∅) ∩ L(rd(d)) \ L>(q′). Let f be the
(unique) strong embedding of p(y) into t. We create t′ as follows: in t0 we remove the subtree rooted at g(z), and
in its place we put the subtree of t rooted at f(z). We see that t′ ∈ L(rd(d)) by construction: in a tree in L(rd(d))
we replace a subtree by a tree in L(rd(d)) rooted at a node with the same label. We also see that q′ embeds into
t′: the entire image of q′ under g is taken to t′. Suppose that q could be mapped to t′. If the root of q was mapped
to the root of t′, then necessarily z was mapped to g(z)/f(z), so x was mapped to a child of f(y). This contradicts
with the property that no child of f(y) has label lab(x). If the root of q was mapped below the root of t′, then this
embedding in fact embeds q either into t or into t0: the first branching point of q, that is u, is not mapped above
the gluing point, that is g(z)/f(z) (recall that the path of t0 from its root to g(z) is labelled in the same way as the
path of t from its root to f(z)). But both in t and in t0 the pattern q′ does not embed anywhere below the root, so
q as well. Thus we have L(q′) ∩ L(rd(d)) 3 t′ 6∈ L(q) ∩ L(rd(d)).

Now let us see the left-to-right implication. Take a tree t ∈ L(q′) ∩ L(rd(d)) \ L(q) that has the smallest possible
number of nodes. Then t 6∈ L>(q′), as otherwise we could restrict to the proper subtree into which q′ embeds and
obtain a smaller tree in L(q′) ∩ L(rd(d)) \ L(q). To find x we successively remove nodes of q which are not present
in q′; at some moment we have a pattern which still does not embed into t, but after removing a node x it already
embeds into t. Let us fix an embedding f of this pattern without x into t. In particular it maps p(parent(x))
into t. Moreover, no child of f(parent(x)) is labelled by lab(x), as otherwise the pattern with x would also embed
into t. It means that t ∈ Ls(p(parent(x)), {lab(x)}, ∅), thus Ls(p(parent(x)), {lab(x)}, ∅) ∩ L(rd(d)) 6⊆ L>(q′). In
the case when parent(x) = u, we additionally know that a child of f(u) is labelled by lab(v), so t belongs also to
Ls(p(parent(x)), {lab(x)}, {lab(v)}).

Lemma E.7. Let p ∈ PQ(/, //, ∗), let F and R be sets of labels, let d be a DTD, and let q ∈ TPQ(/) be such that
none of its nodes has a sibling the same label. Suppose that q is not a brush, and Ls(p, F,R) ∩ L(rd(d)) 6= ∅, and
L(q′) ∩ L(rd(d)) 6= L(q) ∩ L(rd(d)) for each q′ ∈ X(q). Then Ls(p, F,R) ∩ L(rd(d)) 6⊆ L>(q).

Proof. We will say that a pattern p can be embedded into a tree t at a node x, if it can be embedded so that its
root is mapped to x.

Consider a tree t ∈ Ls(p, F,R)∩L(rd(d)). Let f1 be the strong embedding of p into t. If q does not embed into t,
we are done. Otherwise, we will improve the tree t: we will take a lowest node x of t at which q can be embedded,
and we will modify the tree so that it is still in Ls(p, F,R) ∩ L(rd(d)), but q no longer embeds at x, and no new
embedding point was introduced on the level of x or below (but possibly q embeds at some new points higher than
x). Clearly this procedure terminates in a tree to which q does not embed (the following pair is a parameter which
decreases lexicographically: the maximal level of a node x at which q embeds, and the number of such nodes on this
level).

Thus consider a node x of t at which q embeds, being farthest from the root. Let f be the embedding of q into t,
which maps the root to x. Let u be the node of q which has at least two children, but all its proper ancestors have
only one child (it exists since q is not a brush). Let y1 denote the leaf of p. We have two cases.

Suppose first that for some child v of u the node f(v) belongs to the path from the root of t to f1(y1). In this
situation we consider the pattern q′ obtained from q by removing all nodes except v, ancestors of v, and descendants
of v. Since u (the parent of v) has at least two children, we have q′ 6= q, so q′ ∈ X(q). By assumption, there exists
a tree t0 ∈ L(q′) ∩ L(rd(d)) \ L(q). Let g be an embedding of q′ into t0; w.l.o.g. we assume that the root of q′ is
mapped to the root of t0 (the part above the image of g can be cut off). We create t′ as follows: in t we remove all
subtrees rooted at children of f(u) other than f(v), and in their place we put subtrees of t0 rooted at children of
g(u) other than g(v). We see that t′ ∈ L(rd(d)) by construction: in t′ every “triangle” of a node and all its children
comes either from t or from t0. We also see that no node in the image of f1 was removed; additionally the children
below f1(y1) have the same labels as in t. Thus t′ ∈ Ls(p, F,R). Suppose that q embeds into t′ at x. Then for
each child v′ of u other than v, the subtree of q rooted at v′ is mapped to a subtree of t0 rooted at a child of g(u).
Together with the embedding g of q′ into t0 this gives an embedding of the whole q into t0, which by assumption
does not exists. Thus q does not embed into t′ at x. Suppose that q embeds into t′ at some node y being on a level
greater or equal than the level of x, but y 6= x. Then the image of the branching point u under this embedding is
neither f(u) nor an ancestor of f(u): either it is on a greater level, or on the same level but this is not f(u). Thus
if u is mapped to a node coming from t, then the whole q is mapped to such nodes, which means that q embeds
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already into t at this place y. On the other hand, if u is mapped to a node coming from t0, then all its descendants
as well. Then the ancestors of u also can be mapped to appropriate nodes of t0, since the path of t0 from its root to
g(u) is labelled in the same way as the path of t from x to f(u). But by assumption t0 6∈ L(q), so such situation is
impossible. Thus q no longer embeds at x, and no new embedding point was introduced on the level of x or below.

