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• One day, something strange happens

• The query returns someone you didn't expect

• So you wonder:  "What's going on here?"

"Who is the greatest database theoretician?"Qgreat =



Motivation



Motivation

Qgreat



Motivation

Qgreat

Graph Database



Motivation

You are here

Qgreat

Graph Database



Motivation

You are here

Qgreat

Graph Database



Motivation

You are here

Qgreat

So, why doesn't it match?

Graph Database



Motivation

Qgreat

You are here

Graph Database

So, why doesn't it match?
Here, there's a very simple explanation
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How do we formalize this?
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that is labeled by a word in L(r)
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Why?

More concrete

Graph
G

Because L(r) and L(Gxy) have empty intersection

x

y

xy
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Here: S will come from families of

subword languages
...abc...
abc...
...abc

subsequence languages

...a...b...c...

and combinations thereof



Main problem
Separability(F)

Given:       Regular languages I and E         (as NFAs)
Question:  Is I separable from E by some S in F?

S
I E

So, here, we just decide separability
and our work is still very preliminary



Main problem
Separability(F)

Given:       Regular languages I and E         (as NFAs)
Question:  Is I separable from E by some S in F?

We will now look at different F
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Theorem / Observation:

Intuition: "local" explanations are easy to find
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Subsequences
A subsequence language is a language of the form 

Σ*a1Σ*a2Σ*...Σ*anΣ*

for letters a1,...,an

Separability(F) is in PTIME for the following F:  

• boolean combinations of subsequence languages
• unions of subsequence languages

Theorem [Czerwinski et al. ICALP13, van Rooijen et al. MFCS13]:

Intuition: Non-separability is some kind of reachability
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Short Subsequences
Reduction from SAT

Let φ = (x1 v ~x2 v x4) and (x2 v ~x3 v ~x4) 

Let I = TFTFTFTF

Let E =
F

T F

F

T

T
T TFF

I is separable from E
by 4-subsequence language

iff
L(E) ≠ (T+F)(T+F)(T+F)(T+F)



Subsequences: Restricting I and E

S
I E

What happens if we restrict I or E?

If E has a constant-size core-approximation, then 
separability of I from E is in PTIME for
• k-subsequence languages and
• unions / intersections / positive combinations  

                                 of k-subsequence languages



Subsequences: Restricting I and E

S
I E

Core-approximation of an NFA:

• Collapse all strongly connected components
• Perform bisimulation minimization



Subsequences: Restricting I and E

S
I E

If E has a constant-size core-approximation, then 
separability of I from E is in PTIME for
• k-subsequence languages

This technique can be extended to show tractable 
separability by k-subsequences of constant-length words

...a1b1...a2b2...  . . .   ...akbk... 
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A promising case seems to be 
         k-subsequences of constant-length subwords
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Separation is a very general and exciting problem:

Concluding Remarks

Why is language 1 disjoint from language 2?

It's been a research topic in language theory for a 
while now but seems to be gaining momentum nowadays
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There is a huge body of interesting remaining questions:

• Which separators can we efficiently compute?

• Which other classes of separators to consider?

• What are good measures for "simplicity" of a 
separator?

• What will work in practice?

We just scratched the surface

Interesting related question: Why is a result in the answer?



Thank you!



Questions?


