
Simple off the shelf abstractions for XML Schema �
Wim Martens

University of Dortmund

Frank Neven

Hasselt University and

transnational University of Limburg

Thomas Schwentick

University of Dortmund

1 Introduction

Although the advent of XML Schema [25] has rendered
DTDs obsolete, research on practical XML optimization
is mostly biased towards DTDs and tends to largely ignore
XSDs (some notable exceptions non-withstanding). One
of the underlying reasons is most probably the perceived
simplicity of DTDs versus the alleged impenetrability of
XML Schema. Indeed, optimization w.r.t. DTDs has a
local flavor and usually reduces to reasoning about the
accustomed formalism of regular expressions. XSDs, on
the other hand, even when sufficiently stripped down, are
related to the less pervious class of unranked regular tree
automata [6, 19, 20, 21]. Recent results on the structural
expressiveness of XSDs [19], however, show that XSDs
are in fact much closer to DTDs than to tree automata,
leveraging the possibility to directly extend techniques
for DTD-based XML optimization to the realm of XML
Schema. The goal of the present paper is to present the
results in [19] in an easy and accessible way. At the same
time, we discuss possible applications, related research,
and future research directions. Throughout the paper,
we try to restrict notation to a minimum. We refer to
[19] for further details.

2 DTDs versus XSDs

We informally discuss the difference in expressive-
ness between DTDs and XSDs. We borrow nota-
tion and some examples from [3]. For our pur-
pose, an XML fragment is a (possibly empty) se-
quence <a1> f1 </a1> . . . <an>fn</an> of elements where
a1, . . . , an are element names, and f1, . . . , fn are them-
selves XML fragments. In particular, we ignore attributes
and data values as we disregard schema features that con-
strain them.

Consider the XML document in Figure 1 that contains
information about store orders and stock contents. Or-
ders hold customer information and list the items ordered,
with each item stating its id and price. The stock con-�Database Principles Column. Column editor: Leonid Libkin.

tents consists of the list of items in stock, with each item
stating its id, the quantity in stock, and — depending on
whether the item is atomic or composed from other items
— some supplier information for the items of which they
are composed, respectively. It is important to emphasize
that order items do not include supplier information, nor
do they mention other items. Moreover, stock items do
not mention prices.

DTDs are incapable of distinguishing between order
items and stock items because the content model of an el-
ement can only depend on the element’s name in a DTD,
and not on the context in which it is used. For example,
although the DTD in Figure 2 describes all intended XML
documents, it also allows supplier information to occur in
order items and price information to occur in stock items.

The W3C specification [25] essentially defines an XSD
as a collection of type definitions, which, if we abstract
away from the concrete XML representation of XSDs, are
rules like

store Ñ orderrorder s�, stockrstock s (Æ)
that map type names to regular expressions over pairs
arts of element names a and type names t. Throughout
the article we use the convention that element names are
typeset in typewriter font, and type names are typeset
in italic. Intuitively, this particular type definition spec-
ifies an XML fragment to be of type store if it is of the
form

<order>f1 </order> . . . <order>fn</order>

<stock>g </stock>

where n ¥ 0; f1, . . . , fn are XML fragments of type order ;
and g is an XML fragment of type stock . Each type name
that occurs on the right hand side of a type definition in
an XSD must also be defined in the XSD, and each type
name may be defined only once.

Using types, an XSD can specify that an item is an
order item when it occurs under an order element and
is a stock item otherwise. For example, Figure 3 shows
an XSD describing the intended set of store documents.

Notice in particular the use of the types item1 and item2

to distinguish between order items and stock items.

It is important to remark that the ‘Element Declaration
Consistent’ (EDC) constraint of the W3C specification
requires multiple occurrences of the same element name
in a single type definition to occur with the same type.
Hence, type definition (Æ) is legal, but

persons Ñ ppersonrmales � personrfemalesq�
is not, as person occurs both with type male and type
female. Of course, element names in different type def-
initions can occur with different types (which is exactly
what yields the ability to let the content model of an el-
ement depend on its context).

