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ABSTRACT
While XML is nowadays adopted as the de facto standard
for data exchange, historically, its predecessor SGML was
invented for describing electronic documents, i.e., marked-
up text. Actually, today there are still large volumes of
such XML texts. We consider simple transformations which
can change the internal structure of documents, that is, the
mark-up, and can filter out parts of the text but do not
disrupt the ordering of the words. Specifically, we focus on
XML transformations where the transformed document is a
subsequence of the input document when ignoring mark-up.
We call the latter text-preserving XML transformations. We
characterize such transformations as copy- and rearrange-
free transductions. Furthermore, we study the problem of
deciding whether a given XML transducer is text-preserving
over a given tree language. We consider top-down transduc-
ers as well as the abstraction of XSLT called DTL. We show
that deciding whether a transformation is text-preserving
over an unranked regular tree language is in Ptime for top-
down transducers, EXPtime-complete for DTL with XPath,
and decidable for DTL with MSO patterns. Finally, we ob-
tain that for every transducer in one of the above mentioned
classes, the maximal subset of the input schema can be com-
puted on which the transformation is text-preserving.
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1. INTRODUCTION
While XML is embraced by the industry as the de facto

standard for data exchange on the Web, XML can also be
used to describe marked-up text. Actually, XML’s prede-
cessor, SGML, was exactly intended for this purpose. We
refer to such documents as text-centric. Examples are po-
ems, books, legislative text, e-governments text, and so on.
A characteristic of such documents is that data values are
words and sentences, and that their ordering matters. In this
paper, we are interested in simple transformations which can
change the internal structure of the document, that is, the
mark-up, and can filter out parts of the text but do not
disrupt the ordering of the words. In this way, the trans-
formations can preserve the meaning of the filtered text.
Specifically, we focus on XML transformations where the
transformed document is a subsequence of the input docu-
ment when ignoring mark-up. We call such transformations
text-preserving. The central problem we consider in this
paper, is to decide whether a given transformation is text-
preserving for a given class of XML documents. Classes
of XML documents will be defined by unranked regular tree
languages and transformations by various kinds of transduc-
ers. We will show that, modulo some technical restrictions
on transductions, transductions are text-preserving if and
only if they are not copying and not rearranging.

We will not consider arbitrary transductions but will fo-
cus on XSLT-like transformations and use the abstraction of
XSLT called DTL, introduced in [11], extended for dealing
with data values. DTL is a rule-based language and is pa-
rameterized by a pattern language which is used for navigat-
ing in the tree and for deciding which rules can be executed.
We consider three kinds of settings. The first is a top-down
setting where navigation is restricted to children and rule
patterns are restricted to label tests. Actually, to ease pre-
sentation, we define the top-down fragment of DTL sepa-
rately as it corresponds to the formalism of top-down uni-
form tree transducers. In the two other settings, we consider
XPath and MSO for both navigational and rule patterns.
We refer to these fragments as DTLXPath and DTLMSO,
respectively. We show that testing whether a transduc-
tion is text-preserving is in Ptime, in EXPtime and decid-
able, respectively, for top-down transducers, DTLXPath and
DTLMSO over the class of regular tree languages represented
by non-deterministic tree automata.

The high-level proof idea underlying all three results is



the same, but the details differ greatly, leading to the differ-
ent complexities. We essentially show that the set of trees
for which the given transduction is not text-preserving is
a regular tree language. We refer to the latter as the lan-
guage of counter-examples. The result then follows by test-
ing emptiness of the intersection of that language with the
tree automaton representing the input schema. Of course,
the language of counter-examples depends on the transduc-
ers. We represent it in the three respective settings by
non-deterministic top-down tree automata, alternating tree-
walking automata, and non-deterministic tree-jumping au-
tomata with MSO-transitions. Of independent interest, we
observe that non-deterministic tree-jumping automata with
MSO-transitions define only regular tree languages. As reg-
ular languages are closed under complement, it readily fol-
lows that a regular tree language can be constructed which
represents the largest subset of the input schema on which
a given transducer is text-preserving.

Outline. In Section 2, we introduce the necessary defini-
tions. In Section 3, we characterize text-preserving trans-
ductions. In Section 4 and Section 5, we consider top-down
uniform tree transducers and DTL, respectively. In Section
6, we discuss related work and we conclude in Section 7.

2. DEFINITIONS
For any n,m ∈ N with m ≥ n, [n,m] denotes the set of

integers {n, n+ 1, . . . ,m− 1,m}. In this paper we consider
finite and infinite alphabets, but Σ always denotes a finite
alphabet. We denote symbols from Σ by σ, σ1, and so on.
We assume that special symbols such as “(”, “)”, etc. are not
in Σ.

Strings. A symbol is an element of a (finite or infinite)
alphabet ∆ and a string w is a finite sequence of symbols
σ1 · · ·σn for some n ∈ N. We define the length of a string
w = σ1 · · ·σn, denoted by |w|, to be n and we also refer to
|w| as the size of w. The empty string is denoted by ε. We
assume that readers are familiar with standard operations
on strings and sets of strings such as concatenation.

Automata. A nondeterministic finite string automaton
(NFA) A over an alphabet Σ is a tuple (Q,Σ, δ, q0, F ), such
that Q is a finite set of states, q0 ∈ Q is the initial state,
F ⊆ Q is the set of final states and δ : Q × Σ → 2Q is the
transition function. A run of the automaton A on a string
w = a1 · · · an is a sequence of states q0q1 · · · qn such that,
for each i ∈ [1, n], qi ∈ δ(qi−1, ai). A run on w is accepting
if qn ∈ F , and a string w is accepted by A, if there exists
an accepting run of A on w. The size |A| of an NFA A is
its total number of states and transitions. By L(A) we de-
note the set of strings accepted by A. A string language L
over Σ is regular if there is an NFA A such that L(A) = L
We denote the set of regular languages over alphabet Σ by
REG(Σ).

Hedges and trees. The set of unranked trees over alphabet
Σ, denoted by TreesΣ, is the smallest set S of strings over
Σ and the parenthesis symbols “(” and “)” such that, ε ∈ S
and for each σ ∈ Σ and w ∈ S∗, we have that σ(w) is in
S. For readability, we denote the tree σ() by σ. A tree
language over Σ is a subset of TreesΣ. The set of unranked
hedges over alphabet Σ, denoted by HedgesΣ, is defined as
HedgesΣ = Trees∗Σ. In particular, each tree is also a hedge.

When we write a tree t as t = σ(t1 · · · tn) or a hedge h as
h = t1 · · · tn, we implicitly assume that all ti are trees.

The set of nodes of a tree t and of a hedge h, denoted
by Nodest and Nodesh, respectively, are sets of strings in N∗
and are inductively defined as follows. If h = σ1 · · ·σn, then
Nodesh = {1, . . . , n}. Here, for each i ∈ [1, n], the node i is
labelled by σi, which we denote by labh(i) = σi. If t = σ(h),
then Nodest = {1}∪{1u | u ∈ Nodesh}. Here, the root node
is 1 and the other nodes are nodes of the subhedge h, prefixed
by a 1. The root is labeled σ, i.e., labt(1) = σ and, for every
node 1u ∈ Nodest we define labt(1u) = labh(u). Finally,
if h = t1 · · · tn, then Nodesh = ∪ni=1{iu | 1u ∈ Nodesti}.
Here, the labels from the ti carry over to h, that is, for each
i ∈ [1, n] and each node iu ∈ Nodesh, we have labh(iu) =
labti(1u). The depth of a node u ∈ N∗ is |u|. Hence, the
depth of the root of a tree is one.

From the definition of nodes we can see that the lexico-
graphic order <lex on Nodesh corresponds to the order gen-
erated by the depth-first (left-to-right) traversal of the hedge
h. More specifically, for two nodes iu and jv ∈ Nodesh with
i, j ∈ N, we have iu <lex jv if i < j or if i = j and u <lex v.
The children of a node v in h are all nodes v′ ∈ Nodesh such
that v′ = v · i for i ∈ N. A node v ∈ Nodesh is a leaf if it
has no children.

The size of a hedge h, denoted by |h|, is its number of
nodes. For a tree t and a node u ∈ Nodest, we denote
by anc-strt(u) the ancestor string of u in t, i.e., the string
formed by the labels on the path in the tree t from the root
to u, including the label of u. The lowest common ancestor
of two nodes v1 and v2 in Nodest is the node corresponding
to the longest common prefix of v1 and v2.

