
Whi
h XML S
hemas Admit 1-Pass PreorderTyping?Wim Martens1, Frank Neven1, and Thomas S
hwenti
k21 Limburgs Universitair CentrumUniversitaire CampusB-3590 Diepenbeek, Belgiumfwim.martens,frank.neveng�lu
.a
.be2 Philipps Universit�at MarburgFa
hberei
h 12, Mathematik und Informatikti
k�informatik.uni-marburg.deAbstra
t. It is shown that the
lass of regular tree languages admittingone-pass preorder typing is exa
tly the
lass de�ned by restrained
om-petition tree grammars introdu
ed by Murata et al. [14℄. In a streaming
ontext, the former is the largest
lass of XSDs where every element in ado
ument
an be typed when its opening tag is met. The main te
hni
alma
hinery
onsists of semanti
al
hara
terizations of restrained
ompe-tition grammars and their sub
lasses. In parti
ular, they
an be
har-a
terized in terms of the
ontext of nodes,
losure properties, allowedpatterns and guarded DTDs. It is further shown that de
iding whether as
hema is restrained
ompetition is tra
table. De
iding whether a s
hemais equivalent to a restrained
ompetition tree grammar, or one of its sub-
lasses, is mu
h more diÆ
ult: it is
omplete for exptime. We show thatour semanti
al
hara
terizations allow for easy optimization and mini-mization algorithms. Finally, we relate the notion of one-pass preordertyping to the existing XML S
hema standard.1 Introdu
tionXML (eXtensible Markup Language)
onstitutes the basi
 format for data ex-
hange on the Web [4℄. For many appli
ations, it is important to
onstrain thestru
ture of do
uments by providing a s
hema spe
i�ed in a s
hema language.The most
ommon s
hemas are Do
ument Type De�nitions (DTDs). A DTD isbasi
ally a set of rules of the form a ! r, where a is a tag name and r is aregular expression. A do
ument is valid with respe
t to a DTD if ea
h elementlabeled with a has a sequen
e of
hildren whose tags mat
h r. We view an XMLdo
ument as a tree in the way indi
ated by Figure 1.Unfortunately, DTDs are limited in various ways. A parti
ular limitation isthat the type of an element
an only depend on its tag but not on its
ontext.As an example, in Figure 1 it is not possible to assign di�erent types to dis
ountDVDs and non-dis
ount DVDs while retaining the same tag.XML S
hema De�nitions (XSDs) is the standard proposed by the WorldWide Web
onsortium (W3C) to answer the short
omings of DTDs [5℄. In

database theory, the latter are modeled by extended
ontext-free grammars,the former by unranked regular tree languages [2℄. Su
h regular tree languages
an be represented by spe
ialized DTDs (SDTDs) [16℄ allowing to assign typesai to elements with tags a (
f. De�nition 2). The rules are of the form ai ! rwhere r is a regular expression over types, i.e., the rules
onstrain, for ea
h ele-ment type, the sequen
e of types of sub-elements. In our example, regular DVDs
ould get the type dvd1, dis
ount DVDs the type dvd2 (
f. Se
tion 2.2). A treeis then valid w.r.t. an SDTD if there is an assignment of types mat
hing therules of the grammar. The enlarged
exibility of SDTDs requires an additionalalgorithmi
 task: besides simply
he
king validity it will often be ne
essary to
ompute a mat
hing assignment. We refer to this as typing.The goal of the present paper is to identify the largest
lass of SDTDs whi
h
an be typed in a streaming fashion. In other words, when pro
essing an XMLdo
ument as a stream of opening and
losing tags, the type of ea
h elementshould be uniquely determined when the opening tag is met. We will refer to thisas 1-pass preorder typing. The latter
an be an important �rst step in pro
essingstreaming XML data. On top of this information, e.g., subs
ription queries
anbe de�ned (e.g., inform me if there are new dis
ounted dvds) and their evaluation
an be optimized.Note that a do
ument is valid w.r.t. an SDTD if all elements
an be
orre
tlytyped. Hen
e, 1-pass preorder typing implies 1-pass (preorder) validation, butnot vi
e versa. Indeed,
onsider the SDTD
onsisting of the rules a0 ! b1 + b2,b1 !
 and b2 ! d, de�ning the �nite tree language fa(b(
)); a(b(d))g. Thislanguage
an easily be validated via an algorithm making a preorder traversalthrough the input tree, but does not admit preorder typing: the type of theb-element
annot be determined without looking at its
hild.Murata, Lee and Mani [14℄ proposed3 two restri
tions of SDTDs, single-type and restrained
ompetition, whi
h guarantee 1-pass preorder typing. AnSDTD is single-type if for ea
h rule ai ! r and ea
h tag b at most one typebj o

