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1
Introduction

XML (eXtensible Markup Language) has currently evolved to the standard data ex-
change format for the World Wide Web [ABS99]. Its main advantages are that it
offers an intuitive and standard way of structuring a very wide range of data and
that it admits the use of user-defined tags. The latter allows user communities to
develop their own format of XML documents, which is defined by an XML schema.
The presence of such a schema improves the efficiency of many tasks like, for instance,
query processing, query optimization, and automatic data integration.

The XML Typechecking Problem

In the context of the World Wide Web, schemas can be used to validate data exchange.
In a typical scenario, a user community agrees on a common schema and on producing
only XML data conforming to that schema. This raises the issue of typechecking:
verifying at compile time that every XML document which is the result of a specified
query or transformation applied to a valid input, satisfies the output schema [Suc01,
Suc02].

The first part of this dissertation studies the typechecking problem for XML
to XML transformations. Typechecking consists of statically verifying whether the
output of an XML transformation is always conform to an output type for docu-
ments satisfying a given input type. As types we adopt formal models for XML
schemas: Document Type Definitions (DTDs) and their robust extension, regular
tree languages [BKMW01, LMM00, MSV03] or, equivalently, extended DTDs [PV00,
BPV04].1 The latter serve as a formal model for Relax NG [CM01].

Obviously, typechecking depends on the transformation language at hand. As
shown by Alon et al. [AMN+03a, AMN+03b], when transformation languages have the

1Papakonstantinou and Vianu used the term specialized DTD as types specialize tags. We prefer
the term extended DTD as it expresses more clearly that the power of the schemas is amplified.
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2 Introduction

ability to compare data values, the typechecking problem quickly turns undecidable.
However, Milo, Suciu, and Vianu argued that XML documents can be abstracted by
labeled ordered trees and that the capability of most XML transformation languages
can be encompassed by k-pebble transducers when data values are ignored [MSV03].
Further, the authors showed that the typechecking problem in this context is decid-
able. More precisely, given two types τ1 and τ2, represented by tree automata, and a
k-pebble transducer T , it is decidable whether T (t) ∈ τ2 for all t ∈ τ1. Here, T (t) is the
tree obtained by running T on input t. The complexity, however, is non-elementary
and cannot be improved [MSV03].

In an attempt to lower the complexity, we consider much simpler tree transfor-
mations, which correspond to structural recursion on trees [BFS00] and to simple
top-down XSLT transformations [BMN02, Cla99]. Such transformations are merely
used for restructuring and filtering, not for advanced querying. In brief, a transfor-
mation consists of a single top-down traversal of the input tree where every node is
replaced by a new tree (possibly the empty tree).

Our work studies sound and complete typechecking algorithms, an approach that
should be contrasted with the work on general-purpose XML programming languages
like XDuce [HP03] and CDuce [BFC03], for instance, where the main objective is
fast and sound typechecking. The latter kind of typechecking is always incomplete
due to the Turing-completeness of the considered XML-transformations. That is, it
can happen that type safe transformations are rejected by the typechecker. As we
only consider very simple transformations which are by no means Turing-complete, it
makes sense to ask for complete algorithms.

In Chapter 2, we formally define the basic notions that are used throughout the
first part of the dissertation, such as tree languages, tree transformations, and schema
languages.

Chapter 3 provides the theoretical tools and basic results that we will use in
the subsequent chapters. We extend Lenstra’s polynomial time algorithm for solv-
ing a conjunction of linear inequalities with a fixed number of variables to the case
where we allow arbitrary Boolean combinations of linear inequalities. Further, we give
an overview of the complexity of emptiness, universality, inclusion, and intersection
emptiness problems of finite automata over strings and trees.

The actual study of the complexity of XML typechecking starts in Chapter 4.
We parameterize the problem by several restrictions on the transformations (deleting,
non-deleting, bounded or unbounded copying) and consider both tree automata and
DTDs as input and output schemas. The overall goal of the chapter is to identify a
non-trivial scenario in which the typechecking problem is in polynomial time. The
complexity of the typechecking problems in the considered scenarios ranges from ex-
ponential time in the most general case to polynomial time in the case where deletion
in the transformations is completely disallowed and the number of copies that the
transformation makes is bounded in advance.

In Chapter 5, we note that the scenario that is studied in Chapter 4 is very
general: both the schemas and the transformation are determined to be part of the
input. However, for some exchange scenarios, it makes sense to consider the input
and/or output schema to be fixed when transformations are always from within and/or
to a specific community.
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Therefore, we revisit the various instances of the typechecking problem considered
in Chapter 4 and determine the complexity in the presence of fixed input and/or
output schemas. The main goal of this chapter is to investigate to which extent the
complexity of the typechecking problem is lowered in scenarios where the input and/or
output schema is fixed.

Although Chapters 4 and 5 give a fairly detailed overview of the complexity of
typechecking, the settings in which we have found a polynomial time typechecking
algorithm are very restrictive, especially since they exclude any form of deletion in the
transformation. Indeed, many simple filtering transformations use deletion as they
select specific parts of the input while ignoring the non-interesting ones.

Therefore, the purpose of Chapter 6 is to investigate larger and more flexible
classes for which the complexity of the typechecking problem remains in polynomial
time. By restricting schema languages and transformations, we identify several prac-
tical settings for which typechecking can be done in polynomial time. Moreover, the
resulting framework provides a rather complete picture as we show that most sce-
narios can not be enlarged without rendering the typechecking problem intractable.
Hence, the work sheds light on when to use fast complete algorithms and when to
reside to sound but incomplete ones.

The tractable fragments that we identify can be divided into two classes. In
the first class, tractability of the typechecking problem is obtained by bounding the
deletion path width of the tree transformations. The deletion path width is a notion
that measures the number of times that a tree transformation copies part of its input.
The set of tree transformations with a bounded deletion path width strictly includes
the tractable class that we identified in Chapter 4, but most importantly, it also
contains tree transducers which delete in a limited manner (even recursively). In the
second class, we allow all transformations (that is, the most general transformations
that we allowed in Chapter 4), but we restrict the expressive power of the schema
languages. We obtain that typechecking is tractable when the schemas use a restricted
form of regular expressions, which we call RE+ expressions. Again, we show that
allowing obvious extensions of RE+ expressions make typechecking at least conp-
hard.

We present conclusions and additional remarks on our study of the XML type-
checking problem in Chapter 7. For instance, when a transformation does not
typecheck with respect to an input and output schema, it is important to give the
user some feedback why the transformation is not type safe. We therefore investigate
the problem of producing a witness tree t in the input schema, such that the trans-
formation of t is not in the output schema. We obtain that, for each of the tractable
fragments we identified in Chapter 6, we can generate a description of such a witness
tree t in polynomial time.

Foundations of XML Schema Languages

While the first part of the dissertation focuses on the interaction between XML trans-
formation and schema languages, the second part is entirely devoted to the study of
XML schema languages.

The common abstraction of XML Schema by unranked regular tree languages is
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not entirely accurate. In Chapter 8 we therefore shed some light on the actual
expressive power of XML Schema, by providing intuitive semantical characterizations
of the Element Declarations Consistent (EDC) rule. In particular, it is obtained
that schemas satisfying EDC can only reason about regular properties of ancestors of
nodes. It is argued that cleaner, more robust, larger but equally feasible classes can
be obtained by replacing EDC with the notion of 1-pass preorder typeability (1PPT)
or top-down typeability (TDT). The former are schemas that allow to determine the
type of an element of a streaming document when its opening tag is met and the latter
are schemas that allow to determine the type of an element without investigating its
descendants or the descendants of its siblings. It is shown that the one-pass preorder
typeable schemas are exactly the restrained competition tree grammars introduced
by Murata et al. [MLMK05] and that the top-down typeable schemas are a natural
generalization of top-down deterministic tree automata. As a result, the expressive
power of schemas strictly grows when going from EDC to 1PPT, and from 1PPT to
TDT.

We characterize the expressive power of the EDC rule, 1PPT and TDT in terms
of the context of nodes, closure properties, allowed patterns and guarded schemas. It
is further shown that deciding whether a schema allows 1PPT or TDT is tractable.
Deciding whether a schema is equivalent to a 1PPT grammar, or one of its subclasses,
is much more difficult: it is complete for exptime.

The focus of Chapter 9 is to investigate the complexity of several basic decision
problems for these schemas satisfying EDC, 1PPT, or TDT. We aim to study the in-
clusion, equivalence, and intersection emptiness problem for XML schemas occurring
in practice. Such practical schemas make use of regular expressions with a very simple
structure: they basically consist of the concatenation of factors, where each factor is
a disjunction of strings, possibly extended with “∗”, “+”, or “?”. We refer to these as
CHAin Regular Expressions (CHAREs). We obtain lower and upper bounds for var-
ious fragments of CHAREs and also consider additional determinism and occurrence
constraints. For the equivalence problem, we only prove an initial tractability result,
leaving the complexity of more general cases open. We relate the above to optimiza-
tion of XML schema languages by showing that all our lower and upper bounds for the
inclusion and equivalence problem carry over to the corresponding decision problems
for DTDs and to schemas with the EDC. A similar but slightly weaker result holds for
schemas with the 1PPT and TDT restriction. For the intersection problem, we show
that obtained complexities only carry over to DTDs. We show that a similar result
does not hold for single-type, restrained competition, or top-down typeable EDTDs,
unless pspace = exptime.

Finally, in Chapter 10, we turn to the problem of optimizing formal models
for XML schemas. The aim of the chapter is to investigate models which allow to
efficiently minimize the number of states (or types) needed to define the schema.

First, we study the minimization problem for unranked tree automata, which are a
formal basis for Relax NG [MLMK05, CM01]. We show that the minimization prob-
lem for the bottom-up deterministic unranked tree automata defined by Brüggeman-
Klein, Murata, and Wood is np-complete when their transition function is represented
by deterministic finite automata [BKMW01]. Moreover, we show that minimal au-
tomata in the later class are not unique up to isomorphism.
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Second, we investigate more recent automata classes that do allow for polyno-
mial time minimization. We present a comparative study between stepwise tree au-
tomata [CNT04], parallel tree automata [CLT05, RB04], and bottom-up deterministic
tree automata over the first-child next-sibling encoding of unranked trees. Among
those, we show that bottom-up deterministic stepwise tree automata yield the most
succinct representations.

Finally, we investigate minimization for schemas with the 1PPT constraint, in
which we use deterministic finite automata to represent content models. We show
that the latter notion allows for polynomial time minimization and unique minimal
models. Interestingly, we show that these results also carry over to schemas with the
EDC constraint, since our minimization algorithm preserves the EDC restriction on
the input.

We present concluding remarks in Chapter 11.

Extended abstracts and articles containing most results in this dissertation are pub-
lished as [MN05a, MN04, MN06, MNG05, MNS05, BMNS05, MNS04, MN05b].
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2
Preliminaries

We provide the necessary background on trees, automata, and tree transducers. In
the following, Σ always denotes a finite set, which we call the alphabet .

By N we denote the set of natural numbers and by N0 we denote N − {0}. A
string w = a1 · · · an over Σ is a finite sequence of Σ-symbols a1, . . . , an. When n = 0,
we say that the string w is empty, and we denote w by ε. We say that a Σ-symbol a
occurs in w if there exists an ai, 1 ≤ i ≤ n, such that a = ai. We say that w has k
occurrences of a if the set {ai | 1 ≤ i ≤ n, a = ai} contains exactly k elements. The
set of positions , or the nodes of w is Nodes(w) = {1, . . . , n}. The length of w, denoted
by |w|, is the number n of Σ-symbols occurring in w. The label ai of position i in w
is denoted by labw(i). By w1 ·w2 we denote the concatenation of two strings w1 and
w2. For readability, we usually denote the concatenation of w1 and w2 by w1w2.

For a set S, we denote by S∗ the Kleene closure of S, that is, the set of all strings
over alphabet S. By S+ we abbreviate SS∗. We define the size |S| of a finite set
S to be the number of elements in S. A string language is a subset of Σ∗. For
two string languages L,L′ ⊆ Σ∗, we define their concatenation L · L′ to be the set
{w · w′ | w ∈ L,w′ ∈ L′}.

Definition 2.1. The set of regular expressions over Σ, denoted by RE, is defined as
follows:

• ∅, ε, and every Σ-symbol is a regular expression; and

• when r and s are regular expressions, then rs, (r)+(s), and (r)∗ are also regular
expressions. 3

For readability, we often do not write all parenthesis symbols “(” and “)” in
regular expressions. The language defined by a regular expression r, denoted by L(r),
is inductively defined as follows:

9



10 Preliminaries

• L(∅) = ∅;

• L(ε) = {ε};

• L(a) = {a};

• L(rs) = L(r) · L(s);

• L(r + s) = L(r) ∪ L(s); and

• L(r∗) = {ε} ∪
⋃∞

i=1 L(r)
i.

By r? and r+, we abbreviate the expressions r + ε and rr∗, respectively. The size of
a regular expression r over Σ, denoted by |r|, is the total number of occurrences of
symbols from Σ ∪ {+, ∗, ?, ε} in r.

Definition 2.2. A nondeterministic finite automaton (NFA) over alphabet Σ is a
5-tuple N = (Q,Σ, δ, I, F ) where Q is a finite set of states, δ : Q × Σ → 2Q is the
transition function, I ⊆ Q is the set of initial states, and F ⊆ Q is the set of final
states. 3

A run ρ ofN on a string w ∈ Σ∗ is a mapping from Nodes(w) to Q such that ρ(1) ∈
δ(q, labw(1)) for a q ∈ I, and for every i = 1, . . . , |w|−1, ρ(i+1) ∈ δ(ρ(i), labw(i+1)).
A run is accepting if ρ(|w|) ∈ F . A string w is accepted by N if there exists an
accepting run of N on w. The language accepted by N is defined to be the set of
strings that are accepted by N , and is denoted by L(N). The size |N | of N is defined
as |Q|+ |Σ|+

∑

q∈Q,a∈Σ |δ(q, a)|. We call a string language L regular if there exists
an NFA N such that L = L(N).

We extend the definition of δ to strings by defining a function δ∗ : Q × Σ∗ → 2Q

as follows:

• for every q ∈ Q, δ∗(q, ε) := {q}; and,

• for every q ∈ Q,w ∈ Σ∗, and a ∈ Σ, δ∗(q, w · a) := {p | ∃p′ ∈ δ∗(q, w) : p ∈
δ(p′, a)}.

Definition 2.3. A deterministic finite automaton (DFA) is an NFA (Q,Σ, δ, I, F )
where (i) I is a singleton and (ii) |δ(q, a)| ≤ 1 for all q ∈ Q and a ∈ Σ. 3

Definition 2.4. An unambiguous finite automaton (UFA) is an NFA N such that,
for every string w ∈ L(N) there exists a unique accepting run of N on w. 3

To define unordered string languages, we make use of the Specification Language
SL inspired by Neven and Schwentick [NS] and also used by Alon et al. [AMN+03a,
AMN+03b]. The syntax of this language is as follows:

Definition 2.5. For every a ∈ Σ and natural number i ∈ N, a=i and a≥i are atomic
SL-formulas ; “true” is also an atomic SL-formula. Every atomic SL-formula is an
SL-formula and the negation, conjunction, and disjunction of SL-formulas are also
SL-formulas. 3
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A string w over Σ satisfies an atomic SL-formula a=i if w has i occurrences of a;
w satisfies a≥i if it has at least i occurrences of a. Furthermore, “true” is satisfied by
every string. Satisfaction of Boolean combinations of atomic formulas is defined in
the obvious way.1 By w |= φ, we denote that w satisfies the SL-formula φ. By L(φ)
we denote the set of strings that satisfy φ. We sometimes also refer to L(φ) as the
language defined by φ.

As an example, consider the SL-formula ¬(a≥1 ∧ ¬b≥1). This expresses the con-
straint that the symbol a can only occur when symbol b occurs. The size of an
SL-formula is the number of symbols that occur in it, that is, Σ-symbols, logical
symbols, and numbers (every i in a=i or a≥i is written in binary notation).

2.1 Trees and Hedges

It is common to view XML documents as finite trees with labels from a finite al-
phabet Σ. Figures 2.1(a) and 2.1(b) give an example of an XML document together
with its tree representation. Of course, elements in XML documents can also contain
references to nodes. But, as XML schema languages often do not constrain these nor
the data values at leaves, it is safe to view schemas as simply defining tree languages
over a finite alphabet. In the rest of this section, we introduce the necessary back-
ground concerning labeled unranked trees and hedges, which are finite sequences of
such trees.

The set of unranked Σ-trees , denoted by TΣ, is the smallest set of strings over Σ
and the parenthesis symbols “(” and “)” such that, for a ∈ Σ and w ∈ TΣ

∗, a(w) is
in TΣ.

2 So, a tree is either ε (empty) or is of the form a(t1 · · · tn) where each ti is a
tree. In the tree a(t1 · · · tn), the subtrees t1, . . . , tn are attached to a root labeled a.
For ease of notation, we write a rather than a(). A tree language is a set of trees. For
every t ∈ TΣ, the set of tree-nodes of t, denoted by NodesT (t), is the set defined as
follows:

(i) if t = ε, then NodesT (t) = ∅; and,

(ii) if t = a(t1 · · · tn), where each ti ∈ TΣ, then NodesT (t) = {ε} ∪
⋃n

i=1{iu | u ∈
NodesT (ti)}.

For two nodes u and v in NodesT (t), we say that (i) u is a child of v, or v is the
parent of u if u = vi with i ∈ N0, (ii) u is a left sibling of v, or v is a right sibling of
u if u = wi and v = wj with i, j ∈ N0 and i < j, and that (iii) u is a descendant of v,
or v is an ancestor of u if u = vi1 · · · in for i1, . . . , in ∈ N+

0 . We say that u and v are
siblings if u and v have the same parent. An internal node is a node with children
and a leaf node is a node without any children. A path in a tree is a sequence of nodes
u1, . . . , un such that, for each i = 1, . . . , n− 1, ui+1 is a child of ui.

Note that there is no a priori bound on the number of children of a node in a
Σ-tree; such trees are therefore unranked. Figure 2.2(a) contains a tree in which we
annotated the nodes between brackets. Observe that the n child nodes of a node u are

1The empty string is obtained as
∧

a∈Σ a=0 and the empty set as ¬true.
2We assume that the paranthesis symbols are not in Σ.
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<store>

<dvd>

<title> "Amelie" </title>

<price> 17 </price>

</dvd>

<dvd>

<title> "Good bye, Lenin!" </title>

<price> 20 </price>

</dvd>

<dvd>

<title> "Pulp Fiction" </title>

<price> 11 </price>

<discount> 6 </discount>

</dvd>

</store>
(a) An example XML document.

store

dvd

title

“Amelie”

price

17

dvd

title

“Good bye, Lenin!”

price

20

dvd

title

“Pulp Fiction”

price

11

discount

6
(b) Its tree representation with data values.

Figure 2.1: An example of an XML document and its tree representation.

always u1, . . . , un, from left to right. The label of a node u in the tree t = a(t1 · · · tn),
denoted by labtT (u), is defined as follows:

(i) if u = ε, then labtT (u) = a; and,

(ii) if u = iu′, then labtT (u) = labtiT (u
′).

We define the depth of a tree t, denoted by depth(t), as follows: if t = ε, then
depth(t) = 0; and if t = a(t1 · · · tn), then depth(t) = max{depth(ti) | 1 ≤ i ≤ n}+ 1.
The depth of a node i1 · · · in ∈ N∗0 in a tree is n+ 1. In the sequel, whenever we say
tree, we always mean Σ-tree. A tree language is a set of trees.

An unranked hedge is a finite sequence of unranked trees. Hence, the set of hedges,
denoted by HΣ, equals T

∗
Σ . For every hedge h ∈ HΣ, the set of hedge-nodes of h,

denoted by NodesH(h), is the subset of N∗0 defined as follows:

(i) if h = ε, then NodesH(h) = ∅; and,

(ii) if h = t1 · · · tn and each ti ∈ TΣ, then NodesH(h) =
⋃n

i=1{iu | u ∈ NodesT (ti)}.

The label of a node u = iu′ in the hedge h = t1 · · · tn, denoted by labhH(u), is defined
as labhH(u) = labtiT (u

′). Note that the set of hedge-nodes of a hedge consisting of one
tree is different from the set of tree-nodes of this tree. For example: if the tree in
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store (ε)

dvd (1)

title

(1 1)

price

(1 2)

dvd (2)

title

(2 1)

price

(2 2)

dvd (3)

title

(3 1)

price

(3 2)

discount

(3 3)
(a) The tree of Figure 2.1(b) without data values. The nodes are annotated
next to the labels, between brackets.

store (1)

dvd (1 1)

title

(1 1 1)

price

(1 1 2)

dvd (1 2)

title

(1 2 1)

price

(1 2 2)

dvd (1 3)

title

(1 3 1)

price

(1 3 2)

discount

(1 3 3)
(b) Tree of Figure 2.2(a) viewed as a hedge. The nodes are annotated next to
the labels, between brackets.

Figure 2.2: The document of Figure 2.1 without data values, viewed as a tree and as
a hedge.

Figure 2.2(a) were to represent a single-tree hedge, it would have the set of hedge-
nodes {1, 11, 12, 13, 111, 112, 121, 122, 131, 132, 133}, as shown in Figure 2.2(b). The
depth of the hedge h = t1 · · · tn, denoted by depth(h), is defined as max{depth(ti) |
i = 1, . . . , n}. For a hedge h = t1 · · · tn, we denote by top(h) the string obtained by
concatenating the root symbols of t1, . . . , tn, that is, lab

t1
H(1) · · · labtnH (n).

In this thesis, we adopt the following conventions: we use t, t1, t2, . . . to denote
trees and h, h1, h2, . . . to denote hedges. Hence, when we write h = t1 · · · tn we tacitly
assume that every ti is a tree. We denote NodesT and NodesH simply by Nodes, and
we denote labT and labH by lab when it is understood from the context whether we
are working with trees or hedges.

2.2 DTDs and Tree Automata

We use extended context-free grammars and tree automata to abstract from Doc-
ument Type Definitions (DTDs) and the various proposals for XML schemas. We
parameterize the definition of DTDs by a class of representationsM of regular string
languages such as, for instance, the class of DFAs (Deterministic Finite Automata)
or NFAs (Non-deterministic Finite Automata). For M ∈M, we denote by L(M) the
set of strings accepted by M . We then abstract DTDs as follows:

Definition 2.6. LetM be a class of representations of regular string languages over
Σ. A Document Type Definition (DTD) is a triple (Σ, d, sd) where d is a function that
maps Σ-symbols to elements ofM and sd ∈ Σ is the start symbol. 3

For convenience of notation, we denote (Σ, d, sd) by d and leave the alphabet Σ
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and start symbol sd implicit whenever this cannot give rise to confusion. A tree
t satisfies d if (i) labt(ε) = sd and, (ii) for every u ∈ Nodes(t) with n children,
labt(u1) · · · labt(un) ∈ L(d(labt(u))). By L(d) we denote the set of trees satisfying d,
also called the tree language defined by d.

For a DTD (Σ, d, sd) and Σ-symbol a, we denote by (d, a) the DTD (Σ, d, a), that
is, the DTD d where a is the start symbol.

Given a DTD d, we say that a Σ-symbol a occurs in d(b) when there exist Σ-strings
w1 and w2 such that w1aw2 ∈ L(d(b)). We say that a occurs in d if a occurs in d(b)
for some b ∈ Σ.

We denote by DTD(M) the class of DTDs where the regular string languages are
represented by elements ofM. The size|d| of a DTD d is the sum of the sizes of the
elements ofM used to represent the function d.

To improve readability in examples, we write the regular languages in DTDs as
regular expressions. For clarity, we also write a → r rather than d(a) = r. We also
do not list rules of the form a→ ε. We give an example of a DTD:

Example 2.7. The following DTD with start symbol store is satisfied by the tree in
Figure 2.2(a):

store → dvd dvd∗

dvd → title price (discount + ε)

This DTD defines the set of trees where the root is labeled with store; the children
of store are all labeled with dvd; and every dvd-labeled node has a title, price, and an
optional discount child. 3

In some cases, our algorithms are easier to explain on well-behaved DTDs as
considered next. A DTD d is reduced if, for every symbol a that occurs in d, there
exists a tree t ∈ L(d) and a node u ∈ Nodes(t) such that labt(u) = a. Hence, for
example, the DTD ({a}, d, a) where d(a) = a is not reduced. Reducing a DTD(DFA)
is in ptime, while reducing a DTD(SL) is in conp (we treat this in Corollary 3.17 in
Section 3.3).

We recall the definition of non-deterministic unranked tree automata from Brüg-
gemann-Klein, Murata, and Wood [BKMW01].

Definition 2.8. A nondeterministic unranked tree automaton (NTA) is a quadruple
B = (Q,Σ, δ, F ), where Q is a finite set of states, F ⊆ Q is the set of final states, and
δ : Q×Σ→ 2Q

∗

is a function such that δ(q, a) is a regular string language over Q for
every a ∈ Σ and q ∈ Q. 3

A run of B on a tree t is a labeling λ : Nodes(t) → Q such that, for every
v ∈ Nodes(t) with n children, λ(v1) · · ·λ(vn) ∈ δ(λ(v), labt(v)). Notice that, when v
has no children, the criterion reduces to ε ∈ δ(λ(v), labt(v)). A run is accepting if
the root is labeled with an accepting state, that is, λ(ε) ∈ F . When λ(v) = q, we
sometimes also say that B assigns q to v. A tree is accepted if there is an accepting
run of B on t. The set of all accepted trees is denoted by L(B) and is called the
language defined by B. We call a tree language L regular if there exists an NTA B
such that L = L(B).

We extend the definition of δ to trees and hedges by defining a function δ∗(h) :
TΣ ∪HΣ → (2Q)∗ as follows:
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• δ∗(a) := {q | ε ∈ δ(q, a)};

• δ∗(a(t1 · · · tn)) := {q | ∃q1 ∈ δ∗(t1), . . . , ∃qn ∈ δ∗(tn) such that q1 · · · qn ∈
δ(q, a)}; and,

• δ∗(t1 · · · tn) := δ∗(t1) · · · δ
∗(tn).

Notice that a tree t is accepted by B if and only if δ∗(t) ∩ F 6= ∅.

Definition 2.9. A bottom-up deterministic unranked tree automaton (DTA) is an
NTA (Q,Σ, δ, F ) such that, for all q, q′ ∈ Q with q 6= q′ and a ∈ Σ, we have that
δ(q, a) ∩ δ(q′, a) = ∅. 3

Definition 2.10. An unambiguous unranked tree automaton (UTA) is an NTA B
such that, for every tree t ∈ L(B), there is a unique accepting run of B on t. 3

As for DTDs, we often denote the regular languages in the transition function of
an NTA by regular expressions. We now give an example of an NTA.

Example 2.11. We give a bottom-up deterministic unranked tree automaton B =
(Q,Σ, δ, F ) which accepts the parse trees of well-formed Boolean expressions that are
true. Here, the alphabet Σ is {∧,∨,¬, true, false}. The state set Q contains the states
qtrue and qfalse, and the accepting state set F is the singleton {qtrue}. The transition
function of B is defined as follows:

• δ(qtrue, true) = ε. We assign the state qtrue to leafs with label true.

• δ(qfalse, false) = ε. We assign the state qfalse to leafs with label false.

• δ(qtrue,∧) = qtrueq
∗
true.

• δ(qfalse,∧) = (qtrue + qfalse)
∗qfalse(qtrue + qfalse)

∗.

• δ(qtrue,∨) = (qtrue + qfalse)
∗qtrue(qtrue + qfalse)

∗.

• δ(qfalse,∨) = qfalseq
∗
false.

• δ(qtrue,¬) = qfalse.

• δ(qfalse,¬) = qtrue.

Consider the tree t depicted in Figure 2.3(a). The unique accepting run r of B on
t can be graphically represented as shown in Figure 2.3(b). Formally, the run of B
on t is the function λ : Nodes(t)→ Q : u 7→ labr(u). Note that B is a DTA. 3

Analogously to DTDs, we parameterize NTAs by the formalism used to represent
the regular languages in the transition functions δ(q, a). So, for a class of represen-
tations of regular languagesM, we denote by NTA(M) the class of NTAs where all
transition functions are represented by elements ofM. The size |B| of an automaton
B then is |Q| + |Σ| +

∑

q∈Q,a∈Σ |δ(q, a)|. Here, by |δ(q, a)| we denote the size of the
automaton accepting δ(q, a). Unless explicitly specified otherwise, we assume that
δ(q, a) is always represented by an NFA.
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∧

∨

false ¬

false

false

∧

true

∨

false false true

(a) The tree t.
qtrue

qtrue

qfalse qtrue

qfalse

qfalse

qtrue

qtrue

qtrue

qfalse qfalse qtrue

(b) Graphical representation of the run r of B on t.

Figure 2.3: Illustrations for Example 2.11.

2.3 Transducers

We adhere to transducers as a formal model for simple transformations corresponding
to structural recursion [BFS00] and a fragment of top-down XSLT. As in the work
by Milo, Suciu, and Vianu [MSV03], the abstraction focuses on structure rather than
on content. We next define the tree transducers used in this paper. To simplify
notation, we restrict ourselves to one alphabet. That is, we consider transducers
mapping Σ-trees to Σ-trees.3

For a set Q, denote by HΣ(Q) (respectively TΣ(Q)) the set of Σ-hedges (respec-
tively trees) where leaf nodes are labeled with elements from Σ ∪ Q instead of only
Σ.

Definition 2.12. A tree transducer is a quadruple T = (Q,Σ, q0, R), where Q is a
finite set of states, Σ is the input and output alphabet, q0 ∈ Q is the initial state, and
R is a finite set of rules of the form (q, a)→ h, where a ∈ Σ, q ∈ Q, and h ∈ HΣ(Q).
When q = q0, h is restricted to be either empty, or consist of only one tree with a
Σ-symbol as its root label.

We say that a tree transducer is determistic if, for every pair (q, a), there is at most
one rule (q, a)→ h in R. In this dissertation, we always assume that tree transducers
are deterministic. 3

The restriction to trees on the right hand sides of rules with the initial state ensures
that the output of a tree transducer is always a tree rather than a hedge.

The translation defined by a deterministic tree transducer T = (Q,Σ, q0, R) on a
tree t in state q, denoted by T q(t), is inductively defined as follows:

(i) if t = ε then T q(t) := {ε};

3In general, of course, one can define transducers where the input alphabet differs from the output
alphabet.
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(ii) if t = a(t1 · · · tn) and there is a rule (q, a)→ h ∈ R, then T q(t) is obtained from h
by replacing every node u in h labeled with state p by the hedge T p(t1) · · ·T p(tn).
Note that such nodes u can only occur at leaves. So, h is only extended down-
wards.

(iii) if t = a(t1 · · · tn) and there is no rule (q, a)→ h ∈ R then T q(t) := ε.

Finally, the transformation of t by T , denoted by T (t), is defined as T q0(t), interpreted
as a tree.

Given a tree transducer T = (Q,Σ, q0, R) and a tree t, we say that T visits the
node u ∈ Nodes(t) in state q ∈ Q if

(i) q = q0 and u = ε; or

(ii) u is a child of v, labt(v) = a, T visits v in state p, (p, a)→ h is a rule in R, and
h contains a node that is labeled with q.

For a ∈ Σ, q ∈ Q and (q, a)→ h ∈ R, we denote h by rhs(q, a). If q and a are not
important, we say that h is an rhs. The size of T is |Q|+ |Σ|+

∑

q∈Q,a∈Σ |rhs(q, a)|,
where |rhs(q, a)| denotes the number of nodes in rhs(q, a). In the remainder of Part I
of the thesis, we always use p, p1, p2, . . . and q, q1, q2, . . . to denote states.

Let q be a state of tree transducer T and a ∈ Σ. We then define qT [a] :=
top(T q(a)). For a string w = a1 · · ·an, we define qT [w] := qT [a1] · · · qT [an]. In
the sequel, we leave T implicit whenever T is clear from the context.

We give an example of a tree transducer:

Example 2.13. Let T = (Q,Σ, p, R) where Q = {p, q}, Σ = {a, b, c, d, e}, and R
contains the rules

(p, a)→ d(e) (p, b)→ d(q)
(q, a)→ c p (q, b)→ c(p q)

Note that the right-hand side of (q, a)→ c p is a hedge consisting of two trees, while
the other right-hand sides consist of only one tree. 3

The following is an example of a transformation of the transducer in Example 2.13.

Example 2.14. Consider the tree t shown in Figure 2.4(a). In Figure 2.4(b) we give
the translation of t by the transducer of Example 2.13. In order to keep the example
simple, we did not list T q(ε) and T p(ε) explicitly in the process of translation. 3

The purpose of our tree transducers is to serve as an abstraction of simple re-
structuring transformations that occur a lot in practice. Our tree transducers can be
implemented as XSLT programs in a straightforward way. For instance, the XSLT
program equivalent to the above transducer is given in Figure 2.5 (we assume that
the program is started in mode p).

We discuss two important features of tree transducers: copying and deletion. In
Example 2.13, the rule (q, b) → c(p q) copies the children of the current node in the
input tree twice: one copy is processed in state p and the other in state q. The symbol
c is the parent node of the two copies. So, one could say that the current node is
translated in the new parent node labeled c. The rule (q, a)→ c p copies the children
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b

b b

a b

a

b

(a) The tree t of Example 2.14.

T p(t)
↓
d

T q(b) T q(b(ab)) T q(a(b))
↓

d

c c

T p(a) T p(b) T q(a) T q(b)

c T p(b)

↓
d

c c

d

e

d c c

c d

(b) The translation of t by the transducer T
of Example 2.13.

Figure 2.4: A tree t and its translation by the tree transducer of Example 2.13.

of the current node only once. However, no parent node is given for this copy. So,
there is no node in the output tree that can be interpreted as the translation of the
current node in the input tree. We therefore say that it is deleted. For instance,
T q(a(b)) = c d where d corresponds to b and not to a.

We illustrate the functionality of copying and deletion by means of a typical trans-
formation that processes its input and filters out the parts that are of interest.

Example 2.15. The following DTD(DFA) d with start symbol book defines a schema
for books:

book → title author+ chapter+

chapter → title intro section+

section → title paragraph+ section∗

Figure 2.6 depicts a document conforming to the given schema. We now present a
tree transducer T that generates a table of contents for every book-document in the
language defined by the DTD d. That is, for every chapter of the book, the transducer
produces a list of its section titles. The transducer consists of the following rules:

(q, book) → book(q)
(q, chapter) → chapter q
(q, title) → title
(q, section) → q

This transducer T transforms the document in Figure 2.6 into the tree in Figure 2.7
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<xsl:template match="a" mode ="p">

<d>

<e/>

</d>

</xsl:template>

<xsl:template match="b" mode ="p">

<d>

<xsl:apply-templates mode="q"/>

</d>

</xsl:template>

<xsl:template match="a" mode ="q">

<c/>

<xsl:apply-templates mode="p"/>

</xsl:template>

<xsl:template match="b" mode ="q">

<c>

<xsl:apply-templates mode="p"/>

<xsl:apply-templates mode="q"/>

</c>

</xsl:template>

Figure 2.5: The XSLT program equivalent to the transducer of Example 2.13.

book

title author chapter

title intro section

title paragraph section

title paragraph

section

title paragraph

chapter

title intro section

title paragraph

Figure 2.6: A document conforming to the schema of Example 2.15.

The example illustrates the usefulness of deleting states. Indeed, deleting states
allow the transducer to skip all intermediate section-nodes. Furthermore, the rule

(q, chapter)→ chapter q

allows to list all section titles next to the chapter-element rather than below.

Next, we illustrate copying. The following transducer T ′ extends the previous one
by adding a summary of the book to the table of contents. The summary is given by
listing the title and introduction of each chapter. By using the two states p and p′, we
make sure that the title of the book is not printed in the summary. The transducer
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book

title chapter title title title title chapter title title

Figure 2.7: Output of the transducer T of Example 2.15, when executed on the tree
in Figure 2.6.

book

· · · chapter

title intro

chapter

title intro

Figure 2.8: Output of the transducer T ′ of Example 2.15, when executed on the tree
in Figure 2.6. The part of the output that is already depicted in Figure 2.7 is replaced
by dots.

T ′ consists of the following rules:

(q, book) → book(q p)
(q, chapter) → chapter q
(q, title) → title
(q, section) → q
(p, chapter) → chapter(p′)
(p′, title) → title
(p′, intro) → intro

The output of the transformation, applied to the document in Figure 2.6 is the tree
in Figure 2.8. Here, we replaced the part of the output that is also generated by the
transformation T (which is depicted on Figure 2.7) with dots. 3

It turns out that the copying and the deletion power of a tree transducer has an
important effect on the complexity of the typechecking problem. We now define these
classes of transducers more formally. A transducer is deleting if its set of rewrite rules
contains a rhs with a state at its top-level. A transducer is non-deleting if it is not
deleting. We denote by Tnd the class of non-deleting transducers and by Td the class
of transducers where we allow deletion. Hence, Tnd ⊆ Td. Furthermore, a transducer
T has copying width C if there are at most C occurrences of states in every sequence
of siblings in an rhs. For instance, the transducer in Example 2.13 has copying width
2. Given a natural number C, we denote by T C

bc the class of transducers of copying
width C. Usually, we will leave C implicit. The abbreviation “bc” stands for bounded
copying. We denote intersections of these classes by combining the indexes. For
instance, Tnd,bc is the class of non-deleting transducers with bounded copying. When
we want to emphasize that we also allow unbounded copying in a certain application,
we write, for instance, Tnd,uc instead of Tnd.

2.4 The Typechecking Problem

We are now ready to define the problem that is central to this first part of the thesis.
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Definition 2.16. A tree transducer T typechecks with respect to to an input tree
language Sin and an output tree language Sout, if T (t) ∈ Sout for every t ∈ Sin. 3

Example 2.17. The second transducer of Example 2.15 typechecks with respect to
the input schema and the following DTD:

book → title (chapter title∗)∗ chapter∗

chapter → (title intro) + ε
3

Definition 2.18. Given Sin, Sout, and T , the typechecking problem consists in veri-
fying whether T typechecks with respect to Sin and Sout. 3

We parameterize the typechecking problem by the kind of tree transducers and
tree languages we allow. Let T be a class of transducers and S be a representation
of a class of tree languages. Then TC[T ,S] denotes the typechecking problem where
T ∈ T and Sin, Sout ∈ S. Examples of classes of tree languages are those defined
by tree automata or DTDs. Classes of transducers are discussed in Section 2.3. The
complexity of the typechecking problem is measured in terms of the sum of the sizes
of the input and output schemas Sin and Sout and the transducer T .

2.5 Related Work

The research on typechecking XML transformations was initiated by Milo, Suciu,
and Vianu [MSV03]. They obtained the decidability for typechecking of transfor-
mations realized by k-pebble transducers via a reduction to satisfiability of monadic
second-order logic. Unfortunately, in this general setting, the latter non-elementary
algorithm cannot be improved [MSV03]. Alon et al. [AMN+03a, AMN+03b] investi-
gated typechecking in the presence of data values and show that the problem quickly
turns undecidable. As our interest mainly lies in formalisms with a more manageable
complexity for the typechecking problem, we choose to work with XML transforma-
tions that are much less expressive than k-pebble transducers and that do not change
or use data values in the process of transformation.

Although the structure of XML documents can be faithfully represented by un-
ranked trees (these are trees without a bound on the number of children of nodes),
Milo, Suciu, and Vianu chose to study k-pebble transducers over binary trees as there
is an immediate encoding of unranked trees into binary ones. We illustrate such
an encoding in Figure 2.9 and explain it in more detail later in this section. The
top-down variants of such tree transducers are well-studied on binary trees [GS97].
However, these results do not aid in the quest to precisely characterize the complexity
of typechecking transformations on unranked trees. Indeed, as we show later in this
section, the class of unranked tree transductions can not be captured by ordinary
transducers working on the binary encodings. Macro tree transducers can simulate
our transducers on the binary encodings [MN00, EV85], but as the complexity of their
typechecking problem is rather high [MPBS05], this observation is not of much help.
For these reasons, we chose to work directly with unranked tree transducers.

A problem related to typechecking is type inference [MS99b, PV00]. This problem
consists in constructing a tight output schema, given an input schema and a trans-
formation. Of course, solving the type inference problem implies a solution for the
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←−
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⊥ a
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⊥ ⊥

⊥

⊥

Figure 2.9: An unranked tree and its binary encoding.

typechecking problem: check containment of the inferred schema into the given one.
However, characterizing output languages of transformations is quite hard [PV00].
For this reason, we adopt different techniques for obtaining complexity upper bounds
for the typechecking problem.

The tree transformations considered in the dissertation are restricted versions of
the DTL-programs, studied by Maneth and Neven [MN00]. They already obtained
a non-elementary upper bound on the complexity of typechecking (due to the use of
monadic second-order logic in the definition of the transducers). Recently, Maneth et
al. considered the typechecking problem for an extension of DTL-programs and ob-
tained that typechecking was still decidable [MPBS05]. Their typechecking algorithm,
like the one of [MSV03], is based on inverse type inference. That is, they compute
the pre-image of all ill-formed output documents and test whether the intersection
of the pre-image and the input schema is empty. Tozawa considered typechecking
with respect to tree automata for a fragment of top-down XSLT [Toz01]. He uses a
more general framework, but he was not able to derive a bound better than double-
exponential on the complexity of his algorithm.

Ranked versus Unranked Tree Transducers. We briefly motivate why we use
unranked transducers rather than their more deeply studied ranked counterparts.

As we mentioned before, it is known that unranked trees can be uniformly encoded
as binary trees. The most widely known encoding is the so-called first-child next-
sibling encoding, which we illustrate in Figure 2.9. The name of the encoding stems
from the fact that it essentially views unranked trees as binary trees over their first-
child and next-sibling relations. The encoding is denoted by enc and the decoding by
dec. Intuitively, the first child of a node remains the first child of that node in the
encoding, but it is explicitly encoded as a left child. The remaining children are right
descendants of the first child. When a first child or next sibling of a node does not
exist, a special dummy symbol ⊥ is inserted.

However, we argue that our unranked tree transducers cannot be simulated by
deterministic top-down ranked tree transducers on binary trees using this standard
encoding. A formal definition of deterministic top-down ranked tree transducers can
be found in [GS97]. In Figures 2.10(a) and 2.10(b), we show two tree languages (n is
arbitrary). Their binary encodings are depicted in Figures 2.10(c) and 2.10(d). Let
L1, L2, L3 and L4 be the tree languages represented by the trees in Figure 2.10(a),
2.10(b), 2.10(c) and 2.10(d), respectively.
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Figure 2.10: 2.10(a) and 2.10(b) are unranked trees. 2.10(c) and 2.10(d) are their
binary encodings respectively.

The language L1 can be transformed to L2 by the tree transducer T = (Q,Σ, q0, R)
where Q = {q0, qb, qc}, Σ = {a, b, c}, and R contains the following rules:

(q0, a) → a(qbqc)
(qb, b) → b
(qc, b) → c

Basically this tree transducer transforms the string bn of children of the root in the
input to the string bncn of children of the root in the output tree. However, as we
argue next, L3 cannot be transformed to L4 by a deterministic top-down ranked tree
transducer. For a tree t, let path(t) be the set of all strings formed by concatenating
the labels of the nodes on a path in t from the root to a leaf. For a tree language
L, define the string language path(L) = {path(t) | t ∈ L}. Given a regular tree
language L and a deterministic top-down ranked tree transducer R, it is known that
the language path(R(L)), where R(L) = {R(t) | t ∈ L}, is regular (Corollary 20.13
in [GS97]). Since path(L4) = {abkcℓ⊥ | k, ℓ ∈ N, ℓ ≤ k} is not regular and L3 is a
regular tree language, L4 cannot be the result of applying a deterministic top-down
ranked tree transducer to L3.





3
Basic Complexity Results

In this chapter we discuss some basic results that are needed in proofs in the first
part of the thesis. These results mainly consist of the complexities of basic decision
problems for logics and for finite automata and should be seen as a set of tools that
we use in the following chapters. We start with some results for SL.

3.1 Logic

For an SL-formula φ, we say that two strings w1 and w2 are φ-equivalent (denoted
w1 ≡φ w2) if w1 |= φ if and only if w2 |= φ.

For a ∈ Σ and w ∈ Σ∗, we denote by #a(w) the number of occurrences of a in w.
The following Lemma is a useful tool in proving results about SL (see Definition 2.5).

Lemma 3.1. Let φ be an SL-formula and let k be the largest integer occurring in φ.
For every w,w′ ∈ Σ∗, if, for every a ∈ Σ, one of the following holds:

• #a(w
′) > k and #a(w) > k, or

• #a(w
′) = #a(w),

then w ≡φ w′.

Proof. We can assume that negations in φ only occur in front of atomic SL-formulas.
We call an atomic SL-formula or a negation of an atomic SL-formula a literal.

To prove the lemma, simply observe that, for each a ∈ Σ such that #a(w) > k,
w satisfies all literals of the form a≥i and ¬a=j and w violates all literals of the form
¬a≥i and a=j where i, j ∈ {0, . . . , k}. The same holds for w′.

25
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The following lemma is slightly more complicated. We make use of the lemma in
the proof of Theorem 4.3(5). Intuitively, the functions f in the lemma are used to
model the effect of a (nondeleting) tree transducer on a string of siblings in a tree.

Lemma 3.2. Let φ1 and φ2 be SL-formulas and let k be the largest integer occurring in
φ1 or φ2. Let f : Σ∗ → Σ∗ be a function such that, for every b ∈ Σ, there exists a fixed
sequence of natural numbers cb, (cba)a∈Σ for which #b(f(s)) = cb +

∑

a∈Σ(c
b
a×#a(s))

for every s ∈ Σ∗. If there is a string s |= φ1 then there is a string s′ ∈ Σ∗ such that

• s′ |= φ1

• f(s′) |= φ2 if and only if f(s) |= φ2, and

• each symbol occurs maximally k + 1 times in s′.

Proof. Intuitively, the function f characterizes the effect of our tree transformations
on a string of siblings in the input tree. Let s be a string such that s |= φ1. We
construct s′ from s by deleting x arbitrary occurrences of every symbol a that occurs
k + 1 + x times in s. So, k + 1 occurrences remain. Since by Lemma 3.1, s′ |= φ1,
we only need to show that f(s′) |= φ2 if and only if f(s) |= φ2. Therefore, take
an arbitrary symbol b ∈ Σ. Then #b(f(s)) = cb +

∑

a∈Σ(c
b
a × #a(s)). If, for every

a ∈ Σ that occurs more than k times in s, cba = 0, then #b(f(s)) = #b(f(s
′)). If this

is not the case, take a ∈ Σ that occurs more than k times in s and cba 6= 0. Then
#b(f(s)) ≥ #a(s) > k and #b(f(s

′)) ≥ #a(s
′) > k, so, according to Lemma 3.1,

f(s) |= φ2 if and only if f(s′) |= φ2.

The final goal of the present section is to prove that one can find in an integer solu-
tion to a Boolean combination of linear (in)equalities with a fixed number of variables
in polynomial time. Of course, when the number of variables can be arbitrary, the
problem is np-complete because it subsumes the integer programming problem
(Problem MP1 in the book of Garey and Johnson [GJ79]). A restricted form of this
problem (when the Boolean combination is a conjunction), is a well known theorem
by Lenstra [Len83]. The final result is stated in Proposition 3.5, which we prove in a
series of lemmas and propositions.

We start by revisiting a lemma due to Ferrante and Rackoff [FR75], since we need
their construction in a subsequent proposition. Thereto, we need some definitions. We
define logical formulas with variables x1, x2, . . . and linear equations with factors in Q,
the set of rationals. A linear term is an expression of the form a1/b1, a1/b1x1 + · · ·+
an/bnxn, or a1/b1x1 + · · ·+ an−1/bn−1xn−1 + an/bn where ai, bi ∈ N for i = 1, . . . , n.
An atomic linear formula is either the string “true”, the string “false”, or a formula
of the form ϑ1 = ϑ2, ϑ1 < ϑ2, or ϑ1 > ϑ2. A linear formula Φ is built up from atomic
formulas using conjunction, disjunction, negation, and the quantifier symbol ∃ in the
usual manner. Formulas are interpreted in the obvious manner over Q. For instance,
the formula ¬∃x1, x2 (x1 < x2) ∧ ¬

(
∃x3 (x1 < x3 ∧ x3 < x2)

)
states that for every

two different rational numbers, there exists a third rational number that lies strictly
between them. As is standard in the literature, we write Φ(x1, . . . , xn) to indicate
that Φ is a linear formula with free variables x1, . . . , xn.

The size of a linear formula Φ is the sum of the number of brackets, Boolean
connectives, the sizes of the variables, and the sizes of all rational constants occurring
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in Φ. Here, we assume that all rational constants are written as a/b, where a and b
are integers, written in binary notation. We assume that variables are written as xi,
where i is written in binary notation.

Lemma 3.3 (Lemma 1 in [FR75]). Let Φ(x1, . . . , xn) be a quantifier-free linear for-
mula. Then there exists a ptime procedure for obtaining another quantifier-free linear
formula, Φ′(x1, . . . , xn−1), such that

Φ′(x1, . . . , xn−1) is equivalent to ∃xnΦ(x1, . . . , xn).

Proof. Let Φ(x1, . . . , xn) be a quantifier-free linear formula.

Step 1: Solve for xn in each atomic linear formula of Φ. That is, obtain a quantifier-
free linear formula, Ψn(x1, . . . , xn), such that every atomic linear formula of Ψn

either does not involve xn or is of the form (i) xn < ϑ, (ii) xn > ϑ, or (iii)
xn = ϑ, where ϑ is a term not involving xn.

Step 2: We now make the following definitions:
Given Ψn(x1, . . . , xn), to get Ψ

n
−∞(x1, . . . , xn−1), respectively, Ψ

n
∞(x1, . . . , xn−1),

replace

xn < ϑn in Ψ by “true” (respectively, “false”);
xn > ϑn in Ψ by “false” (respectively, “true”); and,
xn = ϑn in Ψ by “false” (respectively, “false”).

The intuition is that, for any rational numbers r1, . . . , rn−1, if r is a suffi-
ciently small rational number, then Ψn(r1, . . . , rn−1, r) and Ψn

−∞(r1, . . . , rn−1)
are equivalent. A similar statement can be made for Ψn

∞ for r sufficiently large.

Step 3: We will now eliminate the quantifier from ∃xnΨ(x1, . . . , xn). Let U be
the set of all terms ϑ (not involving xn) such that xn > ϑ, xn < ϑ, or
xn = ϑ is an atomic linear formula of Ψ. Lemma 1.1 in [FR75] then shows
that ∃xnΨ(x1, . . . , xn) is equivalent to the quantifier-free linear formula Φ′(x1,
. . . , xn−1) defined as

Ψn
−∞ ∨Ψn

∞ ∨
∨

ϑ,ϑ′∈U

Ψn,ϑ,ϑ′

,

where Ψn,ϑ,ϑ′

= Ψn
(
x1, . . . , xn−1,

ϑ+ϑ′

2

)
.

The following proposition is implicit in the work by Ferrante and Rackoff [FR75],
we prove it for completeness:

Proposition 3.4. Let Φ(x1, . . . , xn) be a quantifier-free linear formula. If n is fixed,
then satisfiability of Φ over Q can be decided in ptime. Moreover, if Φ is satisfiable,
we can find (v1, . . . , vn) ∈ Qn such that Φ(v1, . . . , vn) is true in polynomial time.

Proof. We first show that satisfiability can be decided in ptime. To this end, we
simply iterate over the three steps in the proof of Lemma 3.3 until we obtain a linear
formula without variables. Hence, in each iteration, one variable xi is eliminated
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from Φ. For every i = 1, . . . , n, let Φi be the linear formula obtained after eliminating
variable xi.

Notice that, in each iteration of the algorithm, the number of atomic linear for-
mulas grows quadratically when going from Φi to Φi−1. However, as there are only a
constant number of iterations, the number of atomic linear formulas in the resulting
linear formula Φ1 is still polynomial. Moreover, Ferrante and Rackoff show that the
absolute value of every integer constant occurring in any rational constant in Φi is at
most (s0)

14n , where s0 is the largest absolute value of any integer constant occurring
in any rational constant in Φ (cfr. page 73 in [FR75]). As n is a fixed number, we can
decide whether Φ1 is satisfiable in polynomial time.

Suppose that Φ is satisfiable. We now show how we can construct (v1, . . . , vn) ∈ Qn

in polynomial time such that Φ(v1, . . . , vn) is true. For a term ϑ using variables
x1, . . . , xi, we denote by ϑ(v1, . . . , vi−1) the rational number obtained by replacing
the variables x1, . . . , xi in ϑ by v1, . . . , vi−1 and evaluating the resulting expression.

For every i = 1, . . . , n, we construct vi from Ψi, Ψi
−∞, Ψi

∞, and Ψi,ϑ,ϑ′

(which are
defined in the proof of Lemma 3.3) as follows:

(1) If Ψi,ϑ,ϑ′

is satisfiable, then vi =
ϑ(v1,...,vi−1)+ϑ′(v1,...,vi−1)

2 .

(2) Otherwise, if Ψi
∞ is satisfiable, then vi = max{ϑ(v1, . . . , vi−1) | xi < ϑ or xi > ϑ

or xi = ϑ is an atomic linear formula in Ψi}+ 1.

(3) Otherwise, if Ψi
−∞ is satisfiable, then vi = min{ϑ(v1, . . . , vi−1) | xi < ϑ or xi > ϑ

or xi = ϑ is an atomic linear formula in Ψi} − 1.

It remains to show that we can represent every vi in a polynomial manner.
In the proof of Lemma 2 in [FR75], Ferrante and Rackoff show that, if wi is the

maximum absolute value of any integer occurring in the definition of v1, . . . , vi, then
we have the recurrence

wi+1 ≤ (s0)
2cn · (wi)

i,

for a constant c, and for s0 defined as before. Let c′ = 2cn. Hence, the maximum
number of bits needed to represent the largest integer in vi+1 is log

(
(s0)

c′ · (wi)
i
)
=

c′ log(s0) · i log(wi), which is polynomially larger than log(wi), the number of bits
needed to represent the largest integer in vi.

As we only have a constant number of iterations, the number of bits needed to
represent the largest integer occurring in the definition of vn is also polynomial.

We are now ready to prove Proposition 3.5. It generalizes the theorem by Lenstra
which states that there exists a polynomial time algorithm to find an integer solution
for a conjunction of linear (in)equalities with rational factors and a fixed number of
variables [Len83].

Proposition 3.5. There exists a ptime algorithm that decides whether a Boolean
combination of linear (in)equalities with rational factors and a fixed number of vari-
ables has an integer solution.

Proof. Notice that we cannot simply put the Boolean combination into disjunctive
normal form, as this would lead to an exponential increase of its size.
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Let Φ(x1, . . . , xn) be a Boolean combination of linear formulas ϕ1, . . . , ϕm with
variables x1, . . . , xn that range over Z, the set of integers. Here, n is a constant integer
greater than zero. Without loss of generality, we can assume that every ϕi is of the
form

ki,1 × x1 + · · ·+ ki,n × xn + ki ≥ 0,

where ki, ki,1, . . . , ki,n ∈ Q.

We describe a ptime procedure for finding a solution for x1, . . . , xn, that is, for
finding values v1, . . . , vn ∈ Z such that Φ(v1, . . . , vn) evaluates to true.

First, we introduce some notation and terminology. For every i = 1, . . . ,m, we
denote by ϕ′i the linear formula ki,1 × x1 + · · · + ki,n × xn + ki = 0. In the follow-
ing, we freely identify ϕ′i with the hyperplane it defines in Rn. For an n-tuple y =
(y1, . . . , yn) ∈ Qn, we denote by ϕ′i(y) the rational number ki,1×y1+· · ·+ki,n×yn+ki.

Given a set of hyperplanes H in Rn, we say that C ⊆ Rn is a cell of H when

(i) for every hyperplane ϕ′i in H , and for every pair of points y, z ∈ C, we have
that ϕ′i(y) θ 0 if and only if ϕ′i(z) θ 0, where, θ denotes “<”, “>”, or “=”; and

(ii) there exists no C′ ) C with property (i).

Let H be the set of hyperplanes {ϕ′i | 1 ≤ i ≤ m}.
We now describe the ptime algorithm. The algorithm iterates over the following

steps:

(1) Compute (v′1, . . . , v
′
n) ∈ Qn such that Φ(v′1, . . . , v

′
n) is true.

1 If no such (v′1, . . . , v
′
n)

exists, the algorithm rejects.

(2) For every ϕ′i ∈ H , let θi ∈ {<,>,=} be the relation such that

ki,1 × v′1 + · · ·+ ki,n × v′n + ki θi 0.

For every i = 1, . . . ,m, let ϕ′′i = ki,1 × x1 + · · ·+ ki,n× xn + ki θi 0. So, for every
i = 1, . . . ,m, ϕ′′i defines the half-space or hyperplane that contains the point
(v′1, . . . , v

′
n).

Let Φ′(x1, . . . , xn) be the conjunction

∧

1≤i≤n

ϕ′′i .

Notice that the points satisfying Φ′(x1, . . . , xn) are precisely the points in the cell
C of H that contains (v′1, . . . , v

′
n).

(3) Solve the integer programming problem for Φ′(x1, . . . , xn). That is, find a
(v1, . . . , vn) ∈ Zn such that Φ′(v1, . . . , vn) evaluates to true.

(4) If (v1, . . . , vn) ∈ Zn exists, then write (v1, . . . , vn) to the output and accept.

1Note that we abuse notation here, as the variables in Φ range over Z and not Q.
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(5) If (v1, . . . , vn) ∈ Zn does not exist, then overwrite Φ(x1, . . . , xn) with

Φ′′(x1, . . . , xn) = Φ(x1, . . . , xn) ∧ ¬Φ
′(x1, . . . , xn)

and go back to step (1).

We show that the algorithm is correct. Clearly, if the algorithm accepts, Φ has a
solution. Conversely, suppose that Φ has a solution. Hence, the algorithm computes
a value (v′1, . . . , v

′
n) ∈ Qn in step (1) of its first iteration. It follows from the following

two observations that the algorithm accepts:

(i) If the algorithm computes (v′1, . . . , v
′
n) ∈ Qn in step (1), and the cell C of H

containing (v′1, . . . , v
′
n) also contains a point in Zn, then step (3) finds a solution

(v1, . . . , vn) ∈ Zn; and,

(ii) If the algorithm computes (v′1, . . . , v
′
n) ∈ Qn in step (1), and the cell C of H

containing (v′1, . . . , v
′
n) does not contain a point in Zn, then step (3) does not

find a solution. By construction of Φ′′ in step (5), the solutions to the linear
formula Φ′′ are the solutions of Φ, minus the points in C. As C did not contain
a solution, we have that Φ has a solution if and only if Φ′′ has a solution.
Moreover, there exists no (v′′1 , . . . , v

′′
n) ∈ C such that Φ′′(v′′1 , . . . , v

′′
n) evaluates to

true.

To show that the algorithm can be implemented to run in polynomial time, we first
argue that there are at most a polynomial number of iterations. This follows from the
observation in step (2) that the points satisfying Φ′(x1, . . . , xn) are precisely all the
points in a cell C of H . Indeed, when we do not find a solution to the problem in step
(3), we adapt Φ to exclude all the points in cell C in step (5). Hence, in the following
iteration, step (1) cannot find a solution in cell C anymore. It follows that the number
of iterations is bounded by the number of cells in H , which is Θ(mn) (see, for example,
the work by Buck [Buc43], or Theorem 1.3 in the book by Edelsbrunner [Ede87] for
a more recent reference).

Finally, we argue that every step of the algorithm can be computed in ptime.

• Step (1) can be solved by the quantifier elimination method of Ferrante and
Rackoff (Lemma 3.3). Proposition 3.4 states that we can find (v′1, . . . , v

′
n) in

polynomial time.

• Step (2) is easily to be seen to be in ptime: we only have to evaluate every ϕ′i
once on (v′1, . . . , v

′
n).

• Step (3) can be executed in ptime by Lenstra’s algorithm for integer pro-

gramming with a fixed number of variables [Len83].

• Step (4) is in ptime (trivial).

• Step (5) replaces Φ(x1, . . . , xn) by the linear formula

Φ(x1, . . . , xn) ∧ ¬Φ
′(x1, . . . , xn).
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As the size of Φ′(x1, . . . , xn) is bounded by n plus the sum of the sizes of ϕ′′i for
i = 1, . . . , n, the linear formula Φ only grows by a linear term in each iteration.
As the number of iterations is bounded by a polynomial, the maximum size of
Φ is also bounded by a polynomial.

It follows that the algoritm is correct, and can be implemented to run in polynomial
time.

Corollary 3.6. There exists a ptime algorithm that decides whether a Boolean com-
bination of linear (in)equalities with rational factors and a fixed number of variables
has a solution of positive integers.

Proof. Given a Boolean combination Φ(x1, . . . , xn) of linear (in)equalities with ratio-
nal factors, we simply apply the algorithm of Proposition 3.5 to the linear formula

Φ′(x1, . . . , xn) = Φ(x1, . . . , xn)∧
∧

1≤i≤n

xi ≥ 0.

3.2 Binary Tree Automata

The remainder of this chapter focuses on decision problems for finite automata. We
first introduce a little background on tree automata for binary trees. A binary alphabet
or binary signature is a pair (Σ, rankΣ), where rankΣ is a function from Σ to {0, 1, 2}.
The set of binary Σ-trees is the set of Σ-trees inducively defined as follows. When
rankΣ(a) = 0, then a is a binary Σ-tree. When rankΣ(a) = 1 and t1 is a binary Σ-tree,
then a(t1) is a binary Σ-tree. When rankΣ(a) = 2 and t1, t2 are binary Σ-trees, then
a(t1 t2) is a binary Σ-tree. We denote the set of binary Σ-trees by bTΣ.

Definition 3.7. A nondeterministic binary (or traditional) tree automaton (NBTA)
for binary Σ-trees is an NTA B = (Q,Σ, δ, F ) for which Σ is a binary alphabet.
Moreover, the regular languages in the transition function δ : Q×Σ→ 2Q

∗

are always
represented as a finite set of strings. For each q ∈ Q and a ∈ Σ with rankΣ(a) = k,
δ(q, a) is a finite subset of Qk. 3

A binary tree automaton B is bottom-up deterministic when it is a bottom-up
deterministic NTA. It is top-down deterministic if (i) F is a singleton and, (ii) for
every q ∈ Q and a ∈ Σ, δ(q, a) contains at most one string. It is unambiguous when,
for every tree t ∈ L(B), there exists at most one accepting run of B on t. We denote
the classes of bottom-up deterministic, top-down deterministic, and unambiguous
binary tree automata by DBTA, TDBTA, and UBTA, respectively.

There is a well-known connection between ranked tree automata and their more
general unranked counterparts. This connection is based on encodings between binary
and unranked trees, such as, for instance, the first-child next-sibling encoding that we
already illustrated in Section 2.5. Let enc denote the first-child next-sibling encoding
from unranked to ranked trees, and let dec denote the decoding. The connection
between ranked and unranked tree automata can then be summarized in the following
proposition:

Proposition 3.8 ([GKPS05, Nev02, Suc01]).
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• For every NTA(NFA) B there exists a NBTA A such that L(A) = {enc(t) | t ∈
L(B)}. Moreover, A can be computed in polynomial time.

• For every NBTA A there exists an NTA(NFA) B such that L(B) = {dec(t) |
t ∈ L(A)}. Moreover, B can be computed in polynomial time.

3.3 Decision Problems for Finite String and Tree

Automata

The present section treats the complexity of the emptiness, universality, inclusion,
and intersection emptiness problems for finite automata, DTDs, ranked and unranked
tree automata. Here, we say that a finite automaton A over strings, binary trees, or
unranked trees is universal if Σ∗ ⊆ L(A), bTΣ ⊆ L(A), or TΣ ⊆ L(A), respectively.

The problems of interest to us are then defined as follows.

emptiness: Given a finite automaton, DTD, ranked or unranked tree automaton A,
is L(A) = ∅?

universality: Given a finite automaton, DTD, ranked or unranked tree automaton
A, is A universal?

inclusion: Given finite automata, DTDs, ranked or unranked tree automata A1 and
A2, is L(A1) ⊆ L(A2)?

intersection emptiness: Given the finite automata, DTDs, ranked or unranked
tree automata A1, . . . , An, is L(A1) ∩ · · · ∩ L(An) = ∅?

We first give a brief overview of the well-known results about the decision problems
that are of interest to us:

Proposition 3.9.

(1) emptiness for NFAs is nlogspace-complete [Joh90].

(2) universality for NFAs is pspace-complete [SM73].

(3) inclusion for NFAs and for REs is pspace-complete [SM73].

(4) inclusion for NBTAs is exptime-complete [Sei90].

(5) intersection emptiness for DFAs and for REs is pspace-complete [Koz77,
GJ79].

(6) intersection emptiness for TDBTAs is exptime-complete [Sei94].

We immediately obtain the following corollary to Proposition 3.9 and Proposi-
tion 3.8(4):

Corollary 3.10. inclusion for NTA(NFA)s is exptime-complete.
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Figure 3.1: A tree t (left) and its encoding bin-enc(t) to an alphabet of size four
(right).

We now focus on showing some complexity lower bounds for the automata in
Proposition 3.9, even when they use a fixed size alphabet. To this end, we associate
to each label a ∈ Σ a unique binary string bin-enc(a) ∈ {0, 1}∗ of length ⌈log |Σ|⌉. For
a string s = a1 · · ·an, define bin-enc(s) = bin-enc(a1) · · · bin-enc(an). This encoding
can be extended to string languages in the obvious way: for a string language L ⊆ Σ∗,
we define bin-enc(L) to be the set {bin-enc(s) | s ∈ L}.

We show how to extend the encoding bin-enc to binary trees over alphabet Σfix =
{0, 1, 0′, 1′, 0′′, 1′′}. Here, {0, 1}, {0′, 1′}, and {0′′, 1′′} are the symbols with rank zero,
one, and two, respectively. Let bin-enc(a) = b1 · · · bk for a ∈ Σ. Then we denote by
tree-enc(a)

• the unary tree b′1(b
′
2(· · · (b

′
k−1(b

′′
k)) if rankΣ(a) = 2;

• the unary tree b′1(b
′
2(· · · (b

′
k−1(b

′
k)) if rankΣ(a) = 1; or,

• the unary tree b′1(b
′
2(· · · (b

′
k−1(bk)), otherwise.

Then, the bin-enc-fuction can be extended to binary trees as follows: for t = a(t1 · · · tn),

bin-enc(t) = tree-enc(a)(bin-enc(t1) · · ·bin-enc(tn)).

Note that we abuse notation here. The hedge bin-enc(t1) · · ·bin-enc(tn) is intended
to be the child of the leaf in tree-enc(a).

Example 3.11. We illustrate an example of this encoding in Figure 3.1. Here, we
assume that bin-enc(a) = 00, bin-enc(b) = 01, bin-enc(c) = 10, and bin-enc(d) = 11.
3

The encoding can be extended to tree languages in the obvious way: for a tree
language L ⊆ bTΣ, we define bin-enc(L) to be the set {bin-enc(s) | s ∈ L}.

Proposition 3.12. Let B be a TDBTA. Then there is a TDBTA B′ over the alphabet
{0, 1, 0′, 1′, 0′′, 1′′} such that L(B′) = bin-enc(L(B)). Moreover, B′ can be constructed
from B using logarithmic space
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Proof. Let B = (QB,ΣB, δB, FB) be a TDBTA. Let k := ⌈log |ΣB |⌉. We define
B′ = (QB′ , {0, 1, 0′, 1′, 0′′, 1′′}, δB′ , FB′). Set QB′ = {qx | q ∈ QB and x is a prefix of
bin-enc(a), where a ∈ ΣB} and FB′ = {qε | q ∈ FB}. To define the transition function,
we introduce some notation. For each a ∈ Σ and i, j = 1, . . . , ⌈log |ΣB|⌉, denote by
a[i : j] the substring of bin-enc(a) from position i to position j (we abbreviate a[i : i]
by a[i]). For each transition δB(q, a) = q1q2, add the transitions δB′(qε, a[1]) =
qa[1], δB′(qa[1], a[2]) = qa[1:2], . . . , δB′(qa[1:k−1], a[k]) = q1εq

2
ε . Other transitions are

defined analogously. Clearly, B′ is a TDBTA, L(B′) = bin-enc(L(B)), and B′ can be
constructed from B using logarithmic space.

It is straightforward to show that Proposition 3.12 also holds for NFAs and DFAs
(the proofs are completely analogous, as NFAs can also be seen as NBTAs on unary
trees). It is immediate from Proposition 3.12, that the lower bounds of decision prob-
lems for automata over arbitrary alphabets in Proposition 3.9 carry over to automata
working over fixed alphabets.

Hence, we obtain the following corollary to Proposition 3.12:

Corollary 3.13. Over the alphabet {0, 1}, the following statements hold:

(1) emptiness for NFAs is nlogspace-complete.

(2) universality for NFAs is pspace-complete.

(3) inclusion for NFAs is pspace-complete.

(4) intersection emptiness for DFAs is pspace-complete.

Over the alphabet {0, 1, 0′, 1′, 0′′, 1′′}, the following statement holds:

(5) intersection emptiness for TDBTAs is exptime-complete.

We say that an NFA N = (QN ,Σ, δN , IN , FN ) has degree of nondeterminism 2
if (i) IN has at most two elements and (ii) for every q ∈ QN and a ∈ Σ, the set
δN (q, a) has at most two elements. From the nlogspace-completess of the reachabil-
ity problem on graphs with out-degree 2 [Joh90], it now immediately follows that the
emptiness problem for such NFAs over a fixed alphabet is also nlogspace-complete:

Lemma 3.14. emptiness for NFAs with alphabet {0, 1} degree of nondeterminism
2 is nlogspace-complete.

The following lemma treats the intersection emptiness problem for DFAs over a
one-letter alphabet.

Lemma 3.15. intersection emptiness for DFAs over one-letter alphabet {0} is
conp-hard.

Proof. We reduce the satisfiability problem for Boolean formulas in 3-CNF to the
complement of the intersection emptiness problem. The technique is an adaptation
of the proof of Meyer and Stockmeyer establishing that inequivalence of regular ex-
pressions over a one-letter alphabet is np-hard [SM73].
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Let Φ = φ1 ∧ · · · ∧ φk be a formula in 3-CNF with variables {x1, . . . , xn}. Let
p1, . . . , pn be the first n primes. Note that, due to the Prime Number Theorem,2

we only need to check values up to O(n log n) for primality, when n grows large.
Intuitively, we can represent every truth assignment of Φ with a string 0r by assigning
true to each xi if r mod pi = 0 and false otherwise. We now construct a DFA Ai

for each φi such that ∩ki=1L(A1) 6= ∅ if and only if Φ is satisfiable.
We illustrate the construction of the Ai’s by means of an example. Let φi =

(x1 ∨ ¬x2 ∨ x3) be a clause in Φ. Then L(Ai) = (0p1)∗ + (0p2)∗ + (0p3)∗. Hence, Ai

accepts all strings that satisfy φi. Note that, since (0pj )∗ or its complement can be
easily represented by a DFA and since we only take unions of three automata, each
Ai has O(n3·2) states.

Finally, it is easy to see that a string w ∈ ∩ki=1L(A1) if and only if w encodes
a truth assignment that satisfies Φ. Clearly, the reduction can be carried out in
logspace.