The subtree of hedge h at a node u is the tree induced by
the set of nodes with prefix u and is denoted by subtreeh(u).
For any hedge h, node u, and for any hedge h′, h[u ← h′],
denotes the hedge obtained from h by replacing subtreeh(u)
with h′ and by redefining the set of nodes and the label func-
tion accordingly. For any two alphabets Σ and Γ, TreesΣ(Γ)
is the set of trees over the alphabet Σ ∪ Γ, where only
leaves are allowed to be labelled with symbols from Γ. Sim-
ilarly, HedgesΣ(Γ) is (TreesΣ(Γ))∗. Finally, the frontier1 of
a hedge h, denoted by frontier(h), is the largest sequence
labh(v1) · · · labh(vn), where, for every i ∈ [1, n], vi is a leaf
of h, and for every i ∈ [1, n− 1], vi <lex vi+1.

In the following, we will often write Nodes, lab, etc. with-
out index whenever the tree or hedge is clear from the con-
text.

Text trees. Let Text be an infinite set, disjoint from any
finite alphabet we consider here, such as Σ. A text tree t
over Σ is a tree in TreesΣ(Text) or, in other words, a tree
over the alphabet Σ∪Text where symbols from Text can only
appear at the leaves. We refer to these nodes as text nodes
and denote the set of text nodes of a tree t by text-nodest.
A text tree language is a subset of TreesΣ(Text). In the
following, unless otherwise stated, whenever we say tree we
always mean text tree. In particular, we also simply say tree
language instead of text tree language.

A tree language L is closed under Text-substitutions if,
for any tree t ∈ L and any text node u of t, the tree ob-
tained from t by changing u’s label to another value in Text
is also in the language L. Formally, a Text-substitution ρ
is a function from TreesΣ(Text) to TreesΣ(Text), such that

1A frontier is sometimes also called a yield.



recipes

recipe

description

“This is the best
chocolate mousse in
the world. It tastes

fantastic and has only
finitely many calories.”

ingredients

item

“100 g of butter”

item

“100 g of Belgian chocolate”

...

instructions

“We start by melting
the butter on a low fire.”

br

“Then, melt the choco-
late au bain-marie.”

...

comments

negative

comment ...

positive

comment

“It’s true! It’s great!
Especially with Greek

coffee afterwards!”

...

recipe

...

...

(1)
(11)

(111)

(112) (113)

(114)
(12)

Figure 1: A text tree representing an XML document for recipes.

for each t ∈ TreesΣ(Text), Nodest = Nodesρ(t), for each

node v /∈ text-nodest, labt(v) = labρ(t)(v) and for each node

v ∈ text-nodest, labρ(t)(v) ∈ Text. In other words, a Text-
substitution relabels zero or more leaf nodes labelled with a
label in Text, to some other label in Text.

In the sequel we only consider tree languages that are
closed under Text-substitutions primarily because we want
to consider Text as an abstract set. Furthermore, when
ignoring integrity constraints, XML schema languages are
rather restricted in enforcing constraints on actual text val-
ues. Therefore, it makes sense to simply consider one infinite
set of possible values so that replacing a certain text value
with another does not change validity of the document with
respect to the schema.

The text-content of a tree t, denoted by text-content(t), is
the string over alphabet Text obtained by concatenating the
text values of all text nodes in document order, which is the
lexicographic order induced by N∗. Notice that, for any tree
t, text-content(t) is the substring of frontier(t) containing
exactly the labels from Text.

Example 2.1. Figure 1 depicts a tree representation of
an XML document underlying a web site with recipes. Each
recipe has a description, a list of ingredients, instructions,
and a list of comments by users. The text nodes of the tree
are the ones that contain text in quotation marks. The an-
cestor path of the node labeled positive is recipes recipe

comments positive. The text-content of the tree is the con-
catenation of all the text between the quotation marks, from
left to right. For clarity, we annotate some nodes with their
name in braces.

A tree transduction T is a mapping T : L1 → L2 for tree
languages L1 and L2. We say that a string s1 = σ1 · · ·σn
over alphabet ∆ is a subsequence of s2, denoted s1 ≺ s2, if s2

is of the form w0σ1w1 · · ·wn−1σnwn for some w0, . . . , wn ∈
∆∗. We are now ready to define the notion central to this
paper.

Definition 2.2. A tree transduction T is text preserving
over a tree language L if, for all trees t ∈ L,

text-content(T (t)) ≺ text-content(t).

Schema languages. We abstract the schema languages
Document Type Definition (DTD) and Relax NG by ex-

tended context-free grammars and by unranked tree au-
tomata, respectively.

A Document Type Definition (DTD) over some finite al-
phabet Σ is a tuple D = (Σ ] {text}, C, d, Sd) where C
is a set of regular string languages over Σ ] {text}, d is a
function that maps symbols in Σ to languages in C, and
Sd ⊆ Σ is a set of start symbols. We refer to the languages
in C as the content models of the DTD. A tree t is valid
with respect to a DTD D or satisfies D, if its root is la-
belled by an element of Sd and, for every node labelled with
some σ ∈ Σ, the sequence σ1 · · ·σn of labels of its children,
where any element in Text is replaced by the symbol text,
is in the language d(σ). So, text serves as a placeholder
for text nodes. In the remainder of this paper, we assume
that the regular languages in C are represented by regular
expressions or NFAs.

The set of trees that are valid with respect to a DTD D is
denoted by L(D). A DTD D is reduced if, for every σ ∈ Σ
for which d(σ) is defined, there exists a tree t ∈ L(D) such
that the label σ occurs somewhere in t. Any DTD can be
transformed to an equivalent reduced DTD in polynomial
time [1, 16]. However, reducing a DTD is Ptime-complete.2

In the following, we assume that all DTDs are reduced.

Example 2.3. The tree in Figure 1 is valid w.r.t. the
DTD (Σ]{text}, C, d, Sd), where Σ is the set of labels used
in the boxed nodes of the tree, i.e., recipes, recipe, . . . We
represent the regular languages in C by regular expressions.
Then, Sd = {recipes} and d is defined as:

recipes 7→ recipe∗

recipe 7→ description · ingredients
·instructions · comments

ingredients 7→ item∗

instructions 7→ (br + text)∗

br 7→ ε
comments 7→ negative · positive
positive 7→ comment∗

negative 7→ comment∗

description 7→ text

item 7→ text

· · ·
Notice that the children of instructions can come from Σ

2More accurately, deciding whether a DTD is reduced is
Ptime-complete.



and from Text. For every Σ-symbol σ for which we did not
yet define d, we define d(σ) = text.

Relax NG schemas are abstracted by nondeterministic un-
ranked tree automata (NTA). An NTA N over some finite
alphabet Σ, is a tuple (Q,Σ ] {text}, δ, q0, F ) where Q is
a finite set of states, q0 ∈ Q is the initial state, F is the
set of final states, and δ : Q × (Σ ] {text}) → REG(Q)
is the transition function. A run of N over some tree t is
a function ρ : Nodest → Q such that ρ(1) = q0, i.e., the
root of t is assigned q0 and, for any node v labeled with
σ ∈ Σ with n children, it holds that ρ(v1) · · · ρ(vn) is in the
language δ(ρ(v), σ). A run ρ of N on some tree t is accept-
ing if ε ∈ δ(ρ(v), lab(v)) for every leaf v of t if lab(v) ∈ Σ,
and δ(ρ(v), text) = {ε} if lab(v) ∈ Text. So, also here text

serves as a placeholder for Text-values. We define F to be the
set of states q such that ε ∈ δ(q, a) for some a ∈ Σ]{text}.
A tree t is accepted by N if there exists an accepting run of
N on t. By L(N) we denote the set of trees accepted by N .
A tree language L is regular, if there is an NTA N such that
L = L(N). It is well-known that regular tree languages are
closed under union, intersection, and complementation.

Unless otherwise mentioned, we assume that the regular
languages δ(q, σ) in NTAs are represented by NFAs. The
size |N | of an NTA N = (Q,Σ, δ, q0, F ) is equal to |Q|+ |δ|,
where |δ| =

∑
q∈Q,a∈Σ |δ(q, a)|.

Central problem. In the rest of this paper, we consider
the following decision problem. Let T be a class of tree
transductions and let L be a class of tree languages. We
then study the question:

Given a language L ∈ L and a transduction T ∈
T , is T text-preserving over L?

