
Definability by Weakly Deterministic Regular
Expressions with Counters is Decidable

Markus Latte? and Matthias Niewerth?

Universität Bayreuth

Abstract. We show that weakly deterministic regular expressions with
counters (WDREs) —as they are used in XML Schema— are at most
exponentially larger than equivalent DFAs. As a consequence, the prob-
lem, whether a given DFA is equivalent to any WDRE, is decidable in
EXPSPACE.

1 Introduction

Deterministic or one-unambiguous regular expressions have been a topic of
research since they were formally defined by Brüggemann-Klein and Wood
in order to investigate a requirement in the ISO standard for the Standard
Generalized Markup Language (SGML), where they were introduced to ensure
efficient parsing. XML Schema, the current industry standard schema language
for XML, also requires that the regular expressions defining its content models
are deterministic. More precisely, an XML Schema is essentially a regular tree
grammar in which right-hand sides of rules are weakly deterministic regular
expressions with counting (WDREs) [6]. In the light that XML Schema is so
wide-spread, it is surprising that WDREs are not well-understood. It is known
that WDREs cannot define all regular word languages [6] but it is not yet known
if it can be decided whether a given regular word language can be defined by a
WDRE. In this paper, we prove that the latter problem is decidable in EXPSPACE.

Related Work Brüggemann-Klein and Wood [3] first described an algorithm
to decide whether there exist a deterministic regular expression — without
counters but with Kleene stars — (DRE) for a given regular language. There has
been further research on this BKW algorithm in [5,14]. Gelade et al. analysed
weakly and strongly deterministic regular expressions [6]. Bex et al. investigated
algorithms for approximating regular languages by DREs [1]. Kilpeläinen and
Tuhkanen provide PTIME algorithms for the membership problem of WDREs [10]
and the problem checking whether a given regular expression with counters is
weakly deterministic [11]. The latter complexity has been improved to linear time
in [9]. Chen and Lu provide efficient algorithms checking whether an expression
with counting is strongly deterministic [4]. There has been previous research
? Supported by grant number MA 4938/21 of the Deutsche Forschungsgemeinschaft

(Emmy Noether Nachwuchsgruppe).



on descriptional complexity of DREs [12]. Dag Hovland investigated efficient
matching algorithms for (deterministic) regular expressions with counters using
automata with counters [7,8].

Structure of the Proof We limit the size of WDREs in several stages.

– Define some normal form that normalizes the structure of immediately nested
counters. (§ 3)

– Partition all nodes in the parse tree of an expression in looping subexpressions
and non-looping subexpressions. (§ 4)

– Show that a leaf-directed path in the parse tree consisting only of looping
subexpression has at most polynomial length in the alphabet size when
counting each block of immediately nested counters as length one. (§ 4)

– Show that each leaf-directed path in the parse tree has at most polynomially
many non-looping subexpressions in the size of a minimal DFA. (§ 5)

– Define iterators to recover in a DFA the effective counters of a looping
subexpression. (§ 6)

– Limit the number of immediately nested counters logarithmically and the
upper bounds of each counter linearly in the size of a minimal DFA. (§ 7)

In § 8, we connect all partial results to show that a minimal WDRE is at most
exponentially larger than an equivalent DFA and in § 9, we show a corresponding
exponential lower bound for the size of WDREs.

2 Preliminaries

A language is a (possibly infinite) set of strings over a finite alphabet Σ. For any
language L, we define first(L) = {a ∈ Σ | ∃w ∈ Σ∗. aw ∈ L} and followlast(L) =
{a ∈ Σ | ∃v ∈ L,w ∈ Σ∗. vaw ∈ L}. The left quotient of a language L by a
word u is u−1 L := {w | uw ∈ L} and by a language U is U −1 L :=

⋃
u∈U u

−1 L.
For all N ⊆ N, let LN abbreviate

⋃
n∈N L

n where Ln is the n-fold concatenation.
A (deterministic, finite) automaton (or DFA) A is a tuple (Q, δ, q0, F ), where

Q is a set of states, δ : Q × Σ ⇀ Q is a partial transition function, q0 is the
initial state, and F is the set of final states. By δ∗ we denote the extension of δ
to strings (and languages), i.e., δ∗(q, w) is the state that can be reached from
q by reading w. The language of A is L(A) := {w ∈ Σ∗ | δ∗(q0, w) ∈ F}. We
define the size of an automaton to be the number of its states.

We let N and N+ denote the natural numbers with and without zero. Addition
and multiplication are one-sidedly expanded on subsets of N and understood
pointwise. We set I ⊗ J :=

{∑j
k=1 ik | j ∈ J and ik ∈ I for 1 ≤ k ≤ j

}
as the

product of two subsets I, J of N. Because (2N,⊗, {1}) is a monoid, the product is
canonically extended to lists, written as

⊗
. The product ⊗ is not commutative,

as [a . . . b]⊗ {c} = [ac . . . bc] 6= c[a . . . b] = {c} ⊗ [a . . . b] if a < b and c > 1.
We define C<ω :=

{
[c− . . . c+] | (c−, c+) ∈ N2 \ {(0, 0)} and c− ≤ c+

}
,

Cω := {N,N+}, and C := C<ω ∪Cω, as the sets of finite, infinite and all counters.
Each counter is just a subset of N. Let C ∈ C be a counter. Then we use C−

2



and C+ to denote minC and supC, respectively and C	 to denote max(1, C−).
If C− = C+, we may denote the counter by the singleton set {C−}. Lists of
(finite) counters live in [C] and [C<ω], respectively. The concatenation symbol for
counters is “·” or is omitted.

The regular expressions over Σ are defined as follows: ε, ∅ and every Σ-symbol
is a regular expression; and whenever r and s are regular expressions, then so
are (rs), (r + s), and (r)C , where C is a counter. For readability, we usually
omit parentheses. Sometimes we write r · s instead of rs to emphasize that two
expressions are concatenated. As syntactic sugar, r ~C denotes the expression
(. . . ((r)C1)C2 . . .)CN for any regular expression r and list ~C = C1 · . . . ·CN ∈ [C] of
counters with Ci ∈ C for each i. The language of a regular expression r, denoted
by L(r), is defined as usual. For instance, L(rC) := L(r)C for C ∈ C. Thus, the
usual Kleene star is a synonym for the counter N in our setting. Although we do
not explicitly consider the left-bounded interval [c . . .] as a counter for c ≥ 2, the
expression r[c...] can be emulated by (rN+)[c...c]. For each regular expression r,
we let first(r) = first(L(r)) and followlast(r) = followlast(L(r)).

Intuitively, a regular expression is weakly deterministic if the following holds.
When reading the input string from left to right, the expression always allows
to match each symbol of that string uniquely against a position in the expres-
sion, without looking ahead. However, which counter is incremented might be
ambiguous — in contrast to strong determinism [6].