In the following proposition, we treat the emptiness problem for DTDs: given a
DTD d, is L(d) = ∅? Note that L(d) can be empty even when d is not. For instance,
the trivial grammar a→ a generates no finite trees.

Proposition 3.16. emptiness is

(1) ptime-complete for DTD(NFA), DTD(DFA), and DTD(RE); and,

(2) conp-complete for DTD(SL).

Proof. (1) The upper bound follows from a (trivial) reduction to the emptiness prob-
lem for NTA(NFA)s, which is in ptime (Proposition 3.18).

For the lower bound, we reduce in logspace from path systems [Coo74], which
is known to be ptime-complete. path systems is the decision problem defined as
follows: given a finite set of propositions P , a set A ⊆ P of axioms, a set R ⊆ P×P×P
of inference rules and some p ∈ P , is p provable from A using R? Here, (i) every
proposition in A is provable from A using R and, (ii) if (p1, p2, p3) ∈ R and if p1 and
p2 are provable from A using R, then p3 is also provable from A using R.

In our reduction, we construct a DTD (Σ, d, p) such that

(Σ, d, p) is not empty if and only if p is provable from A using R.

Concretely, we define Σ to be the set P . Furthermore, for every (a, b, c) ∈ R, we add
the string ab to d(c); and, for every a ∈ A, we set d(a) = {ε}. Clearly, (Σ, d, p) satisfies
the requirements and that every language d(a) can be represented by a sufficiently
small DFA or RE.

(2) We provide an np algorithm to check whether a DTD(SL) (Σ, d, r) defines
a non-empty language. Intuitively, the algorithm computes the set S = {a ∈ Σ |
L((Σ, d, a)) 6= ∅} in an iterative manner and accepts when r ∈ S.

2The Prime Number Theorem states that limn→∞
π(n)

n/ lnn
= 1, where π(n) denotes the number of

primes lesser than or equal to n. A corollary is that the n-th prime can be approximated by n logn,
up to a constant factor, when n grows large. A simple proof of the Prime Number Theorem has been
published by Newman [New80].
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Let k be the largest integer occurring in any SL-formula in d. Initially, S is empty.
The iterative step is as follows. Guess a sequence of different symbols b1, . . . , bm in

S. Then guess a vector (v1, . . . , vm) ∈ {0, . . . , k + 1}m, where k is the largest integer
occurring in any SL-formula in d. Intuitively, the vector (v1, . . . , vm) represents the
string bv11 · · · b

vm
m . From Lemma 3.1 it follows that any SL-formula in d is satisfiable if

and only if it is satisfiable by a string of the form au1
1 · · · a

un
n , where Σ = {a1, . . . , an},

and for all i = 1, . . . , n, ui ∈ {0, . . . , k + 1}. Now add to S each a ∈ Σ for which
bv11 · · · b

vm
m |= d(a). Note that this condition can be checked in ptime. Repeat the

iterative step at most |Σ| times and accept when r ∈ S.
The conp-lowerbound follows from an easy reduction of non-satisfiability. Let φ

be a propositional formula with variables x1, . . . , xn. Let Σ be the set {a1, . . . , an}.
Let (Σ, d, r) be the DTD where d(r) = φ′, where φ′ is the formula φ in which every
xi is replaced by a=1

i . Hence, (Σ, d, r) defines the empty tree language if and only if
φ is unsatisfiable.

Reducing a DTD is the act of finding an equivalent reduced DTD.3

Corollary 3.17.

(1) Reducing a DTD(NFA) is ptime-complete;

(2) reducing a DTD(RE) is ptime-complete; and

(3) reducing a DTD(SL) is np-complete.

Proof. We first show the upper bounds. Let (Σ, d, s) be a DTD(NFA) or DTD(SL)
over alphabet Σ. In both cases, the algorithm performs the following steps for each
a ∈ Σ:

(i) Test whether a is reachable from s. That is, test whether there is a sequence of
Σ-symbols a1, . . . , an such that

• a = s and an = a; and

• for every i = 2, . . . , n, there exists a string w1aiw2 ∈ d(ai−1), for w1, w2 ∈
Σ∗.

(ii) Test whether L((Σ, d, a)) 6= ∅.

Symbols that do not pass test (i) and (ii) are deleted from the alphabet Σ of the
DTD. Let c be such a deleted symbol. In the case of SL, every atom c≥i and c=i is
replaced by true when i = 0 and false otherwise. In the case of NFAs, every transition
mentioning c is removed and in the case of REs, every symbol c is replaced by ∅.

In the case of a DTD(NFA) and DTD(RE), step (i) is in nlogspace and step (ii)
is in ptime. In the case of a DTD(SL), both tests (i) and (ii) are in np.

For the lower bound, we argue that

(1) if there exists an nlogspace-algorithm for reducing a DTD(NFA) or DTD(RE),
then emptiness for DTD(NFA)s and DTD(RE)s is in nlogspace; and,

3Recall the definition of a reduced DTD from page 14.
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R1 := {q ∈ Q | ∃a ∈ Σ, ε ∈ δ(q, a)};
for i := 2 to |Q| do
Ri := {q ∈ Q | ∃a ∈ Σ, δ(q, a) ∩R∗i−1 6= ∅};

end for
R := R|Q|;

Figure 3.2: Computing the set R of reachable states.

(2) if there exists a ptime-algorithm for reducing a DTD(SL), then emptiness for a
DTD(SL) is in ptime.

Statements (1) and (2) are easy to show: one only has to observe that an emptiness
test of a DTD can be obtained by reducing the DTD and verifying whether the
alphabet of the resulting DTD still contains the start symbol.

The following proposition is a very useful tool for obtaining upper bounds on the
complexity of the typechecking problem.

Proposition 3.18.

(1) emptiness for NTA(NFA)s is in ptime.

(2) Deciding whether an NTA(NFA) defines a finite language is in ptime.

(3) For a NTA(NFA) N , we can generate a description of a tree t ∈ L(N) in ptime.

Proof. (1) Let B = (Q,Σ, δ, F ) be an NTA(NFA). The algorithm in Figure 3.2 com-
putes the set of reachable states R := {q | ∃t ∈ TΣ : q ∈ δ∗(t)} in a bottom-up
manner. Clearly, L(B) = ∅ if and only if R ∩ F = ∅. Note that Ri ⊆ Ri+1 and
R1 = {δ∗(a) | a ∈ Σ}. We argue that the algorithm is in ptime. Clearly, R1 can be
computed in ptime. Further, the for-loop makes a linear number of iterations. Every
iteration is a linear number of non-emptiness tests of the intersection of an NFA with
R∗i−1 where Ri−1 ⊆ Q. As emptiness for NFAs is in nlogspace (Lemma 3.9), the
latter is in ptime.

(2) This immediately follows from (1) and results in [CDG+01]. Indeed, an efficient
way to test for finiteness is to check the existence of a loop. A language is infinite
if and only if there is a loop on some useful state, that is, some state that can be
used in an accepting run on some tree. The set of useful states is the subset of R (as
computed in (1)) of states which are reachable from a state in F .

(3) This is an easy adaptation of the emptiness algorithm in part (1). Indeed, for
every computed state q ∈ Ri where i > 1, we can remember the witnesses symbol
a ∈ Σ and the string w ∈ R∗i−1 ∩ δ(q, a). Using these witnesses, a Directed-Acyclic-
Graph-representation of the counterexample tree t can easily be computed in a top-
down manner, starting from an accepting state in R|Q|.

We say that a tree automaton is complete when, for every a ∈ Σ, we have
⋃

q∈Q δ(q, a) = Q∗. We denote the set of bottom-up deterministic complete tree
automata by DTAc.
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Lemma 3.19. emptiness for DTAc(DFA)s is ptime-complete.

Proof. The upper bound is immediate from Proposition 3.18(1).
The lower bound is obtained analogously as in the lower bound proof in Propo-

sition 3.16(1). Given an instance P,A and R of path systems, we construct a
DTAc(DFA) A = (Σ ∪ {qerror},Σ, δ,Σ) such that L(A) is empty if and only if p
is provable. In particular, for every (a, b, c) ∈ R, we add the string ab to δ(c, c);
for every a ∈ A, δ(a, a) = {ε}. Further, for every a ∈ Σ we define δ(qerror, a) as
(Σ ∪ {qerror})

∗ − L(δ(a, a)). Clearly, (d, p) satisfies the requirements.

3.4 Alternating String Automata

We discuss two-way alternating string automata [LLS84]. We devote a separate sec-
tion for this discussion, as we introduce quite a bit of technical material which is not
used elsewhere in the thesis. We use the result of the present section in the proof of
Theorem 4.3(3).

To prevent automata falling off the input string, we use delimiters ⊲ and ⊳ not
occurring in Σ. By Σ⊲⊳ we denote Σ ∪ {⊲, ⊳}. We tacitly assume that ⊲ and ⊳ only
occur on the left and right end of the string, respectively.

Definition 3.20. A two-way alternating finite automaton (2AFA) is a tuple A =
(Q,Σ⊲⊳, δ, I, F, r, U) where

• Q is a finite set of states;

• I, F, U are subsets of Q and are the sets of initial, final and universal states,
respectively;

• r ∈ Q \ F is the rejecting state;

• δ : Q× Σ⊲⊳ → 2Q×{←,−,→} is the transition function. 3

A configuration of A on a string w = ⊲w2 · · ·wn−1⊳ is a pair (j, q), where j ∈
Nodes(w) and q ∈ Q. Intuitively, j is the current tape position and q is the current
state. A configuration (j, q) is initial (accepting) if q ∈ I (q ∈ F ) and j = 1 (j = |w|).
A configuration (j, q) is universal (existential) if q ∈ U (q ∈ Q−U). Given γ = (j, q)
and γ′ = (j′, q′), we define the step-relation ⊢ on configurations as follows: γ ⊢ γ′ if
and only if (q′, d) ∈ δ(q, a), labw(j) = a, and j′ = j − 1, j′ = j, or j′ = j + 1 if and
only if d =←, d = −, or d =→, respectively. We assume that an automaton never
attempts to move to the left (right) of a delimiter ⊲ (⊳). Further, we assume that A
only reaches a final state at the delimiter ⊳ and that a computation branch of A only
rejects by reaching r at the delimiter ⊳. Note that because of this last convention,
the transition function of a two-way alternating finite automaton is complete, that is,
for all a ∈ Σ ∪ {⊲}, q ∈ Q, δ(q, a) 6= ∅ and for all q ∈ Q \ ({r} ∪ F ), δ(q, ⊳) 6= ∅. For a
configuration γ, a γ-run of A on a string w is a (possibly infinite) tree where nodes
are labeled with configurations as follows:

1. the root is labeled with γ;
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2. every inner node labeled with an existential configuration γ has exactly one
child γ′ and γ ⊢ γ′; and,

3. let for any universal configuration γ, {γ1, . . . , γm} := {γ′ | γ ⊢ γ′}, then every
inner node labeled with γ has exactly m children labeled γ1, . . . , γm.

An accepting γ-run of A on w is a γ-run which does not contain an infinite path and
where every leaf node is labeled with an accepting configuration. A run of A on w
is a γ-run where γ is an initial configuration. A Σ-string w is accepted by A if there
exists an accepting run of A on ⊲w⊳. The language accepted by A is defined to be
the set of strings that are accepted by A, and is denoted by L(A). The size of a A is
|Σ|+ |Q|+

∑

q∈Q,a∈Σ |δ(q, a)|.
We say that A loops on w if there is a run on w which contains an infinite path. A

2AFA is then loop-free when it never loops. We denote the class of loop-free two-way
alternating finite automata by 2AFAlf . Note that 2AFAlf accept only regular string
languages [LLS84]. A two-way non-deterministic finite automaton, denoted 2NFA, is
a 2AFA where U = ∅.

The construction in the next lemma is a slight adaptation of a construction from
Vardi [Var89]. In Proposition 3.22, we use an on-the-fly construction of the automaton
N constructed in this proof. Although the lemma appears in the literature without
a restriction to loop-free automata [CGKV88], it is not clear how to adapt it to an
on-the-fly algorithm.

Lemma 3.21. Let A be an 2AFAlf, then there exists an NFA N whose size is expo-
nential in the size of A such that L(N) = L(A).

Proof. Let A = (QA,Σ⊲⊳, δA, IA, FA, rA, UA) be an 2AFAlf. We construct an NFA
N = (QN ,Σ⊲⊳, δN , IN , FN ) with QN = (2QA × 2QA), IN = {(∅, U) | U ∩ IA 6= ∅},
FN = {(U, ∅) | U ∩ FA 6= ∅ and rA 6∈ U}. For ease of exposition, N also operates
over delimited strings. Intuitively, when N is in state (U, V ) when processing the jth
symbol of input w = w1 · · ·wn, then for every state p ∈ V , A must accept w1 · · ·wn

when started in p on position j. Note that w1 = ⊲ and wn = ⊳. The set U is the set
V of position j − 1. Initial and final states are of the form (∅, U) and (U, ∅) as the
two-way automaton cannot move past the left and right delimiter, respectively.

The transition function is defined as follows. For every (U, V ), (T, U) ∈ QN and
a ∈ Σ⊲⊳, (U, V ) ∈ δA((T, U), a) if and only if, for every p in U − FA, the following
holds:

• if p is an existential state then there exists a pair (p′, d′) ∈ δA(p, a) such that
p′ ∈ T if d′ =←, p′ ∈ U if d′ = −, and p′ ∈ V if d′ =→; and,

• if p is a universal state then for all pairs (p′, d′) ∈ δ(p, a), p′ ∈ T if d′ =←,
p′ ∈ U if d′ = −, and p′ ∈ V if d′ =→.

Clearly, the size of N is exponential in the size of A. It remains to show that
L(A) = L(N). Clearly, ⊲ε⊳ ∈ L(A) if and only if ⊲ε⊳ ∈ L(N). Therefore, let
w = ⊲w1 · · ·wn⊳ for n > 0. Suppose that there is an accepting run r of A on input w.
Define Q0 = ∅, Qi = {p | (i, p) is a label in r} for i = 1, . . . , n+1, Qn+2 = {p | (n+2, p)
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is a leaf label in r}, and Qn+3 = ∅. It is easy to check that (Q0, Q1) ∈ IN and ρ is an
accepting run for N on w where ρ(i) = (Qi, Qi+1) for i = 1, . . . , n+ 2.

For the other direction, suppose ρ is an accepting run of N on w. Then, let
(Qi, Qi+1) = ρ(i) for every i ∈ Nodes(w). For i ∈ Nodes(w), define md(i) as i − 1, i,
and i+1, when d is←, −,→, respectively. We define the depth of a configuration (i, q)
where q ∈ Qi, denoted depth(i, q), inductively as follows: if q ∈ FA then depth(i, q) =
0; otherwise, depth(i, q) is

max{depth(j, q′) + 1 | (q′, d) ∈ δA(q, lab
w(i)), q′ ∈ Qj and md(i) = j}.

As A does not loop this notion is well-defined. By induction on the depth of configu-
rations γ = (i, q), it is easy to construct an accepting γ-run of height depth(i, q). The
claim then follows for an initial configuration (1, q) with q ∈ Q1 ∩ IA.

When a 2AFA is not loop-free, then the depth(i, q) is not well-defined for all
strings, and the construction of a run for the 2AFA from a run of the NFA might lead
to an infinite tree.

Proposition 3.22. emptiness for NTA(2AFAlf) is in pspace.

Proof. From the proof of Proposition 3.18(1), it follows that emptiness of an NTA
can be reduced to a polynomial number of tests of the following form:

(i) ε ∈ δ(q, a); and,

(ii) δ(q, a) ∩R∗i−1 6= ∅.

We show that when δ(q, a) is represented by a 2AFAlf, both tests can be done in
pspace.

Let B = (Q,Σ, δ, F ) be an NTA(2AFAlf) and let for every q ∈ Q and a ∈ Σ, Aq,a =
(Qq,a, Q⊲⊳, δ

q,a, Iq,a, F q,a, rq,a, U q,a) be the 2AFAlf representing δ(q, a). Denote by
N q,a the NFA equivalent to Aq,a given by the construction of Lemma 3.21. Of course,
we cannot construct N q,a in polynomial space as it is exponentially bigger than Aq,a.
Therefore, we will construct N q,a on the fly. We denote the transition function of
N q,a by δq,aN .

We first argue that given a b ∈ R∗i−1 and two states (T, U), (U, V ) of N q,a, we
can check in pspace that (U, V ) ∈ δq,aN ((T, U), b). Indeed, we just have to check
for all elements p ∈ U the constraints mentioned in Lemma 3.21. That is, if p is
existential, we check that there is a (p′, d′) ∈ δq,aN (p, b) such that p′ ∈ T , p′ ∈ U ,
or p′ ∈ V depending on d′. If p is a universal state, we have to verify that for all
(p′, d′) ∈ δq,aN (p, b), p′ ∈ T , p′ ∈ U , or p′ ∈ V depending on d′. These two tests merely
involve set membership and require only constant space.

We first describe the algorithm to check (i). We need to check whether ⊲⊳ is
accepted by N q,a. To this end, we guess states (T1, U1), (T2, U2), (T3, U3) such that
the first state is an initial state; the last state is an accepting state; and, (T2, U2) ∈
δq,aN ((T1, U1), ⊲) and (T3, U3) ∈ δq,aN ((T2, U2), ⊳). By the previous discussion, the latter
can be done in pspace.

Next, we describe the algorithm to check (ii). Given Ri−1 ⊆ Q, q ∈ Q and a ∈ Σ,
we need to check whether q ∈ Ri. The latter reduces to verifying whether there is
some string b1 · · · bn in R∗i−1 that is accepted by Aq,a or, equivalently, N q,a.
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1. Initialization step: We start by guessing an initial state (T, U) and a state (U, V )
such that (U, V ) ∈ δq,aN ((T, U), ⊲). We write the state (U, V ) on the tape.

2. Iteration step: Let (U, V ) be the state written on the tape. We guess a state
(U ′, V ′) such that (U ′, V ′) ∈ δq,aN ((U, V ), ⊳). If (U ′, V ′) is final, then we know
that R∗i−1 ∩ Aq,a 6= ∅ and accept. Otherwise, we erase (U ′, V ′) and guess a
symbol b ∈ Ri−1 and a state (U ′′, V ′′) such that (U ′′, V ′′) ∈ δq,aN ((U, V ), b). We
erase (U, V ), write (U ′′, V ′′) on the tape and resume at at the beginning of the
iteration step.

Clearly, R∗i−1∩A
q,a 6= ∅ if and only if there is a run of the algorithm that accepts.

Further, by the discussion above, the algorithm only uses polynomial space.

3.5 Tiling Systems

Tiling systems can be quite a useful tool for proving complexity lower bounds. We
therefore briefly discuss the notions of corridor tiling and two-player corridor tiling.
We make use of tiling systems in the proof of Theorem 5.6 and in Chapter 9. A
tiling system is a tuple D = (T,H, V, b̄, t̄, n) where n is a natural number, T is a
finite set of tiles ; H,V ⊆ T × T are horizontal and vertical constraints, respectively;
and b̄, t̄ are n-tuples of tiles (b̄ and t̄ stand for bottom row and top row, respectively).
A corridor tiling is a mapping λ : {1, . . . ,m} × {1, . . . , n} → T , for some m ∈ N,
such that b̄ = (λ(1, 1), . . . , λ(1, n)) and t̄ = (λ(m, 1), . . . , λ(m,n)). Intuitively, the
first and last row of the tiling are b̄ and t̄, respectively. A tiling is correct if it
respects the horizontal and vertical constraints. That is, for every i = 1, . . . ,m
and j = 1, . . . , n − 1, (λ(i, j), λ(i, j + 1)) ∈ H , and for every i = 1, . . . ,m − 1 and
j = 1, . . . , n, (λ(i, j), λ(i + 1, j)) ∈ V .

To every tiling system we can associate a game as follows: the game consists of two
players (Constructor and Spoiler). The game is played on an N×n board. Each
player places tiles in turn. While player Constructor tries to construct a corridor
tiling, player Spoiler tries to prevent it. Player Constructor wins if Spoiler

makes an illegal move (with respect to H or V ), or when a correct corridor tiling can
be constructed. We say that Constructor has a winning strategy if she wins no
matter what Spoiler does.

In the sequel, we use reductions from the following problems:

• Corridor Tiling: given a tiling system, is there a correct corridor tiling?

• Two-Player Corridor Tiling: given a tiling system, does Constructor

have a winning strategy?

The following theorem is due to Chlebus [Chl86].

Theorem 3.23.

(1) Corridor Tiling is pspace-complete.

(2) Two-player Corridor Tiling is exptime-complete.





4
Towards a Tractable Case for

Typechecking

We initiate the study of the typechecking problem for XML transformations. For the
most general transducers, we show that even for very weak DTDs (DTDs that use
DFAs or SL-formulas to represent regular languages), the typechecking problem is
exptime-complete. We then investigate how the complexity of typechecking can be
reduced by restricting the power of the tree transducers and schema languages.

In practice, the number of copies a transformation makes is usually rather small
(see, for example, Example 2.15 where the first rule makes two copies of every chapter).
Therefore, it makes sense to consider the class of transducers making at most C copies
where C is a number fixed in advance. In Section 4.2, we restrict the copying power
of the transducers, while still allowing deletion. Unfortunately, typechecking still
remains exptime-complete for the weakest DTDs we consider. In Section 4.3, we
investigate the orthogonal restriction: non-deleting transformations with unbounded
copying. We distinguish between tree automata and DTDs as schema languages. In
the case of tree automata, the complexity remains exptime-hard. When considering
DTDs the complexity drops to pspace when NFAs or DFAs are used to specify right-
hand sides; when SL-formulas are used the complexity drops to conp. The pspace

lower bound crucially depends on the ability of a transducer to make arbitrary copies
of the input tree. We show in Section 4.4 that even on this class, in the case of
tree automata and DTDs with NFAs, the complexity remains exptime and pspace-
hard, respectively. Only when right-hand sides of rules are represented by DFAs, the
typechecking problem becomes tractable.

In conclusion, our inquiries reveal that the complexity of the typechecking problem
is determined by three features: (1) the ability of the transducer to delete interior
nodes; (2) the ability to make an unbounded number of copies of subtrees; and, (3)

43
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non-determinism in the schema languages. Only when we disallow all three features,
we get a ptime complexity for the typechecking problem.

An overview of our results is given in Table 4.1. All complexities are both upper
and lower bounds. NTA(X) and DTA(X) stand for non-deterministic and bottom-up
deterministic tree automata, that use X to represent their regular languages, respec-
tively. DTD(X) stands for DTDs that use X to represent their regular languages.
The exact definitions were given in Chapter 2.

TT NTA(NFA) DTA(DFA) DTD(NFA) DTD(DFA) DTD(SL)

d,uc exptime exptime exptime exptime exptime

d,bc exptime exptime exptime exptime exptime

nd,uc exptime exptime pspace pspace conp
nd,bc exptime exptime pspace ptime conp

Table 4.1: Complexities of the typechecking problem in the present setting (upper
and lower bounds). The top row shows the representation of the input and output
schemas, the leftmost column shows the class of tree transducer: “d”, “nd”, “uc”,
and “bc” stand for “deleting”, “non-deleting”, “unbounded copying”, and “bounded
copying” respectively.

4.1 The General Case

We start by considering the complexity of the typechecking problem in its most gen-
eral setting. That is, without any restrictions on transducers: both deletion and
unbounded copying is allowed. We show that the problem is in exptime for the
most powerful schema languages, namely non-deterministic tree automata. However,
the problem remains hard for exptime even for the weakest DTDs: DTDs where
right-hand sides are specified by DFAs or SL-formulas.

The lower bound is obtained through a reduction from the intersection emptiness
problem of n top-down deterministic binary tree automata, which is known to be
hard for exptime (Proposition 3.9). The transducer starts by making n copies of the
input tree. Thereafter, it simulates a different tree automaton on each copy. During
this simulation, the transducer deletes all the processed nodes. The only output that
it generates is an “error” symbol when an automaton rejects. So, the output DTD
merely has to check that an “error” symbol always appears. The latter can be done
by a very simple DFA or SL-formula.

The exptime upper bound is obtained by a translation to the typechecking prob-
lem for non-deleting transducers. The latter problem is tackled in the next section.

Theorem 4.1.

(1) TC[Td,uc, NTA(NFA)] is in exptime;

(2) TC[Td,uc, DTD(DFA)] is exptime-hard; and,

(3) TC[Td,uc, DTD(SL)] is exptime-hard.
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Proof. (1): Let T = (QT ,Σ, q
0
T , RT ) be a transducer and let Ain and Aout = (QA,Σ,

δA, FA) be two NTAs representing the input and output schema, respectively. We next
describe a non-deleting transducer S and an NTA Bout which can be constructed in
logspace, such that T typechecks with respect to Ain and Aout if and only if S
typechecks with respect to Ain and Bout. From Theorem 4.3(1) it then follows that
TC[Td,uc,NTA] is in exptime.

Intuitively, the non-deleting tree transducer S outputs the special symbol “#”
whenever T would process a deleting state. For instance, the rule (q, a) → c q is
replaced by (q, a) → c#(q). We assume that # 6∈ Σ. Formally, S = (QS ,Σ ∪
{#}, q0S, RS) with QS = QT , q

0
S = q0T , and for every rule (q, a)→ t1 · · · tn in RT , RS

contains the rule (q, a)→ t′1 · · · t
′
n, where for every i = 1, . . . , n, t′i = #(ti) if ti ∈ QT

and t′i = ti otherwise. Then, define the #-eliminating function γ as follows: γ(a(h))
is γ(h) when a = # and a(γ(h)) otherwise; further, γ(t1 · · · tn) := γ(t1) · · · γ(tn). So,
clearly, for all t ∈ TΣ, T (t) = γ(S(t)).

Next, we construct Bout such that γ(t) ∈ L(Aout) if and only if t ∈ L(Bout).
The underlying idea is quite simple. In a run on #(t1 · · · tn), Bout assigns a state
(q1, q2, q, a) to the root when the NFA for δA(q, a) halts in state q2 when processing
top(γ(#(t1 · · · tn))) starting in state q1. Here, q1, q2 are states of the automaton for
δA(q, a), q is a state of Aout and a ∈ Σ. The state q and the label a are guessed. In a
run on a(t1 · · · tn), with a 6= #, Bout assigns a state q to the root when Aout assigns
q to the root of γ(a(t1 · · · tn)).

Let for every a ∈ Σ and q ∈ QA, N
q,a = (Qq,a, QA, δ

q,a, Iq,a, F q,a) be the NFA
such that δA(q, a) = L(N q,a). We tacitly assume that all Qq,a are disjoint. Define
Bout = (QB, Σ∪{#}, δB, FB), whereQB = QA∪{(q1, q2, q, a) | q ∈ QA, a ∈ Σ, q1, q2 ∈
Qq,a}, and FB = FA.

It remains to define δB. Thereto, fix q ∈ QA and a ∈ Σ. Let I, F ⊆ Qq,a.
Let M q,a(I, F ) be the automaton behaving in the same way as N q,a with the initial
and final states replaced with I and F , respectively; further, when reading a tuple
(q1, q2, p, b) in state q1 the automaton jumps to state q2 when p = q and b = a, and
rejects otherwise. Clearly, M q,a(I, F ) is logspace constructible from N q,a. We then
simply define δB(q, a) := M q,a(Iq,a, F q,a) and δB((q1, q2, p, b),#) := Mp,b({q1}, {q2})
for all states q, (q1, q2, p, b) ∈ QB and a ∈ Σ. It is not difficult to see that γ(t) ∈
L(Aout) if and only if t ∈ L(Bout).

(2),(3): It follows immediately from Theorem 4.2 that TC[Td,uc,DTD(DFA)] and
TC[Td,uc,DTD(SL)] are exptime-hard.

4.2 Deleting Transformations with Bounded Copy-

ing

The lower bound of the previous section severely depends on the ability of transducers
to delete the interior nodes of the input tree and to make an unbounded number of
copies of subtrees. In an attempt to lower the complexity of typechecking, we restrict
this copying power in the present section and the deletion power in Section 4.3. We
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obtain that bounding the copying power in the case of deleting tree transducers does
not lower the complexity of typechecking: it remains exptime-complete.

Theorem 4.2.

(1) TC[Td,bc, DTD(DFA)] is exptime-complete; and

(2) TC[Td,bc, DTD(SL)] is exptime-complete.

Proof. The exptime upper bound follows from Theorem 4.1. We proceed by proving
the lower bounds.

We give a logspace reduction from the intersection emptiness for top-down
deterministic binary tree automata (TDBTAs) over the alphabet Σ = {0, 1, 0′, 1′,
0′′, 1′′}. The intersection emptiness problem of TDBTAs over alphabet {0, 1, 0′, 1′, 0′′,
1′′} is known to be exptime-hard (see Corollary 3.13).

For i = 1, . . . , n, let Ai = (Qi,Σ, δi, {starti}) be a TDBTA, with Σ = {0, 1, 0′, 1′,
0′′, 1′′}. We assume that {0, 1}, {0′, 1′}, and {0′′, 1′′} are the symbols of rank 0, 1,
and 2, respectively. Without loss of generality, we can assume that the state sets Qi

are pairwise disjoint. We call 0 and 1 leaf labels and 0′, 1′, 0′′ and 1′′ internal labels.
In our proof, we use the markers “ℓ” and “r” to denote that a certain node is a left
or a right child. Formally, define Σℓ := {aℓ | a ∈ Σ} and Σr := {ar | a ∈ Σ}. We use
symbols from Σℓ and Σr for the left and right children of nodes, respectively.

We now define a transducer T and two DTDs din and dout such that
⋂n

i=1 L(Ai) =
∅ if and only if T typechecks with respect to din and dout. In the construction, we
exploit the copying power of transducers to make n copies of the input tree: one for
each Ai. By using deleting states, we can execute each Ai on its copy of the input
tree without producing output. When an Ai does not accept, we output an error
symbol under the root of the output tree. The output DTD should then only check
that an error symbol always appears. A bit of care needs to be taken, as a bounded
copying transducer can not make an arbitrary number of copies of the input tree in
the same rule. The transducer therefore goes through an initial copying phase where
it repeatedly copies part of the input tree twice, until there are (at least) n copies.
The transducer remains in the copying phase as long as it processes special symbols
“#”, which we assume not to be in Σ. The input trees are therefore of the form as
depicted in Figure 4.1. In addition, the transducer should verify that the number of
#-symbols in the input equals ⌈logn⌉.

The input DTD (Σℓ ∪Σr ∪ {s,#}, din, s), which we will describe next, defines all
trees of the form as described in Figure 4.1, where s and # are alphabet symbols, and
t (which is depicted in Figure 4.1) t is a ranked Σ-tree, annotated with the symbols
“ℓ” and “r”. That is, when a node is an only child, it is labeled with an element of
Σℓ. Otherwise, it is labeled with an element of Σℓ or an element of Σr if it is a left
child or a right child, respectively. In this way, the transducer knows whether a node
is a left or a right child by examining the label. The root symbol of t is labeled with
a symbol from Σℓ. Furthermore, as t is a ranked tree, all nodes of t with one or two
children are labeled with labels in {0′ℓ, 0

′
r, 1
′
ℓ, 1
′
r} and {0

′′
ℓ , 0
′′
r , 1
′′
ℓ , 1
′′
r}, respectively, and

all leaf nodes are labeled with labels in {0ℓ, 0r, 1ℓ, 1r}.
The input DTD (Σℓ ∪Σr ∪ {s,#}, din, s) is defined as follows:

• din(s) = # + 0ℓ + 1ℓ + 0′ℓ + 1′ℓ + 0′′ℓ + 1′′ℓ ;
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s

#

#

...

#

t

Figure 4.1: Structure of the trees defined by the input schema in the proof of Theo-
rem 4.2.

• din(#) = #+ 0ℓ + 1ℓ + 0′ℓ + 1′ℓ + 0′′ℓ + 1′′ℓ ;

• for each a ∈ {0′ℓ, 1
′
ℓ, 0
′
r, 1
′
r}, din(a) = (0ℓ + 1ℓ + 0′ℓ + 1′ℓ);

• for each a ∈ {0′′ℓ , 1
′′
ℓ , 0
′′
r , 1
′′
r}, din(a) = (0′ℓ+1′ℓ+0′′ℓ +1′′ℓ )(0

′
r +1′r +0′′r +1′′r ); and,

• for each a ∈ {0ℓ, 1ℓ, 0r, 1r}, din(a) = ε.

Obviously, din can be expressed as a DTD(DFA). It can also be expressed as a
DTD(SL), as follows. For example, for every a ∈ {0′′ℓ , 1

′′
ℓ , 0
′′
r , 1
′′
r}, we define

din(a) =

(
(
(ϕ[0=1

ℓ ] ∨ ϕ[1=1
ℓ ] ∨ ϕ[(0′ℓ)

=1] ∨ ϕ[(1′ℓ)
=1]) ∨ ϕ[(0′′ℓ )

=1] ∨ ϕ[(1′′ℓ )
=1])

∧ (ϕ[0=1
r ] ∨ ϕ[1=1

r ] ∨ ϕ[(0′r)
=1] ∨ ϕ[(1′r)

=1]) ∨ ϕ[(0′′r )
=1] ∨ ϕ[(1′′r )

=1])
)
)

∧ s=0,

where for every i ∈ {ℓ, r} and x ∈ {0i, 1i, 0
′
i, 1
′
i, 0
′′
i , 1
′′
i }, ϕ[x

=1] denotes the conjunction

(x=1 ∧
∧

y∈{0i,1i,0′i,1
′
i,0

′′
i ,1

′′
i }\{x}

y=0).

Notice that the size of the SL-formula expressing din(a) is constant.
We construct a tree transducer T = (QT ,ΣT , q

ε
copy, RT ). The alphabet of T is

ΣT = Σℓ ∪ Σr ∪ {s,#, error, ok}. It will use ⌈logn⌉ special copying states qjcopy to
make at least n copies of the input tree. To define QT formally, we first introduce
the notation D(k), for k = 0, . . . , ⌈logn⌉. Intuitively, D(k) is similar to the set of
nodes of a complete binary tree of depth k + 1. For example, D(1) = {ε, 0, 1} and
D(2) = {ε, 0, 1, 00, 01, 10, 11}. The idea is that, if i ∈ D(k) \ D(k − 1), for k > 0,
then i represents the binary encoding of a number in {0, . . . , 2k − 1}. Formally, if
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k = 0, then D(k) = {ε}; otherwise, D(k) = D(k − 1) ∪
⋃

j=0,1{ij | i ∈ D(k − 1)}.

The state set QT is then the union of the sets Qℓ = {qℓ | q ∈ Qj , 1 ≤ j ≤ n},
Qr = {qr | q ∈ Qj , 1 ≤ j ≤ n}, the set {qjcopy | j ∈ D(⌈logn⌉)} and the set

{startℓj | n+ 1 ≤ j ≤ 2⌈logn⌉}. Note that the last set can be empty. It only contains
dummy states translating any input to the empty string.

We next describe the action of the tree transducer T . Roughly, the operation of
T on the input s(#(#(· · ·#(t)))) can be divided in two parts: (i) copying the tree
t a sufficient number of times while reading the #-symbols; and, (ii) simulating one
of the TDBTAs on each copy of t. The tree transducer outputs the symbol “error”
when one of the TDBTAs rejects t, or when the number of #-symbols in its input is
not equal to ⌈logn⌉. Apart from copying the root symbol r to the output tree, T only
writes the symbol “error” to the output. Hence, the output tree always has a root
labeled s which has zero or more children labeled “error”. The output DTD, which
we define later, should then verify whether the root has always one “error”-labeled
child.

Formally, the transition rules in RT are defined as follows:

• (qεcopy, s) → s(q0copyq
1
copy). This rule puts s as the root symbol of the output

tree.

• (qicopy,#)→ qi0copyq
i1
copy for i ∈ D(⌈logn⌉ − 1)−{ε}. These rules copy the tree t

in the input at least n times, provided that there are enough #-symbols.

• (qicopy,#) → startℓk, where i ∈ D(⌈log n⌉)−D(⌈logn⌉ − 1), and i is the binary
representation of k. This rule starts the in-parallel simulation of the Ai’s. For
i = n+ 1, . . . , 2⌈logn⌉, startℓi is just a dummy state transforming everything to
the empty tree.

• (qicopy, a) → error for a ∈ Σℓ ∪ Σr and i ∈ D(⌈logn⌉). This rule makes sure
that the output of T is accepted by the output tree automaton if there are not
enough #-symbols in the input.

• (startℓk,#) → error for all k = 1, . . . , 2⌈log n⌉. This rule makes sure that the
output of T is accepted by the output tree automaton if there are too much
#-symbols in the input.

• (qℓ, ar) → ε and (qr, aℓ) → ε for all q ∈ Qj , j = 1, . . . , n. This rule ensures
that tree automata states intended for left (respectively right) children are not
applied to right (respectively left) children.

• (qℓ, aℓ) → qℓ1q
r
2 and (qr , ar) → qℓ1q

r
2, for every q ∈ Qi, i = 1, . . . , n, such that

δi(q, a) = q1q2, and a is an internal symbol. This rule does the actual simulation
of the tree automata Ai, i = 1, . . . , n.

• (qℓ, aℓ) → qℓ1 and (qr, ar) → qℓ1, for every q ∈ Qi, i = 1, . . . , n, such that
δi(q, a) = q1 and a is an internal symbol. This rule does the actual simulation
of the tree automata Ai, i = 1, . . . , n.

• (qℓ, aℓ)→ ε and (qr, ar)→ ε for every q ∈ Qi, i = 1, . . . , n, such that δi(q, a) = ε
and a is a leaf symbol. This rule simulates accepting computations of the Ai’s.
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• (qℓ, aℓ) → error and (qr, ar) → error for every q ∈ Qi, i = 1, . . . , n, such that
δi(q, a) is undefined. This rule simulates rejecting computations of the Ai’s.

It is straightforward to verify that, on input s(#(#(· · ·#(t)))), T outputs the tree s
if and only if there are ⌈logn⌉ #-symbols in the input and t ∈ L(A1) ∩ · · · ∩ L(An).

Finally, dout(s) = error error∗, which can easily be defined as a DTD(DFA) and
as a DTD(SL).

It is easy to see that the reduction can be carried out in deterministic logarithmic
space, that T has copying width 2, and that din and dout do not depend on A1, . . . , An.

4.3 Non-deleting Transformations

Unfortunately, bounding the copying power of deleting tree transducers does not
seem to lower the complexity of typechecking. In this section, we investigate to
which extent the complexity lowers when we restrict ourselves to non-deleting the
tree transducers, while still allowing unbounded copying. We observe that, when
schemas are represented by tree automata, the complexity remains exptime-hard.
When tree languages are represented by DTDs, the complexity of the typechecking
problem drops to pspace and is hard for pspace even when right-hand sides of rules
are represented by DFAs. When employing SL-formulas the complexity is conp. In
summary, we prove the following results:

Theorem 4.3.

(1) TC[Tnd,uc, NTA(NFA)] is exptime-complete;

(2) TC[Tnd,uc, DTA(DFA)] is exptime-complete;

(3) TC[Tnd,uc, DTD(NFA)] is pspace-complete;

(4) TC[Tnd,uc, DTD(DFA)] is pspace-complete;

(5) TC[Tnd,uc, DTD(SL)] is conp-complete.

We prove the different parts of the above theorem in the following subsections.

4.3.1 Tree Automata

The proof establishing the upper bound in the case of typechecking with respect
to tree automata as schema languages is similar in spirit to a proof by Neven and
Schwentick [NS02], which shows that containment of Query Automata is in exptime.

Theorem 4.3(1). TC[Tnd,uc, NTA(NFA)] is exptime-complete.

Proof. Hardness is immediate as containment of NTAs is already hard for exp-

time (Corollary 3.10). We therefore only prove membership in exptime. Let T =
(QT ,Σ, q

0
T , RT ) be a non-deleting tree transducer and let Ain = (Qin,Σ, δin, Fin) and
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Aout = (Qout,Σ, δout, Fout) be the NTAs representing the input and output schema,
respectively.

In brief, our algorithm computes the set

P = {(S, f) | S ⊆ Qin, f : QT → (2Qout)∗, ∃t such that

S = δ∗in(t) and ∀q ∈ QT , f(q) = δ∗out(T
q(t))}.

Note that since f(q) = δ∗out(T
q(t)) and t is a tree,1 the length of f(q) is bounded

by the size of the largest rhs in T . Therefore, the number of functions f we consider
is bounded by (2|Qout|)|T ||QT |. Intuitively, in the definition of P , t can be seen as a
witness of (S, f). Indeed, S is the set of states reachable by Ain at the root of t, while
for each state q of the transducer, f(q) is the sequence of sets of states reachable by
Aout at the root of T q(t). So, the given instance does not typecheck if and only if

there exists an (S, f) ∈ P such that Fin ∩ S 6= ∅ and Fout ∩ f(q0T ) = ∅. As T q0T (t) is
always a tree, f(q0T ) is a subset of Qout. In Figure 4.2, an algorithm for computing P
is depicted. We will show that this algorithm is in exptime. Hence, typechecking is
in exptime. We explain the notation in Figure 4.2. By rhs(q, a)[p← f1(p) · · · fn(p) |
p ∈ QT ], we denote the hedge obtained from rhs(q, a) by replacing every occurrence

of a state p by the sequence f1(p) · · · fn(p). By δ̂out : HΣ(2
Qc) → (2Qc)∗ we denote

the transition function extended to hedges in HΣ(2
Qout). To be precise, for a ∈ Σ,

δ̂out(a) := {q | ε ∈ δout(q, a)}; for P ⊆ Qout, δ̂out(P ) := P ; for h = a(t1 · · · tn),

δ̂out(h) := {q | ∀i = 1, . . . , n, ∃qi ∈ δ̂out(ti) : q1 · · · qn ∈ δ̂out(q, a)}; and for h =

t1 · · · tn, δ̂out(h) = δ̂out(t1) · · · δ̂out(tn). The correctness of the algorithm follows from
the following lemma, which is proved by induction on the number of iterations of the
while loop.

Claim 4.4. A pair (S, f) has a witness tree of depth i if and only if (S, f) ∈ Pi.

Proof. Immediate for i = 1.

For the induction step, suppose that, for some i, every pair is in Pi−1 if and only if
it has a witness of depth i−1. Let (S, f) ∈ Pi, then, by definition, there is an a ∈ Σ and
a string (S1, f1) · · · (Sn, fn) ∈ P ∗i−1 so that S := {p | ∃rj ∈ Sj , j = 1, . . . , n, r1 · · · rn ∈
δin(p, a)} and for every q ∈ QT , f(q) := δ∗out

(
rhs(q, a)[p ← f1(p) · · · fn(p) | p ∈ QT ]

)
.

Hence, a(t1 · · · tn) is a witness of (S, f), where each tj is a witness for (Sj , fj).
Conversely, suppose that (S, f) has a witness tree a(t1 · · · tn) of depth i. By the

induction hypothesis, there exist tuples (S1, f1), . . . , (Sn, fn) ∈ Pi−1 such that tj is a

witness for (Sj , fj) for each j = 1, . . . , n. Considering the definition of δ̂out, it is then
clear that the algorithm of Figure 4.2 puts (S, f) in Pi.

It remains to show that the algorithm is in exptime. The set P1 can be computed
in time polynomial in the sizes of Ain, Aout, and T . As Pi ⊆ Pi+1 for all i, and there
are 2|Qin| · (2|Qout|)|T ||QT | pairs (S, f), the loop can only make an exponential number
of iterations. So, it suffices to show that each iteration can be done in exptime.
Actually, we argue that it can be checked in pspace whether a tuple (S, f) ∈ Pi.

1Recall that T q(t) is the translation of t started in state q. See page 16 for the formal definition.



4.3. Non-deleting Transformations 51

Let (S, f) be a pair. We describe separately how S and f are checked. It should
be clear how the two algorithms can be merged into one pspace algorithm. We start
with S.

(a) For every q ∈ Qin and a ∈ Σ, let N q,a be the NFA accepting those strings
R1 · · ·Rk ∈ (2Qin)∗ for which there are ri ∈ Ri such that r1 · · · rk ∈ δin(q, a).
It is too expensive to actually construct the automaton N q,a as the alphabet is
exponentially bigger than the one of δin(q, a). However, the set of states is the
same. It is important to note that given a set Ri and a state q, the set of all
states reachable from q by reading Ri can be computed in pspace.

So, we need to check the existence of an a ∈ Σ and a string Z := S1 · · ·Sn that is
accepted (rejected) by N q,a for all q ∈ S (q ∈ Qin \S). The latter can be achieved
in pspace by guessing an a ∈ Σ and then guessing Z one symbol at a time while
executing all N q,a’s in parallel for every q ∈ Qin. Indeed, for every automaton we
remember the set of states that can be reached by reading the prefix of Z seen so
far. Initially, these sets are the respective initial states. Then, whenever a new Si

is guessed, for each automaton the set of states reachable from a state from the
remembered set by reading Si, is computed. By the discussion above the latter
is in pspace.

(b) Checking f is more technical. We use the a guessed in the previous step. Denote
rhs(q, a)[p ← f1(p) · · · fn(p) | p ∈ QT ] by ξq,a. Now, we need to check for all

q ∈ QT whether f(q) = δ̂out(ξq,a). For all p ∈ Qout and b ∈ Σ, let Mp,b be
the NFA accepting strings R1 · · ·Rk ∈ (2Qout)∗ for which there are ri ∈ Ri,
i = 1, . . . , k, such that r1 · · · rk ∈ δout(p, b). Again, we will not construct the
latter automata. It is enough to realize that given a state and an R ⊆ Qout, the
set of states reachable from this state by reading R can be computed in pspace.

First, assume every rhs(q, a) is of the form b(q1 · · · qℓ). Then, ξq,a is of the form

b(w1 · · ·wℓ) with wj = f1(qj) · · · fn(qj). So, to check that f(q) = δ̂out(ξq,a), we
need to verify that w = w1 · · ·wℓ is accepted (rejected) by Mp,b for all p ∈ f(q)
(p 6∈ f(q)). However, like in (1), our algorithm successively guesses new fi’s while
forgetting the previous ones and should, hence, be able to run the automata on
w in this way. As w consists of ℓ parts we guess ℓ sets of states P p,b

i , i = 0, . . . , ℓ,

where P p,b
0 is the set of initial states of Mp,b. The meaning of these sets is the

following: every automaton Mp,b reaches precisely the states in P p,b
i after reading

w1 · · ·wi−1. The algorithm can verify the latter criterion by running Mp,b on each
wi separately started in the states P p,b

i−1 and verifying whether P p,b
i is reached.

Running Mp,b on wi can be done in pspace as described in part (a).

When right-hand sides of rules can be arbitrary trees in T (QT ), we guess for
every inner node u in a rhs(q, a) a subset Rq,a

u of Qout. When u is the root, then
Rq,a

u = f(q). Intuitively, these sets represent precisely the sets of states that can
be reached at a node u by Aout. For leaf nodes u, we define Rq,a

u as δ∗out(c) and
as the sequence f1(p) · · · fn(p) when u is labeled with c and p, respectively. We
then need to verify for every inner node u labeled with b with n children, that
Rq,a

u1 · · ·R
q,a
un is accepted (rejected) by Mp,b for all p ∈ Rq,a

u (p 6∈ Rq,a
u ). Again, the

latter is checked as described above.
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P0 := ∅;
i := 1;
P1 :=

{
(δ∗in(a), f) | a ∈ Σ, ∀q ∈ QT : f(q) = δ∗out(T

q(a))
}
;

while Pi 6= Pi−1 do
Pi :=

{
(S, f) | ∃(S1, f1) · · · (Sn, fn) ∈ P ∗i−1, ∃a ∈ Σ :
S = {p | ∃rk ∈ Sk, k = 1, . . . , n, r1 · · · rn ∈ δin(p, a)},

∀q ∈ QT : f(q) = δ̂out
(
rhs(q, a)[p← f1(p) · · · fn(p) | p ∈ QT ]

)}
;

i := i+ 1;
end while
P := Pi;

Figure 4.2: The algorithm of Theorem 4.3(1) computing P .

Finally, when right-hand sides of rules can be hedges, one needs to take into
account that f(q) can be a sequence of sets of states.

The exptime-hardness of TC[Tnd,uc,DTA(DFA)] follows immediately from part
(2) of Theorem 4.5.

4.3.2 DTDs

When we consider DTD(NFA)s to represent input schemas the complexity drops to
pspace. We reduce the typechecking problem to the emptiness problem of NTAs
where transition functions are represented by loop-free two-way alternating finite
automata, denoted 2AFAlf.2 The complexity of the latter problem is in pspace

(Proposition 3.22 in Section 3.4). In particular, the constructed NTA accepts precisely
those trees which satisfy the input DTD but are transformed by the transducer to
trees outside the output DTD. Hence, the instance typechecks if and only if the NTA
accepts the empty language. The proof makes use of two-way non-deterministic string
automata, denoted 2NFA, which are also defined in Section 3.4 (page 39).

Theorem 4.3(3). TC[Tnd,uc, DTD(NFA)] is pspace-complete.

Proof. The hardness result can be shown by an easy reduction from the universality
problem of NFAs with alphabet {0, 1}. The latter problem is pspace-hard, as shown
in Corollary 3.13.

To this end, letN be an NFA with alphabet {0, 1}. The input DTD ({s, 0, 1}, din, s)
defines a tree of depth two where din(s) = (0+1)∗. The tree transducer is the identity
transformation. The output DTD dout has as start symbol s and dout(s) = L(N).
Hence, this instance typechecks if and only if {0, 1}∗ ⊆ L(N). This reduction can be
carried out by a deterministic logspace algorithm.

For the complexity upper bound, let T be a non-deleting tree transducer. Let din
and dout be the input and output DTDs, respectively. We construct an NTA(2AFAlf)
B such that L(B) = {t ∈ L(din) | T (t) 6∈ L(dout)}. Moreover, the size of B is

2Alternating finite automata are discussed in Section 3.4.
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polynomial in the size of T , din, and dout. Thus, L(B) = ∅ if and only if T typechecks
with respect to din and dout. By Proposition 3.22, we can test whether L(B) = ∅ is
in pspace, which shows that typechecking is possible in pspace.

To explain the operation of the automaton, we introduce the following notions.
Recall that for a state q of T and a ∈ Σ we denote the string top(rhs(q, a)) by
q[a]. For a string w = a1 · · · an, we denote by q[w] the string q[a1] · · · q[an]. For a
hedge h and a DTD d, we say that h partly satisfies d if for every u ∈ Nodes(h),
labh(u1) · · · labh(un) ∈ L(d(labh(u))) where u has n children. Note that there is no
requirement on the root nodes of the trees in h. Hence, the term partly.

Intuitively, the automaton B works as follows on t ∈ TΣ: (i) B checks that t ∈
L(din); and, (ii) at the same time, B non-deterministically picks a node v ∈ Nodes(t)
and a state q in which v is processed; B then accepts if h does not partly satisfy
dout, where h is obtained from rhs(q, a) by replacing every state p by the string
p(labt(v1) · · · labh(vn)). Here, we assume that v is labeled a and has n children. As
dout is specified by NFAs and we have to check that dout is not partly satisfied, we
need to check membership in the complement of a regular expression. We therefore
use alternation to specify the transition function of B. Additionally, as T can copy
its input, it is convenient to use two-way automata. The latter will become clear in
the actual construction.

Formally, let T = (QT ,Σ, q
0
T , RT ). Define B = (QB,Σ, FB, δB) as follows. The

set of states QB is the union of the following sets: Σ, {(a, q) | a ∈ Σ, q ∈ QT }, and
{(a, q, check) | a ∈ Σ, q ∈ QT }. If there is an accepting run on a tree t, then a node v
labeled with a state of the form a, (a, q), (a, q, check) has the following meaning:

a: v is labeled with a and the subtree rooted at v partly satisfies din.

(a, q): same as in previous case with the following two additions: (1) v is processed
by T in state q; and, (2) a descendant of v will produce a tree that does not
partly satisfy dout.

(a, q, check): same as the previous case only now v itself will produce a tree that does
not partly satisfy dout.

The set of final states is FB := {(a, q0T ) | a ∈ Σ}. The transition function is defined
as follows: for all a, b ∈ Σ, q ∈ QT :

1. δB(a, b) = δB((a, q), b) = δB((a, q, check), b) = ∅ for all a 6= b;

2. δB(a, a) = din(a) and δB((a, q), a) consists of those strings a1 · · ·an such that
there is precisely one index j ∈ {1, . . . , n} for which aj = (b, p) or aj =
(b, p, check) where p occurs in rhs(q, a) and for all i 6= j, ai ∈ Σ; further,
a1 · · · aj−1baj+1 · · · an ∈ L(din(a)). Note that δB((a, q), a) is defined in such a
way that it ensures that all subtrees partly satsify din and that at least one
subtree will generate a violation of dout. Clearly, δB(a, a) and δB((a, q), a) can
be represented by NFAs whose size is polynomial in the size of the input.

3. Finally, δB((a, q, check), a) = {a1 · · · an | a1 · · · an ∈ din(a) and h does not partly
satisfy L(dout)}. Here, h is obtained from rhs(q, a) by replacing every state p
by p(a1 · · ·an).
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It remains to argue that δB((a, q, check), a) can be computed by a 2AFAlf A of
polynomial size. We sketch the construction of this automaton. First, for every b ∈ Σ
and m ∈ {out, in}, let Ab

m be the NFA accepting dm(b).
For every v in rhs(q, a), let sv be concatenation of the labels of the children of

v. Define the 2NFA Nv as follows: suppose sv is of the form z0p1z1 · · · pℓzℓ where
zi ∈ Σ∗ and pi ∈ QT , then a1 · · · an ∈ L(Nv) if and only if

z0p1(a1 · · · an)z1 · · · pℓ(a1 · · ·an)zℓ ∈ L(A
labh(v)
out ).

As sv is fixed, Nv can recognize this language by reading a1 · · · an ℓ times while simu-

lating A
labh(v)
out . More precisely, the automaton simulates A

labh(v)
out on zi−1pi(a1 · · ·an)

on the (i + 1)-th pass. Note that Nv does not loop.
It remains to describe the construction of the 2AFAlf A. On input a1 · · · an, A

first checks whether a1 · · · an ∈ L(Aa
in) by simulating Aa

in. Hereafter, A goes back to
the beginning of the input string, guesses an internal node v in rhs(q, a) and simulates
the complement of Nv. As Nv is a 2NFA that does not loop, A is a 2AFAlf whose
size is linear in the size of the Nv’s. This completes the construction of B.

The next result shows that typechecking remains pspace-hard even when NFAs
are replaced by DFAs. The main source of complexity is the ability of transducers to
make an arbitrary number of copies.

Theorem 4.3(4). TC[Tnd,uc, DTD(DFA)] is pspace-complete.

Proof. We reduce the intersection emptiness problem of an arbitrary number of de-
terministic finite automata with alphabet {0, 1} to the typechecking problem. This
problem is known to be pspace-hard, as shown in Corollary 3.13 in Section 3.3. Our
reduction only requires logarithmic space. We define a tree transducer T = (QT ,
{0, 1,#0, . . . ,#n}, q0T , RT ) and two DTDs din and dout such that T typechecks with
respect to din and dout if and only if

⋂n
i=1 L(Mi) = ∅.

The DTD ({s, 0, 1}, din, s) defines trees of depth two, where the string formed by
the children of the root is an arbitrary string in {0, 1}∗, so din(s) = (0 + 1)∗. The
transducer makes n copies of this string, separated by the delimiters #i: QT = {q, q0T }
and RT contains the rules (q0T , s)→ s(#0q#1q . . .#n−1q#n) and (q, a)→ a, for every
a ∈ Σ. Finally, dout, with start symbol s, defines a tree of depth two as follows:

dout(s) = {#0w1#1w2#2 · · ·#n−1wn#n |

∃j ∈ {1, . . . , n} such that Mj does not accept wj}.

Clearly, dout(s) can be represented by a DFA whose size is polynomial in the sizes
of the Mi’s. Indeed, the DFA just simulates every Mi on the string following #i−1,
until it encounters #i. It then verifies that at least one Mi rejects.

It is easy to see that this reduction can be carried out by a deterministic logspace
algorithm.

Next, we focus on SL-expressions as right-hand sides of DTDs. In this case, we
see that the complexity of typechecking drops to conp. In the proof of the follow-
ing theorem, we make use of Lemmas 3.1 and 3.2, which are stated and proven in
Section 3.1.
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6∈ dout(a)

(qT0 , sin)

T

T

w

(qm, am)

∈ din(am)
a

Figure 4.3: Illustration of the typechecking algorithm in the proof of Theorem 4.3(5).

Theorem 4.3(5). TC[Tnd,uc, DTD(SL)] is conp-complete.

Proof. A conp lower bound is obtained by a reduction from the emptiness problem of
DTD(SL)s, which is conp-complete (Proposition 3.16). Indeed, let d be a DTD(DFA).
Let T be a tree transducer that relabels every symbol in the input tree to a. Finally,
let dout be a DTD(SL) that defines the empty language over alphabet {a}. Then
L(d) = ∅ if and only if T typechecks with respect to d and dout. Notice that dout is
in fact fixed as it uses a fixed alphabet.

Next, we prove the upper bound. Let T = (QT ,Σ, q
0
T , RT ) and let (Σ, din, sin) and

(Σ, dout, sout) be the input and output DTD respectively. We describe an np algorithm
that guesses a counterexample, that is, a tree t ∈ L(din) such that T (t) 6∈ L(dout).
In brief, we would like to guess an input tree t satisfying din, a node v ∈ Nodes(t)
labeled with a and a state q ∈ QT in which v is processed such that T q(a(w)) does
not satisfy dout. Here, w is the string obtained by concatenating the labels of the
children of v. An immediate problem is that we cannot simply guess a whole tree t
as the size of the latter might be exponential in the size of din. Therefore, we simply
guess a path ending in v which can be extended to a tree satisfying din and a string
of children w with the desired property. We explain this next.

Let k be the largest number occurring in any SL-formula in din or dout. Set
r := (k + 1) · |Σ|.

The algorithm consists of three main parts:

1. First, we sequentially guess a subset D of the derivable symbols {b ∈ Σ |
L((Σ, din, b)) 6= ∅}.
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2. Next, we guess a path of a tree in L(din). In particular, we guess a sequence of
pairs (q0, a0), . . . , (qm, am) in QT ×D, with m ≤ |Σ| · |QT |, such that

(a) a0 = sin and q0 = q0T ;

(b) there is a tree t ∈ L(din) and a node v ∈ Nodes(t) such that a0 · · · am is
the concatenation of the labels of the nodes on the path from the root to
v; and,

(c) for all i = 0, . . . ,m: T visits ai in state qi.

3. Finally, we guess a string w ∈ D∗ of length at most r such that T qm(am(w))
does not partly satisfy dout. As r can be exponentially large, we do not guess
w itself, but a representation of w. Here, partly satisfaction is as defined in the
proof of Theorem 4.3(3).

We illustrate the operation of the algorithm in Figure 4.3. In this figure, T visits
the am-labeled node on the left in state qm. Consequently, T outputs the hedge
rhs(q, a), which is illustraded by dotted lines on the right. The typechecking algorithm
searches for a node u in rhs(q, a) (which is labeled by a in the figure), such that the
string of children of u is not in L(dout(a)).

We describe in detail how the three parts can be implemented and show that the
verification of the guesses can be done in ptime. As all the guesses can be done at
the beginning, we obtain an np algorithm.

1. We compute D as follows.

(a) Guessing phase: guess a sequence of different symbols b1,. . . , bm′ in Σ.
So, m′ ≤ |Σ|. Guess vectors v1, . . . , vm′ where each vi = (ℓi1, . . . , ℓ

i
i−1)

∈ {0, . . . , k + 1}i−1. Intuitively, the vector vi corresponds to the string

b
ℓi1
1 · · · b

ℓii−1

i−1 . So, we interchangeably talk about the vector and the string
vi. Note that some ℓij may be zero.

(b) Checking phase. For each i = 1, . . . ,m′, test that the string vi satisfies
din(bi). Note that this can be done in ptime.

Let Si = {bj | j ≤ i}. From Lemma 3.1, it follows that if there is a string w in
S∗i such that w satisfies din(bi) then there is one such that each symbol occurs
at most k + 1 times. Hence, it suffices to guess vectors in {0, . . . , k + 1}i−1.
Finally, a simple induction shows that D ⊆ {b ∈ Σ | L((Σ, din, b)) 6= ∅}.

2. The requirement (a) can easily be checked. (c) can be checked by verifying that
qi+1 ∈ rhs(qi, ai) for all i. Let D = {b1, . . . , b|D|}. To test (b), it suffices to

guess a vector vi = (ℓ1, . . . , ℓ|D|) ∈ {0, . . . , k+1}|D| for every i ∈ {0, . . . ,m− 1}

such that ℓj 6= 0 when ai+1 = bj and test whether bℓ11 · · · b
ℓ|D|

|D| satisfies din(ai).

As every symbol is in D, the path can be expanded to a tree satisfying din.
By Lemma 3.1, it follows that guessing vectors of that size suffices. The upper
bound |Σ| · |QT | on m can be obtained by a simple pumping argument.
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3. Before we describe the last part of the algorithm, we make the link explicit
between the transducer T , the function f and the c’s described in Lemma 3.2.
We start with some notation. Let q be a state of T and a ∈ Σ then define q[a] :=
top(rhs(q, a)). For a string w = a1 · · ·an, we define q[w] := q[a1] · · · q[an]. For
a ∈ Σ and w ∈ Σ∗, we also define #a(w) to be the number of a’s occurring in w.
Let q ∈ QT , a ∈ Σ and let u be a node in rhs(q, a). Let z = z0p1z1 · · · pℓzℓ be the
concatenation of the labels of the children of u, such that pi ∈ QT and zi ∈ Σ∗.
For every s ∈ Σ∗, define f q,a

u (s) as the string obtained from z by replacing every
pi by the string pi(s). Now, we define the c’s corresponding to f q,a

u (s). For

every b ∈ Σ, set cb := #b(z) and for every e ∈ Σ, set cbe :=
∑ℓ

j=1 #b(pj(e)).

Clearly, for every b ∈ Σ and every s ∈ Σ∗, #b(f
q,a
u (s)) = cb +

∑

e∈Σ(c
b
e ·#e(s)).

So, the algorithm guesses a node u in rhs(qm, am). We do not guess a string
w but rather a vector in {1, . . . , k + 1}|Σ| representing such a string (as in the
previous bullets). We check whether f qm,am

u (w) does not satisfy dout(a) where
the label of u is a. Take f as f qm,am

u , φ1 as din(am), and φ2 as dout(a). Then
from Lemma 3.2, it follows that it suffices to guess a string represented by a
vector in {1, . . . , k+1}|Σ|. This completes the description of the algorithm.

4.4 Non-deleting Transformations with Bounded Copy-

ing

As can be inferred from Theorem 4.3, disallowing deletion lowers the complexity
of the typechecking problem in the presence of DTDs. Unfortunately, the problem
still remains intractable. In the context of DTD(DFA)s, the high complexity is a
consequence of the copying power of transducers (cf. the proof of Theorem 4.3(4)).
Therefore, we bound in advance the copying width of transducers by only consid-
ering transducers in the class T C

nc,bc for a fixed C (see Section 2.3). In the case of
DTD(DFA)s we then finally obtain a tractable scenario.

Theorem 4.5.

(1) TC[Tnd,bc, NTA(NFA)] is exptime-complete;

(2) TC[Tnd,bc, DTA(DFA)] is exptime-complete;

(3) TC[Tnd,bc, DTD(NFA)] is pspace-complete;

(4) TC[Tnd,bc, DTD(DFA)] is ptime-complete;

(5) TC[Tnd,bc, DTD(SL)] is conp-complete.

The lower bounds of (1), (3), and (5) follow immediately from the construction in
the proofs of Theorem 4.3(1), (3), and (5). We deal with the remaining cases.

For the proof of Theorem 4.5(2), we reduce from the intersection emptiness prob-
lem of top-down deterministic ranked binary tree automata. The proof is similar to
the one in Theorem 4.2. The tree transducer Ain for the input schema defines the
same set of trees as din. The transducer in the proof of Theorem 4.2 starts the in par-
allel simulation of the n automata, but then, using deleting states, delays the output
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until it has reached the leaves of the input tree. In the present setting, we can not use
deleting states. Instead, we copy the input tree and overwrite the leaves with error
symbols when an automaton rejects. The output automaton then checks whether at
least one error occurred.

Theorem 4.5(2). TC[Tnd,bc, DTA(DFA)] is exptime-complete.

Proof. We give a logspace reduction from the intersection emptiness problem of
an arbitrary number of top-down deterministic binary tree automata (TDBTAs) over
the alphabet Σ = {0, 1, 0′, 1′, 0′′, 1′′}. The intersection emptiness problem of TDBTAs
over alphabet {0, 1, 0′, 1′, 0′′, 1′′} is known to be exptime-hard (see Corollary 3.13).

For i = 1, . . . , n, let Ai = (Qi,Σ, δi, {starti}) be a top-down deterministic ranked
binary tree automaton over alphabet Σ = {0, 1, 0′, 1′, 0′′, 1′′}. The transducer T is
defined over the alphabet ΣT = Σℓ ∪ Σr ∪ {s, error}. Here, for i ∈ {ℓ, r}, Σi = {aℓ |
a ∈ Σ}.

First, we define Ain = (Qin,ΣT , δin, {q0}), where Qin = {q0, qℓ, qr, q#}. The intu-
ition is that Ain accepts all trees s(#(· · ·#(t))) as described in the proof of Theo-
rem 4.2 and illustrated in Figure 4.1. That is, t is an arbitrary ranked Σ-tree in which
every label is annotated with the symbol “ℓ” or “r” when it is a left child or right
child of its parent, respectively. The transition function of Ain is formally defined as
follows:

• δin(q0, s) = qℓ + q#;

• δin(q#,#) = qℓ + q#;

• for each a ∈ {0′′, 1′′}, δ(qℓ, aℓ) = δ(qr, ar) = qℓqr;

• for each a ∈ {0′, 1′}, δ(qℓ, aℓ) = δ(qr, ar) = qℓ; and,

• for each a ∈ {0, 1}, δ(qℓ, aℓ) = δ(qr , ar) = ε;

Note that Ain is bottom-up deterministic.
The transducer T = (QT ,ΣT , q

0
T , RT ) is defined similarly as in Theorem 4.2:

QT =
⋃n

i=1(Q
ℓ
i ∪Qr

i ), where Qk
i = {qk | q ∈ Qi} for k ∈ {ℓ, r}. The intuition is that

states in Qℓ
i should only be used to process the left child and states in Qr

i to process
the right child. The set RT consists of the following rules:

• (qεcopy, s)→ s(q0copyq
1
copy).

• (qicopy,#)→ #(qi0copyq
i1
copy) for i ∈ D(⌈logn⌉ − 1)− {ε}.

• (qicopy,#) → #(startℓk), where i ∈ D(⌈logn⌉) − D(⌈logn⌉ − 1), and i is the
binary representation of k.

• (qicopy, a)→ error for a ∈ Σℓ ∪ Σr and i ∈ D(⌈logn⌉).

• (startℓk,#)→ error for all k = 1, . . . , 2⌈logn⌉.

• (qℓ, ar)→ ε and (qr, aℓ)→ ε for all q ∈ Qj , j = 1, . . . , n.
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• (qℓ, aℓ)→ aℓ(q
ℓ
1q

r
2) and (qr , ar)→ ar(q

ℓ
1q

r
2), for every q ∈ Qi, i = 1, . . . , n, such

that δi(q, a) = q1q2, and a is an internal symbol.

• (qℓ, aℓ)→ aℓ(q
ℓ
1) and (qr, ar)→ ar(q

ℓ
1), for every q ∈ Qi, i = 1, . . . , n, such that

δi(q, a) = q1 and a is an internal symbol.

• (qℓ, aℓ)→ ε and (qr, ar)→ ε for every q ∈ Qi, i = 1, . . . , n, such that δi(q, a) = ε
and a is a leaf symbol.

• (qℓ, aℓ) → error and (qr, ar) → error for every q ∈ Qi, i = 1, . . . , n, such that
δi(q, a) is undefined.

Finally, we define the output automatonAout = (Qout,ΣT , δout, {qfound}) which ac-
cepts all trees with at least one error-labeled leaf. Formally, Qout = {qnotfound, qfound}
and δout is defined as follows:

• δout(qnotfound, s) = q∗notfound;

• δout(qfound, s) = Q∗outqfoundQ
∗
out;

• for each a ∈ {#, 0′ℓ, 1
′
ℓ, 0
′
r, 1
′
r, 0
′′
ℓ , 1
′′
ℓ , 0
′′
r , 1
′′
r}, δout(qnotfound, a) = q∗notfound;

• for each a ∈ {#, 0′ℓ, 1
′
ℓ, 0
′
r, 1
′
r, 0
′′
ℓ , 1
′′
ℓ , 0
′′
r , 1
′′
r}, δout(qfound, a) = Q∗outqfoundQ

∗
out;

• for each a ∈ {0ℓ, 1ℓ, 0r, 1r}, δ(qnotfound, a) = ε; and,

• δout(qfound, error) = ε.

Notice that Aout is bottom-up deterministic.
For future reference (page 86), we note that the above described reduction also

holds when the tree transducer has copying width one, but in which the right-hand
sides are allowed to contain two states. Indeed, the reduction still holds if we replace
every rewrite rule of the form (q, a)→ b(q1 q2) by (q, a)→ b(b(q1) b(q2)) and use the
same output schema.

Theorem 4.5(4). TC[Tnd,bc, DTD(DFA)] is ptime-complete.

Proof. A ptime lower bound is obtained by a reduction from the emptiness problem
of DTD(DFA)s, which is ptime-complete (Proposition 3.16). Indeed, let d be a
DTD(DFA). Let T be a tree transducer that defines the identity transformation and
let dout be a DTD(DFA) that defines the empty language. Then L(d) = ∅ if and only
if T typechecks with respect to d and dout.

We now discuss the upper bound. In the proof of Theorem 4.3(3), we reduced
TC[Tnd,uc,DTD(NFA)] to the emptiness problem of NTA(2AFAlf)s. In that proof,
alternation was needed to express negation of the NFAs in the output schema; two-
wayness was needed because T could make arbitrary copies of the input tree. However,
when transducers can make only a bounded number of copies and DFAs are used,
TC[Tnd,bc,DTD(DFA)] can be logspace-reduced to emptiness of NTA(NFA)s. From
Proposition 3.18, it then follows that TC[Tnd,bc,DTD(DFA)] is in ptime.





5
Fixing the Input and Output

Schemas

The typechecking scenario outlined in the previous chapter is very general: both the
schemas and the transducer are determined to be part of the input. However, for some
exchange scenarios, it makes sense to consider the input and/or output schema to be
fixed when transformations are always from within and/or to a specific community.

Therefore, we revisit the various instances of the typechecking problem considered
in Chapter 4 and determine the complexity in the presence of fixed input and/or
output schemas. The main goal of this chapter is to investigate to which extent the
complexity of the typechecking problem is lowered in scenarios where the input and/or
output schema is fixed. From a complexity theory point of view, it is important to
note here that the input and/or output alphabet then also becomes fixed. An overview
of our results is presented in Table 5.1. All problems are complete for the mentioned
complexity classes unless specified otherwise.

We discuss the obtained results: for non-deleting transformations, we get three
new tractable cases: (i) fixed input schema, unbounded copying, and DTD(SL)s; (ii)
fixed output schema, bounded copying and DTD(NFA)s; and, (iii) fixed input and
output schemas, unbounded copying and all DTDs. It is striking, however, that in the
presence of deletion or tree automata (even deterministic ones) typechecking remains
exptime-hard for all scenarios.