Recall that, in this paper, the languages L are always closed
under Text-substitutions. In the conclusions we discuss how
our technique also allows to solve more complex decision
problems.

3. A CHARACTERIZATION OF TEXT-PRE-
SERVING TRANSDUCTIONS

We provide a characterization of when a transduction is
text-preserving in terms of its copying and rearranging be-
havior. First, we need some terminology. We say that a
tree is value-unique when all its Text-values occurring at
leaves are different. Notice that, since we only consider tree
languages that are closed under Text-substitutions, all the
tree languages we consider contain at least one tree which is
value-unique.

Definition 3.1. A transduction T is copying over a tree
language L if there is a value-unique t ∈ L such that T (t)
contains multiple occurrences of the same Text-value. A
transduction T is rearranging over a tree language L if there
is a value-unique t ∈ L such that, for some γ1 and γ2 ∈ Text,
γ1γ2 ≺ text-content(t) and γ2γ1 ≺ text-content(T (t)).

Up to now, transductions are general mappings from trees
to trees. We will next put some restrictions on them. Let
z 6∈ Text. For γ ∈ Text∪{z}, let ργ be the Text-substitution
that for every tree t, relabels every text node with γ. A
transduction T is Text-independent if for every tree t and
every Text-substitution ρ on t,

ρz(T (ρ(t))) = ρz(T (t)).

Informally, this ensures that the structure of the transduced
tree T (t) does not depend on the Text-values occurring in
t. Only the concrete Text-values in T (t) and T (ρ(t)) can
differ. The final notion we need is that of a Text-functional
transduction. A transduction T is Text-functional if, for
every tree t, there exists a function f from the set of text
nodes of T (t) to the set of text nodes of t, such that for

every Text-substitution ρ on t, labT (ρ(t))(v) = labρ(t)(f(v))

for every node v ∈ text-nodesT (ρ(t)). Intuitively, this means
that Text-values in the output tree are determined by the
Text-value at the corresponding node, determined by f , in
the input tree. Note that a Text-functional transduction can
never introduce Text-values that do not appear in the input
tree.

Definition 3.2. A transduction is admissible if it is Text-
independent and Text-functional.

We will show in the sequel that all transductions we con-
sider in this paper are admissible. We are now ready to
prove the characterization of text-preserving transductions.

Theorem 3.3. An admissible transduction T is text-pre-
serving over a language L if and only if it is not copying and
not rearranging over L.

Proof. When T is copying or rearranging over L then T
is obviously not text-preserving over L.

When T is not text-preserving, there exists a tree t ∈ L
such that text-content(T (t)) ⊀ text-content(t). Let ρ be a
Text-substitution such that ρ(t) is value-unique. First, we
argue that text-content(T (ρ(t))) ⊀ text-content(ρ(t)). As-
sume for the sake of contradiction that text-content(T (ρ(t))) ≺
text-content(ρ(t)) and let g be a function from text-nodesT (ρ(t))

to text-nodesρ(t) that witnesses this subsequence relation. In
other words, since ρ(t) is value-unique, g maps every text
node in T (ρ(t)) to the unique text node in ρ(t) with the
same text value. In particular, g is unique.

Since T is Text-functional by assumption, there exists a
function f : text-nodesT (t) → text-nodest such that, for every

Text-substitution ρ′ and every node v ∈ text-nodesT (ρ′(t)),

labT (ρ′(t))(v) = labρ
′(t)(f(v)). Since this condition holds for

every substitution ρ′, it holds for ρ in particular. Therefore
it is also the case that, for every node v ∈ text-nodesT (ρ(t)),
labT (ρ(t))(v) = labρ(t)(f(v)). Since ρ(t) is value unique and T
is Text-independent, it follows that f maps every text node
in T (ρ(t)) to the unique text node in ρ(t) with the same text
value.

Since text-nodest = text-nodesρ(t) and text-nodesT (t) =
text-nodesT (ρ(t)) because T is Text-independent, it follows
that f and g are the same function. By definition of f , for
every node v ∈ text-nodesT (t), labT (t)(v) = labt(f(v)) and
therefore, f is a witness function to text-content(T (t)) ≺
text-content(t), which contradicts our assumption that T is
not text-preserving on t.

It remains to show that T is either copying or rearrang-
ing on t. Consider the function f , and notice that since
text-content(T (t)) ⊀ text-content(t), f is either not injective
or does not preserve the order <lex in trees. In the first case,
T is copying and in the second case T is rearranging.

4. TOP-DOWN TRANSDUCERS
We start with the simple uniform top-down tree transduc-

ers considered in [13, 14, 15] in the context of type checking.



T q0

t
→

recipes

T q0

subtree(11)

· · · →
recipes

recipe

T qsel

subtree(111)
T qsel

subtree(112)

T qsel

subtree(113)

T qsel

subtree(114)

· · ·

↙
recipes

recipe

description

T q(γ1)

ingredients

T q

item(γ2)

T q

item(γ3)

· · · instructions

T q(γ4)T q(br)T q(γ5) · · ·

ε

· · ·
→

recipes

recipe

description

γ1

ingredients

γ2 γ3 · · ·

instructions

γ4 br γ5 · · ·

· · ·

Figure 2: A uniform transducer selecting all descriptions, ingredients, and instructions from the tree of Fig. 1.

These correspond to a simple top-down fragment of XSLT
and are equivalent to DTL, defined in the next section, in-
stantiated with only downward navigation.

4.1 Definition

Definition 4.1. A top-down uniform tree transducer is
a tuple T = (Q,Σ∪{text}, q0, R), where Q is a finite set of
states, Σ is a finite alphabet, q0 ∈ Q is the initial state, and
R is a finite set of rules of the form (q, a)→ h, where q ∈ Q
and
(a) if a ∈ Σ then h ∈ HedgesΣ(Q) and
(b) if a = text then h is text.
When q = q0, then h is restricted to TreesΣ(Q) and should
contain at least one Σ-label. This restriction of h ensures
that the output of T is always a tree. For each state q ∈ Q
and symbol a ∈ Σ there is at most one hedge h ∈ HedgesΣ(Q)
such that (q, a)→ h is a rule in R.

The translation defined by T on a tree t in state q, denoted
by T q(t), is defined inductively as follows:

(i) T q(ε) = ε;

(ii) for each γ ∈ Text, if there is a rule (q, text) → text

then T q(γ) = γ, if there is no such rule, then T q(γ) =
ε;

(iii) if t = a(t1 · · · tn) for some a ∈ Σ and there is a rule
(q, a)→ h, then T q(t) is obtained from h by replacing
every node u in h labelled with p ∈ Q, by the hedge
T p(t1) · · ·T p(tn). If there is no such rule, then T q(t) =
ε.

The transformation of t by T , denoted by T (t), is defined as

T q
0

(t). To make use of our characterization in Theorem 3.3,
we need to be able to reason about the function that is
defined by T . To this end, we say that the transduction
defined by T or transduction of T is the function mapping
every tree t onto T (t). For any rule (q, a) → h in R, we
denote the hedge h on its right hand side by rhs(q, a). The
size of T , denoted by |T |, is equal to |Q|+ |R|, where |R| =∑
q∈Q,a∈Σ |rhs(q, a)|. In the remainder of this section, we

simply say transducer rather than top-down uniform tree
transducer.

Example 4.2. The uniform transducer defined by the rules
(q0, recipes) → recipes(q0)
(q0, recipe) → recipe(qsel)
(qsel, σ) → σ(q) (σ ∈ {description, ingre-

dients, instructions})
(q, item) → q
(q, br) → br(q)
(q, text) → text

Selects, from the tree of Figure 1, all recipes, their descrip-
tions, ingredients lists, and instructions; and deletes the
comments. Furthermore, it keeps the markup (i.e., the br

nodes) in the instructions, but deletes the item nodes. The
transformation on the tree in Figure 1 is illustrated in Fig-
ure 2. For readability in the figure, we sometimes write a
function call of the form T q(t) as a (sub)tree where t is a
child of a node labelled T q.

