Which XML Schemas Admit 1-Pass Preorder
Typing?

Wim Martens', Frank Neven', and Thomas Schwentick?

! Limburgs Universitair Centrum
Universitaire Campus
B-3590 Diepenbeek, Belgium
{wim.martens,frank.neven}@luc.ac.be
2 Philipps Universitit Marburg
Fachbereich 12, Mathematik und Informatik
tick@informatik.uni-marburg.de

Abstract. It is shown that the class of regular tree languages admitting
one-pass preorder typing is exactly the class defined by restrained com-
petition tree grammars introduced by Murata et al. [14]. In a streaming
context, the former is the largest class of XSDs where every element in a
document can be typed when its opening tag is met. The main technical
machinery consists of semantical characterizations of restrained compe-
tition grammars and their subclasses. In particular, they can be char-
acterized in terms of the context of nodes, closure properties, allowed
patterns and guarded DTDs. It is further shown that deciding whether a
schema is restrained competition is tractable. Deciding whether a schema
is equivalent to a restrained competition tree grammar, or one of its sub-
classes, is much more difficult: it is complete for EXPTIME. We show that
our semantical characterizations allow for easy optimization and mini-
mization algorithms. Finally, we relate the notion of one-pass preorder
typing to the existing XML Schema standard.

1 Introduction

XML (eXtensible Markup Language) constitutes the basic format for data ex-
change on the Web [4]. For many applications, it is important to constrain the
structure of documents by providing a schema specified in a schema language.
The most common schemas are Document Type Definitions (DTDs). A DTD is
basically a set of rules of the form a — r, where a is a tag name and r is a
regular expression. A document is valid with respect to a DTD if each element
labeled with a has a sequence of children whose tags match r. We view an XML
document as a tree in the way indicated by Figure 1.

Unfortunately, DTDs are limited in various ways. A particular limitation is
that the type of an element can only depend on its tag but not on its context.
As an example, in Figure 1 it is not possible to assign different types to discount
DVDs and non-discount DVDs while retaining the same tag.

XML Schema Definitions (XSDs) is the standard proposed by the World
Wide Web consortium (W3C) to answer the shortcomings of DTDs [5]. In

database theory, the latter are modeled by extended context-free grammars,
the former by unranked regular tree languages [2]. Such regular tree languages
can be represented by specialized DTDs (SDTDs) [16] allowing to assign types
a’ to elements with tags a (cf. Definition 2). The rules are of the form a’ — r
where r is a regular expression over types, i.e., the rules constrain, for each ele-
ment type, the sequence of types of sub-elements. In our example, regular DVDs
could get the type dvd!, discount DVDs the type dvd? (cf. Section 2.2). A tree
is then valid w.r.t. an SDTD if there is an assignment of types matching the
rules of the grammar. The enlarged flexibility of SDTDs requires an additional
algorithmic task: besides simply checking validity it will often be necessary to
compute a matching assignment. We refer to this as typing.

The goal of the present paper is to identify the largest class of SDTDs which
can be typed in a streaming fashion. In other words, when processing an XML
document as a stream of opening and closing tags, the type of each element
should be uniquely determined when the opening tag is met. We will refer to this
as I-pass preorder typing. The latter can be an important first step in processing
streaming XML data. On top of this information, e.g., subscription queries can
be defined (e.g., inform me if there are new discounted dvds) and their evaluation
can be optimized.

Note that a document is valid w.r.t. an SDTD if all elements can be correctly
typed. Hence, 1-pass preorder typing implies 1-pass (preorder) validation, but
not vice versa. Indeed, consider the SDTD consisting of the rules a® — b' + b2,
b! — ¢ and b® — d, defining the finite tree language {a(b(c)),a(b(d))}. This
language can easily be validated via an algorithm making a preorder traversal
through the input tree, but does not admit preorder typing: the type of the
b-element cannot be determined without looking at its child.

Murata, Lee and Mani [14] proposed® two restrictions of SDTDs, single-
type and restrained competition, which guarantee 1-pass preorder typing. An
SDTD is single-type if for each rule a’ — r and each tag b at most one type
b7 occurs in r. It is restrained competition if there is no rule a* — r for which
there exist strings wbu and wb*v in L(r) with j # k. Clearly, both restrictions
assure 1-pass preorder typing. However, from the definition of these restrictions
it is not immediately clear whether they are the weakest possible to ensure 1-
pass preorder typing. More importantly, a precise semantical characterization
providing insight in fundamental properties of these classes remained open.

Contributions. It turns out that an SDTD admits 1-pass preorder typing if
and only if its trimmed version (i.e., without useless symbols) is restrained com-
petition. So, a regular tree language admits 1-pass preorder typing if and only
if it can be described by a restrained competition SDTD. Therefore, restrained
competition SDTDs might be a good basis for an XML schema language ex-
tending XSDs without losing the ability of efficient parsing. Interestingly, for

3 Actually, they defined these classes in the slightly different framework of regular tree
grammars. We use SDTDs here to simplify proofs. Nevertheless, w.r.t. defining tree
languages, the two formalisms are equally expressive and one can be translated into
the other efficiently in a straightforward manner.

this purpose no further restriction to one-unambiguous regular expressions [3] is
necessary. We discuss this further in Section 7.

Starting from this, we study the classes of tree languages which can be de-
scribed by restrained-competition SDTDs and single-type SDTDs, respectively.
The next contribution is a set of semantical characterizations of these classes.
The main parameter in these characterizations is the dependency of the type of
a node on the context of the node in the document. In particular, we prove that
a regular tree language can be defined by (1) a single-type SDTD if and only if
the type of each node only depends on the sequence of tags on the path from
the root to the node; and, (2) a restrained competition SDTD if and only if the
type of each node only depends on the tags of the nodes on the path from the
root to the node and their left siblings. The other characterizations are in terms
of closure properties, allowed patterns and guarded DTDs.

Next, we turn to algorithmic issues. Two algorithmic problems immediately
arise from the above. Given an SDTD d, (1) is d a DTD, single-type SDTD
or restrained competition SDTD, and (2) is there a DTD, single-type SDTD or
restrained competition SDTD d’ describing the same tree language as d? The
first question is trivial for DTDs and single-type SDTDs. We prove that it is in
NLOGSPACE for restrained competition SDTDs. The second question turns out to
be much harder: in all three cases it is complete for EXPTIME. Furthermore, the
algorithm is constructive. That is, if d is in fact in the desired class, an equivalent
DTD, single-type SDTD or restrained competition SDTD d’ is constructed.

Our semantical characterizations lead to easy optimization and minimiza-
tion algorithms. Whereas the inclusion problem is EXPTIME-complete for gen-
eral SDTDs (even with one-unambiguous regular expressions [13]) it follows from
our characterizations that these problems are in PSPACE for restrained compe-
tition SDTDs and even in PTIME if it is additionally required that the regular
expressions are one-unambiguous. We show that, in contrast to general SDTDs
(cf. Section 5.2), for every tree language definable by restrained competition
grammars, there exists a unique minimal restrained competition grammar that
describes it. Moreover, this minimal grammar can be computed in polynomial
time.

We conclude with an observation on post-order typing. Although in general,
arbitrary SDTDs do not admit 1-pass preorder typing, we show that for each
regular tree language there is an SDTD which allows I-pass postorder typing,
i.e., a parsing algorithm that determines a type of an element when it reaches
its closing tag. That every SDTD allows 1-pass validation was already observed
by Segoufin and Vianu [18].

Related work. Briiggemann-Klein, Murata, and Wood study unranked reg-
ular tree languages as a formal model for XML schema languages [2]. In par-
ticular, they prove that the latter model is equivalent to the morphic image of
tree-local tree languages. Papakonstantinou and Vianu [16] formalize the latter
as the more manageable specialized DTDs which are used in this paper. Murata
et al. [14] provided a taxonomy of XML schema languages in terms of restrictions
on grammars which are equivalent to specialized DTDs. In particular, they pro-

<store>
<dvd>

<title> "Amelie" </title> <price> 17 </price> ’//,/ \\\\\
/

</dvd> dvd

<dvd> /7 N\ |
<title> "Gothika" </title> title price title price discount
|

<price> 15 </price> <discount> 4 </discount> | | | |
</dvd> ”Amélie” 17 ”Gothika” 15 4
</store>

Fig. 1. An example of an XML document and its tree representation.

pose to formalize DTDs, XML Schema, and Relax NG [24] as local, single-type,
and arbitrary regular tree grammars, respectively. They also introduce the no-
tion of restrained competition and show that these are 1-pass preorder typeable
but do not discuss optimality or give any semantical characterizations.

The organization of the paper is as follows. In Section 2 we define the var-
ious classes of SDTDs and the properties by which we characterize them. The
actual characterizations are given in Section 3. In Section 4 the complexity of
the basic decision problems is addressed. In Section 5, we discuss optimization
and minimization algorithms. Section 6 shows that every regular tree language
allows 1-pass postorder typing. We discuss our results in Section 7.

2 Definitions

2.1 Trees and Tree Languages

For our purposes, an XML document is basically a sequence of opening and
closing tags, properly nested. As usual, we identify XML documents with their
corresponding trees. The domain Dom(¢) of a tree ¢ is the set of its nodes,
represented in a fixed way by sequences of numbers. The empty sequence &
represents the root. The n children of a node w are named ul,...,un in the
order given by the document. Nodes carry labels from alphabet X of tags. We
denote the label of v in ¢ by lab’(v). The set of all unranked X-trees is denoted
by 7. A tree language is a set of trees. For a gentle introduction into trees, tree
languages and tree automata we refer to [15].

2.2 XML Schema Languages

Definition 1. A DTD is a pair (d,s,) where d is a function that maps X-
symbols to regular expressions and s; € X is the start symbol. We usually
simply denote (d, s4) by d. A tree t is valid w.r.t. d (or satisfies d) if its root is
labeled by s; and, for every node with label a, the sequence ay - - - a, of labels
of its children is in L(d(a)). By L(d) we denote the set of trees that satisfy d.