Mostly, we only needed to strengthen the lower bound proofs of Chapter 4.

Notation. We introduce some notations that are central to the present chapter.
We denote the typechecking problem where the input schema, the output schema, or
both are fixed by TCi[T ,S], TCo[T ,S], and TCio[T ,S], respectively. The complexity
of these subproblems is measured in terms of the sum of the sizes of the input and
output schemas Sin and Sout, and the transducer T , minus the size of the fixed
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fixed TT NTA(NFA) DTA(DFA)

in, out, d,uc exptime exptime

in+out d,bc exptime exptime

in, out, nd,uc exptime exptime

in+out nd,bc exptime exptime

fixed TT DTD(NFA) DTD(DFA) DTD(SL)

in, out, d,uc exptime exptime exptime

in+out d,bc exptime exptime exptime

in nd,uc pspace pspace in ptime

nd,bc pspace nlogspace in ptime

out nd,uc pspace pspace conp
nd,bc ptime ptime conp

in+out nd,uc nlogspace nlogspace nlogspace

nd,bc nlogspace nlogspace nlogspace

Table 5.1: Complexities of the typechecking problem in the new setting (upper and
lower bounds). The top rows of the tables show the representation of the input and
output schemas, the leftmost columns show which schemas are fixed, and the second
columns to the left show the class of tree transducer: “d”, “nd”, “uc”, and “bc”
stand for “deleting”, “non-deleting”, “unbounded copying”, and “bounded copying”
respectively. In the case of deleting transformations, the different possibilities are
grouped as all complexities coincide.

schema(s).

5.1 Deletion: Fixed Input Schema, Fixed Output

Schema, and Fixed Input and Output Schema

The exptime upper bound for typechecking already follows from Theorem 4.1 in
Chapter 4. Therefore, it remains to consider the lower bounds for the problems
TCio[Td,bc, DTD(DFA)] and TCio[Td,bc, DTD(SL)]. However, observe that the input
and output schema in the proof of Theorem 4.2 in fact do not depend on the input
of the reduction. We hence immediately obtain the following:

Theorem 5.1.

(1) TCio[Td,bc, DTD(DFA)] is exptime-complete; and

(2) TCio[Td,bc, DTD(SL)] is exptime-complete.

In fact, if follows from the proof that the lower bounds already hold for transducers
with copying width 2.
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5.2 Non-deleting: Fixed Input Schema

We turn to the typechecking problem in which we only allow non-deleting tree trans-
ducers. First, we consider the input schema as fixed. We start by showing that
typechecking is in ptime in the case where we use DTDs with SL-expressions. To
this end, we recall a necessary notion that is needed for the proof of Theorem 5.2.
For a hedge h and a DTD d, we say that h partly satisfies d if for every u ∈ Nodes(h),
labh(u1) · · · labh(un) ∈ L(d(labh(u))) where u has n children.

We are now ready to show the first ptime result in this chapter:

Theorem 5.2. TCi[Tnd,uc, DTD(SL)] is in ptime.

Proof. Denote the tree transformation by T = (QT ,Σ, q
0
T , RT ) and the input and

output DTDs by (Σ, din, sin) and (Σ, dout, sout), respectively. As din is fixed, we can
assume that din is reduced.

Intuitively, the typechecking algorithm is successful when T does not typecheck
with respect to din and dout. The algorithm is in the same spirit as the algorithm
used in the proof of Theorem 4.3(5). The outline of the algorithm is as follows:

1. Compute the set RP of “reachable pairs” (q, a) for which there exists a tree
t ∈ L(din) and a node u ∈ Nodes(t) such that labt(u) = a and T visits u in state
q. That is, we compute all pairs (q, a) such that either

• q = q0T and a = sin; or

• (q′, a′) ∈ RP , there is a q-labeled node in rhs(q′, a′), and there exists a
string w1aw2 ∈ din(a

′) for w1, w2 ∈ Σ∗.

2. For each such pair (q, a) and for each node v ∈ Nodes(rhs(q, a)), test whether
there exists a string w ∈ din(a) such that T q(a(w)) does not partly satisfy dout.
We call w a counterexample.

The algorithm is successful, if and only if there exists a counterexample.
Notice that the typechecking algorithm does not assume that dout is reduced (re-

call the definition of a reduced DTD from Section 2.2). We need to show that the
algorithm is correct, that is, there exists a counterexample if and only if T does not
typecheck with respect to din and dout. Clearly, when the algorithm does not find a
counterexample, T typechecks with respect to din and dout. Conversely, suppose that
the algorithm finds a pair (q, a) and a string w such that T q(a(w)) does not partly
satisfy dout. So, since we assumed that din is reduced, there exists a tree t ∈ L(din)
and a node u ∈ Nodes(t) such that labt(u) = a and u is visited by T in state q.
Also, there exists a node v in T q(a(w)), such that the label of u is c and the string of
children of u is not in dout(c). We argue that T (t) 6∈ L(dout). There are two cases:

(i) if L(dout) contains a tree with a c-labeled node, then T (t) 6∈ dout since T
q(a(w))

does not partly satisfy dout; and

(ii) if L(dout) does not contain a tree with a c-labeled node, then T (t) 6∈ dout since
T (t) contains a c-labeled node.
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We proceed by showing that the algorithm can be carried out in polynomial time.
As the input schema is fixed, step (1) of the algorithm is in polynomial time. Indeed,
we can compute the set RP of reachable pairs (q, a) in a top-down manner by a
straightforward reachability algorithm.

To show that step (2) of the typechecking algorithm is in polynomial time, fix
a tuple (q, a) that was computed in step (1) and a node u in rhs(q, a) with label b.
Let z0q1z1 · · · qnzn be the concatenation of u’s children, where all z0, . . . , zn ∈ Σ∗

and q1, . . . , qn ∈ QT . We now search for a string w ∈ Σ∗ for which w |= din(a),
but for which z0q1[w]z1 · · · qn[w]zn 6|= dout(b). Recall from Section 2.3 that q[w] is
the homomorphic extension of q[a] for a ∈ Σ, which is top(rhs(q, a))) in the case of
non-deleting tree transducers.

Denote din(a) by φ. Let {a1, . . . , as} be the different symbols occurring in φ and
let k be the largest integer occurring in φ. According to Lemma 3.1, every Σ-string
is φ-equivalent to a string of the form w = am1

1 · · · a
ms
s with 0 ≤ mi ≤ k + 1 for each

i = 1, . . . , s. Note that there are (k+1)s such strings, which is a constant number, as
it only depends on the input schema. For the following, the algorithm considers each
such string w.

Fix such a string w such that w |= φ. For each symbol c in dout(b), the number
#c(z0q1[w]z1 · · · qn[w]zn) is equal to the linear sum

kc1 ×#a1(w) + · · ·+ kcℓ ×#aℓ
(w) + kcℓ+1 ×#aℓ+1

(w) + kcs ×#as
(w) + kc,

where kc = #c(z0 · · · zn) and for each i = 1, . . . , s, kci = #c(q1[ai] · · · qn[ai]).
In the remainder of the proof, we test if there exists a string w′ ≡φ w such that

z0q1[w
′]z1 · · · qn[w

′]zn 6|= dout(b). Let a1, . . . , aℓ be the symbols that occur at least
k + 1 times in w and aℓ+1, . . . , as be the symbols that occur at most k times in w,
respectively. Then, deciding whether w′ exists is equivalent to finding an integer solu-
tion to the variables xa1 , . . . , xas

for the boolean combination of linear (in)equalities
Φ = Φ1 ∧ ¬Φ2, where

• Φ1 states that w′ ≡φ w, that is,

Φ1 =

ℓ∧

i=1

(xai
> k) ∧

s∧

j=ℓ+1

(
xaj

= #aj
(w)

)
;

and

• Φ2 states that z0q1(w
′)z1 · · · qn(w′)zn |= dout(b), that is, Φ2 is defined by re-

placing every occurrence of c=i or c≥i in dout(b) by the equation

s∑

j=1

(kcj × xaj
) + kc = i

or by
s∑

j=1

(kcj × xaj
) + kc ≥ i,

respectively.
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In the above (in)equalities, xai
, 1 ≤ i ≤ s, represents the number of occurrences of ai

in w′.
Finding a solution for Φ now consists of finding integer values for xa1 , . . . , xas

so
that Φ evaluates to true. Corollary 3.6 shows that we can decide in ptime whether
such a solution for Φ exists.

Theorem 5.3. TCi[Tnd,bc, DTD(DFA)] is nlogspace-complete.

Proof. In Theorem 5.8, we prove that the problem is nlogspace-hard, even if both
the input and output schemas are fixed. Hence, it remains to show that the problem
is in nlogspace.

Let us denote the tree transformation by T = (QT ,Σ, q
0
T , RT ) and the input and

output DTDs by (Σ, din, r) and dout, respectively. We can assume that din is reduced.1

Then, the typechecking algorithm can be summarized as follows:

1. Guess a sequence of pairs (q0, a0), (q1, a1), . . . , (qn, an) in QT × Σin, such that

• (q0, a0) = (q0T , r); and

• for every pair (qi, ai), qi+1 occurs in rhs(qi, ai) and ai+1 occurs in some
string in L(din(ai)).

We only need to remember (qn, an) as a result of this step.

2. Guess a node u in rhs(qn, an) — say that u is labeled with b — and test whether
there exists a string w ∈ din(an) such that T q(an(w)) does not partly satisfy
dout.

The algorithm is successful if and only if w exists and, hence, the problem does not
typecheck.

The first step is a straightforward reachability algorithm, which is in nlogspace.
It remains to show that the second step is in nlogspace.

Let (q, a) be the pair (qn, an) computed in step two. Let dout(b) = (Qout,Σ, δout,
{pI}, {pF}) be a DFA and let k be the copying bound of T . Let the concatenation of
u’s children be z0q1z1 · · · qℓzℓ, where ℓ ≤ k. So we want to check whether there exists
a string w such that z0q1[w]z1 · · · qℓ[w]zℓ is not accepted by dout(b). We guess w one
symbol at a time and simulate in parallel ℓ copies of dout(b) and one copy of din(a).

By δ̂ we denote the canonical extension of δ to strings in Σ∗. We start by guessing
states p1, . . . , pℓ of dout(b), where p1 = δ̂out(pI , z0), and keep a copy of these on tape,
to which we refer as p′1, . . . , p

′
ℓ. Next, we keep on guessing symbols c of w, whereafter

we replace each pi by δ̂out(pi, qi(c)). The input automaton obviously starts in its
initial state and is simulated in the straightforward way.

The machine non-deterministically stops guessing, and checks whether, for each
i = 1, . . . , ℓ − 1, δ̂out(pi, zi) = p′i+1 and δ̂out(pℓ, zℓ) = pF . For the input automaton,
it simply checks whether the current state is the final state. If the latter tests are
positive, then the algorithm accepts, otherwise, it rejects.

We only keep 2ℓ+1 states on tape, which is a constant number, so the algorithm
runs in nlogspace.

1Reducing din would be ptime-complete otherwise, see Corollary 3.17.
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The following result is immediate, as the lowerbound proofs of Theorem 4.3(3)
and Theorem 4.3(4) in Chapter 4 use an input schema that does not depend on the
input.

Theorem 5.4.

(1) TCi[Tnd,bc, DTD(NFA)] is pspace-complete; and

(2) TCi[Tnd,uc, DTD(DFA)] is pspace-complete.

5.3 Non-deleting: Fixed Output Schema

The upper bounds carry over again from Chapter 4. Also, when the output DTD
is a DTD(NFA), we can convert it into an equivalent DTD(DFA) in constant time.
As the ptime typechecking algorithm for TC[Tnd,bc,DTD(DFA)] in Theorem 4.5 in
Chapter 4 also works when the input DTD is a DTD(NFA), we have that the problem
TCo[Tnd,bc,DTD(NFA)] is in ptime. As the ptime-hardness proof for TC[Tnd,bc,
DTD(DFA)] in Theorem 4.5 uses a fixed output schema, we immediately obtain the
following.

Theorem 5.5. TCo[Tnc,bc, DTD(NFA)] is ptime-complete.

The lower bound in the presence of tree automata will be discussed in Section 5.4.
The case requiring some real work is TCo[Tnd,uc, DTD(DFA)].

Theorem 5.6. TCo[Tnd,uc, DTD(DFA)] is pspace-complete.

Proof. In Chapter 4, it was shown that the problem is in pspace. We proceed by
showing pspace-hardness.

We use a logspace reduction from Corridor Tiling, which is known to be
pspace-complete (Theorem 3.23). Let (T, V,H, ϑ̄, β̄, n) be a tiling system, where
T = {ϑ1, . . . , ϑk} is the set of tiles, V ⊆ T ×T and H ⊆ T ×T are the sets of vertical
and horizontal constraints respectively, and ϑ̄ and β̄ are the top and bottom row,
respectively. The tiling system has a solution if there is an m ∈ N such that the space
m×n (m rows and n columns) can be correctly tiled with the additional requirement
that the bottom and top row are β̄ and ϑ̄, respectively.

We define the input DTD din over the alphabet Σ := {(i, ϑj) | j ∈ {1, . . . , k}, i ∈
{1, . . . , n}} ∪ {r}; r is the start symbol. Define

din(r) = #β̄#
(

Σ1 · Σ2 · · ·Σn#
)∗

ϑ̄#,

where we denote by Σi the set {(i, ϑj) | j ∈ {1, . . . , k}}. Here, # functions as a
row separator. For all other alphabet symbols a ∈ Σ, din(a) = ε. So, din encodes
all possible tilings that start and end with the bottom row β̄ and the top row ϑ̄,
respectively.

We now construct a tree transducer B = (QB,Σ, q
0
B, RB) and an output DTD dout

such that T has no correct corridor tiling if and only if B typechecks with respect to
din and dout. Intuitively, the transducer and the output DTD have to work together
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to determine errors in input tilings. There can only be two types of error: two tiles do
not match horizontally or two tiles do not match vertically. The main difficulty is that
the output DTD is fixed and can, therefore, not depend on the tiling system. The
transducer is constructed in such a way that it prepares in parallel the verification
for all horizontal and vertical constraints by the output schema. In particular, the
transducer outputs specific symbols from a fixed set independent of the tiling system
allowing the output schema to determine whether an error occurred.

The state set QB is partitioned into two sets, Qhor and Qver:

• Qhor is for the horizontal constraints: for every i ∈ {1, . . . , n − 1} and ϑ ∈ T ,
qi,ϑ ∈ Qhor transforms the rows in the tiling such that it is possible to check
that when position i carries a ϑ, position i+1 carries a ϑ′ such that (ϑ, ϑ′) ∈ H ;
and,

• Qver is for the vertical constraints: for every i ∈ {1, . . . , n} and ϑ ∈ T , pi,ϑ ∈
Qver transforms the rows in the tiling such that it is possible to check that
when position i carries a ϑ, the next row carries a ϑ′ on position i such that
(ϑ, ϑ′) ∈ V .

The tree transducer B always starts its transformation with the rule

(q0B , r)→ r(w),

where w is the concatenation of all of the above states, separated by the delimiter $.
The other rules are of the following form:

• Horizontal constraints: for all (j, ϑ) ∈ Σ add the rule (qi,ϑ, (j, ϑ
′)) → α where

qi,ϑ ∈ Qhor and

α =







trigger if j = i and ϑ = ϑ′

other if j = i and ϑ 6= ϑ′

ok if j = i+ 1 and (ϑ, ϑ′) ∈ H
error if j = i+ 1 and (ϑ, ϑ′) 6∈ H
other if j 6= i and j 6= i+ 1

Finally, (qi,ϑ,#)→ hor.

The intuition is as follows: if the i-th position in a row is labeled with ϑ, then
this position is transformed into trigger. Position i + 1 is transformed to ok

when it carries a tile that matches ϑ horizontally. Otherwise, it is transformed
to error. All other symbols are transformed into an other.

On a row, delimited by two hor-symbols, the output DFA rejects if and only
if there is a trigger immediately followed by an error. When there is no
trigger, then position i was not labeled with ϑ. So, the label trigger acts as
a trigger for the output automaton.

• Vertical constraints: for all (j, ϑ) ∈ Σ, add the rule (pi,ϑ, (j, ϑ
′)) → α where
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pi,ϑ ∈ Qver and

α =







trigger1 if (j, ϑ′) = (i, ϑ) and (ϑ, ϑ) ∈ V
trigger2 if (j, ϑ′) = (i, ϑ) and (ϑ, ϑ) 6∈ V
ok if j = i, ϑ 6= ϑ′, and (ϑ, ϑ′) ∈ V
error if j = i, ϑ 6= ϑ′, and (ϑ, ϑ′) 6∈ V
other if j 6= i

Finally, (pi,ϑ,#)→ ver.

The intuition is as follows: if the i-th position in a row is labeled with ϑ, then this
position is transformed into trigger1 when (ϑ, ϑ) ∈ V and to trigger2 when
(ϑ, ϑ) 6∈ V . Here, both trigger1 and trigger2 act as a trigger for the output
automaton: they mean that position i was labeled with ϑ. But no trigger1

and trigger2 can occur in the same transformed row as either (θ, θ) ∈ V or
(θ, θ) 6∈ V . When position i is labeled with ϑ′ 6= ϑ, then we transform this
position into ok when (ϑ, ϑ′) ∈ V , and in error when (ϑ, ϑ′) 6∈ V . All other
positions are transformed into other.

The output DFA then works as follows. If a position is labeled trigger1 then
it rejects if there is a trigger2 or a error occurring after the next ver. If a
position is labeled trigger2, then it rejects if there is a trigger2 or a error

occurring after the next ver. Otherwise, it accepts that row.

By making use of the delimiters ver and hor, both above described automata
can be combined into one automaton, taking care of the vertical and the horizontal
constraints. This automaton resets to its initial state whenever it reads the delim-
iter symbol $. Note that the output automaton is defined over the fixed alphabet
{trigger, trigger1, trigger2, error, ok, other, hor, ver, $}.

Although the results in Chapter 4 were formulated in the context of variable
schemas, the proof for bounded copying, non-deleting tree transducers with DTD(SL)
and with DTD(DFA) schemas actually use a fixed output schema. We can therefore
sharpen these results as follows.

Theorem 5.7.

(1) TCo[Tnd,bc, DTD(SL)] is conp-complete;

(2) TCo[Tnd,bc, DTD(DFA)] is ptime-complete.

5.4 Non-deleting: Fixed Input and Output Schema

We turn to the case where both input and output schemas are fixed. The following
two theorems give us several new tractable cases.

Theorem 5.8.

(1) TCio[Tnd,bc, DTD(SL)] is nlogspace-complete.

(2) TCio[Tnd,bc, DTD(DFA)] is nlogspace-complete.
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Proof. For both problems, membership in nlogspace follows from Theorem 5.9.
Indeed, every DTD(SL) can be rewritten into an equivalent DTD(NFA) in constant
time as the input and output schemas are fixed.

We proceed by showing nlogspace-hardness. We say that an NFA N = (QN ,Σ,
δN , IN , FN ) has degree of nondeterminism 2 if (i) IN has at most two elements and
(ii) for every q ∈ QN and a ∈ Σ, the set δN (q, a) has at most two elements. We
give a logspace reduction from the emptiness problem of an NFA with alphabet
{0, 1} and a degree of nondeterminism 2 to the typechecking problem. According to
Lemma 3.14, this problem is nlogspace-hard. Intuitively, the input DTD will define
all possible strings over alphabet {0, 1}. The tree transducer simulates the NFA
and outputs “accept” if a computation branch accepts, and “error” if a computation
branch rejects. The output DTD defines trees where all leaves are labeled with “error”.

More concretely, let N = (QN , {0, 1}, δN , {q0N}, FN) be an NFA with degree of
nondeterminism 2. The input DTD ({0, 1,#}, din, r) defines all unary trees, where
the unique leaf is labeled with a special marker #. That is, din(r) = din(0) = din(1) =
(0+1+#) and din(#) = ε. Note that these languages can be defined by SL-formulas
or DFAs which are sufficiently small for our purpose.

Given a tree t = r(a1(· · · (an(#)) · · · )), the tree transducer will simulate every
computation of N on the string a1 · · · an. The tree transducer T = (QT , {r,#, 0, 1,
error, accept}, q0T , RT ) simulates N ’s nondeterminism by copying the remainder of the
input twice in every step. Formally, QT is the union of {q0T } and QN , and RT contains
the following rules:

• (q0T , r) → r(q0N ). This rule puts r as the root symbol of the output tree and
starts the simulation of N .

• (qN , a) → a(q1N , q2N ), where qN ∈ QN , a ∈ {0, 1} and δN (qN , a) = {q1N , q2N}.
This rule does the actual simulation of N . By continuing in both states q1N and
q2N , we simulate all possible computations of N .

• (qN , a)→ error if δN (qN , a) = ∅. If N rejects, we output the symbol “error”.

• (qN ,#)→ error for qN 6∈ FN ; and

• (qN ,#)→ accept for qN ∈ FN . These last two rules verify whether N is in an
accepting state after reading the entire input string.

Notice that T outputs the symbol “error” (respectively “accept”) if and only if a
computation branch of N rejects (respectively accepts).

The output of T is always a tree in which only the symbols “error” and “accept”
occur at the leaves. The output DTD then needs to verify that only the symbol
“error” occurs at the leaves. Formally, dout(r) = dout(0) = dout(1) = {0, 1, error}+

and dout(error) = ε. Again, these languages can be defined by sufficiently small
SL-formulas or DFAs.

It is easy to see that the reduction only requires logarithmic space.

Theorem 5.9. TCio[Tnd,uc, DTD(NFA)] is nlogspace-complete.
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Proof. The nlogspace-hardness of the problem follows from Theorem 5.8, where it
shown that the problem is already nlogspace-hard when DTD(DFA)s are used as
input and output schema.

We show that the problem is also in nlogspace. Thereto, let T = (QT ,Σ, q
0
T , RT )

be the tree transducer, and let (Σ, din, r) and dout be the input and output DTDs,
respectively. As both din and dout are fixed, we can assume without loss of generality
that they are reduced.2 For the same reason, we can also assume that the NFAs in
din and dout are determinized.

We guess a sequence of state-label pairs (p0, a0), (p1, a1), . . . , (pn, an) where n <
|QT ||Σ| such that

• (p0, a0) = (q0T , r); and

• for every pair (pi, ai), pi+1 occurs in rhs(pi, ai) and ai+1 occurs in some string
in L(din(ai)).

Each time we guess a new pair in this sequence, we forget the previous one, so that
we only keep a state, an alphabet symbol, a counter, and the binary representation
of |QT ||Σ| on tape.

For simplicity, we write (pn, an) as (p, a) in the remainder of the proof. We guess a

node u ∈ Nodes(rhs(p, a)). Let b = labrhs(p,a)(u) and let z0q1z1 · · · qkzk be the concate-
nation of u’s children, where every z0, . . . , zk ∈ Σ∗ and every q1, . . . , qk ∈ QT , then we
want to check whether there exists a string w ∈ din(a) such that z0q1[w]z1 · · · qk[w]zk
is not accepted by dout(b). Recall from Section 2.3 that, for a state q ∈ QT , we denote
by q[w] the homomorphic extension of q[c] for c ∈ Σ, which is top(rhs(q, c))) in the
case of non-deleting tree transducers. We could do this by guessing w one symbol
at a time and simulating k copies of dout(b) and one copy of din(a) in parallel, like
in the proof of Theorem 5.3. However, as k is not fixed, the algorithm would use
superlogarithmic space.

So, we need a different approach. To this end, letA = (Qin,Σ, δin, q
0
in, Fin) andB =

(Qout,Σ, δout, q
0
out, Fout) be DFAs accepting L(din(a)) and L(dout(b)), respectively. To

every q ∈ QT , we associate a function

fq : Qout × Σ→ Qout : (p
′, c) 7→ δ̂out(p

′, q[c]),

where δ̂out denotes the canonical extension of δout to strings in Σ∗. Note that there
are maximally |Qout||Qout||Σ| such functions. Let K be the cardinality of the set
{fq | q ∈ QT }. Hence, K is bounded from above by |Qout||Qout||Σ|, which is a constant
(with respect to the input). Let f1, . . . , fK an arbitrary enumeration of {fq | q ∈ QT }.

The typechecking algorithm continues as follows. We start by writing the (1 +
K · |Qout|)-tuple (q0in, q

′
1, . . . , q

′
|Qout|

, . . . , q′1, . . . , q
′
|Qout|

) on tape, where Qout is the set

{q′1, . . . , q
′
|Qout|

}. We will refer to this tuple as the tuple p̄ := (p′0, . . . , p
′
K·|Qout|

). We
explain how we update p̄ when guessing w symbol by symbol. Every time when we
guess the next symbol c of w, we overwrite the tuple p̄ by

(
δin(p

′
0, c), f1(p

′
1, c), . . . , f1(p

′
|Qout|

, c), . . .

. . . , fK(p′(K−1)·|Qout|+1, c), . . . , fK(p′K·|Qout|
, c)

)
.

2In general, reducing a DTD(NFA) is ptime-complete (Section 2.2).
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Notice that there are at most |Qin| ·K · |Qout|2 different (K · |Qout|+1)-tuples of this
form. We nondeterministically determine when we stop guessing symbols of w.

It now remains to verify whether w was indeed a string such that w ∈ din(a) and
z0q1[w]z1 · · · qk[w]zk 6∈ dout(b). The former condition is easy to test: we simply have to
test whether p′0 ∈ Fin. To test the latter condition, we read the string z0q1z1 · · · qkzk
from left to right while performing the following tests. We keep a state of dout(b) in
memory and refer to it as the “current state”.

1. The initial current state is q0out.

2. If the current state is p′ and we read zj , then we change the current state to

δ̂out(p
′, zj).

3. If the current state is p′ and we read qj , then we change the current state to p′i
in p̄, where for i, the following condition holds. Let ℓ,m = 1, . . . ,K · |Qout| be
the smallest integers such that

• p′ = q′ℓ in Qout, and

• fqj = fm.

Then i = (m− 1)K + ℓ.

Note that deciding whether p′ = q′ℓ and fqj = fm can be done deterministically
in logarithmic space, as the output schema is fixed. Consequently, i can also be
computed in constant time and space.

4. We stop and accept if the current state is a non-accepting state after reading
zk.

The following theorem immediately follows from the proof of Theorem 4.5(2), as
we used a fixed input and output schema in the reduction.

Theorem 5.10. TCio[Tnd,bc, DTA(DFA)] is exptime-complete.





6
Frontiers of Tractability

The previous chapters have given us a fairly complete overview of the complexity
of the typechecking problem for simple XSLT transformations. However, the set-
tings in which we have found a polynomial time typechecking algorithm seem very
restrictive, especially since they exclude every form of deletion in the transformation.
As illustrated by Example 2.15, deletion of an arbitrary number of interior nodes is
quite typical for filtering transformations. Indeed, many simple transformations select
specific parts of the input while ignoring the non-interesting ones.

Therefore, we investigate in this chapter larger and more flexible classes for which
the complexity of the typechecking problem remains in ptime. Additionally, we also
want to identify the frontier where these scenarios become intractable.1 Hence, our
work sheds light on when to use fast complete algorithms and when to reside to sound
but incomplete ones.

We first investigate deletion in the setting where DTDs use deterministic finite
automata (DFAs) to define right-hand sides of rules and transducers can only make
a bounded number of copies of nodes in the input tree. By proving a general lemma
which quantifies the combined effect of copying and deletion on the complexity of
typechecking, we derive conditions under which typechecking becomes tractable. In
particular, these conditions allow arbitrary deletion when no copying occurs (like in
Example 2.15), but at the same time permit limited copying for those rules that only
delete in a limited fashion. This result is relevant in practice as in common filtering
transformations arbitrary deletion almost never occurs together with copying.

We then show that the present setting cannot be enlarged without increasing the
complexity. In particular, we show that combining a slight relaxation of the limited
deletion restriction with copying the input only twice makes typechecking intractable.
Finally, we briefly examine tree automata to define schemas and show that in the case

1That is, np- or conp-hard, assuming that the latter classes are different from ptime.
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of deterministic tree automata, no copying but arbitrary deletion, we get a ptime

algorithm.
As an alternative to deletion, one can skip nodes in the input tree by adding

XPath expressions to the transformation language. In the case where DTDs use
DFAs, we obtain a tractable fragment by translating the transformation language
to transducers without XPath expressions. As XPath containment in the presence of
DTDs [NS03, Woo03] can easily be reduced to the typechecking problem, lower bounds
establishing intractability readily follow for XPath fragments containing filters and
disjunction.

The first ptime results still rely on a uniform bound on the number of copies a
rule of the transducer can make. Although this number will always be fairly small in
practice, it would still be more elegant to have an algorithm which is tractable for any
transducer in a specific class. Thereto, we have to restrict the schema languages. In
fact, we show that only for very weak DTDs, those where all regular expressions are
concatenations of symbols a and a+ (which we call RE+ expressions), typechecking
becomes tractable, and that obvious extensions of such expressions make the problem
at least conp-hard. So, the price for arbitrary deletion and copying is very high.

6.1 Deletion, Bounded Copying, and DFAs

Although deletion has an enormous impact on the complexity of typechecking, as
is exemplified by the first two rows of Tables 4.1 and 5.1, more often than not, the
ability to skip nodes in the input tree is critical. Indeed, many simple transformations
like the ones in Example 2.15 select specific parts of the input while deleting the non
interesting ones. Moreover, such deletion can be unbounded. That is, the number of
deleted nodes on a path depends only on the input tree and not on the schema.

Since the typechecking problem is immediately intractable for DTD(NFA)s and
transducers with unbounded copying, we focus in this section on DTD(DFA)s and
on bounded copying transducers. We prove a general lemma which quantifies the
combined effect of copying and deletion on the complexity of typechecking. From
this lemma we then derive conditions under which typechecking becomes tractable.
Interestingly, these conditions allow arbitrary deletion when no copying occurs, but at
the same time permit bounded copying for those rules that only delete in a bounded
fashion. We further show that these conditions cannot be relaxed without increasing
the complexity. Finally, we discuss typechecking in the context of schemas represented
by deterministic tree automata.

6.1.1 A Practical Case

We start by introducing some terminology to describe the effect of deleting states.
Let T = (QT ,Σ, q

T
0 , RT ) be a transducer. A deletion path is a sequence of states

q1, . . . , qn in QT such that qi occurs in top(rhs(qi−1, ai−1)) for all i = 2, . . . , n and
some a2, . . . , an ∈ Σ. Note that every q1, . . . , qn−1 is a deleting state as defined in
Section 2.3.

The deletion width of a state q ∈ QT is the maximum number of states in
top(rhs(q, a)) for all a ∈ Σ. We denote the deletion width of q by dw(q). The
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width of a deletion path q1, . . . , qn is the product
∏n−1

i=1 dw(qi). Note that we do not
take the deletion width of qn into account as it may be zero. We say that T has
deletion path width K if every deletion path has width smaller than or equal to K.

Example 6.1. Let T be the transducer consisting of the following rules:

(qT0 , a)→ a(q1 q5)
(q1, a)→ q2 a q2 a (q5, a)→ q6 a a q6
(q2, a)→ a q3 q3 a q3 (q6, a)→ q7 q7
(q3, a)→ q4 (q7, a)→ a q8 a
(q4, a)→ a (q8, a)→ a a q7

The deletion widths of the states are given as follows:

state q1 q2 q3 q4 q5 q6 q7 q8
deletion width 2 3 1 0 2 2 1 1

The sequences q1, q2, q3, q4 and q5, q6, q7, q8, q7 are examples of deletion paths in T .
The former has deletion width six and the latter has deletion width four. Note that
the deletion path

q5, q6, q7, q8, q7, q8, q7, q8

also has deletion width four. The reason is that the deletion width of q7 and q8 is
one. Would there be a rule (q7, b)→ q8q8 then paths of arbitrary large deletion width
could be constructed.

Notice that the deletion path width of T is six. We discuss a general algorithm to
compute the deletion path width of a tree transducer in the proof of Proposition 6.5.
3

A deleting state is recursively deleting if it occurs twice in some deletion path;
otherwise, it is said to be non-recursively deleting. The deletion depth of a state q is
the maximum length of a deletion path in which it occurs. When no such maximum
exists, we say that the state has unbounded deletion depth. In particular, all recursively
deleting states have unbounded deletion depth.

By T C,K
trac , we denote the class of transducers with copying width at most C and

deletion path width at mostK. When the actual values of C andK are not important,
we simply write Ttrac instead of T C,K

trac .

Note that a class T C,K
trac allows recursive deletion, but only for those states that do

not copy at the same time. Should such a state occur, the width of deletion paths
cannot be bounded. So, if a state of a T C,K

trac -transducer is recursively deleting then
every associated rhs is of the form hpg where p is a state and h and g are hedges
containing no states on their top level and with at most C occurrences of states in
every sequence of siblings. When a state is non-recursively deleting, then simultaneous
copying and deletion is allowed but only in a bounded fashion. That is, every deletion
path containing that state is of deletion width at most K.

Example 6.2. The first transducer in Example 2.15 belongs to T 1,1
trac while the second

is in T 2,1
trac. The transducer of Example 6.1 is in T 3,6

trac. 3
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The next lemma provides a detailed analysis of the complexity of typechecking in
terms of copying and deletion power. Its proof is a non-trivial generalization from non-
deleting to deleting transducers of the reduction from TC[Tnd,bc,DTD(DFA)] to the
emptiness test of unranked tree automata in Theorem 4.5(4) in Chapter 4, followed
by an analysis of the size of the obtained automaton.

We use the following terminology in the proof of Lemma 6.3. For a tree t and
a node u ∈ Nodes(t), we denote by t/u the subtree of t rooted at u. For a hedge
h and a DTD (d, sd), we say that h partly satisfies d if for every u ∈ Nodes(h),
labh(u1) · · · labh(un) ∈ L(d(labh(u))) where u has n children. Note that there is no
requirement on the root nodes of the trees in h. Hence, the term partly.

Lemma 6.3. TC[T C,K
trac , DTD(DFA)] can be decided in

O
(
(|din||T |

C×K|dout|
C×K)α

)
time,

where |din| and |dout| are the sizes of the input and output schema, respectively; |T |
is the size of the tree transducer T ; and α is a constant.

Proof. Let T = (QT ,Σ, q
0
T , RT ) ∈ T

C,K
trac be a tree transducer. Let din and dout be

the input and output DTDs, respectively. We construct an NTA(NFA) B such that
L(B) = {t ∈ L(din) | T (t) 6∈ L(dout)}. Thus, B accepts all counterexample trees.
Therefore, L(B) = ∅ if and only if T typechecks with respect to din and dout. We
argue that B can be constructed in time

O((|din||T |
C×K |dout|

C×K)β)

for a constant β. As the emptiness problem of NTA(NFA)s is in ptime (Proposi-
tion 3.18), the complexity of the typechecking problem is

O
(
(|din||T |

C×K |dout|
C×K)α

)
,

for a constant α.

Behavior of B. A tree automaton can easily verify that the input tree satisfies din.
To check that the translated tree violates the output schema dout, B non-determinis-
tically locates a node v in the input tree generating a subtree

σ(a1(s1) · · · am(sm))

such that a1 · · · am 6∈ dout(σ). We explain how the latter can be verified. Thereto,
let a(t1 · · · tn) be the tree rooted at v. Assume that T processes v in state q and
that rhs(q, a) contains the subtree σ(z0q1z1 · · · zk−1qkzk), where z0, . . . , zk ∈ Σ∗ and
q1, . . . , qk ∈ QT . Then, B needs to simulate the complement of the DFA D for dout(σ)
on the string

z0 top
(
T q1(t1) · · ·T

q1(tn)
)
z1 · · · zk−1 top

(
T qk(t1) · · ·T

qk(tn)
)
zk.

As the strings top(T qi(ti)) depend on the subtrees ti rooted at v, B cannot simply
run D. Instead, for each ti, the automaton B guesses k pairs of states (p1i,1, p

1
i,2), . . . ,

(pki,1, p
k
i,2) of D, and verifies later that indeed top(T qj (ti)) takes D from state pji,1 to

state pji,2. At present, B can only verify that
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1. z0 takes D from its initial state to p11,1;

2. zk takes D from pkn,2 to an accepting state;

3. for each j = 1, . . . , k − 1, zj takes D from pjn,2 to pj+1
1,1 ; and

4. for each i = 1, . . . , n− 1 and j = 1, . . . , k, we have that pji,2 = pji+1,1.

Note that for this step, B needs to remember at most 2C states of D for each subtree.
We briefly sketch how B can verify that the string top(T qj (ti)) takes D from state
pji,1 to state pji,2. If rhs(qj , σi), where σi is the root of ti, contains no deleting states,
then top(T qj (ti)) only depends on rhs(qj, σi) and not on ti and B can simply run D.
When rhs(qj , σi) contains ℓ deleting states, then we just need to guess ℓ new pairs of
states (pi,1, pi,2) and defer verification to the children of the present node. As long as
the transducer deletes, new pairs of states are guessed. As K is an upper bound for
this number, C ×K is the maximum number of pairs that need to be remembered at
all time to check whether for every i, top(T qj (ti)) takes D from state pji,1 to state pji,2.
Note that we also allow recursively deleting states but as these cannot copy, they do
not increase the number of pairs of states B has to guess.

Construction. Let T = (QT ,Σ, q
0
T , RT ) and let for each a ∈ Σ, Aa = (Qa,Σ, δa, Ia,

Fa) be the DFA for which dout(a) = L(Aa). Without loss of generality, we assume
that the sets Qa are pairwise disjoint. Set M = C ×K. Intuitively, M is an upper
bound on the number of states of some Aa that B needs to remember. This will
become clear later. Next, we define the tree automaton B = (QB,Σ, FB , δB). The
set of states QB is the union of the following sets:

• Σ,

• {(a, q) | a ∈ Σ, q ∈ QT },

• {(a, q, check) | a ∈ Σ, q ∈ QT }, and

•
⋃M

i=1
{(a, (q1, ℓ

b
1, r

b
1), . . . , (qM , ℓbM , rbM )) |

(q1, ℓ
b
1, r

b
1) · · · (qM , ℓbM , rbM ) ∈ {(QT ×Qa ×Qa)

i · (#,#,#)M−i | i = 1, . . . ,M},
a, b ∈ Σ}, where # 6∈ QT ∪

⋃

a∈ΣQa.

Note that the size of QB is O(|Σ||QT |M |dout|2M ). We explain the intuition behind
these states. When there is an accepting run on a tree t, then a node v labeled with
a state of the form

a, (a, q), (a, q, check), or (a, (q1, ℓ
b
1, r

b
1), . . . , (qM , ℓbM , rbM ))

has the following meaning:

a: v is labeled with a and the subtree rooted at v partly satisfies din.

(a, q): same as in previous case with the following two additions: (1) v is processed
by T in state q; and, (2) a descendant of v will produce a tree that does not
partly satisfy dout.
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(a, q, check): same as the previous case only now v itself will produce a tree that does
not partly satisfy dout.

(a, (q1, ℓ
b
1, r

b
1), . . . , (qM , ℓbM , rbM )): v is labeled with a and the subtree rooted at v

partly satisfies din. Furthermore, v is processed by T in states q1, . . . , qj , where
j is maximal such that qj 6= #, and v is a descendant of the node labeled with
(a, q, check). The triple (qi, ℓ

b
i , r

b
i ), i ≤ j, indicates that top(T qi(t/v)) takes Ab

from state ℓbi to rbi .

The set of final states is FB := {(sin, q0T )} where sin is the start symbol of din.
The transition function is defined as follows: for all a, b ∈ Σ with a 6= b and q ∈ QT

1. we have

δB(a, b) = ∅;

δB((a, q), b) = ∅;

δB((a, q, check), b) = ∅; and

δB((a, (q1, ℓ
c
1, r

c
1), . . . , (qM , ℓcM , rcM )), b) = ∅.

2. δB(a, a) = din(a) and δB((a, q), a) consists of those strings a1 · · ·an such that
there is precisely one index j ∈ {1, . . . , n} for which aj = (b, p) or aj =
(b, p, check) where p occurs in rhs(q, a) and for all i 6= j, ai ∈ Σ; further,
a1 · · · aj−1baj+1 · · · an ∈ L(din(a)). Note that δB((a, q), a) is defined in such a
way that it ensures that all subtrees partly satisfy din and that at least one
subtree will generate a violation of dout. Clearly, δB(a, a) and δB((a, q), a) can
be represented by DFAs whose size is at most quadratic in the size of the input
DTD plus the size of the transducer.

3. We define δB((a, q, check), a). Let u be an arbitrary node in rhs(q, a) labeled
with b ∈ Σ and let Ab = (Qb,Σ, δb, Ib, Qb − Fb). Let su = z0q1z1 · · · zk−1qkzk
be the concatenation of the labels of the children of u, where every zi ∈ Σ∗ and
qi ∈ QT . Intuitively, if v is the node in the input tree t labeled with (a, q, check),
and v has n children, then we want to check here whether the string

s = z0top(T
q1(t/v1)) · · · top(T q1(t/vn))z1 · · ·

· · · zk−1top(T
qk(t/v1)) · · · top(T qk(t/vn))zk

is accepted by Ab (or, equivalently, rejected by Ab). Of course, at v the au-
tomaton B does not know the strings top(T qj (t/vi)). Instead, B guesses k · n
pairs of states (ℓj,i, rj,i) of Ab, where i = 1, . . . , n and j = 1, . . . , k, such that
Ab accepts the string

z0(ℓ1,1, r1,1)(ℓ1,2, r1,2) · · · (ℓ1,n, r1,n)z1 · · ·

· · · zk−1(ℓk,1, rk,1)(ℓk,2, rk,2) · · · (ℓk,n, rk,n)zk

where the behavior of Ab is modified as follows: when Ab reaches (ℓj,i, rj,i) in
state ℓj,i, it moves to state rj,i, otherwise it rejects. So, B guesses the input-
output behavior (ℓj,i, rj,i) of Ab at every string top(T qj (t/vi)). These guesses
should then be verified further down in the tree.
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Formally, let for I, F ⊆ Qb, Nb(I, F ) = (Qb,Σ∪(Qb×Qb), δNb
, I, F ) be the DFA

that behaves the same way as Ab, but when it reads a symbol (q′1, q
′
2) in state q′1

it immediately jumps to state q′2, and rejects otherwise. The parameterization
of the initial and final states of Nb will be needed in bullet (4).

We define δB((a, q, check), a) as the union of all sets R(u) where u is a node in
rhs(q, a) and each R(u) is defined as follows:

(
a1, (q1, ℓ

b
1,1, r

b
1,1), . . . , (qM , ℓbM,1, r

b
M,1)

)
· · ·

· · ·
(
an, (q1, ℓ

b
1,n, r

b
1,n), . . . , (qM , ℓbM,n, r

b
M,n)

)

such that

• a1 · · · an ∈ din(a);

• the string

z0(ℓ
b
1,1, r

b
1,1) · · · (ℓ

b
1,n, r

b
1,n)z1 · · · zk−1(ℓ

b
k,1, r

b
k,1) · · · (ℓ

b
k,n, r

b
k,n)zk

is accepted by Nb(Ib, Qb − Fb);

• q1, . . . , qk are the states as occurring in su = z0q1z1 · · · qkzk; and

• for i = k + 1, . . . ,M , j = 1, . . . , n: (qi, ℓ
b
i,j, r

b
i,j) = (#,#,#).

We compute an upper bound for the size of the NFA for δB((a, q, check), a).
The alphabet size of δB((a, q, check), a) is bounded by |Σ||QT |C |Qout|2C , where
Qout =

⋃

b∈ΣQb. Further, for a node u in rhs(q, a) labeled with b, R(u) can be
accepted by a DFA that simulates in parallel one copy of din(a) and at most
C copies of Ab. Note that once u is chosen, the states q1, . . . , qk in R(u), with
k ≤ C, are fixed. Hence, δB((a, q, check), a) can be represented as a union of
|rhs(q, a)| DFAs with |din(a)||dout|C states, which bounds the total size of the
NFA representing δB((a, q, check), a) by

|Σ||QT |
C |Qout|

2C × |rhs(q, a)||din(a)||dout|
C .

4. Finally, we define δB((a, (p1, ℓ
b
1, r

b
1), . . . , (pM , ℓbM , rbM )), a). Letm be the smallest

index such that for all m′ > m, pm
′

= #. Intuitively, when B arrives at a node
v in state (a, (p1, ℓ

b
1, r

b
1), . . . , (pM , ℓbM , rbM )), then it should verify that for every

i = 1, . . . ,m, top(T pi(t/v)) takes Ab from ℓbi to rbi . For every i = 1, . . . ,m,
let top(rhs(pi, a)) be of the form zi,0qi,1zi,1 · · · qi,ki

zi,ki
where zi,j ∈ Σ∗ and

qi,j ∈ QT . When ki > 0 B has to replace (pi, ℓ
b
i , r

b
i ) with a new sequence in

(QT ×Ab ×Ab)
∗.

So, δB((a, (p1, ℓ
b
1, r

b
1), . . . , (pM , ℓbM , rbM )), a) accepts the strings

(
a1, (q1, ℓ

b
1,1, r

b
1,1), . . . , (qM , ℓbM,1, r

b
M,1)

)
· · ·

· · ·
(
an, (q1, ℓ

b
1,n, r

b
1,n), . . . , (qM , ℓbM,n, r

b
M,n)

)

such that
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• a1 · · · an ∈ din(a); and

• for all i ≤ m, qj+1 · · · qj+ki
= qi,1 · · · qi,ki

, where j = Σi−1
x=1kx; and

• for all i ≤ m, the string

zi,0(ℓ
b
j+1,1, r

b
j+1,1) · · · (ℓ

b
j+1,n, r

b
j+1,n)zi,1 · · ·

· · · zi,ki−1(ℓ
b
j+ki,1, r

b
j+ki,1) · · · (ℓ

b
j+ki,n, r

b
j+ki,n)zi,ki

is accepted by Nb({ℓbi}, {r
b
i}), where j = Σi−1

x=1kx; and,

• for i = (1 + Σm
x=1kx), . . . ,M , j = 1, . . . , n: (qi, ℓi,j , ri,j) = (#,#,#).

We need to argue that at all times, Σm
x=1kx ≤ M . Let for an input tree t,

v ∈ Nodes(t) be the node that is visited in state (a, q, check) by B and let
u ∈ rhs(q, a) be the node selected in step (3), labeled with b. Assume first that
q is a state with bounded deletion depth. To produce the string s that must
be tested for membership in Ab, T visits v’s children in at most C states. Let
q, q1, . . . , qℓ be an arbitrary deletion path in T , and let for each qi, Di be the
deletion width of qi. Then, the nodes at depth i in t/v are visited by T in
at most C · D1 · · ·Di−1 states of T . So, every node in t/v is visited by T in
at most C × K = M states to produce s. Hence, M is an upper bound for
Σm

x=1kx. When q has unbounded deletion depth, only states that do not copy
can occur multiple times. These cannot increase the number of states B needs
to remember.

We compute an upper bound for the size of

δB((a, (p1, ℓ
b
1, r

b
1), . . . , (pM , ℓbM , rbM )), a).

The alphabet size of δB((a, (p1, ℓ
b
1, r

b
1), . . . , (pM , ℓbM , rbM )), a) is bounded from

above by |Σ||QT |M |Qout|2M . Further, δB((a, (p1, ℓ
b
1, r

b
1), . . . , (pM , ℓbM , rbM )), a)

simulates one copy of din(a) and at most M copies of Ab in parallel. Note that
the sequence q1 · · · qM is uniquely determined by a and p1 · · · pm. Hence,

δB((a, (p1, ℓ
b
1, r

b
1), . . . , (pM , ℓbM , rbM )), a)

is a DFA of size

|Σ||QT |
M |Qout|

2M × |din(a)||Ab|
M .

We compute the size of B. The size of every NFA in B is

O(|din|
2|QT |

M+1|dout|
3M ).

Further, B has O(|Σ||QT |M |dout|2M ) states. Hence the size of B is

O(|din|
3|QT |

3M+1|dout|
5M ).

As emptiness of NTA(NFA)s is in ptime (Proposition 3.18), we get our upper bound.
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From Lemma 6.3, we immediately obtain that the typechecking problem with
respect to DTD(DFA)s is tractable for all classes of tree transducers with a bounded
deletion path width:

Theorem 6.4. TC[Ttrac, DTD(DFA)] is ptime-complete.

The lower bound follows from Table 4.1.
Not only do we obtain a ptime algorithm, Lemma 6.3 also provides a clear view on

the concrete complexity in terms of the different parameters. Although the parame-
ters C and K occur in the exponent, we believe these numbers to be small in practical
transformations. It is important to point out that the presence of non-copying recur-
sively deleting states do not affect the parameter K. Hence, there is no penalty for
the recursive deletion without copying that occurs in many filtering transformations.
In contrast to the results in Chapters 4 and 5 that abandoned deletion completely,
the present result shows that transformations with small K but arbitrary deletion
without copying can still be efficiently typechecked.

Proposition 6.5. Let T be a tree transducer. The smallest numbers C and K such
that T ∈ T C,K

trac can be computed in ptime.

Proof. It is obvious that C can be computed in ptime. We only need to count the
maximum number of states that occur as siblings in a rhs in T .

The computation of K is somewhat more complicated. We reduce this problem to
the problem of finding a longest path (or a path with the highest cost) in a directed
acyclic graph. The latter problem can be solved in polynomial time (see problem
ND29 in [GJ79]). Given a tree transducer T = (QT ,Σ, q

0
T , RT ), we define the deletion

path graph GT = (VT , ET ) — which can still contain cycles — as follows. The set of
nodes VT = {(q, a) | q ∈ QT , a ∈ Σ}. For a node (q, a), the set of outgoing edges is
defined as {((q, a), (q′, a′)) | a′ ∈ Σ, q′ ∈ Qq,a}, whereQq,a is the set of states occurring
in top(rhs(q, a)). Note that these edges can be computed in ptime. To every edge
e = ((q, a), (q′, a′)) we associate a cost, denoted cost(e), which is the number of states
occurring at top(rhs(q, a)). The cost of a path p in GT is the product of the costs of
the edges occurring in p. Note that by definition, all costs of edges are at least one
and that the deletion path width of T is equal to the largest cost of a path in GT .

We now transform GT into an acyclic graph as follows. Assume that there is at
least one edge with cost two, otherwise, we immediately know that K = 1. First we
investigate, for every edge e = ((q, a), (q′, a′)), if it is part of a cycle. This can be
done in nlogspace, and, hence, also in ptime. If there exists an e which is part of a
cycle and cost(e) > 1, then we can immediately halt the algorithm and conclude that
K cannot be bounded. Therefore, assume now that every edge occurring in a cycle
has cost one. Since cycles with cost one have no effect on the cost of the longest path
in GT , we remove these cycles from GT by joining the nodes that they connect.

Formally, we define an equivalence relation ≡ between nodes of GT . For two nodes
v and v′, we say that v ≡ v′ if (1) v = v′; or (2) v and v′ occur in the same cycle
(that is, there exists a directed path from v to v′ and from v′ to v). For a node v, we
denote by v the set of nodes which are equivalent to v. We now define the graph G′T =

(V ′T , E
′
T ), where V ′T = {v | v ∈ VT } and E′T = {((q, a), (q′, a′)) | ((q, a), (q′, a′)) ∈ ET

and (q, a) 6= (q′, a′)}.
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Since G′T is a DAG, we can compute the longest path in G′T in ptime. Note
that, in the longest path problem, we want to maximize the sum of the costs of the
edges, whereas we want to maximize their product. However, this can directly be
incorporated in the longest path algorithm, as our costs are always positive integers.
It is easy to see that the maximum possible intermediate cost is always bounded by
|T ||T |. This number can be represented using |T | · ⌈log |T |⌉ bits, which is polynomial.

We illustrate how the algorithm in Proposition 6.5 computes C and K for the tree
transducer of Example 6.1.

Example 6.6. Let T be the tree transducer defined in Example 6.1. It is immediate
that C = 3. The deletion path graph GT = (VT , ET ) is graphically represented in
Figure 6.1(a). The graph G′T , which is obtained from GT by eliminating the cycles,

is shown in Figure 6.1(b). The path (q1, a) (q2, a) (q3, a) (q4, a) in G′T has a cost of
6, which is the highest possible cost in G′T .

2 Therefore, K = 6. 3

(q1, a)

(q2, a)

(q3, a)

(q4, a)

(q5, a)

(q6, a)

(q7, a)

(q8, a)

2

3

1

2

2

11

(a) The deletion path graph GT .

(q1, a)

(q2, a)

(q3, a)

(q4, a)

(q5, a)

(q6, a)

(q7, a)

2

3

1

2

2

(b) The graph G′

T .

Figure 6.1: The deletion path width graphs GT and G′T of the transducer T from
Example 6.1

6.1.2 Lower Bounds for Extensions

We show that the scenario of the previous section cannot be enlarged in an obvious
way without rendering the typechecking problem intractable. The ptime result of
the previous section is obtained for those classes of transducers that can bound their
deletion path width and their copying width by a constant. The restriction on copy-
ing width cannot be relaxed: even TC[Tnd,uc,DTD(DFA)] is pspace-hard with fixed

2Recall that the cost of a path is defined to be the product of the costs of its edges.
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r

#

#
...

#

s

Figure 6.2: Structure of the trees defined by the input schema in the proof of Theo-
rem 6.7.

input or output schema (cf. Tables 4.1 and 5.1). What about the constraint on the
bounded deletion path width? A slight relaxation of this constraint is to require that
the deletion path width is finite for each transducer in the class but not necessarily
bounded by a predetermined constant. We denote by Tdw=2,cw=2,fdpw the class of
such transducers with the additional constraint that the deletion width and copying
width of states is restricted to two. The next theorem shows that typechecking in
this scenario is intractable.

Theorem 6.7. TC[Tdw=2,cw=2,fdpw, DTD(DFA)] is pspace-hard.

Proof. We reduce the intersection emptiness problem of an arbitrary number of DFAs,
which is pspace-hard (Proposition 3.9), to the typechecking problem. The intersec-
tion emptiness problem for DFAs asks whether

⋂n
i=1 L(Ai) = ∅ for a given sequence

of DFAs A1, . . . , An.
For i = 1, . . . , n, let Ai = (Qi,∆, δi, Ii, Fi) be a DFA. Define Σ = ∆ ∪ {#, r, ok}.

We construct two DTD(DFA)s din and dout, and a tree transducer T with deletion and
copying width two, and deletion depth ⌈logn⌉, such that T typechecks with respect
to din and dout if and only if

⋂n
i=1 L(Ai) = ∅.

The input DTD din with start symbol r is defined as follows: din(r) = # and
din(#) = # +∆∗. Then, every allowed tree is of the form as depicted in Figure 6.2,
where s ∈ ∆∗. We define the tree transducer T = (QT ,Σ, q

0
T , RT ) where QT =

{q0T , q
1, . . . , q⌈logn⌉} and RT consists of the following rules:

• (q0T , r)→ r(q1#q1);

• (qi−1,#)→ qi#qi for i = 2, . . . , ⌈logn⌉;

• (qi, a)→ ok for i < ⌈logn⌉ and a ∈ ∆;

• (q⌈log n⌉,#)→ ok; and

• (q⌈log n⌉, a)→ a for all a ∈ Σ.

Note that T produces a tree of the form r(w) with w ∈ (∆ ∪ {#, ok})∗. When the
depth of the input tree is different from ⌈logn⌉, w contains the symbol ok. Otherwise,
w consists of at least n copies of the ∆-string s.
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It remains to define the DFA specifying dout(r). The automaton starts by simulat-
ing A1. Further, when the DFA encounters the ith occurrence of a #, the simulation
of Ai+1 is started. The DFA accepts when at least one Ai rejects, or when the symbol
ok appears in the output.

So, for all t ∈ L(din) with depth ⌈logn⌉, we have that T (t) ∈ L(dout) if and only
if
⋂n

i=1 L(Ai) = ∅. As for all other trees t ∈ L(din) we have that T (t) ∈ L(dout), this
instance typechecks if and only if

⋂n
i=1 L(Ai) = ∅.

For completeness, we also mention here that typechecking is exptime-hard for
deleting tree transducers with a deletion and copying width of two. This hardness
even holds for a fixed input and output schema (Theorem 5.1).

6.1.3 Tree Automata

In this section, we turn to schemas defined by unranked tree automata. We show
that when every right hand side of a rewrite rule contains at most 1 state, recursively
deleting of width one remains tractable in the presence of DTAc(DFA)s. The latter is
the class of bottom-up deterministic complete tree automata that use DFAs to repre-
sent transition functions. Such transformations are mild generalizations of relabelings
and we therefore denote the class of these transducers by Tdel-relab. It is hence not
surprising that the output type of a transducer in Tdel-relab can be exactly captured
by a tree automaton. The latter observation is a generalization of the corresponding
result for ranked tree transducers (Proposition 7.8(b) in [GS97]). We only have to
show that the construction of the unranked tree automaton can be done in ptime.
Typechecking then reduces to containment checking of NTA(NFA)s in DTAc(DFA)s.

We make use of the following Lemma.

Lemma 6.8. Let A be an NTA(NFA) and T be a non-deleting tree transducer for
which every rhs contains at most one state. Then we can construct in polynomial
time an NTA(NFA) B such that L(B) = T (L(A)).

Proof. Let A = (QA,Σ, δA, FA) be an NTA(NFA) and let T = (QT ,Σ, q
0
T , RT ) be

a tree transducer such that every rule in RT is of the form (q, a) → b(h), where h
contains at most one state. We construct a NTA(NFA) B = (QB,Σ, δB, FB) such
that L(B) = T (L(A)). Intuitively, when B processes a tree t, it guesses the tree t′

such that T (t′) = t and verifies whether t′ ∈ L(A).
The automaton B is defined as follows:

QB = Σ×QA ×QT × ∪(q,a)∈QT×ΣNodes(rhs(q, a));

FB = Σ× FA × {q0T } × {ε}. Intuitively, when t ∈ L(B), it means that there is some
tree t′ ∈ L(A) such that T (t′) = t. If a node v ∈ Nodes(t) is labeled with (a, qA, qT , u)
in an accepting run of B, it intuitively means that there is a node v′ in t′ for which

• the label of v′ is a;

• λ(v′) = qA in some accepting run λ of A on t′;

• v′ was visited by T in state qT ; and
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• v was constructed by T from node u in rhs(qT , a).

Formally, for any a ∈ Σ, qA ∈ QA and qT ∈ QT , let t1 = rhs(q, a) and let
i1 · · · ik ∈ N∗ be the unique node in t1 labeled by a state, if it exists. Then, for every
node u ∈ Nodes(t1) different from i1 · · · ik−1 or i1 · · · ik, with children u1, . . . , un, we
define

δB((a, qA, qT , u), lab
t(u)) := {(a, qA, qT , u1) · · · (a, qA, qT , un)}.

It is trivial to construct an NFA of size n that accepts this singleton. Note that this
language contains only the empty string if u is a leaf.

Denote by v the node i1 · · · ik−1 and suppose that v hasm children. Then, to define
δB((a, qA, qT , v), lab

t1(v)), let D = (QD, QA, δD, ID, FD) be the NFA representing
δ(qA, a) and let q′T be the state in rhs(qT , a). Then,

δB((a, qA, qT , v), lab
t1(v))

is the NFA accepting the language

(a, qA, qT , v1) · · · (a, qA, qT , v(ik − 1))L(D′)(a, qA, qT , v(ik + 1)) · · · (a, qA, qT , vm)

where D′ is obtained from D by replacing every transition δD(p1, q
′
A) = {p2} by

• the transitions δD(p1, (c, q
′
A, q
′
T , ε)) = {p2} for every c ∈ Σ when rhs(q′T , c) is a

tree; and by

• the transitions

δD
(
p1, (c, q

′
A, q
′
T , 1)

)
= {p

q′T ,c,1
1 },

δD
(
p
q′T ,c,1
1 , (c, q′A, q

′
T , 2)

)
= {p

q′T ,c,2
1 }, . . .

. . . , δD
(
p
q′T ,c,ℓ−1
1 , (c, q′A, q

′
T , ℓ)

)
= {p2}

when rhs(q′T , c) is a hedge consisting of ℓ > 1 trees. In the above definitions,

the states p
q′T ,c,1
1 , . . . , p

q′T ,c,ℓ−1
1 are new states not occurring in the state set of

D.

In other words, B guesses a string of children of node v′ in t′, continues with the
simulation of T by remembering q′T and continues with the simulation of A on t′ by
running D over the states of A.

So, B has O(|Σ||A||T |) states, and for each such state, the size of B’s transition
function is O(|Σ||A||T |).

We are now ready to prove the following theorem.

Theorem 6.9. TC[Tdel-relab,DTAc(DFA)] is ptime-complete.

Proof. The lower bound is immediate from Lemma 3.19.
For the upper bound, we reduce the typechecking problem to the emptiness prob-

lem of the intersection of two NTA(NFA)s, which is in ptime (Proposition 3.18). To
this end, let Ain and Aout be the input and output tree automaton, respectively.
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We construct a non-deleting tree transducer T ′ from T by replacing every deleting
state q in a rhs of T by #(q). So, T ′ outputs a # whenever T would process a
deleting state. We assume that # 6∈ Σ. We now construct an NTA(NFA) Bin such
that L(Bin) = T ′(L(Ain)). According to Lemma 6.8, Bin can be computed in time
polynomial in the size of Ain and T ′.

As Aout is a complete DTA(DFA), the complement Aout can easily be computed
by switching the final and non-final states. Note that the size of Aout is linear in the
size of Aout.

Define the #-eliminating function γ as follows: γ(a(h)) is γ(h) when a = # and
a(γ(h)) otherwise; further, γ(t1 · · · tn) := γ(t1) · · · γ(tn). We construct the NTA(NFA)
Bout, such that Bout accepts a tree t ∈ TΣ∪{#} if and only if γ(t) is accepted by Aout.

According to the proof of Theorem 4.1(1) in Chapter 4, we can construct Bout in
logspace. The instance then typechecks if and only if L(Bin ∩Bout) = ∅.

For completeness, we note that typechecking with respect to DTA(DFA)s already
turns exptime-hard for tree transducers with a copying width of one, and for which
the right-hand sides of rewrite rules are allowed to contain at most two states (see
Theorem 4.5(2)). In the reduction, both the input and output schemas are fixed.

6.2 XPath Patterns

An approach complementary to deletion, is the use of XPath patterns to skip nodes
of the input tree [CD99]. As XPath patterns are very likely to occur in practical
transformations, it is important to study the complexity of the typechecking problem
for tree transducers that allow the use of XPath patterns. We only consider XPath
patterns for downward navigation and therefore restrict attention to the following
axes and operations: child (/), descendant (//), wildcard (∗), disjunction (|), and
filter ([ ]). We allow element tests and either the child or descendant axis in every
fragment of XPath we consider.

Definition 6.10. An XPath{/, //, [ ], |, ∗} pattern P is an expression ·/φ or ·//φ
where φ is defined by the following grammar:

φ := φ1|φ2 (disjunction)
| φ1/φ2 (child)
| φ1//φ2 (descendant)
| φ1[P ] (filter)
| a (element test)
| ∗ (wildcard)

3

An example of an XPath{/, //, [ ], |, ∗} pattern is ·/(a|b)//c[·//e]/∗.
Note that in our framework, we only use XPath patterns that start with “·”, that is,

they always start from the context node. We use the following notational convention:
for a sequence X of axes and operations, we denote by XPath{X} the XPath patterns
that only use the axes and operations in {X}. For instance, XPath{/, |} denotes the
fragment of XPath{/, //, [ ], |, ∗} where only element test and the child and disjunction
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axes are used. An XPath pattern P defines a function fP : t× Nodes(t)→ 2Nodes(t).
We inductively define fP as follows.

• f·/φ(t, u) := {v | ∃z ∈ N : v ∈ fφ(t, uz)};

• f·//φ(t, u) := {v | ∃z ∈ N∗ − {ε} : v ∈ fφ(t, uz)};

• fφ1|φ2
(t, u) := fφ1(t, u) ∪ fφ2(t, u);

• fφ1/φ2
(t, u) := {v | ∃w ∈ Nodes(t), z ∈ N : w ∈ fφ1(t, u) and v ∈ fφ2(t, wz)};

• fφ1//φ2
(t, u) := {v | ∃w ∈ Nodes(t), z ∈ N∗ − {ε} : w ∈ fφ1(t, u) and v ∈

fφ2(t, wz)};

• fφ1[P ](t, u) := {v | v ∈ fφ1(t, u) and fP (t, v) 6= ∅};

• fa(t, u) :=

{

{u} if labt(u) = a;

∅ otherwise;

• f∗(t, u) := {u};

When a node u is in fP (t, ε), we say that P selects u in t.
Let P ⊆ XPath{/, //, [ ], |, ∗} be a set of XPath patterns. We explain how the

syntax and the semantics of transducers is extended to patterns in P . We denote the
latter fragment by T P . Rules are now of the form (q, a) → h where h ∈ HΣ((Q ×
P) ∪Q). That is, state-pattern pairs 〈q, P 〉 can now also occur at leaves. Previously,
all children of the current node were processed; now, only the nodes selected by P
starting from the current node. These nodes are processed in document order, that
is, the order in which they would occur in a depth-first left to right traversal of the
tree. We denote state-pattern pairs with angled parentheses to avoid confusion in the
string representation of trees.

If T is a tree transducer, t = a(t1 · · · tn) and there is a rule (q, a) → h ∈ RT

then T q(t) is obtained from h by replacing every node u in h labeled with 〈p, P 〉
by the hedge T p(t/u1) · · ·T p(t/um) where fP (t, ε) = {u1, . . . , um} and the sequence
u1, . . . , um occurs in document order. Recall that we denote by t/u the subtree of t
rooted at u. Note that the context node is always set to the root of the subtree that
is to be processed by T and that every XPath pattern is of the form ·/φ or ·//φ. In
this way, the context node itself is never selected and the transformation by T always
terminates.

Example 6.11. When making use of XPath patterns, we can write the first document
transformation in Example 2.15 more succinctly as follows:

(q, book) → book(q)
(q, chapter) → chapter 〈q, ·//title〉
(q, title) → title

3

Via a reduction to Theorem 6.4, we show that for very simple XPath patterns
added to the formalism typechecking remains in ptime.

Theorem 6.12. TC[T
XPath{/,∗}
trac , DTD(DFA)] is ptime-complete.
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Proof. The lower bound is immediate from Theorem 6.4. We prove the upper bound.

In particular, we will show that for any tree transducer T ∈ T
XPath{/,∗}
trac , we can

construct an equivalent tree transducer T ′ ∈ Ttrac which has size polynomial in the
size of T and the same copying and deletion path width as T . Intuitively, we convert
every XPath-pattern P occurring in T to a DFA, which we simulate by using deleting
states in T ′. The simulation of such DFAs only introduces non-recursively deleting
states of deleting width one, hence, unaffecting the deletion path width.

Formally, let T = (QT ,Σ, q
0
T , RT ) and let PT be the set of XPath patterns oc-

curring in T . For every XPath-pattern P ∈ PT , we can easily construct a DFA
AP = (QP ,Σ, δP , {qIP }, {q

F
P }) accepting all strings a1 · · · an such that P selects the

an-labeled node in the tree r(a1(· · · (an))) when evaluated from the root. Moreover,
each AP has a linear number of states in the number of symbols of P and at most
a quadratic number of transitions. Further, AP is acyclic, only accepts a finite lan-
guage, and all strings in L(AP ) are of the same length. Without loss of generality,
we assume that the sets QP are pairwise disjoint and disjoint from QT .

We construct T ′ = (QT ′ ,Σ, q0T , RT ′) as follows. Its state set is QT ∪
⋃

P∈PT
(QT ×

QP ). For every rule (q, a)→ h in RT , and for every 〈p, P 〉 occurring in h we have the
following set of rules in RT ′ :

• (q, a)→ h′ where h′ is the hedge obtained from h by replacing every occurrence
of 〈p, P 〉 by (p, qIP );

• ((p, qP ), b)→ (p, δP , qP , b)) for every qP ∈ QP and b ∈ Σ such that δP (qP , b) 6=
qFP ; and

• ((p, qP ), b)→ rhs(p, b) for every qP ∈ QP and b ∈ Σ such that δP (qP , b) = qFP .

Note that the final state of AP itself does not occur in the rewrite rules.
We only need to argue that the XPath patterns in T are evaluated correctly in T ′.

To this end, it easy to see that we only use deleting states for nodes that are skipped
in the input tree by the XPath patterns, and that we continue in the correct state
in QT in the nodes that are selected by the XPath patterns. Further, only deleting
states of width one are introduced. So, T ′ ∈ T C,K

trac whenever T ∈ T C,K
trac .

Although the fragment XPath{/, ∗} is very limited, we show in Theorem 6.16
that there is not much room for improvement. The lower bounds in bullet (1) follow
from a reduction from XPath containment in the presence of DTDs with DFAs [NS03,
Woo03]. This problem is defined as follows: given a DTD(DFA) d and XPath patterns
P1 and P2, is it true that fP1(t, ε) ⊆ fP2(t, ε) for all trees t satisfying d.

In the statements of Theorem 6.13 and Lemma 6.15, let XPath{X} denote any
fragment XPath{/, |},XPath{//, |},XPath{/, [ ]} or XPath{//, [ ]}.

Theorem 6.13 ([NS03, Woo01, Woo03]). XPath{X} containment in the presence of
DTD(DFA)s is conp-hard.

We note that Wood used DTDs with DFAs in his conp-hardness proof of the
inclusion problems of XPath{/, [ ]} and XPath{//, [ ]} [Woo].

We also make use of the following lemma. The proof uses the notion of selecting
literals of an XPath pattern. Intuitively, an element test or a wildcard in an XPath
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pattern is a selecting literal if it used for selecting nodes in the document rather
than for navigation in the document. In the following definition, we denote by ℓ an
arbitrary a ∈ Σ or a wildcard.

• ℓ is a selecting literal in ·/φ2, in ·//φ2, in φ1/φ2, in φ1//φ2 or in φ2[P ] if it is a
selecting literal in φ2.

• ℓ is a selecting literal in φ1|φ2 if it is a selecting literal in φ1 or in φ2.

• ℓ is a selecting literal in ℓ.

Example 6.14. We provide some examples.

• The selecting literals of ·//a/b/((c/d)|(b/e)) are labeled d and e.

• The selecting literal of ·/a[·/c]// ∗ [·/(b|c)] is labeled ∗. 3

Lemma 6.15 ([MS04, NS03]). Given a DTD(DFA) d and XPath{X} patterns P1

and P2, we can construct a DTD(DFA) d′ and XPath{X} patterns P ′1 and P ′2 in
logspace such that deciding whether

fP1(t, ε) ⊆ fP2(t, ε) for all trees t satisfying d,

is equivalent to deciding whether for all trees t satisfying d′,

if P ′1 selects an x1-labeled node in t, then P ′2 selects an x2-labeled node in t.

Proof sketch. The DTD d′ is identical to d, except that d′ also requires that every
node has a child leaf labeled with x1 and one with x2.

For i = 1, 2, pattern P ′i is constructed from Pi by replacing for every selecting
literal ℓ

(a) subpatterns /ℓ[φ1] · · · [φn] by /ℓ[φ1] · · · [φn]/xi; and

(b) subpatterns //ℓ[φ1] · · · [φn] by //ℓ[φ1] · · · [φn]//xi,

where [φ1] · · · [φn] is a (possibly empty) sequence of filter operations.