Next, suppose that for no child v of u, f(v) belongs to the path from the root of t to f1(y1). In this situation we
consider the pattern q′ obtained from q by removing all nodes except u, ancestors of u, and children of u. Since q
is not a brush, we have q′ 6= q, so q′ ∈ X(q). By assumption, there exists a tree t0 ∈ L(q′) ∩ L(rd(d)) \ L(q). Let
g be an embedding of q′ into t0; w.l.o.g. we assume that the root of q′ is mapped to the root of t0 (the part above
the image of g can be cut off). We create t′ as follows: in t we remove all subtrees rooted at f(v) for all children
v of u (notice that there may remain some children of f(u) which are not in the image of f); in their place we put
subtrees of t0 rooted at g(v) for all children v of u. We see that t′ ∈ L(rd(d)) by construction: in a tree in L(rd(d))
we replace subtrees by trees in L(rd(d)) rooted at a node with the same label. We also see that no node in the
image of f1 was removed; additionally the children below f1(y1) have the same labels as in t (even if f(u) = f1(y1),
the set of labels in the children of this node remains unchanged). Thus t′ ∈ Ls(p, F,R). Notice that q no longer
embeds into t′ at x, as then it would be mapped to the nodes on the path from x to f(u) (which are also present in
t0) and to nodes coming from t0, so q would also embed into t0, contrary to the assumption about t0. Suppose that
q embeds to t′ at some node y being on a level greater or equal than the level of x, but y 6= x. Then the image of
the branching point u under this mapping is neither u nor an ancestor of f(u): either it is on a greater level, or on
the same level but this is not f(u). Thus if u is mapped to a node coming from t, then the whole q is mapped to
such nodes, which means that q embeds already into t at this place y. On the other hand, if u is mapped to a node
coming from t0, then all its descendants as well. Then the ancestors of u also can be mapped to appropriate nodes
of t0, since the path of t0 from its root to g(u) is labelled in the same way as the path of t from x to f(u). But by
assumption t0 6∈ L(q), so such situation is impossible. Thus q no longer embeds at x, and no new fitting point was
introduced on the level of x or below.

Theorem 6.6. The following are EXPTIME-complete:
(1) W-Containment of PQ(/) in a PQ(/, ∗);
(2) W-Containment of PQ(//) in a PQ(/, ∗);
(3) S-Containment of PQ(/) in a PQ(/, //, ∗);
(4) S-Containment of PQ(//) in a PQ(/, //, ∗);
all w.r.t. a fixed DTD.

All the cases of Theorem 6.6 will be shown in a very similar way. We focus first on showing EXPTIME-hardness
of case (1) and then we adapt the proof a bit to the other cases. For all the cases presence in EXPTIME is due
to [36].

The proof of hardness will be divided into three parts. In the first of them we formulate a Line Triomino Tiling
problem that is PSPACE-complete, and then we extend Line Triomino Tiling to a two-player game, showing that
it becomes EXPTIME-complete. In the second part we prove PSPACE-hardness of containment by a reduction from
Line Triomino Tiling. Then, we show how the reduction can be adapted to obtain EXPTIME-completeness.

E.1.1 Triomino Tiling
We introduce Line Triomino Tiling problems as a convenient variant of the well-known domino tiling problems

(see, e.g., [15, 42]). Actually, our tiling problem will not be defined in the spirit of the well known corridor tiling
problem, in which one considers tiling of a rectangle. For the purpose of our problem it is more convenient from
technical point of view to consider tiling of a line, with a refined notion of constraint. The underlying idea, however,
is quite similar to the known corridor tiling problem.

A Triomino Tiling System (TTS) is a set of tiles T , a set of triomino constraints (called also simply constraints)
C ⊆ T 3 and two9 final tiles tf1, tf2 ∈ T . For a word s = t1 · · · tn ∈ T ∗, a solution of a TTS S = (T,C, tf1, tf2) with
initial row s is a function λ : {1, . . . ,m} → T , with m ≥ n, called a tiling, such that

1. the initial row is indeed the prefix of the tiling, i.e., for all i ∈ {1, . . . , n} it holds λ(i) = ti; and

2. triomino constraints are fulfilled, i.e., for all i ∈ {1, . . . ,m− n} it holds (λ(i), λ(i+ 1), λ(i+ n)) ∈ C.

As we want to prove hardness of the containment problem for a fixed DTD, we also need to consider a fixed TTS.
For a TTS S we write LineTriominoTiling(S) (LTT (S)) for the set of words s such that S has a solution with
initial row s.

Remark E.8. There exists a TTS S such that LineTriominoTiling(S) is PSPACE-complete.

Remark E.8 can be shown by an uncomplicated reduction from the well known corridor tiling problem. Actually
we do not use that Remark E.8, we present it only for completeness, to show that the simplified version of the proof
shows PSPACE-hardness of the containment problem.

In order to prove EXPTIME-hardness we consider the game version of LTT. The Line Triomino Tiling Game is a
two-player game, played by Constructor and Spoiler, whose interaction results in placing a tile. Constructor’s
goal is to build a correct tiling, and Spoiler’s goal is to prevent it.
9We need two of them for technical reasons: as we will see below in the definition of the game, the only way for Constructor
to win is to propose two different final tiles, out of which Spoiler will choose one.
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More formally, we associate with a TTS S and an initial row s a two-player game in the following way. The tiling
function λ is already defined for positions from 1 to i by the initial row s. Now values starting from the position
i + 1 are to be chosen. Players choose next tiles in the following way: Constructor offers exactly two different
options for a tile, and then Spoiler chooses which of them is placed. At this moment Spoiler is allowed to place a
tile that does not fulfil constraints, if Constructor offered such to him. Constructor wins the game if at some
moment all the placed tiles fulfil constrains and one of the final tiles tf1 and tf2 is placed. Otherwise, if the play
continues infinitely long (in particular if some constraints are not fulfilled), Spoiler wins. For a TTS S we write
LineTriominoTilingGame(S) (LTTG(S)) for the set of words s such that in the two-player game associated with
S and with initial row s player Constructor has a winning strategy.

Theorem E.9. There exists a TTS S such that LineTriominoTilingGame(S) is EXPTIME-complete.

Proof. We reduce from a problem of determining a winner in a tiling game of a special form. Let us recall this
problem. A tiling system S = (T, V,H, Tfin) consists of a finite set T of tiles, two sets V,H ⊆ T × T of vertical
and horizontal constraints, respectively, and a set of final tiles Tfin ⊆ T . With a tiling system S and a word
w = w1 . . . wn ∈ T ∗ with n ≥ 2, called the initial row, we associate a 2-player game as follows. The word w induces
a mapping τ : {1, . . . , n}× {1} → T , where n = |w|. Two players, called Constructor and Spoiler, alternatingly
choose tiles t ∈ T , implicitly defining τ(1, 2), τ(2, 2), . . . , τ(n, 2), τ(1, 3), . . . . A tile t is a legal move as τ(i, j) if it
satisfies the constraints, that is i = 1 or (τ(i− 1, j), τ(i, j)) ∈ H, and τ(i, j− 1), τ(i, j)) ∈ V . Players are not allowed
to play a non-legal move. Constructor wins the game if at some moment the players have already defined a
mapping τ : {1, . . . , n} × {1, . . . ,m} → T (for some m ≥ 2), and τ(n,m) ∈ Tfin . On the other hand, Constructor
loses if at some moment one of the players cannot make a legal move, or when the game lasts infinitely long without
ending a row by a final tile. For a tiling system S, we denote by TilingWinner(S) the set of all strings w = t1 . . . tn
such that (ti, ti+1) ∈ H for each i ∈ {1, . . . , n− 1} and Constructor has a winning strategy for the game induced
by S and w.