We call a state q of T reachable if there is a sequence of
pairs (q1, a1) · · · (qn, an) for some n ∈ N, such that q1 = q0,
qn = q and, for all i ∈ [1, n − 1], we have that qi+1 occurs
as the label of a leaf in the hedge rhs(qi, ai). Notice that,
if a transducer has a rule of the form (q, a) → ε, we can
remove this rule and the resulting transducer is equivalent
(due to rule (iii) in the definition of T q(t)). We therefore say
that a rule of the form (q, a) → ε is useless. A transducer
is reduced, if all its states are reachable and it contains no
useless rules. In the following, we assume that transducers
are always reduced.

Notice that rules in transducers do not contain any values
from Text. This ensures that transducers can not introduce
a Text-value not present in the input tree. We note that
the transducers in this section are admissible, in the sense
of Definition 3.2.

Lemma 4.3. Top-down uniform tree transducers are ad-
missible.

4.2 Copying and rearranging transducers
In this section, we provide equivalent formalizations for

the notions of copying and rearranging introduced in Sec-
tion 3. In Section 4.3, we then show that it is decidable
in Ptime whether a transducer is copying or rearranging
thereby obtaining Ptime-decidability for testing whether a
transducer is text-preserving.
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Figure 3: Illustration of copying (left) and rearrang-
ing (right) for top-down uniform tree transducers.

First we formally define copying and rearranging for a
transducer.

Definition 4.4. Let L be a tree language. A transducer
T is copying over L if the transduction defined by T is copy-
ing over L. It is rearranging over L if the transduction de-
fined by T is rearranging over L.

In the following lemma, we provide an operational con-
dition that is equivalent to the general notion of copying
defined above. First, we introduce the following definitions.
A text path is a sequence in Σ∗ · Text. A path run of T
on a text path a1 · · · anγ is a sequence q1, . . . , qn, qn+1 such
that q1 = q0, and for all i ∈ [1, n], qi+1 occurs at a leaf of
rhs(qi, ai) and (qn+1, text) → text. Intuitively, a path run
is a set of states that T assumes when processing the text
path. Note that there can be several path runs for the same
text path as the transducer can use rules containing multiple
states in a right-hand side.

Lemma 4.5. A transducer T = (Q,Σ ∪ {text}, q0, R) is
copying over a tree language L if and only if there exists
a tree t ∈ L and a leaf node v in t such that anc-str(v) =
a1 · · · an · γ is a text path on which either
(1) T has two different path runs, or
(2) T has a path run q1, . . . , qn, qn+1, where for some i ∈
[1, n], qi+1 · qi+1 ≺ frontier(rhs(qi, ai)).

Recall that ≺ denotes the subsequence relation. Condition
(2) therefore states that qi+1 occurs on two different leaves
of rhs(qi, ai). The condition in Lemma 4.5 is illustrated in
Figure 3. In the figure, if qi+1 6= q′i+1, there are two path
runs and if qi+1 = q′i+1, then qi+1 ·qi+1 ≺ frontier(rhs(qi, ai)).

Next, we characterize when a transducer rearranges two
Text-values in a tree t. Similarly as for copying, we pro-
vide an operational condition for rearranging. Intuitively,
a transducer rearranges when there are two leaves v1 and
v2 in t and T (t) swaps the Text-values corresponding to v1

and v2. In terms of a top-down uniform tree transducer, this
means that, on the path from the root to the lowest common
ancestor of v1 and v2, a swap operation takes place.

Lemma 4.6. A transducer T = (Q,Σ ∪ {text}, q0, R) is
rearranging over a tree language L if and only if there ex-
ists a tree t ∈ L, two leaf nodes v1, v2 of t with v1 <lex v2

with text paths anc-str(v1) = a1
1 · · · a1

n · γ1 and anc-str(v2) =
a2

1 · · · a2
m ·γ2 on which which T has path runs q1

1 , . . . , q
1
n, q

1
n+1

and q2
1 , . . . , q

2
m, q

2
m+1, such that the following holds. If the

lowest common ancestor v of v1 and v2 has depth k, then
there exists an i ≤ k such that
(1) for all j < i, we have (q1

j , a
1
j ) = (q2

j , a
2
j ) and

(2) q2
i · q1

i ≺ frontier(rhs(q1
i−1, a

1
i−1)).

The condition in Lemma 4.6 for rearranging is illustrated
in Figure 3. From Lemmas 4.5 and 4.6 and from Theo-
rem 3.3 we now obtain the following characterization for
text-preserving top-down uniform transducers:

Theorem 4.7. A uniform top-down transducer T is not
text-preserving over a tree language L if and only if the con-
dition in Lemma 4.5 or the condition in Lemma 4.6 holds.

4.3 PTIME Result
This section is devoted to the proof of Theorem 4.11 which

states that it is decidable in Ptime whether a top-down tree
transducer is text-preserving over an unranked regular tree
language represented by an NTA.

For a tree language L, we denote by Ltext the language
over alphabet Σ ] {text} obtained from L by replacing, in
each tree, each label γ ∈ Text by the label text. The path
language of a regular tree language L is the language of
all root-to-leaf paths in trees of Ltext that end with text.
More formally, the text path language of L is {w | t ∈
Ltext, lab

t(u) = text, and w = anc-strt(u)}. We say that
an NFA AL is a path automaton for regular tree language L
if AL accepts the path language of L. For a tree transducer
T , we say that an NFA AT is a transducer path automaton
for T if it accepts exactly the text paths on which T has a
path run. Notice that AL and AT accept only strings that
end with text. We show that they can be constructed in
Ptime.

Lemma 4.8. (1) Given an NTA N , we can construct a
path automaton AN for L(N) in polynomial time.
(2) Given a uniform tree transducer T , we can construct a
transducer path automaton AT for T in polynomial time.

From now on, we refer to AT as the transducer path au-
tomaton of T and to AN as the path automaton of N . As
our next step, we use the two types of path automata to test
for copying or rearranging. First, we treat copying.

Lemma 4.9. Given a uniform tree transducer T and an
NTA N , it is decidable in Ptime whether T is copying over
L(N).

Proof sketch. We define an NFA M that accepts text
paths satisfying condition (1) or condition (2) of Lemma 4.5.
So, M is non-empty iff T is copying over L(N). As M can be
constructed in Ptime and testing non-emptiness of NFAs is
in Ptime as well, the result follows. Basically, M simulates
both AN (as the text path should come from a tree accepted
by N) and two copies of AT (as there should be a path run
of T ) while checking for the existence of two different path
runs or while trying to reach a rule in T which copies.

Lemma 4.10. Given a uniform tree transducer T and an
NTA N , it is decidable in Ptime whether T is rearranging
over L(N).

Proof sketch. We will construct in Ptime an NTA M
accepting the set of trees on which T is rearranging. There-
fore, the intersection of M and N is non-empty if and only
if T is rearranging over L(N). As the latter can be done in
Ptime, the result follows. Intuitively, M directly searches
for nodes satisfying the proporties mentioned in Lemma 4.6.
We describe M as if operating in a top-down fashion. Start-
ing from the root of an input tree t, M guesses a path,
simulating AT . At a certain non-deterministically chosen



point, M decides it has found state q1
i−1 = q2

i−1 and non-
deterministically picks q1

i and q2
i (cf. Lemma 4.6). From

then on, M continues until it (non-deterministically) arrives
at the lowest common ancestor of v1 and v2. On this path,
M will simulate two copies of AT ; one copy continuing from
state q1

i and one copy continuing from state q2
i . At the low-

est common ancestor of v1 and v2, the simulation of these
two copies of M will split again. Towards v1, M simulates
the copy that started from q1

i , and towards v2, M simulates
the copy that started from q2

i . Finally, M accepts when the
copy for q1

i leads to acceptance of AT at node v1 and the
copy of q2

i leads to acceptance of AT at node v2. Recall that
the acceptance condition of AT means that the text value of
the last node is copied to the output of T .

By the previous lemmas the main complexity result of this
section readily follows:

Theorem 4.11. Given a uniform tree transducer T and
an NTA N , it is decidable in Ptime whether T is Text-
preserving over L(N).

5. DTL

5.1 General DTL Transducers
In this section, we consider the abstraction of XSLT called

DTL, which was introduced in [11]. DTL programs can nav-
igate in a tree through the use of binary patterns. While
XSLT employs XPath, we leave the concrete pattern lan-
guage implicit for now and introduce the following termi-
nology. A unary pattern over Σ is a subset of

⋃
t∈TreesΣ({t}×

Nodest) and a binary pattern over Σ is a subset of
⋃
t∈TreesΣ({t}×

Nodest × Nodest). We refer to the set of unary and binary
patterns over Σ as UP(Σ) and BP(Σ), respectively. We will
denote unary patterns by ϕ,ψ and binary patterns by α, β.
To emphasize that unary and binary patterns will be spec-
ified by pattern languages, we will also write (t, u) ∈ ϕ as
t |= ϕ(u) and (t, u, v) ∈ α as t |= α(u, v).