A simple example of a DTD defining the inventory of a store is the following:

store — dvd dvd* dvd — title price(discount +)

Definition 2 ([16,17]). A specialized DTD (SDTD) is a 4-tuple d = (X, X,
(d, sa), 1), where X' is an alphabet of types, (d, sq4) is a DTD over X' and p is a
mapping from X' to X. A tree ¢ is valid w.r.t. d (or satisfies d) if t = u(t') for
some t' € L(d) (where u is extended to trees). Again, we denote the set of trees
defined by d, by L(d). We denote by (d,a’) the specialized DTD d, where we
replace the DTD (d, s4) by (d, a?).

The class of tree languages defined by SDTDs corresponds precisely to the
regular (unranked) tree languages [2]. For ease of exposition, we always take
X'={a'|1<i<ksa€ X, ieN} for somek, € N and set u(a’) = a. We refer
to the label a’ of a node (or sometimes also to i) in ¢’ as its state or type. We say
that an SDTD d is trimmed if d has no unreachable rules and that there exists
no a' € X' for which L((d,a’)) = (. Note that L((d,a’)) contains trees over
alphabet X', whereas L((d, a’)) contains Y-trees. In the remainder of the paper,
we assume that all SDTDs are trimmed. We note that trimming an SDTD is
PTIME-complete. A simple example of an SDTD is the following;:

store = (dvd' 4 dvd?)*dvd?(dvd" + dvd?)*
dvd! — title price dvd? — title price discount

Here, dvd' defines ordinary DVDs while dvd? defines DVDs on sale. The rule
for store specifies that there should be at least one DVD on discount.

Murata et al. [14] argue that the expressiveness of SDTDs corresponds to
the XML schema language Relax NG, while the single-type SDTDs defined next
correspond to XML Schema.

Definition 3. A single-type SDTD (SDTD®') is an SDTD (X, X', d, 1) in which
in no regular expression d(a) two types b’ and b’ with i # j occur.

The above defined SDTD is not single type as both dvd! and dvd? occur in the
rule for store. An example of a single-type SDTD is given next:
store — regulars discounts
regulars — (dvd')* discounts — dvd® (dvd?®)*
dvd' — title price dvd? — title price discount

Although there are still two element definitions dvd' and dvd?, they can only
occur in a different context. The next class was defined in [14] because it still
allows 1-pass preorder typing.

Definition 4. A regular expression r restrains competition if there are no strings
wa'v and wa?v' in L(r) with i # j. An SDTD is restrained competition (SDTD"™)
iff all regular expressions occurring in rules restrain competition.

An example of a restrained competition SDTD that is not single-type is given
next:

store — (dvd')* discounts (dvd?®)*
discounts — ¢ dvd' — title price dvd® — title price discount

The classes of tree languages defined by the grammars introduced above are
included as follows: DTD ¢ SDTD®* ¢ SDTD™ C SDTD [14].

t t

t 1y
erT
v v 1
t

(a) (b) ()

ty
T = eT
g
t

Fig. 2. Tllustration of notions introduced in Section 2.3. Figures 2(a) and 2(b) illustrate
the ancestor-string (anc-str) and ancestor-sibling string (anc-sib-str) of v. Figure 2(c)
illustrates the notion of ancestor-sibling-guarded subtree exchange.

2.3 Ancestor- and Ancestor-Sibling-Patterns

Finally, we define the notions that will be used in our semantical characteriza-
tions. Let ¢ be a tree and v be a node. By ch-str (v) we denote the string formed
by the children of v, i.e., lab’ (v1) - - - lab’ (vn) if v has n children. Usually we omit
the superscript t. By anc-str’(v) we denote the string formed by the labels on
the path from the root to v, i.e., lab’(g)lab’ (iy)lab’ (iyis) - - - lab (iyiy - - - if,) where
v = iyiy---ip. By l—sib—strt(v) we denote the string formed by the labels of the
left siblings of v, i.e., lab’(ul) - - -lab’(uk) where v = uk. By anc-sib-str’(v) we
denote the string l-sib-str’ (¢) #l-sib-str’ (i,) # - - - #l-sib-str’ (iyiy - - - iz) formed by
concatenating the left-sibling strings of all ancestors starting from the root. We
assume that # ¢ ¥. Note that the final symbol of anc-str? (v) and anc-sib-str’ (v)
is always the label of v.

Definition 5. We say that a specialized SDTD d = (X, X', d,) has ancestor-
based types if there is a (partial) function f : (X U {#})* — X’ such that, for
each tree t € L(d) the following holds: (1) there is a unique tree t' € L(d) with
p(t") = t; and (2) for each node v € Dom(t), the label of v in ¢’ is f(anc-strt(v)).
We say d has ancestor-sibling based types if the same holds with anc-strf(v)
replaced by anc-sib-str’ (v).

By t1[u < t2] we denote the tree obtained from a tree ¢; by replacing the
subtree rooted at u € Dom(t;) by t5. By subtree’(u) we denote the subtree of #
rooted at u.

Definition 6. We say that a tree language T is closed under ancestor-guarded
subtree exchange if the following holds. Whenever for two trees t;,to € T with
nodes u; € Dom(#;) and us € Dom(#2) it holds that anc-str’* (u;) = anc-str’2 (us)
implies #;[u; < subtree’(uy)] € T. We call it closed under ancestor-sibling-
guarded subtree exchange if the same property holds with anc—sib—strtl(ul) =
anc-sib-str’ (uy) as precondition of the implication. Figure 2 illustrates the just
defined notions.

Definition 7. An ancestor-guarded DTD d is a pair (d, sq) where s; € X is the
start symbol as in a DTD. But in contrast to a DTD, d is a finite set of triples
(r,a,s), where a € X and r and s are regular expressions. If there are triples
(r,a,s) and (r',a,s’) in d then L(r) and L(r') are disjoint. A tree t satisfies d
if for every node v € Dom(t) the following holds. If anc-str(v) matches r and
lab(v) = a there must be a triple (r,a, s) in d and ch-str(v) must match s.

An ancestor-sibling-guarded DTD is defined in the same way with the differ-
ence that r has to be matched by anc-sib-str(v).

Definition 8. Let P,,.(t) = {anc-str(v)#ch-str(v) | v € t} and Papesin(t) =
{anc-sib-str(v)#tch-str(v) | v € t}. Let T be a set of trees. We say that T' can be
characterized by ancestor-based patterns, if there is a regular string language L
such that, for every tree ¢, we have that ¢t € T if and only if Py, (t) C L. We say
T can be characterized by ancestor-sibling-based patterns if the same holds with
Pine(t) replaced by Panc.sin ().

3 Semantic Characterizations of Single-Type and
Restrained Competition SDTDs

In this section, we first show that an SDTD is restrained competition if and only
if it allows for 1-pass preorder typing. Afterwards, as an intermediate step, we
characterize the regular tree languages definable by single-type SDTDs. Finally,
we characterize the class of tree languages which can be described by restrained
competition SDTDs.

3.1 Schemas with 1-Pass Preorder Typing

It follows from Theorem 12 that in restrained competition SDTDs the type of
a node only depends on its ancestor-sibling string. However, in an SDTD which
admits 1-pass preorder typing the type of a node might depend on all parts of
the tree which occur before the node. We formalize this notion via SDTDs with
preceding based types. Nevertheless, it will turn out that these two notions are
identical.

For a tree t and a node v we denote by preceding’ (v) the tree resulting from
t by removing everything below v, all right siblings of v’s ancestors and of v,
and their respective subtrees (cf. Figure 3). We define the term preceding-based
types in analogy to Definition 5 with preceding’(v) in place of anc-strf(v).

Expressed in a different way, the type of an element only depends on the
prefix of the XML document ending with its opening tag.

Theorem 9. A trimmed SDTD d has preceding based types if and only if it is
restrained competition.

Proof sketch. The “if”-part of the statement is obvious. We sketch the “only
if”. Actually, it is easy to show that every trimmed SDTD d with ancestor-
sibling based types is restrained competition. Otherwise, a counterexample could

Fig. 3. From left to right: a tree £, preceding’ (v) and preceding-subtree’(v).

be constructed in a straightforward manner (cf. Theorem 12). It can also be

shown by contraposition that each SDTD with preceding based types already

has ancestor-sibling based types. O
Hence, we immediately obtain the following;:

Corollary 10. Restrained competition SDTDs are exactly those SDTDs which
admit 1-pass preorder typing.

3.2 Ancestor Based Schemas

In this subsection, we characterize single-type SDTDs in terms of the ancestor
axis. In the following theorem we assume that all the trees in language T have
the same root label.

Theorem 11. For a regular tree language T the following are equivalent:

(a) T is definable by a single-type SDTD;
(b) T is definable by an SDTD with ancestor-based types;
(¢) T is closed under ancestor-guarded subtree exchange;

(d) T can be characterized by ancestor-based patterns; and,
(e) T is definable by an ancestor-guarded DTD.

Proof. We show the following sequence of implications. (a) = (e) = (d) = (b)
= (c) = (a). We only give the necessary constructions.

(a) = (e): Let T be defined by a single-type SDTD d = (X, X', (d, s4), it)
with L ¢ X'. Let A be a DFA over ¥ with state set = X' U {L} and let
d(a’,b) equal the unique b/ occurring in d(a?) if such a symbol exists, otherwise
L. Note that the single-type property ensures that A is deterministic.

Let d’ = (d', s4) be the guarded DTD with all triples (r, ;, a, u(d(a’))), where
Ta,i is a regular expression describing the set {w | §*(s4,w) = a'} of strings
which bring A into state a’. Of course, the languages L(r41),...,L(ra1,) are
all disjoint where {a',... a*«} are the symbols mapped to a by p.

