Incremental XPath Evaluation

Wim Martens
Technical University of Dortmund

Joint work with:
Henrik Björklund
Wouter Gelade
Marcel Marquardt
Outline

• Motivation
• Terminology
• Results
• Final Remarks
Outline

• Motivation
• Terminology
• Results
• Final Remarks
Motivation

```
lib
  books
    ...
  papers
    paper
      keywords title author
      "Constraints" "XPath" "..." "Superman"
    paper
      keywords title author
      "Schemas" "XML" "..." "Idiot"
```
I’m interested in: papers about XML or XPath which are not written by Idiot
Motivation

I'm interested in:
papers about XML or XPath which are not written by Idiot

Local Database
Motivation

I’m interested in:
papers about XML or XPath which are not written by Idiot

Local Database
Motivation

I’m interested in:
papers about XML or XPath which are not written by Idiot

Local Database
Motivation

I’m interested in: papers about XML or XPath which are not written by Idiot

Local Database
I'm interested in:
papers about XML or XPath which are not written by Idiot

Local Database
Motivation

I’m interested in:
papers about XML or XPath which are not written by Idiot

Local Database
I’m interested in:
papers about XML or XPath which are not written by Idiot
I’m interested in:
papers about XML or XPath which are not written by Idiot

Local Database
Motivation

So this is:
Efficient XPath View Maintenance for XML Data
Outline

• Motivation
• Terminology
• Results
• Final Remarks
Terminology

Two Versions of the problem:

(1) We want to maintain a view:

Incremental View Maintenance

(2) We want to maintain (non)-satisfaction of a trigger:

Incremental Boolean Maintenance
Terminology

Two Versions of the problem:

1. We want to maintain a view:
 - Incremental View Maintenance

2. We want to maintain (non)-satisfaction of a trigger:
 - Incremental Boolean Maintenance

Incremental XPath Evaluation
Problem Definition

Incremental Boolean Maintenance

Given:
- XPath query \(Q \)
- XML document \(D \)
- Update \(u \), that updates \(D \) to \(D' \)

Question:
Does \(D' \models Q \)?

(Does \(Q \) return a non-empty answer on \(D' \)?)
Problem Definition

Incremental Boolean Maintenance

Question: Does $D' \models Q$?

We can maintain an auxiliary data structure $\text{Aux}(D)$.

Algorithms are evaluated w.r.t.:
- Size of $\text{Aux}(D)$
- Time needed to
 - compute whether $D' \models Q$
 - update $\text{Aux}(D)$ to $\text{Aux}(D')$
Problem Definition

Incremental Boolean Maintenance

Updates:
- **Relabel**(u,a): overwrite label of u with a
- **InsertNS**(u,a): insert leaf labeled a as next sibling of u
- **InsertFC**(u,a): insert leaf labeled a as first child of u
- **Delete**(u): delete subtree rooted at u
Problem Definition

Incremental View Maintenance

Similar to Boolean maintenance, but:
We want to maintain the set \(Q(D) \) of output nodes

Given update \(u \) that updates \(D \) to \(D' \),
compute update \(v \) that updates \(Q(D) \) to \(Q(D') \)
Prove that XPath Maintenance is possible in
- time polylog(D) . poly(Q)
- auxspace poly(D) . poly(Q)
Outline

- Motivation
- Terminology
- Results
- Final Remarks
Result Overview

Core XPath

<table>
<thead>
<tr>
<th>Operator(s)</th>
<th>Time:</th>
<th>Auxiliary Size:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core XPath</td>
<td>$\polylog(D) \cdot 2^{O(Q)}$</td>
<td>$D \cdot 2^{O(Q)}$</td>
</tr>
<tr>
<td>Core XPath</td>
<td>$\text{depth}(D) \cdot \log(\text{width}(D)) \cdot 2^{O(Q)}$</td>
<td>$D \cdot 2^{O(Q)}$</td>
</tr>
</tbody>
</table>

Boolean Maintenance

<table>
<thead>
<tr>
<th>Operator(s)</th>
<th>Time:</th>
<th>Auxiliary Size:</th>
</tr>
</thead>
<tbody>
<tr>
<td>//, [] and, or, not</td>
<td>$\log(D) \cdot \text{poly}(Q)$</td>
<td>$D \cdot Q^3$</td>
</tr>
<tr>
<td>nextsib, follow-sib [], and</td>
<td>$\text{depth}(D) \cdot \log(\text{width}(D)) \cdot \text{poly}(Q)$</td>
<td>$D \cdot Q^3$</td>
</tr>
<tr>
<td>//, ns, fs [], and</td>
<td>$\text{depth}(D) \cdot \log(\text{width}(D)) \cdot \text{poly}(Q)$</td>
<td>$D \cdot Q^3$</td>
</tr>
</tbody>
</table>