Formally, let r̄ be the regular expression obtained from r by annotating every
alphabet symbol with its position in the expression. For example, for r = b∗a(b∗a)∗
we have r̄ = b∗1a2(b∗3a4)∗. A regular expression r is weakly deterministic if for all
a ∈ Σ and all waiv, wajv′ ∈ L(r̄) the annotations i and j are equal. We denote
the class of weakly deterministic regular expressions with counters by WDRE.

The expression (a+ b)∗a is not deterministic as already the first symbol in
the string aaa could be matched by either the first or the second a in the expres-
sion. The equivalent expression b∗a(b∗a)∗, on the other hand, is deterministic.
Brüggemann-Klein and Wood showed that not every (non-deterministic) regular
expression is equivalent to a deterministic one [3]. Thus, semantically, not every
regular language can be defined with a deterministic regular expression.

A WDRE r is reentrant iff whenever an alphabet symbol occurs in first(r)
and in followlast(r) then both occurrences are justified by the same position
in r. Intuitively, a reentrant WDRE is allowed to occur under a counter. It is
easy to see that a WDRE r is reentrant iff r∗ is a WDRE. We denote the set of
all reentrant WDREs by WDRE

			

. The size of a WDRE r denoted by |r| is the
number of nodes of its parse tree plus the sum of the logarithms of the upper
bounds of all its finite counters.

3 Normal Form

In this section, we will give a normal form for WDREs based on the following
rewrite rules.

3



Lemma 1. Let a, b ∈ N such that a ≤ b, let c, d ∈ N+, Cω ∈ Cω, and C ∈ C.

[1 . . . c]⊗ [0 . . . d] = [0 . . . cd] [0 . . . c]⊗ [a . . . b] = [0 . . . bc]
[1 . . . c]⊗ [1 . . . d] = [1 . . . cd] [0 . . . c]⊗ Cω = N

[1 . . . c]⊗ Cω = Cω N⊗ C = N

N+ ⊗ C = [C− . . . 2C	−1]⊗ N+ (1)

A challenge to our goal is that the operation ⊗ does not preserve intervals in
general as [5 . . . 6]⊗ [3 . . . 4] = {15, . . . , 18, 20, . . . , 24}.

Lemma 2. Let r ∈WDRE and ~C, ~D ∈ [C]. L(r ~C) = L(r ~D), if
⊗ ~C =

⊗ ~D.

Definition 3. Let r be a WDRE. The expression r is in normal form, iff the
following conditions are true for every subexpression s

~C with ~C = C1 · . . . · CN
and every i ≤ N :

ε ∈ L(s)→ 0 ∈ C1 0 ∈ Ci → i = N

1 ∈ Ci & i < N → 1 /∈ Ci+1 Ci ∈ Cω → i = N

Furthermore, ∅ occurs in a WDRE r, iff r = ∅, ε occurs in a WDRE r, iff r = ε
and the counter {1} does not occur.

As for the first condition, the empty words allows to lower C−1 . The remaining
conditions can be achieved by the rewriting rules from Lem. 1 via Lem. 2.
Furthermore, it is well known that we need ∅ only to represent the empty
language. We can get rid of ε by replacing εC with ε, ε · s and s · ε with s, and
ε + s and s + ε with s[0...1]. We note that expressions in normal form can be
slightly larger than minimal expressions, as the application of (1) can add at
most one to the size for each counter above some N+ counter.

From now on, all considered WDREs are implicitly assumed to be in normal
form. If we require some WDRE to be minimal, we mean a minimal WDRE among
all WDREs in normal form.

4 Looping Subexpression

In this section, we define looping subexpressions and limit how many looping
subexpressions can be nested into each other.

Definition 4. The relation ý is inductively defined as a subset of WDRE

			

×
[C]×WDRE.

Loop0 r ýε r
s ý

~C ri i ∈ {0, 1}
Loop+

s ý
~C r0 + r1

s ý
~C rLoopctr

s ý
~C·C rC

s ý
~C ri ε ∈ L(r1−i) i ∈ {0, 1}

Loop•
s ý

~C r0r1

4



Informally, s ý
~C r states that s occurs under the counters ~C in r and that it is

possible to reenter s silently, i.e., without parsing the hypothetical input word for r
any further. A subexpression s is looping (in r), denoted by s ý r, if s ý

~C r for
some ~C ∈ [C].

We emphasize that s ý
~C r does not imply that s~C is a subexpression of r, as

the notation explicitly ignores some side branches in the parse tree. The negation
of ý is denoted by 6ý.

Example 5. In (a[2...3]b[0...1])∗, the subexpressions a, a[2...3], and a[2...3]b[0...1] are
looping while b[0...1] is not. Moreover, b is looping in b[0...1] although the counter
exposes every reenter as pointless.

To restrict the maximal length of paths containing only looping subexpressions,
we use the measure µ : 2Σ∗ → 2Σ × 2{ε} × 2Σ defined as follows.

L 7→
(

first(L), L ∩ {ε}, followlast(L)
)

The implicit order is the lexicographic order over the inclusion where the left
position is the most significant one. The measure is extended to regular expressions
by considering their languages. For example, a · b∗ is smaller than a∗ although
their followlast-sets are incomparable.

Lemma 6. Concerning the right argument of ý , the rule Loopctr decreases
the measure weakly, while the rules Loop+ and Loop• decrease the measure strictly.
The rules are read upwards.

Proof. We use the notation as stated in the rules. With ∪̇ we denote the union
of two disjoint sets.

Rule Loopctr: We have first(rC) = first(r), followlast(rC) ⊇ followlast(r) and that
ε ∈ L(r) implies ε ∈ L(rC).

Rule Loop+: Because r0+r1 ∈WDRE, first(r0+r1) = first(r0)∪̇first(r1). Assume
that first(ri) = first(r0 + r1). Then, first(r1−i) = ∅, and thus L(r1−i) ⊆ {ε}.
However, the normal form excludes this situation.

Rule Loop•: The side condition “ε ∈ L(r1−i)” entails that ε ∈ L(r0r1) iff
ε ∈ L(ri). Moreover, the weak determinism of r0r1 entails that

first(r0r1) = first(r0) ∪̇ first(r1)︸ ︷︷ ︸
iff ε ∈ L(r0)

, and

followlast(r0r1) =
(

first(r1) ∪̇ followlast(r0)
)
∪︸ ︷︷ ︸

iff ε ∈ L(r1)

followlast(r1) ,

and is also is responsible for the disjoint unions. So far, the measure is weakly
decreasing. Because of the mentioned side condition and because r is in
normal form, L(r1−i) contains the empty word and a further word. Thus,
first(r1−i) 6= ∅. Therefore, if i = 0 then followlast(r0r1) ) followlast(r0), and
otherwise first(r0r1) ) first(r1).