urs in r. It is restrained
ompetition if there is no rule ai ! r for whi
hthere exist strings wbju and wbkv in L(r) with j 6= k. Clearly, both restri
tionsassure 1-pass preorder typing. However, from the de�nition of these restri
tionsit is not immediately
lear whether they are the weakest possible to ensure 1-pass preorder typing. More importantly, a pre
ise semanti
al
hara
terizationproviding insight in fundamental properties of these
lasses remained open.Contributions. It turns out that an SDTD admits 1-pass preorder typing ifand only if its trimmed version (i.e., without useless symbols) is restrained
om-petition. So, a regular tree language admits 1-pass preorder typing if and onlyif it
an be des
ribed by a restrained
ompetition SDTD. Therefore, restrained
ompetition SDTDs might be a good basis for an XML s
hema language ex-tending XSDs without losing the ability of eÆ
ient parsing. Interestingly, for3 A
tually, they de�ned these
lasses in the slightly di�erent framework of regular treegrammars. We use SDTDs here to simplify proofs. Nevertheless, w.r.t. de�ning treelanguages, the two formalisms are equally expressive and one
an be translated intothe other eÆ
iently in a straightforward manner.2

this purpose no further restri
tion to one-unambiguous regular expressions [3℄ isne
essary. We dis
uss this further in Se
tion 7.Starting from this, we study the
lasses of tree languages whi
h
an be de-s
ribed by restrained-
ompetition SDTDs and single-type SDTDs, respe
tively.The next
ontribution is a set of semanti
al
hara
terizations of these
lasses.The main parameter in these
hara
terizations is the dependen
y of the type ofa node on the
ontext of the node in the do
ument. In parti
ular, we prove thata regular tree language
an be de�ned by (1) a single-type SDTD if and only ifthe type of ea
h node only depends on the sequen
e of tags on the path fromthe root to the node; and, (2) a restrained
ompetition SDTD if and only if thetype of ea
h node only depends on the tags of the nodes on the path from theroot to the node and their left siblings. The other
hara
terizations are in termsof
losure properties, allowed patterns and guarded DTDs.Next, we turn to algorithmi
 issues. Two algorithmi
 problems immediatelyarise from the above. Given an SDTD d, (1) is d a DTD, single-type SDTDor restrained
ompetition SDTD, and (2) is there a DTD, single-type SDTD orrestrained
ompetition SDTD d' des
ribing the same tree language as d? The�rst question is trivial for DTDs and single-type SDTDs. We prove that it is innlogspa
e for restrained
ompetition SDTDs. The se
ond question turns out tobe mu
h harder: in all three
ases it is
omplete for exptime. Furthermore, thealgorithm is
onstru
tive. That is, if d is in fa
t in the desired
lass, an equivalentDTD, single-type SDTD or restrained
ompetition SDTD d0 is
onstru
ted.Our semanti
al
hara
terizations lead to easy optimization and minimiza-tion algorithms. Whereas the in
lusion problem is exptime-
omplete for gen-eral SDTDs (even with one-unambiguous regular expressions [13℄) it follows fromour
hara
terizations that these problems are in pspa
e for restrained
ompe-tition SDTDs and even in ptime if it is additionally required that the regularexpressions are one-unambiguous. We show that, in
ontrast to general SDTDs(
f. Se
tion 5.2), for every tree language de�nable by restrained
ompetitiongrammars, there exists a unique minimal restrained
ompetition grammar thatdes
ribes it. Moreover, this minimal grammar
an be
omputed in polynomialtime.We
on
lude with an observation on post-order typing. Although in general,arbitrary SDTDs do not admit 1-pass preorder typing, we show that for ea
hregular tree language there is an SDTD whi
h allows 1-pass postorder typing,i.e., a parsing algorithm that determines a type of an element when it rea
hesits
losing tag. That every SDTD allows 1-pass validation was already observedby Segou�n and Vianu [18℄.Related work. Br�uggemann-Klein, Murata, and Wood study unranked reg-ular tree languages as a formal model for XML s
hema languages [2℄. In par-ti
ular, they prove that the latter model is equivalent to the morphi
 image oftree-lo
al tree languages. Papakonstantinou and Vianu [16℄ formalize the latteras the more manageable spe
ialized DTDs whi
h are used in this paper. Murataet al. [14℄ provided a taxonomy of XML s
hema languages in terms of restri
tionson grammars whi
h are equivalent to spe
ialized DTDs. In parti
ular, they pro-3