View Maintenance
Result Overview

Core XPath

<table>
<thead>
<tr>
<th>_operation</th>
<th>Time</th>
<th>AuxSize</th>
</tr>
</thead>
<tbody>
<tr>
<td>polylog(D). (2^{O(Q)})</td>
<td>(D \cdot 2^{O(Q)})</td>
<td></td>
</tr>
</tbody>
</table>

Core XPath

<table>
<thead>
<tr>
<th>operation</th>
<th>Time</th>
<th>AuxSize</th>
</tr>
</thead>
</table>
depth(D). \(\log(width(D)) \cdot 2^{O(Q)}\)| \(D \cdot 2^{O(Q)}\)|

Boolean Maintenance

<table>
<thead>
<tr>
<th>operation</th>
<th>Time</th>
<th>AuxSize</th>
</tr>
</thead>
</table>
//, [] and, or, not| depth(D). \(Q\)| \(D \cdot Q\)|

<table>
<thead>
<tr>
<th>operation</th>
<th>Time</th>
<th>AuxSize</th>
</tr>
</thead>
</table>
nextsib, follow-sib [], and| \(\log(D) \cdot \text{poly}(Q)\)| \(D \cdot Q^3\)|

<table>
<thead>
<tr>
<th>operation</th>
<th>Time</th>
<th>AuxSize</th>
</tr>
</thead>
</table>
//, ns, fs [], and| depth(D). \(\log(width(D)) \cdot \text{poly}(Q)\)| \(D \cdot Q^3\)|

View Maintenance
Theorem (Balmin, Papakonstantinou, Vianu TODS 2005)

Incremental Maintenance for unranked tree automaton A on document D is in
- time $(\log(D))^2 \cdot \text{poly}(A)$
- auxspace $D \cdot \text{poly}(A)$

Theorem

A Core XPath query Q can be compiled into an unranked tree automaton of size $2^{O(Q)}$ in time $2^{O(Q)}$

(Standard techniques only seem to give $2^{O(Q^2)}$)
Full Core XPath

Corollary

Incremental Boolean Maintenance for Core XPath is possible in
- time \((\log(D))^2 \cdot 2^{O(Q)}\)
- auxspace \(D \cdot 2^{O(Q)}\)

Similarly, with a different Balmin et al. [TODS 05] result:

Corollary

Incremental Boolean Maintenance for Core XPath is possible in
- time \(\text{depth}(D) \cdot \log(\text{width}(D)) \cdot 2^{O(Q)}\)
- auxspace \(D \cdot 2^{O(Q)}\)
Result Overview

<table>
<thead>
<tr>
<th>Boolean Maintenance</th>
<th>View Maintenance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core XPath</td>
<td></td>
</tr>
<tr>
<td>Time: polylog(D) . 2^{O(Q)}</td>
<td></td>
</tr>
<tr>
<td>AuxSize: D . 2^{O(Q)}</td>
<td></td>
</tr>
<tr>
<td>Core XPath</td>
<td></td>
</tr>
<tr>
<td>Time: depth(D) . log(width(D)) . 2^{O(Q)}</td>
<td></td>
</tr>
<tr>
<td>AuxSize: D . 2^{O(Q)}</td>
<td></td>
</tr>
<tr>
<td>/ //, [] and, or, not</td>
<td>Time: depth(D) . Q</td>
</tr>
<tr>
<td>AuxSize: D . Q</td>
<td></td>
</tr>
<tr>
<td>nextsib, follow-sib [], and</td>
<td>Time: log(D) . poly(Q)</td>
</tr>
<tr>
<td>AuxSize: D . Q^3</td>
<td></td>
</tr>
<tr>
<td>*/ //, ns, fs [], and</td>
<td>Time: depth(D) . log(width(D)) . poly(Q)</td>
</tr>
<tr>
<td>AuxSize: D . Q^3</td>
<td></td>
</tr>
</tbody>
</table>
Downward XPath