<store>

<order>

<customer>

<name>John Mitchell</name>

<email> j.mitchell@yahoo.com </email>

</customer>

<item> <id> I18F </id>

<price> 100 </price>

</item>

<item> ... </item> ... <item> ... </item>

</order>

<order> ... </order> ... <order> ... </order>

<stock>

<item>

<id> IG8 </id> <qty> 10 </qty>

<supplier> <name> Al Jones </name>

<email> a.j@gmail.com </email>

<email> a.j@dot.com </email>

</supplier>

</item>

<item>

<id> J38H </id> <qty> 30 </qty>

<item>

<id> J38H1 </id> <qty> 10 </qty>

<supplier> ... </supplier>

</item>

<item>

<id> J38H2 </id> <qty> 1 </qty>

<supplier> ... </supplier>

</item>

<item> ... </item> ... <item> ... </item>

</item>

...

<item> ... </item>

</stock>

</store>

Figure 1: Example XML document.

<!ELEMENT store porder�, stockq>
<!ELEMENT order pcustomer, item�q>
<!ELEMENT customer pname, email�q>
<!ELEMENT item pid, pprice�pqty, psupplier� item�qqqq>
<!ELEMENT stock pitem�q>
<!ELEMENT supplier pname, email�q>

Figure 2: A DTD describing the document in Figure 1.

root Ñ storerstores
store Ñ orderrorder s�, stockrstocks
order Ñ customerrpersons, itemritem1s�
person Ñ nameremps, emailremps�
item1 Ñ idremps, priceremps
stock Ñ itemritem2s�
item2 Ñ idremps, qtyremps,psupplierrpersons � itemritem2s�q
emp Ñ ε

Figure 3: An XSD describing the XML document in Fig-
ure 1. The symbol ε denotes the empty string.

3 A formal abstraction

Fix a finite set EName and Types of element and type
names, respectively. The set of elements is then defined as
ElempEName, Typesq � tarts | a P EName, t P Typesu. As
EName and Types will be always clear from the context,
we simply write Elem in the sequel.

We view an XML fragment f � f1 � � � fn as a sequence
of labeled trees where every tree consists of a finite num-
ber of nodes, and every node v is assigned an element
name denoted by labpvq. We assume the existence of a
virtual root root which acts as the common parent of the
roots of the different fi.

The set of regular expressions r, denoted by REG, is
given by the following syntax:

r ::� ε | α | r, r | r � r | r� | r� | r?

where ε denotes the empty string and α P Elem. Their
semantics is the usual one and is therefore omitted.1

Definition 1. An XSchema is a tuple S �pEName, Types, ρ, t0q where EName and Types are finite
sets of elements and types, respectively, ρ is a mapping

1We note that XSDs actually allow numerical occurrence opera-
tors (minoccurs and maxoccurs) and a mild form of shuffling (ALL).
As these are all definable within REG, we disregard them for the
moment.

from Types to regular expressions over alphabet Elem,
and, t0 P Types is the start type.

We sometimes also refer to ρptq as the content model
associated to t. Later on, we are going to restrict ρ to
deterministic regular expressions as defined below in Sec-
tion 4.

Example 1. In Figure 3, EName � tstore, order,
stock, customer, item, name, email, id, qty, price,

supplieru, Types � troot , store, order , person ,

item1, item2, stock , empu, t0 � root , and the func-
tion ρ is depicted in arrow notation.

A typing τ of f is a mapping assigning a type
τpvq P Types to every node v in f (including
the virtual root). For a node v with children
v1, . . . , vn, define child-stringpτ, vq as the typed string
labpv1qrτpv1qs � � � labpvnqrτpvnqs.
Definition 2 (validation). An XML fragment f conforms
to or is valid w.r.t. a schema S � pEName, Types, ρ, t0q,
if there is a typing τ of f such that, for every node v,
child-stringpτ, vq matches the regular expression ρpτpvqq,
and τprootq � t0. We then call τ a valid typing.

Despite the clean formalization, the above definition
does not entail a validation algorithm. One possibility is
to compute, for each node v in f , a set of possible types
∆pvq � Types such that, for each type t P ∆pvq, the XML
subfragment rooted at v is valid w.r.t. the schema with
start type t. The XML fragment is then valid w.r.t. S

itself when the start type t0 belongs to ∆prootq. The
sets ∆pvq can be computed in a bottom-up fashion. In-
deed, t P ∆pvq iff (1) v is a leaf node and ρptq contains
the empty string; or, (2) v is a non-leaf node with chil-
dren v1, . . . , vn and there are t1 P ∆pv1q, . . . , tn P ∆pvnq
such that labpv1qrt1s � � � labpvnqrtns P ρptq. A valid typing
can then be computed from the sets ∆ by an additional
top-down pass through the tree. Although this kind of
bottom-up validation is a bit at odds with the general
concept of top-down or streaming XML processing, the
algorithm can be adapted to this end (cf., for instance,
[20, 22]).