Our definition of DTL differs slightly from the one in [11].
To simplify presentation, we disregard construction func-
tions (cf. Section 6 for a discussion). On the other hand, we
do extend DTL to deal with text values.

Definition 5.1. A DTL transducer is a tuple T = (Σ,∆,
Q, q0, RΣ, RText), where

• Σ is the finite alphabet of input symbols,

• ∆ is the finite alphabet of output symbols,

• Q is the finite set of states,

• q0 ∈ Q is the initial state,

• RΣ is a finite set of rules of the form (q, ϕ)→ h, where
q ∈ Q, ϕ ∈ UP(Σ), and h is in Hedges∆(Q× BP(Σ)).
If q = q0, h is required to be a tree such that labh(1) /∈
Q× BP(Σ).3

• RText is a finite set of rules of the form (q, text) →
text, with q ∈ Q.

To ensure determinism, we require that when (q, ϕ)→ h and
(q, ϕ′)→ h′ are rules in RΣ, then there exists no tree t such

3This is just a technical restriction which forces the trans-
ducer to output trees.

that t |= ϕ(v) and t |= ϕ′(v) for any node v in t.4 Notice
in the above definition that there are no restrictions on the
allowed patterns. Later, we will use concrete pattern lan-
guages like monadic second-order logic and XPath to define
patterns.

We are now ready to define the transformation induced
by T on a tree t. Intuitively, T starts in state q0 at the root
of t (note that the root of a tree is always 1). The latter
is encoded by the initial configuration (q0, 1). Formally, a
configuration is a pair in Q × Nodest. During computation
T will rewrite the initial configuration into a partial output
tree ξ ∈ Trees∆(Q× Nodest). That is, a ∆-tree where some
leaves will be labeled with configurations. The transducer
then proceeds by rewriting these configurations extending ξ
until all configurations are gone and the transduction stops.
Basically, rewriting of a configuration (q, v) can be done by
a rule (q, ϕ) → h when t |= ϕ(v). The output tree is then
appended with the hedge h where the leaves carrying binary
patterns result in new configurations.

We next formally define the transduction relation. Thereto,
given a tree t, the transformation relation induced by T on
t, denoted by ⇒T,t, is the binary relation on Trees∆(Q ×
Nodest) defined as follows. For ξ, ξ′ ∈ Trees∆(Q × Nodest),
ξ ⇒T,t ξ

′, if there is a leaf node u ∈ Nodesξ such that

1. labξ(u) = (q, v) with q ∈ Q and v ∈ Nodest,

2. if labt(v) ∈ Text then ξ′ = ξ[u ← labt(v)] if there is a
rule (q, text)→ text and ξ′ = ξ[u← ε] otherwise.5

3. if labt(v) ∈ Σ,

• if there is a rule r = ((q, ϕ)→ h) ∈ RΣ such that
t |= ϕ(v), then ξ′ = ξ[u ← hΘ], where Θ denotes
the substitution of replacing every pair (q′, α) by
the hedge (q′, v1) · · · (q′, vm), where

– {v1, . . . , vm} = {u | t |= α(v, u)}, and

– v1 <lex · · · <lex vm,

• if there is no rule r = ((q, ϕ) → h) ∈ RΣ s.t.
t |= ϕ(v), then ξ′ = ξ[u← ε].

For any tree t and DTL transducer T , T (t) is defined
to be the tree t′ ∈ Trees∆, such that (q0, 1) ⇒∗T,t t′, when

such a tree exists and is undefined otherwise.6 As configura-
tions for which no rule applies are rewritten into the empty
hedge, T (t) can only be undefined when T does not stop.
Furthermore, when T (t) is defined, it is unique because of
the determinism restriction on unary patterns.

Example 5.15 contains a DTL transducer which selects all
recipes with their description, ingredients, and instructions
if they have at least three positive comments. The unary
and binary patterns in the example are given in an XPath
syntax, formally defined in Section 5.4.

Notice that each top-down tree transducer T as introduced
in the previous section can be defined by a DTL program T ′.
Indeed, for each rule (q, a)→ h of T , T ′ has a rule (q, ϕ)→
h′ where t |= ϕ(v) ⇔ labt(v) = a; and h′ is obtained from
h by replacing each q that appears as a leaf with the pair
(q, children) where children is the pattern selecting all
children of the node at hand.
4Note that for the tree patterns we consider, testing deter-
minism is decidable.
5Recall that ε is the empty hedge.
6Here, R∗ denotes the reflexive transitive closure of the bi-
nary relation R.



Lemma 5.2. DTL transducers are admissible.

5.2 Copying and Rearranging
Next, we will give an operational characterization of text-

preserving DTL transducers in terms of copying and rear-
ranging. Copying and rearranging for DTL transducers is
defined analogously as before.

Definition 5.3. For any DTL transducer T and tree lan-
guage L, T is copying over L if the transduction defined by
T is copying over L. It is rearranging over L, if the trans-
duction defined by T is rearranging over L.

For characterizing these notions, we need some termi-
nology. For the remainder of the discussion, fix a tree t.
We next define when a configuration (q′, v′) can follow a
configuration (q, v) in the transduction of t. Formally, we
define (q, v) ; (q′, v′) to hold whenever there are ξ, ξ′ ∈
Trees∆(Q × Nodest) with (q0, 1) ⇒∗T,t ξ ⇒T,t ξ

′ such that
frontier(ξ) = θ1(q, v)θ2, frontier(ξ′) = θ1θθ2, and (q′, v′) ≺ θ
for θ1, θ2, θ ∈ (∆ ∪ (Q× Nodest))∗. Basically, this says that
(q, v) is rewritten into a tree containing the configuration
(q′, v′) at its frontier.

A path run of T over t is a sequence (q0, v0) · · · (qn, vn),
where v0 = 1 (the root of t), and, for all i ∈ [1, n], (qi, vi)
follows (qi−1, vi−1). A text path run is a path run such that
labt(vn) ∈ Text and (qn, text)→ text ∈ RText. We say that
the path run ends in node vn. Intuitively, a text path run is
part of a run (which incidentally is a path) of T on t which
outputs a text value. The next definition determines when
a transducer copies, that is, outputs the Text-value carried
by the same leaf node v, either using two different text path
runs (ending in v), or by using one text path run (ending in
v) which actually occurs twice in the transduction.

We need one additional notion. Let (q, v) ; (q′, v′).
Then, we say that (q′, v′) doubles at (q, v) if there is a rule
(q, ϕ) → h and binary patterns α1, α2 ∈ BP(Σ), such that
t |= ϕ(v), t |= α1(v, v′), t |= α2(v, v′) and (q′, α1) · (q′, α2) ≺
frontier(h). That is, rewriting (q, v) introduces two occur-
rences of the configuration (q′, v′).

The following lemma gives our operational characteriza-
tion of copying for DTL transducers.

Lemma 5.4. A DTL transducer T is copying over a tree
language L, if and only if there exists a tree t ∈ L, such
that there are two different text path runs over t ending in
the same node, or one text path run (q0, v0) · · · (qn, vn) such
that (qi, vi) doubles at (qi−1, vi−1) for some i ∈ [1, n].

Next, we characterize when a transducer rearranges two
Text-values in a tree. Recall that this happens when there
are two leaves v and u in t both carrying a Text-value and
where v <lex u, but T (t) swaps the order of the Text-values
corresponding to v and u. We will show that the latter
happens only when during the transduction a rule with rhs
h is used such that

• (qu, α1) · (qv, α2) ≺ frontier(h), and the configurations
(qu, α1) and (qv, α2) proceed to output the text value
at u and v, respectively; or,

• when (q′, α′) ≺ frontier(h) and α′ selects u1, v1 with
u1 <lex v1 where (q′, u1) and (q′, v1) proceed to output
the Text-value at u and v, respectively.

We are now ready to prove a characterization for when a
DTL transducer is rearranging.