The lower bound in bullet (2) of Theorem 6.16 follows from a reduction from
the intersection emptiness problem for DFAs over a unary alphabet. Given an
arbitrary number of DFAs A1, . . . , An over alphabet {a}, this problem asks whether
⋂n

i=1 L(Ai) = ∅.

Theorem 6.16. The following problems are conp-hard.

(1) TC[T
XPath{X}
nd,bc , DTD(DFA)], for XPath{X} among

• XPath{/, |};

• XPath{//, |};

• XPath{/, [ ]} and

• XPath{//, [ ]}.



90 Frontiers of Tractability
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#
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a · · · a

Figure 6.3: Structure of the trees defined by the input schema in the proof of Theo-
rem 6.16(2).

(2) TC[T
XPath{//}
trac , DTD(DFA)].

Proof. (1) In all four cases, we can do a reduction from the XPath{X} contain-
ment problem in the presence of DTD(DFA)s, which is conp-hard according to The-
orem 6.13.

To this end, let P1 and P2 be two XPath{X} patterns and let (Σ, d, s) be a
DTD(DFA). We construct an instance of the typechecking problem that typechecks
if and only if P1(t, ε) ⊆ P2(t, ε) for every t ∈ (Σ, d, s).

The input DTD (Σ ⊎ {r, x1, x2}, din, r) is identical to (Σ ⊎ {x1, x2}, d′, s) as con-
structed in the proof of Lemma 6.15, except that r is a new alphabet symbol and
din(r) = s. Let P ′1 and P ′2 be the XPath{X} patterns as constructed in the proof of
Lemma 6.15.

We define the tree transducer T = ({q0T , q1},Σ, q
0
T , RT ). The set RT contains the

following rule:

(q0, r)→ r

〈q1, P ′1〉 〈q1, P ′2〉

For state q1 we have the rules (q1, x1) → x1 and (q1, x2)→ x2, which is the identity
transformation on x1 and x2. The output DTD dout has start symbol r and dout(r) =
x∗2 +(x1x

∗
1x2x

∗
2). The latter checks that x1 does not appear or appears together with

x2. The correctness now follows from the statement of Lemma 6.15.
(2) We reduce the intersection emptiness problem for DFAs A1, . . . , An over

over alphabet {a} to the present problem. The intersection emptiness problem
is conp-hard (Lemma 3.15).

The input DTD din has start symbol r and is defined as follows: din(r) = #,
din(#) = # + $, and din($) = a∗. So, trees are of the form as depicted in Figure 6.3.

We define the tree transducer T = ({q0T , q1, q2, q3}, {a, r,#, $}, q0T , RT ) with the
following rewrite rules:

(q0T , r)→ r(〈q1, ·//#〉) (q1,#)→ 〈q2, ·//$〉
(q2, $)→ 〈q3, ·//a〉$ (q3, a)→ a
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The transducer starts by selecting every #-labeled node. For each of those (say there
are k) it selects the single $-labeled descendant node. So, k copies of the input string
in L(a∗) are made, separated by the $-symbol.

The output DTD simulates the ith DFAs on the ith copy and accepts if one of
them rejects or if there are less than n copies. So, the instance typechecks if the
intersection is empty. Note that the copying width (C) and the deletion path width
(K) are both one.

The previous results show that, to retain tractability of typechecking, only very
restricted XPath patterns can be added to Ttrac, or even Tnd,bc. Next, we look at
transducers where patterns are specified by DFAs (rather than by XPath patterns).
We denote this fragment by T DFA. The semantics of such selecting DFAs is as follows:
given a DFA A and a context node u, a descendant v of u is selected by A if and only
if A accepts the string of labels on the path from u to v. From Theorem 6.16(2) it
follows that typechecking is already hard when we allow patterns to be specified by
DFAs in Ttrac transducers (for instance, every XPath{//}-pattern used in the proof
of Theorem 6.16(2) can be translated to an equivalent DFA in linear time). When we
completely disallow deletion however, we still have tractability.

Theorem 6.17. TC[T DFA
nd,bc , DTD(DFA)] is in ptime.

Proof. We show that for any tree transducer T ∈ T DFA
nd,bc , we can construct an equiva-

lent tree transducer T ′ ∈ Ttrac with size linear in the size of T , and the same copying
and deletion path width as T .

The proof is quite analogous to the proof of Theorem 6.12. We simulate every
DFA-pattern in T by deleting states in T ′. The simulation of such DFAs only intro-
duces deleting states of deletion width one.

Formally, let T be the transducer (QT ,Σ, q
0
T , RT ). Let Ax = (Qx,Σ, δx, {qIx}, {q

F
x }),

x ∈ X be the sets of selecting DFAs in T , where X is a set of indices. Without loss
of generality, we assume that the sets Qx are pairwise disjoint and disjoint from QT .

We construct T ′ = (QT ′ ,Σ, q0T , RT ′) as follows. Its state set is QT ∪
⋃

x∈X(QT ×
Qx). For every rule (q, a) → h in RT , and for every 〈p,Ax〉 occurring in h we have
the following set of rules in RT ′ :

• (q, a)→ h′ where h′ is the hedge h where every 〈p,Ax〉 is replaced by (p, qIx);

• ((p, qx), b)→ (p, δx(qx, b)) for every px ∈ Qx and b ∈ Σ such that δx(px, b) 6= qFx ;
and

• ((p, qx), b)→ rhs(p, b) (p, qFx ) for every px ∈ Qx and b ∈ Σ such that δx(px, b) =
qFx . Since T is non-deleting, no states occur in top(rhs(p, b)) and hence, (p, qx)
has deletion path width one.

The main difference with Theorem 6.12 is that when we arrive in a final state
of Ax, the simulation of Ax still needs to go on. This is shown in the third bullet.
There, the output hedge consists of the output generated by the selection of the
current node, followed by the output generated by selecting descendant nodes of the
current node by Ax. Hence, the document order is respected. Again, T ′ ∈ T C,K

trac

whenever T ∈ T C,K
trac .
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As shown by Green et al., any XPath pattern in XPath{/, //, ∗} for which the
number of wildcards occurring between two descendant axes is bounded from above
by c, can be translated to an equivalent DFA of size O(nc), where n is the size of

the pattern [GGM+04]. Hence, typechecking is in ptime for T
XPath{/,//,∗}
nd,bc where

patterns are such that c is bounded by a constant.

It remains open whether typechecking for T
XPath{/,//,∗}
nd,bc is in ptime in general.

6.3 Deletion, Unbounded Copying, and RE+

All tractable fragments of the previous setting assume a uniform bound on the copying
and deletion width of a transducer. Although in practice these bounds will usually
be small and Lemma 6.3 provides a detailed account of their effect, the restrictions
remain somewhat artificial. In the present section, we therefore investigate fragments
in which there are no restrictions on the copying or deletion power of the transducer.
As the typechecking problem is already pspace-hard when we use DTD(DFA)s, we
have to restrain the schemas, for example, by restricting the regular expressions in
rules.

We consider the following regular expressions. Let RE+ be the set of regular
expressions of the form α1 · · ·αk where every αi is ε, a, or a+ for some a ∈ Σ. An
example is title author+ chapter+. In this section, we show that typechecking for
arbitrary tree transducers with respect to DTD(RE+)s is in ptime. We note that
every DTD(RE+) is either non-recursive (that is, an a-labeled node has no a-labeled
descendants) or defines the empty language. However, the tractability of typechecking
remains non-trivial, as in general typechecking is already pspace-complete when using
DTD(DFA)s only defining trees of depth two (Theorem 4.3(4)).

Notice that deciding inclusion and equivalence for RE+-expressions is in ptime,
as every such expression can be transformed to a corresponding DFA in linear time.
Moreover, deciding whether the intersection of an arbitrary number of RE+-expressions
is empty can also be decided in ptime (see Chapter 9). We further note that Benedikt,
Fan, and Geerts, among other things, obtained that satisfiability of various fragments
of XPath is tractable in the presence of a DTD(RE+) [BFG05].

We present the typechecking algorithm and show its correctness. For the rest of
this section, let T = (QT ,Σ, q

0
T , RT ) be a tree transducer and denote the input and

output DTD by din and dout, respectively. We introduce some notational shorthands.
For an RE+-expression e and DTD d, we denote by de the hedge language

{a1(h1) · · · an(hn) | a1 · · · an ∈ L(e) and ∀i = 1, . . . , n : ai(hi) ∈ L((d, ai))}.

So, if t1 · · · tn ∈ de then top(t1) · · · top(tn) ∈ L(e) and every ti is a derivation tree of
(d, top(ti)). Recall that (d, ai) denotes the DTD d with start symbol ai (page 13).
For a state q ∈ QT and an alphabet symbol a ∈ Σ, we say that the pair (q, a) is
reachable if there exists a tree t in L(din) such that T processes at least one node of
t labeled with a in state q. The set of reachable pairs can be computed in ptime.

To verify that the instance typechecks, we have to check that for every reachable
pair (q, a) and for every node u in rhs(q, a) that

{z0top(T
q1(h))z1 · · · zk−1top(T

qk(h))zk | h ∈ dein} ⊆ dout(σ),
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where e = din(a), z0q1z1 · · · zk−1qkzk is the concatenation of u’s children, and σ
is the label of u. In the above, for h = t1 · · · tn, we denoted by T q(h) the hedge
T q(t1) · · ·T q(tn). We denote the above language

{z0top(T
q1(h))z1 · · · zk−1top(T

qk(h))zk | h ∈ dein}

by Lq,a,u. Note that the latter language is not necessarily regular, or even context-free.
We construct an extended context-free grammar Gq,a,u such that L(Gq,a,u) ⊆

dout(σ) if and only if Lq,a,u ⊆ dout(σ). More specifically, define Gq,a,u = (V,Σ, P, S),
where V = {〈p, b〉 | p ∈ QT , b ∈ Σ} is the set of non-terminals, Σ is the set of
terminals, P is the set of production rules and S = 〈q, a〉 is the start symbol. Each
non-terminal 〈p, b〉 corresponds to the string language {top(T p(t)) | t ∈ L((din, b))}.
It remains to define the production rules P . For the start symbol 〈q, a〉, we have the
rule

〈q, a〉 → z0〈q1, e1〉
θ1 · · · 〈q1, en〉

θnz1 · · · zk−1〈qk, e1〉
θ1 · · · 〈qk, en〉

θnzk,

where e = eθ11 · · · e
θn
n , every ei ∈ Σ and θi is either + or the empty string. For a non-

terminal 〈p, b〉 let din(b) = bα1
1 · · · b

αm
m and let top(rhs(p, b)) = s0p1s1 · · · pℓsℓ. Then

we add the rule

〈p, b〉 → s0〈p1, b1〉
α1 · · · 〈p1, bm〉

αms1 · · · sℓ−1〈pℓ, b1〉
α1 · · · 〈pℓ, bm〉

αmsℓ

to P . If there is no rhs(p, b) in RT , we add 〈p, b〉 → ε to P . Note that Gq,a,u is an
extended context-free grammar, polynomial in the size of din and T . It is easy to see
that since din is non-recursive, Gq,a,u is also non-recursive and that Lq,a,u ⊆ L(Gq,a,u).

Our next goal is to prove the following theorem, which states that typechecking
reduces to checking inclusion of the language defined by the constructed grammar in
the language defined by an RE+-expression.

Theorem 6.18. For every q ∈ Q, a ∈ Σ and u ∈ rhs(q, a),

Lq,a,u ⊆ L(dout(σ)) if and only if L(Gq,a,u) ⊆ L(dout(σ)),

where σ is the label of u.

So, typechecking reduces to testing whether L(Gq,a,u) ⊆ L(dout(σ)). The latter
can be reduced to emptiness testing of the cross-product of the pushdown automaton
equivalent to Gq,a,u and the DFA accepting the complement of L(dout(σ)). All applied
constructions and the emptiness test can be done ptime [HMU01, Sip97].

We now prove Theorem 6.18 in a series of lemmas. The theorem immediately
follows from Lemma 6.24. We fix a transducer T and an input and output schema
din and dout.

First, we introduce some additional notation and concepts. We bring an RE+-
expressions e in normal form as follows. In e, we replace every occurrence of a symbol
a and a+ by a=1 and a≥1, respectively. Next, we repeatedly combine successive terms
a=ia=j as a=i+j , and a≥ia=j, a=ia≥j or a≥ia≥j as a≥i+j . When no combinations can
be made anymore, we say that the resulting expression is normalized.

For a normalized RE+-expression e = aθ1x1
1 · · ·aθnxn

n , we denote by emin the min-
imal string ax1

1 · · · a
xn
n . A string is vast with respect to e, or e-vast, when it is of the
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form ay1

1 · · · a
yn
n where for every i = 1, . . . , n, yi > xi if θi is ≥ and yi = xi otherwise.

Note that when L(e) is a singleton, the minimal string is e-vast.
We call two string languages L1 and L2 RE+-equivalent, denoted L1 ≡ L2, if for

every RE+-expression e, L1 ⊆ L(e) ⇔ L2 ⊆ L(e). Obviously, this is an equivalence
relation.

Lemma 6.19. For any RE+-expression e and e-vast string evast,

L(e) ≡ {emin, evast}.

Proof. Let e be of the form aθ1x1
1 · · · aθnxn

n . Let f be an arbitrary RE+-expression

such that {emin, evast} ⊆ L(f). As emin ∈ L(f), f is of the form a
θ′
1y1

1 · · · a
θ′
nyn

n ,
where yi ≤ xi for every i = 1, . . . , n. Moreover, when θ′i is =, then yi = xi. Since
evast = az11 · · · a

zn
n ∈ L(f), for every i = 1, . . . , n, θ′i is ≥ whenever zi > xi, and

consequently, when θi is ≥. Therefore, L(e) ⊆ L(f). Clearly, {emin, evast} ⊆ L(f)
when L(e) ⊆ L(f). This proves the lemma.

Corollary 6.20. Let e, f be RE+-expressions. If L(e) 6⊆ L(f) then either emin 6∈ L(f)
or evast 6∈ L(f) for any e-vast string evast ∈ L(e).

Lemma 6.21. Let e be an RE+-expression and evast an e-vast string. For any L ⊆
Σ∗, if {emin, evast} ⊆ L ⊆ L(e) then L ≡ L(e).

Proof. Let f be an arbitrary RE+-expression such that L ⊆ L(f). Towards a con-
tradiction, assume that L(e) 6⊆ L(f). But then, according to Corollary 6.20, either
emin 6∈ L(f) or evast 6∈ L(f). This leads to the desired contradiction. The other
direction is trivial since L ⊆ L(e).

A string language L is bounded when there is an RE+-expression e = a+1 · · · a
+
ℓ

where ai 6= ai+1 for each i = 1, . . . , ℓ − 1 such that L ⊆ L(e). We refer to e as
a witness. Two bounded languages are bound equivalent when they share the same
witness expression. A language is unbounded when it is not bounded.

For every p ∈ QT and b ∈ Σ, define Rp,b to be the set of strings {top(T p(t)) |
t ∈ L((din, b))}. Consider the grammar Gq,a,u = (V,Σ, P, S) as defined earlier in
this section. Denote by L(〈p, b〉) the language accepted by (V,Σ, P, 〈p, b〉) for every
non-terminal 〈p, b〉 ∈ V . That is, L(〈p, b〉) is the grammar Gq,a,u, but with start
symbol 〈p, b〉. Note that, by definition of Gq,a,u, for each p ∈ QT , b ∈ Σ we have
that Rp,b ⊆ L(〈p, b〉), and in particular, Lq,a,u ⊆ L(Gq,a,u). Hence, the next lemma
immediately follows.

Lemma 6.22.

(1) For every p ∈ QT , b ∈ Σ, if L(〈p, b〉) is bounded, then Rp,b and L(〈p, b〉) are
bound equivalent.

(2) If L(Gq,a,u) is bounded, then L(Gq,a,u) and Lq,a,u are bound equivalent.

We now show that the languages defined by the constructed grammars are bounded
if and only if Rp,b and Lq,a,u are bounded, respectively.
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Lemma 6.23.

(1) For every p ∈ QT , b ∈ Σ, L(〈p, b〉) is bounded if and only if Rp,b is bounded.

(2) L(Gq,a,u) is bounded if and only if Lq,a,u is bounded.

Proof. We only prove (1) as the proof of (2) is similar. As Gq,a,u = (V,Σ, P, 〈q, a〉)
is non-recursive, we can prove this lemma by induction on the maximum depth d of
derivation trees in (V,Σ, P, 〈p, b〉).

When d = 1, then 〈p, b〉 → w is a rule in P for some w ∈ Σ∗.
By definition of Gq,a,u and Rp,b, we then have that L(〈p, b〉) = {w} = Rp,b. So,

the statement of the lemma follows.
We turn to the induction step. Assume d > 1. Let

〈p, b〉 → s0〈p1, b1〉
α1 · · · 〈p1, bm〉

αms1 · · · sℓ−1〈pℓ, b1〉
α1 · · · 〈pℓ, bm〉

αmsℓ

be a rule in P . Then, Rp,b is the set

{
s0top

(
T p1(t1) · · ·T

p1(tn)
)
s1 · · · sℓ−1top

(
T pℓ(t1) · · ·T

pℓ(tn)
)
sℓ

| t1 · · · tn ∈ db
α1
1 ···b

αm
m

}
.

The latter is equal to

{
s0top

(
T p1(b1(h

1
1)) · · ·T

p1(b1(h
k1
1 )) · · ·T p1(bm(h1

m)) · · ·T p1(bm(hkm
m ))

)
s1 · · ·

· · · sℓ−1top
(
T pℓ(b1(h

1
1)) · · ·T

pℓ(b1(h
k1
1 )) · · ·T pℓ(bm(h1

m)) · · ·T pℓ(bm(hkm
m ))

)
sℓ

| b1(h
1
1) · · · b1(h

k1
1 ) · · · bm(h1

m) · · · bm(hkm
m ) ∈ db

α1
1 ···b

αm
m

}
.

As Rp,b ⊆ L(〈p, b〉), Rp,b is bounded when L(〈p, b〉) is. We next show that if
L(〈p, b〉) is unbounded then Rp,b is unbounded. We distinguish two cases.

(i) There is an L(〈pi, bj〉) which is unbounded. By induction,

Rpi,bj = {top(T pi(t)) | t ∈ d
bj
in}

is unbounded. As for every string w ∈ Rpi,bj , there are strings w1, w2 such that
w1ww2 ∈ Rp,b, we have that the latter language is also unbounded.

(ii) Every L(〈pi, bj〉) is bounded, but there are a ℓ,m such that L(〈pℓ, bm〉) contains a
string with at least two different alphabet symbols and αm is +. Clearly, L(〈p, b〉)
is unbounded. By induction, Rpℓ,bm is bounded. By Lemma 6.22(1), L(〈pℓ, bm〉)
and Rpℓ,bm are bound equivalent. Therefore, since L(〈pℓ, bm〉) contains a string
with at least two different alphabet symbols, every string

top(T pℓ(bm(h1
m))), . . . , top(T pℓ(bj(h

km
m )))

contains at least two different alphabet symbols. As km can be arbitrarily large,
Rp,b is unbounded.

For every a ∈ Σ, we define trees tmin
a and tvasta in L(din) as follows:
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• when din(a) = ε then tmin
a = tvasta = a; and

• when din(a) = aα1
1 · · ·a

αn
n then

(i) tmin
a = a(tmin

a1
· · · tmin

an
) and

(ii) tvasta = a(ha1 · · ·han
), where for every i = 1, . . . , n we have

– hai
= tvastai

tvastai
when αi is +; and

– hai
= tvastai

, otherwise.

Theorem 6.18 now follows from Lemma 6.24(2).

Lemma 6.24.

(1) For every p ∈ QT , b ∈ Σ, L(〈p, b〉) ≡ Rp,b; and

(2) L(Gq,a,u) ≡ Lq,a,u.

Proof. As Gq,a,u is non-recursive, we can prove this lemma by induction on the max-
imum depth d of the derivation trees of (V,Σ, P, 〈p, b〉).

We prove by induction on d that for any p ∈ QT , b ∈ Σ,

(IH) if Rp,b is bounded, then there is an RE+-expression rp,b such that

1. L(〈p, b〉) ⊆ L(rp,b);

2. (rp,b)min = top(T p(tmin
b ))) and top(T p(tvastb )) is rp,b-vast. (Note that the

latter strings are in Rp,b.)

We argue that the lemma is proven when (IH) holds. Indeed, by Lemma 6.21 we
have that L(〈p, b〉) ≡ L(rp,b) ≡ Rp,b. When Rp,b is unbounded, then so is L(〈p, b〉)
(Lemma 6.23(1)). By definition, L(〈p, b〉) ≡ 〈p, din, b〉.

Suppose that d = 1, then 〈p, b〉 → w for some w ∈ Σ∗.
By definition, L(〈p, b〉) = {w} = Rp,b. Define rp,b = w = rmin

p,b = rvastp,b . IH now
holds.

We turn to the induction step. Assume d > 1. Let

〈p, b〉 → s0〈p1, b1〉
α1 · · · 〈p1, bm〉

αms1 · · · sℓ−1〈pℓ, b1〉
α1 · · · 〈pℓ, bm〉

αmsℓ

be a rule in P . Then

Rp,b = {s0top(T
p1(t1) · · ·T

p1(tn))s1 · · · sℓ−1top(T
pℓ(t1) · · ·T

pℓ(tn))sℓ

| t1 · · · tn ∈ db
α1
1 ···b

αm
m }.

Assume Rp,b is bounded. The latter implies that L(〈p, b〉) is bounded (Lemma 6.23).
As the maximum depth of the derivation trees rooted at each 〈pi, bj〉 is d − 1, there
are corresponding RE+-expressions rpi,bj for which the induction hypothesis holds.

Define the RE+-expression r′p,b as

s0(rp1,b1)
α1 · · · (rp1,bm)αms1 · · · sℓ−1(rpℓ,b1)

α1 · · · (rpℓ,bm)αmsℓ.
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We now construct rp,b from r′p,b as follows. For any i = 1, . . . , ℓ, j = 1, . . . , n, if αj is +

and rpi,bj = c=m or rpi,bj ≡ c≥m then replace (rpi,bj )
+ by c≥m. Finally, normalize the

resulting expression. Note that no rpi,bj can contain two different alphabet symbols
as L(〈pj , bi〉) is bounded.

From the construction and the induction hypothesis it follows that L(〈p, b〉) ⊆
L(r′p,b) ⊆ L(rp,b), so (1) holds.

It remains to show (2). Clearly,

rmin
p,b = s0(rp1,b1)min · · · (rp1,bm)mins1 · · · sℓ−1(rpℓ,b1)min · · · (rpℓ,bm)minsℓ.

Now define

(rp,b)vast = s0(rp1,b1)
x1
vast · · · (rp1,bm)xm

vasts1 · · · sℓ−1(rpℓ,b1)
x1
vast · · · (rpℓ,bm)xm

vastsℓ,

where for every i we have that xi = 1 if αi is ε and xi = 2 otherwise. Note that the
string (rp,b)vast is rp,b-vast.

It remains to show that (rp,b)min = top(T p(tmin
b )) and (rp,b)vast = top(T p(tvastb )).

By induction,

(rp,b)min = s0top(T
p1(tmin

b1 ) · · ·T p1(tmin
bm ))s1 · · · sℓ−1top(T

pℓ(tmin
b1 ) · · ·T pℓ(tmin

bm ))sℓ

= s0top(T
p1(tmin

b1 · · · t
min
bm ))s1 · · · sℓ−1top(T

pℓ(tmin
b1 · · · t

min
bm ))sℓ

= top(T p(tmin
b ))

and we analogously have that

(rp,b)vast = s0top(T
p1(tvastb1 ))x1 · · · top(T p1(hvast

bm ))xms1 · · ·

· · · sℓ−1top(T
pℓ(hvast

b1 ))x1 · · · top(T pℓ(hvast
bm ))xmsℓ

= s0top(T
p1(hvast

b1 ) · · ·T p1(hvast
bm ))s1 · · ·

· · · sℓ−1top(T
pℓ(hvast

b1 ) · · ·T pℓ(hvast
bm ))sℓ

= s0top(T
p1(hvast

b1 · · ·h
vast
bm ))s1 · · · sℓ−1top(T

pℓ(hvast
b1 · · ·h

vast
bm ))sℓ

= top(T p(tvastb ))

where hvast
bi

= tvastbi
tvastbi

when αi is + and hvast
bi

= tvastbi
otherwise.

We have thus obtained the following Theorem:

Theorem 6.25. TC[Td,uc, DTD(RE+)] is in ptime.

The simplicity of RE+-expressions seems to be the price to pay for a tractable
algorithm for arbitrary transducers. Indeed, the inclusion problem for a class of
regular expressions C can readily be reduced to typechecking with DTD(C)s. As it
is shown in Chapter 9 that inclusion of obvious extensions of RE+-expressions is
conp-hard, typechecking for the corresponding fragment is conp-hard. In particular,
Chapter 9 discusses expressions of the form α1 · · ·αn where all αi belong to classes
(1) a or a?, (2) a or a∗, (3) a or (a+1 + · · · + a+n ), (4) a or (a1 · · ·an)+ (5) a or
(a1 + · · · + an)

+ and (6) (a1 + · · ·+ an) or a
+. Of course, this argument only holds

for setting imposing the same restrictions on input and output schemas.
An interesting question is whether we can also obtain a ptime typechecking algo-

rithm if we allow expressions of the form α and α+ ε where α is an RE+-expression.
This problem remains open.





7
Conclusions and Further

Remarks

Motivated by simple transformations obtained by using structural recursion or XSLT,
we studied typechecking for top-down XML transformers in the presence of both
DTDs and tree automata. Whereas the work on general-purpose XML programming
languages like XDuce [HP03] and CDuce [BFC03], studies fast and sound typecheck-
ing, we have studied the problem of complete typechecking. In our work, we have
identified several practically relevant fragments for which complete typechecking can
be performed efficiently. As we have also shown that typechecking quickly turns
intractable for extensions of our fragments, we have given a quite detailed characteri-
zation of the frontier of tractability in our framework. As a result, our work sheds light
on when to use fast complete algorithms and when to reside to sound but incomplete
ones.

We briefly give an overview of our main results. In our setting, the complexity of
the typechecking problem ranges from ptime to exptime. In particular, when tree
automata are used for specifying schema languages, there seems to be not much hope
for tractable algorithms. Indeed, the only tractable scenario that we obtained is the
one in Theorem 6.8, where we used transformations that are only mild generalizations
of relabelings and bottom-up deterministic complete tree automata that use DFAs to
represent transition functions. In all other considered scenarios, the typechecking
problem remains exptime-hard. The situation differs when we look at DTDs. In an
initial study in Chapter 4, we identified three sources of complexity: (1) deletion in
the tree transformations; (2) unbounded copying in the tree transformations; and, (3)
non-determinism in schema languages. Hence, we only obtained a ptime typechecking
algorithm when no deletion is allowed, the amount of copying is fixed in advance, and
when DTD(DFA)s are used to represent schemas.
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We considered the complexity of typechecking in the presence of fixed input and/or
output schemas in Chapter 5. In comparison with the results in Chapter 4, fixing
input and/or output schemas only lowers the complexity in the presence of DTDs and
when deletion is disallowed. Here, we see that the complexity is lowered when

1. the input schema is fixed, in the case of DTD(SL)s;

2. the input schema is fixed, in the case of DTD(DFA)s;

3. the output schema is fixed, in the case of DTD(NFA)s; and

4. both input and output schemas are fixed, in all cases.

In all of these cases, the complexity of the typechecking problem is in polynomial
time.

It is striking, however, that in many cases, the complexity of typechecking does not
decrease significantly when fixing the input and/or output schema, and most cases
remain intractable. We have to leave the precise complexity (that is, the ptime-
hardness) of TCi[Tnd,uc, DTD(SL)] as an open problem.

Though the presented results in Chapters 4 and 5 shed some light on precisely
which features determine the complexity of typechecking, they fail to identify prac-
tically relevant fragments for which typechecking is tractable. Indeed, although it
makes sense to limit copying in advance, disallowing deletion completely is not very
sensible as deletion occurs in many simple transformations (for example, as in Exam-
ple 2.15).

Establishing tractable and practically relevant fragments was the topic of Chap-
ter 6. Building further on the results of the previous chapters, we provided a rather
complete overview of how the different parameters influence the complexity of the
typechecking problem. As the main focus of the chapter is on tractable scenarios, we
did not investigate upper bounds for intractable cases.

We identified several practically interesting tractable cases that can be classified
depending on the strength of the schema languages. The most liberal setting is where
RE+ expressions suffice to define schema languages: we have ptime typechecking
for all transducers in our framework. Sometimes, however, one needs more expres-
sive regular expressions in schema languages. For instance, to express choice like in
(section + table + figure)∗. Our results show that there is still a ptime algorithm
when those expressions can be translated in ptime to DFAs and when one can bound
simultaneous copying and deletion. Interestingly, arbitrary deletion without copying
can be allowed. As copying is usually fairly limited in the simple transformations for
which XSLT is used, but unbounded deletion without copying is required for so-called
filtering transformations, our result identifies a tractable fragment with potential in
practice. Further, we obtained that the XPath axes “/” and “∗” can be added without
increasing the complexity. Finally, when deterministic tree automata are required, no
copying can be allowed but arbitrary deletion is permitted.

We also showed that none of the above restrictions can be severely relaxed with-
out rendering the typechecking problem intractable. So, for these larger classes of
transformations or schema languages, it is more appropriate to develop incomplete or
approximate algorithms.
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Finding Counterexamples. In practice it is relevant that typechecking algo-
rithms can generate counterexample trees (or a description of them) for instances that
it rejects. As the main upper bound theorem in Chapter 6 (Theorem 6.4) reduces
the typechecking problem to the emptiness problem for a NTA(NFA) of polynomial
size, and since it is possible to generate a description of a tree in the language of
an NTA(NFA) in polynomial time (see Proposition 3.18), we can also generate a
counterexample tree for the typechecking algorithm in polynomial time.

Further, from the proof of Lemma 6.24 it follows that if an instance of TC[Td,uc,
DTD(RE+)] does not typecheck, we either have that tmin

a or tvasta is a counterexample,
where a is the start symbol of the DTD. Note that both trees can be easily represented
by a polynomial sized extended context free grammar. We have thus obtained the
following.

Corollary 7.1. If an instance of

• TC[Ttrac, DTD(DFA)] or

• TC[Td,uc, DTD(RE+)]

does not typecheck, we can generate a counterexample in ptime.

Notice that, in the case of TC[Td,uc, DTD(RE+)], testing whether tmin
a or tvasta are

counterexamples gives rise to a slightly different typechecking algorithm than the one
we exhibited in Section 6.3. However, we believe that algorithms similar to the one in
Section 6.3 might also be useful for typechecking with respect to DTDs using other
formalisms than RE+-expressions, or for incomplete typechecking algorithms. This is
not the case for the algorithm that tests whether tmin

a or tvasta are counterexamples.

Almost Always Typechecking. We end with a note on almost always type-
checking. We say that an instance of the typechecking problem typechecks almost
always if the set {t ∈ din | T (t) 6∈ dout} is finite. The latter notion is introduced
by Engelfriet and Maneth [EM03]. Since the finiteness problem of NTA(NFA) is
decidable in ptime, according to Proposition 3.18(1), we also have the following.

Corollary 7.2. Almost always typechecking of Ttrac transducers with respect to
DTD(DFA)s is in ptime.





Part II

Foundations of XML Schema

Languages
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8
Expressive Power of XML

Schemas

To date, the most widespread and commonly used XML schemas are DTDs. Their
success is mostly of historic nature (DTDs are inherited from XML’s predecessor
SGML) and partly because of their simplicity. Unfortunately, DTDs are also limited
in various ways [DuC02, Jel01, LC00]: they lack modularity, they have few basic types,
and the referencing mechanism is quite restricted. Also, specification of unordered
data is rather verbose and the expressiveness is severely limited. Many schema lan-
guages have been defined to address these shortcomings, to name just a few: XML
Schema [SMT05], DSD [KlS00], Relax NG [CM01], Schematron [Jel05]. Among these,
XML Schema is the schema language supported by W3C and therefore receives the
most attention. Although XML Schema Definitions (XSDs) directly address most of
the shortcomings of DTDs, and in particular, are more expressive than DTDs, the
exact expressiveness of XML Schema, and more importantly, whether the latter is
adequate, remains unclear.

The main cause for the limited expressiveness of DTDs is that the content model
of an element can not depend on the context of that element but only on the name
of its tag. In formal language theoretic terms, DTDs define local tree languages.
On an abstract level, XML Schema, just like Relax NG, obtains a higher expressive
power by extending DTDs with a typing mechanism which allows to define types,
possibly recursively, in terms of other types. In particular, and in contrast with
DTDs, several types can be associated to the same element name. Whereas Relax
NG corresponds to the robust and well-understood formalism of unranked regular
tree languages (see Section 2.2), XML Schema is less expressive as the XML Schema
specification enforces an extra constraint: the Element Declarations Consistent (EDC)
constraint. It essentially prohibits the occurrence of two different types with the same
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associated element name in the same content model.
In the present chapter, we provide semantic and syntactical characterizations of

the expressive power of schemas with the EDC constraint. This approach is pursued
in Section 8.2. In particular, it is shown there that the EDC constraint is intimately
connected to the ability to type trees in a top-down fashion. The characterizations
provide different viewpoints on the expressiveness of XML Schema. One of them
provides a tool that can be used to show that certain constructs are not definable by
XML Schema Definitions.

Next, in Section 8.3, we turn to the question whether the EDC constraint is ade-
quate for its purpose. For this, it is important to note that computing the semantics
of a schema with respect to a document conceptually involves two tasks: (1) checking
conformance with respect to the underlying grammar; and (2) assignment of types
(also referred to as schema-validity assessment in [TBMM04]). In the case of XML
Schema, the two tasks are a bit entwined as types do not occur in the input document
but have to be inferred by the schema validator. The EDC constraint is imposed to
facilitate both tasks. Indeed, for a schema admitting EDC, there is a very simple
one-pass top-down strategy to validate a document against that schema. Moreover,
that strategy assigns a unique type to every element name. So, ambiguous typing (the
possibility that there are several valid type assignments) is avoided. From a scientific
viewpoint, however, it is not clear whether EDC is the most liberal constraint that
allows for efficient validation and unique typing. Therefore, we investigate two more
liberal constraints which we discuss next: one-pass preorder typing and top-down
typing.

In a streaming environment, one might argue that the most liberal notion is to
require that, when processing the document in document order, the type of an element
is assigned when its opening tag is met. We refer to the latter requirement as 1-pass
preorder typing (1PPT). Although EDC ensures 1-pass preorder typing, it is not a
necessary condition. More interestingly, it turns out that 1-pass preorder typing is
a very robust notion with various clean semantical and syntactical characterizations.
In particular, it can be defined in terms of XSDs with restrained competition regular
expressions (introduced by Murata et al. [MLMK05]) and by an equivalent syntactical
formalism based on contextual patterns.

When documents are not validated in a streaming manner, but in a top-down
manner, we could say that in the most liberal notion of typeability, the type of a node
does not depend on any of its descendants, or on any of the descendants of its siblings.
We refer to this requirement as top-down typeability (TDT). We show that the latter
notion is strictly more expressive than 1PPT, and we provide various clean semantical
and syntactical characterizations. Although the notion of top-down typeability seems
quite powerful for its purpose, we show that there exists a natural generalization of
top-down deterministic tree automata which has the same expressive power.

In Section 8.5, we turn to static analysis and optimization of schemas. In particu-
lar, we consider the complexity of and provide algorithms for the following problems:

1. recognition: Given an unrestricted XSD, check whether it admits EDC,
1PPT, or TDT.

2. simplification: Given an unrestricted XSD, check whether it has an equivalent
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XSD of a restricted type and compute it, (restricted types being DTD or XSD
admitting EDC, 1PPT, or TDT).

The above problems have direct practical applications to optimize schemas and to
implement schema validators. Especially, our algorithm for simplification could be
used in schema translator software (like, for instance, Trang [Cla02]), to check whether
a given schema can in fact be translated into an equivalent schema in another schema
language. To date, Trang, for instance, translates any Relax NG schema directly into
an equivalent unrestricted XSD even when the resulting XSD does not admit EDC.
Sometimes, however, a more clever translation has to be used to get an equivalent
XSD that admits EDC. The complexity of other important static analysis problems
for schemas, such as inclusion and minimization are the topic of Chapters 9 and 10,
respectively.

In Section 8.6, we discuss one-pass post-order typing: the type of an element
is assigned when visiting its closing tag in a streaming fashion. We show that any
unrestricted XSD can be rewritten into an equivalent one that admits one-pass post-
order typing.

Related Work. The analysis in the present work is in the same spirit as the one by
Brüggemann-Klein and Wood who formalized the determinism constraint of SGML
DTDs and provided a workable definition [BKW98]. It is also closely related to the
investigations of Murata et al. [MLMK05] who defined the concepts of single-type and
restrained competition grammars and provided corresponding validation algorithms
but did not discuss semantical characterizations or optimization problems.

8.1 Definitions

8.1.1 XML Schema Languages

As discussed in the introduction, the expressive power of DTDs can be extended by
adding types, as, for example, in XML Schema [TBMM04] and Relax NG [CM01].
Types are always from a finite set and each type is associated with a unique element
name. The designated start symbol has only one possible type. In the subsequent
chapters, we use the notion of extended DTDs (EDTDs) to model such schema lan-
guages. The notion of extended DTDs was introduced1 by Papakonstantinou and
Vianu [PV00].

Analogously to DTDs, we parameterize the definition of EDTDs by a class of
representationsM of regular string languages.

Definition 8.1 ([PV00, BPV04]). Let M be a class of representations of string
languages over ∆. An extended DTD (EDTD) is a tuple D = (Σ,∆, d, sd, µ), where
∆ is a finite set of types, (∆, d, sd) is a DTD(M), and µ is a mapping from ∆ to Σ. A
tree t is valid with respect to D (or satisfies D) if t = µ(t′) for some t′ ∈ L(d) (where
µ is extended to trees). We call t′ a witness for t. Again, we denote the set of trees
satisfying D by L(D). 3

1Papakonstantinou and Vianu used the term specialized DTD as types specialize tags. We prefer
the term extended DTD as it expresses more clearly that the power of the schemas is amplified.
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store

dvd

title price

dvd

title price discount

Figure 8.1: Illustration of a tree defined by the EDTD of Example 8.2

Intuitively, a tree satisfies an EDTD if there exists an assignment of types to all
nodes such that the typed tree is a derivation tree of the underlying grammar. By
EDTD(M) we denote the class of EDTDs in which the internal DTD is a DTD(M). In
the present chapter, we assume that every EDTD is an EDTD(RE), unless otherwise
stated.

For notational simplicity, we mostly assume in proofs and formal statements that
∆ = {ai | 1 ≤ i ≤ ka, a ∈ Σ, i ∈ N} for some ka ∈ N and that µ(ai) = a. When the
validity of a tree t is witnessed by a tree t′ then we call the label of a node v in t′ its
type with respect to this validation. Analogously to DTDs, we denote by (D, ai) the
extended DTD D, where we replace the DTD (∆, d, sd) by (∆, d, ai). We say that
an EDTD D is reduced if d is a reduced DTD.2 Note that L((d, ai)) contains trees
over alphabet ∆, whereas L((D, ai)) contains Σ-trees. The size |D| of an EDTD D
is defined as |Σ| plus the size of the DTD d.

In examples, we denote EDTDs as a set of rules, just as we did before with DTDs.

Example 8.2. The following example displays an EDTD for the tree in Figure 8.1.

store → (dvd1 + dvd2)∗dvd2(dvd1 + dvd2)∗

dvd1 → title price

dvd2 → title price discount

Here, dvd1 and dvd2 are types that are associated to dvd elements, while all other
types are associated with the element of the same name: for example, the type store
corresponds to a store element.

Intuitively, dvd1 defines ordinary DVDs while dvd2 defines DVDs on discount.
The first rule specifies that there has to be at least one DVD on discount. The tree
in Figure 8.1 satisfies this EDTD as assigning dvd1, and dvd2 to the left, and right
dvd -node, respectively, gives a derivation tree of the grammar. 3

Note that EDTDs have a single root type; only labels below the root can have
multiple types. The EDTD of Example 8.2 has the types dvd1, dvd2, store, title, price,
and discount. Further, µ(dvd1) = µ(dvd2) = dvd and µ is the identity, otherwise.

In Figure 8.2, a fragment of an XSD corresponding to the rule for store is depicted.
We note that the XSD is not syntactically correct because it violates the Element
Declarations Consistent (EDC) constraint. Roughly, the latter constraint forbids
the occurrence of different types associated to the same element name in the same
content model. So, the occurrence of both dvd1 and dvd2 associated to the same
element name dvd is a clear violation of this constraint. We formalize this constraint
in Definition 8.3 and provide several equivalent characterizations in Theorem 8.16.

2Recall the definition of a reduced DTD from page 14
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<xs:element name="store">

<xs:complexType>

<xs:sequence>

<xs:choice minOccurs="0" maxOccurs="unbounded">

<xs:element name="dvd" type="dvd1"/>

<xs:element name="dvd" type="dvd2"/>

</xs:choice>

<xs:element name="dvd" type="dvd2"/>

<xs:choice minOccurs="0" maxOccurs="unbounded">

<xs:element name="dvd" type="dvd1"/>

<xs:element name="dvd" type="dvd2"/>

</xs:choice>

</xs:sequence>

</xs:complexType>

</xs:element>

Figure 8.2: A fragment of an XSD (violating EDC) corresponding to the EDTD of
Example 8.2.

We call a tree language homogeneous if all its trees have the same root label. It
should be clear that EDTDs, just as DTDs, can only express homogeneous tree lan-
guages. From a structural perspective, EDTDs express exactly the homogeneous regu-
lar tree languages, a similarly robust class as the regular string languages [BKMW01].
In particular, EDTDs are as expressive as unranked tree automata. For definitions of
such automata we refer the reader to Chapter 2. It should be noted that the formal
underpinnings of the schema language Relax NG are also based upon regular tree
languages. As we will only talk about homogeneous tree languages in the present
chapter, we will mostly drop the term homogeneous. For the purpose of this disser-
tation, whenever we say (homogeneous) regular tree language T in the sequel, it can
be interpreted as there is an EDTD D such that L(D) = T .

Murata et al. [MLMK05] presented a formalization of the EDC rule, which we
state here in terms of EDTDs.3 Roughly, the constraint forbids the occurrence in the
same definition of elements with the same name but different types. For instance, the
XSD of Figure 8.2 is not allowed as the two types dvd1 and dvd2 occur in the same
rule.

Definition 8.3. Let D = (Σ,∆, d, sd, µ) be an EDTD. A regular language L over ∆
is single-type if there do not exist strings w1a

iv1 and w2a
jv2 in L, with µ(ai) = µ(aj)

and i 6= j. We say that D is a single-type EDTD (EDTDst) when every regular
language L(d(ai)) is single-type. 3

Hence, when L is a language defined by a regular expression r, we have that L is
single-type if and only if no two symbols ai and aj occur in r with i 6= j. We say that
a regular expression is single-type if it defines a single-type language.

3Murata et al. used the equivalent model of tree grammars instead of EDTDs [MLMK05].
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Example 8.4. The EDTD from Example 8.2 is not single-type as both dvd1 and
dvd2 occur in the rule for store. An example of a single-type EDTD is given below:

store → regulars discounts

regulars → (dvd1)∗

discounts → dvd2 (dvd2)∗

dvd1 → title price

dvd2 → title price discount

Although there are still two element definitions dvd1 and dvd2, they can only occur
in different rules. 3

We recall the definition of restrained competition EDTDs introduced by Murata
et al. [MLMK05]. They can be seen as a generalization of single-type EDTDs.

Definition 8.5. Let D = (Σ,∆, d, sd, µ) be an EDTD. A regular language L over ∆
restrains competition if there are no strings w1a

iv1 and w2a
jv2 in L with µ(w1) =

µ(w2), µ(a
i) = µ(aj), and i 6= j. An EDTD is restrained competition (EDTDrc) when

every regular language L(d(ai)) restrains competition. 3

A regular expression over ∆ restrains competition if it defines a language which
restrains competition.

Intuitively, a restrained competition regular language ensures that, when visiting
the children of a node from left to right, it is always clear which type is associated to
each node without seeing its right siblings. So, single-type implies restrained compe-
tition.

Example 8.6. The following is an example of a restrained competition EDTD that
is not single-type nor has an equivalent single-type EDTD.

store → (dvd1)∗ discounts (dvd2)∗

discounts → ε

dvd1 → title price

dvd2 → title price discount

The expression (dvd1)∗ discounts (dvd2)∗ is restrained competition as types can be
assigned from left to right: each time a dvd -element is read, it has type dvd1 when
discounts has not been met yet, and type dvd2, otherwise.

In contrast, the expression (dvd1 + dvd2)∗dvd2(dvd1 + dvd2)∗ of Example 8.2 is
not restrained competition as the strings dvd2 and dvd1dvd2 are both defined by the
regular expression but dvd1 and dvd2 are associated to the same element name. Here,
w1 = ε, ai = dvd2, aj = dvd1, v1 = ε, and v2 = dvd2. 3

We extend the restrained competition restriction to a natural generalization of
the notion of top-down determinism for tree automata. However, it should be noted
that, in the straightforward generalization of top-down determinism, the automa-
ton only uses the label and the state of the current symbol to assign states to the
children [BKMW01]. Here, we also take the labeling of the children into account.
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Definition 8.7. Let D = (Σ,∆, d, sd, µ) be an EDTD. A regular language L over
∆ is unambiguously typed if there are no strings v 6= w ∈ L with µ(v) = µ(w).
An EDTD is top-down deterministic (EDTDtd) when every regular language d(ai) is
unambiguously typed. 3

Notice that L is unambiguously typed if and only if there are no strings w1a
iv1 and

w2a
jv2 in L with µ(w1) = µ(w2), µ(a

i) = µ(aj), µ(v1) = µ(v2) and i 6= j. Hence, the
unambiguously typed restriction is a natural extension of the restrained competition
restriction.

A regular expression over ∆ is unambiguously typed if it defines a language which
is unambiguously typed.

Example 8.8. The following is an example of a top-down deterministic EDTD that
is not restrained competition nor has an equivalent restrained competition EDTD.

store → (dvd1)∗dvd2

dvd1 → title price

dvd2 → title price discount

The expression (dvd1)∗dvd2 is unambiguously typeable as types can always be uniquely
assigned once the entire sequence of elements is read: all the dvd -elements have type
dvd1, excepts the last one, which has type dvd2.

In contrast, the expression (dvd1 + dvd2)∗dvd2(dvd1 + dvd2)∗ of Example 8.2 is
not unambiguously typeable: the strings dvd1dvd2 and dvd2dvd1 are both defined by
the regular expression but dvd1 and dvd2 are associated to the same element name.
Here, w1 = ε, ai = dvd1, aj = dvd2, v1 = dvd2, and v2 = dvd1. 3

Our top-down deterministic EDTDs are in fact equally expressive (on homoge-
neous tree languages) as the top-down deterministic tree automata recently defined
by Cristau et al. [CLT05]. This follows from one of the characterizations in Theo-
rem 8.22.

The classes of tree languages defined by the grammars introduced above are in-
cluded as follows: DTD ( EDTDst ( EDTDrc ( EDTDtd ( EDTD (see [MLMK05]
and the remainder of this chapter).

8.1.2 Properties of DTDs

In this section, we reconsider some simple properties of DTDs. In particular, we
discuss validation and a closure property. The latter property provides a tool to prove
that certain tree languages are not definable by DTDs, and, hence, gives insight into
the expressiveness of the latter. In Section 8.2, Section 8.3, and Section 8.4, we discuss
similar closure properties for the restrictions on EDTDs defined in Section 8.1.1.

Validation of DTDs

Validation of a document against a DTD d simply boils down to testing local consis-
tency: does the string formed by the labels of the children of every a-labeled element
satisfy the associated regular expression d(a)? No notion of typing is available. To
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ensure efficient validation, regular expressions in right-hand sides of rules are required
to be deterministic (Appendix E in [BPSM+04]). We note that the latter notion is
also referred to as one-unambiguous [BKW98]. Intuitively, a regular expression is
deterministic if, when processing the input from left to right, it is always determined
which symbol in the expression matches the next input symbol. We discuss the latter
notion a bit more formally as it returns in the specification of XML Schema in the
form of the Unique Particle Attribution (UPA) rule. For a regular expression r over
elements, we denote by r the regular expression obtained from r by replacing, for
each i, the ith a-element in r (counting from left to right) by ai. For example, when
r = (a+ b)∗ac(b+ c)∗, then r is (a1 + b1)

∗a2c1(b2 + c2)
∗.

Definition 8.9. A regular expression r is one-unambiguous if there are no strings
waiv and wajv

′ in L(r) such that i 6= j. 3

Example 8.10. The regular expression ab + aa is not one-unambiguous. Indeed,
L(a1b1 + a2a3) contains the strings a1b1 and a2a3, and 1 6= 2. Here, w is the empty
string. The expression a(b + a) on the other hand, is one-unambiguous. Indeed,
L(a1(b1 + a2)) only contains the strings a1b1 and a1a2, and it is easy to verify that
the above condition is not violated. Note that a(b+ a) denotes the same language as
ab+ aa. 3

In contrast to what the previous example might suggest, Brüggemann-Klein and
Wood showed that not every regular expression can be rewritten into an equivalent
one-unambiguous one [BKW98]. So the allowed class of regular expressions is a strict
subset of the class of all regular languages.

Subtree exchange

Papakonstantinou and Vianu [PV00] provided a characterization of the structural
expressive power of DTDs. They considered a more relaxed notion of DTDs without
the requirement of one-unambiguous regular expressions. They show that a regular
tree language T of trees is definable by such a DTD if and only if T has the following
closure property: if two trees t1 and t2 are in T , and there are two nodes v1 in t1
and v2 in t2 with the same label, then the trees obtained by exchanging the subtrees
rooted at v1 and v2 are also in the set T . We refer to this property as label-guarded
subtree exchange and we illustrate it in Figure 8.3.

∈ T

t′1

v1

t1

∈ T

t′2

v2

t2

∈ T

t′2

v1

t1

⇒

Figure 8.3: Label-guarded subtree exchange. Nodes v1 and v2 are both labeled with
the same label.

Because of this characterization, the classes of XML documents defined by DTDs
are also referred to as local classes (see, for example, [MLMK05]): the content of a
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node only depends on the label of that node and hence, the dependency is local. The
characterization can be used to prove that certain languages can not be expressed by
a DTD as explained in the following example.

Example 8.11. Consider the following DTD consisting of the following rules.

store → dvd dvd∗

dvd → title price (discount + ε)

Suppose that we want to put the extra constraint on the DTD requiring the presence
of at least one DVD on discount. Then we get a language that is not definable by a
DTD anymore. We can prove this by applying the above characterization. Indeed,
the trees

t1 := store

dvd

title price

dvd

title price discount

and

t2 := store

dvd

title price discount

dvd

title price

are in the language, but the tree

store

dvd

title price

dvd

title price

which is obtained from t1 by replacing its second subtree by the second subtree of t2,
is not in the language. 3

In the remainder of the chapter, we will characterize single-type, restrained com-
petition, and top-down deterministic EDTDs in an analogous manner.

8.1.3 Characterizations

The present section introduces some equivalent characterizations of the previously
defined schema languages. We will prove the equivalence in Sections 8.2, 8.3, and 8.4.

Several of these characterizations make use of strings formed by the ancestors (and
sometimes also their siblings) of nodes in trees. We therefore introduce the following
notions. Let t be a tree and v be a node in t. By ch-strt(v) we denote the string
formed by the children of v, that is, labt(v1) · · · labt(vn) if v has n children. By
anc-strt(v) we denote the ancestor-string of v in t, that is, the string formed by the
labels on the path from the root to v, that is,

labt(ε)labt(i1)lab
t(i1i2) · · · lab

t(i1i2 · · · ik)
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where v = i1i2 · · · ik. By l-sib-strt(v) we denote the left-sibling-string of v in t, formed
by the labels of the left siblings of v, that is, labt(u1) · · · labt(uk) where v = uk. By
anc-sib-strt(v) we denote the ancestor-sibling-string of v in t, that is, the string

l-sib-strt(ε)#l-sib-strt(i1)# · · ·#l-sib-strt(i1i2 · · · ik)

formed by concatenating the left-sibling strings of all ancestors starting from the root.
By r-sib-strt(v) we denote the right-sibling-string of v in t, formed by the labels of the
right siblings of v, that is, labt(uk) · · · labt(un) where v = uk and u has n children.
By anc-all-sib-strt(v) we denote the ancestor-all-sibling-string of v in t, that is, the
string

labt(ε)$labt(ε)#l-sib-strt(i1)$r-sib-str
t(i1)# · · ·

· · ·#l-sib-strt(i1i2 · · · ik)$r-sib-str
t(i1i2 · · · ik)#

formed by concatenating the left-sibling strings and right-sibling strings of all ances-
tors starting from the root. We assume that the symbols $ and # are not in Σ. For
readability, we will use the term “spine” to refer to the ancestor-all-sibling-string of
a node. We also denote anc-all-sib-strt(v) by spinet(v).

The just defined notions are illustrated in Figure 8.4. When the tree t is clear
from the context, we usually omit the superscript t.

vv

t

v

t

v

t t

Figure 8.4: From left to right: a tree t, the ancestor-string of v, the ancestor-sibling-
string of v, and the spine of v in t.

Moreover, we denote by t1[u ← t2] the tree obtained from a tree t1 by replacing
the subtree rooted at node u of t1 by t2. By subtreet(u) we denote the subtree of t
rooted at u.

Definition 8.12. We say that an EDTD D = (Σ,∆, d, sd, µ) has ancestor-based types
if there is a function f : Σ∗ → ∆ such that, for each tree t ∈ L(D),

• t has exactly one witness t′, and

• t′ results from t by assigning to each node v the type f(anc-strt(v)).

We say that D has ancestor-sibling-based types (respectively, spine-based types) if the
above holds with anc-strt(v) replaced by anc-sib-strt(v) (respectively, spinet(v)). 3

Definition 8.13. A tree language T is closed under ancestor-guarded subtree ex-
change if the following holds. Whenever for two trees t1, t2 ∈ T with nodes u1 and
u2, respectively, anc-str

t1(u1) = anc-strt2(u2) then t1[u1 ← subtreet2(u2)] ∈ T . We
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say that T is closed under ancestor-sibling-guarded subtree exchange (respectively,
closed under spine-guarded subtree exchange) if the above holds with anc-str replaced
by anc-sib-str (respectively, spine). 3

These definitions are illustrated in Figures 8.5, 8.6, and 8.7.

∈ T

t′1

v1

t1

∈ T

t′2

v2

t2

∈ T

t′2

v1

t1

⇒

Figure 8.5: Ancestor-guarded subtree exchange.

∈ T

t′1

v1

t1
∈ T

t′2

v2

t2
∈ T

t′2

v1

t1⇒

Figure 8.6: Ancestor-sibling-guarded subtree exchange.

t1
∈ T

t′2

v2

t2
∈ T

t′2

v1

t1⇒∈ T

t′1

v1

Figure 8.7: Spine-guarded subtree exchange.

Definition 8.14. An ancestor-based schema S is a pair (Σ, R), where R is a set of
rules of the form r → s, where r and s are regular expressions over Σ. A tree t
satisfies S if for every node v there is some r → s in R such that anc-strt(v) ∈ L(r)
and ch-strt(v) ∈ L(s). We say that S is an ancestor-sibling-based schema (respec-
tively, spine-based schema) if the above holds with anc-str replaced by anc-sib-str
(respectively, spine). 3

Definition 8.15. Let T be a set of trees. We say that T can be characterized by
ancestor-based patterns if there is a regular string language L over Σ ⊎ {#, $} such
that, for every tree t, we have that t ∈ T if and only if Panc(t) ⊆ L, where Panc(t) =
{anc-str(v)#ch-str(v) | v ∈ t}. We say that T can be characterized by ancestor-sibling-
based patterns (respectively, can be characterized by spine-based patterns) if the above
holds with anc-str and Panc replaced by anc-sib-str and Panc-sib (respectively, spine
and Pspine). 3
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8.2 The Equivalence Theorem for Schemas with EDC

As already mentioned in the introduction, XML Schema does not capture all tree lan-
guages that can be described by extended DTDs (that is, the regular tree languages).
In particular, the EDC (Element Declarations Consistent) and the UPA (Unique Par-
ticle Attribution) constraint must be fulfilled. In Definition 8.3, EDC was formalized
in the form of single-type EDTDs. The present section gives several equivalent char-
acterizations of the resulting class of tree languages. Together, these characterizations
provide a clear view of the effect of the EDC constraint on the expressiveness of XSDs
and typing algorithms.

Theorem 8.16. For a homogeneous regular tree language T the following conditions
are equivalent.

(a) T is definable by a single-type EDTD.

(b) T is definable by an EDTD with ancestor-based types.

(c) T is closed under ancestor-guarded subtree exchange.

(d) T is definable by an ancestor-based schema.

(e) T can be characterized by ancestor-based patterns.

Proof. We prove (a)⇒(b)⇒(c)⇒(a) and (a)⇒(d)⇒(e)⇒(b).
Let c denote the unique root label of the trees in T .
(a) ⇒ (b): Let T be defined by the single-type EDTD D = (Σ,∆, d, sd, µ). Then

define f inductively as follows: f(µ(sd)) = sd. Further, for any string w · a · b with
w ∈ Σ∗ and a, b ∈ Σ, f(w · a · b) = bj where bj occurs in d(ai) and f(w · a) = ai.
As d(ai) is single-type, f is well-defined and induces a unique typing. Thus, the
requirements of Definition 8.12 are satisfied.

(b) ⇒ (c): Let T be defined by an EDTD D = (Σ,∆, d, sd, µ) with ancestor-
based types. Let t1, t2 be in T and let u1 and u2 be nodes in t1 and t2, respectively,
with anc-strt1(u1) = anc-strt2(u2). Let t′1 and t′2 be the unique witnesses for t1 and
t2, respectively. As the label of u1 in t′1 and the label of u2 in t′2 are determined
by anc-strt1(u1) = anc-strt2(u2), they are the same. Hence, by replacing the subtree
rooted at u1 in t′1 with the subtree rooted at u2 in t′2 we get a tree t

′ ∈ L(d). Therefore,
µ(t′) = t1[u1 ← subtreet2(u2)] is in T , as required.

(c) ⇒ (a): LetD = (Σ,∆, d, sd, µ) be an EDTD defining a tree language closed un-
der ancestor-guarded subtree exchange. Our aim is to construct a single-type EDTD
E such that L(E) = L(D).

As explained in the beginning of this section, we assume without loss of generality
that D only contains useful types, that is, each type occurs in the witness of some
tree in L(D). For each type of D, choose a fixed tree, which is the subtree rooted at
some node of this type in a tree in L(D).

We will make use of the following general property of EDTDs:

(†) If t1, t2 are trees in L(D) with witnesses t′1, t
′
2, respectively, such that v1 in t1

and v2 in t2 have the same type in t′1 and t′2, respectively, then the tree obtained
from t1 by replacing the subtree of v1 with the subtree of v2 in t2 is in L(D).
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This property should not be confused with the subtree-exchange properties defined
above which do not concern types at all.

For a string w ∈ Σ∗ and a ∈ Σ let types(wa) be the set of all types ai, for which
there is a tree t with witness tree t′ ∈ L(d) and a node v in t such that anc-strt(v) = wa
and the type of v in t′ is ai. For each a ∈ Σ, let τ(D, a) be the set of all nonempty
sets types(wa), with w ∈ Σ∗. Clearly, each τ(D, a) is finite.

We next define E = (Σ,∆E , e, sd, µE). Its set of types is ∆E :=
⋃

a∈Σ τ(D, a).
Note that sd ∈ ∆E . For every τ ∈ τ(D, a), set µE(τ) = a. In e, the right-hand side
of the rule for each types(wa) is the disjunction of all d(ai) for ai ∈ types(wa), with
each bj in d(ai) replaced by types(wab). It should be noted that by (†), the definition
of the rules of e does not depend on the actual choice of wa.

Clearly, E is single-type and L(D) ⊆ L(E). Thus it only remains to show L(E) ⊆
L(D).

To this end, let g ∈ L(E) and let g′ be a witness. We call a set S of nodes of g
well-formed if (1) for each node v ∈ S all its ancestors are in S and (2) if a child u of
a node v is in S then all children of v are in S. The singleton set Sε containing the
root is well-formed.

We say that a tree t2 agrees with a tree t1 on an ancestor-closed set S1 of nodes
of t1, if S1 can be mapped to a well-formed S2 by a mapping m which respects the
child-relationship, the order of siblings and the labels of nodes.

As all trees in L(D) and L(E) have the same root label, there exists a tree t1 ∈
L(D) which agrees with g on Sε. To complete the proof of “(c) ⇒ (a)” it is sufficient
to prove the following.

Claim 8.17. If there exists a tree t1 ∈ L(D) which agrees with g on a well-formed
set S ( Nodes(t) then there exists t2 ∈ L(D) which agrees with g on a well-formed
set which is a strict superset of S.

For the proof of this claim, let wa = anc-strg(v), for some node v ∈ S whose
children are not in S. Let t1 be as stated and let t′1 be its witness. Let ai be the type
of the node m(v) corresponding to v in t′1.

By construction of E the right-hand side of the rule for types(wa) is a disjunction
over the (adapted) right-hand sides of rules of D. Let aj be such that the children
of v are typed in g′ according to a disjunct derived from the rule for aj . Thus, in
particular, aj ∈ types(wa). Thus, there is a tree t3 ∈ L(D) with a node u such that
anc-strt3(u) = wa and the type of u is aj in the witness t′3 for t3.

Let, for each child v1 of v in g, a type f(v1) be chosen such that ch-str(v) matches
d(aj) with these types. Let t4 be obtained from t3 by (1) removing everything below
u, (2) adding the children of v below u, and (3) adding for each child v1 the fixed
subtree chosen for f(v1). Clearly, by (†), t4 ∈ L(D). Furthermore, by the ancestor-
closed subtree exchange property, the tree t2 resulting from t1 by replacing the subtree
rooted at m(v) by the subtree of t4 rooted at u is in L(D), too. This completes the
proof of the claim and thus of “(c) ⇒ (a)”.

(a) ⇒ (d): Let T be defined by a single type EDTD D = (Σ,∆, d, c0, µ) with
·,⊥ 6∈ ∆. Let A be a DFA over Σ with state set Q = ∆ ∪ {·,⊥}, initial state · and
transition function δ : Q × Σ → Q. Let δ(ai, b) equal the unique bj occurring in
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d(ai) if such a symbol exists, otherwise ⊥. Furthermore, δ(·, c) = c0. Note that the
single-type property ensures that A is deterministic and well-defined.

Let S = (Σ, R) be the ancestor-based schema with rules of the form ra,i →
µ(d(ai)), where ra,i is a regular expression describing the set {w | δ∗(·, w) = ai}
of strings which bring A into state ai. Of course, the languages L(ra,1), . . . , L(ra,ka

)
are all disjoint where {a1, . . . , aka} are the symbols mapped to a by µ. Note that we
also denote by µ the homomorphic extension of µ to regular expressions d(ai).

It remains to show that S defines the same set of trees as D. Let t be in L(D)
and t′ be a witness. It is easily shown by induction that, for each node v of t′,

labt
′

(v) = δ∗(·, anc-strt(v)). Hence, for each node v labeled with ai, the rule of S
responsible for v is ra,i → µ(d(ai)) and can therefore be applied. The proof of the
opposite inclusion is similar.

(d) ⇒ (e): Let T be defined by the ancestor-based schema S = (Σ, R). Then T
can be characterized by the set L = {u#v | u ∈ L(r), v ∈ L(s), r → s ∈ R}. By
definition, for every tree t ∈ T it holds that Panc(t) ⊆ L. For the other direction, let
t be a tree which is not in T . Hence, there is a node w in t such that either there is
no rule r → s in R with anc-str(w) ∈ L(r) or for every such triple ch-str(w) 6∈ L(s).
This implies that anc-str(w)#ch-str(w) 6∈ L. Therefore, a tree t is in T if and only if
Panc(t) ⊆ L and we are done.

(e) ⇒ (b): Let T be characterized by ancestor-based patterns using the language
L. Let A = (Σ, Q, δ, s, F ) be a DFA for L. Define D = (Σ,∆, d, sd, µ) as follows.
∆ is the set of all pairs (a, q), where a ∈ Σ and q ∈ Q and µ((a, q)) = a. We let
d((a, q)) be a regular expression describing all strings (b1, q1) · · · (bn, qn), for which A
accepts #b1 · · · bn when started from state q and δ(q, bi) = qi, for every i ≤ n. The
start symbol sd is (c, q′) where δ(s, c) = q′. By construction, D is single-type and
therefore also has ancestor-based types. It is easy to see that L(D) defines T . Indeed,
when t ∈ T , let t′ be obtained from t by relabeling every inner node v labeled a by
(a, q) where q = δ∗(s, anc-strt(v)) then t′ ∈ L(D) and t = µ(t′)). Conversely, let
t′ ∈ L(D). Then, for every node u of t = µ(t′), anc-strt(u)#ch-strt(u) ∈ Panc(t) by
construction.

As an immediate consequence of Theorem 8.16, the language we considered in
Example 8.11 is not definable by a single-type EDTD. Note that the counterexample
can be constructed in exactly the same manner. On the other hand, the language
defined by the single-type EDTD in Example 8.4 is not definable by a DTD, so single-
type EDTDs are strictly more expressive than DTDs. As a matter of fact, it can be
decided whether a given EDTD is equivalent to a single-type EDTD. For instance,
the non single-type EDTD a → b1b2, b1 → c, b2 → c is clearly equivalent to the
DTD (and, hence, single-type EDTD) consisting of the rules a→ bb and b→ c. The
complexity of this problem is considered in Section 8.5.

The importance of the characterization of single-type EDTDs by a subtree-exchange
property stems from the fact that inexpressibility results can be formally proved
rather than vaguely stated. For instance, a shortcoming recently attributed to XSDs
is their inability to express certain co-constraints [CMV04]. An example of such a co-
constraint is the following: a store-element can only have a dvd -element with discount
child if it also has a dvd -element without a discount child. Using the ancestor-guarded
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Figure 8.8: From left to right: a tree t, the preceding of v, the pruned envelope of v,
and the preceding-subtree of v in t.

subtree exchange property, it is very easy to prove that this co-constraint cannot be
expressed with XSDs. Indeed, the counterexample is constructed from t1 in Exam-
ple 8.11 by replacing its first subtree by the first subtree of t2.

8.3 The Equivalence Theorem for 1-Pass Preorder

Typeable Schemas

As mentioned before, the expressive power of EDTDs (and Relax NG) corresponds
to the well-understood and very robust class of regular tree languages. However,
this expressive power comes at a price. Although it can be determined in linear
time whether a tree satisfies a given EDTD, the way to do that is sometimes at
odds with the way one would like to process XML documents. More concretely,
it requires to process documents in a bottom-up fashion where the type(s) of an
element is only determined after reading its content. In the context of streaming
XML data or for SAX-based processing, that is, when processing an XML document
as a SAX-stream of opening and closing tags, it is more desirable to determine the
type of an element at the time its opening tag is met. If an EDTD fulfills this
requirement we say it is 1-pass preorder typeable (1PPT). Note that not every EDTD
admits 1PPT. Consider the example a → b1 + b2, b1 → c, b2 → d and the document
<a><b><d/></b></a>. The type of b depends on the label of its child. It is hence
impossible to assign a type to b when its opening tag <b> is met, that is, without
looking at its child. An alternative formulation of 1PPT is that the type of an
element cannot depend on anything occurring in document order after the opening
tag of that element. Hence, we require that a type is uniquely determined by the
preceding of an element (Figure 8.8). On top of one-pass preorder typeability, this
notion therefore also enforces the attribution of a unique type to every element. The
latter is, for instance, not the case for Relax NG which allows ambiguous typing as
in the grammar a→ b1 + b2, b1 → c, and b2 → c, where b can both be assigned type
b1 and b2 in the tree a(b(c)).

We formalize the notion of 1PPT in terms of preceding-based types in analogy to
the ancestor-based types of Definition 8.12. The preceding of a node v in t is the tree
resulting from t by removing everything below v, all right siblings of v’s ancestors and
of v, and their respective subtrees (see Figure 8.8). In other words, the preceding of
v in t is the subtree of t consisting of all nodes that are before v in document order,
and v itself. We denote the preceding of v by precedingt(v).
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Definition 8.18. We say that an EDTD D = (Σ,∆, d, sd, µ) is 1-pass preorder
typeable (1PPT) or has preceding-based types if there is a function f : TΣ → ∆ such
that, for each tree t ∈ L(D),

• there is exactly one witness t′, and

• t′ results from t by assigning to each node v the type f(precedingt(v)). 3

Theorem 8.16 characterizes single-type EDTDs precisely as the class of EDTDs
with ancestor-based types. Therefore, every single-type EDTD admits 1PPT. The
converse, however, is not true. Consider for example the following EDTD which
is not single-type: a → b1 b2, b1 → c, b2 → d. Nevertheless, the EDTD ad-
mits 1PPT. Indeed, it is easy to see that the EDTD only defines the singleton
<a><b><c/></b><b><d/></b></a>. The rule for a says that the first b-child needs to
be typed b1 and the second b-child needs to be typed b2. For each of the b’s in the
document, it can be easily determined whether it is the first or second child of a by
investigating its preceding (see Figure 8.8). Hence, the notion of single-type EDTDs
allows for efficient unique typing, but does not capture all of 1PPT EDTDs.

We are now ready to prove the following theorem.

Theorem 8.19. For a homogeneous regular tree language T the following conditions
are equivalent.

(a) T is definable by a 1-pass preorder typeable EDTD.

(b) T is definable by a restrained competition EDTD.

(c) T is definable by an EDTD with ancestor-sibling-based types.

(d) T is closed under ancestor-sibling-guarded subtree exchange.

(e) T is definable by an ancestor-sibling-based schema.

(f) T can be characterized by ancestor-sibling-based patterns.

Proof. We show (a) ⇔ (c) and (c) ⇒ (d) ⇒ (b) ⇒ (e) ⇒ (f) ⇒ (c). Of these, (c) ⇒
(a) holds by definition, and (c) ⇒ (d), (e)⇒ (f), and (f) ⇒ (c) are straightforward
generalizations of the proofs of (b) ⇒ (c), (d) ⇒ (e), and (e) ⇒ (b) in Theorem 8.16.

(b) ⇒ (e): Let T be defined by a restrained competition EDTDD = (Σ,∆, d, sd, µ).
We are going to construct a DFA A which determines the type of a node v, after
reading its ancestor-sibling-string. From this DFA, we will then obtain an ancestor-
sibling-based schema.