(e) = (d): Let T be defined by the ancestor-guarded DTD d = (d, s4). Then
T can be characterized by the set L = {ua#tv | ua € L(r),v € L(s), (r,a,s) € d}.

(d) = (b): Let T be characterized by ancestor-based patterns using the lan-
guage L. Let A = (X,Q,d,s,F) be a DFA for L. Let d = (¥, X',d,u) be
defined as follows. X' is the set of all pairs (a, ¢), where a € X and ¢ € Q. We

let d((a,q)) be a regular expression describing all strings (b1, q1) - (bn, ¢n), for
which A accepts #b; - - - b, when started from state ¢ and ¢; = d(q, b;), for every
1 <.

(b) = (c): Let T be defined by a SDTD d = (¥, X', d,) with ancestor-based
types. Let t1,%2 be in T and let u; and us be nodes in t; and %2, respectively,
with anc-str’t(u;) = anc-str2(us). Let ¢} and t), be the unique trees in L(d)
with p(#)) = t; and u(ty) = ta. As the labels of u; in ¢} and the label of uy in
ty are determined by anc-str’'(u;) = anc-str’?(us), they are the same. Hence,
by replacing the subtree rooted at uy in ¢] with the subtree rooted at usy in ¢,
we get a tree t' € L(d). Therefore, u(t') = t[u; ¢ subtree’(uy)] is in T, as
required.

(¢) = (a): The idea of the proof is as follows. In a sense, we close a given
SDTD d for T with respect to the single-type property. Assume, e.g., that the
regular expression d(a’) contains two different types b/ and b*. Then, we replace
all occurrences of b7 and b* by a new type bl7**} obtaining a single-type expression
with respect to b. Of course, we now need a new rule with b7} on the left-hand
side. This rule should capture the union of d(b) and d(b*). By applying this
step inductively, we arrive at an SDTD d; which is single-type but uses types
of the form b°, for S C {1,...,k} where {1,...,k;} are the types of b in X'. In
a second step we prove that L(dy) = T unless T fails to fulfill (c).

Let T be a tree language defined by an SDTD d = (X, X', d, u). Let the
alphabet X! consist of all symbols a®, where S C {1,...,k,}. We extend this
notation to sets C C X' in a natural way. We write a” for the type a® with
S = {i| a’ € C}. For example, for C = {a',a?,b',b°}, a€ is the type al’2}. For
a regular expression r over X’ and C C X' let r“ denote the expression which
is obtained from r by replacing every symbol a’ by a®.

We define the SDTD dy = (X, X!,d;, 1) as follows. For each symbol a°,
p1(a®) = a, and di(a®) = U,cq d(ai)o(as), where C(a®) is the set of all b’ in
Uses d(a®). For instance, for S = {1,2}, d(a') = a'b' (a® +b") and d(a*) = (a* +
b?)a', di(a®) equals the expression (atl:231pi13} ({123} 4 pi13})) 4 ((af1:23} 4
6{1’3})(1{1’2’3}).

Note that in d; (a®), for each symbol b € X, there is at most one symbol of
the form b5, hence d; is a single-type SDTD. Tt can be shown that, if L(d) #
L(d4), the language T is not closed under ancestor-guarded subtree exchange.
By contraposition we get that (c) implies (a). O

It should be noted that an analogous characterization can be easily obtained
for DTDs by replacing ancestor by parent. The equivalence between (c) and (a)
is then already obtained in [16].

3.3 Ancestor-Sibling Based Schemas

Finally, we consider restrained competition SDTDs and show that their tree
languages can be characterized in terms of the ancestor and left-sibling axis. We
again assume that all the trees in language T" have the same root label.

Theorem 12. For a reqular tree language T the following are equivalent:

(a) T is definable by a restrained competition SDTD;

(b) T is definable by an SDTD with ancestor-sibling-based types;
(c) T is closed under ancestor-sibling-guarded subtree exchange;
(d) T can be characterized by ancestor-sibling-based patterns; and
(e) T is definable by an ancestor-sibling-guarded DTD.

Proof. Again we show (a) = (e) = (d) = (b) = (c) = (a).
(e) = (d), (d) = (b), (b) = (c): These proofs are almost word for word the
same as for Theorem 11. Only ancestor has to be replaced by ancestor-sibling.

(¢) = (a): The proof is similar as but a bit more involved than the corre-
sponding proof in Theorem 11. Let 7" be a tree language defined by a SDTD
d=(X2,Y"d, pn).

Let, for each state a’ of d, Ay = (Qu.i, X', 6a.i Sa,i, Fui) be an NFA for
L(d(a%)). W.lo.g. we assume that the sets (), ; are pairwise disjoint and that for
every state in each A4, ; a final state is reachable.

Let X} be defined as in the proof of Theorem 11. We define, for each a® € X
aDFA A, s =(Qa.s,%1,d4.5, Sa.s, Fu.s) as follows.

- Q(LS = {ql} U UieS 2Qn"i;

= Sa,5 = Ujes{8a,i}i

— a)sZ{BGQa7S|BﬁFa’i7é@,i€S}; ‘

— In order to define 04,5, let B € Q4,5 and b € . We set S" := {j | 04,i(p,b") #
0,i€S,j<kype B}and d,s(B,b%) :=,,;0i(p,b7), where the latter
union is over all ¢ € S, p € B and j < k. For all other sets S”, we set
da.5(B,b5") = q".

Intuitively, A, s can be seen as obtained in two steps from d. First, we take the
product of the power set automata of the A, ;, i € S. Then, for each symbol
b, for each state of this intermediate automaton, all outgoing edges with label
of the form b’ are combined into one transition which ends in the (component
wise) union of the all possible target states. The transition is labeled by b to the
union of all outgoing b-labels.

We now define the SDTD dy = (X, X{,di, 1), where, for each a and S,
dy (a®) is a regular expression corresponding to 4, s.

Note that each di(a®) has restrained competition. Indeed, as A, g is deter-
ministic, for each string w, A, s enters a unique state. Furthermore, for each
b € X there is only one outgoing transition of the form bS" that can lead to
acceptance.

(a) = (e):Let T be defined by a restrained competition DTD d = (X, X', d, u).
For each symbol a’ in X', let Ay ; = (Qa.is X', 04, Sais Fa.i) be a DFA for d(a?).
We can modify A4, ; such that it has exactly one state ¢ from which no ac-
cepting state is reachable and such that it has no unreachable states (possibly
besides ¢1). From the restrained competition property it immediately follows
that in A, ;, for each state q, if 6(q,b/) = q1, 0(q,b*) = 2, ¢1 # q» and j # k
then ¢ or ¢» must be g*~. We require that the sets (i are pairwise disjoint.

From these DFAs over the extended alphabet X' we construct a DFA A =
(Qa,X,s4,04,F4) as follows. The set)4 consists of all pairs (¢, b), where ¢ €

10

Qa.i, for some a’, and b € X' U {#]}. Intuitively, ¢ is the current state of an
automaton A, ; and b is the last extended symbol or type that has been identified.
The initial state s4 of A is (s, ;,#) for the initial symbol a’ of d. The transition
function 04 is defined as follows. For each g € Qq4, ¢ € X' and b € X we let
54((g,¢),b) = (84,i(q,b7),b7), for the unique j with &, ,(g,b’) # ¢, if such a j
exists. Otherwise, d4((q,c),b) = (¢*,#). Furthermore, we let §4((q,b'),#) =
(sp,j,#). Weset Fa = {q|q€ F,}.

Now we are ready to define the ancestor-sibling guarded DTD d’. It consists
of all triples (r, a, s), for which there is a state (q,a’) of A, such that r describes
the set of strings w with 6% (sa,w) = (q,a’) and s is u(d(a?)). O

4 Complexity of Basic Decision Problems

As the definition of a DTD and single-type SDTD is syntactical in nature, it
can be immediately verified by an inspection of the rules whether an SDTD is
in fact a DTD or a single-type SDTD.

Theorem 13. It is decidable in NLOGSPACE for an SDTD d whether it is re-
strained competition.

We study the complexity of determining whether a tree language, given by
an SDTD, can be defined by a DTD, a single-type or a restrained competition
SDTD, respectively.

Theorem 14. Fach of deciding whether an SDTD has an equivalent DTD,
single-type SDTD or restrained competition SDTD is EXPTIME-complete.

Proof sketch. In all three cases, the lower bound is obtained by a reduction from
the universality problem for non-deterministic tree automata [19].

The exponential time upper bounds for the single-type and restrained com-
petition cases can be obtained by performing the constructions in the proofs (c)
= (a) in Theorems 11 and 12. Both the construction of the SDTD and checking
equivalence with the original one can be done in exponential time. For DTDs a
similar construction is in polynomial time but the equivalence check still needs
exponential time. O

5 Applications of the Semantical Characterizations

5.1 Inclusion and Equivalence of Schemas

Decision problems like testing for inclusion or equivalence of schema languages
often occur in schema optimization or as basic building blocks of algorithms
for typechecking or type inference [8,11,12,16,22]. In general these problems
are PSPACE and EXPTIME-complete for DTDs and SDTDs, respectively [21, 19].
The XML specification, however, restricts regular expressions in DTDs to be
deterministic [4] (sometimes also called 1-unambiguous [3]).

11

Theorem 15. Given two restrained competition SDTDs di and da, deciding
whether (a) L(dy) C L(d2), and whether (b) L(d1) = L(d2) is PSPACE-complete
in general, and PTIME-complete if di and ds use deterministic reqular expres-
540MS.

This result strongly contrasts with our results in [13], where we show that
even for very simple non-deterministic regular expressions these decision prob-
lems are intractable, and with the case of arbitrary SDTDs with determinis-
tic regular expressions, for which inclusion and equivalence test are EXPTIME-

complete.