Lemma 5.5. A DTL transducer T is rearranging over a
tree language L, if and only if there exists a tree t ∈ L, two
text path runs θ(q, v)(q1, v1) · · · (qn, vn) and θ(q, v)(p1, u1) · · ·
(pm, um) with vn <lex um, a rule (q, ϕ)→ h, and binary pat-
terns α1, α2, such that t |= ϕ(v), t |= α1(v, v1), t |= α2(v, u1)
and either
(1) (p1, α2) · (q1, α1) ≺ frontier(h), or
(2) (q1, α1) = (p1, α2), (q1, α1) ≺ frontier(h) and u1 <lex v1.

From Lemmas 5.2, 5.4, and 5.5 and from Theorem 3.3
we now obtain a characterization of text-preserving DTL
transducers that can be syntactically tested.

Theorem 5.6. A DTL transducer T is not text-preserving
over a tree language L if and only if the condition in Lemma
5.4 or the condition in Lemma 5.5 holds.

5.3 Transducers with MSO Transitions
In the present section, we consider the instantiation of

DTL with MSO-definable patterns, called DTLMSO. The
main result of this section is a proof that testing whether a
DTLMSO transduction is text-preserving with respect to a
regular tree language, is decidable.

We first define trees over the alphabet Σ as relational
structures over the vocabulary E, < and (labσ)σ∈Σ. The
domain of a tree then is its set of nodes. Furthermore, for
two nodes v1, v2 of a tree t, E(v1, v2) if v2 is a child of v1, and
v1 < v2 if v1 and v2 share the same parent v, and v1 <lex v2.
Finally, for each σ ∈ Σ, labσ is the set of nodes labelled with
σ. Monadic Second-order Logic (MSO) then is the extension
of First-order Logic (FO) that allows the use of set variables
ranging over subsets of the domain, in addition to the in-
dividual variables ranging over elements of the domain, as
provided by first-order logic. We assume standard practice.
We denote by φ(x1, . . . , xk) that φ is a k-ary formula with
k free first-order variables. Furthermore, for a tree t, and
nodes v1, . . . , vk, we denote by t |= φ(v1, . . . , vk) that φ holds
when the free variables of φ are instantiated by v1, . . . , vk.
We refer the reader to, e.g., [8] for more background.

Unary and binary patterns will now be defined by unary
and binary MSO formulas, respectively. For instance, the
formula ϕ(x) defines the pattern

⋃
t∈TreesΣ{t} × {u | t |=

ϕ(u)}. Then, DTLMSO is the instantiation of DTL with
MSO-definable patterns. In the definition of DTLMSO trans-
ducers, we will simply specify the formulas rather than the
patterns they define.

To prove the main result of this section, we need a number
of different automata which we define next: tree-jumping
automata with MSO transitions, and tree-walking automata
with and without MSO tests.

Definition 5.7. A nondeterministic tree-jumping automa-
ton with MSO transitions over an alphabet Σ, denoted by
TJAMSO, is a tuple B = (Q,Σ, δ, q0, F,Mu,Mb) where Q
is a finite set of states, q0 ∈ Q is the initial state, F ⊆ Q
is a set of final states, Mu is a finite set of unary MSO
formulas, Mb is a finite set of binary MSO formulas, and
δ : Q ×Mu ×Mb → 2Q is the transition function. A run
of B on a tree t that starts at a node v0 of t and ends at a
node vn of t, is a sequence (q0, v0, ϕ0, α0) · · · (qn, vn, ϕn, αn),
where for each i ∈ [0, n − 1], t |= ϕi(vi), t |= αi(vi, vi+1),
and qi+1 ∈ δ(qi, ϕi, αi). A run is accepting if qn ∈ F .

The tree language accepted by B, denoted L(B), consists of
those trees t for which there exists an accepting run starting



at the root of t. If there exists a run of B that starts at
a node v1 in state q1 and ends at node v2 in state q2, we
sometimes also say that, when started in state q1 in v1, B
ends in state q2 in v2.

We define two restrictions of tree-jumping automata. A
nondeterministic tree-walking automaton with MSO tests,
denoted by TWAMSO, is a TJAMSO where Mb contains only
the predicates first-child(x, y), next-sibling(x, y), parent(x, y),
previous-sibling(x, y) and equality. Here, the just mentioned
predicates have the obvious semantics. For instance, first-
child(x, y) holds when y is the first-child of x, and so on.
Note that these are easily MSO-definable.

We show that TJAMSO coincides with the class of un-
ranked regular tree languages strongly bearing on a result
by Bloem and Engelfriet [4].

Lemma 5.8. (1) For each MSO formula α(x, y), there ex-
ists a TWAMSO Aα = (Q,Σ, δ, q0, f,Mu), such that for
any tree t and nodes v, u ∈ Nodest, t |= α(v, u) if and
only if there exists a run of Aα on t starting at node v at
state q0 and ending at node u at state f . The converse
statement also holds.

(2) For each TJAMSO B = (Q,Σ, δ, q0, F,Mu,Mb) there ex-
ists a TWAMSO A, such that L(B) = L(A).

Proof sketch. (1) Bloem and Engelfriet [4] have shown
the exact same statement for ranked trees. As the first-child
next-sibling encoding between ranked and unranked trees is
MSO-definable, the result follows for unranked trees as well.

(2) Essentially, the TWAMSO A simulates the TJAMSO

B by invoking the automaton Aα for every transition α of
B.

We note that the constructions in Lemma 5.8 are effec-
tive. Furthermore, note that Lemma 5.8(1) together with
the fact that MSO-definable unranked tree languages are
regular, implies that TWAMSO define the unranked regular
tree languages. Therefore, we have the following corollary:

Corollary 5.9. TJAMSO define precisely the unranked
regular tree languages.

The above implies that emptiness of TJAMSO is decidable.
In the remainder of this section we will reduce testing whether
a DTLMSO transducer is text-preserving to the emptiness
test for TJAMSO. More specifically, for a transducer T , we
will create a TJAMSO Acopy

T and Arearrange
T such that Acopy

T

and Arearrange
T are empty iff T is not copying and not re-

arranging, respectively. By Theorem 3.3, T then is text-
preserving.

We need to introduce a number of automata. We fix a
transducer T = (Q,Σ,∆, q0, RΣ, RText). For states q, q′ ∈ Q,

let Aq,q
′

T be the TJAMSO which when started in state q on
node v of a tree t ends in state q′ at node v′ iff (q, v) ;∗

(q′, v′). That is, when T reaches configuration (q, v) when

processing t, T can reach configuration (q′, v′). By Aq,q
′

T,σ,σ′ ,

we denote the automaton Aq,q
′

T which additionally checks
that the start position is labelled with σ and the end position
is labelled with σ′.

We start with Arearrange
T . The automaton will accept a tree

t when T is rearranging over {t}. Intuitively, by Lemma 5.5,

the automaton needs to look for the following kind of con-
figurations (ignore the bullets for now):

(q0, 1) (q, v)

(q1, v1)

(p1, u1)

(qn, vn)

(pm, um)

(†)• •1 ◦1

•2 ◦2
;∗

;
∗

;∗

;∗

;∗

which satisfy some additional criteria. In particular, we will
make sure later that vn and um are text nodes and that
(q, v) ; (q1, v1) and (q, v) ; (p1, u1), i.e., we can make
these transitions in one step.

The automaton makes use of an extended alphabet. Let
Σmark = (Σ ∪ {text}) × 2{◦,◦1,◦2,•,•1,•2}. Intuitively, the
alphabet allows us to mark a node with a set of markers.
Then, for a marker c ∈ {◦, ◦1, ◦2, •, •1, •2}, we slightly abuse
notation and say simply that a node is labelled with c, when
actually there is a C ⊆ {◦, ◦1, ◦2, •, •1, •2} with c ∈ C and
a σ ∈ Σ such that it is labelled with (σ,C). To check (†),
we assume v is labelled with •, v1 is labelled with •1, u1 is
labelled with •2, vn is labelled with ◦1, um is labelled with
◦2. Then, the configurations in (†) occur in a tree t if and
only if there is a marking t′ of t such that

t′ ∈ Aq0,qT,root,• ∩A
q,q1
T,•,•1 ∩A

q,p1
T,•,•2 ∩A

q1,qn
T,•1,◦1 ∩A

p1,pm
T,•2,◦2 .