It is a folklore that there is tiling system S for which TilingWinner(S) is EXPTIME-hard. Nevertheless, it is
convenient for us to give a game in which Spoiler has always exactly two moves. Such a game was for example defined
in [9], as follows. Given a system S and an initial row w, a valid rectangle is a mapping τ : {1, . . . , n}×{1, . . . ,m} → T
such that the first row contains w and the constraints given by V and H are satisfied (but the last tile need not
to be tfin). A tiling prefix for S and w is a valid rectangle plus the beginning of the next row, that is a mapping
τ : {1, . . . , n}×{1, . . . ,m}∪{1, . . . , i}×{m+1} → T with i ∈ {1, . . . , n}. A tiling prefix for S and w is non-blocking10

if the partial row can be completed to form a valid rectangle. Proposition 8 in [9] says that there is a tiling system
Sr such that

• TilingWinner(Sr) is EXPTIME-hard,

• if |w| is odd, then w 6∈ TilingWinner(Sr),

• for every non-blocking prefix τ of odd length (meaning that it is Spoiler’s turn) there are exactly two tiles t
that are legal moves.

We will define a TTS S such that there is a (polynomial-time) reduction from TilingWinner(Sr) to LTTG(S).
Before giving a formal definition, let us first outline the reduction.

• Of course the board of the original game, that is a rectangle, will be written as a word, row after row. Then
horizontal constraints have to be checked between neighboring tiles, and vertical constraints—between tiles in
distance n.

• To obtain triomino constraints, we pack together horizontal and vertical constraints: we allow triples in which
the tiles in distance one satisfy horizontal constraints, and the tiles in distance n satisfy vertical constraints.

• Previously, the tiles in odd columns were chosen by Constructor and in even columns by Spoiler. Now, in
every column Constructor proposes two tiles and Spoiler chooses one of them. To deal with Constructor’s
columns, we create two equivalent variants of each tile; when Constructor presents them, Spoiler chooses
one of them. Another variant of each tile is used in Spoiler’s columns. By assumption on Sr, if Constructor
plays correctly, Spoiler has exactly two legal tiles, so Constructor will propose them and Spoiler will choose
one of them (it makes no sense for Constructor to propose a tile that is not legal, since then he will lose).

• There is a problem that after writing the rectangle row by row, the horizontal constrains will be checked also
between the last tile in a row and the first tile in the next row. To avoid this, we add an additional column
filled by some marker Xi.

• Another problem is that in the last row the horizontal constrains will not be checked: they are checked by
triomino constrains only if the next row exists. To deal with this, we do not treat a final tile of the original
game as final in the new game; instead we wait one more row and precisely below this tile we place a final tile
of the new game.

• Moreover, in the new game a final tile is winning for Constructor not only at the end of row. Thus, we have
to ensure using triomino constraints that we place our new final tile only when the original final tile was placed
at the end of a row.

10In [9] such a prefix was called valid.
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Let us now define the TTS S. Denote Sr = (Tr, V,H, Tfin). The set of tiles in S is T = Tr × {c1, c2, s} ∪
{X1, X2, Y1, Y2, tf1, tf2}. The set of triomino constraints in S contains

• “Constructor triominos” ((t1, ci), (t2, s), (t3, cj)) where (t1, t2) ∈ H, and (t1, t3) ∈ V , and i, j ∈ {1, 2},
• “Spoiler triominos” ((t1, s), (t2, ci), (t3, s)) where (t1, t2) ∈ H, and (t1, t3) ∈ V , and i ∈ {1, 2},
• “last-column triominos” ((t1, s), Xi, (t3, s)) where (t1, t3) ∈ V , and i ∈ {1, 2},
• “first-column triominos” (Xi, (t2, cj), Xk) where t2 ∈ Tr, and i, j, k ∈ {1, 2},
• “last-row Constructor triominos” ((t1, ci), (t2, s), Yj) where (t1, t2) ∈ H, and i, j ∈ {1, 2},
• “last-row Spoiler triominos” ((t1, s), (t2, ci), Yj) where (t1, t2) ∈ H, and i, j ∈ {1, 2},
• “final triominos” ((tfin , s), Xi, tfj) where tfin ∈ Tfin , and i, j ∈ {1, 2}.
The reduction from TilingWinner(Sr) to LTTG(S) is as follows. If w ∈ T ∗r is of odd length, then w 6∈

TilingWinner(Sr). Otherwise, we consider the word mark(w) ∈ T ∗ obtained by replacing each letter t of w by
(t, c1) if it is on odd position, or by (t, s) if it is on even position, and appending X1 at the end. We answer positively
if mark(w) ∈ LTTG(S). Thus it remains to prove that w ∈ TilingWinner(Sr) if and only if mark(w) ∈ LTTG(S),
for all words w ∈ T ∗r of even length.

Thus consider a word w ∈ TilingWinner(Sr) and fix some winning strategy of Constructor in the rectangle
game induced by Sr and w. Let n = |w|; notice that |mark(w)| = n + 1 (in particular triomino constraints are
checked for tiles on positions i, i+ 1, i+ n+ 1). We need to show a winning strategy in the line game induced by S
and mark(w). This will be done in the following way. We suppose that the two games are started simultaneously.
Basing on moves of Constructor in the rectangle game (that are done according to his winning strategy) we will
say how Constructor should move in the line game, and basing on moves of Spoiler in the line game we will say
how Spoiler should move in the rectangle game. If, supposing that the rectangle game is won by Constructor,
the line game will be also won by Constructor, then the strategy defined this way is winning.

At each moment the situation in the line game will be such that at positions divisible by n+ 1 there are Xi tiles,
and after removing these tiles, cutting the line into rows of length n, and dropping the marker (c1, c2, s) we obtain the
situation in the rectangle game. Moreover, the marker is c1 or c2 at odd positions of rows, and s at even positions.
This is the case for the initial situation. Now suppose that Constructor in the rectangle game chooses some tile
t as his next move. Then in the line game we (simulating Constructor) choose tiles (t, c1) and (t, c2); Spoiler
places one of them on the line. Now in the rectangle game it is Spoiler’s turn, and by assumption he has exactly
two legal moves t1, t2 (recall that Constructor is following a winning strategy in the rectangle game, so surely
the current situation is a non-blocking prefix, as otherwise Constructor would be unable to win). In the line
game it is now our (that is, Constructor’s) turn; we propose the two tiles (t1, s) and (t2, s), and Spoiler chooses
one of them (ti, s). In the rectangle game we (as Spoiler) choose ti; recall that this is a legal move. Additionally,
if this was the last tile in a row, then in the line game we (as Constructor) propose the two tiles X1, X2, and
Spoiler chooses one of them. If moreover ti ∈ Tfin (and this was the last tile in a row), then in the line game we (as
Constructor) propose n− 1 times tiles Y1, Y2 (ignoring Spoiler’s responses), and then we propose tiles tf1, tf2.