Before we restrict XSchemas to obtain the correspond-
ing classes of DTDs and XSDs, we first discuss determin-
istic regular expressions.

4 Deterministic regular expres-

sions

Not only the occurrence of types in rules is restricted by
the XML Schema specification, but also the shape of the

regular expressions in the rules themselves. That is, regu-
lar expressions should be deterministic. This constraint is
often referred to as UPA: the Unique Particle Attribution
constraint. The intuition behind the constraint is the fol-
lowing: the form of the regular expression should allow to
match each symbol of the input string uniquely against
a position in the expression when processing the input
string in one pass from left to right. That is, without
looking ahead in the string. For instance, the expression
r1 � pa � bq�a is not deterministic as already the first
symbol in the string aaa can be matched to two different
a’s in r1. The equivalent expression r2 � b�apb�aq�, on
the other hand, is deterministic. Unfortunately, not ev-
ery non-deterministic regular expression can be rewritten
into an equivalent deterministic one [5]. Thus, semanti-
cally, the class of deterministic regular expressions, which
we denote here by DREG, is a strict subclass of the regu-
lar languages. Moreover, it is not very robust, as it is not
closed under union, concatenation, or Kleene-star, pro-
hibiting an elegant constructive definition [5].

There has been quite some debate in the XML com-
munity about the restriction to deterministic regular ex-
pressions (cf., e.g., pg 98 of [26] and [17, 24]) as it does
not serve its purpose: even for general regular expressions
simple validation algorithms exist that are as efficient as
those for deterministic regular expressions. One reason to
maintain this restriction is to ensure compatibility with
SGML parsers, the predecessor of XML.

Deterministic regular expressions are characterized as
one-unambiguous regular expressions by Brüggemann-
Klein and Wood [5]. For a regular expression r over el-
ements, we denote by r the regular expression obtained
from r by replacing, for each i, the ith a-element in r

(counting from left to right) by ai. For example, r2 is
b�
1
a1pb�2a2q�.

Definition 3. A regular expression r is one-unambiguous
iff there are no strings waiv and wajv

1 in Lprq so that
i � j.

Deciding whether a regular expression r is one-
unambiguous can be done in quadratic time [4]. The al-
gorithm constructs the Glushkov Automaton Gprq for r

and checks whether it is deterministic. In a nutshell, the
states of Gprq are the positions of r plus an initial state
s. There is a transition from position xi to yj if there
is a string in which the successive symbols x, y can be
matched to xi and yj, respectively. A state is accepting
if the corresponding position can match the final symbol
of a word. The Glushhov automata Gpr1q and Gpr2q are
depicted in Figure 4.

It can be decided in exponential time whether there is
a deterministic regular expression equivalent to a given
regular expression [5]. If so, the algorithm can return

s a1

b1

a2a

b ab

a

a

a

a

b

(a)

s

a1

b1

a2

b2

a

b

a

a

b ab

b b

(b)

Figure 4: The Glushkov automata Gpr1q and Gpr2q. Note
that Gpr2q is deterministic whereas Gpr1q is not.

an equivalent deterministic expression of a size which is
double exponential.

5 DTDs and XSDs formalized

We restrict the general class of XSchemas to DTDs and
XSDs:

Definition 4. Let S � pEName, Types, ρ, t0q be a schema.
Then,

1. S is local when EName � Types and regular expres-
sions in ρ are defined over the alphabet taras | a P
ENameu; this simply means that the name of the el-
ement also functions as its type.

2. S is single-type when there are no elements art1s and
art2s in a ρptq with t1 � t2.

We now formally define the different classes of
XSchemas (as proposed in [20]):

Definition 5. • A DTD is a local XSchema with de-
terministic regular expressions.

• An XSD is a single-type XSchema with deterministic
regular expressions.

A Relax NG schema [7] can then be abstracted by an
XSchema.