child (/), descendant (//), predicate [], and, or, not
Downward XPath

child (/), descendant (//), predicate [], and, or, not

I’m interested in:
papers about XML or XPath which are not written by Idiot

paper[.(./XPath or .//XML) and not ./author/Idiot]
Downward XPath

child (/), descendant (//), predicate [], and, or, not

I’m interested in:
papers about XML or XPath which are not written by Idiot

paper[(./XPath or ./XML) and not ./author/Idiot]
Downward XPath
Downward XPath
Downward XPath
Downward XPath

```xml
<html>
<head>
<title>Downward XPath</title>
</head>
<body>

 paper
           1
          ...
            2
                and
                 3 or
                   4 "XPath"
                   5 "XML"
        not 8
            7 author
               "Idiot"
            6

 papers
       paper
          2
            1
         paper
            3
               keywords
               1 {2,3,8}
               title
               4 {8}
               author
               5 {8}
        "Constraints" {8} "XPath" {4,8} "..." "Superman" {8}
       paper
          4
            5
         paper
            6
               keywords
               2 {2,3,8}
               title
               7 {8}
               author
               8 {8}
        "XPath" {4,8} "XML" {5,8} "..." "Superman" {8}

</body>
</html>
```
Downward XPath

```
paper 1
   
   2
   and
   or
   
   3
   “XPath” 4
   “XML” 5

not 8
   
   author 7
   “Idiot” 6

papers

paper 1,2,3,8
   
   keywords 2,3,8
   title 8
   author 8

“Constraints” 8 “XPath” 4,8 “...” “Idiot” 8

paper 1,2,3,8
   
   keywords 2,3,8
   title 8
   author 8

“XPath” 4,8 “XML” 5,8 “...” “Superman” 8
```
Downward XPath

```
paper 1
  ... 
  3 or
  4 "XPath"
  5 "XML"
  2 and
  6 not
  7 author
    8 "Idiot"

papers

paper 1, 2, 3, 4, 5, 6, 7, 8
  keywords 2, 3, 8, 4, 8
  title 8
  author 8

paper 1, 2, 3, 4, 5, 6, 7, 8
  keywords 2, 3, 8, 4, 8
  title 8
  author 8
```
Downward XPath

```
  paper 1
   
   2        and
     |        
    or
   
  “XPath”  “XML”
  4        5
   
  not 8
   
  “Idiot”
  6

papers

  paper 1
    
    2
     
     and
      
      or
       
       “XPath”  “XML”
       4        5
        
        not 8
        
        “Idiot”
        6

papers

  paper
    
    keywords
      
      “Constraints”  “XPath”  “…”
      {8}  {4,8}  {2,3,8}

  title
    
    {8}

  author
    
    “Idiot”
    {8,6}

  paper
    
    keywords
      
      “XPath”  “XML”  “…”
      {4,8}  {5,8}  {8}

  title
    
    {8}

  author
    
    “Superman”
    {8}
```
Downward XPath
Downward XPath

```
   paper
     \-- paper
       \-- keywords {2,3,8}  title {8}  author {8,7}  keywords {2,3,8}  title {8}  author {8}
         |  |  1
         |  |  |  or
         |  |  |  \-- author {8}
         |  |  |  |  "XPath" 4
         |  |  |  |  "XML" 5
         |  |  |  \-- not 8
         |  |  \-- or
         |  \-- author 7
         \-- "Idiot" 6

   papers
     \-- paper {1,2,3,8}
```

"Constraints" {8} "XPath" {4,8} "...
"Idiot" {8,6} "XPath" {4,8} "XML" {5,8} "...
"Superman" {8}
Theorem

Incremental Boolean Maintenance for Downward XPath is possible in
- time $\text{depth}(D) \cdot Q$
- auxspace $D \cdot Q$
Downward XPath

Theorem

Incremental View Maintenance for Downward XPath is possible in
- time $\text{depth}(D) \cdot Q$
- auxspace $D \cdot Q$
(in restricted cases)
Downward XPATH

Theorem

Incremental View Maintenance for Downward XPATH is possible in
- time $\text{depth}(D) \cdot Q$
- auxspace $D \cdot Q$
(in restricted cases)

Restricted cases: root element must be selected

Example

```
paper[(.//XPath or .//XML) and not ./author/Idiot]
```
<table>
<thead>
<tr>
<th>Core XPath</th>
<th>Time: (\text{polylog}(D) \cdot 2^{O(Q)})</th>
<th>AuxSize: (D \cdot 2^{O(Q)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core XPath</td>
<td>Time: (\text{depth}(D) \cdot \log(\text{width}(D)) \cdot 2^{O(Q)})</td>
<td>AuxSize: (D \cdot 2^{O(Q)})</td>
</tr>
<tr>
<td>//, [], and, or, not</td>
<td>Time: (\text{depth}(D) \cdot Q)</td>
<td>AuxSize: (D \cdot Q)</td>
</tr>
<tr>
<td>nextsib, follow-sib [], and</td>
<td>Time: (\log(D) \cdot \text{poly}(Q))</td>
<td>AuxSize: (D \cdot Q^3)</td>
</tr>
<tr>
<td>//, ns, fs [], and</td>
<td>Time: (\text{depth}(D) \cdot \log(\text{width}(D)) \cdot \text{poly}(Q))</td>
<td>AuxSize: (D \cdot Q^3)</td>
</tr>
</tbody>
</table>
Forward XPath