It remains to see that when Spoiler places one of the tiles tf1, tf2 the situation is indeed wining for Constructor,
that is that all triomino constraints are satisfied. This is more or less obvious after analyzing the set of available
triominos, and recalling that all moves of the rectangle game were legal so the horizontal and vertical constraints
are satisfied in the constructed rectangle.

Now consider an initial word w ∈ T ∗r of an even length n, such that mark(w) ∈ LTTG(S), and fix some winning
strategy of Constructor in the line game induced by S and mark(w). Before giving a strategy in the rectangle
game induced by Sr and w, we prove some properties of the strategy in the line game. Let λ : {1, . . . ,m} → T (for
some m ≥ n + 1) be a situation in that game, obtained while following the winning strategy of Constructor.
Then

(1) tiles of the form Xi appear on all positions divisible by n+ 1, and only there;

if additionally in λ there are no two consecutive tiles of the form (tfin , s) for ffin ∈ Tfin and Xi, then

(2) no tile is of the form Yi or tfi;

(3) after removing tiles at positions divisible by n, and cutting the line into rows of length n, markers used at odd
positions are ci and markers used at even positions are s;

(4) after removing these markers we obtain a tiling prefix of the rectangle game that satisfies all horizontal and
vertical constraints.

Indeed, surely for each i ∈ {1, . . . ,m− n− 1} the tiles at positions i, i+ 1, i+ n+ 1 satisfy triomino constraints, as
otherwise Constructor would be unable to win. From the set of available triominos we see that Xi has to occur
if n+ 1 positions before there was some Xj , and cannot occur otherwise. Together with the form of the initial row,
this gives us (1). Next, assume that in λ there are no two consecutive tiles of the form (tfin , s) for ffin ∈ Tfin and
Xi. Then Constructor will not win earlier than in move m+ n+ 1: he can only win by placing a final tile n+ 1
positions after such pair. This implies that for each i ∈ {1, . . . ,m − 1} there has to exist some tile t′ (that will be
placed at position i+ n+ 1) such that the tiles at positions i, i+ 1, and the tile t′ satisfy triomino constraints. This
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gives (2), since there is no triomino with Yi or tfi on the top, and (3), since in all triominos the two kinds of markers
alternate, starting with ci after Xj , as well as (4).

Now we want give a strategy in the rectangle game induced by Sr and w. We perform a simulation as for the
opposite direction, but this time we are responsible for moves of Constructor in the rectangle game, and moves of
Spoiler in the line game. The correspondence between current situations in both games is as previously. Suppose
that it is Constructor’s turn in the rectangle game, and Constructor in the line game proposes two tiles. In
the line game (as Spoiler) we choose the first of them. Notice that we only consider situations where earlier we
have not seen tiles (tfin , s) for ffin ∈ Tfin and Xi as two consecutive tiles, as otherwise the rectangle game would
be already won by Constructor. Thanks to properties (1)-(4) we know that the chosen tile is of the form (t, ci),
where t is a legal move in the rectangle game. Knowing this, in the rectangle game we (as Constructor) choose t
as the next tile.

Next, consider a moment when Spoiler has chosen some tile t in the rectangle game, and Constructor has
proposed some two tiles in the line game. Then in the line game we (as Spoiler) choose tile (t, s); it remains to
see that this is necessarily one of the tiles proposed by Constructor. Thanks to properties (1)-(4) (applied to the
hypothetical situation after placing one of these tiles by Spoiler), we know that these tiles are of the form (t1, s)
and (t2, s), where t1 and t2 are different legal moves of the rectangle game. Now we have to argue that the current
tiling prefix is non-blocking. Indeed, because in the line game Constructor can win, we can somehow continue
this game until reaching a position divisible by n+ 1; thanks to property (1), before the position divisible by n+ 1
we will not place any Xi, so thanks to property (3) we will obtain a valid rectangle that extends the current tiling
prefix. Thus, because the tiling prefix is non-blocking, by assumption there are exactly two legal moves from it.
These have to be t1 and t2, and t is one of them.

When the line game reaches a position divisible by n+ 1, and Constructor proposes some two tiles, we choose
any of them; by property (1) this has to be Xi. It remains to note that in the line game Constructor wins
after a finite time, when a tfi tile is placed, and then by property (2) we already had consecutively tiles (tfin , s) for
ffin ∈ Tfin and Xi, that is Constructor has already won in the rectangle game.

E.1.2 Reduction from the LTT to the inclusion problem
For a given LTT(S) instance s ∈ T ∗ we construct patterns p1, q and a DTD d such that there exists a solution

for s if and only if Lw(p) ∩ L(d) * Lw(q). We will gradually introduce details of the reduction and the needed
terminology and define everything formally at the end. This will show PSPACE-hardness of the considered inclusion
problem. We however present it only as an intermediate step, to shed a light into a more complicated construction
that will reduce from LTTG(S) and show EXPTIME-hardness.

High level description. We will encode correct tilings by trees that conform to a DTD d, into which a pattern
p can be weakly embedded, but into which a pattern q cannot be weakly embedded. Pattern p will ensure that the
initial row is correct. The DTD together with the pattern q will ensure that a tree is indeed a correct encoding of a
tiling that also fulfils the constraints and ends by a final tile.

Every node in such a tree will be either a trunk node or a branch node. The alphabet Σ of the DTD is a disjoint
union of Σtr, called the trunk alphabet (containing trunk letters) and Σbr, called the branch alphabet (containing
branch letters). We note that Σ will be a fixed, constant-size set. The schema ensures that the root is a trunk node
and, for every trunk node, its parent, if it exists, is also a trunk node and at most one of its children is a trunk node.
We refer to the set of trunk nodes as the trunk of the tree. In every tree that conforms to the DTD the trunk is a
path from the root to some (not necessarily leaf) node. An `-labelled node, for any ` ∈ Σ, is called an `-node. The
ancestor of a node u being at depth smaller by k is called the k-ancestor of u. Similarly, descendants of a node u
being at depth greater by k are called k-descendants of u.

Tiles are encoded as words of length k = |T |+ 4 written on the trunk, where T is the set of tiles from the TTS S.
The whole trunk is an encoding of a tiling in the following sense: first the first tile is encoded, then the second tile
is encoded, etc.; at the bottom part of the trunk the last tile of the tiling is encoded.

