
Separability
by

Short Subsequences and Subwords

Piotr Hofman
LSV, ENS Cachan

Wim Martens
University of Bayreuth

ICDT 2015

Motivation

Motivation
What does a database theoretician do in the morning?

• Get some coffee (optional)

Motivation
What does a database theoretician do in the morning?

• Get some coffee (optional)

• Start computer

Motivation
What does a database theoretician do in the morning?

• Get some coffee (optional)

• Start computer

• Run your favorite query:

Motivation
What does a database theoretician do in the morning?

• Get some coffee (optional)

• Start computer

• Run your favorite query:

Motivation
What does a database theoretician do in the morning?

"Who is the greatest database theoretician?"Qgreat =

• Get some coffee (optional)

• Start computer

• Run your favorite query:

Motivation
What does a database theoretician do in the morning?

(It's a pretty complicated query, tweaked to your personal interests)

"Who is the greatest database theoretician?"Qgreat =

Motivation
"Who is the greatest database theoretician?"Qgreat =

Motivation
"Who is the greatest database theoretician?"

• One day, something strange happens

Qgreat =

Motivation
"Who is the greatest database theoretician?"

• One day, something strange happens

• The query returns someone you didn't expect

Qgreat =

Motivation

• One day, something strange happens

• The query returns someone you didn't expect

• So you wonder: "What's going on here?"

"Who is the greatest database theoretician?"Qgreat =

Motivation

Motivation

Qgreat

Motivation

Qgreat

Graph Database

Motivation

You are here

Qgreat

Graph Database

Motivation

You are here

Qgreat

Graph Database

Motivation

You are here

Qgreat

So, why doesn't it match?

Graph Database

Motivation

Qgreat

You are here

Graph Database

So, why doesn't it match?
Here, there's a very simple explanation

So, we're looking for

explanations
of

 why a query
 doesn't return a result you expect

So, we're looking for

explanations
of

 why a query
 doesn't return a result you expect

How do we formalize this?

More concrete

More concrete

The query is a Regular Path Query (RPQ) r
The data is an edge-labeled directed graph G

(regular expression)

More concrete

An RPQ r returns
pairs of nodes (x,y)

such that there is a path from x to y in G
that is labeled by a word in L(r)

The query is a Regular Path Query (RPQ) r
The data is an edge-labeled directed graph G

(regular expression)

More concrete
a b

ca
b

aba

cc

c

G

r = ab(cc)*ab

More concrete
a b

ca
b

aba

cc

c

G

r = ab(cc)*ab

returns

(,)

More concrete
a b

ca
b

aba

cc

c

G

r = ab(cc)*ab

returns

(,)

but not (,)

Reg Path Query r

More concrete

Graph
G

x

y

Reg Path Query r

Selects
(,)

instead of
(,)

More concrete

Graph
G

x

y

Reg Path Query r

Selects
(,)

instead of
(,)

Why?

More concrete

Graph
G

x

y

Reg Path Query r

Selects
(,)

instead of
(,)

Why?

More concrete

Graph
G

x

y

Reg Path Query r

Selects
(,)

instead of
(,)

Why?

More concrete

Graph
G

x

y

Reg Path Query r

Selects
(,)

instead of
(,)

Why?

More concrete

Graph
G

x

y

xy

Reg Path Query r

Selects
(,)

instead of
(,)

Why?

More concrete

Graph
G

Because L(r) and L(Gxy) have empty intersection

x

y

xy

This problem boils down to

Given
• regular word language I
• regular word language E

why is I disjoint from E?

This problem boils down to

Given
• regular word language I
• regular word language E

why is I disjoint from E?

which language do we choose for saying why?

This problem boils down to

Given
• regular word language I
• regular word language E

why is I disjoint from E?

Of course:

which language do we choose for saying why?

This problem boils down to

Given
• regular word language I
• regular word language E

why is I disjoint from E?

The Ultimate human-understandable language
that explains why things go wrong

Of course:

which language do we choose for saying why?

This problem boils down to

Given
• regular word language I
• regular word language E

why is I disjoint from E?

The Ultimate human-understandable language
that explains why things go wrong

Of course:

which language do we choose for saying why?

This problem boils down to

Given
• regular word language I
• regular word language E

why is I disjoint from E?

The Ultimate human-understandable language
that explains why things go wrong

Of course:

which language do we choose for saying why?

This problem boils down to

Given
• regular word language I
• regular word language E

why is I disjoint from E?