6 Typing a schema

For general XSchemas, a valid typing is not necessarily
unique. Consider for instance the schema

root Ñ ara1 s � ara2 s
a1 Ñ bremps
a2 Ñ bremps
emp Ñ ε

defining the fragment <a> where a can be both
assigned the type a1 and a2 . In addition, computing a
valid typing can not be achieved in one top-down pass
through the XML fragment. Consider for instance the
schema

root Ñ ara1 s � ara2 s
a1 Ñ bremps
a2 Ñ cremps
emp Ñ ε

No type can be assigned to a before its child is visited.
In contrast, the single-type restriction ensures that XSDs
can be uniquely typed in a top-down fashion. To be pre-
cise, one-pass typing in a top-down fashion means that
the first time a node is visited a type should be assigned
(so only based on what has been seen up to now) and
that a child can be visited only when its parent is already
visited.

Theorem 1. [20, 19] When an XML fragment f is valid
w.r.t. an XSD, then there is exactly one valid typing
which in addition can be computed in a one-pass top-
down fashion.

Proof. The theorem follow from a simple algorithm to
validate an XML fragment against a schema S �pEName, Types, ρ, t0q. Define τprootq � t0. For every node
v with children v1, . . . , vn for which τpvq is defined, let ti
be the unique type such that labpviqrtis occurs in τpvq.
Set τpviq � ti. When child-stringτ pvq R ρpτpvqq then re-
ject as the document is not valid, otherwise proceed as
before.

Theorem 1 has an interesting consequence. In a sce-
nario where XML data is processed as a stream, the type
of each element is determined when its opening tag ar-
rives. Consequently, any decisions depending on the type
of an element can be triggered immediately. Similarly,
parsing w.r.t. an XSD works fine for documents in SAX-
representation.

We mention that when UPA is enforced, the single-
type or EDC constraint is actually not necessary to obtain

unique one-pass top-down typing: UPA alone already im-
plies it (cf. Section 8.7 in [19]). The reason being that any
deterministic regular expression is restrained-competition
and the latter implies one-pass preorder and therefore
also top-down typing. Actually, the class of restrained-
competition XSchemas captures precisely the fragment of
XSchemas admitting one-pass preorder typing [19].

7 A type-concealed definition of

XSDs: DFA-based XSDs

From the proof of Theorem 1, it already becomes appar-
ent that the type of a node in a valid typing w.r.t. an XSD
S � pEName, Types, ρ, t0q only depends on the type of its
parent. That type in turn only depends on its parent,
and so on until the root is reached. Actually, this type
dependence can be captured by a deterministic finite au-
tomaton (DFA). Indeed, define a DFA which starts at
the root in initial state/type t0 and moves from state/-
type t to state/type t1 while reading a iff art1s occurs in
ρptq. This view decouples types from the rules and hides
them in the automaton. We formalize this next. In this
respect, let child-stringpvq be the string formed by the
labels of the children of v.

Definition 6. A DFA-based XSD is a tuple D �pEName, A, λq, where A is a DFA using the states Types

and λ is a function mapping states of A to regular ex-
pressions in DREG over EName (so not over Elem!). An
XML fragment f is valid w.r.t. D if, for every node v of
f , child-stringpvq P λpqq, where q is the state reached by
A when started in its start state on the path from root to
v.

A DFA-based XSD for our running example is displayed
in Figure 5.

The following Proposition (which is proved as Lemma 7
in [11]) shows that the model of DFA-based XSDs can be
used without compromise in modeling XML Schema.

Theorem 2. Any DFA-based XSD can be translated into
an equivalent XSD in at most quadratic time, and vice
versa.

8 A type-free definition of XSDs:

pattern-based XSDs

As DTDs do not employ types, the content model of a
node is determined by its label. So, the context which can
be delineated by a DTD is simply the element name of the
node at hand. For a node v, we denote by anc-strpvq the
ancestor-string which is given by the labels of the nodes

root

store

order

stock

item1

person

item2

emp

supplier

s
t
o
r
e

stock

or
de
r

item

item

customer

id,price

name

id
,qt

y

item

λprootq � store

λpstoreq � order�stock
λporder q � customer item�

λppersonq � name email�
λpitem1q � id price

λpstock q � item�
λpitem2q � id qty psupplier� item�q
λpempq � ε

Figure 5: A DFA-based XSD equivalent to the XSD in
Figure 3.

on the path from root to v. From the discussion in the
previous section, it becomes apparent that the context
which can be described by an XSD is restricted to the
ancestor-string of the node at hand and can be defined in
a regular way. By replacing the DFA in Definition 6 by
regular expressions, we obtain a formalism closely related
to DTDs [19].