Recall that triomino constraints should be checked between a tile, its successor, and the tile n positions farther.
The pattern q in our reduction depends only on the length of the initial row and is otherwise the same for every
instance: it is the path starting with letter a, then having kn+ 2 wildcards and at the bottom ending with letter b.
Note that q does not embed into a tree t if and only if the (kn+ 3)-ancestor of every b-node is not labelled by a.

Branch nodes are used to ensure that the encoding is correct. They enforce occurrence of many b labelled nodes,
which strongly restrict the possible forms of the trees in the language of the DTD.

Encoding of a tile. Let T = {t1, . . . , t|T |}, where tf1 = t|T |−1 and tf2 = t|T |. We define Σtr = {a, c1, . . . ,
c|T |, d1, . . . , d|T |−1, e1, . . . , e|T |, f}. For every tile there is a unique length k word over Σtr which encodes that tile.
Recall that k = |T |+ 4. More precisely, the tile ti, for i ≤ |T | − 2, is encoded by the word

wi = ci di−1 · · · d1 a ek−i−3ek+i−4 · · · e1 aa.

Note that wi always has exactly three letters a, at positions i+ 1, k− 1, and k. Letters c1, . . . , ck−4, d1, . . . , dk−5 are
the first block letters, e1, . . . , ek−4 are the second block letters. Observe also that none of the blocks are ever empty
and that, in a correct encoding, the only place where aa occurs is at the end of a tile.

There are two special situations, for i ∈ {|T | − 1, |T |}, that is for final tiles. The tile t|T | is encoded as
ck−4dk−5 · · · d1 a f1 and the tile t|T | − 1 is encoded as ck−5dk−6 · · · d1 a f2. Note that the difference is at the end:
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there is f1 instead of e1aa and f2 instead of e2e1aa. Intuitively letters fi indicate that there is the end of the tiling
encoding and therefore the end of the trunk. Note also that the encodings of final tiles are of length k − 2 or k − 3,
so shorter than the others; this however does not introduce any problems, as final tiles occur only at the end of the
trunk.

Ensuring the constraints. The triomino constraint (λ(i), λ(i + 1), λ(i + n)) ∈ C imposes that choice of a tile
λ(i+ n) is restricted w.r.t. tiles λ(i) and λ(i+ 1). In the trunk encodings of λ(i) and λ(i+ 1) are, respectively, nk
and (n− 1)k levels above the encoding of λ(i+ n).

Triomino constraints are enforced as follows. For every triple j = (j1, j2, j3) such that (tj1 , tj2 , tj3) is not in C,
that is, (tj1 , tj2 , tj3) is forbidden by the constraints, we have a special letter gj ∈ Σbr. Intuitively, this is the letter
that is responsible for forbidding that triple. (Again, the number of such letters gj is constant, since T as well as C
are constant.) The DTD enforces that the letter gj always occurs as a child of the letter cj3 . In the DTD we have
the following rule

gj → gj,1 + gj,2,

where gj,1, gj,2 ∈ Σbr are responsible for forbidding the tile tj1 occurring exactly n tiles above and forbidding the tile
tj2 occurring exactly n− 1 tiles above, respectively. That means that the letter gj,1 should prevent a (kn+ 2− j1)-
ancestor labelled by a, while gj,2 should prevent a (k(n−1)+2−j2)-ancestor labelled by a. Preventing an `-ancestor
labelled by a is realized by having a (kn+3−`)-descendant labelled by b, since the pattern q forbids a kn+3-ancestor
of a b labelled node to be labelled by a. Therefore each gj,1 labelled node has a kn + 3 − (kn + 2 − j1) = j1 + 1-
descendant labelled by b and each gj,2 labelled node has a kn + 3 − (k(n − 1) + 2 − j2) = k + j2 + 1-descendant
labelled by b. That is realized by rules

gj,1 → bj1 , gj,2 → bk+j2 ,
bi → bi−1 for every i > 1, b1 → b.

Notice that, since j1, k, and j2 are constant numbers, these rules are also constant.

Initial row. In order for a tree to be a correct encoding of the tiling instance it has to be ensured that the beginning
of that tree starts from the encoding of the initial row. We enforce it by the pattern p together with the DTD.
Pattern p is of the form #awj1wj2 · · ·wjn , where # is a special symbol occurring nowhere else and the initial row s
is of the form tj1tj2 . . . tjn . Furthermore, the DTD requires # to be the root of the tree, that is Sd = {#}.

Notice that due to this unique root symbol, if p weakly embeds into a tree in L(d), then it also strongly embeds
into this tree.

Ensuring the correct form. The last, but not the least condition that has to be checked is that only trees that
are of the form mentioned above form belong to (Lw(p) ∩ L(d)) \ Lw(q). This condition is needed to claim that
(Lw(p) ∩ L(d)) \ Lw(q) is nonempty if and only if there is some correct tiling for the instance s.

Concretely, we will enforce that the letters from Σtr form a path of the form wi1wi2 . . . wi` for some ` ∈ N and the
last letter of wi` equals f1 or f2. The fact that the letters from Σtr form a path is already enforced by the DTD.
Now we show how it is ensured that on the trunk
(a) the aa-block, that is, the two consecutive a letters, is repeated every k nodes,
(b) in between of every two such aa-blocks the word cidi−1 · · · d1aek−3−i · · · e1 is written, and
(c) below the last aa-block the word ck−3−idk−4−i · · · d1afi for i ∈ {1, 2} is written.

We will ensure (a), (b) and (c) by restricting positions on which letters can occur in the trunk. This will be realized
by forcing the property that i-ancestors, for appropriately chosen i, of nodes labelled by some concrete letter cannot
be a-nodes.

For x1 ≤ x2 ≤ x3 ∈ N we say that a node u is (x1, x̂2, x3)-free if none of its i-ancestors for i ∈ ({x1, . . . , x3}\{x2})
is labelled by letter a. Node u in the tree is (x1, x3)-1-free if it is (x1, x̂2, x3)-free for some x2 ∈ {x1, . . . , x3}.

We show now how to ensure that a node is (nk−x, nk−y)-1-free, for constants x, y, that is, x and y do not depend
on the instance of LTT. Due to the structure of q, note that it is sufficient to ensure that for all but one i such that
x+ 3 ≤ i ≤ y+ 3 there is some i-descendant labelled by letter b. Consider the following rules of the DTD, which aim

at making every d(x,z,y)-node (nk − x+ 1, ̂nk − z + 1, nk − y + 1)-free and every d(x,y)-node (nk − x, nk − y)-1-free:

d(x,z,y) → bx+1bx+2 · · · bzbz+2 · · · byby+1

(where the sequence on the right is the one consisting of precisely all bi for i ∈ {x+ 1, . . . , z} ∪ {z+ 2, . . . , y+ 1}, so
only z + 1 is missing) and

d(x,y) → d(x,x,y) + d(x,x+1,y) + · · ·+ d(x,y−1,y) + d(x,y,y).