5.2 Minimization of SDTDs

In strong contrast to ranked trees, there are unranked regular tree languages
for which there is no unique minimal deterministic bottom-up tree automaton.
Moreover, minimization can not be obtained by the standard translation to
the ranked case. Using the characterizations of Section 3, we obtain that when
content models are represented by DFAs rather than by regular expressions,
every restrained competition SDTD can be minimized in polynomial time and
this minimal SDTD is unique up to isomorphism.

Theorem 16. FEvery restrained competition (single-type) SDTD can be mini-
mized in PTIME. This minimal SDTD is unique up to isomorphism.

6 Subtree Based Schemas

From what was presented so far an obvious question arises. What happens if
we soften the requirement that the type of an element has to be determined
when its opening tag is visited? What if instead it has to be computed when the
closing tag is seen? It turns out that every regular tree language has a SDTD
which allows such 1-pass postorder typing. Furthermore, the SDTDs used for this
purpose can be defined as straightforward extensions of restrained competition
SDTDs.

Definition 17. An SDTD d = (¥, X' d,) is extended restrained competition
iff for every regular expression r occurring in a rule the following holds: whenever
there are two strings wa'v and wa’/v’ in L(r) with i # j, then L((d,a’)) N
L((d,a’)) is empty.

For a tree ¢ and a node v we denote by preceding-subtree’ (v) the tree resulting
from t by removing all right siblings of v and its ancestors together with the
respective subtrees (cf. Figure 3).

Definition 18. We say that a specialized SDTD d = (¥, X', d, u) has preceding-
subtree based types if there is a (partial) function f : Ty X Dom — X’ such
that, for each tree ¢ € L(d) the following holds: (1) there is a unique tree
t' € L(d) with u(t") = t, and (2) for each node v € Dom(t), the label of v in ¢
is f(preceding-subtree’ (v), v).

12

Stated in terms of XML documents, the type of an element depends on the
prefix of the document which ends with the closing tag of the element. The
following result shows that all regular tree languages admit 1-pass postorder
typing. We assume that all the trees in language T have the same root label.

Theorem 19. For a tree language T the following are equivalent:

(a) T is definable by an extended restrained competition SDTD;
(b) T is definable by an SDTD with preceding-subtree-based types;
(¢) T is reqular.

Proof sketch. The directions (a) = (c) and (b) = (c) are trivial. The proof of
the opposite directions uses the fact that regular languages can be validated by
deterministic bottom-up automata. O

In the SDTD used in the proof the type of each element actually only depends
on its subtree. This should be compared with the previous characterizations
where the type depended on the upper context. These issues are further discussed
in Section 7.

Note that not every SDTD is extended restrained competition. The SDTD
d defined by r — (a' +a?), a' = b+ c+e¢, and a® = ¢+ d + ¢ is not extended
restrained competition, as {e,c} C L((d,a')) N L((d, a?)).

We conclude by noting that extended restrained competition is a tractable
notion.

Theorem 20. It is decidable in PTIME for an SDTD d whether it is extended
restrained competition.

7 Conclusion

The results of this paper show that its initial question has a simple answer.
The regular tree languages which admit 1-pass preorder typing are exactly those
which can be described by a restrained competition SDTD.

From the proof of Theorem 12 (c¢) = (a) it further follows that for each such
language a very simple and efficient typing algorithm exists. It is basically a
deterministic pushdown automaton with a stack the height of which is bounded
by the depth of the document. For each opening tag it pushes one symbol, for
each closing tag it pops one. Hence, it only needs a constant number of steps per
input symbol. In particular, it works in linear time in the size of the document.
It should be noted that such automata have been studied in [18] and [9] in the
context of streaming XML documents. The subclass of the context-free languages
accepted by such automata has recently been studied in [1].

Further, the paper shows that restrained competition SDTDs can be effi-
ciently recognized (in NLOGSPACE but also in quadratic time) and that from an
SDTD without the restrained competition property an equivalent one with the
property can effectively (though not efficiently, in general) be constructed if it
exists at all.

13

The 1-pass preorder typing constraint can be seen as a generalization of the
determinism constraint on content models of DTDs (Appendix E in [4]) to XSDs.
In the case of DTDs, the meaning of a tag is determined by the position in the
matching regular expression. The determinism constraint then specifies that this
meaning should be computed independent of the tags occurring to the right of
the current tag. Similarly, in the context of XML Schema, the meaning of a tag
corresponds to its type and should be computed independent of the remainder
of the nodes.

Briiggemann-Klein and Wood gave a clean formalization for the concept of
determinism needed for DTDs in terms of 1-unambiguous regular expressions [3].
Intuitively, a regular expression is 1-unambiguous if, when processing the input
from left to right, it is always determined which symbol in the expression matches
the next input symbol. Just as Briiggemann-Klein and Wood contributed to the
formal underpinnings of DTDs, our characterization contributes to the founda-
tion of XML Schema by providing a complete notion for 1-pass preorder typeable
schemas.

How do these results relate to existing standards? The XML Schema specifi-
cation requires XSDs to be single-type (end of Section 4.5 in [6] and the Element
Declarations Consistent constraint in Section 3.8.6 in [7]) and regular expressions
(after dropping the superscripts describing the types) to be deterministic or 1-
unambiguous [3] (cf. Section 3.8.6 of [7], Unique Particle Attribution). Although
such schemas are always restrained competition, it is easy to prove that they
do not capture the complete class of 1-pass preorder typeable schemas. Indeed,
from a l-ambiguous regular language a restrained competition expression can be
easily constructed by giving to each symbol the same superscript. The results in
the present paper, therefore, indicate that replacing the Element Declarations
Consistent and Unique Particle Attribution constraints by the single requirement
that regular expressions are restrained competition allows for a larger expressive
power without (essential) loss in efficiency. Indeed, for both classes, validation
and typing is possible in linear time, allowed schemas can still be recognized in
quadratic time and an allowed schema can be constructed in exponential time,
if one exists [3]. The latter would also eliminate the heavily debated restriction
to l-unambiguous regular expressions (cf., e.g., pg 98 of [23] and [10, 20]).

On the negative side, both 1-unambiguous expressions and restrained com-
petition expressions lack a comprehensive syntactical counterpart. Whether such
an equivalent syntactical restriction exists remains open. It would also be inter-
esting to find syntactic restrictions which imply an efficient construction of an
equivalent restrained competition SDTD.

We already mentioned that Murata, Lee, and Mani showed that DTD ¢
SDTDSt ¢ SDTD™ ¢ SDTD. They exhibited concrete tree languages that are
in one class but not in the other. Our semantical characterizations provide a
toolbox to show inexpressibility for arbitrary tree languages. For instance, using
the closure of restrained-competition SDTDs under ancestor-guarded subtree
exchange, it is immediate that SDTD™ cannot define the set of all Boolean
tree-shaped circuits evaluating to true.

14

Acknowledgments

We thank Geert Jan Bex, Christoph Koch, Nicole Schweikardt, Luc Segoufin
and Stijn Vansummeren for helpful discussions.

References

1.

2.

10.

11.

12.

13.

14.

15.
16.

17.

18.

19.

20.

21.

22.

23.
24.

R. Alur and P. Madhusudan. Visibly pushdown languages. In STOC 2004, pages
202-211, 2004.

A. Briiggemann-Klein, M. Murata, and D. Wood. Regular tree and regular hedge
languages over unranked alphabets: Version 1, april 3, 2001. Technical Report
HKUST-TCSC-2001-0, The Hongkong University of Science and Technology, 2001.
A. Briiggemann-Klein and D. Wood. One-unambiguous regular languages. Infor-
mation and Computation, 142(2):182-206, 1998.

World Wide Web Consortium. Extensible Markup Language (XML).
http://www.w3.org/XML.

World Wide Web Consortium. XML Schema. http://www.w3.org/XML/Schema.
World Wide Web Consortium. XML Schema Part 0: Primer.
http://www.w3.org/TR /xmlschema-(/.

. World Wide Web Consortium. XML Schema Part 1: Structures.

http://www.w3.org/TR/xmlschema-1/.

H. Hosoya and B. C. Pierce. XDuce: A statically typed XML processing language.
ACM Transactions on Internet Technology (TOIT), 3(2):117-148, 2003.

C. Koch and S. Scherzinger. Attribute grammars for scalable query processing on
XML streams. In DBPL, pages 233-256, 2003.

M. Mani. Keeping chess alive - Do we need 1-unambiguous content models? In
Eztreme Markup Languages, Montreal, Canada, 2001.

W. Martens and F. Neven. Typechecking top-down uniform unranked tree trans-
ducers. In ICDT 2003, pages 64-78, 2003.

W. Martens and F. Neven. Frontiers of tractability for typechecking simple XML
transformations. In PODS 2004, pages 23 34, 2004.

W. Martens, F. Neven, and T. Schwentick. Complexity of decision problems for
simple regular expressions. In MFCS 200/, pages 889 900, 2004.

M. Murata, D. Lee, and M. Mani. Taxonomy of XML schema languages using
formal language theory. In Eztreme Markup Languages, Montreal, Canada, 2001.
F. Neven. Automata, logic, and XML. In CSL 2002, pages 2-26. Springer, 2002.
Y. Papakonstantinou and V. Vianu. DTD inference for views of XML data. In
PODS 2000, pages 35 46. ACM Press, 2000.

Y. Papakonstantinou and V. Vianu. Incremental validation of XML documents.
In ICDT 2003, pages 47-63. Springer, 2003.

L. Segoufin and V. Vianu. Validating streaming XML documents. In PODS 2002,
pages 53 64. ACM Press, 2002.

H. Seidl. Deciding equivalence of finite tree automata. SIAM Journal on Comput-
ing, 19(3):424 437, 1990.

C. M. Sperberg-McQueen. XML Schema 1.0: A language for document grammars.
In XML 2003 - Conference Proceedings, 2003.

L. J. Stockmeyer and A. R. Meyer. Word problems requiring exponential time:
Preliminary report. In STOC 1973, pages 1 9, 1973.