Here, the automaton Aq0,qT,root,• tests whether the state q is

reachable from q0 in T . By Aq,q1,p1
(†) we refer to this automa-

ton that tests whether there are states qn, pm such that
condition (†) holds for given states q, q1, p1.

We need some additional regular languages over Σmark.
They can for instance easily be defined in MSO. We assume
that they are represented by NTAs:
(i) Amark : for all c ∈ {•, •1, •2, ◦1, ◦2}, there is exactly one
node labelled with c. Furthermore, the node labelled with ◦1
(resp., ◦2), is a leaf labelled with (text, C) and ◦1 ∈ C(resp.,
◦2 ∈ C). We will abuse notation and refer to the nodes
labelled with c simply as c.
(ii) A<,•: •2 <lex •1;
(iii) A<,◦ : ◦1 <lex ◦2;
(iv) Aϕ• : t |= ϕ(•);
(v) Aα•1 : t |= α(•, •1); and,

(vi) Aβ•2 : t |= β(•, •2).
We define two automata Arearrange

1 and Arearrange
2 corre-

sponding to the two conditions of Lemma 5.5. To state the
conditions, we assume as before that the nodes are marked
as in condition (†).

In the first condition, we need to test, in addition to (†),
whether ◦1 <lex ◦2 and there is a rule (q, ϕ)→ h in T with
(p1, β)·(q1, α) ≺ frontier(h) such that t |= ϕ(•), t |= α(•, •1),
and t |= β(•, •2). In order to formally capture this condition,
we define a relation G that contains precisely the tuples
(q, ϕ, p1, β, q1, α) such that there exists a rule (q, ϕ) → h in
T with (p1, β) · (q1, α) ≺ frontier(h). We are now ready to
define Arearrange

1 :

Arearrange
1 := Amark ∩A<,◦∩( ⋃

(q,ϕ,p1,β,q1,α)∈G

(Aq,q1,p1
(†) ∩Aϕ• ∩Aα•1 ∩A

β
•2)

)
In the second condition of Lemma 5.5, we need to test,

in addition to (†), whether ◦1 <lex ◦2 and there is a rule
(q, ϕ)→ h in T with (q1, α) ≺ frontier(h) such that (q1, α) =
(p1, β), •2 <lex •1, t |= ϕ(•), t |= α(•, •1), and t |= α(•, •2).



In order to formally capture this condition, we define a rela-
tion H that contains precisely the tuples (q, ϕ, q1, α) such
that there exists a rule (q, ϕ) → h in T with (q1, α) ≺
frontier(h). We are now ready to define Arearrange

2 :

Arearrange
2 := Amark ∩A<,◦ ∩A<,•( ⋃

(q,ϕ,q1,α)∈H

(Aq,q1,q1(†) ∩Aϕ• ∩Aα•1 ∩A
α
•2)

)

Lemma 5.10. Given a DTLMSO transducer T , the lan-
guage defined by the TJAMSO Arearrange

1 ∪ Arearrange
2 is non-

empty if and only if T is rearranging over TreesΣ.

The overall procedure for Acopy
T is similar. The automaton

will accept a tree t when T is copying over {t}. Intuitively,
by Lemma 5.4, the automaton needs to look for the following
kind of configurations

(q0, 1) (q, u)

(q1, u1)

(p1, u2)

(qn, v)

(pm, v)

(‡)• •1 ◦

•2 ◦
;∗

;
∗

;∗

;∗

;∗

which satisfy some additional criteria. The node v should
be a text node and the transitions from (q, u) to (q1, u1) and
to (p1, u2) should be possible in one step. Note that both
paths in the picture lead to the same node v.

As before the automaton makes use of the extended alpha-
bet Σmark. With the same conventions as before, to check
(‡), we assume u is labelled with •, u1 is labelled with •1,
u2 is labelled with •2, and v is labelled with ◦. Then, the
configurations in (‡) occur in a tree t if and only if there is
a marking t′ of t such that

t′ ∈ Aq0,qT,root,• ∩A
q,q1
T,•,•1 ∩A

q,p1
T,•,•2 ∩A

q1,qn
T,•1,◦ ∩A

p1,pm
T,•2,◦.

Analogously as before, the automatonAq0,qT,root,• tests whether

the state q is reachable from q0 in T . By Aq,q1,p1
(‡) we refer to

this automaton that tests whether there are states qn, pm
such that condition (‡) holds for given states q, q1, p1.

In addition to the NTAs for the regular languages (i)–(vi)
above, we need
(vii) A′mark: for any c ∈ {•, •1, •2, ◦}, there is exactly one
node labelled with c and the node labelled ◦ is a text node
in t,
(viii) A•1 6=•2 : •1 6= •2.
(ix) A•1=•2 : •1 = •2.

We define two automata Acopy
1 and Acopy

2 corresponding to
the two conditions of Lemma 5.4. To state the conditions, we
assume as before that the nodes are marked as in condition
(‡). We also assume that the nodes labelled with •, •1, •2,
◦ are unique.

In the first condition, we need to test, in addition to (‡),
if there are two different text path runs over t ending in
the same node v. Since the path from (q0, 1) to (q, u) can
have arbitrary length, we can assume w.l.o.g. that the last
configuration in which these two text path runs are the same
is (q, u). This means that there exists a rule (q, ϕ)→ h in T
with (q1, α) ≺ frontier(h) and (p1, β) ≺ frontier(h) such that
t |= ϕ(•), t |= α(•, •1), and t |= β(•, •2). Furthermore, since
(q, u) is the last configuration for which the text path runs
are the same, we either have that (a) q1 6= p1 or (b) •1 6= •2.
In order to formalize this condition, let I be the set that
contains all tuples (q, ϕ, q1, α, p1, β) such that (q, ϕ)→ h is a

rule in T with (q1, α) ≺ frontier(h) and (p1, β) ≺ frontier(h).
Then, we can define Acopy

1a and Acopy
1b :

Acopy
1a := A′mark∩( ⋃

(q,ϕ,p1,β,q1,α)∈I∧p1 6=q1

(Aq,q1,p1
(‡) ∩Aϕ• ∩Aα•1 ∩A

β
•2)

)

Acopy
1b := A′mark ∩A•1 6=•2( ⋃

(q,ϕ,p1,β,q1,α)∈I

(Aq,q1,p1
(‡) ∩Aϕ• ∩Aα•1 ∩A

β
•2)

)
In the second condition of Lemma 5.4 we need to test

whether there exists a text path run with two consecutive
configurations such that the second one doubles at the first
one. W.l.o.g., we can assume that (q1, u1) doubles at (q, u).
This means that there exists a rule (q, ϕ) → h in T with
(q1, α)·(q1, β) ≺ frontier(h), such that t |= ϕ(•), t |= α(•, •1),
t |= β(•, •2), and u1 = u2, i.e., the node u1 is labelled by •1
and •2. In order to formalize this condition, let J be the set
that contains all tuples (q, ϕ, q1, α, β) such that (q, ϕ) → h
is a rule in T with (q1, α) · (q1, β) ≺ frontier(h). Then, we
can define Acopy

2 :

Acopy
2 := A′mark ∩A•1=•2∩( ⋃

(q,ϕ,q1,α,β)∈J

(Aq,q1,q1(‡) ∩Aϕ• ∩Aα•1 ∩A
β
•2)

)

Lemma 5.11. Given a DTLMSO transducer T , the lan-
guage defined by the TJAMSO Acopy

1a ∪ A
copy
1b ∪ A

copy
2 is non-

empty if and only if T is copying over TreesΣ.

To test whether a DTLMSO transducer T is text-preserving
over a regular tree language L, it follows from Theorem 3.3
that it is sufficient to test the conditions in Lemmas 5.10
and 5.11. We therefore obtain the following theorem.

Theorem 5.12. Given a DTLMSO transducer T and a
regular language L, it is decidable whether T is text-preserving.

As satisfiability of MSO is non-elementary over trees, test-
ing whether a DTLMSO transducer is text-preserving is non-
elementary as well. Indeed, consider a transducer which
outputs two copies of the input tree when an MSO-sentence
is satisfied at the root. Then this transduction is text-
preserving if and only if the formula is not satisfiable.

5.4 Transducers with XPath Transitions
We recall the definition of Core XPath. Since we do not

use other fragments of XPath, we will use the term XPath
to refer to Core XPath. We use the definition from [24].
We denote XPath node expressions by ϕ,ψ, . . . and path
expressions by α, β, . . .