Recall that each bi-node has an i-descendant b-node. As such, the freeness of the d(x,z,y)-nodes and the 1-freeness
d(x,y)-nodes is immediate.

Notice that for a node labelled by a trunk letters #, ci, di, ei or fi it is determined which trunk letter will label its
child. Therefore in order to stabilize the trunk we have only to demand that child of an a-node is the correct one.
There are only four possibilities for a label of a node that has an a-labelled parent: letters a, ci, ei and fi. Thus we
demand that
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(1) every ci-node is (nk, nk − (k − 3))-1-free,

(2) every ei-node is (nk − (i+ 2), nk − (k + i− 1))-1-free,

(3) every fi-node is (nk − (i+ 2), nk − (k + i− 1))-1-free, similarly to an ei-node, and

(4) every a-node that has an a-labelled parent is (nk − 1, nk − (k − 2))-1-free.

We can ensure this by enforcing that ci-nodes always have a sibling labelled by d(0,k−3), ei-nodes and fi-nodes always
have a sibling labelled by d(i+2,k+i−1), and a-nodes that have an a-labelled parent always have a sibling labelled by
d(1,k−2).

Notice that conditions (1)-(4) indeed assure conditions (a) and (b). The left pattern enforces that indeed a prefix
of the trunk is of the form #awi1wi2 . . . win . Then we can show that every next letter on the trunk is placed correctly.
As said before, for a trunk node labelled by a letter other than a, its child being on the trunk is always correctly
labelled. In the case of an a-node conditions (1)-(4) assure that the child is appropriately chosen, depending on the
shift of the considered node with respect to the period of length k.

Formal definition. We now write the whole definition of the patterns p and q and the DTD.
Pattern p was, in fact, already formally defined before and is of the form #awj1wj2 · · ·wjn , where # is the special

symbol occurring nowhere else and the initial row s is of the form tj1tj2 . . . tjn . Since p does not contain descendant
edges or a wildcard, we have that p ∈ PQ(/).

Pattern q is of the form a ∗(kn+2) b, where again all edges are short. So, q ∈ PQ(/, ∗).
We now turn to the definition of the DTD (Σ, d, Sd). As mentioned before, we have that Sd = {#}. The alphabet

Σ of the DTD consists of the two parts Σtr and Σbr:

Σtr = {#, a, c1, . . . , ck−4, d1, . . . , dk−5, e1, . . . , ek−4, f1, f2}
and

Σbr = {b, b1, . . . , b2k−4} ∪ {d(x,y), d(x,y,z) | 0 ≤ x ≤ z ≤ y ≤ 2k − 5}
∪ {gj , gj,1, gj,2 | j = (j1, j2, j3) ∈ N3 and (tj1 , tj2 , tj3) 6∈ C}.

The rules in the DTD are the following:

#→ a,
di → di−1 for i > 1, d1 → a,
ei → ei−1 for i > 1, e1 → a,
f1 → ε, f2 → ε.

Let si = gj1gj2 . . . gjr , where j1, . . . , jr are all the triples of the form (k1, k2, i) for which (tk1 , tk2 , ti) 6∈ C. We have
also the rules:

ci → di−1si for i > 1, c1 → as1,

and

a→ ad(1,k−2) +
( ⋃

1≤i≤k−4

cid(0,k−3)

)
+
( ⋃

3≤i≤k−4

eid(i+2,k+i−1)

)
+
( ⋃

1≤i≤2

fid(i+2,k+i−1)

)
.

The letters from Σbr have the following rules:

bi → bi−1 for every i > 1, b1 → b,
b→ ε, gj → gj,1 + gj,2,
gj,1 → bj1 , gj,2 → bk+j2 ,

where we assume that j = (j1, j2, j3) ∈ N3. The more complicated ones are:

d(x,y,z) → bx+1bx+2 · · · bzbz+2 · · · byby+1,

d(x,y) → d(x,x,y) + d(x,x+1,y) + . . .+ d(x,y−1,y) + d(x,y,y)

for all 0 ≤ x ≤ z ≤ y ≤ 2k − 5 (actually not all of them are needed, but we do not aim for optimality here).

E.1.3 Reduction from LTTG to the containment problem
Now we will adapt the reduction from LTT to the containment problem in order to obtain a reduction from LTTG

to the containment problem. For a given LTTG instance s ∈ T ∗ we will construct patterns p, q and a DTD d such
that Constructor has a winning strategy in the game for LTTG(s) if and only if Lw(p)∩L(d) * Lw(q). We will
refer to Subsection E.1.2 as the PSPACE construction.

High level description. In the PSPACE construction a tree in (Lw(p) ∩ L(d)) \ Lw(q) corresponded to a correct
tiling, a witness that there exists a solution for LTT. Now a tree in (Lw(p) ∩ L(d)) \ Lw(q) will correspond to a
Constructor’s winning strategy in LTTG, witnessing that indeed Constructor wins the game of LTTG(S).
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On the high level the construction will be very similar. We also have trunk nodes and branch nodes. Alphabet Σ of
the DTD is also a disjoint union of trunk alphabet Σtr (containing trunk letters) and branch alphabet Σbr (containing
branch letters) and all the notation used previously remains in force.

Tiles will be encoded exactly as previously and similarly as before written on the trunk. This time, however, the
trunk is not a path. It represents a strategy tree of Constructor, so it is a tree of the following shape. At the top
it starts with a path of length nk + 2 that corresponds to the initial row. Then the trunk branches into two parts
that correspond to the first choice that was offered by Constructor; the offered tiles are described by paths of
length k. Below, on both sides, one more time there are branching points that correspond to next choice offered by
Constructor. In the left branch there is a choice offered by Constructor in the second round after Spoiler’s
decision of choosing in the first round the left option. Similarly in the right branch there is a choice offered by
Constructor in the second round in the case when Spoiler chooses the right option in the first round. Then
there are paths of length k and the trunk continues like that. At the end of every trunk path there is an encoding of
one of the two final tiles, which corresponds to the fact that independently of the Spoiler’s moves Constructor
can always finish the game by placing a final tile.

Branching of the trunk. As we already observed trunk is not a path any more, but it will branch every k levels,
beside the upper part of the tree. This will be assured by adding a possibility for a-nodes to have two trunk-node
children cicj , for i 6= j, in the case of branching and also by adding a possibility for a-nodes to have only one
trunk-node child ci, but only at the top part of the tree.