D. Suciu. Typechecking for semistructured data. In DBPL 2001, 2001.

E. van der Vlist. XML Schema. O’Reilly, 2002.

E. van der Vlist. Relaz NG. O’Reilly, 2003.

15

A Appendix: Full Proofs

For the convenience of the referees we give the full proofs of those theorems which
only have proof sketches in the main text. The point where the proof in the main
text ended is indicated by [---]. We also restate the respective theorems.

Before that we first describe some notions related to trees and tree automata.

As an abstraction of XML-documents, we define documents over a set X of
tags and a set I" of basic symbols as follows. For w € I', (a)w(/a) is a document.
If a € ¥ and z4,. ..,z are documents then (a)z; - - -z (/a) is also a document.
We refer to the string enclosed by matching tags as an element. Figure 1 shows
an example of a document. It also indicates how documents can be represented
as trees.

Of course, elements in XML documents can also contain references to nodes.
But as XML schema languages usually do not constrain these and can only
specify the format of data values occurring at leaves (e.g., a string should be
telephone number), it is safe to view schemas as simply defining documents over
an empty alphabet I, i.e., where the only basic string is the empty word e.

Formally, we associate an unranked X-tree t = t(z) with a document x as
follows.

(i) if z = (a)e(/a), for some a € X, then the set of nodes of t, denoted by
Dom(t), is {e}. The label lab’(¢) is a;

(ii) if z = (a)z1 - - 2, (/a), then Dom(t) = {e} UU._,{iv | v € Dom(t(z;))},
lab’(¢) = a, and for each iu € Dom(t), lab’(iu) = lab*®) (u).

We call a node wi a child of u and u the parent of ui. If w = uwv, for some v then
w is an ancestor of w. A node ui, i < j, is a left sibling of uj.

The set of all unranked Y-trees is denoted by Tyx. A tree language is a set
of trees. In the remainder of this paper we will identify documents with their
corresponding trees.

In the remainder of the appendix, we denote by (d, a’) the specialized DTD
d= (X, (d,r),u), where we replace the DTD (d,r) by (d,a?).

The robust notion of regular string and ranked tree languages, can easily
be generalized to the unranked counterparts. The latter class is usually defined
in terms of non-deterministic tree automata and posses similar closure proper-
ties [2].

Definition 21. A nondeterministic tree automaton (NTA)is atuple B = (Q, X,
0, F'), where @) is a finite set of states, F' C @ is the set of final states, and ¢ is a
function ¢ : Q x X — 29 such that (¢, a) is a regular string language over Q
for every a € X and ¢ € Q.

A run of B on a tree t is a labeling A : Dom(¢) — @ such that for every
v € Dom(t) with n children, A(v1)---A(vn) € 6(A(v),lab’(v)). Note that when
v has no children, then the criterion reduces to € € 6§(A(v),lab’(v)). A run is

16

accepting iff the root is labeled with an accepting state, that is, A(e) € F. A tree
is accepted if there is an accepting run. The set of all accepted trees is denoted
by L(B). The class of tree languages accepted by NTAs is called the unranked
reqular tree languages.

An NTA is bottom-up deterministic iff 6(q,a) Nd(q',a) = 0 for all ¢ # ¢'. For
every unranked regular tree language there is a bottom-up deterministic NTA
which accepts it.

Semantic Characterizations of Single-Type and Restrained
Competition SDTDs

Proof of Theorem 9. A trimmed SDTD d has preceding based types if and
only if it is restrained competition.

The “if”-part of the statement is obvious. We show the “only if”. Actually,
it is easy to show that every trimmed SDTD d with ancestor-sibling based types
is restrained competition. Otherwise, a counterexample could be constructed in
a straightforward manner. Hence, it only remains to show that each SDTD with
preceding based types already has ancestor-sibling based types.

[--]Let d = (¥, %', d,u) be an SDTD which has preceding based types.
Towards a contradiction we assume that d has types which are not ancestor-
sibling based. Hence, there are trees t1,t> € L(d) with nodes v; € t; and va € t9
such that anc-sib-str’' (v;) = anc-sib-str’?(v) but v; has a different label in
t) than vy in t,. We call t1,t2,v1,v2 a counterexzample. Let t1,t2,v1,v2 be a
counterexample for which the length of anc-sib-str’" (v1) is minimal.

Let uy,...,u, be the nodes that are siblings of ancestors of v; in the order
in which they appear in a depth-first left-to-right walk on t;. Let wy, ..., w, be
the corresponding nodes in ¢y. Because the counterexample is minimal, for each
i < n, the label of u; in t} is the same as the label of w; in #,. Let s be the
tree resulting from ¢; by replacing, for every i, the subtree rooted at u; by the
subtree rooted at w; in t».

Let the labels in s’ be defined as in ¢} for the nodes that come into s
by replacements and as in ¢} for the others. Obviously, s’ € L(d). But as
preceding® (v;) = preceding’(v;), v; must have the same label in s’ as in #}.
As it also has the same label in ¢} as in s’ it follows that the labels in ¢} and ¢
are the same which leads to the desired contradiction. This completes the proof
of the theorem. O

Proof of Theorem 11. For a regular tree language T the following are equiv-
alent:

(a) T is definable by a single-type SDTD;
(b) T is defined by an SDTD with ancestor-based types;
(¢) T is closed under ancestor-guarded subtree exchange;

(d) T can be characterized by ancestor-based patterns; and,
(e) T is definable by an ancestor-guarded DTD.

17

We show the following sequence of implications.
(a) = (¢) = (d) = (b) = (¢) = (a).

(a) = (e) | Let T' be defined by a single-type SDTD d = (¥, X', (d, s4),) with
1L ¢ X' Let A be a DFA over X with state set @ = X' U {L} and let §(a’,b)
equal the unique b/ occurring in d(a?) if such a symbol exists, otherwise L. Note
that the single-type property ensures that A is deterministic.

Now we define a guarded DTD d’ = (d', s4) by putting all triples (r, i, a, u(d(a')))
into d', where r, ; is a regular expression which describes the set {w | 6*(sq, w) =
a'} of strings which bring A into state a’. Of course, the languages L(r4.1), ..., L(ra.r,)
are all disjoint where {a',...,a**} are the symbols mapped to a by p. E It
remains to show that d’ defines the same set of trees as d. Let ¢ be in L(d).
Hence, there is t' in L(d) with p(t') = t. It is easily shown by induction that, for
each node v of #, lab (v) = §*(sq, anc-str! (v)). Hence, for each node v labeled
with a’, the triple of d’ responsible for v is (r,.;,a, u(d(a'))) and can therefore
be applied. The proof of the opposite inclusion is similar.

(e) = (d) | Let T be defined by the ancestor-guarded DTD d = (d, s4). Let
L be the set
{ua#v | ua € L(r),v € L(s), (r,a,s) € d}.

[--- | By definition, for every tree t € T' it holds that Pa,.(t) C L. For the other
direction, let ¢ be a tree which is not in 7'. Hence, there is a node w in ¢ with some
label a such that either there is no triple (r,a,s) € d with anc-str(w) € L(r) or
for every such triple ch-str(w) ¢ L(s). This implies that anc-str#tch-str(w) ¢ L.
Therefore, a tree ¢ is in 7' if and only if Pa,.(t) C L which shows (d).

(d) = (b) | Let T' be characterized by ancestor-based patterns using the

language L. Let A = (X,Q,4,s,F) be a DFA for L. Let d = (X, %X',d, u) be
defined as follows. X' is the set of all pairs (a,q), where a € ¥ and ¢ € Q.
We let d((a,q)) be a regular expression which describes the set of all strings
(b1,q1) - - (bn, qn), for which A accepts #b; - - - b, when started from state ¢ and
qi = 6(q,bi), for every i < n.[---] Obviously, d defines T'. Furthermore, for
each node v in a tree t € T', (a, q) is uniquely determined and only depends on
anc-str(v). Hence, d has ancestor-based types.

(b) = (c) | Let T be defined by an SDTD d = (¥, X', d, u) with ancestor-

based types. Let t1,t5 be in T and let u; and us be nodes in t; and t,, respectively,
with anc-str’! (u;) = anc-str’2 (uy). Let ¢} and t}, be the unique trees in (d) with
w(ty) = t1 and wp(th) = to. As the labels of uy in | and the label of uy in ¢
are determined by anc-str’!(u;) = anc-str®?(us), they are the same. Hence, by
replacing the subtree rooted at u; in ¢] with the subtree rooted at u» in t} we get
a tree t' € L(d). Therefore, ju(t') = t,[u; < subtree’(uy)] is in T, as required.

(c) = (a) | The idea of the proof is as follows. In a sense, we close a given

SDTD d for T with respect to the single-type property. Assume, e.g., that the
regular expression d(a’) contains two different types b’ and b*. Then, we re-
place all occurrences of b/ and b* by a new type bl7:¥} obtaining a single-type
expression with respect to b. Of course, we now need a new rule with bt} on

18

the left-hand side. This rule should capture the union of d(b’) and d(b*). By
applying this step inductively, we arrive at an SDTD d; which is single-type but
uses types of the form b°, for S C {1,...,k;} and {b',... 0¥} are the types of
bin X' In a second step we prove that L(dy) = T unless T fails to fulfill (c).

Let T be a tree language defined by an SDTD d = (X, X', d, u). Let the
alphabet X! consist of all symbols a®, where S C {1,...,k,} and {a1,...,ax,}
are the types of a in X',

We extend this notation to sets C C ¥’ in a natural way. We write a® for
the type a® with S = {i | a’ € C}. For example, for C = {a',a?,b',b%}, a© is
the type atl-2}. For a regular expression r over X’ and C' C X' let ¢ denote the
expression which is obtained from r by replacing every symbol a’ by a®.