Definition 5.13. XPath node expressions and path ex-
pressions are defined by simultaneous induction, as follows:
Path expressions: α ::= R | R∗ | · | α/β | α ∪ β | α[ϕ]
Node expressions: ϕ ::= σ | 〈α〉 | > | ¬ϕ | ϕ ∧ ψ

Here, σ ∈ Σ is a label test and R is one of the relations
child, parent, next-sibling, or previous-sibling. We denote
these relations by ↓, ↑, →, and ←, respectively.



JRKPExpr = the pairs in relation R
JR∗KPExpr = reflexive and transitive closure of JRKPExpr
J·KPExpr = {(u, u) | u ∈ Nodest}
Jα/βKPExpr = {(u,w) | ∃v.(u, v) ∈ JαKPExpr and

(v, w) ∈ JβKPExpr}
Jα ∪ βKPExpr = JαKPExpr ∪ JβKPExpr
Jα[ϕ]KPExpr = {(u, v) ∈ JαKPExpr | v ∈ JϕKNExpr}

JσKNExpr = {u ∈ Nodest | labt(u) = σ}
J〈α〉KNExpr = {u ∈ Nodest | ∃v ∈ Nodest.(u, v) ∈ JαKPExpr}
J>KNExpr = Nodest

J¬ϕKNExpr = Nodest \ JϕKNExpr
Jϕ ∧ ψKNExpr = JϕKNExpr ∩ JψKNExpr

Table 1: Semantics of XPath.

The semantics of XPath expressions relative to a tree t is
given by the functions J KtPExpr and J KtNExpr. These functions
are defined in Table 1. We omit the tree t if it is clear from
the context. In the remainder of this section, we denote
by ϕ(u) and α(u, v) that u ∈ JϕKNExpr and (u, v) ∈ JαKPExpr,
respectively.

Definition 5.14. A DTLXPath transducer is a DTL trans-
ducer in which all unary and binary patterns are XPath node
and XPath path expressions, respectively.

Example 5.15. The following DTL transducer selects the
descriptions, ingredients, and instructions from all recipes
that have at least three positive comments in our running
example.

(q0, recipes) → recipes((q, ↓))
(q, ϕ) → recipe((q, ↓))
(q, σ) → σ((q, ↓)) (σ ∈ {description, ingre-

dients, br, instructions})
(q, item) → (q, ↓)
(q, text) → text

where

ϕ = recipe ∧
〈
↓ [comments]/ ↓ [positive]

/ ↓ [comment]/→ [comment]/→ [comment]
〉
.

As in Section 5.3, we will reduce testing whether a DTLXPath

transducer is text-preserving to the emptiness test of an au-
tomaton. The beginning of our construction is similar to the
one in Section 5.3. We will simulate partial computations of
a DTLXPath transducer by a tree-jumping automaton with
XPath transitions (TJAXPath). A TJAXPath is a TJAMSO

in which all unary and binary formulas are XPath node and
XPath path expressions, respectively.

Fix a DTLXPath transducer T = (Q,Σ,∆, q0, RΣ, RText).

For states q, q′ ∈ Q and σ, σ′ ∈ Σ, we denote by Aq,q
′

T,σ,σ′ the

TJAXPath which, when started in state q on some node v in
a tree t ends in state q′ at node v′ if and only if (q, v) ;∗

(q′, v′) in T . Furthermore, it checks whether v is labelled
by σ and v′ is labelled by σ′. Furthermore, each of these
automata can be constructed from T in linear time.

It remains to show that we can perform a similar con-
struction as in Section 5.3. However, in this section, we also
have to mind the complexity bounds. In order to avoid a
large blow-up when performing unions and intersections of

automata, we will translate TJAXPath to two-way alternat-
ing tree walking automata using techniques from [3].

Lemma 5.16. For each TJAXPath, we can construct an
equivalent 2ATWA in polynomial time.

Two-way alternating tree walking automata have the in-
teresting property that their intersections and unions can
be constructed very efficiently. More precisely, for 2ATWAs
A1, . . . , An, we can construct a 2ATWA for L(A1) ∪ · · · ∪
L(An) and a 2ATWA for L(A1)∩ · · · ∩L(An) in time linear
in |A1| + · · · + |An|. This implies that we can perform the
constructions from Section 5.3 on the 2ATWAs in polyno-
mial time.

Lemma 5.17. Given a DTLXPath transducer T and an
NTA N , we can construct, in polynomial time, a 2ATWA
A such that T is text-preserving over L(N) if and only if
L(A) = ∅.

Since testing emptiness of a 2ATWA is in EXPtime [5],
we now know that testing whether a DTLXPath transducer is
text-preserving is in EXPtime as well. Furthermore, since
XPath satisfiability w.r.t. a DTD is EXPtime-complete [17,
21], testing whether a DTLXPath transducer is text-preserving
is also EXPtime-hard.

Theorem 5.18. Given a DTLXPath transducer T and an
NTA N , deciding whether T is text-preserving over L(N) is
EXPtime-complete.

Actually, EXPtime-hardness can also be obtained through
a reduction from emptiness of deterministic tree-walking au-
tomata known to be EXPtime-complete [20, 23].

6. RELATED WORK
The advent of XML induced a renewed interest in tree

transducers. Milo, Suciu, and Vianu used k-pebble trans-
ducers in their seminal paper [18] as a general model for
XML transformations, encompassing a variety of languages
like XML-QL, XQuery, and XSLT. Engelfriet and Maneth
showed that these form a subclass of the macro tree trans-
ducers [7].

In the present paper, we focus on XSLT-like transforma-
tions. The simplest of these are the top-down uniform trans-
ducers introduced in [13]. A more accurate formalization
capturing the navigational power of XSLT as well, is given
by DTL as introduced by Maneth and Neven [11]. We ex-
tend DTL to deal with text values, albeit in a modest way in
accordance with our focus on simple transformations: when
encountering Text-values, they can only be immediately out-
put or discarded. Transducer models for XSLT equipped to
employ text- or data values during computation have been
considered in [2, 19]. To simplify presentation, we disre-
garded the construction functions employed in [11]. Intu-
itively, the difference is as follows. DTL as defined here as-
sociates one state with every binary pattern, while through
the use of construction functions, the selection mechanism
is generalized, by associating several states to every binary
pattern. As this level of expressiveness is not present in
XSLT, we decided to neglect it.

The most deeply studied problem concerning XML and
transducers is undoubtedly the XML typechecking problem
[18, 13, 14, 15, 9, 12, 22, 10], where it is asked whether
T (t) ∈ Sout for all t ∈ Sin for given input and output



schema Sin and Sout and transducer T . The typechecking
problem is quite different from the problem considered in
this paper, both in statement as in computational difficulty.
For instance, typechecking top-down uniform tree transduc-
ers against unranked tree automata is already EXPtime-
complete while testing whether one is text-preserving is in
Ptime for the corresponding setting.

Finally, we note that our Text-trees are different from the
data trees in, e.g., [6], where each node carries a label from
Σ and a label from Text. Moreover, unlike the logics and
automata described in [6], the presented transducer model
can not perform equality tests on Text-values.

7. CONCLUSION
Text-preserving transformations can be seen as a well-

defined simple class of transformations for text-centric XML
documents. In this paper, we showed that for XSLT-style
transformations this property is decidable and even tractable
for the top-down case.

From the employed proof technique it follows that for ev-
ery transducer in one of the above mentioned classes, the
maximal subset of the input schema can be computed on
which the transformation is text-preserving. Indeed, we
have actually shown that the class of trees on which a trans-
ducer is not text-preserving is a regular tree language. It
would be interesting to pinpoint the exact size of a repre-
sentation of that maximal subclass.

Another interesting question for future research is whether
there is a normal form for text-preserving transformations
in the considered formalisms.

Finally, although we think that mappings which restrict
the output to be a subsequence of the input are relevant,
there might be other notions that could be interesting in
the context of text-centric mappings. It would therefore be
interesting to develop more general notions of which text-
preserving is a special case.

Actually, our employed proof technique already allows to
test stronger properties than just text-preserving. For in-
stance, we can specify a set of tree types (for example, a set
of node labels) under which text values in the subtree can
not be deleted. In our running example, we could require,
e.g., that the transformation is text-preserving and that it
does not delete any text values under a node labelled in-

structions. These more flexible tests do not influence the
complexity of the problem.
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