For each symbol ai in ∆, let Aa,i = (Qa,i,∆, δa,i, sa,i, Fa,i) be a minimal DFA for
L(d(ai)). We require that the sets Qa,i are pairwise disjoint. Because it is minimal,
each Aa,i has at most one state q⊥ from which no accepting state is reachable and it
has no unreachable states. From the restrained competition property it immediately
follows that, for each state q of Aa,i, if δ(q, b

j) = q1, δ(q, b
k) = q2, q1 6= q2 and j 6= k

then q1 or q2 must be q⊥.
The desired DFA A = (QA,Σ, δA, {sA}, FA) is constructed as follows. The set QA

consists of all pairs (q, b), where q ∈ Qa,i, for some ai, and b ∈ ∆ ∪ {#}. Intuitively,
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q is the current state of an automaton Aa,i and b is the last type that has been
identified. If sd = aℓ, the initial state sA of A is (sa,ℓ,#). The transition function δA
is defined as follows. For each q ∈ Qa,i, c ∈ ∆ ∪ {#} and b ∈ Σ we let δA((q, c), b) =
(δa,i(q, b

j), bj), for the unique j with δa,i(q, b
j) 6= q⊥, if such a j exists. Otherwise,

δA((q, c), b) = (q⊥,#). Furthermore, we let δA((q, b
j),#) = (sb,j ,#). The set FA can

be chosen arbitrarily, as we do not make use of final states.

From the definition, it is obvious that, for each node v of a tree in T ,

δ∗A(sA, anc-sib-str(v)) = (q, ai),

for some q, where ai is the unique type of v.

Now we are ready to define the ancestor-sibling-based schema S = (Σ, R). For
each state (q, ai) of A, let Lq,ai denote {w | δ∗A(sA, w) = (q, ai), for some q}. Then
R consists of the rules rq,ai → µ(d(ai)), where rq,ai is a regular expression for Lq,ai .
Note, that the languages L(rq,ai) are pairwise disjoint by construction.

It remains to show that S and D describe the same tree language.

To this end, let first t ∈ L(D) and let v be a node of t. Let (q, ai) be the state of
A after reading anc-sib-str(v). Thus, in the unique labeling of t with respect to D, v
has type ai. Hence, ch-str(v) is in µ(d(ai)) and r → s is fulfilled at v.

For the converse direction, let t ∈ L(S) and let v be a node of t. Let r → s be the
unique rule for which anc-sib-str(v) matches r. By construction, r→ s corresponds to
a type ai for which δ∗A(sA, anc-sib-str(v)) = (q, ai). In this way, a unique labeling of
t by types is induced and it is straightforward that this labeling is valid with respect
to D.

(a) ⇒ (c): We show even a bit more than required: each EDTD with preceding-
based types already has ancestor-sibling-based types.

Let D = (Σ,∆, d, sd, µ) be an EDTD which has preceding-based types. Towards
a contradiction, we assume that D has types which are not ancestor-sibling-based.
Clearly, because D has preceding-based types, the types of each t ∈ L(D) are uniquely
determined, thus, only the second requirement of Definition 8.12 can fail. Hence, there
are trees t1, t2 ∈ L(D) with nodes v1 in t1 and v2 in t2 such that anc-sib-strt1(v1) =
anc-sib-strt2(v2) but v1 has a different label in t′1 than v2 in t′2, where t

′
1 and t′2 are the

unique witnesses for t1 and t2, respectively. We call t1, t2, v1, v2 a counterexample. Let
t1, t2, v1, v2 be a counterexample for which the length of anc-sib-strt1(v1) is minimal.

Let U be the set of nodes which are left siblings of ancestors of v1 let U2 be the
corresponding set for v2. As anc-sib-strt1(v1) = anc-sib-strt2(v2), there is a natural
bijection f from U1 to U2. Clearly, for each v ∈ U1, v and f(v) have the same label.

Let s be the tree resulting from t1 by replacing each node v ∈ U1 and its subtree by
f(v) and its subtree. As the counterexample was chosen minimally, for each v ∈ U1,
the label of v in t′1 is the same as the label of f(v) in t′2. Let s

′ be the tree resulting
from s by labeling each subtree of a node v ∈ f(U1) as in t′2 and all other nodes as in
t′1.

It is easy to see that s′ ∈ L(d). As precedings(v1) = precedingt2(v2), and as we
assume preceding-based types, v1 must have the same label in s′ as v2 in t′2. As it
also has the same label in t′1 as in s′ it follows that the labels in t′1 and t′2 are the
same which leads to the desired contradiction.
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(d) ⇒ (b): The proof is similar to but a bit more involved than the corresponding
proof “(c) ⇒ (a)” in Theorem 8.16.

Let D = (Σ,∆, d, sd, µ) be an EDTD defining a tree language closed under
ancestor-sibling-guarded subtree exchange. We will construct a restrained compe-
tition EDTD E = (Σ,∆E , e, sd, µE) such that L(E) = L(D). Again, we assume
without loss of generality that D only contains useful types.

For a string w ∈ (Σ ∪ {#})∗ and a ∈ Σ let types(wa) be the set of all types ai,
for which there is a tree t with witness tree t′ ∈ L(d) and a node v in t such that
anc-sib-strt(v) = wa and the type of v in t′ is ai. For each a ∈ Σ, let τ(D, a) be the
set of all nonempty sets types(wa), with w ∈ (Σ∪{#})∗. Again, each τ(D, a) is finite.
The set of types of E is ∆E :=

⋃

a∈Σ τ(D, a) and, for each τ ∈ τ(D, a), µE(τ) = a.

To define e, let C ∈ ∆E and let C = {a1, . . . , aℓ} = types(wa) for a string wa.
Then define LC as the following regular language over ∆E . It consists of all ∆E-
strings x = x1 · · ·xn for which there is an i ≤ ℓ and a string x′ ∈ L(d(ai)), such that
µ(x′) = µE(x) and the j-th position of x is types(wa#µE(x1 · · ·xj)). Note that LC

does not depend on the choice of wa.
Intuitively, LC is the union of all d(ai) where every jth Σ-symbol in a string

y1 · · · yn is assigned the set of types types(wa#y1 · · · yj). It should be clear that LC

is indeed restrained competition.
We next show that LC is regular. We define an the NFA MC accepting LC

of size exponential in the size of D. To this end, let for each type ai, Aa,i =
(∆, Qa,i, δa,i, sa,i, Fa,i) be an NFA for L(d(ai)). Without loss of generality, we as-
sume that the sets Qa,i are pairwise disjoint and that from every state in Qa,i, a final
state is reachable.

Define MC = (∆E , QC , δC , sC , FC) as follows:

• QC = 2Qa,1 × · · · × 2Qa,ℓ ;

• sC = ({sa,1}, . . . , {sa,ℓ});

• FC = {(P1, . . . , Pℓ) ∈ QC | ∃i, Pi ∩ Fa,i 6= ∅};

• In order to define δa,M , let P = (P1, . . . , Pℓ) be a state of MC . Then, each Pi

contains precisely the states in which each Aa,i is after reading the input so far.

For a state q of Aa,i and a Σ-symbol b, let typesa,i(q, b) consist of those types

bj for which δa,i(q, b
j) 6= ∅. For a set P of states of Aa,i, define

typesa,i(P, b) =
⋃

q∈P

typesa,i(q, b).

Finally, for P as above, define typesa,i(P , b) =
⋃ℓ

j=1 typesa,i(Pj , b). Notice that,

when starting from the state P , for each b ∈ Σ, MC can only make a transition
when reading the ∆E-symbol typesa,i(P , b). Therefore, δC(P , typesa,i(P , b)) =

(P ′1, . . . , P
′
ℓ) where P ′i =

⋃

j δa,i(q, b
j). For all other C′ ∈ ∆E with C′ 6=

typesa,i(P , b), set δC(P ,C′) = ∅.

Note that LC = L(MC). Indeed, MC simulates every Aa,i in parallel while computing
types(wa#y1 · · · yj) for every jth symbol in the Σ-string y1 · · · yn from left to right.
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Let t be a tree in L(D) witnessed by t′. It is not hard to show by proceeding from
the root to the leaves that t′ can be transformed to a tree t′′ witnessing that t ∈ L(E).
The crucial point is, that the type of each node v in t′ is an element of its type in t′′.

Thus, it only remains to show L(E) ⊆ L(D). This proof is completely analogous
to the corresponding proof in Theorem 8.16. Only the notions depending on ancestors
now depend on the corresponding notions for ancestors and their siblings.

As an immediate consequence, the language we considered in Example 8.11 is
not definable by an EDTD admitting 1PPT. Note that the counterexample can be
constructed in exactly the same manner.

Theorem 8.19 shows that, in the context of EDTDs, having preceding-based types
implies having ancestor-sibling-based types. From the proof it further follows that for
each such language a very simple and efficient typing algorithm exists. It is basically
a deterministic pushdown automaton with a stack the height of which is bounded
by the depth of the document. For each opening tag it pushes one symbol, for each
closing tag it pops one. Hence, it only needs a constant number of steps per input
symbol. In particular, it works in linear time in the size of the document. It should
be noted that such automata have been studied in [SV02] and [KS03] in the context
of streaming XML documents. The subclass of the context-free languages accepted
by such automata has recently been studied in [AM04]. Thus, just like for single-type
EDTDs, there is an efficient one-pass validation and typing algorithm.

Unique Particle Attribution Rule

The most well-known XML Schema constraint is perhaps the Unique Particle Attri-
bution (UPA) rule. In [vdV02], it is mentioned that EDC and UPA are interrelated,
in the sense that when a schema satisfies one constraint it almost always also satisfies
the other. Although this might be true on most practical examples, in general it is
definitely not the case. As we now show, the constraints are incomparable: they are
related only in the weak sense that each of them alone implies 1PPT.

An EDTD satisfies the UPA constraint when, for every regular expression r over
the type alphabet ∆, the expression µ(r), obtained from r by replacing every type τ by
the element µ(τ), is one-unambiguous (see Definition 8.9). The expression a1(a2+b1),
for instance, is not EDC but satisfies UPA. For the other counterexample, consider
the expression r = (a1 + b1)∗a1(a1 + b1) which clearly satisfies EDC. When matching
a string against this expression, we always know that we need to type a and b by
a1 and b1, respectively. However, the expression µ(r) = (a + b)∗a(a + b) is not
one-unambiguous. Indeed, a1a2a3 and a2a3 are both in L((a1 + b1)

∗a2(a3 + b2)).
In [BKW98] it is even shown that µ(r) can not be defined by any one-unambiguous
regular expression. So, none of the EDC or UPA constraints implies the other.

The definition of UPA and restrained competition regular expressions are related
in the following way. When matching a string against a restrained competition regular
expression the type of the next element only depends on the part of the string already
seen. For a one-unambiguous regular expression over the type alphabet as defined in
the previous paragraph, the symbol in the regular expression that matches the next
input element only depends on the part of the string already seen. As the matched
symbol in the regular expression is actually the type of that symbol, it is immediate
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that every such one-unambiguous regular expression is restrained competition and,
therefore, UPA implies 1PPT.

Example 8.20. Suppose that r = a1?b1(b1 + c1)∗a2c1. Then, µ(r) = a?b(b + c)∗ac
and µ(r) = a1?b1(b2 + c1)

∗a2c2. Clearly, µ(r) is one-unambiguous, which means that
when we match, for example, bbcbac against µ(r), the symbol against which the a
must be matched (a2 in µ(r)), is uniquely determined without looking ahead. But
then, the symbol in r that corresponds to a2 is also uniquely determined, and this
symbol has only one type. So, we also know what type must be assigned to a without
looking ahead to c. It is easy to generalize this example to show that any EDTD
satisfying UPA is also restrained competition and therefore implies 1PPT. 3

Although the XML Schema specification allows typing in multiple passes (Section
5.2 in [TBMM04], note on multiple assessment episodes), the previous discussion
shows that already the EDC or UPA alone allow for one-pass typing (as they imply
1PPT). Nevertheless, neither EDC nor UPA captures the class of all 1PPT schemas.

There has been quite some debate in the XML community about the restric-
tion to 1-unambiguous regular expressions (see, for example, page 98 of [vdV02]
and [Man01, SM03]) as it does not serve its purpose: even for general regular ex-
pressions simple validation algorithms exist that are as efficient as those for one-
unambiguous regular expressions. One reason to maintain this restriction is to ensure
compatibility with SGML parsers, the predecessor of XML. The results of this chap-
ter show that, on the other hand, by using restrained competition EDTDs instead, a
larger expressive power can be achieved without (essential) loss in efficiency. For both
classes, validation and typing is possible in linear time, allowed schemas can still be
recognized in nlogspace and an allowed schema can be constructed in exponential
time, if one exists (see [BKW98] and Section 8.5).

On the negative side, both 1-unambiguous expressions and restrained competition
expressions lack a comprehensive syntactical counterpart. Whether such an equiva-
lent syntactical restriction exists remains open. It would also be interesting to find
syntactic restrictions which imply an efficient construction of an equivalent restrained
competition EDTD.

8.4 The Equivalence Theorem for Top-Down Ty-

peable Schemas

We formalize the notion of top-down typeability in terms of pruned-envelope-based
types in analogy to the preceding-based types of Definition 8.18. The pruned envelope
of a node v in t is the tree resulting from t by removing everything below v and below
its siblings (see Figure 8.8). In other words, the pruned envelope of v in t is the
subtree of t consisting of all nodes that are not descendants of v’s siblings or of v
itself. We denote the pruned envelope of v by p-envelopet(v).

Definition 8.21. We say that an EDTD D = (Σ,∆, d, sd, µ) is top-down typeable
(TDT) or has pruned-envelope-based types if there is a function f : TΣ ×Nodes→ ∆
such that, for each tree t ∈ L(D),
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• there is exactly one witness t′, and

• t′ results from t by assigning to each node v the type f(p-envelopet(v), v). 3

We are now ready to prove the following theorem. It is a natural extension of
Theorem 8.19 to top-down typeable schemas.

Theorem 8.22. For a homogeneous regular tree language T the following conditions
are equivalent.

(a) T is definable by a top-down typeable EDTD.

(b) T is definable by a top-down deterministic EDTD.

(c) T is definable by an EDTD with spine-based types.

(d) T is closed under spine-guarded subtree exchange.

(e) T is definable by a spine-based schema.

(f) T can be characterized by spine-based patterns.

Proof. We show (a) ⇔ (c), (e) ⇒ (f) ⇒ (b) ⇒ (e), and (b) ⇒ (c) ⇒ (d) ⇒ (b). Of
these, (c) ⇒ (a) holds by definition, and (e) ⇒ (f) and (c) ⇒ (d) are straightforward
generalizations of the proofs of (d) ⇒ (e) and (b) ⇒ (c) of Theorem 8.16.

(a) ⇒ (c): We show even a bit more than required: each EDTD with pruned-
envelope-based types already has spine-based types. The proof is analogous to but
slightly different than the proof of (a) ⇒ (c) of Theorem 8.19.

Let D = (Σ,∆, d, sd, µ) be an EDTD which has pruned-envelope-based types.
Towards a contradiction, we assume that D has types which are not spine-based.
Clearly, because D has pruned-envelope-based types, the types of each t ∈ L(D)
are uniquely determined, thus, only the second requirement of Definition 8.12 can
fail. Hence, there are trees t1, t2 ∈ L(D) with nodes v1 in t1 and v2 in t2 such that
spinet1(v1) = spinet2(v2) but v1 has a different label in t′1 than v2 in t′2, where t′1 and
t′2 are the unique witnesses for t1 and t2, respectively. We call t1, t2, v1, v2 a coun-
terexample. Let t1, t2, v1, v2 be a counterexample for which the length of anc-strt1(v1)
is minimal (that is, the depth of v1 in t1 is minimal).

Let U1 be the set of nodes which are left or right siblings of ancestors of v1 (not
of v1 itself) and let U2 be the corresponding set for v2. As spine

t1(v1) = spinet2(v2),
there is a natural bijection f from U1 to U2. Clearly, for each v ∈ U1, v and f(v)
have the same label.

Let s be the tree resulting from t1 by replacing each node v ∈ U1 and its subtree
by f(v) and its subtree. As the depth of node v1 was chosen minimally, for each
v ∈ U1, the label of v in t′1 is the same as the label of f(v) in t′2. Let s′ be the tree
resulting from s by labeling each subtree of a node v ∈ f(U1) as in t′2 and all other
nodes as in t′1.

It is easy to see that s′ ∈ L(d), as it can be obtained from t′1 and t′2 by label-
guarded subtree exchange. As p-envelopes(v1) = p-envelopet2(v2), and as we assume
pruned-envelope-based types, v1 must have the same label in s′ as v2 in t′2. As v1 also
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has the same label in t′1 as in s′ it follows that the labels in t′1 and t′2 are the same
which leads to the desired contradiction.

(f) ⇒ (b): Let T be characterized by spine-based patterns using the regular lan-
guage L. Let A = (Σ, Q, δ, {s}, F ) be a DFA for L.

We define the EDTD D = (Σ,∆, d, sd, µ) as follows. We define ∆ ⊆ (Σ×Q) and
d inductively as follows. The start symbol sd of d is in ∆ and is defined as the unique
(c, q′) for which δ∗(s, c$c#) = {q′}. We set µ((c, q′)) = c. Furthermore, when (a, q) ∈
∆, we let d((a, q)) be a regular expression describing all strings (b1, q1) · · · (bn, qn),
such that

• A accepts the string #b1 · · · bn when started from state q; and,

• δ∗(q, b1 · · · bi$bi · · · bn#) = {qi}, for every i ≤ n.

By construction, D is top-down deterministic. Indeed, for every bi, there is a unique
{qi} with δ∗(q, b1 · · · bi$bi · · · bn#) = {qi} since A is a DFA. We show that L(D) = T .
Indeed, when t ∈ T , let t′ be obtained from t by relabeling every inner node v labeled
a by (a, q) where q = δ∗(s, spinet(v)). Then we have that t′ ∈ L(d) and t = µ(t′).
Conversely, let t′ ∈ L(d). Then, for every node u of t = µ(t′), spinet(u)#ch-strt(u) ∈
Pspine(t) by construction.

(b) ⇒ (e): Let T be defined by a top-down deterministic EDTD D = (Σ,∆, d,
sd, µ). We are going to construct a NFA A which determines the type of a node v,
after reading spine(v). From this NFA, we will then obtain a spine-based schema.

For each symbol ai in ∆, let La,i be the language {wbj$bjv | bj ∈ ∆, wbv ∈
L(d(ai))}. As L(d(ai)) is regular, La,i is also regular. Let Aa,i = (Qa,i,∆ ⊎ {$}, δa,i,
sa,i, Fa,i) be a DFA for La,i. We require that the sets Qa,i are pairwise disjoint.
From the unambiguously typed property it immediately follows that, for each pair
of strings w1b

j1$bj1v1, w2b
j2$bj2v2 ∈ La,i with µ(w1) = µ(w2), µ(b

j1) = µ(bj2), and
µ(v1) = µ(v2), we have that j1 = j2.

The desired NFA A = (QA,Σ, δA, {sA}, FA) is constructed as follows. Intuitively,
it simulates the automata Aa,i one after another, while reading Σ-symbols. When it
is in an initial state of Aa,i and reads a string wb$bv, it guesses types w1b

j such that
µ(w1b

j) = wb and it simulates Aa,i on w1b
j . When reading the special character $,

it remembers the last type bj . It then continues to simulate Aa,i while reading v and
guessing types v1 such that µ(v1) = v. When A does not reach a final state of Aa,i

after guessing w1b
jv1, it rejects. According to the unambiguously typeable property

of L(d(ai)), there exists at most one way to guess the types such that a final state of
Aa,i is reached. Finally, when A is in a final state of Aa,i, has remembered the type
bj, and reads the character #, it continues in sb,j and starts simulating Ab,j .

Formally, the set QA consists of all pairs (q, b1) and triples (q, b1, b2), where q ∈
Qa,i, for some ai, and b1, b2 ∈ ∆ ⊎ {#}. Intuitively, q is the current state of an
automaton Aa,i, b1 is the last type that has been identified, and b2 is the type that has
been identified for the label following the special marker $. If sd = xl, the initial state
sA of A is (sx,l,#). The transition function δA is defined as follows. For each q ∈ Qa,i,
ck ∈ ∆ and b ∈ Σ we let δA((q, c

k), b) = {(p, bj) | p ∈ δa,i(q, b
j) for some j} and

δA((q, c
k), $) = {(p, $, ck) | p ∈ δa,i(q, $)}. For each q ∈ Qa,i, c

k, eℓ ∈ ∆ and b ∈ Σ, we
let δA((q, $, c

k), c) = {(p, ck, ck) | p ∈ δa,i(q, c
k)} and δA((q, e

ℓ, ck), b) = {(p, bj, ck) |
p ∈ δa,i(q, b

j) for some j}. Furthermore, we let δA((q, e
ℓ, ck),#) = {(sc,k,#)} if
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q ∈ Fa,i and δA((q, e
ℓ, ck),#) = ∅, otherwise. The set FA can be chosen arbitrarily,

as we do not make use of final states.

From the definition of A and the fact that, for each pair of strings w1b
j1$bj1v1,

w2b
j2$bj2v2 ∈ La,i with µ(w1) = µ(w2), µ(b

j1) = µ(bj2), and µ(v1) = µ(v2), we have
that j1 = j2, it now follows that, for every string wb$bv, there exists at most one
bj1 such that (sb,j1 ,#) ∈ δ∗A((sa,i,#), wb$bv#). From this observation and the above
definition of A, we obtain that, for each node v of a tree in T ,

δ∗A(sA, spine
t(v)) = {(sa,i,#)},

where ai is the unique type of v.

Now we are ready to define the spine-based schema S = (Σ, R). For each state
(sa,i,#) of A, let Lsa,i

denote {w | δ∗A(sA, w) = {(sa,i,#)}}. Then R consists of
the rules ra,i → s, where ra,i is a regular expression defining Lsa,i

and s is µ(d(ai)).
Notice that the languages L(ra,i) are pairwise disjoint by construction.

It remains to show that S and D describe the same tree language.

To this end, let first t ∈ L(D) and let v be a node of t. Let (q, ai) be the state of
A after reading anc-sib-str(v). Thus, in the unique labeling of t with respect to D, v
has type ai. Hence, ch-str(v) is in µ(d(ai)) and r → s is fulfilled at v.

For the converse direction, let t ∈ L(S) and let v be a node of t. Let r → s be the
unique rule for which anc-sib-str(v) matches r. By construction, r→ s corresponds to
a type ai for which δ∗A(sA, anc-sib-str(v)) = (q, ai). In this way, a unique labeling of
t by types is induced and it is straightforward that this labeling is valid with respect
to D.

(b) ⇒ (c): Let D = (Σ,∆, d, sd, µ) be a top-down deterministic EDTD with
µ(sd) = c. Then define f inductively as follows: f(µ(c$c#)) = sd. Further, for
any string w · w1a$aw2#w3b$bw4# with w ∈ (Σ ∪ {#, $})∗, w1, w2, w3, w4 ∈ Σ∗ and
a, b ∈ Σ, f(w · w1a$aw2#w3b$bw4#) = bj where f(w · w1a$aw2#) = ai and there
exists a string w′3b

jw′4 in d(ai) with µ(w′3b
jw′4) = w3bw4. As L(d(ai)) is unambigu-

ously typed, f is well-defined and induces a unique typing. Thus, the requirements
of Definition 8.12 are satisfied.

(d) ⇒ (b): The proof is similar to but more involved than the corresponding proof
“(d) ⇒ (b)” in Theorem 8.19.

Let D = (Σ,∆, d, sd, µ) be an EDTD defining a tree language closed under
spine-guarded subtree exchange. We will construct a top-down deterministic EDTD
E = (Σ,∆E , e, sd, µE) such that L(E) = L(D). Again, we assume without loss of
generality that D is reduced.

For a string w ∈ (Σ ⊎ {#, $})∗, w1, v1 ∈ Σ∗, and a ∈ Σ let types(ww1a$av1#)
be the set of all types ai, for which there is a tree t with witness tree t′ ∈ L(d)
and a node v in t such that spinet(v) = ww1a$av1# and the type of v in t′ is ai.
For each a ∈ Σ, let τ(D, a) be the set of all nonempty sets types(ww1a$av1#), with
w ∈ (Σ ⊎ {#, $})∗ and w1, v1 ∈ Σ∗. Again, each τ(D, a) is finite. The set of types of
E is ∆E :=

⋃

a∈Σ τ(D, a) and, for each τ ∈ τ(D, a), µE(τ) = a.

To define e, let C ∈ ∆E and let C = {a1, . . . , aℓ} = types(ww1a$av1#) for a string
ww1a$av1#. Then define LC as the following regular language over ∆E . It consists
of all ∆E-strings x = x1 · · ·xn for which there is an i ≤ ℓ and a string x′ ∈ L(d(ai)),
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such that µ(x′) = µE(x) and the j-th position of x is

types(ww1a$av1#µE(x1 · · ·xj)$µE(xj · · ·xn)#).

Note that LC does not depend on the choice of ww1a$av1.
Intuitively, LC is the union of all d(ai) where every jth Σ-symbol in a string

y1 · · · yn is assigned the set of types types(ww1a$av1#y1 · · · yj$yj · · · yn#). It should
be clear that, by definition, LC is indeed unambiguously typed.

We next show that LC is regular by showing that there exists a loop-free 2-
way alternating finite automaton (2AFAlf) MC accepting LC (recall the definition
of a 2AFAlf from Section 3.4). To this end, let, for each type ai ∈ C, Aa,i =
(Qa,i,∆, δa,i, {sa,i}, Fa,i) be a NFA for L(d(ai)). Without loss of generaliy, we as-
sume that the sets Qa,i are pairwise disjoint and that, from every state in Qa,i, a final
state is reachable.

We now defineMC such that L(MC) = {WBV | B = {bk | w2b
kv2 ∈

⋃ℓ
i=1 L(d(a

i))
and µ(w2) = µE(W ), µ(bk) = µE(B), µ(v2) = µE(V )}}. Note that LC = L(MC).
Indeed, MC accepts precisely those strings WBV with W,V ∈ ∆∗E and B ∈ ∆E

for which B = types(ww1a$av1#y1 · · · yj−1b$byj+1 · · · yn), µE(W ) = y1 · · · yj−1 and
µE(V ) = yj+1 · · · yn.

We now explain the operation of MC . Intuitively, MC starts in a universal state
and its computation works in three phases: when reading a string WBV ∈ ∆∗E with
µ(B) = b,

(i) MC computes every state p of every automaton Aa,i for which there is a string
wa,i ∈ ∆ with µ(wa,i) = µE(W ) and p ∈ δ∗a,i(sa,i, wa,i);

(ii) MC nondeterministically determines when it reads the symbol B; and,

(iii) MC then verifies, that

(A) for every bk ∈ B, there exists a state p ∈ Qa,i computed in step (i) and a
string va,i with µ(va,i) = µE(V ) and δ∗a,i(p, va,i) ∩ Fa,i 6= ∅; and,

(B) for every bk 6∈ B, for every state p ∈ Qa,i computed in step (i), and for
every string va,i with µ(va,i) = µE(V ), we have that δ∗a,i(p, va,i)∩ Fa,i = ∅.

Note that, as the initial state of MC is universal, the test for the symbol B in phase
(ii) and (iii) will actually be performed for every symbol in the input. By definition
of L(MC), the type B is correct if and only if both tests (A) and (B) are successful.
Indeed, a type bk must be included in B if test (A) is successful and a type bk must
not be included in B if test (B) is successful.

We describe the operation ofMC = (QMC
,∆E⊎{⊲, ⊳}, δMC

, IMC
, FMC

, rMC
, UMC

)
more formally. Intuitively, MC reads its input once from left to right.

• IMC
= {({sa,1}, . . . , {sa,ℓ})} ⊆ UMC

. The computation of MC starts in a
universal state, which is an ℓ-tuple consisting of the start states of Aa,1, . . . , Aa,ℓ.

• δMC

(
({sa,1}, . . . , {sa,ℓ}), ⊲

)
=

{(
({sa,1}, . . . , {sa,ℓ}),→

)}
. When reading the

left delimiter symbol of the input string, we simply move to the right.
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• For every state (Pa,1, . . . , Pa,ℓ) ⊆ 2Qa,1 × · · · × 2Qa,ℓ , we define

δMC

(
(Pa,1, . . . , Pa,ℓ), C

′
)
=

{(
(P ′a,1, . . . , P

′
a,ℓ),→

)
| ∀1 ≤ i ≤ ℓ : P ′a,i =

⋃

p∈Pa,i

⋃

c∈C′

δa,i(p, c)
}

∪ {
(
(Pa,1, . . . , Pa,ℓ, check),−

)
}.

Here, every state (P ′a,1, . . . , P
′
a,ℓ) and (Pa,1, . . . , Pa,ℓ, check) is universal. The

transitions to states in 2Qa,1 × · · · × 2Qa,ℓ simulate the behavior of all the Aa,i’s
in phase (i). The transition to the state (Pa,1, . . . , Pa,ℓ, check) is phase (ii) of
the operation of MC .

• For every state (Pa,1, . . . , Pa,ℓ) ⊆ 2Qa,1 × · · · × 2Qa,ℓ × {check}, we define

δMC

(
(Pa,1, . . . , Pa,ℓ, check), B

)
=

⋃

bk∈B

{
(
(Pa,1, . . . , Pa,ℓ, accept, b

k),−
)
}

∪
⋃

bk 6∈B

{
(
(Pa,1, . . . , Pa,ℓ, reject, b

k),−
)
}.

Here, the state (Pa,1, . . . , Pa,ℓ, accept, b
k) is existential (we have to check whether

a certain string leading to a final state exists) and the state (Pa,1, . . . , Pa,ℓ, reject,
bk) is a universal state (we have to test that no string with certain restrictions
leads to a final state).

• For every state (Pa,1, . . . , Pa,ℓ, accept, b
k) ∈ 2Qa,1 × · · · × 2Qa,ℓ × {accept} ×∆,

we define

δMC

(
(Pa,1, . . . , Pa,ℓ, accept, b

k), B
)
=

⋃

1≤i≤ℓ

⋃

p∈Pa,i

{
(
(p′, accept),→

)
| p′ ∈ δa,i(p, b

k)}.

Here, every state (p′, accept) is existential. This is the start of phase (iii)(A) of
the operation of MC . We continue to simulate the automata Aa,i, starting from
every state p′ computed before. The goal is to reach a final state of Aa,i.

• For every state (Pa,1, . . . , Pa,ℓ, reject, b
k) ∈ 2Qa,1 × · · ·× 2Qa,ℓ ×{reject}×∆, we

define

δMC

(
(Pa,1, . . . , Pa,ℓ, reject, b

k), B
)
=

⋃

1≤i≤ℓ

⋃

p∈Pa,i

{
(
(p′, reject),→

)
| p′ ∈ δa,i(p, b

k)}.

Here, every state (p′, reject) is universal. This is the start of phase (iii)(B) of
the operation of MC . We continue to simulate the automata Aa,i, starting from
every state p′ computed before. The goal is to verify that no final state of Aa,i

can be reached through some va,i with µ(va,i) = µ(V ).
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• For every p ∈
⋃

1≤i≤ℓ Qa,i, we define

δMC

(
(p, accept), C′

)
=

⋃

c∈C′

{
(
(p′, accept),→

)
| p′ ∈ δa,i(p, c), p ∈ Qa,i}.

Recall that we assumed that the Qa,i were pairwise disjoint. Here, every state
(p′, accept) is existential. We are in phase (iii)(A) of the operation of MC .

• For every p ∈
⋃

1≤i≤ℓ Qa,i, we define

δMC

(
(p, reject), C′

)
=

⋃

c∈C′

{
(
(p′, reject),→

)
| p′ ∈ δa,i(p, c)}.

Here, every state (p′, accept) is universal. We are in phase (iii)(B) of the oper-
ation of MC .

Finally, for every i = 1, . . . , ℓ, MC goes into a rejecting state whenever it reaches
(p, reject) for p ∈ Fa,i or (p, accept) for p ∈ Qa,i −Fa,i on the symbol ⊳. For all other
states, MC enters an accepting state when reading ⊳.

It remains to show that L(D) = L(E). To this end, let t be a tree in L(D)
witnessed by t′. It is not hard to show by proceeding from the root to the leaves that
t′ can be transformed to a tree t′′ witnessing that t ∈ L(E). The crucial point is, that
the type of each node v in t′ is an element of its type in t′′.

Thus, it only remains to show L(E) ⊆ L(D). This proof is completely analogous
to the corresponding proof in Theorem 8.16. Only the notions depending on ances-
tors now depend on the corresponding notions for ancestors and their left and right
siblings.

We note that Cristau, Löding, and Thomas [CLT05] have provided a characteri-
zation for languages definable by their top-down deterministic tree automata which
is equivalent to (f) (on homogeneous regular tree languages). As a consequence, our
top-down deterministic EDTDs and their top-down deterministic tree automata are
equally expressive on homogeneous languages.

As an immediate consequence of this theorem, the language we considered in
Example 8.11 is not definable by an EDTD admitting TDT. Note that the counterex-
ample can be constructed in exactly the same manner.

8.5 Static Analysis and Optimization

In this section, we consider various decision problems that are important for any
automated treatment of schemas. In particular, we consider the following problems:

recognition: Given an EDTD, check whether it is of a restricted type, that is, a
DTD, a single-type EDTD or a restrained competition EDTD.

simplification: Given an EDTD, check whether it has an equivalent EDTD of a
restricted type, that is, an equivalent DTD, single-type EDTD or restrained
competition EDTD.
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Further important problems, such as inclusion and minimization, are treated in
Chapters 9 and 10.

Note the difference between recognition and simplification. The former
checks whether a given EDTD is of a specific form, while the latter checks whether
the tree language defined by the given, possibly unrestricted, EDTD can be defined
by a constrained EDTD. For instance, the non single-type EDTD a → b1b2, b1 → c,
b2 → c is clearly equivalent to the DTD consisting of the rules a→ bb and b→ c.

The proofs in this section make use of the tree automata for unranked trees which
we defined in Section 2.2.

8.5.1 Recognition of EDTDs

We first consider the recognition problem. As the definition of a DTD and single-
type EDTD is syntactical in nature, it can be immediately verified by an inspection
of the rules whether an EDTD is in fact a DTD or a single-type EDTD. The case
of restrained competition and top-down deterministic EDTDs is considered in the
following Theorem.

Theorem 8.23. It is decidable in nlogspace for an EDTD D whether it is restrained
competition or top-down deterministic.

Proof. We need to check that every regular expression occurring in a rule of D re-
strains competition, or is unambiguously typed, respectively. We present a nondeter-
ministic logspace algorithm which accepts a regular expression r if it does not have the
required property. As nlogspace is closed under complement, the theorem follows.

Let D = (Σ,∆, d, sd, µ) be an EDTD. For the restrained competition restriction,
the algorithm checks whether, for the automaton of some regular expression there are
two states q1, q2 which can be reached by two strings w1a

i, w2a
j for which µ(w1a

i) =
µ(w2a

j), and i 6= j, and from which an accepting path exists. For the top-down
deterministic restriction, the algorithm checks whether an accepting path exists from
q1, respectively, q2 by reading strings v1, respectively, v2 for which µ(v1) = µ(v2).

Let Nr = (∆, Q, δ, q0, F ) be an NFA equivalent to r. We explain the algorithm
in detail for the top-down deterministic restriction. The algorithm for the restrained
competition property is analogous. The algorithm works as follows.

1. it first guesses two states (q1, q2) of Nr;

2. it verifies that there are strings w1a
i, w2a

j with µ(w1a
i) = µ(w2a

j) and i 6= j such
that q1 ∈ δ∗(q0, w1a

i) and q2 ∈ δ∗(q0, w2a
j);

3. it verifies that there are strings v1, v2 with µ(v1) = µ(v2) such that δ∗(q1, v1)∩F 6= ∅
and δ∗(q2, v2) ∩ F 6= ∅;

4. it accepts if all these verifications work out.

Furthermore, all steps can be done in logarithmic space, as the NFA A does not have
to be computed in advance and the verifications in the second and third step can be
done by remembering a pair of states of A, guessing the strings one symbol at a time
and testing, for each pair of guessed symbols x, y, whether µ(x) = µ(y).
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8.5.2 Simplification of EDTDs

Next, we study the complexity of the simplification problem for the target schema
types DTD, single-type EDTD, restrained competition EDTD, and top-down deter-
ministic EDTD, respectively. Unfortunately, this test is hard for exptime. For the
former three schema types, the test is also in exptime and our algorithm also con-
structs a corresponding equivalent simpler schema when it exists. We have to leave
the precise complexity upper bound for top-down deterministic EDTDs open.

Theorem 8.24.

1. Each of deciding whether an EDTD has an equivalent DTD, single-type EDTD,
restrained competition EDTD, or top-down deterministic EDTD is exptime-
hard.

2. Each of deciding whether an EDTD has an equivalent DTD, single-type EDTD,
or restrained competition EDTD is in exptime.

Proof. We start with the lower bounds. In all four cases, the lower bound is obtained
by a reduction from the universality problem for non-deterministic tree automata
(Proposition 3.9). Let NTA(RE) denote the class of NTAs where the regular languages
encoding the transition function are represented by regular expressions. The hardness
result even holds for NTA(RE) where automata only have one final state and where
all accepted trees have the same root symbol (say a).

Therefore, let A = (Q,Σ, δ, F ) be an NTA(RE) over alphabet Σ = {a, b} with one
final state F = {qF }. We can assume without loss of generality that A accepts at least
one tree. We can construct in logspace an equivalent EDTD D = (Σ,∆, d, aqF , µ)
as follows: ∆ = {bq | b ∈ Σ, q ∈ Q}, µ(bq) = b for every b ∈ Σ, and d consists of
the rules d(bq) = rb,q where rb,q is the regular expression obtained from δ(b, q) by
replacing every occurrence of a state p by (ap + bp). As every t ∈ L(d) induces an
accepting run of A on µ(t), it is immediate that A and D are equivalent.

From D, we now construct an EDTD D′ such that

(i) if L(A) = TΣ then L(D′) is defined by a DTD; and,

(ii) if L(A) 6= TΣ then L(D′) is not defined by a restrained competition EDTD.

Of course (i) and (ii) together imply the statement of the theorem.
Let Dall = (Σ, {a1, b1}, dall, a1, µall) be the EDTD with rules a1 → (a1 + b1)∗,

b1 → (a1 + b1)∗, µall(a
1) = a, and µall(b

1) = b. Hence, L(Dall) = TΣ.
Intuitively, D′ accepts all trees of the form r(t1 · · · tn) such that, there exists a j

for which tj ∈ L(D) and, for all i 6= j, 1 ≤ i ≤ n, ti ∈ L(Dall). Formally, we define
D′ = (Σ ⊎ {r},∆ ⊎ {a1, b1, r}, d′, µ′), where µ′ is defined in the obvious manner and
d′ is defined as follows:

• d′(r) = (a1)∗aqF (a1)∗;

• for every c ∈ {a1, b1}, d′(c) = dall(c); and,

• for every c ∈ ∆, d′(c) = d(c).
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We show (i) and (ii):
(i): First note that when L(A) = TΣ, then L(D) = L(Dall). Hence, L(D′) =

{r(t1 · · · tn) | t1, . . . , tn ∈ TΣ}. The latter can clearly be defined by a DTD.
(ii): Let L(A) 6= TΣ and let tin and tout be two trees such that tin ∈ L(A) and

tout 6∈ L(A). Towards a contradiction, assume that L(D′) is definable by a top-
down typeable EDTD. Hence, L(D′) is closed under spine-guarded subtree exchange
(Theorem 8.22). Let tleft := r(tintout) and let tright := r(touttin). By definition of
D′, we have that tleft, tright ∈ L(D′). Let t be the tree tleft[1 ← tout] = r(touttout).
Notice that, as r$r#a$aa# = spinetleft(1) = spinetright(1), t can be obtained from tleft
and tright by spine-guarded subtree exchange. However, t is not in L(D′), which is a
contradiction. Hence, (ii) follows.

The exponential time upper bounds for the single-type and restrained competition
cases can be obtained by performing the constructions in the proofs (c)⇒ (a) and (d)
⇒ (b) in Theorems 8.16 and 8.19, respectively. Both the construction of the EDTD
and checking equivalence with the original one can be done in exponential time. For
DTDs a similar construction is in polynomial time, but the equivalence check still
needs exponential time.

• In the case of single-type EDTDs we proceed as follows. Let D = (Σ,∆D, d,
sd, µD) be a given EDTD. We assume D is reduced. We first construct the
EDTD(NFA) E = (Σ,∆E , e, sd, µE) as described in the proof of Theorem 8.16
(c)⇒ (a). We argue that this can be done in exponential time. First, we need to
compute ∆E ⊆ 2∆D . To this end, we enumerate all sets types(w). Let sd = c0.
Initially, set Anc-strings := {c}, ATypes(c) := {c0} and R := {{c0}}.

Repeat the following until Anc-strings becomes empty:

1. Remove a string wa from Anc-strings.

2. For every b ∈ Σ, let ATypes(wab) contain all bi for which there exists an aj

in ATypes(wa) and a string in d(aj) containing bi. If ATypes(wab) is not
empty and not already in R, then add it to R and add wab to Anc-strings.

Since we add every set only once to R, the algorithm runs in time exponential
in the size of D. Moreover, we have that ATypes(w) = types(w) for every w,
and that R = ∆E . Now we know ∆E , the rules of e can be directly computed.

It follows from the proof of Theorem 8.16 (c) ⇒ (a) that D is equivalent to
a single-type EDTD if and only if D is in fact equivalent to E. Further, E
then is the corresponding single-type EDTD. The construction of E can be
done in exponential time and E might be of exponential size in D. Then it
has to be checked whether D and E are equivalent. Fortunately, as always
L(D) ⊆ L(E), we only have to check whether L(E) − L(D) is empty. This
involves the complementation of the tree automaton for D, resulting in a tree
automaton of possibly exponential size, and in the test whether the automata
for L(E) and the complement of L(D) have a non-empty intersection. The
latter is polynomial in the size of the automata. Hence, we altogether get an
exponential time algorithm.
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• Testing whether an EDTD has an equivalent restrained competition EDTD can
be done along the same lines, this time based on the proof of Theorem 8.19
(d) ⇒ (b). To compute types(w) for ancestor-sibling-strings w, we just need to
let b in step (2) above range over Σ ∪ ({#} · Σ). A type bℓ is then added to
ATypes(wb) if w is of the form w′a#x1 · · ·xkb where x1 · · ·xk does not contain
a separator # and

1. there is an ai in ATypes(w′a) and

2. there are xij ∈ ATypes(w′a#x1 · · ·xj),

3. such that, xi1
1 · · ·x

ik
k bℓ is a prefix of a string in d(ai).

• Finally, we describe how it can be tested whether a given EDTD D = (Σ,∆, d,
sd, µ) has an equivalent DTD. As usual, we can assume that D is reduced. Let,
for each ai ∈ ∆, ra,i be the regular expression obtained from d(ai) by replacing
every symbol bj by b. We define a DTD (Σ, d1, sd) simply by taking the rules

a→
⋃

i

ra,i, for every a ∈ Σ. It remains to show that D has an equivalent DTD

if and only if L(D) = L(d1).

Analogously as in Theorem 8.16((c)⇒(a)), we have that L(D) ⊆ L(d1). Towards
a contradiction, suppose that D has an equivalent DTD and that t ∈ L(d1) −
L(D). According to Lemma 2.10 in [PV00] (see Section 8.1.2), L(D) is closed
under label-guarded subtree exchange. As t 6∈ L(D) there exists a node u in t
such that subtreet(u) 6∈ L((D, ai)) for any ai ∈ ∆, but for every child u1, . . . , un

of u, we have that subtreet(uj) ∈ L((D, b
ij
j )) for some b

ij
j ∈ ∆. Note that u and

uj are labeled with a and b, respectively. First, we note that u can never be a
leaf node. Indeed, if there is no ai ∈ ∆ such that ε ∈ L(ra,i), then ε is also not

in
⋃

i

L(ra,i), which is the content model of a in d1.

If u is not a leaf node, we can do the following. By definition of d1, for every b
ij
j ,

there exists an ak such that b
ij
j occurs in d(ak). Thus, as D is reduced, for every

uj there exists a tree tj ∈ L(D) with a v ∈ Nodes(t) such that labtj (v) = bj, the
parent of v is labeled a, and subtreetj (v) = subtreet(u). But this means that t
can be constructed from t1, . . . , tn by label-guarded subtree exchange, which is
a contradiction as t 6∈ L(D).

8.6 Subtree-Based Schemas

From what was presented so far an obvious question arises. What happens if we soften
the requirement that the type of an element has to be determined when its opening
tag is visited? What if instead it has to be computed when the closing tag is seen?
It turns out that every regular tree language has an EDTD which allows such 1-pass
postorder typing. Furthermore, the EDTDs used for this purpose can be defined as
straightforward extensions of restrained competition EDTDs.
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Definition 8.25. An EDTD D = (Σ,∆, d, sd, µ) is extended restrained competition
if, for every regular expression r occurring in a rule the following holds: whenever
there are two strings waiv and wajv′ in L(r) with ai 6= aj and µ(ai) = µ(aj), then
L((D, ai)) ∩ L((D, aj)) is empty. 3

For a tree t and a node v, the preceding-subtree of v in t is the tree resulting from t
by removing all right siblings of v and its ancestors together with the respective sub-
trees (see Figure 8.4). We denote the preceding-subtree of v by preceding-subtreet(v).
The notion of preceding-subtree is illustrated in Figure 8.8.

Definition 8.26. We say that an EDTD D = (Σ,Σ′, d, µ) has preceding-subtree-based
types if there is a function f which maps tree-node pairs to Σ′ such that, for each tree
t ∈ L(D),

• t has exactly one witness t′, and

• t′ results from t by assigning to each node v the type f(preceding-subtreet(v), v).

3

Stated in terms of XML documents, the type of an element depends on the prefix
of the document which ends with the closing tag of the element.

The following result shows that all regular tree languages admit 1-pass postorder
typing.

Theorem 8.27. For a homogeneous tree language T the following are equivalent:

(a) T is definable by an extended restrained competition EDTD;

(b) T is definable by an EDTD with preceding-subtree-based types; and,

(c) T is regular.

Proof. The directions (a) ⇒ (c) and (b) ⇒ (c) are trivial. The proof of the oppo-
site directions uses the fact that regular languages can be validated by deterministic
bottom-up automata.

(c) ⇒ (a) and (c) ⇒ (b): Let T be the tree language defined by a bottom-up de-
terministic tree automaton B = (Q,Σ, δ, F ). We can assume that transition functions
are represented by regular expressions. We construct an EDTD D = (Σ,∆, d, sd, µ)
such that L(D) = L(B) exactly as in the proof of Theorem 8.24. In particular, ∆ =
{aq | a ∈ Σ, q ∈ Q}. It is immediate that a tree t ∈ L(D, aq) if and only if δ∗(t) = q,
where labt(v) = a for the root v of t. Here, δ∗ is the canonical extension of δ to trees.
As B is deterministic, L((D, aq)) ∩ L((D, aq

′

)) = ∅ for all a ∈ Σ and q 6= q′ ∈ Q.
Hence, D is extended restrained competition. By observing that there is only one ac-
cepting run for every tree and defining f(preceding-subtreet(u), u) = δ∗(subtreet(u)),
it follows that D has preceding-subtree-based types.

In the EDTD used in the proof the type of each element actually only depends on
its subtree. This should be compared with the previous characterizations where the
type depended on the upper context.
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Remark 8.28. Although there is an extended restrained competition for every reg-
ular tree language, not every EDTD itself is extended restrained competition. The
EDTD D defined by the rules

r → (a1 + a2) a1 → b+ c+ ε a2 → c+ d+ ε,

is not extended restrained competition, as {ε, c} ⊆ L((D, a1)) ∩ L((D, a2)). 3

We conclude by noting that extended restrained competition is a tractable notion.

Theorem 8.29. It is decidable in ptime for an EDTD D whether it is extended
restrained competition.

Proof. Let D = (Σ,Σ′, d, sd, µ) be an EDTD. Let E be the set {(ai, aj) | L((D, ai))∩
L((D, aj)) 6= ∅}. This set can be computed in polynomial time by checking whether
the non-deterministic tree automata for L((D, ai)) and L((D, aj)) have a non-empty
intersection (Proposition 3.18).

It suffices to show that the following is in ptime: testing whether, for a single
regular expression r, there are two strings waiv and wajv′ in L(r) with ai 6= aj ,
µ(ai) = µ(aj) and L((D, ai)) ∩ L((D, aj)) is empty. Let Nr = (∆, Q, δ, q0, F ) be an
NFA equivalent to r.

The algorithm makes use of two sets:

• the set of reachable states R := {q ∈ Q | ∃w ∈ ∆∗, δ∗(q, w) ∈ F}; and,

• the set of pairs of states that can be reached by the same string, S := {(q1, q2) ∈
Q ×Q | ∃w ∈ ∆∗, {q1, q2} ⊆ δ∗(q0, w)}.

Note that R and S can be computed in linear and quadratic time, respectively, by the
usual reachability algorithm. Then, r is extended restrained competition if and only
if there are no q1, q2 ∈ S and a, i, j with i 6= j, δ(q1, a

i) ∩ R 6= ∅, δ(q2, aj) ∩ R 6= ∅,
and (ai, aj) ∈ E. The latter test is in ptime.



9
XML Schemas and Chain

Regular Expressions

The presence of a schema accompanying an XML document has many advantages:
it allows for automatic validation, and optimization of translation, storage and pro-
cessing of XML data. Furthermore, for typechecking or type inference of XML trans-
formations [HP03, MN05a, MSV03, PV00], schema information is even crucial. The
following standard optimization problems for schemas are among the basic building
blocks for many of the algorithms for the above mentioned problems:

• inclusion: Given two schemas D and D′, is every XML document in D also
defined by D′?

• equivalence: Given two schemas D and D′, do D and D′ define the same set
of XML documents?

• intersection non-emptiness: Given schemas D1, . . . , Dn, do they define a
common XML document?

It is therefore important to establish the exact complexity of these problems.
The purpose of the present chapter is to investigate the complexity of the above

mentioned problems for extended context free grammars, single-type EDTDs, re-
strained competition EDTDs, and top-down deterministic EDTDs. As argued in
Chapter 8, the latter are abstractions of DTDs, XML schema with the EDC-constraint,
1-pass preorder typeable schemas, and top-down typeable schemas, respectively. As
EDTDs have a close correspondence to unranked tree automata, and as grammars
and tree automata have already been studied in depth for many decades, it is not
surprising that the complexity of the above mentioned decision problems is already
known. Indeed, in the case of DTDs, the problems reduce to their counterparts for
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Factor Abbr.
a a
a∗ a∗

a+ a+

a? a?
w∗ w∗

w+ w+

w? w?

Factor Abbr.
(a1 + · · ·+ an) (+a)
(a1 + · · ·+ an)

∗ (+a)∗

(a1 + · · ·+ an)
+ (+a)+

(a1 + · · ·+ an)? (+a)?
(a∗1 + · · ·+ a∗n) (+a∗)
(a+1 + · · ·+ a+n ) (+a+)

Factor Abbr.
(w1 + · · ·+ wn) (+w)
(w1 + · · ·+ wn)

∗ (+w)∗

(w1 + · · ·+ wn)
+ (+w)+

(w1 + · · ·+ wn)? (+w)?
(w∗1 + · · ·+ w∗n) (+w∗)
(w+

1 + · · ·+ w+
n ) (+w+)

Table 9.1: Possible factors in chain regular expressions and how they are denoted
(a, ai ∈ Σ, w,wi ∈ Σ+).

regular expressions: all three problems are pspace-complete (Proposition 3.9). For
tree automata, they are well-known to be exptime-complete (Proposition 3.9).

Unfortunately, these complexity results result do not tell us much about the hard-
ness of optimization of actual XML schemas:

1. As we explained in Chapter 8, XML Schema Definitions are not powerful enough
to express the entire class of regular unranked tree languages, because of the
Element Declarations Consistent rule (which is abstracted by the single-type
restruction on EDTDs). Even the more expressive restrained competition and
top-down deterministic EDTDs still do not have the expressive power of tree
automata over unranked trees. Hence, the mentioned decision problems can be
easier on these restricted EDTDs than on unranked tree automata in general.

2. Practical DTDs and XML Schema Definitions are usually much more simpler
than the regular expressions and tree automata needed for the classical pspace-
and exptime-hardness proofs. Actually, a study by Bex, Neven, and Van den
Bussche [BNV04] confirms that more than ninety percent of the regular expres-
sions occurring in practical DTDs and XSDs are CHAin Regular Expressions
(CHAREs), that is, expressions e1 · · · en, where every ei is a factor of the form
(w1 + · · ·+ wm) — possibly extended with Kleene-star, plus or question mark
— and each wi is a string. We define this class of regular expressions more
precisely in Section 9.1.1.

In the present chapter, we therefore revisit the complexity of inclusion, equiv-
alence, and intersection non-emptiness for DTDs and restricted EDTDs with
CHAREs. Clearly, complexity lower bounds for inclusion, equivalence, or in-

tersection non-emptiness for a class of regular expressions R imply lower bounds
for the corresponding decision problems for DTDs, single-type EDTDs, restrained
competition EDTDs and top-down deterministic EDTDs with right-hand sides in R.
Interestingly, we show that, for inclusion and equivalence, the complexity upper
bounds for the string case also carry over to DTDs and single-type EDTDs. For
restrained competition and top-down deterministic EDTDs, we show that the com-
plexity upper bounds carry over from µ(R)-expressions to EDTDs with right hand
sides in R. For intersection, the latter still holds for DTDs, but not for single-type,
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restrained competition, or top-down deterministic EDTDs. So, in many cases, it suf-
fices to restrict attention to the complexity of CHAREs to derive complexity bounds
for XML schema languages.

Before we give an overview of our complexity results regarding CHAREs, we briefly
discuss the determinism constraint: the XML specification requires DTD content
models to be deterministic because of compatibility with SGML (see Section 8.1.2 and
also Section 3.2.1 of [BPSM+04]). In XML Schema, this determinism constraint is
referred to as the Unique Particle Attribution constraint (see Section 8.3 and also Sec-
tion 3.8.6 of [SMT05]). Brüggemann-Klein and Wood [BKW98] formalized the regular
expressions adhering to this constraint as the one-unambiguous regular expressions.
As such expressions can be translated in polynomial time to an equivalent determinis-
tic finite state machine, it immediately follows that inclusion and equivalence for
such regular expressions, and hence also for practical DTDs, are in ptime. In contrast,
we show in Theorem 9.23 that intersection non-emptiness of one-unambiguous
regular expressions remains pspace-hard (even when every symbol can occur at most
three times). Nevertheless, we think it is important to also study the complexity of
CHAREs without the determinism constraint as there has been quite some debate in
the XML community about the restriction to one-unambiguous regular expressions, as
we noted in Section 8.3. Another reason to study CHAREs without the determinism
constraint is that they are included in navigational queries expressed by caterpillar
expressions [BKW00], XCPath

reg and Xreg [Mar04], or regular path queries [CGGLV03].
Hence, lower bounds for optimization problems for CHAREs imply lower bound for
optimization problems for navigational queries. Hence, it is relevant to study the
broader class of possibly non-deterministic but simple and practical regular expres-
sions.

Our results on the complexity of CHAREs are summarized in Table 9.2. We
denote by RE(S) the set of all CHAREs. Recall that the three decision problems are
pspace-complete for the class of all regular expressions (Proposition 3.9). We briefly
discuss our results:

• We show that inclusion is already conp-complete for several, seemingly very
innocent expressions: when every factor is of the form (i) a or a∗, (ii) a or
a?, (iii) a or (a+1 + · · · + a+n ), (iv) a or w+ and (v) a+ or (a1 + · · · + an)
with a, a1, . . . , an arbitrary alphabet symbols and w an arbitrary string with
at least one symbol. Even worse, when factors of the form (a1 + · · · + an)

∗ or
(a1 + · · ·+ an)

+ are also allowed, we already obtain the maximum complexity:
pspace. When such factors are disallowed the complexity remains conp. The
inclusion problem is in ptime when we allow (general) regular expressions where
the number of occurrences of the same symbol is bounded by some constant k (a
fragment we denote with RE≤k). As the running time is nk, k should of course
be small to be feasible. Fortunately, this seems to be the case quite often.
Recent investigation has pointed out that in practice, for ninety-nine percent
of the regular expressions occurring in DTDs or XML Schema Definitions, k is
equal to one [BNST05].

• The precise complexity of equivalence largely remains open. Of course, it is
never harder than inclusion, but we conjecture that it is tractable for a large
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fragment of RE(S). We only prove a ptime upper bound for expressions where
each factor is a or a∗, or a or a?. Even for these restricted fragments the proof
is non-trivial. Basically, we show that two expressions are equivalent if and
only if they have the same sequence normal form, modulo one rewrite rule.
Interestingly, the sequence normal form specifies factors much in the same way
as XML Schema does. For every symbol, an explicit upper and lower bound is
specified. For instance, aa∗bbc?c? becomes a[1, ∗]b[2, 2]c[0, 2].

• intersection non-emptiness is conp-complete when each factor is either
of the form (i) a or a∗, (ii) a or a?, (iii) a or (a+1 + · · · + a+n ), (iv) a or
(a1 + · · · + an)

+ or of the form (v) a+ or (a1 + · · · + an). As we can see,
the complexity of intersection non-emptiness is not always the same as for
inclusion. There are even cases where inclusion is harder and others where
intersection is harder. In case (iv), for example, inclusion is pspace-complete,
whereas intersection non-emptiness problem is conp-complete. Indeed, in-
tersection non-emptiness remains in conp even if we allow all kinds of
factors except (w1 + · · ·+wn)

∗ or (w1 + · · ·+wn)
+. On the other hand, inter-

section non-emptiness is pspace-hard for RE≤3 and for deterministic (or
one-unambiguous) regular expressions [BKW98], whereas their inclusion prob-
lem is in ptime. The only tractable fragment we obtain is when each factor
is restricted to a or a+, which is the class of RE+-expressions that we used in
Chapter 6.

RE-fragment Inclusion Equivalence Intersection
a, a+ in ptime (DFA!) in ptime in ptime (9.25)
a, a∗ conp (9.10) in ptime (9.17) np (9.18)
a, a? conp (9.10) in ptime (9.17) np (9.18)

a, (+a+) conp (9.10) in conp np (9.18)
a+, (+a) conp (9.10) in conp np (9.18)
a, w+ conp (9.10) in conp in np (9.18)

S − {(+a)∗, (+w)∗,
(+a)+, (+w)+}

conp (9.10) in conp np (9.18)

a, (+a)∗ pspace (9.10) in pspace np (9.18)
a, (+a)+ pspace (9.10) in pspace np (9.18)

S − {(+w)∗, (+w)+} pspace (9.10) in pspace np (9.18)
a, (+w)∗ pspace (9.10) in pspace pspace ([Bal02])
a, (+w)+ pspace (9.10) in pspace pspace ([Bal02])
S pspace (9.10) in pspace pspace ([Bal02])

RE≤k (k ≥ 3) in ptime (9.11) in ptime pspace (9.23)
one-unambiguous in ptime in ptime pspace (9.23)

Table 9.2: Summary of our results. Unless specified otherwise, all complexities are
completeness results. The theorem numbers are given in brackets.

Related Work. The complexities of equivalence, inclusion and intersection

non-emptiness for general regular expressions and several fragments were stud-



9.1. Preliminaries 141

ied in [HRS76, Koz77, SM73]. From these, the most related result is the conp-
completeness of equivalence and inclusion of bounded languages [HRS76]. A
language L is bounded if there are strings v1, . . . , vn such that L ⊆ v∗1 · · · v

∗
n. It

should be noted that the latter class is much more general than, for instance, our
class RE(w∗). More recently, inclusion for two fragments of chain regular expres-
sions have been shown to be tractable: inclusion for RE(a?, (+a)∗) [ABJ98] and
RE(a,Σ,Σ∗) [MS99a, MS04]. This last result should be contrasted with the pspace-
completeness of inclusion for RE(a, (+a), (+a)∗), or even RE(a, (+a)∗). Further,
Bala investigated intersection non-emptiness for regular expressions of limited
star height [Bal02]. He showed that it is pspace-complete to decide whether inter-
section non-emptiness for RE((+w)∗) expressions contains a non-empty string.
Bala’s proof can easily be adjusted to obtain pspace-hardness of intersection non-

emptiness for RE(a, (+w)∗) or RE(a, (+w)+) expressions.

9.1 Preliminaries

9.1.1 Chain Regular Expressions

In many of our proofs, we make use of how a string can be matched against a regular
expression. We formalize this by the notion of a match. A match m between a string
w = a1 · · · an and a regular expression r is a (partial) mapping from pairs (i, j),
1 ≤ i ≤ j + 1 ≤ n, of positions of w to sets of subexpressions of r. This mapping is
consistent with the semantics of regular expressions, that is,

(1) if ε ∈ m(i, j), then i = j + 1;

(2) if a ∈ m(i, j), for a ∈ Σ, then i = j and ai = a;

(3) if (r1 + r2) ∈ m(i, j), then r1 ∈ m(i, j) or r1 ∈ m(i, j);

(4) if r1r2 ∈ m(i, j), then there is a k such that r1 ∈ m(i, k) and r2 ∈ m(k + 1, j);

(5) if r∗ ∈ m(i, j), then there are k1, . . . , kt such that r ∈ m(i, k1), r ∈ m(kt + 1, j)
and r ∈ m(kℓ + 1, kℓ+1), for all ℓ, 1 ≤ ℓ < t.

Furthermore, m is minimal with these properties. That is, if m′ fulfills (1)–(5) and
m′(i, j) ⊆ m(i, j) for each i, j, then m′ = m. We say that m matches a substring
ai · · · aj of w onto a subexpression r′ of r when r′ ∈ m(i, j). Often, we leavem implicit
whenever this cannot give rise to confusion. We then say that ai · · ·aj matches r′.

We consider simple regular expressions occurring in practice in DTDs and XML
Schemas [Cho02], which we call CHAin Regular Expessions (CHAREs). These regular
expressions are defined as follows.

Definition 9.1. A base symbol is a regular expression s, s∗, s+, or s?, where s is a
non-empty string; a factor is of the form e, e∗, e+, or e? where e is a disjunction of
base symbols of the same kind. That is, e is of the form (s1+ · · ·+sn), (s

∗
1+ · · ·+s∗n),

(s+1 + · · ·+s+n ), or (s1?+ · · ·+sn?), where n ≥ 0 and s1, . . . , sn are non-empty strings.
A chain regular expression (CHARE) is ∅, ε, or a sequence of factors. 3
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The regular expressions ((abc)∗ + b∗)(a + b)?(ab)+(ac + b)∗ is a chain regular
expression. The expression (a+ b) + (a∗b∗), however, is not.

We introduce a uniform syntax to denote subclasses of chain regular expressions by
specifying the allowed factors. We distinguish whether the string s of a base symbol
consists of a single symbol (denoted by a) or a string (denoted by w) and whether
it is extended by ∗, +, or ?. Furthermore, we distinguish between factors with one
disjunct or with arbitrarily many disjuncts: the latter is denoted by (+ · · · ). Finally,
factors can again be extended by ∗, +, or ?. A list of possible factors, together with
their abbreviated notation, is displayed in Table 9.1. This table only shows factors
which give rise to chain regular expressions with different expressive power.

We denote subclasses of chain regular expressions by RE(X), where X is a list
of the allowed factors. For example, we write RE((+a)∗, w?) for the set of regular
expressions e1 · · · en where every ei is either (i) (a1+· · ·+am)∗ for some a1, . . . , am ∈ Σ
and m ≥ 1, or (ii) w? for some w ∈ Σ+.

If A = {a1, . . . , an} is a set of symbols, we often denote (a1 + . . .+ an) simply by
A. We denote the class of all chain regular expressions by RE(S).

9.1.2 Decision Problems

The following three problems are fundamental to this chapter. Let R be a class of
regular expressions.

• inclusion for R: Given two expressions r, r′ ∈ R, is L(r) ⊆ L(r′)?

• equivalence for R: Given two expressions r, r′ ∈ R, is L(r) = L(r′)?.

• intersection non-emptiness for R: Given an arbitrary number of expres-
sions r1, . . . , rn ∈ R, is

⋂n
i=1 L(ri) 6= ∅?

In the sequel, we abuse notation and denote
⋂n

i=1 L(ri) 6= ∅ simply by
⋂n

i=1 ri 6= ∅.

9.1.3 Automata on Compressed Strings

We introduce some more notions that are frequently used in our proofs. We use the
abbreviations NFA and DFA for non-deterministic and deterministic finite automata,
respectively. Such automata are 5-tuples (Q,Σ, δ, I, F ), where Q is the state set, Σ
is the input alphabet, δ : Q × Σ → 2Q is the transition function, I is the set of
initial states and F is the set of final states. Furthermore, a DFA is an NFA with the
property that I is a singleton, and δ(q, a) is a singleton for every q ∈ Q and a ∈ Σ.

A compressed string is a finite sequence of pairs (w, i), where w ∈ Σ∗ is a string
and i > 0 is a natural number. The pair (w, i) stands for the string wi. The size
of a pair (w, i) is ⌈log i⌉, plus the size of w. The size of a compressed string v =
(w1, ii) · · · (wn, in) is the sum of the sizes of (w1, i1), . . . , (wn, in). By string(v), we
denote the decompressed string corresponding to v, which is the string wi1

1 · · ·w
in
n .

Notice that the size of string(v) can be exponentially larger than the size of v.
The following lemma shows that we can decide in polynomial time whether a

compressed string a useful tool to obtain complexity upper bounds in our proofs.
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Lemma 9.2. Given a compressed string v and an NFA A, we can test whether
string(v) ∈ L(A) in time polynomial in the size of v and A.

Proof. The idea is based on a proof by Meyer and Stockmeyer [SM73], which shows
that the equivalence problem for regular expressions over a unary alphabet is conp-
complete. Let v = (w1, i1) · · · (wn, in) be a compressed string and let A = (QA,Σ, δA,
IA, FA) be an NFA with QA = {1, . . . , k}. We basically compute the set R ⊆ QA of
states which are reachable from a state in IA by reading string(v) from left to right.
When we encounter a pair (w, i), we compute (Mw)

i, where Mw is the transition
matrix of A on w. The latter can be done by O(log2 i) matrix multiplications. Using
(Mw)

i, we then replace the current set R by the set of states which are reachable
from a state in R, by reading wi. If, in the end, R ∩ FA is non-empty, we accept.

We now describe this formally. We denote the canonical extension of δ to strings
in Σ∗ by δ∗. Initially, R = IA. We read v from left to right and repeatedly apply the
following rule. When reading (wj , ij), we distinguish two cases:

• ij = 1: We replace R with R′ = {q′ | q′ ∈ δ∗A(q, wi), q ∈ R}. The latter can be
done in time polynomial in the size of v and A in the straightforward manner.

• ij > 1: Let Mw be the k × k matrix such that for all ℓ,m ∈ QA, Mw(ℓ,m) = 1
if m ∈ δ∗A(ℓ, w) and Mw(ℓ,m) = 0, otherwise. Then, we replace R by R′

consisting of those q′ for which q ∈ R and M
ij
w (q, q′) = 1. Notice that Mw

can be computed in time polynomial in the size of v and A. Furthermore, by
applying the method of successive squaring [Sed83], M

ij
w can be computed by

O(log2(ij)) multiplications of k × k-matrices.

Finally, we accept when R ∩ FA is non-empty.

9.2 Decision Problems for DTDs and XML Schemas

As explained in the introduction, an important motivation for this study comes from
reasoning about XML schemas. In this section, we describe how the basic decision
problems for such schemas, namely whether two schemas describe the same set of
documents or whether one describes a subset of the other, basically reduce to the
equivalence and inclusion problem for regular expressions. We also address the prob-
lem whether a set of schemas define a common XML document. In the case of DTDs,
the latter problem again reduces to the corresponding problem for regular expressions;
for XML Schema Definitions (XSDs) it does not.

Remark 9.3. Murata et al. observed that there is a very simple deterministic algo-
rithm to check validity of a tree t with respect to a EDTDst or EDTDrc D [MLMK05].
The extension of this algorithm to EDTDtds is straightforward, as we argue here. It
proceeds top-down and assigns to every node with some symbol a a type ai. To the
root the start symbol of d is assigned; then, for every interior node u with type ai, it
is checked whether the children of u match µ(d(ai)); if not, the tree is rejected; oth-
erwise, as D is top-down deterministic, to each child a unique type can be assigned.
The tree is accepted, if this process terminates at the leaves without any rejection. 3
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Recall the definition of a reduced DTD from page 14. Recall that an EDTD
(Σ,∆, d, sd, µ) is reduced if d is reduced. According to Corollary 3.17, we have that
reducing an EDTD(RE) is in ptime. Unless mentioned otherwise, we assume in the
remainder of this chapter that all DTDs and EDTDs are reduced.

We consider the same decision problems for XML schemas as for regular expres-
sions. Let M be a subclass of the class of DTDs, EDTDs, EDTDsts, EDTDrcs, or
EDTDtds.

• inclusion forM: Given two schemas d, d′ ∈M, is L(d) ⊆ L(d′)?

• equivalence forM: Given two schemas d, d′ ∈ M, is L(d) = L(d′)?

• intersection non-emptiness for M: Given the schemas d1, . . . , dn ∈ M, is
⋂n

i=1 L(di) 6= ∅?

9.2.1 Inclusion and Equivalence of XML Schema Languages

As already mentioned, testing equivalence and inclusion of XML schema languages
is related to testing equivalence and inclusion of regular expressions. It is immediate
that complexity lower bounds for regular expressions imply lower bounds for XML
schema languages. A consequence is that testing equivalence and inclusion of XML
schemas is pspace-hard, which suggests looking for simpler regular expressions.

Interestingly, in the case of the practically important DTDs and single-type EDTDs,
it turns out that the complexities of the equivalence and inclusion problem on strings
also imply upper bounds for the corresponding problems on XML trees.

For a classR of regular expressions, we denote by DTD(R), EDTD(R), EDTDst(R),
EDTDrc(R) and EDTDtd(R), the class of DTDs, EDTDs, EDTDst, EDTDrcs, and
EDTDtds with regular expressions in R.

We call a complexity class C closed under positive reductions if the following holds
for every O ∈ C. Let L′ be accepted by a deterministic polynomial-time Turing ma-
chine M with oracle O (denoted L′ = L(MO)). Let M further have the property
that L(MA) ⊆ L(MB) whenever A ⊆ B. Then L′ is also in C. For a more precise
definition of this notion we refer the reader to [HO02]. For our purposes, it is suffi-
cient that important complexity classes like ptime, np, conp, and pspace have this
property, and that every such class contains ptime.

We now show that deciding inclusion or equivalence for DTDs, EDTDsts,
EDTDrcs or EDTDtds is essentially not harder than deciding inclusion or equiv-

alence for the regular expressions that they use.

Theorem 9.4. Let R be a class of regular expressions and C be a complexity class
which is closed under positive reductions. Then the following are equivalent:

(a) inclusion for R expressions is in C.

(b) inclusion for DTD(R) is in C.

(c) inclusion for EDTDst(R) is in C.
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Moreover, inclusion for EDTDrc(R) or EDTDtd(R) is in C if inclusion for µ(R)
expressions is in C.

The corresponding statements hold for equivalence.

Proof. The implications (c) ⇒ (b) ⇒ (a) are immediate.
We prove that (a) implies (c). Let D1 = (Σ,∆1, d1, sd1 , µ1) and D2 = (Σ,∆2,

d2, sd2 , µ2) be two reduced EDTDtd(R)s. We define a correspondence relation R ⊆
∆1 ×∆2 as follows:

(1) (sd1 , sd2) ∈ R; and,

(2) if (ai, aj) ∈ R, w1b
kv1 ∈ L(d1(a

i)), w2b
ℓv2 ∈ L(d2(a

j)), then (bk, bℓ) ∈ R.