5



Theorem 7. In any expression, the length of any path of therein looping subex-
pressions is bounded by 2|Σ|2 if every maximal group of immediately nested
counters is counted as one.
Proof. By Lem. 6 and the definition of µ.

5 Non-Looping Subexpression
The following lemma will allow us to characterize languages of non-looping
subexpressions by means of (simple) DFA operations that do not increase the
size of an equivalent DFA.
Lemma 8. If s 6ý r and u is a word that leads parsing in r to s, then

u −1 R ∩
(
first(SZ)Σ∗ ∪ (SZ ∩ {ε})

)
= S · Z (2)

where R stands for L(r), S for L(s) and Z :=
(
S −1 u −1 R

)
\
(
followlast(S)Σ∗

)
.

Proof. Let Y denote the language on the left side of (2).
Direction ⊆. We silently use that r and s are weakly deterministic. Let x ∈

Y . Since ux ∈ R, the parsing of first(x) is handled by s or x = ε ∈ S.
Thus, x = yz for some y ∈ S and some z /∈ followlast(S)Σ∗. Therefore,
x = y · y −1 u −1 (ux) ∈ S ·

(
(S −1 u −1 R) \ (followlast(S)Σ∗)

)
= S · Z.

Direction ⊇. To show u−1R ⊇ SZ, let s0, s1 ∈ S and z ∈ Z such that us1z ∈ R.
The parsing of the factor s1 in us1z does not require the support of any
rootward counter, because s is not looping in r. Therefore, s1 can be replaced
by any word in S, for instance by s0. In other words, s0z ∈ u −1 R.

Theorem 9. Let r be a minimal WDRE, and let A be an equivalent DFA with
n states. Every leaf-directed path p in r hosts at most n3(|Σ|+ 1)2 non-looping
subexpressions. For any non-looping subexpression s on p, there exists a DFA
with at most n+ 1 states.
Proof sketch. The length of paths that only have disjunctions and concatenations
and take the right branch of each concatenation is limited by n(|Σ|+ 1). The
basic idea is, that these paths can contain only n concatenations, as the language
of the right side of a concatenation can be constructed in the automaton by just
choosing a different initial state. Disjunctions restrict the set of first symbols, i.e.,
after each concatenation, there can be at most |Σ| consecutive disjunctions.

Finally, whenever a path leading to a non-looping subexpression has some
counter or uses the left branch of a concatenation, then Lem. 8 entails that
the corresponding DFA essentially has less transitions than the DFA for the
subexpression at the beginning of the path. Indeed, the left quotient and the
intersection in (2) can be read as local modifications of R’s DFA. To unravel S
from the right-hand side of (2), we remove those transitions, that leave some state
reached after reading some word from S and using a symbol not in followlast(S).
As Z is nonempty in this case, such transitions have to exist.

Each automaton construction does not change the set of states. The only
exception is caused by the reduction of the first-set in the case of disjunctions and
of Lem. 8: the initial state is duplicated but without its incoming transitions.

6



6 Iterators

In this section we will introduce iterators to connect the size of finite automata
equivalent to some WDRE r such that s ý

~C r with the size of automata accepting
a unary representation of

⊗ ~C. This allows us in the next section to analyse the
counters in ~C without looking at the concrete language accepted by s.

Definition 10. An iterator for r ∈WDRE

			

is a pair (x0, x1) of words such that

(x0x1)bk/2c xk mod 2
0 ∈ L(r)` iff k = ` or ε ∈ L(r) and k ≤ `

for all k, ` ∈ N.

Intuitively, reading both words of an iterator alternatively requires a hypo-
thetical counter at the top of r, as the parsing cannot be continued within r.

Lemma 11. Let r ∈ WDRE

			

such that the topmost operator of r is not a
counter. Then there is an iterator for r.

Proof sketch. If r is a letter, then we use (r, r) as iterator. If r = r0 + r1, we use
(v0, v1) as iterator. And if r = r0r1, an iterator is (v0v1, v0v1). In the last two
cases, vi is a shortest word in L(ri) \ {ε}.

The next technical lemma will be used to lift the iterator property from s to
r
~C whenever s ý

~C r. In the following theorem, we use the lemma to limit the
size of DFAs accepting exactly the words of lengths from

⊗ ~C.

Lemma 12. If s ý
~C r then L(r) ∩ L(s∗) ⊆ L(s~C).

Proof. The more general statement “L(r ~D) ∩ L(s∗) ⊆ L(s~C ~D) for all non-empty
~D ∈ [C] such that r ~D is in normal form” implies the claim with [1 . . . 1] or [0 . . . 1]
as D depending on whether ε ∈ L(r). For Loop0, the list ~C is empty and s = r,
yielding the statement. For the other rules, we prefer the notation of Def. 4.

Rule Loopctr: The induction hypothesis is instantiated with C · ~D as ~D.
Rule Loop•: Let v ∈ L

(
(r0r1)~D

)
∩L(s∗). Because v ∈ L(s∗) and because (r0r1)~D

is deterministic, the matching of v against (r0r1)~D considers no leafs outside
the parse tree of s, i.e., r1−i is always matched against the empty word.
Therefore, L

(
(r0r1)~D

)
∩ L(s∗) ⊆ L(r ~Di ) ∩ L(s∗). The induction hypothesis

yields the statement.
Rule Loop+: Let v ∈ L

(
(r0 + r1)~D

)
∩ L(s∗). As with Loop•, the matching of v

against (r0 + r1)~D considers no leafs outside the parse tree of s. Thus, the
side branch r1−i contributes empty words at the most. Because ~D is not
empty and since (r0 + r1)~D is in normal form, the existence of ε-contributions
entails that

⊗ ~D is downward closed. Hence, the omitted ε-contributions can
be simulated by a smaller instance in

⊗ ~D. Thus, v ∈ L
(
r
~D
i

)
∩ L(s∗). The

induction hypothesis yields v ∈ L(s~C ~D).

7



Let 1 be some fixed letter. For each n ∈ N,
〈
n
〉

stands for 1n. The operation
is extended to sets. A DFA expresses a subset N of N iff its language is

〈
N
〉
.

Theorem 13. Let s, ~C and r be such that s ý
~C r and s does not have a counter

as topmost operation. If there is a DFA with n states for the language L(r), then
there is a DFA with 2n+ 1 states for

〈⊗ ~C
〉
.