Definition 7. A pattern-based XSD P is a set tr1 ë
s1, . . . , rm ë smu of rules, where all ri are in REG and all
si are in DREG.

We refer to the ri and si as the vertical and the hori-
zontal patterns, respectively. The following two semantics
for pattern-based XSDs have been considered [13].

Definition 8. • An XML fragment f is existentially
valid with respect to a pattern-based schema P if,
for every node v of f , there is a rule r ë s P P

such that anc-strpvq matches r and child-stringpvq
matches s.

• An XML fragment f is universally valid with respect
to a pattern-based schema P if, for every node v of
f , and each rule r ë s P P it holds that anc-strpvq
matches r implies child-stringpvq matches s.

A pattern-based schema for our running example is
shown in Figure 6. The reader might notice that in this
example the existential and the universal semantics coin-
cide. Though more convenient as a specification mech-

ε ë store

store ë order� stock

store order ë customer item�
store order customer ë name email�

store order item ë id price

store stock ë item�
store stock item� ë id qty (supplier � item�)

store stock item� supplier ë name email�
store order item (id�price) ë ε

store order customer (name�email) ë ε

store stock item� supplier (name�email) ë ε

store stock item� (id�qty) ë ε

Figure 6: A pattern-based XSD for the store example.

anism than DFA-based XSDs, translation to and from
XSDs is a bit more problematic as shown by the follow-
ing Theorem. In Section 9 we exhibit fragments occurring
in practice with better behavior.

Theorem 3. 1. Translating a pattern-based XSD un-
der the existential or universal semantics to an equiv-
alent XSD requires double exponential time [11].

2. Translating an XSD to an equivalent pattern-based
XSD under the existential or universal semantics re-
quires exponential time [19].

9 XSDs in practice

The formal taxonomy presented in Definition 5 begs the
question to what extent the expressiveness of DTDs and
XSDs is actually used in practice. In [19, 2], a substan-
tial corpus of DTDs and XSDs was harvested from the
Web, including the Cover Pages [9] incorporating high-
quality schemas representing various standards such as
the XML Schema Specification, XHTML, UDDI, RDF
and others. The study in [19] mainly focused on expres-
siveness in terms of typing while [2] together with [1] also
considered content models.

9.1 Local Typing

It turns out that out that the far majority (85%) of the
considered XSDs where in fact structurally equivalent to
a DTD: at most one type is associated to every element
name. So only the remaining 15% of the XSDs use the
typing mechanism to actually define non-local classes of
XML documents. Surprisingly, in 90% of these cases,
types only depend on the parent context like in Figure 3
where an item has type item1 when its parent has label
order and type item2 otherwise. In the few remaining
cases, types depend on the grand- or the great grand-
parent context as for instance exemplified in Figure 7.
The interpretation is simple: a j1 element can only occur

as the great grandchild of a b element while a j2 element
can only occur as the great grandchild of a c element.

a Ñ brbs � crcs h1 Ñ jrj 1 s
b Ñ eres drd1 s frf s h2 Ñ jrj 2 s
c Ñ eres drd2 s frf s j 1 Ñ krk s ℓrℓs

d1 Ñ grgs hrh1 s iris j 2 Ñ mrms nrns
d2 Ñ grgs hrh2 s iris

Figure 7: An XSD abstracted from the most complicated
XSD found in [19]: the type of j-elements depends on
their great grand-parent.

9.2 Content models

In [1] it was noted that in most regular expressions each
element name occurs at most once. This observation lead
to the definition of single occurrence regular expressions
(SOREs). For instance, appb� � cq�dq� is a SORE while
apa � bq� is not as a occurs twice. An earlier look at the
same corpus of DTDs and XSDs in [2] revealed that most
(99%) regular expressions occurring in practical schemas
are in fact chain regular expressions (CHAREs).2 Each
such expression is a SORE which can be written as a
sequence of factors f1 � � � fn where every factor is an ex-
pression of the form pa1 � � � � � akq, pa1 � � � � � akq?,pa1 � � � � � akq�, or pa1 � � � � � akq�. Here, k ¥ 1 and
every ai is an element name. For instance, the expression
apb � cq�d�pe � fq? is a CHARE, while pab � cq� andpa�� b?q� are not. Note that every SORE, and therefore
also every CHARE is deterministic (or one-unambiguous)
as required by the XML specification.