We need the following observation further in the proof. The observation follows
immediately from the single-type deterministic property of D1 and D2 and the fact
that D1 and D2 are reduced.

Observation 9.5. A pair (ai, aj) is in R if and only if there is a tree t with a node
u labeled a, such that:

(1) the algorithm of Remark 9.3 assigns type ai to u with respect to D1; and

(2) the algorithm of Remark 9.3 assigns type aj to u with respect to D2. 3

Notice that we do not require that t matches D1 or D2 overall.
We show that the relation R can be computed in polynomial time in a top-down

manner. To this end, let Aai = (Qai ,∆1, δai , Iai , Fai) andAaj = (Qaj ,∆2, δaj , Iaj , Faj )
be the Glushkov-automata of d1(a

i) and d2(a
j), respectively (see [Glu61, BKW98]).

We now give an nlogspace decision procedure that tests, given (ai, aj) ∈ R and bk, bℓ,
whether there are w1b

kv1 ∈ L(d1(a
i)) and w2b

ℓv2 ∈ L(d2(a
j)) with µ1(w1) = µ2(w2)

and µ1(v1) = µ2(v2). The algorithm guesses the strings w1b
kv1 and w2b

ℓv2 one sym-
bol at a time, while simulating Aai on w1b

kv1 and Aaj on w2b
ℓv2. For both strings,

we only remember the last symbol we guessed. We also only remember one state per
automaton. Initially, this is the start state of Aai and the start state of Aaj . Every
time, after guessing a symbol x1 of w1b

kv1 and a symbol x2 of w2b
ℓv2, we overwrite

the current states q1 ∈ Qai and q2 ∈ Qaj by a state in δai(q1, x1) and δaj (q2, x2), re-
spectively. The algorithm nondeterministically sets a flag on a moment when x1 = bk

and x2 = bℓ. The algorithm is successful when, from the moment that we stop guess-
ing, we are in final states of Aai and Aaj and the flag is set. As we only remember a
flag, two states and two alphabet symbols at the same time, we only use logarithmic
space.

We now show how testing inclusion and equivalence for EDTDsts reduces to
testing inclusion and equivalence for the regular expressions. This follows from
Claim 9.6 below and the closure property of C. The statement for equivalence

follows likewise.

Claim 9.6. With the notation as above, L(D1) is included in (equivalent with) L(D2)
if and only if, for every ai ∈ Σ′1 and aj ∈ Σ′2 with (ai, aj) ∈ R, the regular expression
µ1(d1(a

i)) is included in (equivalent with) µ2(d2(a
j)).
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Proof. inclusion for EDTDrc(R) or EDTDtd(R) is in C if inclusion for µ(R) ex-
pressions is in C. We give a proof for inclusion. equivalence then immediately
follows. We can assume without loss of generality that µ1(sd1) = µ2(sd2).
(⇒) We prove this direction by contraposition. Suppose) that there is a pair (ai, aj) ∈
R for which the regular expression µ1(d1(a

i)) is not included in µ2(d2(a
j)). We then

need to show that L(D1) is not included in L(D2).
Thereto, let w be a counterexample Σ-string in L(µ1(d1(a

i))) − L(µ2(d2(a
j))).

From Observation 9.5, we now know that there exists a tree t ∈ L(D1), with a node
u ∈ Nodes(t), such that the following holds:

• the type assigned to u with respect to D1 is ai;

• the type assigned to u with respect to D2 is aj ; and

• the concatenation of the labels of u’s children is w.

Obviously, t is not in L(D2) as u’s children do not match µ2(d2(a
j)). So, L(D1) is

not included in L(D2).
(⇐) We prove this direction by contraposition. Suppose that L(D1) is not included
in L(D2), so there is a tree t matching D1 but not D2. We need to show that there
is a ai ∈ ∆1 and aj ∈ ∆2, with (ai, aj) ∈ R, such that µ1(d1(a

i)) is not included in
µ2(d2(a

j)).
As t 6∈ L(D2), there is a node to which the algorithm in Remark 9.3 assigns a type

aj of D2, but for which the concatenation of the labels of the children do not match
the regular expression µ2(d2(a

j)). Let u ∈ Nodes(t) be such a node such that no other
node on the path in t from the root to u has this property. Let ai be the type that
the algorithm in Remark 9.3 assigns to u with respect to D1. So, by Observation 9.5,
we have that (ai, aj) ∈ R. Let w be the concatenation of the labels of u’s children.
But as w ∈ L(µ1(d1(a

i))), and w is not in L(µ2(d2(a
j))), we have that µ1(d1(a

i)) is
not included in µ2(d2(a

j)).

Showing that inclusion for EDTDtd(R) is in C if inclusion for µ(R) expressions
is in C is analogous to the above proof. The only difference lies in the definition and
computation of R. Here,

(1) (sd1 , sd2) ∈ R; and,

(2) if (ai, aj) ∈ R, w1b
kv1 ∈ L(d1(a

i)), w2b
ℓv2 ∈ L(d2(a

j)) and µ1(w1) = µ2(w2)
then (bk, bℓ) ∈ R.

To compute R, the algorithm now additionally has to check, after guessing a symbol
x1 of w1b

kv1 and a symbol x2 of w2b
ℓv2, whether µ(x1) = µ(x2). The corresponding

result for EDTDrc(R) also immediately follows.
This concludes the proof of Theorem 9.4

9.2.2 Intersection of DTDs and XML Schemas

We show in this section that the complexity of the intersection non-emptiness

problem for regular expressions is an upper bound for the corresponding problem on
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DTDs. In Theorem 9.8, we show how the intersection non-emptiness problem for
DTDs reduces to testing intersection non-emptiness for the regular expressions
that are used in the DTDs.

Unfortunately, a similar property probably does not hold for the case for single-
type, restrained competition, or top-down deterministic EDTDs, as we show in The-
orem 9.9. Theorem 9.9 shows that there is a class of EDTDsts for which the inter-
section non-emptiness problem is exptime-hard. As the intersection non-emptiness
problem for regular expressions is pspace-complete, the intersection non-emptiness
problem for single-type or restrained competition EDTDs cannot be reduced to the
corresponding problem for regular expressions, unless exptime = pspace.

We start by showing that the intersection non-emptiness problem for DTDs can
be reduced to the corresponding problem for regular expressions. Thereto, let R be a
class of regular expressions. The generalized intersection non-emptiness problem for
R is to determine, given an arbitrary number of expressions r1, . . . , rn ∈ R and a set
S ⊆ Σ, whether

⋂n
i=1 ri ∩ S∗ 6= ∅.

We first show that the intersection non-emptiness problem and the generalized
intersection non-emptiness problem are equally complex.

Lemma 9.7. For a R a class of regular expressions and C a complexity class closed
under positive reductions. The following are equivalent:

(a) The intersection non-emptiness problem for R is in C.

(b) The generalized intersection non-emptiness problem for R is in C.

Proof. We only prove the direction from (a) to (b). Let r1, . . . , rn be regular expres-
sions in R and let S ⊆ Σ. Let r′i be obtained from ri by replacing every occurrence
of a symbol in Σ − S by the regular expression ∅. Then,

⋂n
i=1 r

′
i 6= ∅ if and only if

⋂n
i=1 ri ∩ S∗ 6= ∅.

We are now ready to show the theorem for DTDs.

Theorem 9.8. Let R be a class of regular expressions and let C be a complexity class
which is closed under positive reductions. Then the following are equivalent:

(a) The intersection non-emptiness problem for R expressions is in C.

(b) The intersection non-emptiness problem for DTD(R) is in C.

Proof. We only prove the direction from (a) to (b), as the reverse direction is trivial.
Thereto, let d1, . . . , dn be in DTD(R). We assume without loss of generality that
d1, . . . , dn all have the same start symbol. We compute the set of symbols Si with
the following property:

a ∈ Si if and only if there is a tree of depth at most i

with root labeled a in L((d1, a)) ∩ · · · ∩ L((dn, a)). (∗)

Initially, we set S1 = {a | ε ∈ L(dj(a)) for all j ∈ {1, . . . , n}}. For every i > 1, Si

is the set Si−1 extended with all symbols a for which S∗i−1 ∩ d1(a) ∩ · · · ∩ dn(a) 6= ∅.
Clearly, Sk+1 = Sk for |Σ| = k. It can be shown by a straightforward induction on i
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that (∗) holds. So, there is a tree satisfying all DTDs if and only if the start symbol
belongs to Sk.

It remains to argue that Sk can be computed in C. Clearly, for any set of regular
expressions, it can be checked in ptime whether their intersection accepts ε. So, S1

can be computed in ptime and hence in C. From Lemma 9.7, it follows that Si can be
computed from Si−1 in C. As only k sets need to be computed, the overall algorithm
is in C. This concludes the proof of Theorem 9.8.

The following theorem shows that single-type and restrained competition EDTDs
probably cannot be included in Theorem 9.8. Indeed, by Theorem 9.18, the inter-
section non-emptiness problem for RE((+a), w?, (+a)?, (+a)∗) expressions is in np

and by Theorem 9.9, the intersection non-emptiness problem is already exptime-
complete for single-type EDTDs with RE((+a), w?, (+a)?, (+a)∗) expressions. The
proof of Theorem 9.9 is similar to the proof that intersection non-emptiness of deter-
ministic top-down tree automata is exptime-complete [Sei94]. However, single-type
EDTDs and the latter automata are incomparable. Indeed, the tree language con-
sisting of the trees {a(bc), a(cb)} is not definable by a top-down deterministic tree
automaton, while it is by the EDTD consisting of the rules a1 → b1c1 + c1b1, b1 → ε,
c1 → ε. Conversely, the tree language {a(b(c)b(d))} is not definable by a single-type
EDTD, but is definable by a top-down deterministic tree automaton.

Theorem 9.9. The intersection non-emptiness problem for EDTDst((+a), w?,
(+a)?, (+a)∗) is exptime-hard.

Proof. We use a reduction from Two-Player Corridor Tiling, which is exptime-
hard (Theorem 3.23). LetD = (T,H, V, b̄, t̄, n) be a tiling system with T = {t1, . . . , tk}.
We construct several single-type EDTDs such that their intersection is non-empty if
and only if player Constructor has a winning strategy.

As Σ we take T ∪{#}. We define d0 to be a single-type EDTD defining all possible
strategy trees. Every path in such a tree will encode a tiling. The root is labeled
with #. Inner nodes are labeled with tiles. Nodes occurring on an even depth are
placed by player Constructor and have either no children or have every tile in T
as a child representing every possible answer of Spoiler. Nodes occurring on an odd
depth are placed by player Spoiler and have either no children or precisely one child
representing the choice of Constructor. The start symbol of d0 is #. The EDTD
d0 uses the alphabet Σ′ = {#, error, t11, . . . , t

1
k, t

2
1, . . . , t

2
k}. The rules are as follows:

• #→ (t11 + · · ·+ t1k);

• for every t ∈ T , t1 → (t21 · · · t
2
k)?; and

• for every t ∈ T , t2 → (t11 + · · ·+ t1k + error)?.

Here, a tile with label ti is assigned the type t1i (respectively t2i ) if it corresponds to
a move of player Constructor (respectively Spoiler). We use the special symbol
error to mark that player Spoiler has placed a wrong tile. Notice that b̄ and t̄ are
not present in the tree.

All other single-type EDTDs will check the correct shape of the tree and the
horizontal and vertical constraints.
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First, we make the following observation. Let M = (Q,Σ, δ, {0}, F ) be a DFA
with state set Q = {0, . . . ,m}, with the property that there is an a ∈ Σ such that
every string in L(M) starts with a. Then, a single-type EDTD dM can be constructed
in logspace defining the trees over Σ for which every path from the root to a leaf is
accepted by M . Indeed, we let a0 be the start symbol. Then, for every i, j ∈ Q and
b ∈ Σ for which δ(i, b) = {j}, dM contains the rule bi → (tj1 + · · ·+ tjk +#j)∗ if i ∈ F ,

and bi → (tj1 + · · ·+ tjk +#j)+, otherwise.
Let M1, . . . ,Mℓ be a sequence of DFAs that check the following properties:

• Every string starts with #, has no other occurrences of #, and either (i) ends
with error or (ii) the length of every string is one modulo n. This can be
checked by one automaton.

• All horizontal constraints are satisfied, or player Spoiler places the first tile
which violates the horizontal constraints. This tile is followed by the special
symbol error. This can be checked by one automaton.

• For every position i = 1, . . . , n, all vertical constraints on tiles on a position i
(mod n) are satisfied, or player Spoiler places a the first tile which violates
the vertical constraindt. This tile is followed by the special symbol error. This
can be checked by n automata.

• For every position i = 1, . . . , n, the ith tile of b̄ and the ith tile of the first row
should satisfy the vertical constraints. This can be checked by one automaton.

• For every position i = 1, . . . , n, the ith tile of the last row and the ith tile of t̄
should satisfy the vertical constraints. This can be checked by one automaton.

Clearly, d0∩dM1 ∩· · · ∩dMℓ
is non-empty if and only if player Constructor has

a winning strategy.

9.3 Inclusion

We now turn to the complexity of inclusion, equivalence, and intersection

non-emptiness for the chain regular expressions themselves. We start our investi-
gation with the inclusion problem. As mentioned before, it is pspace-complete for
general regular expressions. The following tractable cases have been identified in the
literature:

• inclusion for RE(a?, (+a)∗) can be solved in linear time. Whether p ⊆
p1 + · · · + pk for p, p1, . . . , pk from RE(a?, (+a)∗) can be checked in quadratic
time [ABJ98].

• In [MS99a] it is stated that inclusion for RE(a,Σ,Σ∗) is in ptime. A proof
can be found in [MS04].

Some of the fragments we defined are so small that one expects their containment
problem to be tractable. Therefore, it comes as a surprise that even for RE(a, a?)
and RE(a, a∗) the inclusion problem is already conp-complete. Even worse, for
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RE(a, (+a)∗) and RE(a, (+a)+) we already obtain the maximum complexity: pspace-
completeness. The pspace-hardness of inclusion of RE(a, (+a)∗) expressions should
be contrasted with the ptime inclusion for RE(a,Σ,Σ∗) obtained in [MS99a], where
disjunctions can only range over the complete alphabet.

Our results, together with corresponding upper bounds are summarized in The-
orem 9.10, which we prove in a series of lemmas (Lemma 9.12–9.15). Let RE(S −
{(+a)∗, (+w)∗, (+a)+, (+w)+}) denote the fragment of RE(S) where no factors of the
form (a1+ · · ·+an)

∗, (w1+ · · ·+wn)
∗, (a1+ · · ·+an)

+ or (w1+ · · ·+wn)
+ are allowed

for n ≥ 2.

Theorem 9.10. (a) inclusion is conp-hard for

(1) RE(a, a∗),

(2) RE(a, a?),

(3) RE(a, (+a+)),

(4) RE(a, w+),

(5) RE(a+, (+a));

(b) inclusion is pspace-hard for

(1) RE(a, (+a)+); and

(2) RE(a, (+a)∗);

(c) inclusion is in conp for RE(S − {(+a)∗, (+w)∗, (+a)+, (+w)+}); and

(d) inclusion is in pspace for RE(S).

Theorem 9.10 does not leave much room for tractable cases. Of course, inclusion
is in ptime for any class of regular expressions for which expressions can be trans-
formed into DFAs in polynomial time. An easy example of such a class is RE(a, a+).

Another example has probably more importance in practice. Often, the same
symbol occurs only a few times in a regular expression of a DTD. As a matter of
fact, if we impose a fixed bound k on the number of such occurrences, then the
containment problem becomes tractable. For every k, let RE≤k denote the class of
all regular expressions where every symbol can occur at most k times.

Theorem 9.11. inclusion for RE≤k is in ptime.

Proof. Let r be an RE≤k expression. Let Ar = (Q,Σ, δ, I, F ) be the Glushkov automa-
ton for r [Glu61] (see also [BKW98]). As the states of this automaton are basically
the positions in r, after reading a symbol there are always at most k possible states
in which the automaton might be. Therefore, determinizing A only leads to a DFA
of size |A|k. As k is fixed, inclusion of such automata is in ptime.

It should be noted though that the upper bound for the running time is O(nk),
therefore k should be very small to be really useful. Fortunately, this seems to be the
case in many practical scenarios. Indeed, recent investigation has pointed out that in
practice, for ninety-nine percent of the regular expressions DTDs or XML Schemas,
k is equal to one [BNST05].

In the rest of this section, we prove Theorem 9.10.
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Lemma 9.12 (Theorem 9.10(a)). inclusion is conp-hard for

(1) RE(a, a∗),

(2) RE(a, a?),

(3) RE(a, (+a+)),

(4) RE(a, w+); and

(5) RE(a+, (+a)).

Proof. We show that for all five cases, there is a logspace reduction from validity

of propositional 3DNF formulas. The validity problem asks, given a propositional
formula Φ in 3DNF with variables {x1, . . . , xn}, whether Φ is true under all truth
assignments for {x1, . . . , xn}. The validity problem for 3DNF formulas is known
to be conp-complete [GJ79]. We note that, for the cases (1–3), we even show that
inclusion is already conp-hard when the expressions use a fixed-size alphabet.

Our proof technique is inspired by a proof of Miklau and Suciu, showing that
the inclusion problem for XPath expressions with predicates, wildcard, and the axes
“child” and “descendant” is conp-hard [MS04]. We present a robust generalization
and use it to show conp-hardness of all five fragments.

We now proceed with the proof. Thereto, let Φ = C1 ∨ · · · ∨Ck be a propositional
formula in 3DNF using variables {x1, . . . , xn}. In the five cases, we construct regular
expressions R1, R2 such that

L(R1) ⊆ L(R2) if and only if Φ is valid.

More specifically, we encode truth assignments for Φ by strings. The basic idea is
to construct R1 and R2 such that L(R1) contains all string representations of truth
assignments and a string w matches R2 if and only if w represents an assignment
which makes Φ true.

We discuss the building blocks of expressions R1 and R2. Let U be a regular
expression describing exactly one string u. In this proof, U is either of the form an or
of the form #ai$ · · · $ai# (n occurrences of ai separated by $) for some integer i. We
construct a regular expression W such that the strings of L(W ) can be interpreted
as truth assignments. More precisely, for each truth assignment A, there is a string
wA ∈ L(W ) and for each string w ∈ L(W ) there is a corresponding truth assignment
Aw. Then we set

R1 = UkWUk,
R2 = NF1 · · ·FkN ,

whereN and Fi, i = 1, . . . , k, are regular expressions for which the following properties
hold:

(i) ui ∈ L(N) for every i = 1, . . . , k.

(ii) If Aw makes Ci true then w ∈ L(Fi). If wA ∈ L(Fi) then A makes Ci true.

(iii) u ∈ L(Fi) for every i = 1, . . . , k.
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(iv) If ukwuk ∈ L(R1) ∩ L(R2), then w matches some Fi.

We first show the following claim:

Claim 9.13. If there are expressions U , W , N , F1, . . . , Fk satisfying (i)–(iv) above,
then

L(R1) ⊆ L(R2) if and only if Φ is valid.

Proof. Suppose that there are expressions U , W , N , F1, . . . , Fk satisfying (i)–(iv).
We prove that L(R1) ⊆ L(R2) if and only if Φ is valid.

(⇒) Assume that L(R1) ⊆ L(R2). Let A be an arbitrary truth assignment for Φ
and let v = ukwAu

k. As v ∈ L(R1) and L(R1) ⊆ L(R2), we also have that v ∈ L(R2).
By (iv), it follows that wA matches some Fi. Hence, by (ii), Ci is made true by A.
Consequently, Φ is also made true by A. As A is an arbitrary truth assignment, we
have that Φ is a valid propositional formula.

(⇐) Suppose that Φ is valid. Let v be an arbitrary string in L(R1). By definition
of R1, v is of the form v = ukwuk, where u is the unique string in L(U). Consider
the truth assigment Aw corresponding to w. As Φ is valid, there is a clause Ci of
Φ that becomes true under Aw. Due to (ii), we have that w ∈ L(Fi). Furthermore,
as u matches Fj for every j = 1, . . . , k (by (iii)), and as L(N) contains uℓ for every
ℓ = 1, . . . , k (by (i)), we have that v = ukwuk ∈ L(R2). As v is an arbitrary string in
L(R1), we have that L(R1) ⊆ L(R2). This completes the proof of the claim.

It remains to construct regular expressions U , W , N , F1, . . . , Fk with the required
properties. In all five cases, we construct these expressions starting from five basic
regular expressions rtrue, rfalse, rtrue,false, rall, and α, which must adhere to the in-
clusion structure graphically represented in Figure 9.1 and formally defined by the
properties (INC1)–(INC5) below. Intuitively, the two dots in Figure 9.1 are strings
ztrue and zfalse, which represent the truth values true and false, respectively. The
expressions rtrue and rfalse are used to match ztrue and zfalse in R2, respectively. The
expression rtrue,false is used to generate the truth values true and false. It will be used
in R1, allowing R1 to generate all truth assignments which must then be matched
in R2. Finally, α and rall are used to ensure that condition (iv) above holds. That
is, they ensure that when L(R1) ⊆ L(R2), every string generated by W must match
some Fi.

In all cases, the expressions rtrue, rfalse, rtrue,false, rall, and α have the properties
(INC1)–(INC5):

α ∈ L(rfalse) ∩ L(rtrue) (INC1)

L(rtrue,false) ⊆ L(rfalse) ∪ L(rtrue) (INC2)

L(rtrue,false) ∪ {α} ⊆ L(rall) (INC3)

ztrue ∈ L(rtrue,false)− L(rfalse) (INC4)

zfalse ∈ L(rtrue,false)− L(rtrue) (INC5)

For the first three fragments, we now define the needed expressions. We deal with
the other two fragments later. Note that the alphabet size is fixed (at most four) in
the reduction for these fragments.
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α

rtrue

ztrue

rall

rfalse

rtrue,false

zfalse

Figure 9.1: Inclusion structure of regular expressions used in conp-hardness of inclu-
sion.

(1) For RE(a, a∗):

• α = a;

• rtrue = aa∗b∗a∗;

• rfalse = b∗a∗;

• rtrue,false = rall = a∗b∗a∗;

• ztrue = ab;

• zfalse = ba;

• U = #α$α$ · · · $α# (n occurrences of α);

• W = #rtrue,false$ · · · $rtrue,false# (n occurrences of rtrue,false); and

• N = (#∗a∗$∗a∗$∗ · · · $∗a∗#∗)k (n occurrences of a∗ in each of the k copies);

(2) For RE(a, a?):

• α = a;

• rtrue = aa?;

• rfalse = a?;

• rtrue,false = rall = a?a?;

• ztrue = aa;

• zfalse = ε;

• U = #α$α$ · · · $α# (n occurrences of α);

• W = #rtrue,false$ · · · $rtrue,false# (n occurrences of rtrue,false); and

• N = (#?a?$?a?$? · · · $?a?#?)k (n occurrences of a? in each of the k copies)

(3) For RE(a, w+):

• α = aaaa;

• rtrue = a+(aa)+;
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• rfalse = (aa)+;

• rtrue,false = aa+;

• rall = a+;

• ztrue = aaa;

• zfalse = aa;

• U = #α$α$ · · · $α# (n occurrences of α);

• W = #rtrue,false$ · · · $rtrue,false# (n occurrences of rtrue,false); and

• N = (#aaaa$aaaa$ · · ·$aaaa#)+ (n occurrences of aaaa)

It is straighforward to verify that the conditions (INC1)–(INC5) are fulfilled for each
of the fragments.

With w = #w1$ · · · $wn# ∈ L(W ) we associate a truth assignment Aw as follows:

Aw(xj) :=

{

true, if wj ∈ L(rtrue);

false, otherwise.

Let zfalse ∈ L(rtrue,false)− L(rtrue) and ztrue ∈ L(rtrue,false)− L(rfalse). They exist by
conditions (INC4) and (INC5). For a truth assignment A, let

wA = #w1$ · · · $wn#,

where, for each j = 1, . . . , n, wj = ztrue if A(xj) = true and wj = zfalse, otherwise.
For each i = 1, . . . , k, we set

Fi = #e1$ · · · $en#,

where for each j = 1, . . . , n,

ej :=







rfalse, if xj occurs negated in Ci,

rtrue, if xj does not occur negated in Ci, and

rall, otherwise.

It remains to show that, for each of the fragments, conditions (i)–(iv) hold:

(i) Trivial.

(ii) Let w = #w1$ · · · $wn# ∈ W be a string for which Aw makes Ci true and let
Fi = #e1$ · · · $en# be as defined above. We need to show that w ∈ L(Fi).
Thereto, let j ≤ n be an arbitrary positive integer. We need to consider three
cases:

1. If xj does not occur in Ci then ej = rall, by definition of ej . Hence, as
wj ∈ L(rtrue,false), and by condition (INC3), we have that wj ∈ L(ej).

2. If xj occurs positively, then ej = rtrue, by definition of ej . As Aw makes
Ci true, we know that Aw(xj) = true. By definition of Aw, we know that
wj ∈ L(rtrue) = L(ej).



9.3. Inclusion 155

3. If xj occurs negatively, then ej = rfalse, by definition of ej . As Aw makes Ci

true, we know that Aw(xj) = false. As wj ∈ rtrue,false and wj 6∈ L(rtrue) by
definition of Aw(xj), condition (INC2) gives that wj ∈ L(rfalse) = L(ej).

As j ≤ n is an arbitrarily chosen positive integer, we have that for each j =
1, . . . , n, wj ∈ L(ej). Consequently, we also have that w ∈ L(Fi).

We show the other statement by contraposition. Thereto, let A be a truth
assignment such that Ci is a clause not fulfilled by A. We need to show that
wA 6∈ L(Fi). We need to consider two cases:

1. Suppose there exists an xj which occurs positively in Ci and A(xj) is false.
By definition of Fi, the ej component of Fi is r

true and, by definition of wA,
the wj component of wA is zfalse 6∈ L(rtrue). Hence, wA 6∈ L(Fi).

2. Otherwise, there exists an xj which occurs negatively in Ci and A(xj) is true.
By definition of Fi, the ej component of Fi is r

false and, by definition of wA,
the wj component of wA is ztrue 6∈ L(rfalse). Hence, wA 6∈ L(Fi).

(iii) This follows immediately from conditions (INC1), (INC3), and the definition of
Fi.

(iv) Suppose that ukwuk ∈ L(R1) ∩ L(R2). We need to show that w matches some
Fi. Observe that the strings u, w, and every string in every L(Fi) is of the
form #y# where y is a non-empty string over the alphabet {a, b, $}. Also, every
string in L(N) is of the form #y1##y2# · · ·#yℓ#, where y1, . . . , yℓ are non-
empty strings over {a, $}. Hence, as ukwuk ∈ L(R2) and as none of the strings
y, y1, . . . , yℓ contain the symbol “#”, we have that w either matches some Fi or
w matches a sub-expression of N .

We now distinguish between fragments (1–2) and fragment (3). Let m be a
match between ukwuk and R2.

• In fragments (1–2) we have that ℓ ≤ k. Towards a contradiction, assume
thatmmatches a superstring of ukw to the left occurrence ofN in R2. Note
that ukw is a string of the form #y′1##y′2# · · ·#y′k+1#, where y′1, . . . , y

′
k+1

are non-empty strings over {a, b, $}. But as ℓ ≤ k, no superstring of ukw
can match N , which is a contradiction. Analogously, no superstring of wuk

matches the right occurrence of the expression N in R2. So, m must match
w onto some Fi.

• In fragment (3), we have that ℓ ≥ 1. Again, towards a contradiction,
assume that m matches a superstring of ukw onto the left occurrence of the
expresion N in R2. Observe that every string that matches F1 · · ·FkN is of
the form #y′′1##y′′2# · · ·#y′′ℓ′#, where ℓ′ > k. As uk is not of this form, m
cannot match uk onto F1 · · ·FkN , which is a contradiction. Analogously,
m cannot match a superstring of wuk onto the right occurrence of the
expression N in R2. So, m must match w onto some Fi.

This proves Lemma 9.12 for fragments (1)–(3).
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We still need to deal with the fragments (4) and (5). The main difference with the
fragments (1)–(3) is that we will no longer use an alphabet with fixed size. Instead, we
use the symbols bj and cj , for j = 1, . . . , n. Instead of the basic regular expressions

rtrue, rfalse, rtrue,false, and rall, we will now have expressions rtruej , rfalsej , rtrue,falsej ,

and rallj for every j = 1, . . . , n. We will require that these expressions have the same

properties (INC1)–(INC5), but only between the expressions rtruej , rfalsej , rtrue,falsej ,

and rallj with the same index j, and α.
The needed regular expressions are then defined as follows:

(4) For RE(a, (+a+)):

• α = a;

• rtruej = (a+ + b+j );

• rfalsej = (a+ + c+j );

• rtrue,falsej = (b+j + c+j );

• rallj = (a+ + b+j + c+j );

• ztruej = bj ;

• zfalsej = cj ;

• U = αn;

• W = rtrue,false1 · · · rtrue,falsen ; and

• N = a+

(5) For RE(a+, (+a)):

• α = a;

• rtruej = (a+ bj);

• rfalsej = (a+ cj);

• rtrue,falsej = (bj + cj);

• rallj = (a+ bj + cj);

• ztruej = bj ;

• zfalsej = cj ;

• U = αn;

• W = rtrue,false1 · · · rtrue,falsen ; and

• N = a+

With w = w1 · · ·wn ∈ L(W ), where for every j = 1, . . . , n, wj ∈ rtrue,falsej , we
associate a truth assignment Aw as follows:

Aw(xj) :=

{

true, if wj ∈ L(rtrue);

false, otherwise.
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Let zfalsej ∈ L(rtrue,falsej )− L(rtruej ) and ztruej ∈ L(rtrue,falsej )− L(rfalsej ). They exist by
conditions (INC4) and (INC5). For a truth assignment A, let

wA = w1 · · ·wn,

where, for each j = 1, . . . , n, wj = ztruej if A(xj) = true and wj = zfalsej , otherwise.
For each i = 1, . . . , k, we set

Fi = e1 · · · en,

where for each j = 1, . . . , n,

ej :=







rfalsej , if xj occurs negated in Ci,

rtruej , if xj does not occur negated in Ci, and

rallj , otherwise.

We show that, for fragments (4) and (5), conditions (i)–(iv) hold:

(i) Trivial.

(ii) This can be shown analogously as for the fragments (1)–(3).

(iii) This follows immediately from conditions (INC1), (INC3), and the definition of
Fi.

(iv) Suppose that ukwuk ∈ L(R1)∩L(R2). We need to show that w matches some Fi.
To this end, let m be a match between ukwuk and R2. For every j = 1, . . . , n,
let Σj denote the set {bj, cj}. Observe that the string w is of the form y1 · · · yn,
where, for every j = 1, . . . , n, yj is a string in Σ+

j . Moreover, no strings in L(N)
contain symbols from Σj for any j = 1, . . . , n. Hence, m cannot match any
symbol of the string w onto N . Consequently, m matches the entire string w
onto a subexpression of F1 · · ·Fk in R2.

Further, observe that every string in every Fi, i = 1, . . . , k, is of the form
y′1 . . . y

′
n, where each y′j is a string in (Σj ∪{a})+. As m can only match symbols

in Σj onto subexpressions with symbols in Σj , m matches w onto some Fi.

This concludes the proof of Lemma 9.12.

We prove Theorem 9.10(b) by a reduction fromCorridor Tiling (Theorem 3.23).

Lemma 9.14 (Theorem 9.10(b)). inclusion is pspace-hard for

(1) RE(a, (+a)+); and

(2) RE(a, (+a)∗).

Proof. We first show that inclusion is pspace-hard for RE(a, (+a)+) and we con-
sider the case of RE(a, (+a)∗) later. In both cases, we use a reduction from the
Corridor Tiling problem, which is known to be pspace-complete (Theorem 3.23).
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To this end, let D = (T,H, V, b̄, t̄, n) be a tiling system. Without loss of generality,
we assume that n ≥ 2. We construct two regular expressions R1 and R2 such that

R1 ⊆ R2 if and only if there exists no correct corridor tiling for D.

Let Σi = {ti | t ∈ T }, which is the alphabet we will use to tile the i-th column. Set
Σ =

⋃n
i=1 Σi. For ease of exposition, we denote Σ∪{$} by Σ$ and Σ∪{#, $} by Σ#,$.

We encode candidates for a correct tiling by a string in which the rows are separated
by the symbol $, that is, by strings of the form

$b̄$Σ+$Σ+$ · · · $Σ+$t̄$. (†)

The following regular expressions detect strings of this form which do not encode a
correct tiling:

• Σ+
$ tit

′
jΣ

+
$ , for every t, t′ ∈ T , where i = 1, . . . , n − 1 and j 6= i + 1. These

expressions detect consecutive symbols that are not from consecutive column
sets;

• Σ+
$ $tiΣ

+
$ for every i 6= 1 and ti ∈ Σi, and Σ+

$ ti$Σ
+
$ for every i 6= n and ti ∈ Σi.

These expressions detect rows that do not start or end with a correct symbol.
Together with the previous expressions, these expressions detect all candidates
with at least one row not in Σ1 · · ·Σn.

• Σ+
$ tit

′
i+1Σ

+
$ , for every (t, t′) 6∈ H , and i = 1, . . . , n−1. These expressions detect

all violations of horizontal constraints.

• Σ+
$ tiΣ

+$Σ+t′iΣ
+
$ , for every (t, t′) 6∈ Σ and for every i = 1, . . . , n. These expres-

sions detect all violations of vertical constraints.

Let e1, . . . , ek be an enumeration of the above expressions. Notice that k = O(|D|4).

It is straightforward that a string w in (†) does not match
⋃k

i=1 ei if and only if w
encodes a correct tiling.

Let e = e1 · · · ek. Because of leading and trailing Σ+
$ expressions, L(e) ⊆ L(ei),

for every i = 1, . . . , k. We are now ready to define R1 and R2:

R1 =

k times e
︷ ︸︸ ︷

#e#e# · · ·#e#$b̄$Σ+
$ $t̄$

k times e
︷ ︸︸ ︷

#e#e# · · ·#e#; and,

R2 = Σ+
#,$#e1#e2# · · ·#ek#Σ+

#,$.

Notice that both R1 and R2 are in RE(a, (+a)+) and can be constructed in poly-
nomial time. It remains to show that R1 ⊆ R2 if and only if there is no correct tiling
for D.

We first show the implication from left to right. Thereto, let R1 ⊆ R2. Let uwu
′ be

an arbitrary string in L(R1) such that u, u′ ∈ L(#e#e# · · ·#e#) and w ∈ $b̄$Σ+
$ $t̄$.

Hence, uwu′ ∈ L(R2). Let m be a match between uwu′ and R2. Notice that uwu′

contains 2k + 2 times the symbol “#”. However, as uwu′ starts and ends with
the symbol “#”, m matches the first and the last “#” of uwu′ onto the Σ+

#,$ sub-

expressions of R2 (‡). This means that m matches k + 1 consecutive #-symbols
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of the remaining 2k #-symbols in uwu′ onto the #-symbols in #e1#e2# · · ·#ek#.
Hence, m matches w onto some ei. So, w does not encode a correct tiling. As the
sub-expression $b̄$Σ+

$ $t̄$ of R1 defines all candidate tilings, the system D has no
solution.

To show the implication from right to left, assume that there is a string uwu′ ∈
L(R1) that is not in R2, where u, u′ ∈ L(#e#e# · · ·#e#). Then w 6∈

⋃k
i=1 L(ei)

and, hence, w encodes a correct tiling.
The pspace-hardness proof for RE(a, (+a)∗) is completely analogous, except that

every “+” (which is not a disjunction) has to be replaced by a “∗” and that R2 =
#Σ∗#,$#e1#e2# · · ·#ek#Σ∗#,$#. The addition of the start and end symbol “#” is

to enforce the condition (‡) above.

Lemma 9.15 (Theorem 9.10(c)). inclusion is in conp for

RE(S − {(+a)∗, (+w)∗, (+a)+, (+w)+}).

Proof. Let r1, r2 be expressions in RE(S−{(+a)∗, (+w)∗, (+a)+, (+w)+}). By trans-
lating the regular expressions to NFAs and determinizing them, it is easy to see that
when r1 6⊆ r2, there is a counterexample string s of at most exponential size in
|r1|+ |r2|, such that s ∈ L(r1) but s 6∈ L(r2). Let Nr1,r2 denote this size.

Because of the restricted form of r1, it is possible to encode s as a compressed
string s′ of size polynomial in |r1|+ |r2|. Indeed, r1 is of the form e1 · · · en where each
ei is of the form (w1+ · · ·+wk), (w1+ · · ·+wk)?, (w

∗
1 + · · ·+w∗k) or (w

+
1 + · · ·+w+

k ),
for k ≥ 1 and w1, . . . , wk ∈ Σ+. Hence, s can be written as s1 · · · sn, where each
si matches ei. Unless ei is of the form (w∗1 + · · · + w∗k) or (w+

1 + · · · + w+
k ), si is

of small size, that is, smaller than or equal to |r1|. However, if ei is of the form
(w∗1 + · · · + w∗k) or (w+

1 + · · · + w+
k ), then si = wℓ

j , for some j, ℓ where ℓ ≤ Nr1,r2 .
So, the binary representation of ℓ has polynomial length in |r1| + |r2|. We therefore
represent si by the pair (wj , ℓ). In all other cases, |si| ≤ |ei| and we represent si
simply by (si, 1). So, it suffices to guess for every ei a pair (wi, ℓ) where wi occurs in
ei and ℓ ≤ Nr1,r2 . According to Lemma 9.2, we can verify in polynomial time in the
size of the compressed string s′ that s′ 6∈ L(r2). This concludes the proof of (c).

Notice that, in the proof of Lemma 9.15, we actually did not make use of the re-
stricted structure of the expression r2. We can therefore state the following corollary:

Corollary 9.16. Let r1 be an RE(S−{(+a)∗, (+w)∗, (+a)+, (+w)+}) expression and
let r2 be an arbitrary regular expression. Then, deciding whether L(r1) ⊆ L(r2) is in
conp.

Theorem 9.10(d) holds as the containment problem for arbitrary regular expres-
sions is in pspace. This concludes the proof of Theorem 9.10.

9.4 Equivalence

In the present section, we merely initiate the research on the equivalence of chain
regular expressions. Of course, upper bounds for inclusion imply upper bounds for
equivalence, but testing equivalence can be simpler. We show that the problem
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is in ptime for RE(a, a?) and RE(a, a∗, a+) by showing that such expressions are
equivalent if and only if they have a corresponding sequence normal form (defined
below). We conjecture that equivalence remains tractable for larger fragments, or
even the full fragment of chain regular expressions. However, showing that equiv-

alence is in ptime is already non-trivial for RE(a, a?) and RE(a, a∗, a+) expressions.
We now define the required normal form for RE(a, a?) and RE(a, a∗, a+) ex-

pressions. To this end, let r = r1 · · · rn be a chain regular expression with factors
r1, . . . , rn. The sequence normal form of r is obtained in the following way. First, we
replace every factor of the form

• s by s[1, 1];

• s? by s[0, 1];

• s∗ by s[0, ∗]; and,

• s+ by s[1, ∗],

where s is an alphabet symbol. We call s the base symbol of the factor s[i, j]. Then,
we replace successive subexpressions s[i1, j1] and s[i2, j2] with the same base symbol
s by

• s[i1 + i2, j2 + j2] when j1 and j2 are integers; and by

• s[i1 + i2, ∗] when j1 = ∗ or j2 = ∗,

until no such replacements can be made anymore. For instance, the sequence normal
form of aa?aa?b∗bb?b∗ is a[2, 4]b[1, ∗]. When r′ is the sequence normal form of a chain
regular expression, and s[i, j] is a subexpression of r′, then we call e[i, j] a factor of
r′.

Unfortunately, there are equivalent RE(a, a∗) expressions that do not share the
same sequence normal form. For instance, the regular expressions

r1(a, b) = a[i, ∗]b[0, ∗]a[0, ∗]b[1, ∗]a[l, ∗]

and

r2(a, b) = a[i, ∗]b[1, ∗]a[0, ∗]b[0, ∗]a[l, ∗]

are equivalent but have different sequence normal forms. So, whenever an expression
of the form r1(a, b) occurs, it can be replaced by r2(a, b). The strong sequence normal
form of an expression r is the expression r′ obtained by applying this rule as often as
possible. It is easy to see that r′ is unique.

We extend the notion of a match between a string and a regular expression in the
obvious way to expressions in (strong) sequence normal form.

Theorem 9.17. equivalence is in ptime for

(1) RE(a, a?), and

(2) RE(a, a∗, a+).
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Proof. We prove that, for both fragments, two expressions are equivalent only if they
have the same strong sequence normal form.

We introduce some notions. If f is an expression of the form e[i, j], we write
base(f) for e, upp(f) for the upper bound j and low(f) for the lower bound i. If
r = r1 · · · rn is an expression in sequence normal form, we write max(r) for the
maximum upper bound in r different from ∗, that is, for max{upp(ri) | upp(ri) 6= ∗}.
Finally, we call a substring v of a string w a block of w when w is of the form ak1

1 · · · a
kn
n ,

where for each i = 1, . . . , n− 1, ai 6= ai+1 and v is of the form aki

i for some i.
In the following, we prove that if two expressions r and s from one of the two

stated fragments are equivalent, their strong sequence normal forms r′ and s′ are
equal. The proof is a case study which eliminates one by one all differences between
the strong normal forms of the two equivalent expressions.

Therefore, let r and s be two equivalent expressions and let r′ = r1 · · · rn and
s′ = s1 · · · sm be the strong sequence normal form of r and s, respectively. We
assume that every r1, . . . , rn and s1, . . . , sm is of the form e[i, j]. Let k := 1 +
max(max(r′),max(s′)), that is, k is larger than any upper bound in r′ and s′ different
from ∗.

We first show that m = n and that, for every i = 1, . . . , n, base(ri) = base(si).
Thereto, let vmax = vmax

1 · · · vmax
n , where, for every i = 1, . . . , n,

vmax
i =

{

base(ri)
k if upp(ri) = ∗,

base(ri)
upp(ri) otherwise.

Obviously, vmax is an element of L(r). Hence, by our assumption that r is equivalent
to s, we also have that vmax ∈ L(s). As vmax contains n blocks, s′ must have at least
n factors, so m ≥ n. Correspondingly, we define the string wmax = wmax

1 · · ·wmax
m ,

where, for every j = 1, . . . ,m,

wmax
j =

{

base(sj)
k if upp(sj) = ∗,

base(sj)
upp(sj) otherwise.

As wmax has to match r, we can conclude that r′ has at least m factors, so n ≥
m. Hence, we obtain that m = n. Furthermore, for each i = 1, . . . , n, it follows
immediately that base(ri) = base(si).

We now show that, for every i = 1, . . . , n, upp(ri) = upp(si). If, for some i,
upp(ri) = ∗ then vmax

i has to be matched in s′ by a factor with upper bound ∗.
The analogous statement holds if upp(si) = ∗. Hence, upp(ri) = ∗ if and only if
upp(si) = ∗. Finally, we similarly get that upp(ri) = upp(si) for factors ri, si with
upp(ri) 6= ∗ and upp(si) 6= ∗.

It only remains to show for each i = 1, . . . , n, that we also have that low(ri) =
low(si). By considering the string v

min = vmin
1 · · · vmin

n , where each vmin
i = base(ri)

low(ri)

and its counterpart wmin = wmin
1 · · ·wmin

n , where each wmin
i = base(si)

low(si), it is im-
mediate that the sequence of non-zero lower bounds is the same in r′ and s′.

For the sake of a contradiction, let us now assume that there exists an imin ∈
{1, . . . , n} with low(rimin) < low(simin) and imin is minimal with this property. We
consider two cases:
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1) If low(rimin) > 0, we define the string v′ by replacing vmax
imin

in the string vmax by

base(rimin)
low(rimin

). As low(simin) > low(rimin) this string can not be matched by
s′. Indeed, as v′ has n blocks, the only possible match for s′ would match the
imin-th block base(rimin)

low(rimin
) onto simin . As this would mean that r is not

equivalent to s, this gives the desired contradiction.

2) In the second case, assume that 0 = low(rimin) < low(simin). If low(simin) ≥ 2, then
the string resulting from wmax by replacing wmax

imin
by the single symbol base(rimin)

matches r′ but does not match s′, which again contradicts that r is equivalent to
s.

The only remaining case is that 0 = low(rimin) < low(simin) = 1.

• If imin = 1, then the string vmax
2 · · · vmax

n does not match s′, as the string
starts with the wrong symbol. However, the string matches r′, which is a
contradiction.

• If imin = n, then the string vmax
1 · · · vmax

n−1 does not match s′, as the string
ends with the wrong symbol. However, the string matches r′, which is a
contradiction.

Hence, we know that 1 < imin < n.

Let x be the string vmax
1 · · · vmax

imin−1
vmax
imin+1 · · · v

max
n which matches r′ and therefore

also matches s′. If base(rimin−1) 6= base(rimin+1), then x has n− 1 blocks. Recall
that for every j = 1, . . . , n, base(rj) = base(sj). As base(simin) 6= base(simin+1)
and base(simin) 6= base(simin−1), simin can only match vmax

j , for some j > imin + 1
or j < imin−1. But then all the blocks before vmax

j or after vmax
j (which are at least

imin or n− imin+1 blocks, respectively) must match s1 · · · simin−1 or simin+1 · · · sn,
respectively, which is impossible.

We are left with the case where base(rimin−1) = base(rimin+1).

(a) If r and s are from RE(a, a?) then neither simin−1 nor simin+1 matches the
string vmax

imin−1
vmax
imin+1 as this string has length upp(rimin−1) + upp(rimin+1) =

upp(simin−1)+upp(simin+1), which is more than max(upp(simin−1), upp(simin+1)).
As this would mean again that simin can only match vmax

j , for some j > imin+1
or j < imin − 1, we again have that s can not match x, a contradiction.

(b) Now let r and s be from RE(a, a∗). Let jmin > imin be minimal such that
low(rjmin) 6= 0. As we already obtained that the sequence of non-zero lower
bounds is the same in r′ and s′, such a jmin must exist and base(rjmin) =
base(rimin) = base(simin). Let b be the symbol base(rjmin) = base(rimin) and
let a be the symbol base(rimin−1) = base(rimin+1). Notice that a 6= b.

Our goal is to get a contradiction by showing that r′ is not the strong sequence
normal form of r. On our way we have to deal with a couple of other possible
cases.

Assume that there is some ℓ, imin < ℓ < jmin, with a 6= base(rℓ) 6= b. Let
ℓ′ < imin be maximal such that a 6= base(rℓ′ ) 6= b. If there is no such ℓ′, we
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imin

imin

ℓ′ ℓ jmin n

n

r′ :

s′ :

Index such that a 6= base(rℓ) 6= b

Smallest index jmin > imin such that low(rjmin
) > 0

Smallest index such that low(rimin
) < low(simin

)

Largest index ℓ′ < imin such that a 6= base(rℓ′) 6= b

Figure 9.2: Graphical representation of several indices defined in the proof of Theo-
rem 9.17

set ℓ′ = 0. We present the ordering of the defined indices imin, jmin, ℓ
′, and ℓ

in Figure 9.2 Let, for each d = 1, . . . , n, x′d be defined by

x′d =

{

base(rd)
1 if low(rd) = 0,

base(rd)
low(rd) otherwise.

Let x′ = x′1 · · ·x
′
ℓ′v

min
ℓ′+1 · · · v

min
ℓ−1x

′
ℓ · · ·x

′
n. Notice that the string vmin

ℓ′+1 · · · v
min
ℓ−1

is non-empty. As x′ matches r, x′ also matches s. Note that, in this match,
x′ℓ′ has to be matched by sℓ′ , because the string x′1 · · ·x

′
ℓ′ contains ℓ′ blocks.

Analogously, x′ℓ has to be matched by sℓ because x′ℓ · · ·x
′
n contains n− ℓ+ 1

blocks.

As imin is minimal such that low(rimin) < low(simin) and as there are no factors
f in rimin · · · rℓ with low(f) > 0, we know that the number of factors f in
sℓ′+1 · · · sℓ−1 with base(f) = b and low(f) > 0 is larger than the number
of such factors in rℓ′+1 · · · rℓ−1. Hence, the number of b’s in x′ between x′ℓ′
and x′ℓ is smaller than the sum of the numbers low(f) over the factors f in
sℓ′+1 · · · sℓ−1 with base(f) = b. This contradicts the fact that x′ matches s.

We can conclude that there is no such ℓ, that is, all factors between position
imin and jmin have symbol a or b.

Let us consider next the possibility that the symbol base(rjmin+1) exists and
is different from a and b, say base(rjmin+1) = c. If low(sjmin) = 0 then the
string x′1 · · ·x

′
jmin−1x

′
jmin+1 · · ·x

′
n (consisting of n − 1 blocks, as c is differ-

ent from a or b) matches s but not r. This contradicts that r and s are
equivalent. Let ℓ′ be defined as before. If low(sjmin) = 1 then the string
x′1 · · ·x

′
ℓ′v

min
ℓ′+1 · · · v

min
jmin

x′jmin+1 · · ·x
′
n matches r but not s (as it has too few bs

between ℓ′ and jmin). An analogous reasoning also works if jmin = n.

We still need to deal with the case where base(rjmin+1) = a. Hence, between
position imin − 1 and jmin + 1, r′ consists of a sequence of factors f which
alternate between base(f) = a and base(f) = b, and ends with the factor



164 XML Schemas and Chain Regular Expressions

rjmin+1 for which base(rjmin+1) = a. Furthermore, all these factors, besides
rjmin and rjmin+1 have low(f) = 0, and low(rjmin) = 1. It follows immediately
that r′ is not the sequence normal form of r as it contains a subsequence of
the form a[i, ∗]b[0, ∗]a[0, ∗]b[1, ∗]a[l, ∗].

9.5 Intersection

For arbitrary regular expressions, intersection non-emptiness is pspace-complete.
We show that the problem is np-hard for the same seemingly innocent fragments
RE(a, a∗), RE(a, a?), RE(a, (+a+)) and RE(a+, (+a)) already studied in Section 9.3.
By RE(S − {(+w)∗, (+w)+}), we denote the fragment of RE(S) where no factor can
be of the form (w1+· · ·+wn)

∗ or (w1+· · ·+wn)
+ with n ≥ 2 and the length of at least

one wi larger than two; so, factors of the form (a1+ · · ·+an)
∗ and (a1+ · · ·+an)

+ are
allowed. For the latter fragment, we obtain a matching np-upper bound. intersec-
tion non-emptiness is already pspace-hard for RE(a, (+w)∗) and RE(a, (+w)+)
expressions. This follows from a proof of Bala, who showed that it is pspace-hard
to decide whether the intersection of an arbitrary number of RE((+w)∗) expressions
contains a non-empty string [Bal02]. The precise complexity of RE(a, w+) remains
open. These results are summarized in the following theorem:

Theorem 9.18. (a) intersection non-emptiness is np-hard for

(1) RE(a, a∗);

(2) RE(a, a?);

(3) RE(a, (+a+));

(4) RE(a, (+a)+); and

(5) RE(a+, (+a));

(b) intersection non-emptiness is in np for RE(S − {(+w)∗, (+w)+});

(c) intersection non-emptiness is pspace-hard for

(1) RE(a, (+w)∗); and

(2) RE(a, (+w)∗); and,

(d) intersection non-emptiness is in pspace for RE(S).

As in Section 9.3, we split the proof of Theorem 9.18 into a series of lemmas to
improve readability.

Lemma 9.19 (Theorem 9.18(a)). intersection non-emptiness is np-hard for

(1) RE(a, a∗);

(2) RE(a, a?);

(3) RE(a, (+a+));

(4) RE(a, (+a)+); and
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(5) RE(a+, (+a)).

Proof. The proof is along the same lines as the proof of Lemma 9.12. In all five cases,
it is a logspace reduction from satisfiability of propositional 3CNF formulas.
The satisfiability problem asks, given a propositional formula Φ in 3CNF with
variables {x1, . . . , xn}, whether there exists a truth assignment of {x1, . . . , xn} for
which Φ is true. The satisfiability problem for 3CNF formulas is known to be np-
complete [GJ79]. We note that, for the cases (1)–(3), intersection non-emptiness

is already np hard when the expressions use a fixed-size alphabet.
Let Φ = C1 ∧ · · · ∧ Ck be a 3CNF formula using variables {x1, . . . , xn}. Let, for

each i, Ci = Li,1 ∨ Li,2 ∨ Li,3 be the ith clause with three literals. Our goal is to
construct regular expressions R1, . . . , Rk and S1, S2 such that

L(R1) ∩ · · · ∩ L(Rk) ∩ L(S1) ∩ L(S2) 6= ∅ if and only if Φ is satisfiable.

Analogously as in the proof of Lemma 9.12, we encode truth assignments for Φ by
strings. We construct S1 and S2 such that L(S1∩S2) contains all such string represen-
tations w of truth assignments and a string w matches Ri if and only if w represents
an assignment which makes Ci true.

We discuss the building blocks of these regular expressions. We make use of a
regular expression U describing exactly one string u: U will either be of the form an

or of the form #ai$ · · · $ai# (n occurrences of ai separated by $) for some integer i.
We define expressions W1 and W2 such that each string w in L(W1) ∩ L(W2) can be
interpreted as a truth assignment. More precisely, for each truth assignment A there
is a string wA ∈ L(W1) ∩ L(W2) and for each string w ∈ L(W1) ∩ L(W2) there is a
corresponding truth assignment Aw.

We set

S1 = U3W1U
3,

S2 = U3W2U
3, and

Ri = NFi,1Fi,2Fi,3N,

for i = 1, . . . , k, where N and Fi,1, . . . , Fi,3 are regular expressions for which the
following properties hold:

(i’) u, u2, and u3 ∈ L(N).

(ii’) If A makes Li,j true then wA ∈ L(Fi,j) ∩ L(W1) ∩ L(W2). If w ∈ L(Fi,j) ∩
L(W1) ∩ L(W2) then Aw makes Li,j true.

(iii’) u ∈ L(Fi,j) for every i = 1, . . . , k and j = 1, 2, 3.

(iv’) If u3wu3 ∈ L(S1) ∩ L(S2) ∩ L(R1) ∩ · · · ∩ L(Rk), then w matches some Fi,ji in
every Ri.

We claim the following:

Claim 9.20. If there are expressions U , W1, W2, N , F1,1, F1,2, F1,3, F2,1, . . . , Fk,1,
Fk,2, Fk,3 satisfying (i’)–(iv’) above, then

L(S1) ∩ L(S2) ∩ L(R1) ∩ · · · ∩ L(Rk) 6= ∅ if and only if Φ is satisfiable.
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α
ztrue

rfalse
zfalse

rtrue

rtrue,false
rall

Figure 9.3: Inclusion structure of regular expressions used in np-hardness of inter-
section non-emptiness.

Proof. Suppose there are expressions U , W1, W2, N , F1,1, F1,2, F1,3, F2,1, . . . , Fk−1,3,
Fk,1, Fk,2, Fk,3 satisfying (i’)–(iv’). We prove that L(S1)∩L(S2)∩L(R1)∩· · ·∩L(Rk) 6=
∅ if and only if Φ is satisfiable.

(⇒) Assume that S1 ∩ S2 ∩
⋂k

i=1 Ri 6= ∅. Hence, there exists a string v = u3wu3

in S1 ∩S2 ∩
⋂k

i=1 Ri, where u is the unique string in L(U). By (iv’), w matches some
Fi,ji in every Ri. By (ii’), Aw makes Li,ji true for every i = 1, . . . , k. Hence, Φ is
true under truth assignment Aw, so Φ is satisfiable.

(⇐) Suppose now that Φ is true under some truth assignment A. Hence, for every
i, some Li,ji becomes true under A and therefore wA ∈ L(Fi,ji ) by (ii’). As u, u2,
and u3 are in L(N) by (i’) and as u is in each L(Fi,j) by (iii’), we get that the string
u3wAu

3 is in L(S1) ∩ L(S2) ∩ L(R1) ∩ · · · ∩ L(Rk). This completes the proof of the
claim.

It remains to construct the regular expressions with the required properties. As
in the proof of Lemma 9.12, we construct these expressions starting from five ba-
sic regular expressions rtrue, rfalse, rtrue,false, rall, and α, which must adhere to the
inclusion structure as shown in Figure 9.3 and formally defined by the properties
(INT1)–(INT4) below. The two dots in Figure 9.3 denote the strings ztrue and zfalse,
which represent the truth values true and false, respectively. The expressions rtrue and
rfalse are used to match ztrue and zfalse, respectively, in the expressions R1, . . . , Rk.
The expression rtrue,false is used to generate the truth values true and false. It will
be defined as the intersection of two expressions in S1 and S2 and will be used to
generate all truth assignments which must then be matched in R1, . . . , Rk. Finally, α
and rall are used to ensure that condition (iv’) above holds. That is, they ensure that
when u3wu3 ∈ L(S1) ∩ L(S2) ∩ L(R1) ∩ · · · ∩ L(Rk), w matches some Fi,ji in every
Ri.

In all cases, these expressions have the properties INT1–INT4:

α ∈ L(rfalse) ∩ L(rtrue) ∩ L(rall) (INT1)

zfalse ∈ L(rfalse) ∩ L(rtrue,false) ∩ L(rall) (INT2)

ztrue ∈ L(rtrue) ∩ L(rtrue,false) ∩ L(rall) (INT3)

L(rfalse) ∩ L(rtrue) ∩ L(rtrue,false) = ∅ (INT4)
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Note that zfalse 6∈ L(rtrue) and ztrue 6∈ L(rfalse) by (INT4). For the first three frag-
ments, we now define the needed expressions. We deal with the other two fragments
later. Note that the alphabet size is fixed (at most five) in the reduction for these
fragments.

(1) For RE(a, a∗):

• α = a;

• rtrue = aa∗b∗;

• rfalse = b∗aa∗;

• rtrue,false = aa∗bb∗ + bb∗aa∗, which is constructed from the intersection of
strue,false = b∗aa∗b∗ and (s′)true,false = a∗bb∗a∗;

• rall = a∗b∗a∗;

• ztrue = ab;

• zfalse = ba;

• U = #α$ · · · $α# (n occurrences of α);

• W1 = #strue,false$ · · · $strue,false#;

• W2 = #(s′)true,false$ · · · $(s′)true,false#;

• N = (#∗a∗$∗a∗$∗ · · · $∗a∗#∗)3 (n occurrences of a∗ in each of the three
copies).

(2) For RE(a, a?):

• α = a;

• rtrue = ab?;

• rfalse = b?a;

• rtrue,false = ab+ ab, which is constructed from the intersection of strue,false =
b?ab? and (s′)true,false = a?ba?;

• rall = a?b?a?;

• ztrue = ab;

• zfalse = ba;

• U = #α$ · · · $α# (n occurrences of α)

• W1 = #strue,false$ · · · $strue,false#;

• W2 = #(s′)true,false$ · · · $(s′)true,false#;

• N = (#?a?$?a?$? · · · $?a?#?)3 (n occurrences of a? in each of the three
copies).

(3) For RE(a, (+a+)):

• α = a;

• rtrue = (a+ b)+;

• rfalse = (a+ c)+;
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• rtrue,false = (b+ c)+;

• rall = (a+ b+ c)+;

• ztrue = b;

• zfalse = c;

• U = #α$α$ · · · $α# (n occurrences of α);

• W1 = W2 = #rtrue,false$ · · · $rtrue,false#; and

• N = (#+ $ + a)+

It is easy to check that the conditions (INT1)–(INT4) are fulfilled for all of the frag-
ments.

With w = #w1$ · · · $wn# ∈ L(W1) ∩ L(W2) we associate a truth assignment Aw

as follows

Aw(xj) :=

{

true, if wj ∈ L(rtrue),

false, otherwise.

Let zfalse ∈ L(rfalse)∩L(rall)∩L(rtrue,false) and ztrue ∈ L(rtrue)∩L(rall)∩L(rtrue,false).
By (INT2) and (INT3) we know that these strings exist. Notice that zfalse 6∈ L(rtrue)
and ztrue 6∈ L(rfalse) by (INT4). For a truth assignment A, let

wA = #w1$ · · · $wn#,

where wj = ztrue if A(xj) = true and wj = zfalse, otherwise.
For each i, j, we set

Fi,j = #e1$ · · · $en#,

where for each ℓ = 1, . . . , n,

eℓ :=







rfalse, if Li,j = ¬xℓ,

rtrue, if Li,j = xℓ,, and

rall, otherwise.

Notice that only one eℓ among {e1, . . . , en} is different from rall.
It remains to show that, for each of the fragments, conditions (i’)–(iv’) hold.

(i’) Trivial.

(ii’) Let A be a truth assignment such that Li,j is true under A. We need to show
that wA ∈ L(Fi,j) ∩ L(W1) ∩ L(W2). Suppose that Li,j = xℓ, so, the variable
xℓ occurs positively in clause Ci and A(xℓ) = true. Let Fi,j = #e1$ · · · $en#
be as defined above. By definition of Fi,j , we have that eℓ = rtrueℓ and for all
ℓ′ 6= ℓ we have that eℓ′ = rallk . Let wA = #w1$ · · · $wn# be as defined above, so
wℓ = ztrueℓ by definition of wA. Notice that, for every ℓ′ 6= ℓ, wℓ′ is either z

false
ℓ′

or ztrueℓ′ . Since ztrueℓ ∈ L(rtrueℓ ) ∩ L(rallℓ ) and {ztrueℓ , zfalseℓ } ⊆ L(rallℓ ), we have
that wA ∈ L(Fi,j). Moreover, as (INT2) and (INT3) state that {ztrueℓ′ , zfalseℓ′ } ⊆
L(rtrue,false), we also have that wA ∈ L(W1) ∩L(W2). The dual statement also
holds if Li,j = ¬xℓ.
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For the second claim, let w = #w1$ · · · $wn# be a string in L(Fi,j) ∩ L(W1) ∩
L(W2), where Fi,j = #e1$ · · · $en#. We now need to show that Li,j is true
under truth assignment Aw. If Li,j = xℓ, then we have that eℓ = rtrueℓ by
definition of Fi,j . As w matches Fi,j , we have that wℓ ∈ L(rtrueℓ ). Hence, by
definition of Aw, Aw(xℓ) = true, so Li,j is true under Aw. If Li,j = ¬xℓ, then

we have that eℓ = rfalseℓ . This means that wℓ ∈ rtrue,falseℓ ∩ rfalseℓ , as w is also in
L(W1) ∩ L(W2). Consequently, wℓ 6∈ rtrueℓ by (INT4). By definition of Aw, we
now have that Aw(xℓ) = false, and Aw again makes Li,j true.

(iii’) This follows immediately from condition (INT1).

(iv’) Suppose that u3wu3 ∈ L(S1) ∩ L(S2) ∩ L(R1) ∩ · · · ∩ L(Rk). We need to show
that w matches some Fi,ji in every Ri. Observe that the string u3wu3 is of
the form #y1##y2##y3##y4##y5##y6##y7#, where y1, . . . , y7 are non-
empty strings over the alphabet {a, b, c, $}. Moreover, every string in every
L(Fi,j) is of the form #y# where y is a non-empty string over the alphabet
{a, b, c, $}. Hence, as for every i = 1, . . . , k, u3wu3 ∈ L(Ri), and as none of the
strings y, y1, . . . , y7 contain the symbol “#”, w either matches some Fi,j or w
matches a sub-expression of N .

Fix an i = 1, . . . , k. Let m be a match between u3wu3 and Ri. Let ℓ be the
number so that m matches #y1# · · ·#yℓ# onto the left occurrence of N in Ri.
We now distinguish between fragments (1–2) and fragment (3).

• In fragments (1–2) we have that ℓ ≤ 3. Towards a contradiction, assume
that m matches w onto the left occurrence of N in Ri. But this would
mean that m matches a superstring of #y1# · · ·#y4# onto this leftmost
occurrence of N , which contradicts that ℓ ≤ 3. Analogously, m cannot
match w onto the right occurrence of N in Ri. So, w must match by some
Fi,j for j = 1, 2, 3.

• In fragment (3), we have that ℓ ≥ 1. Again, towards a contradiction, as-
sume that mmatches w onto the right occurrence ofN in Ri. Observe that
any string that matches NFi,1Fi,2Fi,3 is of the form #y′1##y′2# · · ·#y′ℓ′#,
where ℓ′ > 3. As u3 is not of this form, m cannot match u3 onto
NFi,1Fi,2Fi,3, which is a contradiction. Analogously, m cannot match
w against the left occurrence of N in Ri. So, m must match w onto some
Fi,j for j = 1, 2, 3.

This completes the proof of Lemma 9.19 for the fragments (1)–(3).

We still need to deal with the fragments (4) and (5). As in the proof of Lemma 9.12,
we will no longer use an alphabet with fixed size. Instead, we use the symbols bj and
cj for j = 1, . . . , n. Instead of the basic regular expressions rtrue, rfalse, rtrue,false, and

rall, we will now have expressions rtruej , rfalsej , rtrue,falsej , and rallj for every j = 1, . . . , n.
We will require that these expressions have the same properties (INT1)–(INT4), but

only between the expressions rtruej , rfalsej , rtrue,falsej , and rallj with the same index j,
and α.

The needed regular expressions are then defined as follows:
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(4) For RE(a, (+a)+):

• α = a;

• rtruej = (a+ + b+j );

• rfalsej = (a+ + c+j );

• rtrue,falsej = (b+j + c+j );

• rallj = (a+ + b+j + c+j );

• ztrue = bj ;

• zfalse = cj ;

• U = αn;

• W1 = W2 = rtrue,false1 · · · rtrue,falsen ; and

• N = a+

(5) For RE(a+, (+a)):

• α = a;

• rtruej = (a+ bj);

• rfalsej = (a+ cj);

• rtrue,falsej = (bj + cj);

• rallj = (a+ bj + cj);

• ztrue = bj ;

• zfalse = cj ;

• U = αn;

• W1 = W2 = rtrue,false1 · · · rtrue,falsen ; and

• N = a+

With w = #w1$ · · · $wn# ∈ L(W1) ∩ L(W2) we associate a truth assignment Aw

as follows

Aw(xj) :=

{

true, if wj ∈ L(rtruej ),

false, otherwise.

Let zfalsej ∈ L(rfalsej )∩L(rallj )∩L(rtrue,falsej ) and ztruej ∈ L(rtruej )∩L(rallj )∩L(rtrue,falsej ).

By (INT2) and (INT3) we know that these strings exist. Notice that zfalsej 6∈ L(rtruej )

and ztruej 6∈ L(rfalsej ) by (INT4). For a truth assignment A, let

wA = #w1$ · · · $wn#,

where wj = ztruej if A(xj) = true and wj = zfalsej , otherwise.
For each i, j, we set

Fi,j = #e1$ · · · $en#,
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where for each ℓ = 1, . . . , n,

eℓ :=







rfalseℓ , if Li,j = ¬xℓ,

rtrueℓ , if Li,j = xℓ,, and

rallℓ , otherwise.

It remains to show that, for each of the fragments, conditions (i’)–(iv’) hold.

(i’) Trivial.

(ii’) This can be shown analogously as for the fragments (1)–(3).

(iii’) This follows immediately from condition (INT1).

(iv’) Suppose that u3wu3 ∈ L(S1) ∩ L(S2) ∩ L(R1) ∩ · · · ∩ L(Rk). We need to show
that w matches some Fi,ji in every Ri. To this end, let mi be a match between
ukwuk and Ri, for every i = 1, . . . , k. For every j = 1, . . . , n, let Σj denote
the set {bj, cj}. Observe that the string w is of the form y1 · · · yn, where, for
every j = 1, . . . , n, yj is a string in Σ+

j . Moreover, no strings in L(N) contain
symbols from Σj for any j = 1, . . . , n. Hence, mi cannot match any symbol
of the string w onto N . Consequently, mi matches the entire string w onto a
subexpression of Fi,1Fi,2Fi,3 in every Ri.

Further, observe that every string in every Fi,j , j = 1, 2, 3, is of the form
y′1 . . . y

′
n, where each y′j is a string in (Σj ∪ {a})+. As mi can only match

symbols in Σj onto subexpressions with symbols in Σj , mi matches w onto
some Fi,j .

This completes the proof of Lemma 9.19.

The following Lemma makes the difference between inclusion and intersection

non-emptiness apparent. Indeed, inclusion for RE(S − {(+w)∗, (+w)+}) expres-
sions is pspace-complete, while intersection non-emptiness for such expressions
is np-complete. The latter, however, does not imply that inclusion is always harder
than intersection non-emptiness. Indeed, we obtained that for any fixed k, in-
clusion for RE≤k is in ptime. Later in this section, we will show that intersection
non-emptiness is pspace-hard for RE≤3 expressions (Theorem 9.23).

Lemma 9.21 (Theorem 9.18(b)). intersection non-emptiness is in np for RE(S−
{(+w)∗, (+w)+}).

Proof. Let r1, . . . , rk be RE(S − {(+w)∗, (+w)+}) expressions. We prove that if
⋂k

i=1 L(ri) 6= ∅, then the shortest string w in
⋂k

i=1 L(ri) has a representation as
a compressed string of polynomial size. The idea is that the factors of the expressions
ri induce a partition of w into at most kn substrings, where n = max{|ri| | 1 ≤ i ≤ k}.
We show that each such substring is either short or it is matched by an expression of
the form w∗ or w+. In the latter case, this substring can be written as (x, 1)(w, i)(y, 1),
for a suitable i, where x and y are a suffix and prefix of w, respectively. This immedi-
ately implies the statement of the theorem, as guessing v and verifying that string(v)
is in each L(ri) is an np algorithm by Lemma 9.2.
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For simplicity, we assume that all ri have the same number of factors, say n′.
Otherwise, some expressions can be padded by additional factors ε. Let, for each i,
ri = ei,1 · · · ei,n′ where every ei,j is a factor.

Let u = a1 · · · amin be a minimal string in
⋂k

i=1 ri. We will show that there is a
polynomial size compressed string v such that string(v)=u. As the straightforward

nondeterministic product automaton for
⋂k

i=1 ri has at most nk states, |u| ≤ nk.
Let, for each i = 1, . . . , k, mi be a match between u and ri. Notice that, for each

i = 1, . . . , k and j = 1, . . . , n′, there is exactly one pair (ℓ, ℓ′) such that ei,j ∈ mi(ℓ, ℓ
′).

We call an interval (p, p′) of positions homogeneous, if, for each i, there are ℓ, ℓ′ and
j such that ℓ ≤ p, p′ ≤ ℓ′ and ei,j ∈ mi(ℓ, ℓ

′). Intuitively, an interval is homogeneous
if, for each i, all its symbols are subsumed by the same subexpression ei,j . We call an
interval (p, p′) maximally homogeneous, if (p, p′) is homogeneous, but (p, p′ + 1) and
(p− 1, p′) are not homogeneous.

Let ℓ0, . . . , ℓmaxpos be a non-decreasing sequence of positions of u such that ℓ0 =
0, ℓmaxpos = min, and each pair (ℓp +1, ℓp+1) is maximally homogeneous. Notice that
ℓ0, . . . , ℓmaxpos maximally contains kn′ positions.

Let, for each p = 1, . . . ,min, up denote the substring of u from position ℓp−1 +
1 until position ℓp. We consider each substring up separately and distinguish the
following cases:

• If up is contained in an interval which at least onemi matches onto an expression
of the form e or e? for a disjunction of base symbols e which is (in abbreviated
notation) of the form a, w, (+a), or (+w), then |up| ≤ |e| ≤ n. We set vp = up.