Proof. The statement is trivial for ~C = ε, therefore we assume ~C 6= ε. Due
to Lem. 11, the expression s has an iterator (x0, x1). Let g : {1}∗ → Σ∗ be
the function 1k 7→ (x0 x1)bk/2c xk mod 2

0 . If ε ∈ L(s), then the normal form
entails that each counter in ~C starts with 0 and thus N :=

⊗ ~C is downward
closed. Independently of whether ε ∈ L(s), Def. 10 therefore comes down to
the statement: g(1k) ∈ L(s)N iff k ∈ N , for all k ∈ N. A simple induction
on s ý

~C r yields L(s~C) ⊆ L(r), because the additional side branches do not
harm. Since g(1k) ∈ L(s)k ⊆ L(s∗) due to Def. 10, we obtain from Lem. 12
that g(1k) ∈ L(r) implies g(1k) ∈ L(s~C) for k ∈ N. All together, g−1(L(r)

)
=

g−1(L(s)~C
)

=
〈⊗ ~C

〉
=
〈
N
〉
, where g−1 denotes the pre-image under g. The

language g−1(L(r)) is expressible by a 2n-state DFA, which can be shown by
some kind of product construction of the DFA for L(r) with the two-state DFA
keeping track whether the next string should be x0 or x1.

7 Upper Bounds for Counters

In this section we give an upper bound on the number and values of counters of
a minimal WDRE r based on the size n of an equivalent minimal DFA. We show
that the upper bound of each finite counter is bounded linearly in n and that
the number of immediately nested counters is bounded logarithmically in n. The
former is established by showing, that each “large” upper bound can be replaced
by a smaller one without changing the language.

We define h : [C]→ N as h(C1 · . . . ·CN ) :=
∏
i≤N C

	
i . We show in a series of

technical lemmas, that if sC ý
~C r then h(~C) iterations of C can be absorbed by

the counters in ~C. This will allow us to bound C linearly in h(~C), while we show
that h(~C) is itself bounded linearly in the minimal DFA equivalent to r.

Lemma 14. Let C ∈ C<ω, and let c+, h ∈ N+ such that c+ ≥ C−(1 + h), then
C ⊆ [C− . . . c+]⊗

(
1 + hN

)
.

Proof. Let n ∈ N, then c+(1+hn) ≥ C−(1+h)(1+hn) ≥ C−
(
1 + h(n+1)

)
, and

thus the (1+hn)th and the (1+h(n+1))th incarnation of [C− . . . c+] are overlap-
ping. Because c+ > 0, the maximal number representable by the jth incarnation
of [C− . . . c+] is strictly growing with j. Therefore, the set [C− . . . c+]⊗

(
1 + hN

)
covers each number from C− onwards.

Lemma 15. Let C ∈ C and h ∈ N. Then,
(
1 + C	hN

)
⊗ C ⊆ C ⊗

(
1 + hN

)
.

8



Proof. Let c ∈ C and n1, . . . , nc, h ∈ N.∑
i≤c

1 + C	hni = c+ C	h
∑
i≤c

ni ∈ C ⊗
{

1 + h
∑
i≤c

ni

}
⊆ C ⊗ (1 + hN)

where “∈” holds because {c, C	} ⊆ C, and “⊆” because of ⊗’s monotonicity.

The subsequent statements until Lem. 18 assume that each expression deter-
mines its position within its hosting expression. In this context, r[s← s′] denotes
the substitution of (the position of) s with s′ in an expression r.

Lemma 16. Let r, s, s′ ∈ WDRE and ~C, ~D ∈ [C] such that s ý
~C r. Then

L(s) ⊆ L(s′)1+h(~C ~D)N implies L(r) ⊆ L(r[s← s′])1+h(~D)N.

Proof. Induction on s ý
~C r where ~D is quantified internally. The list ~D names

hypothetical counter at the top of r. In the case of Loop0, the list ~C is empty,
and s = r. For the remaining rules, we prefer the notation of Def. 4.
Rule Loop+:

L(r) ⊆ L(ri + r1−i)
⊆ L

(
ri[s← s′]

)1+h(~D)N ∪ L(r1−i) (sem. of + and IH)
⊆

(
L(ri[s← s′]) ∪ L(r1−i)

)1+h(~D)N (monotonicity of 1+ )
⊆ L(r[s← s′])1+h(~D)N (sem. of + and [ ← ])

Rule Loop•: The argument is analogous to Loop+’s case but with additional use
of ε ∈ L(r1−i).

Rule Loopctr: As the rule addresses the counters ~CC instead of ~C, the aimed
implication is adjusted accordingly. The induction hypothesis for C ~D as ~D

entails that L(r) ⊆ L(r[s ← s′])1+h(C·~D)N. With help of Lem. 15 and the
definition of h, we get (1 + h(C · ~D)N)⊗ C ⊆ C ⊗ (1 + h( ~D)N). Finally, the
substitution [s← s′] commutes with C .

Lemma 17. Let r, s, s′ ∈ WDRE, let ~C ∈ [C], let and Cω ∈ Cω such that
s ý

~C·Cω r. Then L(s) ⊆ L(s′)1+h(~C)N implies L(r) ⊆ L(r[s← s′]).

Proof. By induction on “s ý
~C·Cω r”. Eventually the rule Loopctr justifies the

statement s ý
~C·Cω rCω

0 with s ý
~C r0 for some r0. For an empty list ~D, Lem. 16

entails that L(r0) ⊆ L(r0[s← s′])1+N. Because (1 + N)⊗ Cω ⊆ N+ ⊗ Cω ⊆ Cω
and because Cω commutes with the substitution, L(rCω

0 ) ⊆ L(rCω
0 [s← s′]).

Lemma 18. Let C0 ∈ C<ω, ~C ∈ [C], and Cω ∈ Cω. If sC0 ý
~C·Cω r for some

minimal WDRE r, then C+
0 ≤ C	0 ·

(
1 + h(~C)

)
.

Proof. For the sake of contradiction, assume that C+
0 > c+ := C	0 ·

(
1 + h(~C)

)
.

Set s− := s[C−0 ...c
+] and r− := r[sC0 ← s−]. These expressions are weakly

deterministic, because [C−0 . . . c+] ∈ C. Due to monotonicity, L(r−) ⊆ L(r). For
the other direction, Lem. 14 entails that L(sC0) ⊆ L(s−)1+h(~C)N. Thus, Lem. 17
yields L(r) ⊆ L(r−). Therefore, L(r−) = L(r) although |r−| < |r|.

9



The previous restriction of counters is related with the transformation into
the star normal form [2]. There, (s0s1 + s2)∗ is rewritten as (s0 + s1 + s2)∗ if
ε ∈ L(s0s1), for instance. One incarnation of s0s1 is replaced with two of s0 + s1
while the Kleene star can absorb arbitrarily many incarnations. Because C also
admits finite intervals, the absorption quantum here depends on the stack of
counters under which the expression appears effectively.