We define the SDTD dy = (X, X!,d;, 1) as follows. For each symbol a®,
p1(a®) = a, and

dl((lS) — U d(ai)O(aS)7
i€S

where C(a®) is the set of all b/ in U d(a’).
€S

For instance, for S = {1,2}, d(a') = a'b'(a® + b') and d(a?) = (a® +
b?)a', di(a®) equals the expression (atl:231pi13} ({123} 4 pi13})) 4 ((af1:23} 4
6{173})(1{]72’3}).

Note that in d;(a®), for each symbol b € X, there is at most one symbol of
the form b5, hence dy is a single-type SDTD. We show next that, if L(d) #
L(d4), the language T is not closed under ancestor-guarded subtree exchange.
By contraposition we get that (c¢) implies (a).

E To this end, first observe that when moving from d to d; no trees are
lost. Indeed, let ' € L(d) be a witness for t € L(d). We get a tree t'' € L(d)
with pq (") = ¢ as follows. We assign to each node v a type from ¥] in a top-
down fashion. If the root node has type a’ in #' it gets type al®}. Let now v be
a node with type a’ in ¢ and already assigned type a® in #’. Then a child u of
v with label b gets the type bC@®) in ¢, Of course, the sequence of t"-types at
the children of u matches d; (a®) because the sequence of #'-types matches d(a?).
Hence, we have L(d) C L(dy).

Consider now a tree ¢t € L(d1) — L(d) and its extension t' € L(d;) with
w1 (t') = t. Bach node u has a type a® in t', and we write S(u) for S. For each
u, ch-str(u) matches d; (a®"). More precisely, it matches d(ai)c(as), for some
i € S(u). Let g be a function, which fixes one such a’, for each node u. On
the other hand, as ch-str(u) = vy,...,v, matches d(a"’)c(“s) we can assign to
each node v; a type f(v;) € X' such that f(v;)--- f(v,) is in L(d(a?)). Note
that f is defined for each node besides the root. Furthermore, if the type of a
node v in #' is a® then f(v) is of the form a?, for some i € S. We call a node
v critical, if f(v) # g(v). Note that ¢ must contain at least one critical node,

19

because otherwise f and g would witness that ¢ € L(d). By ¢(t, f, g) we denote

Z depth(v).

v critical

Now let ¢ € L(dy) — L(d), t' € L(dy) and f and g be fixed such that ¢(t, f, g)
is as small as possible. Let v be a critical node in ¢ such that there is no other
critical node below v and let lab’(v) = b%. Let ¥ = g(v), b* = f(v) and let t,
be the subtree of ¢ rooted at v, so t, € L((d,b)). Let ¢y be an arbitrary tree
in L((d,b")) and let ¢; denote the tree resulting from ¢ by replacing ¢, with
to. As j,k € S, it is easy to see that t; € L(dy) with f; and gy, that can be
obtained by extending f and ¢ such that no node below v in #; is critical and
g1(v) = fi(v) = b¥. Hence, c(t1, f1,91) < ¢(t, f,g) and therefore t; € L(d).

We construct another tree t, from ¢ as follows. Let u denote the parent of
v. Let a® be the label of u in #'. By our construction, there must be an af,
¢ € S', such that b occurs in d(a’). Hence, there is a string w = w; ---wy, €
L(d(a%)) such that w; = b/, for some i. For each symbol w,,, we pick a tree
tw,, € L((d,wy)), in particular let t,, = t,. Let 5 result from ¢ by plugging in
the trees ty,, ..., L., below u (and deleting all nodes that had been below u in
t). The node corresponding to w; is called x.

Let fo and g be defined as f and g, respectively, for all nodes in ¢ which
are not in the subtree rooted at u and let go(u) = a‘. Clearly, t5 € L(d;). As
subtree’?(u) € L((d,a%)), the functions f» and g, can be chosen such that no
node below w is critical. Hence, in ¢, the node v is no longer critical (because it
was deleted) but the node u might have become critical. But, as the depth of u
is smaller than the depth of v, ¢(t2, fo, g2) < ¢(t, f, g), therefore to € L(d).

Note that ¢ can be obtained from ¢; by replacing tg by t,. Hence, as anc-str’2 (z) =
anc-str’ (v), closure of T' under ancestor-guarded subtree exchange would imply
t € L(d), the desired contradiction. O

Proof of Theorem 12. For a regular tree language T the following are equiv-
alent:

(a) T is definable by a restrained competition SDTD;

(b) T is defined by an SDTD with ancestor-sibling-based types;
(c) T is closed under ancestor-sibling-guarded subtree exchange;
(d) T can be characterized by ancestor-sibling-based patterns; and
(e) T is definable by an ancestor-sibling-guarded DTD.

Again we show (a) = (e) = (d) = (b) = (c¢) = (a).

‘ (e) = (d), (d) = (b), (b) = () ‘: These proofs are almost word for word the

same as for Theorem 11. Only ancestor has to be replaced by ancestor-sibling.
In the proof (d) = (b), the states g; must be defined so that g; = 6* (g, b1 - - - b;)
for every i < n.

(c) = (a) | The proof is similar as but a bit more involved than the corre-

sponding proof in Theorem 11. Let T be a tree language defined by an SDTD
d=(X2,Y"d, pn.

20

Let, for each type a' of d, As; = (Qai, X' 8aisSa.i; Fai) be an NFA for
L(d(a%)). W.lo.g. we assume that the sets @, ; are pairwise disjoint.

Let ¥} be defined as in the proof of Theorem 11. We define, for each a® € X}
aDFA A, s = (Qus,%1,04,5, Sa,s, Fu,s) as follows.

~ Qas ={q¢*}U Usies 2Qu1;

— Sq.8 ={Sai |1 €S}

— Fa’g = {B S Qa,S | BﬂFa,i 7é @,7 € S},

In order to define 64,5, let B € Q4,5 and b € Y. We set

§' = {j | dailp.b) #0,i € S.j < ky,p € B}

and
0a,s(B,b%) = | 6i(p, b),

4,p,j

where the latter union is over all i € S, p € B and j < k. For all other sets
S" we set d,.5(B,b%) :=q*t.

Intuitively, A, s can be seen as obtained in two steps from d. First, we take the
product of the power set automata of the 4, ;, ¢ € S. Then, for each symbol b,
for each state of this intermediate automaton, all outgoing edges with label of
the form b7 are combined into one transition which ends in the (component-wise)
union of the all possible target states. The transition is labeled by b to the union
of all outgoing b-labels.

We now define the SDTD dy = (X, X{,di, 1), where, for each a and S,
dy (a®) is a regular expression corresponding to 4, s.

Note that each d; (as) has restrained competition. Indeed, as A, g is deter-
ministic, for each string w, A, s enters a unique state. Furthermore, for each
b € ¥ there is only one outgoing transition of the form b° that can lead to
acceptance.

In analogy to the corresponding proof for Theorem 11 it is sufficient
to show that, if L(d) # L(d;), the language T is not closed under ancestor-
sibling-guarded subtree exchange. Again, L(d) C L(di). Therefore, for each
t € L(d1) — L(d) and its extension ¢’ € L(di), we can define mappings g
and f in correspondence to the proof of Theorem 11. Let f and g be func-
tions which assign to each node of ¢ a type from X’ such that, for each node
u for which g(u) = a’, with type a® in #' and children vy, ..., v, it holds that,
0r 5(8a,5, f(v1) -+ f(vn)) N Fy i # 0. Furthermore, if a node v has type a® in t,
and g(v) = @/ and f(v) = a*, then {j,k} C S. Note that the construction of
A, s guarantees the existence of such functions.

Again, we call a node v critical if f(v) # g(v), and we write ¢(t, f,g) for
Zv critical depth(v).

Now let again ¢t € L(dy) — L(d), ¢’ € L(dy) and f and g be fixed such that
c(t, f,g) is as small as possible. Let v be a critical node in ¢ such that there is no
other critical node in the subtree t, rooted at v and such that it is the leftmost
critical child of its parent node u.

21

Let a® be the label of w in ¢/, let vy, ..., v, be the children of u from left to
right and let m be such that v = v,,. Let B € (), s be the state of A, g after
reading lab" (v1) - lab" (Vm—1).

Let b = g(v), b* = f(v) and let ty be an arbitrary tree in L((d,b*)). Let ¢,
denote the tree resulting from ¢ by replacing t,, with tq. It is easy to see that ¢; €
L(dy) with g1 (v) = fi(v) = b* and that g; and f; can be obtained by extending
f and g such that no node below v is critical. Hence, ¢(t1, f1,91) < ¢(¢, f,g) and
therefore ¢; € L(d).

Let ¢, be constructed from ¢ as follows. Recall that a® is the label of u in
t'. By our construction, there must be an af, £ € S and a string 2,41 ---2n
so that f(v1)- f(Vm 1) 2mi1 -2, € L(d(a")), because ' € S’, where S’
is unique so that 6{1,5(3,6“’1’) # g*. For each symbol f(v;) for i < m, let s;
be a tree in L((d, f(v;))), and for each i > m we take a tree s; in L((d, z;)).
Let ¢y result from ¢ by deleting all nodes below u and plugging in the trees
S1y---38m—1sty,Sm+1,---, Sy below u.

Let f, and g» be defined as f and g respectively, for all nodes in ¢, which
are not in the subtree rooted at u, and let go(u) = a’. Clearly, t, € L(d;).
Below u, the functions f; and g» can be chosen such that no node below wu is
critical. Analogously as in Theorem 11, we have that ¢(to, f2, g2) < ¢(t, f,g) and
therefore ¢t € L(d).