<store><dvd><title> "Amelie" </title> <pri
e> 17 </pri
e></dvd><dvd><title> "Gothika" </title><pri
e> 15 </pri
e> <dis
ount> 4 </dis
ount></dvd></store> storedvdtitle"Am�elie" pri
e17 dvdtitle"Gothika" pri
e15 dis
ount4Fig. 1. An example of an XML do
ument and its tree representation.pose to formalize DTDs, XML S
hema, and Relax NG [24℄ as lo
al, single-type,and arbitrary regular tree grammars, respe
tively. They also introdu
e the no-tion of restrained
ompetition and show that these are 1-pass preorder typeablebut do not dis
uss optimality or give any semanti
al
hara
terizations.The organization of the paper is as follows. In Se
tion 2 we de�ne the var-ious
lasses of SDTDs and the properties by whi
h we
hara
terize them. Thea
tual
hara
terizations are given in Se
tion 3. In Se
tion 4 the
omplexity ofthe basi
 de
ision problems is addressed. In Se
tion 5, we dis
uss optimizationand minimization algorithms. Se
tion 6 shows that every regular tree languageallows 1-pass postorder typing. We dis
uss our results in Se
tion 7.2 De�nitions2.1 Trees and Tree LanguagesFor our purposes, an XML do
ument is basi
ally a sequen
e of opening and
losing tags, properly nested. As usual, we identify XML do
uments with their
orresponding trees. The domain Dom(t) of a tree t is the set of its nodes,represented in a �xed way by sequen
es of numbers. The empty sequen
e "represents the root. The n
hildren of a node u are named u1; : : : ; un in theorder given by the do
ument. Nodes
arry labels from alphabet � of tags. Wedenote the label of v in t by labt(v). The set of all unranked �-trees is denotedby T� . A tree language is a set of trees. For a gentle introdu
tion into trees, treelanguages and tree automata we refer to [15℄.2.2 XML S
hema LanguagesDe�nition 1. A DTD is a pair (d; sd) where d is a fun
tion that maps �-symbols to regular expressions and sd 2 � is the start symbol. We usuallysimply denote (d; sd) by d. A tree t is valid w.r.t. d (or satis�es d) if its root islabeled by sd and, for every node with label a, the sequen
e a1 � � �an of labelsof its
hildren is in L(d(a)). By L(d) we denote the set of trees that satisfy d.A simple example of a DTD de�ning the inventory of a store is the following:store! dvd dvd� dvd! title pri
e(dis
ount + ")4

De�nition 2 ([16, 17℄). A spe
ialized DTD (SDTD) is a 4-tuple d = (�;�0;(d; sd); �), where �0 is an alphabet of types, (d; sd) is a DTD over �0 and � is amapping from �0 to �. A tree t is valid w.r.t. d (or satis�es d) if t = �(t0) forsome t0 2 L(d) (where � is extended to trees). Again, we denote the set of treesde�ned by d, by L(d). We denote by (d; ai) the spe
ialized DTD d, where werepla
e the DTD (d; sd) by (d; ai).The
lass of tree languages de�ned by SDTDs
orresponds pre
isely to theregular (unranked) tree languages [2℄. For ease of exposition, we always take�0 = fai j 1 � i � ka; a 2 �; i 2 Ng for some ka 2 N and set �(ai) = a. We referto the label ai of a node (or sometimes also to i) in t0 as its state or type. We saythat an SDTD d is trimmed if d has no unrea
hable rules and that there existsno ai 2 �0 for whi
h L((d; ai)) = ;. Note that L((d; ai))
ontains trees overalphabet �0, whereas L((d; ai))
ontains �-trees. In the remainder of the paper,we assume that all SDTDs are trimmed. We note that trimming an SDTD isptime-
omplete. A simple example of an SDTD is the following:store! (dvd1 + dvd2)�dvd2(dvd1 + dvd2)�dvd1 ! title pri
e dvd2 ! title pri
e dis
ountHere, dvd1 de�nes ordinary DVDs while dvd2 de�nes DVDs on sale. The rulefor store spe
i�es that there should be at least one DVD on dis
ount.Murata et al. [14℄ argue that the expressiveness of SDTDs
orresponds tothe XML s
hema language Relax NG, while the single-type SDTDs de�ned next
orrespond to XML S
hema.De�nition 3. A single-type SDTD (SDTDst) is an SDTD (�;�0; d; �) in whi
hin no regular expression d(a) two types bi and bj with i 6= j o

ur.The above de�ned SDTD is not single type as both dvd1 and dvd2 o

ur in therule for store. An example of a single-type SDTD is given next:store! regulars dis
ountsregulars! (dvd1)� dis
ounts! dvd2 (dvd2)�dvd1 ! title pri
e dvd2 ! title pri
e dis
ountAlthough there are still two element de�nitions dvd1 and dvd2, they
an onlyo

ur in a di�erent
ontext. The next
lass was de�ned in [14℄ be
ause it stillallows 1-pass preorder typing.De�nition 4. A regular expression r restrains
ompetition if there are no stringswaiv and wajv0 in L(r) with i 6= j. An SDTD is restrained
ompetition (SDTDr
)i� all regular expressions o