Definition 19. A list C1 · . . . · CN ∈ [C] of counters propagates 0 iff 0 ∈ Ci
together with i ≤ j implies 0 ∈ Cj for all i, j ≤ N .

Lemma 20. Let ~C · ~D ∈ [C] such that ~C propagates 0. If
⊗

(~C · ~D) is expressible
by an n-state DFA, then h(~C) < n.

Proof. For every C ∈ C and N ⊆ N, min
(
(C⊗N)\{0}

)
= C	 ·max

(
1,min(N)

)
.

A simple induction using the 0-propagation entails that

min
(⊗

(~C · ~D) \ {0}
)

= h(~C) ·min
(⊗

~D \ {0}
)
≥ h(~C) .

The number on the left is strictly bounded by n−1 because the smallest non-empty
word is reachable in the DFA without any loop.

Lemma 21. Let N ∈ N, let C1, . . . , CN ∈ C<ω. If
⊗N

i=1 Ci is expressible by an
n-state DFA, then

∏N
i=1 C

+
i < n.

Proof. Because
⊗N

i=1 Ci is finite, the DFA lacks in loops.

Theorem 22. Let s, t ∈WDRE, C ∈ C<ω, and ~C ∈ [C] such that tC ý
~C s. If s

is minimal and L(s) is expressible by an n-state DFA, then C+ ≤ 4n.

Proof. We remove all outermost counters of t. The normal form guarantees that
these removed counters are finite. Thus, there is a list ~C0 ∈ [C<ω] such that
u ý

~C0 t where u denoted the obtained pruned subexpression. By transitivity,
u ý

~C0·C·~C s. Because u does not have a counter as topmost operation, Thm. 13
entails that

⊗(
~C0 · C · ~C

)
is expressible by a (2n+ 1)-state DFA.

If ~C consists only of finite counters, then Lem. 21 bounds C+. Otherwise,
~C can be written as ~C<ω · Cω · ~Cω+1 such that ~C<ω ∈ [C<ω], Cω ∈ Cω, and
~Cω+1 ∈ [C]. The normal form entails that C ~C<ω propagates 0. By Lem. 18 and
Lem. 20, we have C+ ≤ C	 ·

(
1 + h(~C<ω)

)
≤ 2h(C ~C<ω) ≤ 4n.

Theorem 23. Let s, t, ~C0, ~C1 be such that t~C0 ý
~C1 s and t does not have

a counter as topmost operation. If L(s) is expressible by an n-state DFA, then
|~C0| ≤ 2 lg(n) + 4.

Proof. The normal form ensures that at most the last counter of ~C0 belongs to Cω.
If so the last counter can be attributed to ~C1. Formally, there are ~C2 ∈ [C<ω]
and ~C3 ∈ [C] such that ~C0 ~C1 = ~C2 ~C3 and |~C2| ≥ |~C0| − 1. The normal form
also entails that ~C2 propagates 0. The set

⊗ ~C2 ⊗
⊗ ~C3 is expressible by an

10



(2n+ 1)-state DFA due to Thm. 13. Thanks to Lem. 20, h(~C2) ≤ 2n. Therefore,
the number of counters which deny 0 or 1 is bounded by lg(2n). In front of,
between, and after those counters, at most one other counter appears. Thus,
|~C0| ≤ | ~C2|+ 1 ≤

(
2 lg(2n) + 1

)
+ 1 ≤ 2 lg(n) + 4.

8 Upper Bound

Theorem 24. Let A be a DFA with n states such that L(A) is expressible by a
WDRE. Then a minimal WDRE for L(A) is of size at most 2O(|Σ|4n3 lg2(n)) and
all of its finite counters are bounded by O(n).

Proof. We show that the parse tree of a minimal WDRE has depth at most
O
(
|Σ|4n3 lg(n)

)
and the upper bounds of (finite) counters are all bounded by

O(n). As the parse tree is binary, this directly yields the claimed size bound.
Let r be a minimal WDRE in normal form equivalent to A. By Thm. 9, any

leaf-directed path in the parse tree of r can host at most n3(|Σ|+1)2 non-looping
subexpressions. Furthermore, each non-looping subexpression has an automaton
with at most n+1 states. By Thm. 23, each block of immediately nested counters
has at most 2 lg(n + 1) + 4 counters. Combining this with Thm. 7 yields that
any leaf-directed path consisting only of looping sub-expressions has length at
most 2|Σ|2(2 lg(n+ 1) + 4). Altogether, we get that the depth of the parse tree
is bounded by O

(
|Σ|4n3 lg(n)

)
. Finally, we can apply Thm. 22 to bound the

values of counters. Let C be a finite counter of r, such that tC ý
~C s, where t is

the subexpression below C and s is the lowest non-looping subexpression of r
above C. Applying Thm. 22 yields that C+ ≤ 4(n+ 1).

Corollary 25. Let L be a regular language. If L is given by a DFA (a regular
expression without counters, a regular expression with counters), it can be decided
in EXPSPACE (2-EXPSPACE, 3-EXPSPACE), whether there is some WDRE for r.

Proof. Compute a DFA A for L with linearly (exponentially, double exponentially)
many states. Enumerate [11] each WDRE up to the size bound of Thm. 24 and
test whether its language is L: (i) Unravel all counters [6] while ignoring weak
determinism. (ii) Test the obtained general regular expression against A.

9 Lower Bound

We adapt an existing proof showing that WDREs without counters are exponen-
tially larger than minimal DFAs from [13].

Theorem 26. There exists a family of languages (Ln)n∈N such that the minimal
DFA for Ln has size Θ(n), and every minimal WDRE for Ln has size 2Ω(n).

Proof sketch. As [13], we consider the finite languages Ln = L
(
(a+ b)[0...n] · b

)
for every n ∈ N. The minimal DFA for Ln has 2n + 2 states. By an inductive
proof, it can be shown, that the minimal WDRE rn for the language Ln is of the
form a · rn−1 + b · r[0...1]

n−1 which directly proves the assumption.

11



The main difference to the proof in [13] is that we have to consider counters
in the inductive step. We note that Thm. 26 is independent of our normal form.

10 Conclusion

We have shown both an exponential upper and an exponential lower bound for
the size of WDREs in terms of minimal DFA size. This easily gives an EXPSPACE
upper bound for the decision problem, given a DFA does there exist an equivalent
WDRE, solving an open problem from [6]. However, the complexity of this decision
problem is still open, as we only have an NL lower bound that carries over from the
problem for expressions without counters [14]. Especially, it is unclear, whether
there is an adaption of the BKW algorithm presented in [3] that includes counters.

In [12,13], the descriptional complexity of DREs has been analysed. We believe,
that the lower bounds for expression size can be transferred to WDREs, as the
language families used in the proofs should not benefit from the use of counters.