The Ultimate human-understandable language
that explains why things go wrong

Of course:

which language do we choose for saying why?

Separation

I E

Separation

S

S separates I from E

I E

Separation

S

S separates I from E

I E

I and E are separable by family F
if some S from F separates them

Separation

S

S separates I from E

I E

I and E are separable by family F
if some S from F separates them

Which F?

Separation

S
I E

Here: S will come from families of

Separation

S
I E

Here: S will come from families of

subword languages
...abc...
abc...
...abc

Separation

S
I E

Here: S will come from families of

subword languages
...abc...
abc...
...abc

subsequence languages

...a...b...c...

Separation

S
I E

Here: S will come from families of

subword languages
...abc...
abc...
...abc

subsequence languages

...a...b...c...

and combinations thereof

Main problem
Separability(F)

Given: Regular languages I and E (as NFAs)
Question: Is I separable from E by some S in F?

S
I E

So, here, we just decide separability
and our work is still very preliminary

Main problem
Separability(F)

Given: Regular languages I and E (as NFAs)
Question: Is I separable from E by some S in F?

We will now look at different F

Prefixes and Suffixes
A prefix language (over alphabet Σ)

is a language of the form
wΣ*

for a word w

Prefixes and Suffixes
A prefix language (over alphabet Σ)

is a language of the form
wΣ*

for a word w
It is a k-prefix language if |w|≤k

Prefixes and Suffixes
A prefix language (over alphabet Σ)

is a language of the form
wΣ*

for a word w
It is a k-prefix language if |w|≤k

Separability(F) is in PTIME for the following F:

• the prefix languages
• the k-prefix languages (for every k)

It remains in PTIME if we also allow
 unions and boolean combinations

Theorem / Observation:

Prefixes and Suffixes
A prefix language (over alphabet Σ)

is a language of the form
wΣ*

for a word w
It is a k-prefix language if |w|≤k

Separability(F) is in PTIME for the following F:

• the prefix languages
• the k-prefix languages (for every k)

It remains in PTIME if we also allow
 unions and boolean combinations

Theorem / Observation:

Intuition: "local" explanations are easy to find

Subsequences
A subsequence language is a language of the form

Σ*a1Σ*a2Σ*...Σ*anΣ*

for letters a1,...,an

Subsequences
A subsequence language is a language of the form

Σ*a1Σ*a2Σ*...Σ*anΣ*

for letters a1,...,an

Separability(F) is in PTIME for the following F:

• boolean combinations of subsequence languages
• unions of subsequence languages

Theorem [Czerwinski et al. ICALP13, van Rooijen et al. MFCS13]:

Subsequences
A subsequence language is a language of the form

Σ*a1Σ*a2Σ*...Σ*anΣ*

for letters a1,...,an

Separability(F) is in PTIME for the following F:

• boolean combinations of subsequence languages
• unions of subsequence languages

Theorem [Czerwinski et al. ICALP13, van Rooijen et al. MFCS13]:

Intuition: Non-separability is some kind of reachability

Short Subsequences

It is a k-subsequence language if n≤k

A subsequence language is a language of the form
Σ*a1Σ*a2Σ*...Σ*anΣ*

for letters a1,...,an

Short Subsequences

Separability(F) is

• NP-complete for k-subsequence languages
• NP-hard / in Π2P for unions of k-subsequence

languages
• coNP-complete for positive combinations
• coNP-hard / in NEXPTIME for bool combinations

(k is part of the input)

Theorem
It is a k-subsequence language if n≤k

A subsequence language is a language of the form
Σ*a1Σ*a2Σ*...Σ*anΣ*

for letters a1,...,an

Short Subsequences

Separability(F) is

• NP-complete for k-subsequence languages
• NP-hard / in Π2P for unions of k-subsequence

languages
• coNP-complete for positive combinations
• coNP-hard / in NEXPTIME for bool combinations

(k is part of the input)

Theorem
It is a k-subsequence language if n≤k

A subsequence language is a language of the form
Σ*a1Σ*a2Σ*...Σ*anΣ*

for letters a1,...,an

Short Subsequences
Reduction from SAT

Let φ = (x1 v ~x2 v x4) and (x2 v ~x3 v ~x4)

Short Subsequences
Reduction from SAT

Let φ = (x1 v ~x2 v x4) and (x2 v ~x3 v ~x4)

Let E =
F

T F

F

T

T
T TFF

Short Subsequences
Reduction from SAT

Let φ = (x1 v ~x2 v x4) and (x2 v ~x3 v ~x4)

Let I = TFTFTFTF

Let E =
F

T F

F

T

T
T TFF

Short Subsequences
Reduction from SAT

Let φ = (x1 v ~x2 v x4) and (x2 v ~x3 v ~x4)

Let I = TFTFTFTF

Let E =
F

T F

F

T

T
T TFF

I is separable from E
by 4-subsequence language

iff
L(E) ≠ (T+F)(T+F)(T+F)(T+F)

Subsequences: Restricting I and E

S
I E

What happens if we restrict I or E?