But for the m-th child z of u in ¢, it holds that anc-sib-str’? (z) = anc-sib-str’ (v).
Therefore t results from ¢; € T by replacing the subtree ¢y rooted at v with the
subtree t, rooted at z in t5. Hence, if T was closed under ancestor-sibling-guarded
subtree exchange, t would be in T too, a contradiction.

(a) = (e) |: Let T be defined by a restrained competition DTD d = (¥, X', d, u1).

For each symbol a’ in X' let Ay ; = (Qa.iy X', 0aiy Sa,is Fa,i) be a DFA for d(a?).
We can modify A4, ; such that it has exactly one state ¢ from which no ac-
cepting state is reachable and such that it has no unreachable states (possibly
besides ¢*). From the restrained competition property it immediately follows
that in A, ;, for each state q, if §(¢,a’) = q1, 8(q,a’) = q2, 1 # g2 and i # j
then ¢; or ¢, must be g*~. We require that the sets (i are pairwise disjoint.

From these DFAs over the extended alphabet X' we construct a DFA A =
(Qa, X, 54,04, Fa) as follows. The set) 4 consists of all pairs (q,b), where ¢ €
Qa.i, for some a’, and b € X' U {#]}. Intuitively, ¢ is the current state of an
automaton A, ; and b is the last extended symbol or type that has been identified.
The initial state s4 of A is (s, ;, #) for the initial symbol a’ of d. The transition
function 04 is defined as follows. For each g € Qq4, ¢ € X' and b € X we let
54((g,¢),b) = (84,i(q,b7),b7), for the unique j with &, ,(g,b’) # ¢, if such a j
exists. Otherwise, d4((q,c),b) = (¢*,#). Furthermore, we let §4((q, '), #) =
(sp,j,#). Weset Fa ={q|q€ F,}.

Now we are ready to define the ancestor-sibling guarded DTD d’. It consists
of all triples (r, a, s), for which there is a state (q,a’) of A, such that r describes
the set of strings w with §%(sa,w) = (q,a’) and s is p(d(a?)).

E Tt only remains to show that d’ and d describe the same tree language.
By the construction it is obvious that every tree in L(d) is also in L(d'): indeed,

22

for a tree t € L(d) and a node v, the automaton enters a state (g,a’) after
reading the symbol a corresponding to v if and only if v gets the label a’ in the
unique labeling with respect to d. Hence, ch-str(v) is in p(d(a?)).

Now let ¢t € L(d’) and let v be a node of ¢. If anc-sib-str(v) matches r in
(r,a, s) then, by construction, v can only be labeled by a’ if a labeling of ¢ with
respect to d exists. But then, as s is u(d(a’)), ch-str(v) is in u(d(a?)). As this
holds for all nodes v, we can conclude that ¢ matches d. O

Complexity of Basic Decision Problems

it is restrained competition.

E We need to check that every regular expression r occurring in a rule
restrains competition. We present a nondeterministic logspace algorithm which
accepts a regular expression if it does not restrain competition. As NLOGSPACE
is closed under complement, the theorem follows.

Let N. = (X2',Q, 9, qo, F) be an NFA equivalent to r. The algorithm works as
follows. Let R denote the set {g | Jv € X such that §*(q,v) N F # B} of states
from which a final state can be reached.

it first guesses two states (g1, q2) of Ny;

it verifies that there is a string « such that {q1,¢2} C 6*(qo,u);

it verifies that there are a, 1, j such that 6(¢i,a’) R # 0 and §(qo,a’)NR # 0;
4. it accepts if all these verifications work out.

W=

Obviously, this algorithm accepts r, if and only if there are strings u, v, w such
that ua’v and ua’w are in L(r) as required. Furthermore, all steps can be done
in logarithmic space, as neither the NFA A nor the set R has to be computed in
advance. Indeed, it can be checked in logarithmic space that, for given p, g, b,
whether ¢ € R and whether g € 6(p, /). O

Let NTA(REG) denote the class of NTAs where the regular languages en-
coding the transition function are represented by regular expressions.

Lemma 22. Let a € ¥ and let A be an NTA(REG), only having one accept
state, such that whenever t € L(A) then the root of t is labeled a. Then an
SDTD d can be computed in PTIME such that L(A) = L(d).

Proof. Let A = (Q, X = {a1,...,an},0,F = {qr}) be an NTA(REG). Then
define d = (X, X', d, u) as follows: X' = {b? | b€ X q € Q}, u(b?) = b for every
be X, sqg=a?, and d consists of the rules d(b?) = ry , where ry 4 is the regular
expression obtained from §(b,q) by replacing every occurrence of a state p by
(@ + -~ +aP). As every ¢ € L(d) induces an accepting run of A on u(t), it is
immediate that A and d are equivalent. O

Proof of Theorem 14. FEach of deciding whether an SDTD has an equivalent
DTD, single-type SDTD or restrained competition SDTD is EXPTIME-complete.

23

In all three cases, we make use of a reduction from the universality problem
for NTAs, which is known to be hard for EXpTIME [19].

[--- | The latter even holds for NTA(REG) where automata only have one
final state. Therefore, let A be an NTA(REG) over alphabet ¥ = {a,b}. By
Lemma 22, an equivalent SDTD d = (X, X', d, u) can be constructed in PTIME.

We now modify d into an SDTD d; over the alphabet A = {a,b, a, 3, root}
which accepts all trees ¢ such that ¢ is of the form root(o (")) where o is a or £,
t' € Ty, and the tree obtained from ¢’ by deleting the right-most leaf is accepted
by A.

Let ds be the SDTD accepting all trees t of the form root(o(¢')) where the
right-most leaf is a (respectively, b) when o is a (respectively,).

Finally, define d3 as the SDTD accepting L(d;) U L(d2). Set S := L(d3).

We show the following

(a) if L(A) = T then S is defined by a DTD; and,
(b) if L(A) # Ts; then S is not defined by a restrained competition SDTD.

Of course (a) and (b) together imply the statement of the theorem.

(a) First note that when L(A) = Ty, then L(d2) C L(d;) and S equals
{root(o(t)) | 0 € {a,B},t € Tx;}. The latter can clearly be defined by a DTD.

(b) Let L(A) # Tx and let ¢ be a tree not in L(A). Let ¢, and ¢, be the
trees obtained from ¢ by adding an a and b respectively, to the right of the
right-most leaf. Then ¢/, := root(a(t,)) € S while t; := root(a(ty)) ¢ S. Let t}
be the tree obtained from t; by adding an a-leaf as right-most child of «, i.e.
t; = root(a(tpa)). By definition of B, t;/ € S. Let vn be the right-most leaf of

t! and let v be its parent. Then note that anc-sib-str’s (v) = anc-sib-str’> (v). So,

by Theorem 12, ! [v subtree? (v)] is in S when S is defined by a restrained
competition SDTD. Hence, (b) follows.

The exponential time upper bounds are shown as follows.

-]

— In the case of single-type SDTDs we proceed as follows. Let d be a given
SDTD. We first construct the SDTD d5 as described in the proof of Theorem
11 (¢) = (a). This can be done in exponential time and d2 might be of
exponential size in d. Then it has to be checked whether they are equivalent.
Fortunately, as always L(d) C L(d2), we only have to check whether L(dy)—
L(d) is empty. This involves the complementation of the tree automaton for
d resulting in a tree automaton of possibly exponential size and in the test
whether the automata for L(dz2) and the complement of L(d) have a non-
empty intersection. The latter is polynomial in the size of the automata.
Hence, we altogether get an exponential time algorithm.

— Testing whether a SDTD has an equivalent restrained competition SDTD
can be done along the same lines, this time based on the proof of Theorem
12 (¢) = (a). Note that, the size of the automata A, s is at most exponential
in the size of d.

24

— Finally, we describe how it can be tested whether a given SDTD d =
(X, %', d,) has an equivalent DTD. Let, for each a’ € X', r,; be the regular
expression obtained from d(a’) by replacing every symbol b/ by b. We define

a DTD (dy, sq) with alphabet X simply by taking the rules a — U Tq.i, for

every a € Y. It remains to show that d has an equivalent DTD ifiand only
if L(d) = L(d,).

Analogously as in Theorem 11((c)=-(a)), we have that L(d) C L(d;). To-
wards a contradiction, suppose that d has an equivalent DTD and that
t € L(dy) — L(d). According to Lemma 2.10 in [16], L(d) is closed under
parent-guarded subtree exchange. As t ¢ L(d) there exists a node « in ¢ such
that subtree’ (u) ¢ L((d,a’)) for any a’ € X', but for every child ul,... ,un

of u, we have that subtree’ (uj) € L((d, b;.j)) for some b;-j € X'. By defini-

tion of dy, for every b;-j, there exists an a* such that b;-j occurs in d(a*).
So, for every uj there exists a tree ¢; € L(d) with a v € Dom(t) such that
lab’ (v) = b;, the parent of v is labeled a, and subtree’s (v) = subtree’ (u).
But this means that ¢ can be constructed from #q, ..., t, by parent-guarded

subtree exchange, which is a contradiction as ¢ ¢ L(d).

O

Applications of the Characterizations

Inclusion and Equivalence of Schemas

Proof of Theorem 15. Given two restrained competition SDTDs dy and da,
deciding whether

(a) L(d1) C L(d2), and whether
(b) L(d1) = L(d2)

is PSPACE-complete in general, and PTIME-complete when dy and ds use deter-
ministic reqular erpressions.

[---] The theorem rather directly follows from the pattern based characteri-
zations of the different subclasses.

For the upper bounds, (b) follows from (a), hence we only show (a).