References

1. G. J. Bex, W. Gelade, W. Martens, and F. Neven. Simplifying XML Schema:
effortless handling of nondeterministic regular expressions. In ACM SIGMOD,
pages 731–744. ACM, 2009.

2. A. Brüggemann-Klein. Regular expressions into finite automata. TCS, 120(2):197–
213, 1993.

3. A. Brüggemann-Klein and D. Wood. One-unambiguous regular languages. Inf. and
Comput., 142(2):182–206, 1998.

4. H. Chen and P. Lu. Checking determinism of regular expressions with counting. In
DLT, pages 332–343, 2012.

5. W. Czerwiński, C. David, K. Losemann, and W. Martens. Deciding definability by
deterministic regular expressions. In FOSSACS, pages 289–304, 2013.

6. W. Gelade, M. Gyssens, and W. Martens. Regular expressions with counting: Weak
versus strong determinism. SIAM J. Comp., 41(1):160–190, 2012.

7. D. Hovland. Regular expressions with numerical constraints and automata with
counters. In ICTAC, pages 231–245. Springer, 2009.

8. D. Hovland. The membership problem for regular expressions with unordered
concatenation and numerical constraints. In LATA, pages 313–324, 2012.

9. P. Kilpeläinen. Checking determinism of XML schema content models in optimal
time. Inf. Systems, 36(3):596–617, 2011.

10. P. Kilpeläinen and R. Tuhkanen. Towards efficient implementation of XML schema
content models. In DocEng, pages 239–241. ACM, 2004.

11. P. Kilpeläinen and R. Tuhkanen. One-unambiguity of regular expressions with
numeric occurrence indicators. Inf. and Comput., 205(6):890–916, 2007.

12. K. Losemann, W. Martens, and M. Niewerth. Descriptional complexity of deter-
ministic regular expressions. In MFCS, pages 643–654, 2012.

13. K. Losemann, W. Martens, and M. Niewerth. Closure properties and descriptional
complexity of deterministic regular expressions. Submitted, 2015.

14. P. Lu, J. Bremer, and H. Chen. Deciding determinism of regular languages. TOCS,
pages 1–43, 2014.

12



A Proof of Thm. 9

For two words u and v, u Ď v denotes that u is a prefix of v, and vĎ := {u | u Ď v}.
Moreover, u Ĺ v states that u is a strict prefix of v, that is u Ď v 6= u.

Lemma 27. Let r be a minimal WDRE and p be a leaf-directed path in its parse
tree consisting only of disjunctions and concatenations, such that p takes the
right branch of each concatenation and the language of the left branch of each
concatenation contains ε. The length of p is at most |Σ|.

Proof. Along the path from r to s the respective set first( ) is strictly decreasing
w.r.t. inclusion, because the normal forms prevent any children from having the
language {ε}.

Lemma 28. Let r be a minimal WDRE and p be a leaf-directed path starting at the
root of its parse tree, such that p consists only of disjunctions and concatenations
and p uses the right branch of any concatenation. The length of p is at most
n(|Σ|+ 1), where n is the number of states of the minimal DFA equivalent to r.

Proof. Let r be a WDRE and s be a subexpression of r such that

– the parent t of s is a concatenation, such that the language of the left branch
of t does not contain ε; and

– the path from r to s only contains disjunctions and concatenations and uses
the right branch of each concatenation.

Let A be a minimal DFA equivalent to r and u be a string that leads parsing in
r to s. We construct a DFA for s by changing the initial state of A to the state
reached after reading u. The final states remain because the path neither turn
left at a concatenation nor pass a counter.

As there are only n states in A, there are at most n different automata, which
can be created by only changing the initial state. As the length of paths that
have only disjunctions and concatenations where the left branch contains ε are
bounded by Lem. 27 to |Σ|, we get the lemma statement.

In the following lemma, sizey(A) denotes the number of those transitions of
A which leave some state with at least one incoming transition, i.e., transitions
leaving the initial state are not counted, if the initial state has no incoming
transition.

Lemma 29. If s is a non-looping subexpression in a minimal WDRE r and A is
a DFA for L(r), then there exists a DFA B equivalent to s such that sizey(B) ≤
sizey(A). Let p be the path from r to s. If p contains at least one counter, or p
takes the left outgoing edge of some concatenation, then sizey(B) < sizey(A).

Proof. Basically, A is a blueprint for the claimed DFA B. Let u and Z be as in
Lem. 8 and let Y denote the language on the left side of (2). Let q0 be the initial
state of A. We construct an intermediate automaton AY by replacing the initial
state q0 by a copy q′0 of the state qu reached after reading u from q0. We keep

13



only those outgoing transitions of q′0 that are labelled by a symbol from first(SZ).
The state q′0 is final iff ε ∈ SZ. We note, that AY accepts the language Y = S ·Z
from Lem. 8. We now construct B from AY by marking exactly those states as
final, that can be reached from q′0 by reading some string of s. From the new
final states, we keep only those outgoing transitions, that are labelled by some
symbol from followlast(s).

It is easy to see that sizey(B) ≤ sizey(A). If p contains a counter (minimality
forbids the counter [1 . . . 1]) or if p takes the left edge in some concatenation, it
holds that Z 6= {ε}. In this case at least one transition is removed from every
final state of B and therefore sizey(A) < sizey(A).

It remains to show that B accepts the correct language, especially that
L(B) ⊆ L(s), as the other direction is trivial by construction of B. Let therefore
v be a string from L(B) and let w ∈ Z be a string such that vw ∈ L(r) = L(AY ).
We conclude that such a string w exists as follows: (i) The final state of B reached
by reading v can be reached using some string of L(s) (by definition of B). (ii)
Lem. 8 assures that after reading any string from L(s), any string from Z leads
to an accepting state of AY , as L(AY ) = S · Z.

Let v′ Ď vw be a longest prefix such that v′ ∈ L(s) and let w′ = v′ −1 vw.
Towards a contradiction, assume that v′ Ĺ v. We let a be the symbol immediately
following v′ in v. By definition of Z, we have that a ∈ first(Z). However a ∈
followlast(s) holds by definition of B, as else the state reached after reading v′
would have no outgoing a-transition. This is a contradiction to r being a WDRE.
Assume now that v Ĺ v′. We let a be the first symbol of w. By definition of B, we
can again conclude that a ∈ followlast(s). However a ∈ first(Z) holds as w ∈ Z.
Again, this is a contradiction to r being a WDRE. The only remaining option is
that v′ = v as desired. We can conclude that L(B) = L(s).

Statement of Thm. 9. Let r be a minimal WDRE, and let A be an equivalent
DFA with n states. Every leaf-directed path p in r hosts at most n3(|Σ| + 1)2

non-looping subexpressions. For any non-looping subexpression s on p, there exists
a DFA with at most n+ 1 states.