urring in rules restrain
ompetition.An example of a restrained
ompetition SDTD that is not single-type is givennext: store! (dvd1)� dis
ounts (dvd2)�dis
ounts! " dvd1 ! title pri
e dvd2 ! title pri
e dis
ountThe
lasses of tree languages de�ned by the grammars introdu
ed above arein
luded as follows: DTD (SDTDst (SDTDr
 (SDTD [14℄.5

v
t

(a) v
t

(b)
t1

t01 v1
t2
t02v2

t1
t02v12 T 2 T) 2 T(
)Fig. 2. Illustration of notions introdu
ed in Se
tion 2.3. Figures 2(a) and 2(b) illustratethe an
estor-string (an
-str) and an
estor-sibling string (an
-sib-str) of v. Figure 2(
)illustrates the notion of an
estor-sibling-guarded subtree ex
hange.2.3 An
estor- and An
estor-Sibling-PatternsFinally, we de�ne the notions that will be used in our semanti
al
hara
teriza-tions. Let t be a tree and v be a node. By
h-strt(v) we denote the string formedby the
hildren of v, i.e., labt(v1) � � � labt(vn) if v has n
hildren. Usually we omitthe supers
ript t. By an
-strt(v) we denote the string formed by the labels onthe path from the root to v, i.e., labt(")labt(i1)labt(i1i2) � � � labt(i1i2 � � � ik) wherev = i1i2 � � � ik. By l-sib-strt(v) we denote the string formed by the labels of theleft siblings of v, i.e., labt(u1) � � � labt(uk) where v = uk. By an
-sib-strt(v) wedenote the string l-sib-strt(")#l-sib-strt(i1)# � � �#l-sib-strt(i1i2 � � � ik) formed by
on
atenating the left-sibling strings of all an
estors starting from the root. Weassume that # 62 �. Note that the �nal symbol of an
-strt(v) and an
-sib-strt(v)is always the label of v.De�nition 5. We say that a spe
ialized SDTD d = (�;�0; d; �) has an
estor-based types if there is a (partial) fun
tion f : (� [f#g)� ! �0 su
h that, forea
h tree t 2 L(d) the following holds: (1) there is a unique tree t0 2 L(d) with�(t0) = t; and (2) for ea
h node v 2 Dom(t), the label of v in t0 is f(an
-strt(v)).We say d has an
estor-sibling based types if the same holds with an
-strt(v)repla
ed by an
-sib-strt(v).By t1[u t2℄ we denote the tree obtained from a tree t1 by repla
ing thesubtree rooted at u 2 Dom(t1) by t2. By subtreet(u) we denote the subtree of trooted at u.De�nition 6. We say that a tree language T is
losed under an
estor-guardedsubtree ex
hange if the following holds. Whenever for two trees t1; t2 2 T withnodes u1 2 Dom(t1) and u2 2 Dom(t2) it holds that an
-strt1(u1) = an
-strt2(u2)implies t1[u1 subtreet2(u2)℄ 2 T . We
all it
losed under an
estor-sibling-guarded subtree ex
hange if the same property holds with an
-sib-strt1(u1) =an
-sib-strt2(u2) as pre
ondition of the impli
ation. Figure 2 illustrates the justde�ned notions. 6

De�nition 7. An an
estor-guarded DTD d is a pair (d; sd) where sd 2 � is thestart symbol as in a DTD. But in
ontrast to a DTD, d is a �nite set of triples(r; a; s), where a 2 � and r and s are regular expressions. If there are triples(r; a; s) and (r0; a; s0) in d then L(r) and L(r0) are disjoint. A tree t satis�es dif for every node v 2 Dom(t) the following holds. If an
-str(v) mat
hes r andlab(v) = a there must be a triple (r; a; s) in d and
h-str(v) must mat
h s.An an
estor-sibling-guarded DTD is de�ned in the same way with the di�er-en
e that r has to be mat
hed by an
-sib-str(v).De�nition 8. Let Pan
(t) = fan
-str(v)#
h-str(v) j v 2 tg and Pan
-sib(t) =fan
-sib-str(v)#
h-str(v) j v 2 tg: Let T be a set of trees. We say that T
an be
hara
terized by an
estor-based patterns, if there is a regular string language Lsu
h that, for every tree t, we have that t 2 T if and only if Pan
(t) � L. We sayT
an be
hara
terized by an
estor-sibling-based patterns if the same holds withPan
(t) repla
ed by Pan
-sib(t).3 Semanti
 Chara
terizations of Single-Type andRestrained Competition SDTDsIn this se
tion, we �rst show that an SDTD is restrained
ompetition if and onlyif it allows for 1-pass preorder typing. Afterwards, as an intermediate step, we
hara
terize the regular tree languages de�nable by single-type SDTDs. Finally,we
hara
terize the
lass of tree languages whi
h
an be des
ribed by restrained
ompetition SDTDs.3.1 S
hemas with 1-Pass Preorder TypingIt follows from Theorem 12 that in restrained
ompetition SDTDs the type ofa node only depends on its an
estor-sibling string. However, in an SDTD whi
hadmits 1-pass preorder typing the type of a node might depend on all parts ofthe tree whi
h o