9.3 Implications

The discussion above implies that a large portion of prac-
tical XSDs is captured by the fragment of pattern-based
XSDs where all vertical patterns are restricted to {{w and
all horizontal patterns are SOREs. Here, {{ is XPath’s
descendant axis and w is a path of element names. The
pattern-based XSD of Figure 6 using this notation is de-
picted in Figure 8.

In [3] algorithms for learning this practical subclass of
XSDs have been proposed. Furthermore, in strong con-
trast to general pattern-based schemas (cf. Theorem 3),
when assuming a mild disjointness criterion, translating
between existential and universal semantics, and translat-
ing back and forth to single-type XSchemas can be done
in polynomial time [11].

2The single-occurrence property was initially missed.

ε ë store

//store ë order� stock

//order ë customer item�
//customer ë name email�

//order/item ë id price

//stock ë item�
//stock/item ë id qty(supplier � item�)
//item/item ë id qty (supplier � item�)
//supplier ë name email�

//id ë ε //qty ë ε //price ë ε

//name ë ε //email ë ε

Figure 8: A pattern-based XSD for the store in XPath
notation.

10 Inexpressibility

Let t1, t2 be two valid XML fragments for a DTD d and
let v1 and v2 be nodes of t1 and t2, respectively, with
the same element name a. It is not hard to see that the
fragment resulting from replacing the subtree t1

1
rooted at

v1 in t1 by the subtree t1
2

rooted at v2 in t2 is again valid
w.r.t. d. We say that DTDs (or the sets of fragments they
define) have the label-guarded subtree exchange property.
Figure 9 gives an illustration.

P T

t
1
1

v1

t1 P T

t
1
2

v2

t2 P T

t
1
2

v1

t1ñ
Figure 9: Label-guarded subtree exchange. Nodes v1 and
v2 are both labeled with the same label.

It turns out that XSDs also have a subtree exchange
property, but this time it is ancestor-guarded, i.e., a sub-
tree exchange can take place if v1 and v2 have the same
ancestor-string.

The importance of the characterization of XSDs by a
subtree-exchange property stems from the fact that in-
expressibility results can be formally proved rather than
vaguely stated: a set of XML fragments lacking this prop-
erty can not be characterized by any XSD. For instance,
a shortcoming attributed to XSDs is their inability to
express certain co-constraints [8]. A simple example of
such a co-constraint is the following: there must be an
order-element with at least two item-children. Using
the ancestor-guarded subtree exchange property, it is very
easy to prove that this co-constraint cannot be expressed
with XSDs. Indeed, let f1 and f2 be two XML fragments
with two orders each. In f1 the first order has two items
and the second order has one item. In f2 the first order
has one items and the second order has two items. By
replacing the first order of f1 by the first order of f2 we

obtain an XML fragment without two-item orders.

Finally, in the same spirit it can be easily shown that
XSDs, just as DTDs, lack some of the basic closure prop-
erties: they are not closed under union nor under nega-
tion.

11 Optimization

Because of the correspondence with regular tree au-
tomata, the inclusion and equivalence of XSchemas is
exptime-complete [23], even when regular expressions
are restricted to be deterministic [18]. For single-type
XSchemas, these decision problems reduce to the corre-
sponding decision problems on the class of allowed regular
expressions [18, 19] and are therefore in polynomial time
for XSDs. Furthermore, given an XSchema, it can be de-
cided in exptime whether an equivalent XSD or DTD
exist. If so, an equivalent schema can also be constructed
in exptime [19].

12 Conclusions

We presented a detailed account of the structural expres-
siveness of XSDs. The most important message being
that, in contrast to what is mostly assumed, XML Schema
is much closer to DTDs than to tree automata. In brief,
it can be seen as DTDs extended with vertical regular
expressions. Furthermore, both vertical and horizontal
expressions can be greatly simplified to capture all prac-
tical XSDs.