Proof. Lem. 28 limits the length of each path that only consists of disjunctions
and concatenations and uses the right branch of each concatenation by n(|Σ|+1).
And Lem. 29 limits the number of non-looping subexpressions that are not
connected by such a path by n2|Σ|.

B Proof of Lem. 11

For any non-empty word w, we denote the first letter by first(w). WDREs in
Lem. 30 and Lem. 31 are understood as marked while their language refers to
the unmarked counterpart.

Lemma 30 (Iterating words I). Let r ∈ WDRE

			

such that r is a letter, a
concatenation with ε /∈ L(r), or a disjunction. Then there are non-empty words

14



x0 and x1 such that

xi ∈ L̃ (3)

xi ∈ L̃aΣ∗ implies aΣ∗ ∩ L̃ = ∅, for all a ∈ Σ (4)

L̃ ∩ xifirst(x1−i)Σ∗ = ∅ (5)

for each i ∈ {0, 1} where L̃ := L(r) \ {ε}.

Informally, (5) states maximality with respect to prefixes of (xix1−i)ω. On
the other side, the premise of (4) requires that a strict prefix of xi belongs to
L(r). If we can render the conclusion as false, (4) is minimality statement.

Proof. If r is a letter then take it as x0 and x1.
Suppose that r = r0 + r1. As r is assumed to be in normal form, L(ri) \ {ε} 6=

∅. Choose xi ∈ min
(
L(ri) \ {ε}

)
. Since the first letter of xi determines the

subexpression, xi ∈ min L̃. Therefore, the premise of (4) is false. As for (5), assume
that there was a word z ∈ L̃ ∩ xifirst(x1−i)Σ∗. Since r is weakly deterministic,
z ∈ L(ri), as first(z) cannot be in first(r1−i). By definition of z, first(x1−i) = p
for some p ∈ followlast(ri). Because r is reentrant and p ∈ followlast(r), we know
that p ∈ first(ri). This is a contradiction to r being weakly deterministic, as
p ∈ first(ri) ∩ first(r1−i).

Suppose that r = r0r1. As r is assumed to be in normal form, L(ri) \ {ε} 6= ∅.
Choose yi ∈ min(L(ri)\{ε}) and set x0 := x1 := y0y1. Clearly, y0y1 ∈ L(r0r1). As
for the minimality (4), let v be a strict non-empty prefix of y0y1 such that v ∈ L(r).
Because r is weakly deterministic, the first letter of v is parsed in r0. Since y0
and y1 are minimal, v = y0 and ε ∈ L(r1). Hence, a = first(y1). For the sake of
contradiction, assume the conclusion of (4) was false and let z ∈ L(r) such that
first(z) = a. Thus, the first letter of z can be handled by r1 due to construction and
by r due to assumption. This situation requires that ε ∈ L(r0) because otherwise
r wouldn’t be weakly deterministic. Therefore, ε ∈ L(r0r1) in contradiction to
the assumption on r. As for the maximality (5), suppose that y0y1y2 ∈ L(r)
for some y2 ∈ first(y0)Σ∗. Since r is weakly deterministic and the parsing of
y0y1 ends in r1, there is a p ∈ followlast(r1) such that p = first(y2) = first(y0).
Because followlast(r1) ⊆ followlast(r) , first(y0) ∈ first(r), and r is reentrant,
we can conclude that p ∈ first(r). However, then both first(r0) and first(r1)
contain a position which is labelled with first(y0). Hence r would not be weakly
deterministic.

Lemma 31 (Iterating words II). Let r ∈WDRE

			

such that r is a concatenation
with ε ∈ L(r). Then there are non-empty words y0 and y1 such that

yĎ
1 ∩ L(r) = {ε, y1} , (6)

(y0y1)Ď ∩ L(r) = {ε, y0, y0y1} , (7)
L(r) ∩ y0y1first(y0)Σ∗ = ∅ , and (8)
L(r) ∩ y1first(y0)Σ∗ = ∅ . (9)

15



Proof. Let r be r0r1. By assumption, ε ∈ L(ri). As we assume that r is in
normal form, the languages L(r0) and L(r1) contain a non-empty word. Choose
yi ∈ min(L(ri) \ {ε}). Because r is weakly deterministic, every non-empty prefix
of yi is handled by ri, and for every non-empty prefix z of y1, the word z
is handled by r1 if y0z ∈ L(r). Thus, (6) and (7) hold. As for (8), assume
a word z ∈ L(r) ∩ y0y1first(y0)Σ∗. Since r is weakly deterministic, first(y0) ∈
first(r0)∩followlast(r1). This is a contradiction to r being reentrant. The argument
for (9) is analogous.

Statement of Lem. 11. Let r ∈WDRE

			

such that the topmost operator of r
is not a counter. Then there is an iterator for r.

Proof. We distinguish the following cases.

Case: r is a letter, a concatenation with ε /∈ L(r), or a disjunction.
We let x0 and x1 be the words given by Lem. 30. The “if”-direction is an
immediate consequence of (3). For the other direction, let L̃ = L(r) \ {ε}.
We strengthen the claim for an induction on k to

(xix1−i)bk/2cxk mod 2
i ∩ L̃` 6= ∅ implies k = `

for all ` ∈ N and i ∈ {0, 1}. For k = 0, the statement is vacuously true,
as ε /∈ L̃. For the induction step, let k > 0 be given. As x0 6= ε 6= x1, we have
that ` > 0 and we may assume words u0 and u1 such that

(xix1−i)bk/2cxk mod 2
i = u0︸ ︷︷ ︸

∈L̃

u1︸ ︷︷ ︸
∈L̃`−1

.

By induction hypothesis for k − 1, it suffices to show that u0 = xi. Clearly,
one is the prefix of the other. First, assume that u0 Ĺ xi. If ` = 1 then u1 = ε
and thus xi = u0, which is a contradiction. Otherwise, first(u1)Σ∗ ∩ L̃ 6= ∅.
However, this situation contradicts (4). Second, assume that xi Ĺ u0. Thus,
u0 ∈ L̃ ∩ xifirst(x1−i)Σ∗, which is a contradiction to (5).