ur before the node. We formalize this notion via SDTDs withpre
eding based types. Nevertheless, it will turn out that these two notions areidenti
al.For a tree t and a node v we denote by pre
edingt(v) the tree resulting fromt by removing everything below v, all right siblings of v's an
estors and of v,and their respe
tive subtrees (
f. Figure 3). We de�ne the term pre
eding-basedtypes in analogy to De�nition 5 with pre
edingt(v) in pla
e of an
-strt(v).Expressed in a di�erent way, the type of an element only depends on thepre�x of the XML do
ument ending with its opening tag.Theorem 9. A trimmed SDTD d has pre
eding based types if and only if it isrestrained
ompetition.Proof sket
h. The \if"-part of the statement is obvious. We sket
h the \onlyif". A
tually, it is easy to show that every trimmed SDTD d with an
estor-sibling based types is restrained
ompetition. Otherwise, a
ounterexample
ould7

v
t

v
t

v
t

Fig. 3. From left to right: a tree t, pre
edingt(v) and pre
eding-subtreet(v).be
onstru
ted in a straightforward manner (
f. Theorem 12). It
an also beshown by
ontraposition that ea
h SDTD with pre
eding based types alreadyhas an
estor-sibling based types. �Hen
e, we immediately obtain the following:Corollary 10. Restrained
ompetition SDTDs are exa
tly those SDTDs whi
hadmit 1-pass preorder typing.3.2 An
estor Based S
hemasIn this subse
tion, we
hara
terize single-type SDTDs in terms of the an
estoraxis. In the following theorem we assume that all the trees in language T havethe same root label.Theorem 11. For a regular tree language T the following are equivalent:(a) T is de�nable by a single-type SDTD;(b) T is de�nable by an SDTD with an
estor-based types;(
) T is
losed under an
estor-guarded subtree ex
hange;(d) T
an be
hara
terized by an
estor-based patterns; and,(e) T is de�nable by an an
estor-guarded DTD.Proof. We show the following sequen
e of impli
ations. (a)) (e)) (d)) (b)) (
)) (a). We only give the ne
essary
onstru
tions.(a)) (e): Let T be de�ned by a single-type SDTD d = (�;�0; (d; sd); �)with ? 62 �0. Let A be a DFA over � with state set Q = �0 [f?g and letÆ(ai; b) equal the unique bj o

urring in d(ai) if su
h a symbol exists, otherwise?. Note that the single-type property ensures that A is deterministi
.Let d0 = (d0; sd) be the guarded DTD with all triples (ra;i; a; �(d(ai))), wherera;i is a regular expression des
ribing the set fw j Æ�(sd; w) = aig of stringswhi
h bring A into state ai. Of
ourse, the languages L(ra;1); : : : ; L(ra;ka) areall disjoint where fa1; : : : ; akag are the symbols mapped to a by �.(e)) (d): Let T be de�ned by the an
estor-guarded DTD d = (d; sd). ThenT
an be
hara
terized by the set L = fua#v j ua 2 L(r); v 2 L(s); (r; a; s) 2 dg.(d)) (b): Let T be
hara
terized by an
estor-based patterns using the lan-guage L. Let A = (�;Q; Æ; s; F) be a DFA for L. Let d = (�;�0; d; �) bede�ned as follows. �0 is the set of all pairs (a; q), where a 2 � and q 2 Q. We8

let d((a; q)) be a regular expression des
ribing all strings (b1; q1) � � � (bn; qn), forwhi
h A a

epts #b1 � � � bn when started from state q and qi = Æ(q; bi), for everyi � n.(b)) (
): Let T be de�ned by a SDTD d = (�;�0; d; �) with an
estor-basedtypes. Let t1; t2 be in T and let u1 and u2 be nodes in t1 and t2, respe
tively,with an
-strt1(u1) = an
-strt2(u2). Let t01 and t02 be the unique trees in L(d)with �(t01) = t1 and �(t02) = t2. As the labels of u1 in t01 and the label of u2 int02 are determined by an
-strt1(u1) = an
-strt2(u2), they are the same. Hen
e,by repla
ing the subtree rooted at u1 in t01 with the subtree rooted at u2 in t02we get a tree t0 2 L(d). Therefore, �(t0) = t1[u1 subtreet2(u2)℄ is in T , asrequired.(
)) (a): The idea of the proof is as follows. In a sense, we
lose a givenSDTD d for T with respe
t to the single-type property. Assume, e.g., that theregular expression d(ai)
ontains two di�erent types bj and bk. Then, we repla
eall o