Tt follows from Theorem 12 that for a tree language T' defined by a restrained
competition SDTD it holds that a tree ¢ is in T if and only if Puncgp(t) is
in Panesib(T) := {Pancsin(s) | s € T}. Hence, L(d1) C L(dz) if and only if
Panc—sib(L(dl)) g Panc—sib(L(d2))-

The statement of the theorem now follows from the fact that, for each re-
strained competition SDTD d = (X, X', d, u), an NFA A for P,,cqin(L(d)) can
be computed in polynomial time and equivalence of NFAs can also be checked
in polynomial space. Also, A is deterministic if d uses deterministic regular ex-
pressions.

25

The lower bounds are easy reductions of the inclusion and equivalence prob-
lems of regular expressions, which are PSPACE-complete, and from the emptiness
problem of a language defined by a DTD, which is pTIME-complete.

For the upper bounds, it remains to show the construction of A = (Q 4, X' U
{#},5A,SA,FA).)

Let for each a’ € X', Ay ;i = (Qa.iy X', 04.is Sa,i, Fa;) be an NFA that defines
d(a’) and has a unique state ¢* from which no final state is reachable. We adapt
A, i so that it uses alphabet X, but remembers the types of the symbols that it
reads, i.e., we define A, ; = (Q, ;, ¥, 6, ;, 8, ;, F,) where @, ; = Q,,; x X'. For
each b € X and ¢ € X' we define d;, ;((¢g,¢),b) = {(p, W) | p € 8a.i(q,b7)}. Note
that, as d is restrained competition, 4, ;((g,c),b) contains no (p1,b7), (pa, b72)
for ji; # ja. The start state and the set of final states are defined in the obvious
way. W.Lo.g. we assume that all @y, ; are pairwise disjoint. The NFA Af ; can
be constructed in PTIME.

We now formally define A. The state set () 4 is the union of all Q:“ Tts start
state is s}, where r is the start symbol of d and the set of accept states is the

union of all F, ;. Tt remains to define the transition function. For every b € X,
(sA((Qa,i:CJ):b) = (Sa,i((Qa,iac]): b): where Ga,i € Q;ﬂ Flnally, (sA((QrL,i:cj): #) =
s.;- 1t is easy to see that the size of A is no larger than the sum of the sizes of
all Aj, ;. This concludes the proof. O

Minimization of SDTDs

We prove Theorem 16. In order to construct a unique minimal single-type or
restrained competition grammar, we use DFAs in DTDs instead of regular ex-
pressions. We define what it means for an SDTD to be single-type or restrained
competition in this context.

Definition 23. A DFA D with alphabet X' is single-type if L(D) contains no
strings wb'v and w'b/v’ for i # j. A DFA D restrains competition if L(D)
contains no strings wb'v and wbiv' for i # j. A SDTD is single-type, resp.
restrained competition if all DFAs in its DTD are single-type, resp. restrained
competition.

An SDTD d = (¥, X', d,) is bottom-up deterministic when for each a’,a’ €
X' i # j, L(d(a*))NL(d(a?)) = 0. The size of an SDTD d is |X'|+>" ;. 5 [d(a’)],
where we denote by |d(a’)| the number of states of the DFA representing d(a’).

We show how to construct a minimal SDTD** from a given SDTD®*. We note
that the minimization algorithm and uniqueness proof is entirely analogous for
restrained competition SDTDs. We merely need to replace ancestor-based types
in the proof of Lemma 25 by ancestor-sibling-based types. Let d = (X, X', d, u)
be an SDTD'. We recall that L((d, a?)) is the language defined by d, where the
start symbol of d is replaced by a’. The SDTD®" dp,;, with L(d) = L(dmin) is
be constructed as follows:

1. Trim d, that is, remove all unreachable rules from d, and remove all ¢’ € X'
for which L((d,a')) = (), and their corresponding rules.

26

2. Test, for each a' and a’ in X', i # j, whether L((d,a?)) = L((d,a’)).
According to Theorem 15 this is in pTIME. If L((d,a’)) = L((d,a’)), then
replace all occurrences of a’ in d by a’, remove the rule in d that corresponds
to a’, and remove o/ from X'

3. For each a’ € X', minimize the DFA representing d(a’).

Let dmin = (X, Y., dmin, fimin) be the SDTD® obtained by the above algo-

rithm. It remains to show that dy, is the minimal SDTD®' for L(d). More
formally, we show that

(a) L(dmin) = L(d); and that
(b) every minimal SDTD®® d’ for L(dpin) is isomorphic to dpin-

The following lemma is easy to show.
Lemma 24. The SDTD d,,;, can be computed in PTIME.

Obviously (a) holds. We proceed with showing (b).

Lemma 25. Let d; = (X, X],dy, 1) and do = (X, XY, do, o) be trimmed,
equivalent single-type SDTDs. If there exist trees t} € L(dy), th € L(d2) with
i (t)) = pa(th) = t, and a node u such that lab" (u) = a' and lab® (u) = a?,
then L((dy,a’)) = L((d2,a’)).

Proof. If |L((dy,a%))| = |L((ds,a?))| = 1, the proof is trivial. We show that
L((dy,a’)) C L((da,a’)). The other inclusion is analogous. Let |, € L(d;),
th € L(d2) with that pq(t)) = p2(t),) = ¢, and u be a node such that lab't (u) = a’
and lab (u) = a’. Towards a contradiction, assume that there exists a 7, €
L((dy.a')) - L((ds.). |

Let 7{ be the unique typed tree in L((di,a")) with pi(rf) = 7. As d; is
trimmed, there exists a tree T} in L(d;), such that 7| is a subtree of T at some
node v. As lab®t (u) = ai and lab”1 (v) = a’, the tree t[u < 7] is also in L(d,).
As L(dy) = L(da), tfu < 7] € L(d2). As d» has ancestor-based types and
u has the same ancestor string in ¢ as in t[u + 7], u gets the same type a’
in the unique labeling. Therefore, 71 € L((ds,a’)), which leads to the desired
contradiction. O

The next lemma says that every minimal SDTD*' has as many types as dmin.

Lemma 26. Let d' = (X, Y d,u) be a minimal SDTD® for L(dmin), where
dpin = (X, X" . dmin, fimin). Then for every a € X we have |{a’ € X' | u(a’) =

min’

a}| = {a' € Ty | Hmin(a’) = a}|.

Proof. We first show that |{a’ € X'}| cannot be larger than |{a’ € X' . }|.
Towards a contradiction, assume that |{a’ € X'}| > |{a’ € X' . }|. For every
a’ € X', let t; be an arbitrary tree so that a’ is a label in the unique tiq for
which ,u(t;»’d,) =1;. Also, let t;,dmi“ be the unique tree for which Nmin(t;,dmi“) =t;.
According to the Pigeonhole Principle, there must be two trees ¢’ 4, and t} 4, so
that an a’-labeled node u in t’ 4 and an a*-labeled node v in th.a are labeled

by the same a’ in both t; a,,, and tj 4 .

27

From Lemma 25, it now follows that L((d’,a’)) = L((dmin,a’)) = L((d’, a*)).
Therefore, renaming all a* to a/ in d’ results in an equivalent, strictly smaller
SDTD®! than d’. Contradiction.

The other direction can be proved analogously, with the roles of d’ and
d,nin interchanged. Now the contradiction is that d,,i, cannot be the output
of the minimization algorithm, as there still exist a’ and a® in dy;, so that
L((dmin, a’)) = L((dmin, a*)). O

We now know that every minimal SDTD®" for L((dmin)) has the same num-
ber of types for each alphabet symbol. We now argue that there exists a bijec-
tion I between X' and X' . so that I(a') is the unique ¢/ € X' . for which
L((d',a")) = L((dmin,a?)). In other words, we only need to show that for every

a' € X', there exists an a/ € X! . so that L((d’,a’)) = L((dmin,a’)). But this
immediately follows from Lemma 25. It now follows that for each o’ € X/, .
we have that L(dmin(a’)) = I"(L(d(I(a’)))) (where we denoted by I the obvi-
ous extension of I to string languages). As minimal DFAs for a given regular

language are unique up to isomorphisms, we have the following lemma:
Lemma 27. Every minimal SDTD%" d' for L(dy,) is isomorphic to dun.

Theorem 16 now follows from Lemma 24 and Lemma 27.

Subtree Based Schemas

Proof of Theorem 19. For a tree language T the following are equivalent:

(a) T is definable by an extended restrained competition SDTD;
(b) T is definable by an SDTD with preceding-subtree-based types;
(¢) T is reqular.

The directions (a) = (¢) and (b) = (c) are trivial. The proof of the opposite
directions uses the fact that regular languages can be validated by deterministic
bottom-up automata. (c) = (a) and (c¢) = (b):

Let T be the tree language defined by a bottom-up deterministic tree automaton
B = (Q,X,),F). We can assume that transition functions are represented by
regular expressions. We construct an SDTD d = (X, X', d,) such that L(d) =
L(B) exactly as in Lemma 22. It is immediate that a tree t € L(d,a?) iff §*(t) =
q, where lab’(e) = a. Here, 6* is the canonical extension of § to trees. As B is
deterministic, L((d,a?))NL((d,a?)) = @ for alla € ¥ and ¢ # ¢’ € Q. Hence, d
is extended restrained competition. By observing that there is only one accepting
run for every tree and defining f(preceding-subtree’ (u), u) = §* (subtree’ (u)), it
follows that d has preceding-subtree-based types. O

Proof of Theorem 20. It is decidable in PTIME for an SDTD d whether it is
extended restrained competition.

Let d = (X, X', d, u) be an SDTD.

Let E be the set {(a’,a’) | L((d,a%)) N L((d,a’)) # 0}. This set can be
computed in polynomial time by checking whether the non-deterministic tree

28

automata for L((d, a’)) and L((d, a’)) have a non-empty intersection [11]. Here,
(d,a’) denotes the SDTD d with start symbol a’.

The algorithm now basically proceeds as in the proof of Theorem 13. In step
3. it additionally has to check that (a',a’) € E. O

29