If E has a constant-size core-approximation, then
separability of I from E is in PTIME for
• k-subsequence languages and
• unions / intersections / positive combinations  

 of k-subsequence languages

Subsequences: Restricting I and E

S
I E

Core-approximation of an NFA:

• Collapse all strongly connected components
• Perform bisimulation minimization

Subsequences: Restricting I and E

S
I E

If E has a constant-size core-approximation, then
separability of I from E is in PTIME for
• k-subsequence languages

This technique can be extended to show tractable
separability by k-subsequences of constant-length words

...a1b1...a2b2... akbk...

Recap and Other Results
The complexity of separability by

Recap and Other Results

• Prefixes and suffixes: tractable

The complexity of separability by

Recap and Other Results

• Prefixes and suffixes: tractable
• Subsequences:

The complexity of separability by

Recap and Other Results

• Prefixes and suffixes: tractable
• Subsequences:
• tractable if the length of subsequence doesn't matter

The complexity of separability by

Recap and Other Results

• Prefixes and suffixes: tractable
• Subsequences:
• tractable if the length of subsequence doesn't matter
• NP- / coNP-hard if the max length k is in the input

The complexity of separability by

Recap and Other Results

• Prefixes and suffixes: tractable
• Subsequences:
• tractable if the length of subsequence doesn't matter
• NP- / coNP-hard if the max length k is in the input

• Subwords:

The complexity of separability by

Recap and Other Results

• Prefixes and suffixes: tractable
• Subsequences:
• tractable if the length of subsequence doesn't matter
• NP- / coNP-hard if the max length k is in the input

• Subwords:
• separability by a subword language: tractable

The complexity of separability by

Recap and Other Results

• Prefixes and suffixes: tractable
• Subsequences:
• tractable if the length of subsequence doesn't matter
• NP- / coNP-hard if the max length k is in the input

• Subwords:
• separability by a subword language: tractable
• unions, intersections, positive-, boolean combinations 

of k-subword languages: from coNP to PSPACE-hard

The complexity of separability by

Recap and Other Results

• Prefixes and suffixes: tractable
• Subsequences:
• tractable if the length of subsequence doesn't matter
• NP- / coNP-hard if the max length k is in the input

• Subwords:
• separability by a subword language: tractable
• unions, intersections, positive-, boolean combinations 

of k-subword languages: from coNP to PSPACE-hard

The complexity of separability by

A promising case seems to be
 k-subsequences of constant-length subwords

Separation is a very general and exciting problem:

Concluding Remarks

Why is language 1 disjoint from language 2?

Separation is a very general and exciting problem:

Concluding Remarks

Why is language 1 disjoint from language 2?

It's been a research topic in language theory for a
while now but seems to be gaining momentum nowadays

Concluding Remarks
We just scratched the surface

Concluding Remarks

There is a huge body of interesting remaining questions:

We just scratched the surface

Concluding Remarks

There is a huge body of interesting remaining questions:

• Which separators can we efficiently compute?

We just scratched the surface

Concluding Remarks

There is a huge body of interesting remaining questions:

• Which separators can we efficiently compute?

• Which other classes of separators to consider?

We just scratched the surface

Concluding Remarks

There is a huge body of interesting remaining questions:

• Which separators can we efficiently compute?

• Which other classes of separators to consider?

• What are good measures for "simplicity" of a
separator?

We just scratched the surface

Concluding Remarks

There is a huge body of interesting remaining questions:

• Which separators can we efficiently compute?

• Which other classes of separators to consider?

• What are good measures for "simplicity" of a
separator?

• What will work in practice?

We just scratched the surface

Concluding Remarks

There is a huge body of interesting remaining questions:

• Which separators can we efficiently compute?

• Which other classes of separators to consider?

• What are good measures for "simplicity" of a
separator?

• What will work in practice?

We just scratched the surface

Interesting related question: Why is a result in the answer?

Thank you!

Questions?