urren
es of bj and bk by a new type bfj;kg obtaining a single-type expressionwith respe
t to b. Of
ourse, we now need a new rule with bfj;kg on the left-handside. This rule should
apture the union of d(bj) and d(bk). By applying thisstep indu
tively, we arrive at an SDTD d1 whi
h is single-type but uses typesof the form bS , for S � f1; : : : ; kbg where f1; : : : ; kbg are the types of b in �0. Ina se
ond step we prove that L(d1) = T unless T fails to ful�ll (
).Let T be a tree language de�ned by an SDTD d = (�;�0; d; �). Let thealphabet �01
onsist of all symbols aS , where S � f1; : : : ; kag. We extend thisnotation to sets C � �0 in a natural way. We write aC for the type aS withS = fi j ai 2 Cg. For example, for C = fa1; a2; b1; b3g, aC is the type af1;2g. Fora regular expression r over �0 and C � �0 let rC denote the expression whi
his obtained from r by repla
ing every symbol ai by aC .We de�ne the SDTD d1 = (�;�01; d1; �1) as follows. For ea
h symbol aS ,�1(aS) = a, and d1(aS) = Si2S d(ai)C(aS), where C(aS) is the set of all bj inSi2S d(ai). For instan
e, for S = f1; 2g, d(a1) = a1b1(a2+ b1) and d(a2) = (a3+b3)a1, d1(aS) equals the expression (af1;2;3gbf1;3g(af1;2;3g+ bf1;3g))+((af1;2;3g+bf1;3g)af1;2;3g).Note that in d1(aS), for ea
h symbol b 2 �, there is at most one symbol ofthe form bS0 , hen
e d1 is a single-type SDTD. It
an be shown that, if L(d) 6=L(d1), the language T is not
losed under an
estor-guarded subtree ex
hange.By
ontraposition we get that (
) implies (a). �It should be noted that an analogous
hara
terization
an be easily obtainedfor DTDs by repla
ing an
estor by parent. The equivalen
e between (
) and (a)is then already obtained in [16℄.3.3 An
estor-Sibling Based S
hemasFinally, we
onsider restrained
ompetition SDTDs and show that their treelanguages
an be
hara
terized in terms of the an
estor and left-sibling axis. Weagain assume that all the trees in language T have the same root label.Theorem 12. For a regular tree language T the following are equivalent:9

(a) T is de�nable by a restrained
ompetition SDTD;(b) T is de�nable by an SDTD with an
estor-sibling-based types;(
) T is
losed under an
estor-sibling-guarded subtree ex
hange;(d) T
an be
hara
terized by an
estor-sibling-based patterns; and(e) T is de�nable by an an
estor-sibling-guarded DTD.Proof. Again we show (a)) (e)) (d)) (b)) (
)) (a).(e)) (d), (d)) (b), (b)) (
): These proofs are almost word for word thesame as for Theorem 11. Only an
estor has to be repla
ed by an
estor-sibling.(
)) (a): The proof is similar as but a bit more involved than the
orre-sponding proof in Theorem 11. Let T be a tree language de�ned by a SDTDd = (�;�0; d; �).Let, for ea
h state ai of d, Aa;i = (Qa;i; �0; Æa;i; sa;i; Fa;i) be an NFA forL(d(ai)). W.l.o.g. we assume that the sets Qa;i are pairwise disjoint and that forevery state in ea
h Aa;i a �nal state is rea
hable.Let �01 be de�ned as in the proof of Theorem 11. We de�ne, for ea
h aS 2 �01a DFA Aa;S = (Qa;S ; �01; Æa;S ; sa;S; Fa;S) as follows.{ Qa;S = fq?g [Si2S 2Qa;i ;{ sa;S = Si2Sfsa;ig;{ Fa;S = fB 2 Qa;S j B \ Fa;i 6= ;; i 2 Sg;{ In order to de�ne Æa;S, let B 2 Qa;S and b 2 �. We set S0 := fj j Æa;i(p; bj) 6=;; i 2 S; j � kb; p 2 Bg and Æa;S(B; bS0) := Si;p;j Æi(p; bj); where the latterunion is over all i 2 S, p 2 B and j � kb. For all other sets S00, we setÆa;S(B; bS00) := q?.Intuitively, Aa;S
an be seen as obtained in two steps from d. First, we take theprodu
t of the power set automata of the Aa;i, i 2 S. Then, for ea
h symbolb, for ea
h state of this intermediate automaton, all outgoing edges with labelof the form bj are
ombined into one transition whi
h ends in the (
omponentwise) union of the all possible target states. The transition is labeled by b to theunion of all outgoing b-labels.We now de�ne the SDTD d1 = (�;�01; d1; �1), where, for ea
h a and S,d1(aS) is a regular expression
orresponding to Aa;S .Note that ea
h d1(aS) has restrained
ompetition. Indeed, as Aa;S is deter-ministi
, for ea
h string w, Aa;S enters a unique state. Furthermore, for ea
hb 2 � there is only one outgoing transition of the form bS0 that
an lead toa