The property that an a-node may have one trunk child being a ci-node only at the top part of the tree will be
assured in the following way. Note that the lowest such ci-node will be at the beginning of the n-th tile, so at depth
2 + k(n − 1). On the other hand, at depth 1 there is always an a-node, but at the depth 1 − k there is never an
a-node (as 1− k < 0 and it does not make any sense to be at such depth). Therefore we will add a restriction that
a ci-node that is the only trunk child of an a-node has to have no a-labelled kn + 1-ancestor. This can be assured
by adding a b2-node as a sibling of the mentioned ci-node that does not have a sibling labelled by cj .

Patterns p and q. Initial row is encoded by p analogously as in the PSPACE construction. There is also the same
with pattern q that is of the form a ∗kn+2 b.

Ensuring the correct form. The correct form is ensured very similarly as in the PSPACE construction. The
only difference is in the details connected with branching of the trunk. In that case for an a-node instead of options
cid(0,k−3) we add options cicjd(0,k−3) for i 6= j and cib2.

Formal definition. For the sake of clarity and completeness we present here the whole definition of the DTD.
Patterns p and q have been already defined.

The DTD, of the form (Σ, d, Sd), is as follows. Similarly as in the PSPACE construction Sd = {#}. The alphabet
Σ is the disjoint union of the trunk alphabet Σtr and the branch alphabet Σbr:

Σtr = {#, a, c1, . . . , ck−4, d1, . . . , dk−5, e1, . . . , ek−4, f1, f2}
and

Σbr = {b, b1, . . . , b2k−4} ∪ {d(x,y), d(x,y,z) | 0 ≤ x ≤ z ≤ y ≤ 2k − 5}
∪ {gj , gj,1, gj,2 | j = (j1, j2, j3) ∈ N3 and (tj1 , tj2 , tj3) 6∈ C}.

Rules of d for the trunk letters are the following:

#→ a,
di → di−1 for i > 1, d1 → a,
ei → ei−1 for i > 1, e1 → a,
f1 → ε, f2 → ε.

Let si = gj1gj2 . . . gjr , where j1, . . . , jr are all the triples of the form (k1, k2, i) for which (tk1 , tk2 , ti) 6∈ C. We have
also the rules:

ci → di−1si for i > 1, c1 → as1,

and finally the most complicated one:

a→ ad(1,k−2) +
( ⋃

1≤i<j≤k−4

cicjd(0,k−3)

)
+
( ⋃

1≤i≤k−4

cib2
)

+

+
( ⋃

3≤i≤k−4

eid(i+2,k+i−1)

)
+
( ⋃

1≤i≤2

fid(i+2,k+i−1)

)
.

The letters from Σbr have the following rules:

bi → bi−1 for every i > 1, b1 → b,
b→ ε, gj → gj,1 + gj,2,
gj,1 → bj1 , gj,2 → bk+j2 ,
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where we assume that j = (j1, j2, j3) ∈ N3. The more complicated ones are:

d(x,y,z) → bx+1bx+2 · · · bzbz+2 · · · byby+1

d(x,y) → d(x,x,y) + d(x,x+1,y) + . . .+ d(x,y−1,y) + d(x,y,y)

for all 0 ≤ x ≤ z ≤ y ≤ 2k − 5.

Correctness. We do not make here a formal correctness proof, instead we argue intuitively that the construction
is correct. We aim for showing that there exists a strategy for Constructor in the LTTG if and only if there
exists a tree in T = (Lw(p) ∩ L(d)) \ Lw(q). It is enough to see that trees in T represent all the strategy trees of
Constructor.

Formally, our construction does not forbid branching the trunk inside the initial row. This is not a problem,
however. The construction above is defined so that it guaranties that the trunk of every tree in T can be restricted
so that it

• represents a tree of tiles, such that the top part of the tree of depth kn + 1 is a path representing the initial
row, and below a branching occurs after every tile,

• the sequence of tiles represented on each path of the trunk satisfies triomino constraints, and

• each path of the trunk finishes with a final tile, either tf1 or tf2.

Moreover, for every winning strategy tree represented in this way we can attach branch nodes so that it belongs to
T . These properties of T imply that T is nonempty if and only if Constructor wins the LTTG. This finishes (the
sketch of) the proof, and thus finishes the proof of case (1) of Theorem 6.6.

E.1.4 Proof of Theorem 6.6(2): W-Containment of PQ(//) in PQ(/, ∗) is EXPTIME-complete
Here the difference w.r.t. case (1) is that the pattern p will use only descendant edges, instead of child edges, as

now only descendant edges are allowed. Moreover, we add a new branch letter $ at the end of this pattern. Namely,
for an initial row s = tj1tj2 . . . tjn we take

p = #//a//wj1//wj2// · · · //wjn//$,

where wi is the encoding of the tile ti, i.e. it is of the form ci//di−1// · · · //d1//a//ek−i−3//ek+i−4// · · · //e1//a//a.
Here we assume that i ≤ |T | − 2, that is the initial row does not contain final tiles.

Therefore we have to enforce that all descendant edges in p will be indeed mapped into child edges in the tree
encoding the strategy. This is because we would like to really start the strategy tree from the initial row, not to
have the initial row somehow spread in it. To assure this property we will enforce that $-nodes can be present in
the tree only at depths at most kn+ 2. Number kn+ 2 is just the depth of p, so this restriction indeed would imply
that all descendant edges of p were mapped to the tree as child edges.

In order to achieve it we will modify the construction from case (1). First, the DTD has to allow a $-node. This
$-node is needed as a child of an a-node that already has two ci children. That is in the DTD rule for a we replace
cicjd(0,k−3) by cicjd(0,k−3) + cicjd(0,k−3)$.

We also need to prolong the right pattern. Before it was of the form a ∗nk+2 b, now q = a ∗(n+1)k+2 b, so forbidden
distance between an a-node and its descendant b-node is now (n+ 1)k + 3. The reason for this modification is that
by adding additional k levels we can have more control on the structure of the tree.

That modification implies many small changes in the rules of the DTD. They will however all be in the same spirit:
now in order to forbid label a in the x-ancestor, we need to have a b-labelled ((n+ 1)k+ 3− x)-descendant, instead
of a b-labelled (nk+ 3− x)-descendant in the previous construction. We will however not write down all the details
of these modifications, it is easy to see that they all can be done in a uniform way: whenever in the DTD we were
using some bi, now we should use bk+i.

The way how we assure that any $-node cannot be too low is the following. Observe that if a $-node is at depth
at most kn+ 2, then it has no a-labelled i-ancestor for all i ≥ kn+ 2. Contrarily, suppose that a $-node is at depth
greater than kn + 2. Looking at the DTD we notice that all ancestors of $ are trunk nodes. Additionally, above
each trunk letter (except # and the topmost a being on depth 1) there has to be some a letter in distance at most
k− 3. Indeed, while going up in the tree, the index in the label grows, and finally when the index is k− 4 the parent
has to be a-labelled. It follows that when a $-node is at depth greater than kn + 2, then among its i-ancestors for
i ∈ {kn+ 2, kn+ 3, . . . , kn+ k − 2} there has to be an a-node.