child (/), descendant (//), nextsib, following-sib, predicate [], and
Forward XPath
child (/), descendant (//), nextsib, following-sib, predicate [], and

First: extremely shallow trees
Forward XPath
child (/), descendant (//), nextsib, following-sib, predicate [], and

First: extremely shallow trees
(well, strings)
Forward XPath

nextsib, following-sib, predicate [], and

First: extremely shallow trees
(well, strings)
Forward XPath

nextsib, following-sib, predicate [], and
Forward XPath

nextsib, following-sib, predicate [], and
Forward XPath
nextsib, following-sib, predicate [], and
Forward XPath

nextsib, following-sib, predicate [], and
Forward XPath

nextsib, following-sib, predicate [], and
Forward XPath
nextsib, following-sib, predicate [], and
Forward XPath

nextsib, following-sib, predicate [], and
Forward XPath

nextsib, following-sib, predicate [], and
Forward XPath

nextsib, following-sib, predicate [], and
Forward XPath

nextsib, following-sib, predicate [], and
Forward XPath

nextsib, following-sib, predicate [], and
Forward XPath

nextsib, following-sib, predicate [], and
Forward XPath

nextsib, following-sib, predicate [], and
Forward XPath

nextsib, following-sib, predicate [], and
Forward XPath

nextsib, following-sib, predicate [], and
Forward XPath

nextsib, following-sib, predicate [], and

Theorem

Incremental Boolean Maintenance for Forward XPath is possible in
- time $\log(D) \cdot \text{poly}(Q)$
- auxspace $D \cdot Q^3$

on strings
Forward XPath
child (/), descendant (//), nextsib, following-sib, predicate [], and

Combining this idea with the \texttt{depth(D)} algorithm:

\begin{center}
\begin{tabular}{|l|}
\hline
\textbf{Theorem} \\
Incremental Boolean Maintenance for Forward XPath is possible in \\
- time $\text{depth}(D) \log(\text{width}(D)) \cdot \text{poly}(Q)$ \\
- auxspace $D \cdot Q^3$ \\
on trees \\
\hline
\end{tabular}
\end{center}
Outline

• Motivation
• Terminology
• Results
• Final Remarks
Final Remarks

- Incremental XPath Evaluation is interesting
- Boolean version is already non-trivial
Final Remarks

- We like depth(D) maintenance for downward XPath
- Our Algorithm for Forward XPath is quite involved...
- But without NextSibling, it's much simpler
Outlook

The big questions:

For which XPath fragments is Boolean Maintenance possible in
- time \(\text{polylog}(D) \cdot \text{poly}(Q) \)
- auxspace \(\text{poly}(D) \cdot \text{poly}(Q) \)
Outlook

The big questions:

For which XPath fragments is View Maintenance possible in:
- **time** \(\text{polylog}(D) \cdot \text{poly}(Q) \)
- **auxspace** \(\text{poly}(D) \cdot \text{poly}(Q) \)
Result Overview

Boolean Maintenance

<table>
<thead>
<tr>
<th>Core XPath</th>
<th>Time:</th>
<th>AuxSize:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>polylog(D) . $2^{O(Q)}$</td>
<td>$D . 2^{O(Q)}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Core XPath</th>
<th>Time:</th>
<th>AuxSize:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>depth(D) . log(width(D)) . $2^{O(Q)}$</td>
<td>$D . 2^{O(Q)}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>/, //, [] and, or, not</th>
<th>Time:</th>
<th>AuxSize:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>depth(D) . Q</td>
<td>$D . Q$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>nextsib, follow-sib [], and</th>
<th>Time:</th>
<th>AuxSize:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>log(D) . poly(Q)</td>
<td>$D . Q^3$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>/, //, ns, fs [], and</th>
<th>Time:</th>
<th>AuxSize:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>depth(D) . log(width(D)) . poly(Q)</td>
<td>$D . Q^3$</td>
</tr>
</tbody>
</table>

View Maintenance