• If up is only contained in intervals which are mapped to expressions of the
form (+a)∗ or (+a)+ (in abbreviated notation) then up has length zero or one.
Otherwise, deleting a symbol of up in u would result in a shorter string u′ which

is still in every L(rp), which contradicts that u is a minimal string in
⋂k

i=1 L(ri).

• The only remaining case is that up is contained in some interval which at least
one mi matches onto an expression of the form a∗, w∗, a+, w+, (+a∗), (+w∗),
(+a+) or (+w+). Hence, up can be written as xwiy for some i, a postfix x of w
and a prefix y of w. Notice that the length of x and y is at most n. We define
vp = (x, 1)(w, i)(y, 1). Of course, i ≤ nk, hence |vp| = O(n).

Finally, let v = v1 · · · vmin. Hence, v is a compressed string with string(v)= u and
|v| = O(kn′ · n), as required.

Bala has shown that deciding whether the intersection of RE((+w)∗) expressions
contains a non-empty string is pspace-complete [Bal02]. In general, the intersection
non-emptiness problem for such expressions is trivial, as the empty string is always
in the intersection. We next present a much simpler version of the proof of Bala
(which is a direct reduction from acceptance by a Turing machine that uses polyno-
mial space), adapted to show pspace-hardness of intersection non-emptiness for
RE(a, (+w)∗) and RE(a, (+w)∗) expressions. It should be noted that the crucial idea
in this proof comes from the proof of Bala [Bal02].

Lemma 9.22 (Theorem 9.18(c), see also [Bal02]). intersection non-emptiness

is pspace-hard for
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(1) RE(a, (+w)∗) and

(2) RE(a, (+w)+).

Proof. We first show that intersection non-emptiness is pspace-hard for the class
RE(a, (+w)+) and we consider the case of RE(a, (+w)∗) later. In both cases, we use
a reduction from Corridor Tiling, which is pspace-complete (Theorem 3.23).

To this end, let D = (T,H, V, b, t, n) be a tiling system. Without loss of generality,
we assume that n ≥ 2 is an even number. We construct n+3 regular expressions BT,
Horeven, Horodd, Ver1, . . . ,Vern such that

L(BT) ∩ L(Horeven) ∩ L(Horodd) ∩
n⋂

j=1

L(Verj) 6= ∅

if and only if there exists a correct corridor tiling for D.

Let T = {t1, . . . , tk} be the set of tiles of D. In our regular expressions, we will use
a different alphabet for every column of the tiling. To this end, for every j = 1, . . . , n,
we define Σj := {ti,j | ti ∈ T }, which we will use to tile the j-th column. We define
Σ :=

⋃

1≤j≤n Σj. For a set of Σ-symbols S, we denote by S the disjunction of all the
symbols of S, whenever this improves readability.

We represent possible tilings of D as strings in the language defined by the regular
expression

�(△nΣ1△
nΣ2△

n · · ·△nΣn△
n#)∗�, (⋆)

where �,�,△, and # are special symbols not occurring in Σ. Here, we use the
symbols “�” and “�” as special markers to indicate the begin and the end of the
tiling, respectively. Furthermore, the symbol “#” is a separator between successive
rows. The symbol “△” is needed to enforce the vertical constraints on strings that
represent tilings, which will become clear later in the proof. It is important to note
that we do not use the regular expression (⋆) itself in the reduction, as it is not a
RE(a, (+w)+) expression.

We are now ready for the reduction. We define the necessary regular expressions.
Let b = (bot1, . . . , botn) and t = (top1, . . . , topn).

• The following RE(a, (+w)+) expression ensures that the tiling begins and ends
with the bottom and top row, respectively:

BT := �△nbot1,1△
n · · ·△nbotn,n△

n

(Σ ∪ {#,△})+

△ntop1,1△
n · · ·△ntopn,n△

n#�

• The following expression verifies the horizontal constraints between tiles in
colums ℓ and 1, where ℓ is an even number between 1 and n. Together with
Horodd, this expression also ensures that the strings in the intersection are cor-
rect encodings of tilings. (That is, the strings are in the language defined by
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(⋆).)

Horeven :=

(
∑

2≤ℓ≤n−2
ℓ is even
(ti,tj)∈V

(△nti,ℓ△
ntj,ℓ+1)

+ (�△nbot1,1) + (△ntopn,n△
n#�) +

∑

1≤i≤k

1≤j≤k

(△nti,n△
n#△ntj,1)

)+

.

The last three disjuncts take care of the very first, very last and all start and
end tiles of intermediate rows.

• The following expression verifies the horizontal constraints between tiles in
columns ℓ and ℓ+ 1, where ℓ is an odd number between 1 and n− 1. Together
with Horver, this expression also ensures that the strings in the intersection are
correct encodings of tilings. (That is, the strings are in the language defined by
(⋆).)

Horodd :=

(

(�△nbot1,1△
nbot2,2) + (△ntopn−1,n−1△

ntopn,n△
n#�)

+
∑

1≤ℓ≤n−1
ℓ is odd

(ti,tj)∈V

(△nti,ℓ△
ntj,ℓ+1) + (△n#)

)+

.

• Finally, for each ℓ = 1, . . . , n, the following expressions verify the vertical con-
straints in column ℓ.

Verℓ :=

(
∑

(botℓ,ti)∈V

(�△nbot1,1△
n · · ·△nbotℓ,ℓ△

n−i)

+
∑

1≤i≤n

1≤j≤k
m 6=ℓ

(△itj,m△
n−i) +

∑

1≤i≤n

(△i#△n−i) +
∑

1≤i≤n

(△i#�)

+
∑

1≤i≤n

(ti,tj)∈V

(△iti,ℓ△
n−j)

)+

.

The crucial idea is that, when we read a tile in the ℓ-th column, we use the
string △n−i to encode that we want the tile in the ℓ-th column of the next row
to be ti. By using the disjunctions over the vertical constraints, we can express
all the possibilities of the tiles that we allow in the next column.

We explain the purpose of the five disjunctions in the expression. We can assume
here that the strings are already in the intersection of Horodd and Horeven. This
way, we know that (i) the strings encode tilings in which every row consists of n
tiles, (ii) we use symbols from Σj to encode tiles from the j-th column, and that
(iii) the string △n occurs between every two tiles. The first disjunction allows
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us to get started on the bottom row. It says that we want the ℓ-th tile in the
next row to be a ti such that (botℓ, ti) ∈ V . The second, and third disjunction
ensure that this number i is “remembered” when reading (a) tiles that are not
on the ℓ-th column or (b) the special delimiter symbol “#” which marks the
beginning of the next row. The fourth disjunction can only be matched at the
end of the tiling, as the symbol � only occurs once in each correctly encoded
tiling. Finally, the fifth disjunction does the crucial step: it ensures that, when
we matched the ℓ-th tile tk in the previous row with an expression ending with
tk,ℓ△n−i, and we remembered the number i when matching all the tiles up to
the current tile, we are now obliged to use a disjunct of the form △iti,ℓ△n−j to
match the current tile. In particular, this means that the current tile must be
ti, as we wanted. Further, the disjunction over (ti, tj) ∈ V ensures again that
the ℓ-th tile in the next column will be one of the tj’s.

It is easy to see that a string w is in the intersection of BT, Horeven, Horodd,
Ver1, . . . , Vern, if and only if w encodes a correct tiling for D.

The pspace-hardness proof for RE(a, (+w)∗) is completely analogous, except that
every “+” (which is not a disjunction) needs to be replaced by a “∗”.

Theorem 9.18(d) holds as intersection non-emptiness for arbitrary regular
expressions is in pspace. This concludes the proof of Theorem 9.18.

Recall the notion of one-unambiguous regular expressions from Definition 8.9.

Theorem 9.23. intersection non-emptiness is pspace-complete for

(a) one-unambiguous regular expressions; and for

(b) RE≤3.

Proof. The pspace upper bound is immediate as intersection non-emptiness is
in pspace for regular expressions in general.

We proceed by showing the lower bound. It is relatively straightforward to reduce
Corridor Tiling to these problems. The result for (a) is obtained by defining the
regular expressions in such a way that they use separate alphabets for the last rows of
the tiling and by using separate alphabets for odd and even rows. The result for (b) is
obtained by carefully defining the reduction such that each symbol in the expressions
is only used for positions with the same offset in a tiling row and the same parity of
row number.

We reduce Corridor Tiling, which is pspace-complete (Theorem 3.23), to
both intersection non-emptiness problems. We first show that intersection non-

emptiness is pspace-hard for one-unambiguous regular expressions and then adapt
these expressions so that they only contain up to three occurrences of the same al-
phabet symbol.

Let D = (T,H, V, b, t, n) be a tiling system. Without loss of generality, we assume
that every correct tiling has an even number of rows and that the tiles T are parti-
tioned into three disjoint sets T0⊎T ′ ⊎T ′′. The idea is that symbols from T ′′, and T ′

are only used on the uppermost and one but uppermost row, respectively. We denote
symbols from T ′ and T ′′ with one and two primes, respectively. The assumption for
an even number of rows simplifies the expressions that check the vertical constraints.
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From D we construct regular expressions BT , Hort,i, Ver-oddt,j , Ver-event,j , and
Ver-lastt,j for every t ∈ T , i ∈ {1, . . . , n − 1, n + 1, . . . , 2n − 1}, and j ∈ {1, . . . , n}.
These expressions are constructed such that, for every string w, we have that

w ∈ L(BT ) ∩
⋂

t,i

L(Hort,i) ∩
⋂

t,j

(
L(Ver-oddt,j) ∩ L(Ver-event,j) ∩ L(Ver-lastt,j)

)

if and only if w encodes a correct tiling for D. (♦)

For a set of tiles S, we sometimes denote by S the disjunction of all symbols in S
whenever this improves readability. We also write Si for a sequence of i times S. We
define the following regular expressions:

• Let b = b1 · · · bn and t = t′′1 · · · t
′′
n. Then the expression

BT := b1 · · · bn

(

T n
0

(
T n
0 + (T ′)n

)
)∗

t′′1 · · · t
′′
n

expresses that (i) the tiling consists of an even number of rows, (ii) the first
row is tiled by b, and (iii) the last row is tiled by t. It is easy to see that this
expression is one-unambiguous.

• The following expressions verify the horizontal constraints. For t ∈ T and each
j ∈ {1, . . . , n− 1, n+1, . . . , 2n− 1}, the expression Hort,j ensures that the right
neighbour of t is correct, where t is a tile

– in the j-th column when j ≤ n− 1, or

– in the (j − n)-th column when j > n.

Formally, we define for each t ∈ T and each j ∈ {1, . . . , n− 1, n+1, . . . , 2n− 1}
the expression

Hort,j :=
(

T j−1
(
t(s1 + · · ·+ sℓ) + ((T − {t})T )

)
T 2n−j−1

)∗

,

where s1, . . . , sℓ are all tiles si with (t, si) ∈ H . This expression is one-unam-
biguous.

• Correspondingly, we have expressions for the vertical constraints. For each
t and each j ∈ {1, . . . , n}, there are three kinds of expressions checking the
vertical constraints in the j-th column for the tile t: Ver-oddt,j checks the
vertical constraints on all odd rows but the last, Ver-event,j checks the vertical
constraints on the even rows, and Ver-lastt,j checks the vertical constraints
on the last two rows. We assume that {s1, . . . , sℓ} is the set of tiles si with
(t, si) ∈ V .

We define the expressions Ver-oddt,j formally as follows:

Ver-oddt,j := T j−1
0

[
[
(tT n−1

0 (s1 + · · ·+ sℓ)) + ((T0 − {t})T
n
0 )

]
T n−j
0 (T j−1

0 + T ′j−1)

]∗

T ′n−j+1T ′′n
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Intuitively, every occurrence of the tile t in the j-th column of any odd row
(except the last odd row) of a tiling matches the leftmost t in Ver-oddt,j. The
n-th tile starting from t then has to match the disjunction (s1+ · · ·+ sℓ), which
ensures that the vertical constraint is satisfied. If the tile in the j-th column is
different from t (which is handled by the subexpression (T0−{t}), the expression
allows every tile in the j-th column in the next row. Further, it is easy to see
that every string matching the subexpression in the Kleene star has length 2n,
and that the expression Ver-oddt,j is one-unambiguous.

We define the expressions Ver-event,j formally as follows:

Ver-event,j := T n
0 T

j−1
0

[(
(
tT n−j

0

[
(T j−1

0 (s1 + · · ·+ sℓ)) + (T ′j−1(s′1 + · · ·+ s′ℓ))
])

+ ((T0 − {t})T
n−j
0 (T j

0 + T ′j))

)

(T n−j
0 + T ′n−j)(T j−1

0 + T ′′j−1)

]∗

T ′′n−j+1

Here, every occurrence of the tile t in the j-th column of any even row (except
the last row) of a tiling matches the leftmost t in Ver-oddt,j . Depending whether
the n-th tile starting from t is on the row tiles with T ′ or not, the tile then either
has to match the disjunction (s1 + · · ·+ sℓ) or (s

′
1 + · · ·+ s′ℓ). This ensures that

the vertical constraint is satisfied. If the tile in the j-th column is different
from t (which is again handled by the subexpression (T0 − {t}), the expression
allows every tile in the j-th column in the next row. It is easy to see that every
string matching the subexpression in the Kleene star has length 2n, and that
the expression Ver-event,j is one-unambiguous.

Finally, we define the expressions Ver-lastt,j as follows:

Ver-lastt,j := (T 2n
0 )∗T ′j−1

[
(
t′T ′n−jT ′′j−1(s′′1 + · · ·+ s′′ℓ )

)
+
(
(T ′ − {t′})T ′n−jT ′′j

)
]∗

T ′′n−j

If the j-th tile of the second-last row of the tiling is t′, it matches the leftmost
occurrence of t′ in Ver-lastt,j . The expression then ensures that the j-th tile in
the last row is in {s′′1+ · · ·+s′′ℓ }. If the j-th tile of the second-last row is different
from t′ (which is handled by the subexpression (T ′−{t′})), the expression allows
every tile in T ′′ in the j-th position of the last row. It is easy to see that this
expression is one-unambiguous.

From the above discussion, it now follows that (♦) holds. Hence, we have shown (a).
We proceed by showing how the maximal number of occurrences of each alphabet

symbol can be reduced to three. Notice that we can assume that the given tiling
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system D uses pairwise disjoint alphabets Tj to tile the j-th column of a tiling.
Moreover, we can also assume that D uses pairwise disjoint alphabets to tile the odd
rows and the even rows of the tiling, respectively. Hence, the tiles of D are partitioned
into the pairwise disjoint sets Tj,odd, Tj,even, T

′
j,odd, and T ′′j,even for every j = 1, . . . , n.

Here, T ′j,odd and T ′′j,even are the sets that are used to tile the j-th column of the
second-last and the last row of the tiling, respectively.

When we assume that D meets these requirements, it is straightforward to verify
that, in the above defined regular expressions, every tile of T occurs at most three
times. This concludes the proof of (b).

Corollary 9.24. intersection non-emptiness is pspace-complete for one-unam-
biguous RE≤3 expressions.

A tractable fragment is the following. It is the class of RE+ expressions we defined
in Chapter 6.

Theorem 9.25. intersection non-emptiness is in ptime for RE(a, a+).

Proof. Suppose we are given RE(a, a+) expressions r1, . . . , rn in sequence normal
form. We describe a ptime method to decide non-emptiness of L(r1) ∩ · · · ∩ L(rn).

First of all, the intersection can only be non-empty, if all ri have the same number
m of factors and, for each j ≤ n, the j-th factor of each ri has the same base symbol
aj . That is, each ri can be written as ei,1 · · · ei,n and each ei,j is of the form aj [k

i
j , l

i
j ],

for some kij , l
i
j , where kij ≥ 1.

Let, for each j ≤ m, pj := max{kij | i ≤ n} and qj := min{lij | i ≤ n}. It is easy
to check that L(r1)∩ · · · ∩L(rn) is non-empty, if and only if, for each j ≤ m, pj ≤ qj .



10
Minimization of Schema

Languages

The concept of unranked regular tree languages lies at the formal basis for many
XML schema languages such as DTD, XML Schema and Relax NG. However, both
DTD and XML Schema lack the expressive power to define every unranked regular
tree language (see Chapter 8 for more details). This situation is different for Relax
NG. Not only is the design of Relax NG based on unranked tree automata theory,
validators for Relax NG are even typically implemented as tree automata [vdV03].

Tree automata for unranked trees are not only useful in the area of schema lan-
guages. They are used as a toolbox in numerous areas of XML-related research such
as path and pattern languages [NS00, Sch04] and XML querying [FGK03, NS02]. The
focus of the present chapter is on studying the problem of efficiently minimizing such
automata.

Besides being a fundamental problem of theoretical interest, the minimization
problem for tree automata or for XML schemas also has its use in practical applica-
tions. In the context of XML schema languages, minimized schemas would improve
the running time or memory consumption for document validation. For static tests
involving schemas, such as typechecking for XML transformations, a schema mini-
mizer can be used as a preprocessor to improve the running time of the typechecker.
The problem of minimizing the number of states of an unranked tree automaton is
particularly relevant for classes of deterministic automata, since, for these automata,
minimization can be done both efficiently and leads to unique canonical represen-
tatives of regular languages, as is well-known for string languages and ranked tree
languages. It is also well-known that minimal non-deterministic automata are neither
unique, nor efficiently computable [JR93, Mal04].

The investigation of efficient minimization of bottom-up deterministic automata

179
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for unranked tree languages started quite recently [CLT05, RB04]. The deterministic
devices considered there, however, differ from the standard deterministic automata in
database theory — the bottom-up deterministic unranked tree automata (DTAs) of
Brüggemann-Klein, Murata, and Wood [BKMW01]. In this chapter, we investigate
efficient1 minimization starting from such DTAs.

The transition relation of DTAs uses regular string languages over the states of the
automaton to express horizontal recursion. However, it is not specified how these reg-
ular string languages should be represented. In practice, this is usually done by finite
automata or regular expressions. If we allow for non-deterministic finite automata
in DTAs, then minimization becomes pspace-hard, because minimization is already
pspace-hard for the non-deterministic finite automata. As we are interested in effi-
cient minimization, we restrict the finite subautomata in DTAs to be deterministic
too. That is, we study the DTA(DFA)s as defined in Section 2.2.

We prove two unexpected results for these DTA(DFA)s. We present a coun-
terexample for the uniqueness of minimal DTA(DFA)s that represent a given regular
language. We then prove that minimization becomes np-complete. Both results are in
strong contrast to what is known for bottom-up deterministic automata in the ranked
case. Our np-hardness proof refines the proof techniques from [JR93, Mal04], show-
ing np-hardness of minimization for classes of finite string automata with a limited
amount of non-determinism.

Even though minimization for DTA(DFA)s is intractable, there exist automata
models for unranked trees that do allow for efficient minimization. Examples of such
models are stepwise tree automata [CNT04], parallel tree automata [CLT05, RB04],
and bottom-up deterministic automata over the standard first-child next-sibling en-
coding of regular tree languages. As each of these models allows for tractable min-
imization and unique minimal representatives, we compare the models in terms of
succinctness. We obtain that stepwise tree automata yield the smallest representa-
tions of unranked tree languages. In general, they are quadratically smaller than
parallel tree automata and exponentially smaller than tree automata over the first-
child next-sibling encoding (up to inversion).

Finally, we investigate top-down deterministic models for unranked trees, which
of interest as they form a theoretical basis for XML Schema [SMT05]. As we argued
in Chapter 8, XML schemas with the EDC constraint can be abstracted as single-type
extended DTDs, which are top-down deterministic, but not very expressive. A more
expressive notion is the notion of restrained competition extended DTDs that we de-
fined in Chapter 8. We show that the latter notion still allows for a polynomial time
minimization algorithm and unique minimal models for a regular language. Moreover,
when given an input that satisfies the single-type restriction, our minimization algo-
rithm outputs a minimal single-type model. It therefore also minimizes single-type
models.

1That is, ptime, under the assumption that ptime 6= np.
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10.1 Conventions and Notations

In order to improve the presentation and readability of the present chapter, we use
some conventions and notations that, in some cases, slightly deviate from the rest of
the dissertation.

• We assume here that, in a binary tree, every node either has 0 or 2 children.
Hence, compared with the chapters in Part I, we disallow that a node has only 1
child. Formally, we assume that the set bTΣ consists of binary Σ-trees, in which
rankΣ in the binary alphabet (Σ, rankΣ) is a function from Σ to {0, 2}.

• As we argued in the introduction, we are interested in classes which allow for ef-
ficient minimization. Since minimization is already pspace-complete for NFAs,
we do not investigate investigate DTA(NFA)s. Hence, the abbreviation DTA in
the present chapter always stands for DTA(DFA).

• As the present chapter is concerned about minimizing the number of states or
types needed to represent a language, we will use the number of states and types
of a finite automaton or EDTD as the measure for its size. In particular, we
say that

(1) the size |N | of an NFA N = (Q,Σ, δ, I, F ) is |Q|;

(2) the size |B| of a BTA B = (Q,Σ, δ, F ) is |Q|;

(3) the size |B| of a DTA(DFA) B = (Q,Σ, δ, F ) is |Q| +
∑

q∈Q,a∈Σ |Dq,a|,
where Dq,a is the DFA representing the regular language δ(q, a); and,

(4) the size |D| of an EDTD(DFA) E = (Σ,∆, d, sd, µ) is |∆| +
∑

ai∈∆ |Dai |,
where d(ai) = Dai .

• Some finite automata in the present chapter use the same set for their states
and their alphabet. To improve readability for defining the transitions of such
an automaton we adopt the following conventions:

– when A = (Q,Σ, δ, I, F ) is an NFA, we sometimes say that q1
a
→ q3 is a

transition of A when q3 ∈ δ(q1, a); and,

– when A = (Q,Σ, δ, F ) in a BTA, we sometimes say that a(q1, q2) → q3
or a → q is a transition of A when δ(q3, a) = {q1q2} or δ(q, a) = {ε},
respectively.

10.2 Complexity of Minimization

The central decision problem of this chapter is the minimization problem, which is
parametrized by a class C of automata. Minimization is closely related to equivalence,
inclusion, and universality. In the present section, we define these problems formally
and present an overview over existing and new complexity results for automata min-
imization.

We say that a finite automaton A over strings, binary trees, or unranked trees is
universal if Σ∗ ⊆ L(A), bTΣ ⊆ L(A), or TΣ ⊆ L(A), respectively.



182 Minimization of Schema Languages

Q = {q1, q2, q3, q4} F = {q3, q4}

δ(q1, a) = L(A1) with A1:

δ(q2, b) = L(A2) with A2:

δ(q3, c) = L(A3) with A3:
q1 q1

δ(q4, c) = L(A4) with A4:
q1 q2

q2

Figure 10.1: Example for a DTA (Q,Σ, δ, F ) of size 12.

c q3

a q1 a q1

c q4

a q1 b q2 b q2

Figure 10.2: Two successful runs by the DTA in Figure 10.1 annotated to the trees.

minimization: Given an automaton A ∈ C and a natural number m ∈ N, does there
exist an A′ ∈ C such that A and A′ accept the same language and the size of A′

is at most m?

equivalence: Given A,B ∈ C, does L(A) = L(B) hold?

inclusion: Given automata A,B ∈ C, does L(A) ⊆ L(B) hold?

universality: Given an automaton A ∈ C, is A universal?

The minimization problem for a class C of automata can the be solved by a non-
deterministic algorithm that, on input A and m, guesses another A′ with size at most
m and tests equivalence between A and A′.

As we will see in Table 10.1, it often holds that universality is easier than
minimization. This will be useful to prove lower bounds for minimization problems.

Everyone agrees that a DFA is indeed a deterministic device. When, during a
computation, the automaton is in a certain state at a certain node, the next state is
always uniquely determined. We raise the question whether a DTA(DFA) is a fully
deterministic representation of unranked tree languages or not? Clearly, every state
computed by a run is uniquely determined due to bottom-up determinism. The in-
ternal computation inside of the automata in the transition function is deterministic
too, since performed by DFAs. However, choice is needed when one has to decide
which transition to apply for a given letter. It requires guessing or testing the possi-
bilities. Intuitively, DTA(DFA)s represent the internal regular languages over states
by a disjoint union of DFAs, which is in fact an unambiguous representation with
one non-deterministic step: the choice of the initial state.

The DTA(DFA) in the example in Figure 10.1 has two rules for the letter c. In
the first successful run in Figure 10.2, we have to chose the upper rule, in the second
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one the lower rule. It is precisely this representation as a disjoint union of DFAs that
will lead to the np-hardness of DTA(DFA) minimization.

10.2.1 Result Overview

In Table 10.1, we collect complexity results about automata minimization and the
related problems.

equivalence, inclusion, minimization

universality

DFA nlogspace in ptime [HMU01]

UFA in ptime [SH85]
in np (from equivalence)

np-hard [JR93]

NFA pspace [SM73] pspace [SM73]

DBTA
in ptime [CDG+01]

ptime-hard [Coo74]

in ptime [CDG+01]

ptime-hard (from universality)

UBTA ptime [Sei90]
in np (from equivalence)

np-hard (from UFAs)

NBTA exptime [Sei90]
in exptime (from equivalence)

exptime-hard (from universality)

DTA
in ptime (Theorem 10.1)

ptime-hard (from DBTAs)

in np (from equivalence)

NP-hard (Theorem 10.11)

UTA
in ptime (Theorem 10.1)

ptime-hard (from UBTAs)

in np (from equivalence)

np-hard (from UFAs)

NTA
in exptime (from NBTAs)

exptime-hard (from NBTAs)

in exptime (from equivalence)

exptime-hard (from universality)

Table 10.1: Complexity overview for nondeterministic, unambiguous, and bottom-
up and/or deterministic automata for stings, binary trees, and unranked trees. Here,
DTA, UTA and NTA stand for DTA(DFA), UTA(UFA), and NTA(NFA), respectively.

For finite automata, all presented results are well known, perhaps with the excep-
tion for UFAs, for which equivalence, inclusion, and universality are in ptime,
while minimization is np-complete. For traditional tree automata, the situation is
well established too. The ptime lower bound for universality of DBTAs follows
from a straightforward reduction from path systems, which is known to be ptime-
complete [Coo74]. The reduction is similar to the one for proving that emptiness for
DTD(DFA)s is ptime-hard in Proposition 3.16. Notice that the same complexities
hold for UFAs and UBTAs, even though the proofs for the upper bounds become more
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involved for UBTAs. For the exptime-hardness of NBTA minimization, note that we
can immediately reduce NBTAuniversality to minimization, since an automaton
A with alphabet Σ is universal if and only if (i) |A| = 1, (ii) a ∈ L(A) for every
a with rankΣ(a) = 0, and (iii) b(a a) ∈ L(A) for every a, b with rankΣ(b) = 2 and
rankΣ(a) = 0.

Results for Unranked Tree Automata

For NTA(NFA)s, the exptime-hardness of equivalence, inclusion, and univer-

sality are immediate from the binary case, since every NBTA can be encoded in
ptime into an NTA. The exptime upper bound carries over from the case of tradi-
tional tree automata for binary trees, based on some binary encoding for unranked
trees (Proposition 3.8). Alternatively, the exptime upper bound also immediately
follows from Theorem 4.1.

The exptime-hardness of minimization follows from a reduction from univer-

sality similarly to the case of traditional tree automata: An NTA A with alphabet
Σ is universal if and only if (i) |A| = |Σ|+1, (ii) for every a ∈ Σ, a ∈ L(A), and, (iii)
for every a, b ∈ Σ, a(b) ∈ L(A).

Theorem 10.1. inclusion for DTA(DFA)s and UTA(UFA)s is in ptime.

Proof. Given two UTA(UFA)s, we can translate them in ptime into UBTAs with
respect to a binary encoding of unranked trees. For DTA(DFA)s and with respect
to the standard first-child next-sibling encoding of unranked trees, this has been
proposed in Lemma 4.24 of [GKPS05]. Due to the work of Seidl, we can test inclusion
of UBTAs in ptime [Sei90].

Even though the proposed ptime algorithm seems overly complicated, it is, to
the best of our knowledge, not known whether the “standard” inclusion test of
DTA(DFA)s works in ptime. The standard test would, given two DTA(DFA)s A
and B, test whether L(A) has an empty intersection with the complement of L(B).
The difficulty of this approach lies in finding a small DTA(DFA) for the complement
of L(B). This is not trivial unless B is complete, then one simply has to switch final
and non-final states. (A NTA B = (Q,Σ, δ, F ) is complete when, for every w ∈ Q∗,
there exists a transition δ(q, a) = L such that w ∈ L.)

From Theorem 10.1 we can immediately derive the following corollary.

Corollary 10.2. minimization of DTA(DFA)s and UTA(UFA)s is in np.

There remains one further result in Table 10.1 that we have not discussed so far.
This is the np-hardness result of DTA minimization, which is the subject of Section
10.3. Alternative notions of bottom-up determinism for other kinds of automata on
unranked trees will be discussed in Section 10.4. Restrained competition schemas are
studied in Section 10.5.

10.3 Minimizing DTAs

In this section we study the minimization problem of DTAs. We show two unexpected
negative results:
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(1) There are regular tree languages for which no unique (up to isomorphism) minimal
DTA exists.

Given a regular tree language L, there does not exist an (up to isomorphism)
unique minimal DTA that accepts L.

(2) The minimization problem for DTAs even turns out to be np-complete.

10.3.1 Minimal Automata are not Unique

We show the non-uniqueness by means of an example. Consider the regular string
languages L1, L2, and L3 defined by the regular expressions

(bbb)∗, b(bbbbbb)∗, and bb(bbbbbbbbb)∗,

respectively. Notice that L1, L2 and L3 are pairwise disjoint, and that the minimal
DFAs A1, A2, and A3 accepting L1, L2, and L3 have 3, 6, and 9 states, respectively.
Notice that the minimal DFAs B1 and B2 accepting L1 ∪L2 and L1 ∪ L3 (which are
depicted as parts of Figure 10.3) have 6 and 9 states, respectively. Define L to be the
language L1 ∪ L2 ∪ L3 and consider the tree language T = {r(a(w)) | w ∈ L}.

There exist two non-isomorphic minimal DTAs for T . The first one, N1 =
(Q1,Σ, δ1, F1), is defined in Figure 10.3(a). Notice that the size of N1 is

|Q1|+ 1 + |B1|+ |A3|+ 2 = 4 + 2 + 6 + 9 + 1 = 22.

The other automaton, N2 = (Q2,Σ, δ2, F2), is defined in Figure 10.3(b). Notice
that the size of N2 is

|Q2|+ 1 + |B2|+ |A2|+ 2 = 4 + 2 + 9 + 6 + 1 = 22.

Of course, there are other possibilities to write L = L1 ∪ L2 ∪ L3 as a disjoint
union of regular languages. The obvious combinations one can make with A1, A2 and
A3 lead to DTAs of size 26 (using A1, A2 and A3), 28 (using (A2 ∪A3) and A1) and
24 (one automaton for L).

For the following argument, we make use of several well-known theorems for reg-
ular string languages for a one-letter alphabet:

Theorem 10.3 (for example, [PS02]). A language L over {a} is regular if and only
if there are two integers n0 ≥ 0, k ≥ 1, such that for any n ≥ n0, a

n ∈ L if and only
if an+k ∈ L. Moreover, when L is regular, the minimal DFA for L contains a cycle
with k states.

We show that no other combination of splitting L into a union of regular languages
results in a smaller DTA accepting T . First, observe that any DTAN defining T needs
at least three states in states(N), since all trees in T have depth three (that is, they
contain three nodes on the shortest path from the root to a leaf). However, as argued
above, the minimal size of such a DTA with three states is 3 + 1 + 18 + 2 = 24.
The only way to obtain a smaller equivalent DTA is then to define L as a union of
DFAs, of which the sum of the number of states is strictly smaller than 9 + 6 = 15.
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Q1 = {q0, q1, q2, b} F1 = {q0}

δ1(b, b) = L(B) with B:

δ1(q1, a) = L(B1) with B1:
b b

b
bb

b

δ1(q2, a) = L(A3) with A3:
b b b b

b
bbb

b

δ1(q0, r) = L(R) with R:
q1, q2

(a) The DTA(DFA) N1 = (Q1,Σ, δ1, F1).

Q2 = {q0, q1, q2, b} F2 = {q0}

δ2(b, b) = L(B) with B:

δ2(q1, a=L(A2) with A2:
b b

b
bb

b

δ2(q2, a) = L(B1) with B2:
b b b b

b
bbb

b

δ2(q0, r) = L(R) with R:
q1, q2

(b) The DTA(DFA) N2 = (Q2,Σ, δ2, F2).

Figure 10.3: Two equivalent minimal DTA(DFA)s that are not isomorphic.

However, if we write L as a union of DFAs, there must be at least one DFA D1 that
accepts an infinite number of strings in L2. It is easy to see that D1 has a cycle with
6 states, as D1 may not accept strings not in L (applying Theorem 10.3 with any
k ≤ 6 would imply that L(D1) 6⊆ L). Analogously, we can argue that there must be
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at least one DFA D2 that accepts an infinite number of strings in L3. If D2 6= D1,
then we can obtain analogously that D2 has a cycle with 9 states. If D1 = D2, we
obtain analogously that D1 has at least 18 states. Therefore, the above automata are
indeed minimal for T , and as Figure 10.3 shows, they are clearly not isomorphic.

10.3.2 Minimization is np-Complete

As Section 10.3.1 illustrates, the problem of defining a regular string language as a
small disjoint union of DFAs lies at the heart of the minimization problem for DTAs.
We refer to this problem as minimal disjoint union and we define it formally later
in this section.

In this section, we show that minimal disjoint union is np-complete by a reduc-
tion from vertex cover. Actually, minimal disjoint union is even np-complete
when we are asked to define a regular string language as a small disjoint union of two
DFAs. The proof for this result is technically the hardest proof in the chapter, the
reduction is technical but interesting in its own right: it shows that minimizing finite
string automata with a very limited amount of non-determinism is np-complete.

We start by formally defining the decision problems that are of interest to us.
Given a graph G = (V,E) such that V is its set of vertices and E ⊆ V × V is its set
of edges, we say that a set of vertices V C ⊆ V is a vertex cover of G if, for every edge
(v1, v2) ∈ E, V C contains v1, v2, or both. We can assume without loss of generality
that G does not contain self-loops, that is, edges of the form (v1, v1).

If B and C are finite collections of finite sets, we say that B is a normal basis of
C if, for each c ∈ C, there is a pairwise disjoint subcollection Bc of B whose union
is c. For m ∈ N0, we say that B is a K-separable normal basis if B can be written
as a disjoint union B1 ⊎ · · · ⊎BK and, for each j = 1, . . . ,K, the subcollection Bc of
B contains at most one element from Bj . The size of a collection of finite sets is the
number of finite sets it contains.

We say that a collection C of sets contains obsolete symbols if there exist two
elements a 6= b such that, for every c ∈ C, a ∈ c⇔ b ∈ c.

We consider the following decision problems.

vertex cover: Given a pair (G, k) where G is a graph and k is an integer, does
there exist a vertex cover of G of size at most k?

normal set basis: Given a pair (C, s) where C is a finite collection of finite sets
and s is an integer, does there exist a normal basis of C of size at most s?

K-separable normal set basis: Given a pair (C, s) where C is a finite collection
of finite sets and s is an integer, does there exist a K-separable normal set basis
of C of size at most s?

K-minimal disjoint union: Given a pair (M, ℓ) where M is a DFA and ℓ is an
integer, do there exist DFAs M1, . . . ,MK such that

(1) L(M) = L(M1) ∪ · · · ∪ L(MK); and

(2) for every i 6= j, L(Mi) ∩ L(Mj) = ∅; and

(3)
∑K

i=1 |Mi| ≤ ℓ?
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The first two problems are known to be np-complete [JR93]. We will show that the
last two problems are np-complete (for K ≥ 2) as well.

We start by showing that normal set basis and K-separable normal set

basis are np-complete for every K ≥ 2. We revisit a slightly modified reduction
which is due to Jiang and Ravikumar [JR93], as our further results heavily rely on a
construction in their proof.

Lemma 10.4 (Jiang and Ravikumar [JR93]). normal set basis is np-complete.

Proof. Obviously, normal set basis is in np. Indeed, given an input (C, s) for
normal set basis, the np algorithm simply guesses a collection B and verifies
whether it is a normal set basis for C of size at most s.

We show that normal set basis is np-hard by a reduction from vertex cover.
Given an input (G, k) of vertex cover, where G = (V,E) is a graph and k is an
integer, we construct in logspace an input (C, s) of normal set basis, where C is
a finite collection of finite sets and s is an integer. In particular, (C, s) is constructed
such that

G has a vertex cover of size at most k if and only if

C has a normal basis of size at most s.

For a technical reason which will become clear later in the chapter, we assume without
loss of generality that k < |E|−3. Notice that, under this restriction, vertex cover

is still np-complete problem under logspace reductions.
Formally, let V = {v1, . . . , vn}. For each i = 1, . . . , n, define ci to be the set

{xi, yi} corresponding to the node vi. Let (vi, vj) be in E with i < j. To each such
edge we associate five sets as follows:

c1ij := {xi, aij , bij},
c2ij := {yj, bij , dij},
c3ij := {yi, dij , eij},
c4ij := {xj , eij , aij}, and
c5ij := {aij , bij , dij , eij}.

Figure 10.4 contains a graphical representation of the constructed sets ci, cj , c
1
ij , . . . ,

c5ij for some (vi, vj) ∈ E.
Then, set

C := {ci | 1 ≤ i ≤ n} ∪ {ctij | (vi, vj) ∈ E, i < j, and 1 ≤ t ≤ 5}

and
s := n+ 4|E|+ k.

Notice that the size of C is n + 5|E| and that C does not contain obsolete symbols.
Obviously, C and s can be constructed from G and k in polynomial time.

We show that the given reduction is also correct, that is, that G has a vertex cover
of size at most k if and only if C has a normal set basis of size at most s.

(⇒): Let G have a vertex cover V C of size k. We need to show that C has a
normal basis B of size s = n+ 4|E|+ k.

Thereto, we define a collection B of sets as follows. For every vi ∈ V ,
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aij

bij

dij

eij

xi

yi

yj xjci cj

c1ij

c3ij

c4ij

c5ij

c2ij

Figure 10.4: The constructed sets ci, cj , c
1
ij , . . . , c

5
ij in the proof of Lemma 10.4.

• if vi ∈ V C, we include both {xi} and {yi} in B;

• otherwise, we include ci = {xi, yi} in B.

The number of sets included in B so far is 2k + (n − k) = k + n. Let e = (vi, vj)
(where i ≤ j) be an arbitrary edge in G. Since V C is a vertex cover, either vi or vj
(or both) is in V C. When vi is in V C, we additionally include the sets

r1ij = {aij , bij}, r2ij = {dij , eij},
r3ij = {yj, bij , dij}, and r4ij = {xj , aij , eij}

in B. When vi is not in V C, we additionally include the sets

r5ij = {aij , eij}, r6ij = {bij , dij},
r7ij = {xi, aij , bij}, and r8ij = {yi, dij , eij}

in B. This completes the definition of B. Notice that, when vi ∈ V C, c1ij , c
3
ij , and

c5ij can be expressed as a disjoint union of members of B as

c1ij = {xi} ⊎ r1ij , c3ij = {yi} ⊎ r2ij , c5ij = r1ij ⊎ r2ij

and that c2ij = r3ij and c4ij = r4ij are members of B. Analogously, when vi 6∈ V C, c2ij ,

c4ij , and c5ij can be expressed as a disjoint union of members of B as

c2ij = {yj} ⊎ r6ij , c4ij = {xj} ⊎ r5ij , c5ij = r5ij ⊎ r6ij

and c1ij = r7ij and c3ij = r8ij are members of B. Since the total number of sets included
in B for each edge is four, the size of B is (k + n) + 4|E| = s. From the foregoing
argument it is also obvious that B is a normal basis of C.

Notice that B is a 2-separable normal set basis for C. Indeed, we can partition B
into the sets

B1 = {{xi}, {xj, yj} | vi ∈ V C, vj 6∈ V C}

∪ {r2ij , r
3
ij | (vi, vj) ∈ E, i < j, vi ∈ V C}

∪ {r6ij , r
7
ij | (vi, vj) ∈ E, i < j, vi 6∈ V C}



190 Minimization of Schema Languages

and

B2 = {{yi} | vi ∈ V C}

∪ {r1ij , r
4
ij | (vi, vj) ∈ E, i < j, vi ∈ V C}

∪ {r5ij , r
8
ij | (vi, vj) ∈ E, i < j, vi 6∈ V C},

which satisfy the necessary condition.
(⇐): Suppose that C has a normal basis B of size at most s = n+ 4|E|+ k. We

can assume without loss of generality that no proper subcollection of B is a normal
basis. We show that G has a vertex cover V C of size at most k. Define V C = {vi |
both {xi} and {yi} are in B}. Let k′ be the number of elements in V C. The number
of sets in B consisting of only xi and/or yi is at least n+k′. This can be seen from the
fact that B must have the subset ci for all i such that vi 6∈ V C. Thus there are n−k′

such sets, in addition to 2k′ singleton sets corresponding to i’s such that vi ∈ V C.
Let E′ ⊆ E be the set of edges covered by V C, that is, E′ = {(vi, vj) | vi or vj is in
V C}. The following observation can easily be shown:

Observation: For any e ∈ E at least four sets of B (in addition to sets ci, cj , {xi},
and {xj}) are necessary to cover the five sets ctij , t = 1, . . . , 5. Further, at least five
sets (in addition to sets ci, cj , {xi}, and {xj}) are required to cover them if e 6∈ E′.

Now the total number of sets needed to cover C is at least n + k′ + 4|E′| +
5(|E| − |E′|), which we know is at most s = n + 4|E| + k. Hence, we obtain that
n+k′+5|E|− |E′| ≤ n+4|E|+k, which implies that k′+ |E|− |E′| ≤ k. We conclude
the proof by showing that there is a vertex cover V C′ of size |E| − |E′| + k′. Add
one of the end vertices of each edge e ∈ E − E′ to V C. This vertex cover is of size
|E| − |E′|+ k′ ≤ k.

In the proof of Lemma 10.4, we have shown that, if G has a vertex cover of size
k, then C has a 2-separable normal set basis of size s. Conversely, we have shown
that, if C has a normal set basis of size s (which is allowed to be K-separable for any
K ≥ 2), G has a vertex cover of size k. Hence, we immediately obtain the following
proposition:

Proposition 10.5. There exists a set of inputs I for normal set basis, such that

• normal set basis is np-complete for inputs in I; and,

• for each (C, s) ∈ I, the following are equivalent:

1. C has a normal set basis of size s.

2. C has a K-separable normal set basis of size s for any K ≥ 2.

Moreover, C does not contain obsolete symbols and, for each (C, s) in I, we have that
s < |C| − 3.

Proof. The set I is obtained by applying the reduction in Lemma 10.4 to inputs of
vertex cover. In this reduction we observed that C was constructed such that
it does not contain obsolete symbols. For the size constraint, we have to recall the
assumption in Lemma 10.4, that k < |E|−3. Hence, we obtain that s = n+4|E|+k <
n+ 5|E| − 3 = |C| − 3.
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The intuition behind Proposition 10.5 is that, C has a normal set basis of size s
if and only if C has a 2-separable normal set basis of size s for any input (C, s) in I.
Of course, the latter property does not hold for the set of all possible inputs for the
normal set basis problem.

Since the proof of Lemma 10.4 shows that normal set basis is an np-complete
problem for inputs in I, we immediately obtain the following:

Corollary 10.6. For every K ≥ 2, K-separable normal set basis is np-complete.

Our next goal is to show a result for minimal disjoint union which is similar
to Proposition 10.5. However, in order to apply the result immediately to DTA
minimization later, we need to treat a minor technical issue. (Readers who are
only interested in the np-hardness of K-minimal disjoint union can safely skip the
following definition.) Due to the fact that the internal DFAs of NTAs do not read
alphabet symbols, but states of the tree automaton, we need to take extra care of
the languages we define in the reduction for the minimal disjoint union problem:
we will require that the languages do not contain interchangeable symbols, which is
defined as follows.

Definition 10.7. Given a string language L over an alphabet Σ, we say that two
symbols a, b ∈ Σ, a 6= b, are interchangeable with respect to L if, for every two Σ-strings
u and v, we have that uav ∈ L ⇔ ubv ∈ L. We say that L contains interchangeable
symbols if there exist a, b ∈ Σ, a 6= b, which are interchangeable with respect to L. 3

We are now ready to show the following lemma.

Lemma 10.8. For every K ≥ 2, K-minimal disjoint union is np-complete.

Proof. The np upper bound follows from the fact that we can guess a disjoint union of
sufficiently small size and verify in ptime that it is equivalent (see also Section 10.2.1,
where we recall that testing equivalence of unambiguous string automata is in ptime).

For the lower bound, we reduce from 2-separable normal set basis. To this
end, let (C, s) be an input of 2-separable normal set basis. Hence, C is a
collection of n sets and s is an integer. According to Proposition 10.5, we can assume
without loss of generality that (C, s) ∈ I, that is, C has a normal set basis of size s if
and only if C has a K-separable normal set basis of size s for any K ≥ 2. Moreover,
we can assume that s < n− 3.

We construct in logspace an input (M, ℓ) of minimal disjoint union such that

C has a normal set basis of size at most s if and only if

K-minimal disjoint union is true for (M, ℓ) for any K ≥ 2.

Intuitively, M accepts the language {ca | c ∈ C and a ∈ c}, which is a finite language
of words of length two.

We state the following claim, which we prove later. The claim is needed later in
the chapter but is not important for the proof of the present lemma.

Claim 10.9. L(M) does not contain interchangeable symbols.
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q0

q1

...

qn

qf

c1

cn

a1,1 , . . . , a1,n1

an,1,
. . . ,

an,nn

Figure 10.5: Illustration of a fragment of the constructed automaton M in the proof
of Lemma 10.8.

Formally, let C = {c1, . . . , cn} and ci = {ai,1, . . . , ai,ni
}. Then, M is defined over

alphabet

ΣM =
⋃

1≤i≤n

{ci, ai,1, . . . , ai,ni
}.

The state set of M is QM = {q0, q1, . . . , qn, qf}, and the initial and final state sets of
M are {q0} and {qf}, respectively. The transitions of M are depicted in Figure 10.5
and are formally defined as follows:

• for every i = 1, . . . , n, δ(q0, ci) = {qi}; and

• for every i = 1, . . . , n, j = 1, . . . , ni, δ(qi, ai,j) = {qf}.

Finally, define

ℓ := s+ 4.

Obviously, M and ℓ can be constructed from G and k in polynomial time. Observe
that, as C is a set, and hence does not contain ci = cj with i 6= j, M is a minimal
DFA for L(M).

We now show that,

(a) if C has a 2-separable normal basis of size at most s, then 2-minimal disjoint

union is true for (M, ℓ); and

(b) if K-minimal disjoint union is true for (M, ℓ) for any K ≥ 2, then C has a
2-separable normal basis of size at most s.

This proves the lemma, since a disjoint union of two DFAs can also be seen as a
disjoint union of K DFAs where K − 2 DFAs have an empty state set.

(a) Assume that C has a normal set basis of size s. Hence, C has a 2-separable
normal set basis of size s. We need to show that there exist two DFAs M1 and M2

such that

(1) L(M) = L(M1) ∪ L(M2); and

(2) L(M1) ∩M(A2) = ∅; and

(3) |M1|+ |M2| ≤ ℓ,
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where ℓ = s+ 4.
Thereto, let B = {r1, . . . , rs} be the 2-separable normal set basis of C of size s.

Also, let B1 and B2 be disjoint subsets of B such that each element of C is either
an element of B1, an element of B2, or a disjoint union of an element of B1 and an
element of B2.

To describe M1 and M2, we first fix the representation of each set c in C as
a disjoint union of the basic sets in B. Say that each basic member of B in this
representation belongs to c.

We define the state sets Q1 and Q2 of M1 and M2 as

Q1 = {q10 , q
1
f} ∪ {ri ∈ B1}

and
Q2 = {q20 , q

2
f} ∪ {ri ∈ B2},

respectively. The transition functions δ1 and δ2 of M1 and M2 are defined as follows.
For every i = 1, . . . , n, j = 1, . . . , s, and x = 1, 2,

• δx(q
x
0 , ci) contains rj , if rj ∈ Bx and rj belongs to ci; and

• δx(rj , a) contains q
x
f , if rj ∈ Bx and a ∈ rj .

Notice that the sum of the sizes of M1 and M2 is |B| + 4 = s+ 4 = ℓ, which fulfills
condition (3). By construction, we have that L(M1) ∪ L(M2) = L(M), which fulfills
condition (2).

We argue that M1 is deterministic (M2 follows analogously). By construction, M1

has only one start state, and all transitions going to its final state are deterministic.
Hence, it remains to show that the sets of the form δ1(q

1
0 , ci) are singletons. Towards

a contradiction, assume that δ1(q
1
0 , ci) contains the elements rj and rj′ with j 6= j′.

But this means that both rj and rj′ belong to ci, which contradicts the definition of
B1.

We still have to show that L(M1) ∩ L(M2) is empty. Towards a contradiction,
assume that the string cia is in L(M1)∩L(M2). Let rj (respectively, rj′ ) be the state
that M1, (respectively, M2) reaches after reading ci. By construction of M1 and M2,
we have that j 6= j′. But this means that both rj and rj′ belong to ci, and their
intersection contains a, which contradicts that B is a normal set basis.

(b) Assume that L(M) can be accepted by a disjoint union of the DFAsM1, . . . ,MK′

with K ′ ≤ K, the sum of the sizes of M1, . . . ,MK′ is at most ℓ, and for every
i = 1, . . . ,K ′, L(Mi) 6= ∅. We can assume that every Mi = (Qi,ΣM , δi, Ii, Fi) is
minimal. We need to show that there exists a normal basis for C of size at most
s = ℓ − 4.

Recall that we assumed that s < n− 3. Hence, we have that ℓ = s+ 4 < n+ 3 =
|M | − 1. As we observed that M is a minimal DFA for L(M), it must be the case
that K ′ ≥ 2.

Let, for every i = 1, . . . ,K ′, qi0 and qif be the initial and final state of Mi, respec-
tively. Since M1, . . . ,MK′ accept a finite set of strings of length 2, we can divide the
union of the state sets of M1, . . . ,MK′ into three sets Q0, Q1, and Q2 such that the
only transitions in Mi are from Q0 to states in Q1 and from states in Q1 to states in
Q2. For each state q ∈ Q1, define a set Bq = {a | δi(q, a) = {qif}, 1 ≤ i ≤ K ′}.
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As K ′ ≥ 2, we have that the size of B = {Bq | q ∈ Q1} is at most ℓ− 4. We show
that the collection B is also a normal basis of C.

By definition of L(M), we have that every c ∈ C is the union of Bc := {Bq |
δi(q

i
0, c) = {q}}. It remains to show that Bc is also a disjoint subcollection of B.

When Bc contains only one set, there is nothing to prove. Towards a contradiction,
assume that Bc contains two different sets Bq1 and Bq2 such that a ∈ Bq1 ∩Bq2 . As
every Mi is deterministic, we have that q1 ∈ Qi1 and q2 ∈ Qi2 with i1 6= i2. But this
means that ca ∈ L(Mi1) ∩ L(Mi2), which contradicts that M1, . . . ,MK′ is a disjoint
union.

Hence, B is a normal basis of C.

It remains to prove Claim 10.9.

Proof of Claim 10.9. L(M) does not contain interchangeable symbols.

Proof. Recall that M accepts a language {ca | c ∈ C and a ∈ c} of strings of length 2,
for a collection of sets C. We denote by E the set {a | c ∈ C and a ∈ c} of elements
of sets in C.

By definition of L(M), we have that the alphabet C that we use for the letters
of the first position is disjoint from the alphabet E that we use for the letters of the
second position. Hence, symbols from C are never interchangeable with symbols from
E.

We prove the remaining cases by contraposition:

• Suppose that c1 and c2 are different elements from C and that c1 and c2 are
interchangeable. By definition of L(M), this means that c1 and c2 contain
precisely the same elements, which contradicts that they are different elements
from C.

• Suppose that a1 and a2 are different elements from E an that a1 and a2 are
interchangeable. By definition of L(M) this means that a1 is contained in
precisely the same sets as a2. But this means that C contains obsolete symbols,
which contradicts that we chose (C, s) in a set I satisfying the conditions in
Proposition 10.10.

The following proposition is the counterpart of Proposition 10.5 for the minimal

disjoint union problem.

Proposition 10.10. There exists a set of inputs J for minimal disjoint union,
such that

(1) for each (M, ℓ) ∈ J, K-minimal disjoint union is np-complete for inputs in J;
and,

(2) for each (M, ℓ) ∈ J, (M, ℓ) has a solution for K-minimal disjoint union if and
only if (M, ℓ) has a solution for 2-minimal disjoint union.

Moreover, L(M) does not contain interchangeable symbols and ℓ < |M | − 1.
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Proof. The set J is obtained by applying the reduction in Lemma 10.8 to the inputs I
of normal set basis in Proposition 10.5. The correctness of conditions (1) and (2)
then immediately follows from conditions (a) and (b) in the proof of Lemma 10.8, and
the fact that a 2-minimal disjoint union is also a K-minimal disjoint union for
every K > 2, in which K − 2 DFAs have an empty state set. It follows immediately
from Claim 10.9 that L(M) does not contain interchangeable symbols. The size
constraint is obtained by observing that, in the proof of Lemma 10.8, we assumed
that s < n− 3, which implied that ℓ < |M | − 1.

We are now ready to prove the main result of the present section.

Theorem 10.11. DTA minimization is np-complete.

Proof. The upper bound follows from Corollary 10.2. Given a DTA A and an integer
m, the np algorithm guesses an automaton B of size at most m and verfies in ptime

whether it is equivalent to A.
For the lower bound, we reduce from 2-minimal disjoint union. Given a DFA

M = (QM ,ΣM , δM , IM , FM ) and integer ℓ, we construct a DTA A and an integer m
such that A has an equivalent DTA of size m if and only if M can be written as a
disjoint union of DFAs for which the size does not exceed ℓ. Intuitively, we construct
A such that it accepts the trees of the form r(w), where the root node is labeled with
a special symbol r 6∈ ΣM and the string w is in L(M).

According to Proposition 10.10, we can assume without loss of generality that
(M, ℓ) ∈ J, which implies that ℓ = |M | − 1 and that L(M) does not contain inter-
changeable symbols.

We define A = (QA,ΣA, δA, FA) formally as follows. The set ΣA is {r} ⊎ΣM . Its
state set QA is {qr} ⊎ ΣM , and its set of final states FA = {qr}. For every a ∈ ΣM ,
we define the transition δA(a, a) = {ε}. We also define δA(qr, r) = L(M). Finally, let
m = 2+ 2|ΣM |+ ℓ. Obviously, A and m can be constructed in polynomial time from
(M, ℓ). We now show that

K-minimal disjoint union is true for (M, ℓ) for any K ≥ 2

if and only if L(A) can be accepted by a DTA of size m.

(⇒) Suppose that K-minimal disjoint union is true for (M, ℓ) for any K ≥ 2.
According to Proposition 10.10, there exist DFAs M1 and M2 such that

(1) L(M) = L(M1) ∪ L(M2); and

(2) L(M1) ∩M(A2) = ∅; and

(3) |M1|+ |M2| ≤ ℓ.

We construct a DTA B = (ΣA, QB, δB, FB) as follows. Its state set QB is ΣM ⊎
{r1, r2}. The set of accept states FB is {r1, r2}. Finally, the transition function is
defined as follows:

• δB(r1, r) = L(M1);

• δB(r2, r) = L(M2); and
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• δB(a, a) = {ε} for every a ∈ ΣM .

Obviously, L(B) = L(A). The size of B is

|B| = |QB|+ |M1|+ |M2|+
∑

a∈ΣM

1

= ℓ+ |ΣM |+ 2 + |ΣM |

= 2 + 2|ΣM |+ ℓ

= m

(⇐) Suppose that there exists a DTA B = (ΣA, QB, δB, FB) for L(A) of size at
most m = 2 + 2|ΣM |+ ℓ. We state the following claims (which we prove later):

Claim 10.12. B has at least |ΣM | non-accepting states.

As B is bottom-up deterministic and only accepts trees of depth two, Claim 10.12
induces a bijection φ between states of B and ΣM -symbols: for every state q ∈
QB, φ(q) is the unique symbol a ∈ ΣM such that δB(a, a) = {ε}. We denote the
homomorphic extension of φ also by φ.

Claim 10.13. B has at least two accepting states.

Let r1, . . . , rx be the accepting states of B, where x > 1. Let for every i = 1, . . . , x,
M ′i be the minimal DFA such that δB(ri, r) = L(M ′i). It is easy to see that from each
M ′i , an automaton M ′′i can be constructed which is of the same size and accepts
φ(L(M ′i)). Moreover, since B is bottom-up deterministic, the languages L(M ′i) are
pairwise disjoint. As φ is bijective, the languages φ(L(M ′i)) are also pairwise disjoint.
The total size of

∑x
i=1 |M

′′
i | is m−2|ΣM |−x ≤ ℓ. Hence, 2-minimal disjoint union

for (M, ℓ) is true. According to Proposition 10.10, we also have that K-minimal
disjoint union is true for (M, ℓ) for every K ≥ 2.

It remains to prove Claims 10.12 and 10.13.

Proof of Claim 10.12. B has at least |ΣM | non-accepting states

Proof. First observe that L(B) contains only trees of depth two. We say that B
assigns a state q ∈ states(B) to a label a ∈ ΣM if δB(q, a) = ε.

We first argue that, B assigns only non-accepting states to labels in ΣM . Indeed,
should B assign an accepting state to some a ∈ ΣM , then the tree a, which has depth
one, should be in L(B), which is a contradiction.

We now show that B needs at least |ΣM | different non-accepting states to assign
to the leaves. Towards a contradiction, suppose that B uses lesser than |ΣM | non-
accepting states. As B is bottom-up deterministic, there exist two alphabet symbols
a and b to which B assigns the same state q in every successful run of B. However,
this means that, for every two ΣM -strings u and v, we have that uav ∈ L(M) ⇔
ubv ∈ L(M). This contradicts that L(M) does not contain interchangeable symbols,
which was shown in Proposition 10.10.

Proof of Claim 10.13. B has at least two final states.
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Proof. We recall that |A| = 1 + 2|ΣM |+ |M | and |B| ≤ 2 + 2|ΣM |+ ℓ, so |B| < |A|.
Towards a contradiction, suppose that B has only one accepting state qf . Then B has
exactly one transition of the form δB(qf , r) = L(M ′), where M ′ is a DFA accepting
φ−1(L(M)). However, as M ′ accepts a language isomorphic to L(M), and M is a
minimal automaton, the size of M ′ is at least |M |. But this means that the size of B
is at least 1 + 2|ΣM |+ |M |, which is a contradiction.

10.4 Solutions for Efficient Minimization

As we have shown, DTAminimization is unfeasible even when the horizontal languages
are represented by DFAs. The problem is raised when using multiple rules for the
same label, for recognizing these horizontal regular languages.

Three alternative notions of bottom-up deterministic tree automata for unranked
trees were proposed recently, each of them yielding a solution to the problem. The
contribute different notions of automata and bottom-up determinism for unranked
trees, which lead to unique minimal automata and polynomial time minimization.
However, as we will see in this section, they do not lead to minimal automata of the
same size.

First, stepwise tree automata [CNT04] are an algebraic notion of automata for
unranked trees which also correspond to automata over binary trees by means of
a binary encoding. Second, parallel tree automata (PTAs) alter the rule format of
NTAs and have been independently proposed in [RB04] and [CLT05]. Third, one can
use tree automata that operate on the standard first-child next-sibling encoding of
unranked into binary trees (see, for example, [FGK03]).

10.4.1 Stepwise Tree Automata

Stepwise tree automata have been introduced as an algebraic notion of automata
for unranked trees [CNT04]. In this section, we show that regular unranked tree
languages are recognized by unique minimal deterministic stepwise tree automata,
and formulate the corresponding Myhill-Nerode property.

Definition 10.14. A stepwise tree automaton (STA) for unranked trees over Σ is
a 5-tuple A = (Q,Σ, δ, (Ia)a∈Σ, F ) where Q is the set of states, Σ is the alphabet,
δ : Q×Q→ Q is the transition function, Ia ⊆ Q is a set of initial states for each a ∈ Σ,
and F ⊆ Q is a set of final states. Moreover, for each a ∈ Σ, Aa = (Q,Q, δ, Ia, F ) is
a nondeterministic finite automaton. 3

We call A (bottom-up) deterministic if every finite automaton Aa is a DFA.
A run of an STA A on an unranked tree t is a function λ : Nodes(t) → Q such

that, for every node u ∈ Nodes(t) labeled with a and with n children u1, . . . , un, it
holds that

λ(u) ∈ δ∗(q, λ(u1) · · · λ(un))

for some q ∈ Ia, where δ∗ denotes the homomorphic extension of δ to strings. In
other words, the state of a node is computed by running the NFA Aa, with initial
states Ia determined by the label of the node, on the sequence of children states. A
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Q = {1, 2, 3} F = {3} Ia = {1}, Ib = {2}

1 3

2

a 1
2

b

a3

a1 b2 b2

Figure 10.6: An STA (Q, {a, b}, δ, (Ia)a∈Σ, F ) recognizing a(ab∗) and one of its suc-
cessful runs. Initial states for a are pointed to by arrows labeled by a. The state 3
of the root is obtained by running the automaton with intial states for a on the word
122.

run is accepting if the root is labeled by an accepting state, that is, λ(ε) ∈ F . A tree
t is accepted if there is an accepting run of A on t. The set of all accepted trees is
denoted by L(A) and is called the language defined by A.

An STA A is unambiguous if, for every tree t ∈ L(A), A has a unique accepting
run on t. An example for a deterministic STA is given in Figure 10.6.

In the present perspective, it is not very clear that STAs can be determinized
without altering the language of unranked trees it recognizes, and that all regular
languages of unranked trees are recognized by a unique minimal deterministic stepwise
tree automaton (up to isomorphism).

Thereto, we observe in the following section that STAs are in fact traditional tree
automata over a binary encoding of unranked trees. In order to differentiate between
the unranked tree language and the binary tree language a stepwise automaton defines,
we write Lu(A) for the language of unranked trees recognized by A.

Curried Binary Encoding

We can identify stepwise tree automata with binary tree automata that operate on
Curried binary encodings of unranked trees. While Definition 10.14 provides the clear-
est way to present stepwise tree automata in examples, the present characterization
is mostly more convenient in proofs. It allows to carry over results directly from the
theory of traditional tree automata.

We consider the binary alphabet Σ@ = Σ⊎{@} in which all labels in Σ have rank
zero and @ has rank two. The idea of the Curried encoding is to identify an unranked
tree with a lambda term. The tree a(b c d), for instance, designs the application
of function a to the arguments b, c, d. Its Curried encoding (((a@b)@c)@d) applies
function a to the same arguments, but one by one (which is the reason for the term
stepwise). Formally, we define the Curried encoding curry(t) of an unranked tree t as
follows:

(i) curry(a) = a;

(ii) curry(a(t1 · · · tn)) = @(curry(a(t1 · · · tn−1)) curry(tn))

Every STAA = (Q,Σ, δ, (Ia)a∈Σ, F ) is isomorphic to a binary tree automaton BTA(A) =
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Q = {1, 2, 3}
transitions : {a→ 1, @(1, 1)→ 3,

b→ 2, @(3, 2)→ 3 }
F = {3}

@3

@3

@3

a1 a1

b2

b2

Figure 10.7: The STA in Figure 10.6 with unranked language a(ab∗) as standard tree
automaton (Q,Σ, δ, F ) on Curried encodings.

(Q,Σ@, δb, F ), whose states are those of A. We identify the transitions as follows:

q1
q2
→ q in A is identified with @(q1, q2)→ q in BTA(A)

q ∈ Ia in A is identified with a→ q in BTA(A)

In the remainder of the chapter, we will therefore identify the STA A with BTA(A).
For an STA A, we use the notation Lb(A) to refer to the binary tree language accepted
by BTA(A). The binary tree language Lb(A) of a stepwise tree automaton A over Σ
is the language recognized by the corresponding tree automaton for binary trees over
Σ@.

Proposition 10.15. For every STA A, curry(Lu(A)) = Lb(A). Furthermore, A
is deterministic if and only if it is deterministic as a traditional tree automaton on
binary trees.

Proof. Let A = (Q,Σ, δA, (I
a)a∈Σ, F ) be an STA. Let, for every a ∈ Σ, Aa be the

NFA (Q,Q, δAa
, Ia, F ), and let BTA(A) = (Q,Σ, δb, F ). Notice that δA = δAa

, but,
for clarity later in the proof, we denote the transition functions differently. We show
for all unranked trees t over Σ that δ∗A(t) = δ∗b (curry(t)). The proof is by induction
on the structure of unranked trees.

For the base case, let t = a. Then q ∈ δ∗A(t) if and only if q ∈ δ∗Aa
(p, ε) for some

p ∈ Ia, if and only if q ∈ Ia, if and only if a→ q is a transition in BTA(A), if and only
if q ∈ δ∗b (t) = δ∗b (curry(t)). For the inductive case, we assume t = a(t1 · · · tn). It then
holds that q ∈ δ∗A(t) if and only if q ∈ δ∗Aa

(p, δ∗A(t1) · · · δ
∗
A(tn)) for some p ∈ Ia. By

induction, this is equivalent to q ∈ δ∗Aa
(p, δ∗b (curry(t1)) · · · δ

∗
b (curry(tn))), which holds

if and only if q ∈ δ∗b (@(· · ·@(a curry(t1)) · · · ) curry(tn)) given the correspondence of
the automaton rules. By definition of the Curried encoding, the latter is equivalent
to q ∈ δ∗b (curry(a(t1 · · · tn))).

As a consequence, we can deteminize every stepwise tree automaton seen as a
traditional tree automaton, without changing its languages of unranked trees.

Theorem 10.16. Every regular language of unranked trees is recognized by an up to
isomorphism unique minimal deterministic STA. Minimization of determinstic STAs
is in ptime.

Proof. It is well-known that every regular unranked tree language can be recognized
by an STA. STAs can be determinized as binary tree automata without changing the
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unranked tree language. The minimal deterministic STA for a language of unranked
trees L is the minimal bottom-up deterministic BTA for the binary tree language
curry(L). This follows from Proposition 10.15. It can be computed by the usual
algorithm for minimizing traditional tree automata.

Myhill-Nerode Property

Myhill and Nerode characterized regular languages in terms of congruences induced
by the language, proved the existence of minimal deterministic automata for regular
languages, and characterized such automata in terms of the congruence.

The Myhill-Nerode property holds generally for algebraic notions of automata
(see, for example, [Cou89]) and thus for finite automata over strings, traditional tree
automata [Koz92, TW68], and stepwise tree automata [CNT04]. A Myhill-Nerode
inspired theorem for NTAs was shown in Theorem G in [BKMW01]. Remarkably,
this theorem does not lead to minimal automata. Another Myhill-Nerode inspired
theorem for tree automata for unranked trees was shown by Thomas et al. [CLT05],
which we treat in Section 10.4.2.

In this section, we formulate the Myhill-Nerode theorem for stepwise tree automata
on unranked trees, by translating the Myhill-Nerode theorem for traditional tree
automata for binary trees via Currying. Our main motivation for discussing the
Myhill-Nerode theorem is that the present version has the advantages of the two
other Myhill-Nerode inspired theorems, while not sharing their disadvantages: (i) it
leads to unique minimal deterministic automata, which can be computed in ptime,
(ii) it uses a single, natural congruence relation, and (iii) it allows to carry over the
minimization algorithm directly from traditional tree automata. Moreover, we show
later that it leads to the smallest minimal deterministic automata, when compared to
the parallel tree automatafrom [CLT05, RB04] and to traditional tree automata over
the standard first-child next-sibling encoding (Sections 10.4.2 and 10.4.3).

A binary context C is a function mapping binary trees to binary trees. A context
can be represented by a pointed binary tree, that is, a binary tree over the alphabet
Σ ⊎ {•} that contains a single occurrence of the symbol “•” which we call the hole
marker. The hole marker is always at a leaf. Context application C[t] to a binary
tree t replaces the hole marker in C by t.

An unranked context C is a tree over the unranked alphabet Σ⊎{•} that contains
a single occurrence of the hole marker, but this time possibly labeling an internal
node. Given an unranked context C and an unranked tree t = a(t1 · · · tn), we define
context application C[t] inductively as follows:

(i) •(t′1 · · · t
′
m)[a(t1 · · · tn)] = a(t1 · · · tnt′1 · · · t

′
m)

(ii) a(t′1 · · · t
′
i · · · t

′
m)[t] = a(t′1 · · · t

′
i[t] · · · t

′
m) where t′i contains the hole marker.

We claim that the unranked contexts and context applications that we defined are
precisely the Curried versions of the binary contexts.

Lemma 10.17. If C is an unranked context and t is an unranked tree, we have that
curry(C[t]) = curry(C)[curry(t)].
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The proof is by straightforward induction on the structure of contexts.
The following definitions are parametric, in that they apply to unranked trees

as well as to binary trees. A congruence on trees is an equivalence relation ≡ such
that, for every context C, if t1 ≡ t2 then C[t1] ≡ C[t2]. We refer to the number of
equivalence classes of an equivalence relation as the index of the equivalence relation.
An equivalence relation is of finite index when there are only a finite number of
equivalence classes. Given a tree language L, we define the congruence ≡L induced
by L through:

t1 ≡L t2 if and only if for every context C: C[t1] ∈ L⇔ C[t2] ∈ L.

Theorem 10.18 (Myhill-Nerode). For any binary or unranked tree language L it
holds that L is a regular tree language if and only if its congruence ≡L has finite
index. Furthermore, there exists an (up to isomorphism) unique minimal bottom-up
deterministic (stepwise) tree automaton for all regular languages L. The size of this
automaton is equal to the index of ≡L.

The proof of this theorem is immediate from the binary case [Koz92] and Lemma 10.17.

10.4.2 Parallel Tree Automata

Parallel tree automata are automata for unranked trees which have been indepen-
dently proposed in [RB04] and [CLT05] for efficient minimization. In this section,
we compare parallel NTAs and stepwise tree automata with respect to the size of
minimal deterministic automata and their Myhill-Nerode theorems.

The idea of parallel tree automata is to start with an NTA and to merge all its
NFAs for the same alphabet symbol into one NFA. When applied to DTA(DFA)s,
this solves the main reason why efficient minimalization fails. In order to distiguish
final states of different NFAs after the merge, an explicit output function is added.
It should be noted that, in the original papers, parallel tree automata are simply
called “tree automata”[CLT05, RB04]. We have given them the name parallel tree
automata as they can be seen as NTAs in which the finite automata for an alphabet
symbol are executed in parallel.

Definition 10.19. A nondeterministic parallel tree automaton (NPTA) is a tuple
A = (Q,Σ, (Aa)a∈Σ, F, o) whereQ is a final set of states, everyAa = (Qa, Q, δa, Ia, Fa)
is an NFA, F ⊆ Q is the set of final states, and o : ∪a∈Σ Fa → Q is an output function.
3

A run λ of an NPTA A on an unranked tree t over Σ is a function λ : Nodes(t)→ Q
such that, for every u ∈ Nodes(t) with label a and n children u1, . . . , un,

λ(u) ∈ δ∗a
(
q, o(λ(u1)) · · · o(λ(un))

)

for some q ∈ Ia, where δ∗a denotes the homomorphic extension of the transition
function δa. A run λ on t is accepting if o(λ(ε)) ∈ F . A tree t is accepted by A if
there exists an accepting run of A on t. We denote set of trees accepted by A by
L(A).
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Q = {1′, 2′, 3′} F = {3′} o(1) = 1′, o(2) = 2′, and o(3) = 3′

Aa: 1 3
1′

2′

Ab: 2

a3
′

a1
′

b2
′

b2
′

Figure 10.8: A DPTA (Q,Σ, (Aa)a∈Σ, F, o) for a(ab
∗) and one of its runs. The corre-

sponding STA is given in Figure 10.7.