Thus we will demand that every $-node is has no a-labelled i-ancestor for all i ∈ {kn+ 2, kn+ 3, . . . , kn+ k− 2}.
That will be assured by adding the following rule to the DTD:

$→ b4b5 . . . bkbk+1.

(Note here that this construction cannot be obtained without prolonging the pattern q: we do not have nodes bi for
i < 0.) Then indeed the only way how a $-node can achieve this restriction is really to be at depth at most kn+ 2.

One can easily observe that if the pattern p did not get stretched then the rest of the construction works and this
finishes the proof.
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E.1.5 Proof of Theorem 6.6(3,4): S-Containment of PQ(/) (or PQ(//)) in PQ(/, //, ∗) is EXPTIME-complete
These cases follow by a reduction from cases (1) and (2), respectively. Having an instance of (1) or (2) we produce

an instance of (3) or (4), respectively, in the following way. We create the a DTD d′ by adding to the old DTD d a
special new root symbol #0, which always has a child #, the old root symbol. We create a new pattern p′ obtained
from p in the following way. In case (3) p′ = #0/p, in case (4) p′ = #0//p. We create the new pattern q′ obtained
from q in both cases in the same way: q′ = #0//q. One can easily observe that in both cases

Lw(p) ∩ L(d) ⊆ Lw(q) ⇐⇒ Lw(p′) ∩ L(d′) ⊆ Lw(q′).

Moreover pattern p′ belongs to PQ(/) or PQ(//) in cases (3) and (4), respectively. Similarly pattern q′ belongs to
PQ(/, //, ∗) in both cases. This finishes the reduction and thus proves EXPTIME-hardness for cases (3) and (4).

F. PROOFS FOR SECTION 7
Proposition 7.1. For all fragments F1 and F2 of TPQs we consider in this paper, the W-Containment (resp.,

S-Containment) problem of F1 in F2 over graphs is the same as the W-Containment (resp., S-Containment)
problem of F1 in F2 over trees.

Proof. This proposition follows from Section 5.3 in [34], but to be self-contained we present a proof here.
Consider some two TPQs p and q. We will show that Ls(p) ⊆ Ls(q) holds on trees if and only if it holds on graphs

and similarly for the weak inclusion problem. Clearly if Ls(p) ⊆ Ls(q) holds on graphs then it also holds on trees,
simply because every tree is a graph. This is also true for the weak inclusion.

Therefore it is enough to show the opposite implication. First focus on the strong inclusion and assume that
Ls(p) ⊆ Ls(q) on trees. Assume, towards contradiction that it does not hold on graphs, so there exists some graph
G such that p strongly embeds in root(G), but q does not. Consider now the rooted infinite tree t, which is the
unfolding of G from root(G). Clearly p strongly embeds in t, fix some concrete embedding h. Pattern q does not
strongly embed in t, as it does not strongly embed in G. Let t′ consists of that nodes of t, which are in the image
of h or have some descendant in the image of h. Then p strongly embeds in t′, and q does not strongly embeds in
t′, which is a finite tree. That is in the contradiction with the fact that Ls(p) ⊆ Ls(q).

For the weak inclusion we proceed analogously. Assuming that Lw(p) ⊆ Lw(q) holds on trees, but not on graphs
we take the counterexample graph G, unfold it and prune in order to obtain a finite tree t′. Pattern p weakly embeds
in t′, but q does not, which is a contradiction. That finishes the proof.

Proposition 7.2. For all fragments F of TPQs we consider in this paper, under the nodes-only semantics of
DTDs and TPQs on graphs, the W-Satisfiability (resp., S-Satisfiability) problem of F with respect to DTDs
over graphs is the same as the W-Satisfiability (resp., S-Satisfiability) problem of F over trees.

Proof. The proof is similar to the proof of Proposition 7.1. Consider some TPQ p and a DTD d. We will show
that Ls(p) ∩ L(d) 6= ∅ holds on trees if and only if it holds on graphs and similarly for the weak case. Clearly if
Ls(p) ∩ L(d) 6= ∅ holds on trees then it also holds on graphs, simply because every tree is a graph. This is also true
for the weak case.

The opposite implication is less trivial. First focus on the strong case. Assume that Ls(p) ∩ L(d) 6= ∅ holds on
graphs, so there is some graph G ∈ L(d) such that p strongly embeds in G. Consider the rooted infinite tree t,
which is the unfolding of G from root(G). Clearly t still conforms to DTD d and there is a homomorphism h from
p to t such that h(root(p)) = root(t). We will now construct a finite tree tfin ∈ Ls(p) ∩ L(d), thus showing that
Ls(p) ∩ L(d) 6= ∅ holds also on trees.

Consider the set X of nodes of t belonging to the image of h and of their ancestors. Let t′ consist of that part of
t which contains nodes from X and their children. Tree t′ is finite and p embeds in t′, but it does not necessarily
belongs to the language L(d). However, the only nodes of t′ in which conditions imposed by d can be not satisfied
are its leafs, the places of cut. We construct the tree tfin as follows. We take a tree t′ and substitute every its leaf
n, labelled by a letter a by a finite tree, which conforms to the DTD d and its root is also labelled by a. Such a tree
exists by an assumption that the DTD d is reduced. One can easily observe that tfin ∈ Ls(p) ∩ L(d).

The weak case is solved similarly with one difference. Now the pattern p embeds into a graph G that need not to
be rooted. Nevertheless, the root(p) is mapped to some node n. Then we obtain the infinite tree tn by unfolding G
from that node n. However that tree has root labelled by the label of n, which need not to be in the set of root labels
allowed by the DTD d. However, by the assumption that d is reduced there exists a finite tree tr, which conforms
to d and for some of its nodes, say nr, it holds that type(n) = type(nr). Therefore we obtain t by substituting in
the tree tr the subtree rooted in nr by the tree tn. In that way we obtain an infinite tree t which conforms to d and
such that pattern p embeds weakly into it. Further we proceed analogously as in the strong case.

Proposition 7.4. For all fragments F of TPQs we consider in this paper, under the nodes/edges semantics of
DTDs and TPQs on graphs, the W-Satisfiability (resp., S-Satisfiability) problem of F with respect to DTDs
over graphs is the same as the W-Satisfiability (resp., S-Satisfiability) problem of F over trees.

Proof. The proof of Proposition 7.2 works also in this case. It is easy to observe that all the constructions in
the mentioned proof work equally well in the nodes/edges semantics.
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