Case: r is a concatenation with ε ∈ L(r).
We let x0 = x1 = y0y1, where y0 and y1 are as in Lem. 31. Because the
“if”-direction follows from (6) and (7), we continue with the other direction.
It suffices to show for all k, ` ∈ N that

k > 0 and y1(y0y1)k−1 ∩ L(r)` 6= ∅ implies k ≤ ` (10)
(y0y1)k ∩ L(r)` 6= ∅ implies k ≤ ` (11)

because the second line is just the claim. We will prove both statement
together by an induction over `. For ` = 0, both lines are true, as neither y0
nor y1 is empty. For the induction step, let ` > 0 be given. We may assume
words u0, u1, v0, v1 such that

(y0y1)k = u0︸ ︷︷ ︸
∈L(r)\{ε}

u1︸ ︷︷ ︸
∈L(r)`′

and y1(y0y1)k−1 = v0︸ ︷︷ ︸
∈L(r)\{ε}

v1︸ ︷︷ ︸
∈L(r)`′

16



for some `′ < ` each. If u0 ∈ {y0, y0y1} and v0 = y1, then the induction
hypothesis for the respective `′ completes the argument. All involved words
are already prefix ordered. By (8) and (9), we know that y0y1 cannot be a
strict prefix of u0 and that y1 cannot be a strict prefix of v0. By (6), we know
that v0 cannot be a strict prefix of y1. And by (7), u0 ∈ {y0, y0y1}.

C Proof of Thm. 26

Statement of Thm. 26. There exists a family of languages (Ln)n∈N such that
the minimal DFA for Ln has size Θ(n), and every minimal WDRE for Ln has
size 2Ω(n).

Proof. We consider the following languages for every n ∈ N:

Ln = L
(
(a+ b)[0...n] · b

)
.

The minimal DFA for Ln has 2n+ 2 states. It remains to show that a minimal
WDRE rn for a language Ln is at least of size 2n. In this proof, we use as lower
approximation of the size of a WDRE the number of nodes in its parse tree.

The proof is by induction on n. For the induction base case, n = 0, the
assumption holds because b is a WDRE (of size 1 for L0).

Now assume that a minimal WDRE rn−1 for Ln−1 is at least of size 2n−1 and
let rn be a minimal WDRE for Ln. We show that rn is of the form a·rn−1+b·r[0...1]

n−1
which directly proves the assumption.

Towards contradiction assume that rn has a concatenation operation as
topmost operation in its parse tree, i.e., rn = s1 · s2. Then, we distinguish two
cases whether ε ∈ L(s1) or not.

If ε /∈ L(s1) then we know that first(s1) = {a, b}. Since b ∈ Ln, we have that
ε ∈ L(s2) and that every word in L(s1) ends with b. Let ub be one of the longest
words in L(s1). Since rn is minimal, we know that s2 6= ε. Moreover, the longest
word of Ln has size n + 1 such that |ub| < n + 1. Then, the longest word vb
of L(s2) is of length n + 1 − |ub| and ubvb ∈ Ln. Furthermore, we know that
uavb ∈ Ln by the structure of Ln. Because ua and vb are of maximal length for
s1 and s2 respectively, it follows that ua ∈ L(s1). Since we have that ε ∈ L(s2),
it holds that ua ∈ L(rn) which contradicts the assumption that L(rn) = Ln.

If ε ∈ L(s1) then we know that ε /∈ L(s2) because ε /∈ Ln. Since b ∈ L(rn)
and rn is a WDRE, we have that first(s1) = {a} and first(s2) = {b}. Then, by
the definition of Ln, there exists a longest word bw ∈ Ln with |bw| = n + 1.
Furthermore, it holds that bw ∈ L(s2). Because rn is minimal by assumption it
follows that s1 6= ε which directly contradicts that bw is the longest word in Ln.
Altogether, this proves that rn is not a concatenation.

We now assume that rn = sC , i.e., the topmost operation is a counter C ∈ C<ω.
We note that as Ln is finite, it is not possible that the topmost operation is a
counter from Cω. We know that C− = 1, as the shortest word in Ln has length
one. Furthermore C+ > 1, as the counter {1} cannot appear in a minimal WDRE.
As any string in Ln ends with b, any string in L(s) has to end with b. As the

17



longest string in Ln has size n+ 1, the longest string in L(s) has size at most
bn+1

2 c. We can conclude that every string of size more than bn+1
2 c has at least

two b in it, which is a contradiction to the definition of Ln.
The only remaining case is that rn is a disjunction s1 + s2. As rn is a

WDRE and ε /∈ Ln, the first-set is distributed over the disjuncts s1 and s2, say
first(s1) = {a} and first(s2) = {b}. For each i ∈ {1, 2}, we follow the left-most
branch in si to the leaf. Because L(si) captures all words in Ln which start
first(si), we can exclude concatenations and counters with the same argument
as for rn. Indeed, the contradiction there faces either the length or some not
head-placed letter. Moreover, if a disjunction appeared on the way to the leaf, one
disjunct would be ε because the first-set is a singleton. However, this disjunction
with ε can be shortened with the [0...1] instead. Therefore, rn is of the form
a · sa + b · sb for some WDREs sa and sb. Moreover, it holds that a −1 Ln = Ln−1
such that it already holds that sa = rn−1. On the other hand, we have that
b −1 Ln = Ln−1 ∪ {ε}. Therefore, it remains to show that a minimal WDRE t for
the language Ln ∪ {ε} is of the form r

[0...1]
n , where L(rn) = Ln.

Again, we first show that t is not a concatenation. Towards contradiction
assume that t = t1 · t2. Then, we know that ε ∈ L(t1t2) and that every word
in L(t1) and L(t2) has to end with b. Let ub be a longest word in L(t1) and vb
be a longest word in L(t2). Then, ubvb ∈ L(t) and |ubvb| = n+ 1. Similarly as
before, we get that the word uavb belongs to L(t) and, therefore, that the word
ua belongs to L(t1). Since ε ∈ L(t2), the word ua is also L(t). However, this
situation contradicts the assumption that L(t) = Ln ∪ {ε}. Thus, every minimal
WDRE for the language Ln ∪ {ε} has a counter or a disjunction as topmost
operation.

We now assume that t is a disjunction. W.l.o.g. we assume that t = t1 + t2
where ε ∈ L(t1) and where |first(t1)| = 1 = |first(t2)| because of minimality.
Remember, we now have L(t) = Ln ∪ {ε} and that the partitioning t = t1 + ε

would be larger than t
[0...1]
0 . As ε ∈ L(t1) and |first(t1)| = 1, t1 cannot be a

concatenation, because one of the subexpression would have to be ε, which is a
contradiction to minimality. We can also exclude that t1 is a counter by a similar
reasoning as above. The remaining case is that t1 is a disjunction, which gives a
contradiction, as |first(t1)| = 1 implies that one of the disjuncts is ε, contradicting
minimality.

The only remaining case is that t = tC0 . We can assume that C− = 0, as
ε ∈ L(t). If we assume C+ > 1, we get the same contradiction as above, i.e.,
every long word has at least two b. Therefore C+ = 1, which gives the desired
result, as ε ∈ L(t0) contradicts minimality and ε /∈ L(t0) implies L(t0) = Ln.

18


	Definability by Weakly Deterministic Regular Expressions with Counters is Decidable 