eptan
e.(a)) (e): Let T be de�ned by a restrained
ompetition DTD d = (�;�0; d; �).For ea
h symbol ai in �0, let Aa;i = (Qa;i; �0; Æa;i; sa;i; Fa;i) be a DFA for d(ai).We
an modify Aa;i su
h that it has exa
tly one state q? from whi
h no a
-
epting state is rea
hable and su
h that it has no unrea
hable states (possiblybesides q?). From the restrained
ompetition property it immediately followsthat in Aa;i, for ea
h state q, if Æ(q; bj) = q1, Æ(q; bk) = q2, q1 6= q2 and j 6= kthen q1 or q2 must be q?. We require that the sets Qa;i are pairwise disjoint.From these DFAs over the extended alphabet �0 we
onstru
t a DFA A =(QA; �; sA; ÆA; FA) as follows. The set QA
onsists of all pairs (q; b), where q 210

Qa;i, for some ai, and b 2 �0 [f#g. Intuitively, q is the
urrent state of anautomatonAa;i and b is the last extended symbol or type that has been identi�ed.The initial state sA of A is (sa;i;#) for the initial symbol ai of d. The transitionfun
tion ÆA is de�ned as follows. For ea
h q 2 Qa;i,
 2 �0 and b 2 � we letÆA((q;
); b) = (Æa;i(q; bj); bj), for the unique j with Æa;i(q; bj) 6= q?, if su
h a jexists. Otherwise, ÆA((q;
); b) = (q?;#). Furthermore, we let ÆA((q; bj);#) =(sb;j ;#). We set FA = fq j q 2 Fa;ig.Now we are ready to de�ne the an
estor-sibling guarded DTD d0. It
onsistsof all triples (r; a; s), for whi
h there is a state (q; ai) of A, su
h that r des
ribesthe set of strings w with Æ�A(sA; w) = (q; ai) and s is �(d(ai)). �4 Complexity of Basi
 De
ision ProblemsAs the de�nition of a DTD and single-type SDTD is synta
ti
al in nature, it
an be immediately veri�ed by an inspe
tion of the rules whether an SDTD isin fa
t a DTD or a single-type SDTD.Theorem 13. It is de
idable in nlogspa
e for an SDTD d whether it is re-strained
ompetition.We study the
omplexity of determining whether a tree language, given byan SDTD,
an be de�ned by a DTD, a single-type or a restrained
ompetitionSDTD, respe
tively.Theorem 14. Ea
h of de
iding whether an SDTD has an equivalent DTD,single-type SDTD or restrained
ompetition SDTD is exptime-
omplete.Proof sket
h. In all three
ases, the lower bound is obtained by a redu
tion fromthe universality problem for non-deterministi
 tree automata [19℄.The exponential time upper bounds for the single-type and restrained
om-petition
ases
an be obtained by performing the
onstru
tions in the proofs (
)) (a) in Theorems 11 and 12. Both the
onstru
tion of the SDTD and
he
kingequivalen
e with the original one
an be done in exponential time. For DTDs asimilar
onstru
tion is in polynomial time but the equivalen
e
he
k still needsexponential time. �5 Appli
ations of the Semanti
al Chara
terizations5.1 In
lusion and Equivalen
e of S
hemasDe
ision problems like testing for in
lusion or equivalen
e of s
hema languagesoften o

ur in s
hema optimization or as basi
 building blo
ks of algorithmsfor type
he
king or type inferen
e [8, 11, 12, 16, 22℄. In general these problemsare pspa
e and exptime-
omplete for DTDs and SDTDs, respe
tively [21, 19℄.The XML spe
i�
ation, however, restri
ts regular expressions in DTDs to bedeterministi
 [4℄ (sometimes also
alled 1-unambiguous [3℄).11