A (bottom-up) deterministic PTA (DPTA) is an NPTA for which every Aa is a
DFA. An unambiguous PTA (UPTA) is an NPTA A, such that, for every t ∈ L(A),
there exists a unique accepting run of A on t.

An example for the minimal DPTA for the language a(ab∗) is given in Figure 10.8.
Although not explicitly stated in [CLT05], we note that it is assumed that the

state sets of the automata Aa in PTAs are disjoint. The latter can be concluded from
Theorem 10.21.

Theorem 10.20 ([CLT05], see also [RB04]). Every regular language of unranked
trees is recognized by a unique minimal DPTA (up to isomorphism). Furthermore,
minimization is in ptime.

Myhill-Nerode Property

Cristau, Löding, and Thomas [CLT05] prove a Myhill-Nerode property for DPTAs.
The latter property for DPTAs allows us to compare the size of minimal deterministic
PTAs with minimal deterministic STAs.

A pointed tree C over Σ is an unranked context over Σ such that the unique node
in C that is labeled by “•” is a leaf. For a tree language L, the equivalence relation
∼L is defined as

t1 ∼L t2 if and only if for every pointed tree C: C[t1] ∈ L⇔ C[t2] ∈ L.

For two trees t = a(t1 · · · tk) and t′ = a(t′1 · · · t
′
ℓ), define

t⊙ t := a(t1 · · · tkt
′
1 · · · t

′
ℓ).

For a ∈ Σ, let T a
Σ denote the set of Σ-trees which have a as their root label. Then,

the equivalence relation
→
∼L is defined for all t1, t2 ∈ T a

Σ by

t1
→
∼L t2 if and only if ∀t ∈ T a

Σ : t1 ⊙ t ∼L t2 ⊙ t.

Theorem 10.21 (Theorem 1 in [CLT05], rephrased). For every regular tree language
L, the size of the minimal DPTA accepting L is SL +

∑

a∈Σ Sa
L, where

• SL denotes the number of equivalence classes of the relation ∼L; and,

• for each a ∈ Σ, Sa
L denotes the number of equivalence classes of the relation

→
∼L

in the set T a
Σ .
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Size Comparison with Stepwise Tree Automata

We are now ready to show the following proposition:

Proposition 10.22. For every regular tree language L, the size of the minimal de-
terministic STA accepting L is at most the size of the minimal deterministic PTA.
Moreover, the minimal deterministic PTA is at most quadratically larger than the
minimal deterministic STA.

Proof. Let L be a regular tree language. We show that the sum of the indices of the
equivalence relations ∼L and

→
∼L is at least as large as the index of the equivalence

relation ≡L.
To this end, assume that there exist two Σ-trees t1, t2, such that t1 6≡L t2. If

labt1(ε) 6= labt2(ε), then we immediately have that t1 6
→
∼L t2, as the relation

→
∼L is

only defined between trees with the same root label.
Assume that labt1(ε) = labt2(ε) = a. Hence, we can assume without loss of

generality that there exists a context C such that C[t1] ∈ L, while C[t2] 6∈ L (the
symmetric case is analogous). Let u ∈ Nodes(C) be the unique node such that
labC(u) = •. We now define the following trees:

(a) Let C′ be the tree obtained from C by removing all subtrees of the node u. Hence,
u is a leaf in C′.

(b) Let t′ be the tree obtained by taking the subtree of C rooted at u, and relabeling
the root with a (instead of •).

We now claim that t1 6
→
∼L t2. Indeed, we have that C′[t1 ⊙ t′] = C[t1] ∈ L, while

C′[t2 ⊙ t′] = C[t2] 6∈ L, which shows that t1 ⊙ t′ 6∼L t2 ⊙ t′.
It remains to show the quadratic bound on the size increase. Given a deterministic

STA B = (QB,Σ, δB, (I
a
B)a∈Σ, FB), we construct an equivalent deterministic PTA

A = (QB,Σ, (A
a)a∈Σ, FA, o) of size O(|Σ| · |B|), which proves the claim. Thereto,

let, for every a ∈ Σ, Ba = (QB, QB, δB, I
a
B , FB) be the DFA associated to the STA.

Intuitively, every DFA Aa is simply a copy of Ba, adapted such that the state sets
of the Aa are pairwise disjoint. Formally, let, for every a ∈ Σ, Qa = {qa | q ∈ QB}.
For every a ∈ Σ, we define the DFA Aa = (Qa, QB, δa, Ia, Fa) as follows. For every

transition q1
p
→ q2 in Ba, A

a contains the transition q1a
p
→ q2a. Finally, we define

o(qa) = q for every qa ∈ Qa.

Proposition 10.23. There exists a family of unranked regular tree languages (Ln)n∈N
for which the minimal deterministic PTA is quadratically larger than the minimal
deterministic STA.

Proof. Let Σn be the alphabet {1, . . . , n, a} and define the languages

Ln := {j(a · · ·a
︸ ︷︷ ︸

n

) | 1 ≤ j ≤ n}.

Figure 10.9 shows a deterministic STA A = (QA,Σ, (I
a)a∈Σ, F ) of size O(n) accepting

Ln.
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QA = {a, 0, 1, 2, . . . , n} FA = {n}
Ia = {a} Ij = {0} for all 1 ≤ j ≤ n

0 1 2 · · · n
1, . . . , n a a a a

aa

Figure 10.9: Deterministic STA for the language Ln of Proposition 10.23.

Second, we show that the minimal DPTA for Ln has at least n2 states. Intuitively,
the minimal DPTA for Ln needs n different finite string automata (one for each i)
with n states each (to accept a language consisting of a single string of length n).

Formally, we argue that the equivalence relation
→
∼Ln

induces at least n2 differ-
ent equivalence classes, which proves the proposition, according to Theorem 10.21.
Thereto, suppose that t1 = i(ak) and t2 = j(aℓ) are two trees with i, j, k, ℓ = 1, . . . , n.

• If i 6= j, then t1 and t2 are clearly in different equivalent classes, because the
relation

→
∼Ln

is only defined between trees with the same root.

• If i = j and k 6= ℓ, then let t be the tree i(an−k). Then we have that t⊙ t1 ∈ Ln

while t ⊙ t2 6∈ Ln. If we take the context C = •, we have that C[t1] ∈ Ln and
C[t2] 6∈ Ln. Hence, t1 is in a different equivalence class that t2.

It follows that the relation
→
∼Ln

induces at least n2 different equivalence classes.

10.4.3 Standard Binary Encoding

Another approach towards efficient minimization for automata representing unranked
tree languages is to use the first-child next-sibling encoding [FGK03, Nev02, Suc01].

The first-child next-sibling enoding fcns(t) of some unranked tree t over Σ is a
binary tree over the alphabet Σ⊥ = Σ⊎{⊥}, where the first-child relation is associated
with the first position, and the next-sibling relation with the second position.

The idea of using the first-child next-sibling encoding for minimization, is to rep-
resent a regular language of unranked trees L by a minimal DBTA for the language
of its binary encoding fcns(L), similarly as we did in Section 10.4.1 for STAs that
recognize the binary tree language curry(L).

Inversion

The goal of this section is to compare the size of the DBTAs for fcns(L) and curry(L)
for regular languages of unranked trees L. Figure 10.10 illustrates these two binary
encodings and two others at the example of the unranked tree t = a(bcd).

The first important difference between fcns(L) and curry(L) is that sequences
of children are inverted. When traversing fcns(t) bottom-up, the sequence bcd is
encountered in inverted order dcb, while it occurs in the original order in curry(t).



10.4. Solutions for Efficient Minimization 205
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(c) TtU
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d

(d) curry(t)

Figure 10.10: Four binary encodings of the unranked tree t = a(bcd): first-child
next-sibling fcns(t), inverted first-child next-sibling inverse(fcns(t)), previous-sibling
last-child TtU, and the Curried encoding curry(t).

It is well known for minimal DFAs that language inversion leads to an exponential
blow-up of the minimal size. As a consequence, there is in general an exponential blow-
up between the minimal DBTAs for fcns(L) and curry(L) in both directions. This
holds, for instance, for the tree languages Ln = {c(w) ∈ TΣ | w ∈ (a+ b)na(a+ b)∗}
when going from minimal DBTAs for curry(Ln) to fcns(Ln), where n ∈ N. For
the translation in the other direction, the exponential blow-up occurs for the tree
languages L′n = {c(w) ∈ TΣ | w ∈ (a+ b)∗a(a+ b)n}.

We wish to ignore such succinctness differences due to inversion. Actually, we wish
to compare the previous-sibling last-child encoding T.U (which is defined formally later)
with Currying. The previous-sibling last-child encoding T.U is equal to the inverted
first-child next-sibling encoding, except that the first and second child are switched for
all nodes. The reason for turning to this previous-sibling last-child encoding is because
it facilitates and improves the readability of constructions later in the chapter. Of
course, switching every first and second child in binary trees has no effect on the size of
minimal DBTAs. We illustrate an example of the discussed encodings in Figure 10.10.

The main difference that remains between the previous-sibling last-child encoding
TtU and curry(t) in the above example, is that t’s root’s label a is located at the root
of TtU, while it is found in the leftmost leaf of curry(t). In bottom-up processing, one
sees leafs first, so the Curried encoding should have advantages for minimization.

Size Comparison to Stepwise Tree Automata

We show that minimal deterministic STAs for languages L of unranked trees are at
most quadratically larger than DBTAs for the previous-sibling last-child encoding
TLU, and that the blow-up is exponential in the other direction.

Let us define the previous-sibling last-child encoding TtU of some unranked tree t
of Σ more formally. It is a binary tree over the alphabet Σ⊥ = Σ ⊎ {⊥}, where the
previous-sibling relation is associated with the first position and the last-child relation
with the second position:

Ta(t1 · · · tn)U := T〈a(t1 · · · tn)〉U
T〈t1 · · · tna(s1 · · · sm)〉U := a(T〈t1 · · · tn〉UT〈s1 · · · sm〉U)

T〈〉U := ⊥
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In order to relate the language TLU to curry(L), we define a tree transformation “shift”
that transforms a tree TtU to curry(t). Intuitively, the transformation processes the
tree TtU in a top-down manner and moves the labels of parents (in the unranked tree)
downwards. On the example in Figure 10.10(c), it would move the a downwards to
obtain the tree in Figure 10.10(d). Formally, the transformation is defined as follows:

shift(a(⊥ t)) := shifta(t)
shifta(b(t1 t2)) := @(shifta(t1) shiftb(t2))

shifta(⊥) := a

The following simple equality will be useful in the proofs to come:

shift(Ta(t1 · · · tn)U = shifta(T〈t1 · · · tn〉U) (†)

It holds by definition of the encoding T.U and the shift transformation:

shift(Ta(t1 · · · tn)U = shift(T〈a(t1 · · · tn〉U)
= shift(a(T〈〉UT〈t1 · · · tn〉U)
= shifta(T〈t1 · · · tn〉U)

Proposition 10.24. For every unranked tree t over Σ, shift(TtU) = curry(t).

Proof. The proof is by induction on the structure of unranked trees. The base case
t = a is simple: shift(TaU) = shifta(⊥) = a = curry(a).

In the induction, we have t = a(t1 · · · tnb(s1 · · · sm)), where n and m can be zero,
so we can apply the equation (†) and the definitions of T.U and shifta:

shift(TtU) = shifta(T〈t1 · · · tnb(s1 · · · sm)〉U)
= shifta(b(T〈t1 · · · tn〉U T〈s1 · · · sm〉U)
= @(shifta(T〈t1 · · · tn〉U) shiftb(T〈s1 · · · sm〉U))

We are now in the position to apply the induction hypothesis, and to conclude by the
definition of the Curried encoding:

shift(TtU) = @(curry(a(t1 · · · tn)) curry(b(s1 · · · sm)))
= curry(a(t1 · · · tnb(s1 · · · sm)))
= curry(t)

Our next goal is to encode NBTAs over Σ⊥ into NBTAs over Σ@ that recognize
the shifted language. The size should grow no more than quadratically and bottom-up
determinism should be preserved.

The idea of the automata conversion is to memorize node labels that have been
shifted down. In bottom-up processing, these labels will be seen earlier than needed,
so we simply memorize them in the state when moving upwards. Given an NBTA A =
(QA,Σ⊥, δA, FA) over Σ⊥, we define an NBTA B = (QB,Σ@, δB, FB) over Σ@ such
that QB = QA × Σ. We write p[a] for pairs (p, a) where p ∈ QA and a ∈ Σ, to stress
that a is the label being remembered. Note that |B| = |Σ| · |A|, so the size increases at
most quadratically. The rules of B are produced by the inference rules in Figure 10.11.
Finally, the final states FB of B are defined as FB = {p[a] | δ∗A(a(⊥ p)) ∩ FA 6= ∅}.
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S1
⊥ → p is a transition of A a ∈ Σ

a→ p[a] is a transition of B

S2
b(p1, p2)→ p is a transition of A a ∈ Σ

@(p1[a], p2[b])→ p[a] is a transition of B

Figure 10.11: Converting an NBTA A for the previous-sibling last-child encoding of
unranked trees into an STA B.
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Figure 10.12: A run of some tree automaton A on the previous-sibling last-child
encoding of the unranked tree a(b(c d) e(f)) and the corresponding run of B on the
Curried encoding.

Here, we denoted by δ∗A(a(⊥ p)) the set {δ∗A(a(⊥ t)) | p ∈ δ∗A(t)}.
We illustrate the conversion in Figure 10.12. It presents a run of some automaton

A on the previous-sibling last-child encoding of the unranked tree a(b(cd) e(f)) and
the corresponding run of B on the Curried encoding.

In Lemma 10.25 and Proposition 10.26, A is always an NBTA accepting an en-
coding TLU of an unranked regular tree language L ⊆ TΣ.

Lemma 10.25. Let t be a binary tree over Σ⊥, A = (QA,Σ⊥, δA, FA) a NBTA over
Σ⊥, and B = (QB,Σ@, δB, FB) be the above defined STA. It then holds for all p ∈ QA

and a ∈ Σ that
δ∗B(shifta(t)) = {p[a] | p ∈ δ∗A(t)}.

Proof. By induction on the structure of t. If t = ⊥ then the lemma follows from the
definition of shifta and inference rule S1:

p[a] ∈ δ∗B(shifta(t)) if and only if p[a] ∈ δ∗B(a)
if and only if a→ p[a] is a transition of B
if and only if ⊥ → p is a transition of A
if and only if p ∈ δ∗A(t)

In the inductive case, t = b(t1t2) for some b ∈ Σ and binary trees t1, t2 over Σ⊥.
We first show that {p[a] | p ∈ δ∗A(t)} ⊆ δ∗B(shifta(t)). To this end, take a ∈ Σ and
assume that p ∈ δ∗A(t). We need to show that p[a] ∈ δ∗B(shifta(t)). As p ∈ δ∗A(t), there
exists a transition b(p1, p2) → p of A such that p1 ∈ δ∗A(t1) and p2 ∈ δ∗A(t2). Since
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b(p1, p2)→ p is a transition of A, we can apply inference rule S2 of the construction
of B in Figure 10.11, implying that, since a ∈ Σ, @(p1[a], p2[b])→ p[a]) is a transition
in B. The induction hypothesis applied to t1 and t2 yields that, for every a1, a2 ∈ Σ,
δ∗B(shifta1(t1)) = {p1[a1] | p1 ∈ δ∗A(t1)} and δ∗B(shifta2(t2)) = {p2[a2] | p2 ∈ δ∗A(t2)}.
Hence, we have that

p[a] ∈ δ∗B(@(shifta(t1) shiftb(t2))) = δ∗B(shifta(t)).

For the inclusion δ∗B(shifta(t)) ⊆ {p[a] | p ∈ δ∗A(t)}, let a ∈ Σ and p[a] ∈
δ∗B(shifta(t)). By definition of shifta, we have that p[a] ∈ δ∗B(@(shifta(t1) shiftb(t2))).
By induction, we have δ∗B(shifta(t1)) = {p1[a] | p1 ∈ δ∗A(t1)} and δ∗B(shiftb(t2)) =
{p2[b] | p1 ∈ δ∗A(t2)}. Hence, there exist p1, p2 ∈ QA such that @(p1[a], p2[b]) → p[a]
is a transition in B. According to inference rule S2, we have that b(p1, p2) → p is a
transition of A. Hence, p ∈ δ∗A(b(t1t2)) = δ∗A(t).

Proposition 10.26. Let A = (QA,Σ⊥, δA, FA) be a NBTA and B = (QB,Σ@, δB, FB)
be the above defined STA. Then L(B) = shift(L(A)).

Proof. Let t ∈ L(A) and let s = shift(t). By definition of the shift function, we
have that t = a(⊥ t2) for some a ∈ Σ and t2 ∈ bTΣ⊥

, such that shift(t) = shifta(t2).
Furthermore, there exists a p ∈ FA∩δ∗A(t). Let p2 ∈ δ∗A(t2) be such that a(p1, p2)→ p
is a transition of A for some p1 ∈ QA. Notice that p2[a] ∈ FB. Lemma 10.25 proves
p[a] ∈ δ∗B(shifta(t2)). Thus, s = shifta(t2) ∈ L(B).

For the converse, let s ∈ L(B). The shift function is one-to-one and onto, so there
exists some tree t such that s = shift(t). It remains to show that t ∈ L(A). By
definition of the shift function, t has the form a(⊥ t2) and s = shift(t) = shifta(t2).
There exists a p[a] ∈ FB such that p[a] ∈ δ∗B(shifta(t2)). By Lemma 10.25, it follows
that p ∈ δ∗A(t2). By definition of FB it holds that δ∗A(a(⊥ p)) ∩ FA 6= ∅, where
δ∗A(a(⊥ p)) denotes {δ∗A(a(⊥ t)) | p ∈ δ∗A(t)}. Thus, t = a(⊥ t2) ∈ L(A) so that
s = shift(t) ∈ shift(L(A)).

Theorem 10.27. For every regular language L of unranked trees over Σ, the size of
the minimal DBTA the previous-sibling last-child encoding TLU is at most quadrati-
cally smaller that the minimal deterministic STA for L.

Proof. Let A = (QA,Σ⊥, δA, FA) be the minimal deterministic DBTA recognizing
TLU. The above defined DBTA B = (QB,Σ@, δB, FB) is deterministic and a factor
of |Σ| larger than A and recognizes curry(L):

L(B) = shift(L(A)) by Proposition 10.26
= shift(TLU)
= curry(L) by Proposition 10.24

By Proposition 10.15, the minimal deterministic STA recognizing L is thus smaller
or equal in size to B, that is, at most a factor of |Σ| larger than A.

We give two examples relating minimal DBTAs with respect to the previous-
sibling last-child encoding to minimal deterministic stepwise tree automata. The
first example proves that the quadratic construction of Theorem 10.27 is optimal.
The second one illustrates that minimal DBTAs over the previous-sibling last-child
encodings can be exponentially larger than minimal STAs.
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Proposition 10.28. There exists an infinite class of languages (Ln)n∈N such that
for every Ln, the minimal deterministic STA for Ln is quadratically larger than than
the minimal DBTA for TLnU.

Proof. For every n ∈ N, we define a tree language Ln such that the minimal STA for
Ln is quadratically larger than the minimal DBTA accepting TLnU. Indeed, consider,
for every n ∈ N, the regular tree language Ln = {bi(bi(a · · ·a︸ ︷︷ ︸

n

)) | 1 ≤ i ≤ n} over the

alphabet Σn = {b1, . . . , bn, a}.
The following DBTA An = (Qn,Σn ∪ {⊥}, δn, Fn) recognizes TLnU, has n + 2

states {a1, . . . , an, b1, . . . , bn,⊥, ok}, where ok is the only final state, and the following
transitions:

• ⊥ → ⊥;

• a(⊥ ⊥)→ a1;

• a(ak ⊥)→ ak+1, for every 1 ≤ k < n;

• bi(⊥ an)→ bi, for every 1 ≤ i ≤ n; and,

• bi(⊥ bi)→ ok.

We show that the minimal stepwise automaton for Ln has size at least n2+n+2. To
this end, we apply the Myhill-Nerode Theorem 10.18 for stepwise tree automata. We
show that index of ≡Ln

is at least n2 + n+ 2. It is easy to see that the sets Ln, {a},
and {bi} for i = 1, . . . , n form n+2 equivalence classes of ≡Ln

. Furthermore, consider
the trees ti1,j1 = bi1(a

j1) and ti2,j2 = bi2(a
j2 ) for 1 ≤ i1, i2, j1, j2 ≤ n. Suppose that

i1 6= i2 or j1 6= j2, and consider the context C = bi1(•(a
n−j1)). Then we have that

C[ti1,j1 ] ∈ Ln, while C[ti2,j2 ] 6∈ Ln. Hence, every ti1,j1 and ti2,j2 are in different
equivalence classes when i1 6= i2 or j1 6= j2, which implies that that the index of ≡Ln

is at least n2 + n+ 2.

The translation from minimal deterministic stepwise automata to minimal DBTA
for the previous-sibling last-child encoding of its language can encoding can be expo-
nential in the worst case, as we show next.

Proposition 10.29. There exists an infinite class of languages (Ln)n∈N such that
for every Ln, the minimal deterministic STA for Ln is exponentially more succinct
than the minimal DBTA for the encoding TLnU.

Proof. The proof is based on the fact that the smallest DFA for the union of an
arbitrary number of DFAs can be exponentially larger than the sum of their sizes (see,
for example, [PS02]). Indeed, let Aj to be the minimal DFA accepting (apj )∗, where
pj denotes the j-th prime number. Then, the minimal size of the DFA for (ap1)∗ ∪
· · · ∪ (apn)∗ is

∏

j=1,...,n pj , which is exponentially larger than
∑

j=1,...,n pj when n
is arbitrary. The proposition now holds for the tree languages Ln with alphabet
{1, . . . , n, a}:

Ln :=
⋃

j=1,...,n

{j(w) | w ∈ L(Aj)}.
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Figure 10.13: Illustration of the languages used in the proof of Proposition 10.29.

We first show that, for every n ∈ N, there exists a stepwise automaton for Ln

of size
∑

j=1,...,n pj . Let Bn be the minimal DFA with alphabet {1, . . . , n, a}, that
accepts the string language ∪nj=1j(a

pj )∗. The size of Bn is 2+
∑

j=1,...,n pj . It can be
turned into an STA Sn = (Q,Σ, δ, (Ia)a∈Σ, F ) for Ln by setting Ia = a, Ij = δ∗Bn

(j),
removing the initial state of Bn and adding the state a. This results in an STA of
size 2 +

∑

j=1,...,n pj .
It remains to show that the minimal DBTA for TLnU has size 2 +

∏

j=1,...,n pj .
We show that the index of ≡TLnU is at least that large. We only consider equivalence
classes that contain a tree t for which there exists a context C such that C[t] ∈ Ln.
One equivalence class of ≡TLnU consists precisely of the trees in TLnU. Notice that
these trees always have some j as their root symbol. A second equivalence class
consists of the singleton {⊥}. The remaining N equivalence classes consist of trees
that have their root labeled with a. These equivalence classes are isomorphic to the
equivalence classes induced by the minimal DFA for (ap1)∗∪· · ·∪(apn)∗. Indeed, let φ
be the function that maps the binary trees of the form a(a(· · · a(⊥ ⊥) · · · ⊥) ⊥) (with
k occurrences of a) to the string ak. Then, φ is isomorphic. It is easy to see that a
set of trees S is an equivalence class of ≡TLnU if and only if φ(S) is an equivalence
class of ≡(ap1)∗∪···∪(apn )∗ . Hence, N =

∏

j=1,...,n pj.

10.4.4 Converting DTAs into Stepwise Tree Automata

In this section, we discuss how NTAs (and DTAs) can be converted to STAs. We also
present some comparative results regarding their minimal size.

First, we convert NTAs into NPTAs. Given an NTA A = (Q,Σ, δ, F ), we define
a parallel tree automaton PTA(A) := (Q,Σ, (Aa)a∈Σ, F, o) with the same states and
final states such that:

• Aa is the union of all NFAs B for which δ(q, a) = L(B) for some q ∈ Q; and,
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• o(FB) = q, for every δ(q, a) = L(B) with B = (QB, Q, δB, IB , FB).

This transformation preserves unambiguity but not determinism, that is, DTA(DFA)s
are mapped to UTA(UFA)s. The reason why determinism fails is that the union of
DFAs with disjoint languages is unambiguous, but not necessarily deterministic (it
may have multiple initial states).

As we showed in Proposition 10.22, every PTA can be rewritten as an STA with
fewer or equally many states. In fact, this rewriting can be performed by a natural
transformation which preserves determinism. As we explain next, the idea is to unify
all NFAs of a PTA into a single NFA.

Let A = (QA,Σ, (A
a)a∈Σ, FA, o) be an NPTA and let, for every a ∈ Σ, Aa =

(Qa, QA, δa, Ia, Fa). We define an STA B = (QB,Σ, δB, (I
a
B)a∈Σ, FB) that recognizes

the same language. Its set of states QB is ⊎a∈ΣQa and the set of final states FB is
defined as o−1(FA) = {q | o(q) ∈ FA}. The transitions of B are then given by the
following two inference rules:

q1
p
→ q2 is a transition in Aa q ∈ o−1(p)

q1
q
→ q2 is a transition in B

q ∈ Ia a ∈ Σ

q ∈ IaB

The STA in Figure 10.7, for instance, is the translation of the PTA in Figure 10.8.
The main difference is that the STA shares the states of all NFAs of the PTA. It is
this kind of sharing that allows an STA to be more succinct in some cases.

In general, the above translation preserves runs, successful runs, unambiguity,
tree languages, determinism, and the number of states. By composing the two above
automata conversions, we obtain the following.

Proposition 10.30. Every DTA(DFA) or UTA(UFA) can be translated in ptime to
an equivalent unambiguous PTA or unambiguous STA with equally many states.

Of course, all these classes of automata allow for determinization, but possibly with
exponential blow up. Hence, minimal deterministic STAs are at most exponentially
larger than minimal DTA(DFA)s.

Conversely, it can be shown analogously as in the proof of Proposition 10.29 that
minimal deterministic STAs can also be at least exponentially larger than minimal
DTA(DFA)s. However, a bit of care needs to be taken for the disjointness condition
of the regular languages in DTAs.

Essentially, it has to be argued that, in general, a disjoint union of DFAs can be
exponentially smaller than the minimal DFA accepting the union of the languages.
This can be done as follows. Let, for every j ∈ N, pj denote the j-th prime number.
We now define, for every n ∈ N, a language Ln for which the minimal DFA has size
at least

∏n
j=1 pj and which can represented with a disjoint union DFAs of which the

sum of the sizes is at most
∑n

j=1 p
3
n.

Thereto, let n ∈ N0. Then, define, for each j = 1, . . . , n, An
j to be the minimal

DFA accepting the language defined by the regular expression bj(bpnbpj )∗. Obviously,
the intersection of the languages defined by the An

j is empty, as each An
j only accepts

strings of which the length is j modulo pn. As the size of each An
j is smaller than p3n,

the sum of the sizes of the An
j is bounded from above by

∑n
j=1 p

3
n.
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Finally, we have to argue that the minimal DFA for Ln has size exponential in n.
This follows from Theorem 4 in [PS02], where it is shown that the minimal DFA for
the union of L(An

1 )∪· · · ∪L(A
n
n) is at least LCM(p1, . . . , pn), which is

∏n
j=1 pj . Here,

LCM denotes the least common multiple. Hence, we have obtained the following.

Proposition 10.31. There exists an infinite class of languages (Ln)n∈N such that
for every Ln, the minimal deterministic STA for Ln is exponentially larger than the
minimal DTA(DFA) for Ln.

10.5 Restrained Competition Schemas

We now focus on a class of top-down deterministic models. According to the definition
of Brüggemann-Klein, Murata and Wood, a NTA A is top-down deterministic if, for
every transition δ(q, a) = L, where L is a regular language over states, the language
L contains at most one string of length n for every n ∈ N [BKMW01].

In this section, however, we treat a different notion, namely the class of restrained
competition EDTDs, defined in Chapter 8. Under the assumption that EDTDs are
represented as EDTD(DFA)s, we show that the latter notion still allows for

(i) a ptime minimization algorithm; and

(ii) uniqueness up to isomorphism of the minimal model.

Analogously as we did for unranked tree automata previously in the chapter, we
will use DFAs to represent internal regular languages in (extended) DTDs. Recall from
the beginning of the chapter, that the size |D| of an extended DTDD = (Σ,∆, d, sd, µ)
is |∆|+

∑

ai∈∆ |Dai |, where d(ai) = Dai .
Given an EDTD D, we say that minimizing D is the act of finding an EDTD D′

such that L(D) = L(D′) and D′ is the smallest EDTD with this property. The goal
of this section is to prove the following theorem:

Theorem 10.32. Every restrained competition EDTD(DFA) can be minimized in
polynomial time. This minimal restrained competition deterministic EDTD(DFA) is
unique up to isomorphism.

We first give the minimization algorithm and we then prove Theorem 10.32 in a
series of lemmas.

Let D = (Σ,∆, d, sd, µ) be a restrained competition EDTD. The following algo-
rithm minimizes D:

(1) Reduce D, that is,

(a) remove all symbols ai from ∆ for which L((D, ai)) = ∅, and the corresponding
rules ai → Dai from d; and,

(b) remove all symbols ai from ∆ which are not reachable in d, and the corre-
sponding rules ai → Dai .

(2) Test, for each ai and aj in ∆, i < j, whether L((D, ai)) = L((D, aj)). If
L((D, ai)) = L((D, aj)), then
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(a) replace all occurrences of aj in the definition of d by ai. That is, let, for every
bk ∈ ∆, Dbk be the DFA such that d contains the rule bk → Dbk . Then,
replace every transition δ(q1, a

j) = {q2} of Dbk by δ(q1, a
i) = {q2}.

(b) remove aj from ∆; and,

(c) remove the rule aj → Daj from d.

(3) For each rule ai → Dai in d, minimize Dai .

We argue that the algorithm can be executed in polynomial time. Step (1) can be
performed in polynomial time by a polynomial number of reachability and emptiness
tests of DTDs. Testing whether a symbol is reachable is in nlogspace, by a straight-
forward reduction to graph reachability. Testing whether a DTD(DFA) defines an
empty language is in ptime due to Proposition 3.16. The equivalence test in step
(2) is in ptime by Theorem 9.4. We note that the theorem is formulated in terms of
regular expressions, but that the proposed algorithm also works for EDTD(DFA)s.
Indeed, in that case, the Glushkov automata do not have to be considered, as the
EDTD(DFA) already contains DFAs for the internal languages. A crucial observa-
tion, however, is that the removal of the types in all transitions of a DFA for a
restrained competition language preserves determinism. Step (3) can be carried out
in polynomial time since minimizing DFAs is in polynomial time [HMU01].

Let Dmin be the EDTD obtained by applying the above algorithm on a restrained
competition EDTD D. It remains to show that Dmin is the minimal restrained com-
petition EDTD for L(D). More formally, we have to show that

(a) Dmin is restrained competition;

(b) L(Dmin) = L(D); and that

(c) every minimal restrained competition EDTD D0 for L(D) is isomorphic to Dmin.

Obviously (a) and (b) hold. We proceed with showing (c).

Lemma 10.33. Let D1 and D2 be reduced, restrained competition EDTD(DFA)s such
that L(D1) = L(D2) and let t ∈ L(D1) = L(D2). Let t

′
1 and t′2 be the unique witnesses

of t for D1 and D2, respectively, and let u be a node in t. Then L((D1, lab
t′1(u))) =

L((D2, lab
t′2(u))).

Proof. Let ai and aj be the label of u in t′1 and t′2, respectively.
If |L((D1, a

i))| = |L((D2, a
j))| = 1, the proof is trivial. We show that L((D1, a

i))
⊆ L((D2, a

j)). The other inclusion follows by symmetry.
Towards a contradiction, assume that there exists a tree t0 ∈ L((D1, a

i)) −
L((D2, a

j)). As D1 is reduced, there exists a tree T0 in L(D1), such that (i) t0
is a subtree of T0 at some node v; and, (ii) labT

′
0(v) = ai, where T ′0 is the unique

witness of T0 in D1. As labt
′
1(u) = ai = labT

′
0(v), the tree t3 = t[u ← t0] is also

in L(D1). As D1 and D2 are equivalent, t3 is also in L(D2). Notice that u has the
same ancestor-sibling-string in t and in t[u← t0]. By Theorem 8.19, D2 has ancestor-

sibling-based types, which implies that labt
′
3(u) = aj for the unique witness t′3 of t3

in D2. Therefore, t0 ∈ L((D2, a
j)), which leads to the desired contradiction.
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Let Dmin = (Σ,∆min, dmin, sdmin, µmin) be an EDTD which is obtained by applying
the above minimization algorithm to an EDTD D over Σ. The next lemma states
that every minimal restrained competition EDTD has an equal number of types as
Dmin.

Lemma 10.34. Let D0 = (Σ,∆0, d0, sd0 , µ0) be a minimal restrained competition
EDTD for L(Dmin). Then, for every a ∈ Σ, we have that

|{ai ∈ ∆0 | µ0(a
i) = a}| = |{aj ∈ ∆min | µmin(a

j) = a}|.

Proof. Fix an a ∈ Σ and denote the sets {ai ∈ ∆0 | µ0(a
i) = a} and {aj ∈

∆min | µmin(a
j) = a} by Types0(a) and Typesmin(a) respectively. We first show that

|Types0(a)| cannot be larger than |Typesmin(a)|. Towards a contradiction, assume
that |Types0(a)| > |Typesmin(a)|. For every ai ∈ Types0(a), let ti be an arbitrary
tree so that ai is a label in the unique witness t′i,D0

of ti in D0. Also, let t′i,Dmin
be

the unique witness of ti in Dmin.
According to the Pigeonhole Principle, there exist two trees t′j,D0

and t′k,D0
for

which the aj-labeled node u in t′j,D0
and the ak-labeled node v in t′k,D0

is labeled by

the same aℓ in both t′j,Dmin
and t′k,Dmin

.

From Lemma 10.33, it now follows that L((D0, a
j)) = L((Dmin, a

ℓ)) = L((D0, a
k)).

Therefore, replacing every ak with aj in D0 results in an equivalent, strictly smaller
restrained competition EDTD than D0. This contradicts that D0 is minimal.

The other direction can be proved completely analogously, with the roles of D0

and Dmin interchanged. Now the contradiction is that Dmin cannot be the output
of the minimization algorithm, as there still exist aj and ak in Typesmin for which
L((Dmin, a

j)) = L((Dmin, a
k)).

We now know that every minimal restrained competition EDTD for L(Dmin) has
the same number of types for each alphabet symbol. We argue that, for every mini-
mal restrained competition EDTD D0 = (Σ,∆0, d0, sd0 , µ0) accepting L(Dmin), there
exists an bijection I between ∆0 and ∆min such that I(ai) is the unique aj ∈ ∆min for
which L((D0, a

i)) = L((Dmin, a
j)). But this immediately follows from Lemma 10.33.

Let bk be an arbitrary symbol in ∆min. Let Lbk and LI(bk) denote the languages

L(Abk) and L(AI(bk)) for the DFAs Abk = dmin(b
k) and AI(bk) = d0(I(b

k)), respec-

tively. Then, we have that Lbk = I−1(LI(bk)) (where we denoted by I the homo-
morphic extension of I to string languages). As minimal DFAs for a given regular
language are unique up to isomorphisms, we have the following lemma:

Lemma 10.35. Every minimal restrained competition EDTD D0 for L(Dmin) is
isomorphic to Dmin.

Theorem 10.32 now follows from Lemma 10.35.
The next corollary is immediate from the observation that, given a single-type

EDTD, the minimization algorithm also returns a single-type EDTD.

Corollary 10.36. Every single-type EDTD(DFA) can be minimized in ptime. This
minimal single-type EDTD is unique up to isomorphism.
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Discussion

The focus of the second part of this dissertation was mainly on the expressive power
and complexity of XML schema languages. Three classes of XML schema languages
have been quite extensively studied in Chapters 8, 9, and 10: schemas with the Ele-
ment Declarations Consistent (EDC) restriction, schemas which are 1-pass preorder
typeable (1PPT), and schemas which are top-down typeable (TDT).

We have argued that EDC does not capture the complete class of all efficiently
typeable schemas, not in a streaming context and not in a top-down processing con-
text. Indeed, it turns out that the classes of schemas with 1PPT and TDT define
more liberal notions of typeability and are quite robust since they can be character-
ized in several natural ways. Interestingly, the latter semantically defined classes can
be captured by EDTDs with restricted regular expressions: restrained competition
and unambiguously typed regular expressions. So, the global constraints of 1PPT
and TDT are characterized by local constraints on regular expressions. Although
restrained competition or unambiguously typed regular expressions are not syntacti-
cal, just like the one-unambiguous regular expressions characterizing Unique Particle
Attribution (UPA), a polynomial time algorithm exists to recognize them. In terms
of expressive power, the classes of schemas with EDC, 1PPT, and TDT form a very
natural (strict) hierarchy. They allow types of elements to depend on the labels of
(1) their ancestors, (2) their ancestors and their left siblings, and (3) their ancestors
and their left and right siblings, respectively. The latter dependencies lead the way
to syntactical characterizations for schemas with EDC, 1PPT, and TDT. The latter
characterizations are given in terms of the ancestor-based, ancestor-sibling-based, and
ancestor-all-sibling-based (or spine-based) schemas of Chapter 8.

Such syntactical characterizations are of particular interest. Indeed, in [BMNS05],
a practical study investigated to which extent the features not present in DTDs are
actually used in XML Schema Definitions (XSDs) occurring in practice. To this end,
a corpus of XSDs was harvested from the web, including many high-quality schemas
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representing various XML standards. Concerning expressive power we were surprised
that only 15% of the XSDs in our corpus use typing in a way that goes beyond the
power of DTDs. Moreover, of this 15% the vast majority of the schemas use typing in
its most simplistic form: types only depend on the parent context. Although it might
indeed be the case that advanced expressiveness is not required in practice, another
plausible explanation is that the actual modeling power of XSDs remains unclear
to most users: the XML Schema specification is very hard to read and the effect
of constraints on typing and validation is not fully understood. Thus, the average
XML practitioner would benefit from a clear description of what kind of context
dependencies can actually be expressed within XML Schema. We believe that the
syntactical characterization of the expressive power of XML Schema are quite helpful
in this respect.

In Chapter 8, we argued that both EDC and UPA already imply 1PPT (and
therefore efficient typing). Thus, with respect to efficient typing, when adhering to
UPA, it does not make much sense to also enforce EDC and vice-versa. It should be
noted that the class of EDTDs satisfying both EDC and UPA (like XML Schema)
are a strict subclass of the EDTDs satisfying only one of EDC and UPA.

In formal language terms, schemas with EDC, 1PPT, and TDT are characterized
as single-type, restrained competition, and top-down deterministic EDTDs, respec-
tively. We mentioned in Chapter 8 that Murata, Lee, and Mani already showed that,
in terms of expressive power, DTD 6⊆ EDTDst 6⊆ EDTDrc 6⊆ EDTD [MLMK05]. They
exhibited concrete tree languages that are in one class but not in the other. We ex-
tended this hierarchy with the class EDTDtd of top-down deterministic EDTDs, which
are more expressive than EDTDrcs but still less expressive than EDTDs, which de-
fine the full class of (homogeneous) unranked regular tree languages. Our semantical
characterizations provide tools to show inexpressibility for arbitrary tree languages.
For instance, using the closure of top-down deterministic EDTDs under spine-guarded
subtree exchange, it is immediate that EDTDtd cannot define the set of all Boolean
tree-shaped circuits evaluating to true.

Our further investigation leads us to the complexity of several decision problems
for the latter restricted EDTDs, such as inclusion, equivalence, and intersec-

tion non-emptiness. Naturally, the complexity lower bounds for these problems for
the regular expressions used in the EDTDs also carry over to the problems for the
EDTDs themselves. However, in Chapter 9, we showed that, for DTDs and single-
type EDTDs the complexity upper bounds for inclusion and equivalence for the
classes of regular expressions also carry over to the corresponding problems for the
EDTDs themselves (Theorem 9.4). A similar result holds for restrained competi-
tion and top-down deterministic EDTDs, but it is more restricted, that is, the upper
bounds for inclusion and equivalence carry over from the class of regular expres-
sions without the types used in the EDTDs. However, these results do not hold for the
intersection non-emptiness problem. Even though the complexity upper bounds
carry over to DTDs, this is very unlikely to be the case for single-type, restrained
competition, or top-down deterministic EDTDs, unless pspace = exptime.

We also investigated the minimization problem for these schemas. In Chapter 10
we obtained that, when content models are represented by deterministic finite au-
tomata, it is possible to minimize restrained competition EDTDs in polynomial time.
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In this class, minimal EDTDs are even unique up to isomorphism. Moreover, as
the minimization algorithm preserves the single-type property of its input EDTD,
we also obtain that the above results hold for single-type extended DTDs. When
content models are represented by regular expressions, or nondeterministic automata,
the minimization problem for schemas turns pspace-hard, since it is at least as hard
as the minimization problem for the representation of the content models.

Based on the above results, we make the following recommendation. It is clear that
the EDC and UPA constraints imply the existence of efficient typing algorithms. How-
ever, we have shown that their expressive power can at least be extended to the level
of restrained competition EDTDs without having a significant negative effect on the
complexity of validation, or on decision problems such as recognition, simplifica-
tion, inclusion, equivalence, intersection non-emptiness, or minimization.
So, for these reasons we propose to replace the EDC and the UPA constraints by
restrained competition EDTDs.

Although we think the restriction to unambiguous typing increases transparency
and efficiency of validation, the recommendations in the present dissertation do not
justify the former. For instance, Relax NG as well as the formal model for XML
Schema of Siméon and Wadler [SW03] allow ambiguous typing to relieve users from
opaque restrictions and reaches the robust class of unranked regular tree languages
which are closed under all Boolean operations. Especially in the context of data
exchange it is of extreme importance that a schema language is closed under union
(which is not the case for XML Schema). However, if unambiguous typing and efficient
processing is required, it should not be enforced by ad-hoc restrictions, but by the
most liberal ones. We believe the restrictions to 1-pass preorder typeable schemas or
top-down typeable schemas are adequate. Moreover, they can be reached by allowing
restricted regular expressions or by making use of the equivalent syntactic framework
of ancestor-sibling-based or spine-based schemas.

In Chapter 10 we also investigated a larger class of tree languages: we studied min-

imization for automata for unranked regular tree languages. Here, we first studied
minimization for the bottom-up deterministic unranked tree automata which are stan-
dard in database theory (see Section 2.2), assuming that the languages in their transi-
tion function are represented by DFAs. We denote the latter class by DTA(DFA). We
showed that the minimization problem for DTA(DFA)s is np-complete. The latter
result is, when extrapolating from known results about string and ranked tree au-
tomata, quite unexpected from a “deterministic” representation of regular languages.
The source of this complexity is a minor amount of non-determinism that is still
present in the manner how DTA(DFA)s are represented. Indeed, DTA(DFA)s still
allow to represent regular languages over states by a disjoint union of DFAs , as we
examplify in Chapter 10. Although the latter representation is unambiguous, it is not
deterministic, in the sense that there is one nondeterministic step in the choice of an
initial state. It can also be observed that the canonical translations of DTA(DFA)s
over the well-known ranked encodings result in unambiguous rather than deterministic
binary tree automata [GKPS05].

As the np-hardness result for minimization is somewhat unsatisfying, we investi-
gated several more recent notions of determinism for unranked tree automata. We
compared three different notions: deterministic parallel unranked tree automata,
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which are defined independently in [CLT05] and [RB04], deterministic stepwise tree
automata [CNT04], and deterministic ranked tree automata over the first-child next-
sibling encoding. In general, the stepwise tree automata provide the smallest mini-
mal automata: they are generally quadratically smaller than parallel unranked tree
automata and exponentially smaller than ranked tree automata over the first-child
next-sibling encoding. Moreover, since they have a direct connection to ranked tree
automata through an encoding based on currying, a ptime minimization algorithm
and a Myhill-Nerode theorem is immediate.

In spite of the quadratical difference in minimal size, deterministic stepwise au-
tomata and deterministic parallel unranked tree automata are very closely related.
Essentially, the differences between parallel unranked tree automata and stepwise
automata are that

1. parallel unranked tree automata use an output function to relate states of the
internal DFAs to the states of the tree automaton; and that

2. parallel unranked tree automata require the state sets of the internal DFAs to
be disjoint.

While the first difference does not have much effect on the size of minimal deterministic
parallel unranked tree automata, it is the second difference that causes them to be
quadratically larger than stepwise automata.

Future Work

The results in Part II lend themselves to the design and development of a theoretically
well-funded software tool for manupulating XML schemas. Indeed, by implementing
the algorithms presented in Part II a tool can be constructed that

(1) minimizes a given schema;

(2) decides whether one schema is included in another;

(3) translates a schema into a schema of a less expressive schema language (such
that the constructed schema defines the smallest language containing the given
language);

(4) constructs the union, intersection, difference of schemas; and

(5) decides whether a set of schemas defines a common document.

In the above, the word “schema” should be interpreted as the restricted EDTDs we
studied in Part II. In an initial phase, a prototype can be built that works on EDTDs,
which can be extended to work with DTDs, XML Schema Definitions and Relax NG
schemas in a later phase. We believe that such a tool is useful in the process of schema
development and in areas such as data integration and translation.
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Samenvatting

XML (eXtensible Markup Language) is tijdens de laatste jaren geëvolueerd tot het
standaard-dataformaat voor de uitwisseling van gegevens op het internet [ABS99].
De belangrijkste voordelen van XML zijn dat het een standaard- en intuitive manier
voorziet om een zeer groot bereik aan gegevens te modelleren, en dat het gebruikers
toelaat om hun eigen tags in documenten te definiëren. Dit laatste geeft gebruikers de
mogelijkheid om een eigen formaat voor XML-documenten te ontwikkelen, hetwelk
wordt gedefinieerd aan de hand van een XML-schema. De aanwezigheid van zo’n
schema verbetert de efficiëntie van de automatisering van vele taken, zoals bijvoor-
beeld het verwerken van query’s, query-optimalisatie en automatische data-integratie.

XML-Typechecking

Op het internet worden schema’s gebruikt om de uitwisseling van gegevens te va-
lideren. In een typisch scenario ontwikkelt een zekere gemeenschap van gebruikers
een zeker schema en wordt er binnen de gemeenschap afgesproken om enkel XML-
gegevens te ontwikkelen die conform zijn met dit schema. Zulke scenario’s motiveren
het typecheckingprobleem: in compile-time nagaan of elk XML-document dat resul-
teert uit de toepassing van een zekere transformatie op een geldig invoerdocument,
voldoet aan een uitvoerschema [Suc01, Suc02].

Het eerste deel van dit proefschrift bestudeert het typecheckingprobleem voor
XML-naar-XML-transformaties. Formeel gezien bestaat de invoer van het typecheck-
ingprobleem uit een invoertype, een uitvoertype en een transformatie. Het probleem
bestaat er dan in een oplossing te geven voor de vraag of, voor elk document in het
invoertype, het resultaat van het toepassen van de transformatie op dit document aan
het uitvoertype voldoet. Zulke types modelleren we met formele modellen voor XML-
schemas: Document Type Definitions (DTDs) en hun robuuste extensie, de eindige
(unranked) boomautomaten [BKMW01, LMM00, MSV03], welke ook gemodelleerd
kunnen worden als extended DTDs [PV00, BPV04]. Deze laatste klassen dienen als
een formeel model voor de taal Relax NG [CM01].

Het ligt voor de hand dat typechecking afhankelijk is van de gebruikte transfor-
matietaal. Zoals aangetoond door Alon et al. [AMN+03a, AMN+03b], is het zo dat
het typecheckingprobleem snel onbeslisbaar wordt wanneer de transformatietalen de
mogelijkheid hebben om data-waarden met elkaar te vergelijken. Aan de andere kant,
hebben Milo, Suciu, en Vianu geargumenteerd dat XML-documenten geabstraheerd
kunnen worden door gelabelde, geordende bomen en dat de kracht van de meeste
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XML-transformatietalen kan uitgedrukt worden door k-pebble transducers wanneer
data-waarden buiten beschouwing worden gelaten [MSV03]. De auteurs hebben verder
bewezen dat het typecheckingprobleem in deze context beslisbaar is. Meer bepaald,
gegeven twee types τ1 en τ2, voorgesteld door boomautomaten, en een k-pebble trans-
ducer T , is het beslisbaar of T (t) ∈ τ2 voor elke t ∈ τ1. Hier noteren we de boom die
bekomen wordt door T uit te voeren op t door T (t). De complexiteit van dit probleem
is desalniettemin niet-elementair en kan ook niet verbeterd worden [MSV03].

Om deze hoge complexiteit te verlagen, beschouwen we veel eenvoudigere boom-
transformaties die overeenkomen met structurele recursie op bomen [BFS00] en met
eenvoudige top-down XSLT-transformaties [BMN02, Cla99]. In essentie willen we
transformaties modelleren die gebruikt worden om documenten te herstructureren en
om er informatie uit te filteren, dus niet voor geavanceerde ondervragingen. In essen-
tie bestaat een transformatie uit het éénmaal doorlopen van een invoerboom van de
wortel tot de bladeren, waarbij elke knoop wordt vervangen door een nieuwe, mogelijk
lege, boom.

We bestuderen typechecking-algoritmes die compleet zijn. Met andere woorden,
algoritmes die voor elke mogelijke invoer het juiste antwoord geven. Deze aanpak staat
in contrast met het werk dat gedaan wordt voor algemene XML-programmeertalen,
zoals XDuce [HP03] en CDuce [BFC03]. Hier heeft men het doel om typechecking-
algoritmes te ontwikkelen die snel en sound zijn. Een algoritme is sound als, indien
het een positief antwoord teruggeeft, dit antwoord ook correct is. Dit betekent dat
het kan voorkomen dat een invoer correct is, maar toch niet aanvaard wordt door
de typechecker. Voor algemene XML-programmeertalen is compleet typechecking
immers onmogelijk, aangezien de klasse van XML-transformaties onder beschouwing
Turing-compleet is. In ons geval heeft het zin om complete typechecking-algoritmes
te onderzoeken, daar onze klasse van transformaties enkel eerder eenvoudige transfor-
maties bevat en zeker niet Turing-compleet is.

We bestuderen het typecheckingprobleem in Hoofdstukken 4, 5 en 6. Ons initiële
doel is een niet-triviaal scenario te ontdekken waarvoor het typecheckingprobleem in
ptime zit. We parametrizeren het typecheckingprobleem door verschillende beperkin-
gen die we de transformaties opleggen (deleting, non-deleting, begrensd of onbegrensd
copying) en we beschouwen zowel boomautomaten als DTDs als invoer- en uitvoer-
schema’s. We tonen aan dat het typecheckingprobleem exptime-compleet is in de
meest algemene situatie die we toelaten. Vertrekkende van dit resultaat, experimen-
teren we met de verschillende beperkingen die we kunnen opleggen aan het typechec-
kingprobleem, tot we een eerste situatie vinden waarin typechecking in polynomiale
tijd is. In deze situatie laten we helemaal geen deletion toe in de transformaties en is
het aantal copies dat een transformatie in één stap kan maken op voorhand vastgelegd.

Het scenario dat bestudeerd wordt voor typechecking in Hoofdstuk 4 is vrij al-
gemeen, in de zin dat zowel het invoer- als het uitvoerschema deel uitmaken van de
invoer van het typecheckingprobleem. Voor verschillende scenario’s is het namelijk
denkbaar is dat het invoer en/of uitvoerschema steeds hetzelfde is. Dit kan bijvoor-
beeld voorkomen als gegevens telkens worden uitgewisseld van en/of naar een vaste
gemeenschap. Daarom herbekijken we de scenario’s die we in Hoofdstuk 4 onderzoch-
ten en bestuderen we in welke mate de complexiteit verlaagt onder de veronderstelling
dat het invoer- en/of uitvoerschema vast is.
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Hoewel Hoofdstukken 4 en 5 een vrij gedetailleerd overzicht geven van de complexi-
teit van typechecking, zijn de gevallen waarin we een polynomiale-tijd typechecking-
algoritme gevonden hebben tamelijk gerestricteerd. De voornaamste reden hiervoor
is dat elk van deze gevallen deletion in de transformaties volledig uitsluit. Inderdaad,
vele eenvoudige filtertransformaties selecteren delen van een invoerdocument terwijl
ze gewoonweg de niet-interessante gedeeltes negeren.

Daarom onderzoeken we in Hoofdstuk 6 grotere en meer flexibele klasses waar-
voor het typecheckingprobleem in polynomiale tijd zit. Door onze beperkingen op de
schematalen en transformaties iets te versoepelen, vinden we verschillende praktisch
relevante klasses waarvoor het typecheckingprobleem in polynomiale tijd is. Boven-
dien laat ons werk een tamelijk volledig beeld zien, aangezien we ook aantonen dat
de meeste scenario’s niet kunnen uitgebreid worden zonder het typecheckingprobleem
minstens np- of conp-hard te maken. Met andere woorden, geeft ons werk meer
inzicht wanneer men snelle en complete algoritmes kan gebruiken voor het typechec-
kingprobleem en wanneer men zich best beperkt tot incomplete algoritmes.

Wanneer een gegeven transformatie niet typecheckt ten opzichte van een gegeven
invoer- en uitvoerschema, is het belangrijk om de gebruiker een reden te kunnen
teruggeven waarom de transformatie niet voldoet aan de eisen. Daarom onderzoeken
we ook het probleem om een beschrijving van een boom t in het invoerschema te geven
zodat de transformatie van t niet in het uitvoerschema zit. We bewijzen dat, voor elk
van de praktisch relevante polynomiale-tijd-fragmenten die we gëıdentificeerd hebben
in Hoofdstuk 6, het eveneens mogelijk is om in polynomiale tijd een beschrijving van
zulk een boom t te genereren.

Fundamenten van XML-Schematalen

Het eerste gedeelte van dit proefschrift richt zich vooral op de interactie tussen XML-
transformaties en -schematalen. In het tweede gedeelte wijden we onszelf volledig aan
de studie van XML-schematalen.

De gebruikelijke abstractie van XML Schema door unranked reguliere boomtalen
is niet zeer precies. Daarom geven we in Hoofdstuk 8 meer inzicht over de eigenlijke
expressieve kracht van XML Schema, door verschillende karakterisaties te geven van
de Element Declarations Consistent (EDC) regel. In het bijzonder, laten we zien
dat schemas die voldoen aan de EDC-regel in zekere zin enkel kunnen redeneren over
reguliere eigenschappen van de voorouders van knopen in een boom. We argumenteren
dat er meer robuuste, meer expressieve, maar even handelbare schematalen gevormd
kunnen worden door EDC te vervangen door de notie van 1-pass preorder typeability
(1PPT) of top-down typeability (TDT). Deze eerste is de klasse van schemas die
toelaat om het type van een element van een streaming document te bepalen op het
moment dat zijn opening tag gelezen wordt. De tweede is de klasse van schemas
die toelaten het type van een element te bepalen zonder naar zijn afstammelingen
of naar de afstammelingen van zijn broers te kijken. We tonen aan dat de klasse
van 1PPT-schema’s precies de klasse is gedefinieerd door de restrained competition
grammatica’s, welke gëıntroduceerd werden door Murata et al. [MLMK05] en dat
de TDT-schema’s overeenkomen met een natuurlijke veralgemening van top-down-
deterministische boomautomaten. Hiervan kunnen we concluderen dat de expressieve
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kracht van schema’s strikt groeit, gaande van EDC naar 1PPT en van 1PPT naar
TDT.

We karakterizeren de expressieve kracht van de EDC-regel, 1PPT en TDT in
termen van de context van knopen, sluitings-eigenschappen, toegelaten patronen en
guarded schemas. Verder tonen we aan dat het beslissen of een schema 1PPT of
TDT is in ptime zit. Beslissen of een willekeurig schema kan geschreven worden als
een 1PPT-grammatica, of als één van zijn subklassen, is moeilijker: dit probleem is
exptime-compleet.

In Hoofdstuk 9 richten we ons op de complexiteit van verschillende elementaire
beslissingsproblemen voor schemas met EDC, 1PPT en TDT. We bestuderen het
inclusion-, equivalence- en intersection-non-emptiness-probleem voor schema’s die
voorkomen in de praktijk. Zulke schema’s maken gebruik van reguliere expressies met
een zeer eenvoudige structuur: ze bestaan uit een concatenatie van factoren, waar elke
factor een disjunctie van strings is, mogelijk uitgebreid met “∗”, “+”, of “?”. Zulke
expressies noemen we CHAin Regular Expressions (CHAREs). We vinden onder-
en bovengrenzen voor de complexiteit van bovengenoemde beslissingsproblemen voor
verschillende fragmenten van CHAREs en we beschouwen eveneens beperkingen zoals
determinisme en een limiet op het aantal voorkomens van een symbool in een expres-
sie. Voor het equivalence-probleem vinden we echter enkel een initeel ptime-resultaat
en laten we de complexiteit van de meer algemene fragmenten open. We relateren de
onderzochte beslissingsproblemen met de optimalisatie van XML-schematalen door
aan te tonen dat al onze onder- en bovengrenzen voor de complexiteit voor inclusion
en equivalence van klasses van reguliere expressies ook van toepassing zijn op deze
beslissingsproblemen voor DTDs en schema’s met EDC die deze klasses van reguliere
expressies gebruiken. Voor schema’s met 1PPT en TDT geldt er een analoog resul-
taat in de zin that de bovengrenzen overgedragen worden van de overeenkomstige
klasses van reguliere expressies zonder de type-informatie die in de schema’s gebruikt
wordt. Voor het intersection-non-emptiness-probleem zijn bovengenoemde resultaten
echter niet waar. Hier tonen we aan dat de complexiteiten enkel overdragen naar
DTDs. Voor de andere schema’s dragen de complexiteiten niet over, tenzij pspace =
exptime.

Tenslotte, in Hoofdstuk 10, bestuderen we het minimalizatieprobleem voor XML-
schema’s. Het doel van dit hoofdstuk is verschillende formele modellen te onderzoeken
die toelaten om hun aantal toestanden (of types) op een efficiënte manier te minima-
lizeren.

We beginnen met het bestuderen van de unranked boomautomaten die de basis zijn
voor Relax NG [MLMK05, CM01]. We tonen aan dat, onder de veronderstelling dat de
transitiefunctie voorgestesteld wordt door deterministische eindige automaten, het mi-
nimalizatieprobleem voor de bottom-up deterministische unranked boomautomaten
gedefinieerd door Brüggeman-Klein, Murata, and Wood np-compleet is [BKMW01].
Deze automaten worden als een standaardmodel gebruikt in de gegevensbankenthe-
orie. Verder laten we zien dat minimale automaten in deze klasse niet uniek zijn op
isomorfie na.

Het bovengenoemde resultaat is niet echt bevredigend. Daarom onderzoeken we
meer recente klasses van boomautomaten die wel efficient minimalizeerbaar zijn.
We doen een vergelijkende studie tussen stepwise boomautomaten [CNT04], paral-
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lele boomautomaten [CLT05, RB04] en bottom-up deterministische boomautomaten
over de first-child next-sibling-codering van unranked bomen. We tonen aan dat de-
terministische stepwise automaten onder deze kandidaten de kleinste representaties
van reguliere unranked boomtalen vormen.

We sluiten af door het minimalizatieprobleem te onderzoeken voor de restrained
competition (of 1PPT) schema’s die we eerder in dit deel al onderzochten. In het
bijzonder tonen we aan dat het minimalizeren van restrained competition schema’s
mogelijk is in ptime en dat ze aanleiding geven tot unieke minimale schemas. Deze
resultaten zijn in de veronderstelling dat de inwendige reguliere talen in de schema’s
niet voorgesteld worden door reguliere expressies, maar door deterministische ein-
dige automaten. Moesten willekeurige reguliere expressies toegelaten zijn, zou het
minimalizatieprobleem immers pspace-compleet zijn. Verder argumenteren we dat
het minimalizatie-algoritme de EDC-eigenschap van zijn invoer behoudt. Als gevolg
hiervan, is het ook zo dat EDC-schemas minimalizeerbaar zijn in ptime.



List of Notations

(D, ai) : EDTD D with start symbol
replaced by ai, 108

(d, a) : DTD d with start symbol re-
placed by a, 14

L(·) : language defined by
2AFA, 39
DTD, 14
EDTD, 107
NFA, 10
NTA, 14
regular expression, 9
SL-formula, 11

Σ : finite alphabet, 9
HΣ : unranked Σ-hedges, 12
HΣ(Q) : Σ-hedges with leafs possibly

labeled with Q-symbols, 16
TΣ : unranked Σ-trees, 11
TΣ(Q) : Σ-trees with leafs possibly la-

beled with Q-symbols, 16
Tbc : bounded copying tree transduc-

ers, 20
Td : deleting tree transducers, 20
Tnd : non-deleting tree transducers, 20
Tuc : unbounded copying tree trans-

ducers, 20
δ∗

NTA transition function extension,
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δ∗: homomorphic extension of transi-
tion function δ, 10

T.U : previous-sibling last-child encod-
ing, 205

N : natural numbers, 9
N0 : non-zero natural numbers, 9
Q : rationals, 26
Z : integers, 29

| · | : length of
a string w, 9

| · | : size of
a DTD d, 14
a regular expression r, 10
a set S, 9
an EDTD D, 108
an NFA N , 10
an NTA B, 15

qT [w], q[w] : top level of output of a
tree transducer for a state q
and string w, 17

t1[u← t2] : tree substitution, 114
1PPT : one-pass preorder typeable, 120
2AFA : two-way alternating finite au-

tomaton, 38
2AFAlf: loop-free two-way alternating

finite automata, 39
2NFA : two-way non-deterministic fi-

nite automaton, 39

anc-all-sib-str : ancestor-sibling-string,
114

anc-sib-str : ancestor-sibling-string, 114
anc-str : ancestor-string, 113

BTA : binary tree automaton, 31

ch-str : children-string, 113
CHARE : chain regular expression, 141
curry: Curried encoding, 198

DBTA : bottom-up deterministic bi-
nary tree automaton, 31

dec
first-child next-sibling decoding, 22

depth
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depth of a hedge, 13
depth of a tree, 12

DFA : deterministic finite string au-
tomaton, 10

DPTA: deterministic parallel tree au-
tomaton, 202

DTA : bottom-up deterministic NTA,
15

DTAc : bottom-up deterministic com-
plete tree automata, 37

DTD : Document Type Definition, 13
DTD(M) : DTDs with string languages

represented byM, 14

EDC : Element Declarations Consis-
tent, 105

EDTD : extended DTD, 107
EDTDrc : restrained competition EDTD,

110
EDTDst : single-type EDTD, 109
EDTDtd : top-down deterministic EDTD,

111
enc

encoding to string over binary al-
phabet, 33

encoding to trees over fixed alpha-
bet, 33

first-child next-sibling encoding, 22

fcns: first-child next-sibling encoding,
204

l-sib-str : left-sibling-string, 114
lab

label of a node in hedge, 12
label of a node in string, 9
label of a node in tree, 12

NBTA: nondeterministic binary (or tra-
ditional) tree automaton, 31

NFA : nondeterministic finite string au-
tomaton, 10

Nodes
nodes of a hedge, 12
nodes of a string, 9
nodes of a tree, 11

NPTA : nondeterministic parallel tree
automaton, 201

NTA : nondeterministic unranked tree
automaton, 14

path : path language of a tree lan-
guage, 23

preceding : preceding of a node in a
tree, 119

preceding-subtree : preceding-subtree
of a node in a tree, 135

PTA : parallel tree automaton, 201

r-sib-str : right-sibling-string, 114
rank : rank function, 31
RE : regular expressions, 9
rhs : right hand side of tree transducer

rewrite rule, 17

SL : Specification Language, 10
spine : spine, or ancestor-all-sibling string,

114
STA : stepwise tree automaton, 197

TC[T ,S] : typechecking problem of T -
transducers w.r.t. S-schemas,
21

TDBTA : top-down deterministic bi-
nary tree automaton, 31

TDT : top-down typeable, 124
top : top of a hedge, 13

UBTA : unambiguous binary tree au-
tomaton, 31

UFA : unambiguous finite string au-
tomaton, 10

UPA : Unique Particle Attribution, 112
UPTA: unambiguous parallel tree au-

tomaton, 202
UTA : unambiguous NTA, 15

XSD : XML Schema Definition, 105
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alphabet, 9
binary, 31

ancestor-all-sibling-string, 114
ancestor-based schema, 115
ancestor-sibling-based schema, 115
ancestor-sibling-string, 114
ancestor-string, 113
assign

state to a node, 14

base symbol, 141

cell, 29
chain regular expression, 141
closure

ancestor-guarded subtree exchange,
114

ancestor-sibling-guarded subtree ex-
change, 115

label-guarded subtree exchange, 112
spine-guarded subtree exchange, 115

complete
tree automaton, 37

compressed string, 142
concatenation

string languages, 9
strings, 9

context
binary, 200
unranked, 200

copying width, 20
corridor tiling, 41

two-player, 41
Curried encoding, 198

degree of nondeterminism
NFA, 34

depth
of a hedge, 13
of a node in a tree, 12
of a tree, 12

Document Type Definition, 13
extended, 107

DTD, 13
extended, 107

EDTD
ancestor-based types, 114
ancestor-sibling-based types, 114
extended restrained competition,

135
one-pass preorder typeable, 120
preceding-based types, 120
preceding-subtree-based types, 135
pruned-envelope-based types, 124
restrained competition, 110
single-type, 109
spine-based types, 114
top-down deterministic, 111
top-down typeable, 124

Element Declarations Consistent, 105,
108

emptiness, 32
DTAc, 38
DTD, 32, 35
finite automaton, 32
NFAs, 32
degree of nondeterminism two,
34

fixed alphabet, 34
NTA, 37
tree automaton
ranked, 32
unranked, 32

234



Index 235

encoding
Curried, 198
first-child next-sibling, 22, 204
previous-sibling last-child, 205

equivalence, 142, 144, 182
automata, 182
DBTA, 183
DFA, 183
DTA(DFA), 183
DTDs, 144
EDTDs, 144
NBTA, 183
NFA, 183
NTA(NFA), 183
regular expressions, 142
UBTA, 183
UFA, 183
UTA(UFA), 183

factor, 141
finite string automaton

deterministic, 10
nondeterministic, 10
two-way alternating, 38
two-way non-deterministic, 39
unambiguous, 10

finiteness

NTA, 37
formula

linear, 26

generate a witness
NTA, 37

hedge
unranked, 12

homogeneous
tree language, 109

hyperplane, 29

inclusion, 32, 142, 144, 182
automata, 182
DBTA, 183
DFA, 183
DTA(DFA), 183
DTD, 32
DTDs, 144

EDTDs, 144
finite automaton, 32
NBTA, 183
NFA, 183
NFAs, 32
fixed alphabet, 34

NTA(DFA)
fixed alphabet, 32

NTA(NFA), 183
regular expressions, 142
REs, 32
TA, 32
tree automaton
ranked, 32
unranked, 32

UBTA, 183
UFA, 183
UTA(UFA), 183

integer programming, 26
intersection emptiness, 32

DFAs, 32
fixed alphabet, 34
one-letter alphabet, 34

DTD, 32
finite automaton, 32
REs, 32
TDBTAs, 32
fixed alphabet, 34

tree automaton
ranked, 32
unranked, 32

intersection non-emptiness, 142,
144

DTDs, 144
EDTDs, 144
regular expressions, 142

label
node in a hedge, 12
node in a string, 9
node in a tree, 12

language
defined by a 2AFA, 39
defined by a DTD, 14
defined by a RE, 9
defined by an NFA, 10
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defined by an NTA, 14
defined by an SL-formula, 11

left-sibling-string, 114
loop-free 2AFA, 39

match, 141
minimal disjoint union, 188
minimization, 182

automata, 182
DBTA, 183
DFA, 183
DTA(DFA), 183
NBTA, 183
NFA, 183
NTA(NFA), 183
UBTA, 183
UFA, 183
UTA(UFA), 183

Myhill-Nerode Theorem
ranked tree automata, 201
unranked tree automata, 201

node
of a hedge, 12
of a string, 9
of a tree, 11

normal basis, 187
K-separable, 187

normal set basis, 187
K-separable, 187

occurrences of symbol in a string, 9
occurs

Σ-symbol in a DTD, 14
Σ-symbol in a string, 9

one-pass preorder typeable, 120

partly satisfies, 53, 63, 76
path

in a tree, 11
path systems, 35
patterns

ancestor-based, 115
ancestor-sibling-based, 115
spine-based, 115

position, 9
preceding of a node, 119

preceding-subtree, 135
Prime Number Theorem, 35
pruned envelope, 124

reachable
alphabet symbol in a DTD, 36

recognition, 130
reduced

DTD, 14
EDTD, 108

reducing
DTD, 36

regular
string language, 10
tree language, 14

regular expression, 9
chain, 141
one-unambiguous, 112
restrained competition, 110
single-type, 109
unambiguously typed, 111

regular language
restrains competition, 110
single-type, 109
unambiguously typed, 111

right-sibling-string, 114

satisfies
tree, EDTD, 107

simplification, 130
size

2AFA, 39
BTA, 31, 181
DTD, 14
EDTD, 108, 181
linear formula, 26
NFA, 10, 181
NTA, 15, 181
regular expression, 10
SL-formula, 11
tree transducer, 17

SL-formula, 10
spine, 114
spine-based schema, 115
string, 9
string language, 9
subtree exchange
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ancestor-guarded, 114
ancestor-sibling-guarded, 115
label-guarded, 112
spine-guarded, 115

tiling system, 41
top-down typeable, 124
transition, 181
tree

binary, 31, 181
unranked, 11

tree automaton
binary, 31
bottom-up deterministic, 31
top-down deterministic, 31
unambiguous, 31

parallel, 201
bottom-up deterministic, 202
nondeterministic, 201
unambiguous, 202

stepwise, 197
bottom-up deterministic, 197
nondeterministic, 197
unambiguous, 198

unranked
bottom-up deterministic, 15
nondeterministic, 14
unambiguous, 15

tree language, 11
tree transducer, 16

bounded copying, 20
deleting, 20
deterministic, 16
nondeleting, 20
unbounded copying, 20

type of extended DTD, 108
typecheck, 21
typechecking problem, 21

Unique Particle Attribution, 112
universality, 32, 182

automata, 182
DBTA, 183
DFA, 183
DTA(DFA), 183
DTD, 32
finite automaton, 32

NBTA, 183
NFA, 183
NFAs, 32
fixed alphabet, 34

NTA(NFA), 183
tree automaton
ranked, 32
unranked, 32

UBTA, 183
UFA, 183
UTA(UFA), 183

valid
tree with respect to EDTD, 107

vertex cover, 187
vertex cover, 187
visits

tree transducer, node in a tree, 17

witness, 107

XML Schema Definition, 105