An important omission from the abstraction presented
here are the counting and shuffling expressions allowed
in content models. These have a serious impact on the
complexity of decision problems [10, 12, 14]. Moreover,
one-unambiguity for such expressions is not yet fully un-
derstood [15, 16].

Acknowledgments

We thank Wouter Gelade for his comments.

References

[1] G.J. Bex, F. Neven, T. Schwentick, and K. Tuyls. Infer-
ence of concise DTDs from XML data. In VLDB, pages
115–126, 2006.

[2] G.J. Bex, F. Neven, and J. Van den Bussche. DTDs
versus XML Schema: A practical study. In WebDB, pages
79–84, 2004.

[3] G.J. Bex, F. Neven, and S. Vansummeren. Inferring XML
Schema Definitions from XML data. In VLDB, pages
998–1009, 2007.

[4] A. Brüggemann-Klein. Regular expressions into finite au-
tomata. Theoretical Computer Science, 120(2):197–213,
1993.

[5] A. Brüggemann-Klein and Wood D. One-unambiguous
regular languages. Information and Computation,
140(2):229–253, 1998.

[6] A. Brüggemann-Klein, M. Murata, and D. Wood. Regu-
lar tree and regular hedge languages over unranked alpha-
bets: Version 1, april 3, 2001. Technical Report HKUST-
TCSC-2001-0, The Hongkong University of Science and
Technology, 2001.

[7] J. Clark and M. Murata. RELAX NG Specification. OA-
SIS, December 2001.

[8] C. Sacerdoti Coen, P. Marinelli, and F. Vitali. Schemap-
ath, a minimal extension to XML Schema for conditional
constraints. In WWW, pages 164–174, 2004.

[9] R. Cover. The Cover pages. http://xml.coverpages.org/,
2005.

[10] W. Gelade, W. Martens, and F. Neven. Optimizing
schema languages for XML: Numerical constraints and
interleaving. In ICDT, pages 269–283, 2007.

[11] W. Gelade and F. Neven. Succinctness of pattern-based
schema languages for XML. In DBPL, 2007.

[12] G. Ghelli, D. Colazzo, and C. Sartiani. Efficient inclusion
for a class of XML types with interleaving and counting.
In DBPL, 2007.

[13] G. Kasneci and T. Schwentick. The complexity of reason-
ing about pattern-based XML schemas. In PODS, pages
155–164, 2007.

[14] P. Kilpeläinen and R. Tuhkanen. Regular expressions
with numerical occurrence indicators – preliminary re-
sults. In SPLST, pages 163–173, 2003.

[15] P. Kilpeläinen and R. Tuhkanen. Towards efficient imple-
mentation of XML schema content models. In DOCENG,
pages 239–241, 2004.

[16] P. Kilpeläinen and R. Tuhkanen. One-unambiguity of
regular expressions with numeric occurrence indicators.
Inf. Comput., 205(6):890–916, 2007.

[17] M. Mani. Keeping chess alive — Do we need 1-
unambiguous content models? In Extreme Markup Lan-

guages, Montreal, Canada, 2001.

[18] W. Martens, F. Neven, and T. Schwentick. Complexity
of decision problems for simple regular expressions. In
MFCS, pages 889–900, 2004.

[19] W. Martens, F. Neven, T. Schwentick, and G.J. Bex.
Expressiveness and complexity of XML Schema. ACM

Transactions on Database Systems, 31(3):770–813, 2006.

[20] M. Murata, D. Lee, M. Mani, and K. Kawaguchi. Tax-
onomy of XML schema languages using formal lan-
guage theory. ACM Transactions on Internet Technology,
5(4):1–45, 2005.

[21] F. Neven. Automata theory for XML researchers. SIG-

MOD Record, 31(3):39–46, 2002.

[22] L. Segoufin and V. Vianu. Validating streaming XML
documents. In PODS, pages 53–64, 2002.

[23] H. Seidl. Deciding equivalence of finite tree automata.
SIAM Journal on Computing, 19(3):424–437, 1990.

[24] C.M. Sperberg-McQueen. XML Schema 1.0: A language
for document grammars. In XML — Conference Proceed-

ings, 2003.

[25] C.M. Sperberg-McQueen and H. Thompson. XML
Schema. Technical report, World Wide Web Consortium,
2005. http://www.w3.org/XML/Schema.

[26] E. van der Vlist. XML Schema. O’Reilly, 2002.