Theorem 15. Given two restrained
ompetition SDTDs d1 and d2, de
idingwhether (a) L(d1) � L(d2), and whether (b) L(d1) = L(d2) is pspa
e-
ompletein general, and ptime-
omplete if d1 and d2 use deterministi
 regular expres-sions.This result strongly
ontrasts with our results in [13℄, where we show thateven for very simple non-deterministi
 regular expressions these de
ision prob-lems are intra
table, and with the
ase of arbitrary SDTDs with determinis-ti
 regular expressions, for whi
h in
lusion and equivalen
e test are exptime-
omplete.5.2 Minimization of SDTDsIn strong
ontrast to ranked trees, there are unranked regular tree languagesfor whi
h there is no unique minimal deterministi
 bottom-up tree automaton.Moreover, minimization
an not be obtained by the standard translation tothe ranked
ase. Using the
hara
terizations of Se
tion 3, we obtain that when
ontent models are represented by DFAs rather than by regular expressions,every restrained
ompetition SDTD
an be minimized in polynomial time andthis minimal SDTD is unique up to isomorphism.Theorem 16. Every restrained
ompetition (single-type) SDTD
an be mini-mized in ptime. This minimal SDTD is unique up to isomorphism.6 Subtree Based S
hemasFrom what was presented so far an obvious question arises. What happens ifwe soften the requirement that the type of an element has to be determinedwhen its opening tag is visited? What if instead it has to be
omputed when the
losing tag is seen? It turns out that every regular tree language has a SDTDwhi
h allows su
h 1-pass postorder typing. Furthermore, the SDTDs used for thispurpose
an be de�ned as straightforward extensions of restrained
ompetitionSDTDs.De�nition 17. An SDTD d = (�;�0; d; �) is extended restrained
ompetitioni� for every regular expression r o

urring in a rule the following holds: wheneverthere are two strings waiv and wajv0 in L(r) with i 6= j, then L((d; ai)) \L((d; aj)) is empty.For a tree t and a node v we denote by pre
eding-subtreet(v) the tree resultingfrom t by removing all right siblings of v and its an
estors together with therespe
tive subtrees (
f. Figure 3).De�nition 18. We say that a spe
ialized SDTD d = (�;�0; d; �) has pre
eding-subtree based types if there is a (partial) fun
tion f : T� � Dom ! �0 su
hthat, for ea
h tree t 2 L(d) the following holds: (1) there is a unique treet0 2 L(d) with �(t0) = t, and (2) for ea
h node v 2 Dom(t), the label of v in t0is f(pre
eding-subtreet(v); v). 12

Stated in terms of XML do
uments, the type of an element depends on thepre�x of the do
ument whi
h ends with the
losing tag of the element. Thefollowing result shows that all regular tree languages admit 1-pass postordertyping. We assume that all the trees in language T have the same root label.Theorem 19. For a tree language T the following are equivalent:(a) T is de�nable by an extended restrained
ompetition SDTD;(b) T is de�nable by an SDTD with pre
eding-subtree-based types;(
) T is regular.Proof sket
h. The dire
tions (a)) (
) and (b)) (
) are trivial. The proof ofthe opposite dire
tions uses the fa
t that regular languages
an be validated bydeterministi
 bottom-up automata. �In the SDTD used in the proof the type of ea
h element a
tually only dependson its subtree. This should be
ompared with the previous
hara
terizationswhere the type depended on the upper
ontext. These issues are further dis
ussedin Se
tion 7.Note that not every SDTD is extended restrained
ompetition. The SDTDd de�ned by r ! (a1 + a2), a1 ! b+
+ ", and a2 !
+ d+ " is not extendedrestrained
ompetition, as f";
g � L((d; a1)) \ L((d; a2)).We
on
lude by noting that extended restrained
ompetition is a tra
tablenotion.Theorem 20. It is de
idable in ptime for an SDTD d whether it is extendedrestrained
ompetition.7 Con
lusionThe results of this paper show that its initial question has a simple answer.The regular tree languages whi
h admit 1-pass preorder typing are exa
tly thosewhi
h
an be des
ribed by a restrained
ompetition SDTD.From the proof of Theorem 12 (
)) (a) it further follows that for ea
h su
hlanguage a very simple and eÆ
ient typing algorithm exists. It is basi
ally adeterministi
 pushdown automaton with a sta
k the height of whi
h is boundedby the depth of the do
ument. For ea
h opening tag it pushes one symbol, forea
h
losing tag it pops one. Hen
e, it only needs a
onstant number of steps perinput symbol. In parti
ular, it works in linear time in the size of the do
ument.It should be noted that su
h automata have been studied in [18℄ and [9℄ in the
ontext of streaming XML do
uments. The sub
lass of the
ontext-free languagesa

epted by su
h automata has re
ently been studied in [1℄.Further, the paper shows that restrained
ompetition SDTDs
an be eÆ-
iently re
ognized (in nlogspa
e but also in quadrati
 time) and that from anSDTD without the restrained
ompetition property an equivalent one with theproperty
an e�e
tively (though not eÆ
iently, in general) be
onstru
ted if itexists at all. 13

The 1-pass preorder typing
onstraint
an be seen as a generalization of thedeterminism
onstraint on
ontent models of DTDs (Appendix E in [4℄) to XSDs.In the
ase of DTDs, the meaning of a tag is determined by the position in themat
hing regular expression. The determinism
onstraint then spe
i�es that thismeaning should be
omputed independent of the tags o

urring to the right ofthe
urrent tag. Similarly, in the
ontext of XML S
hema, the meaning of a tag
orresponds to its type and should be
omputed independent of the remainderof the nodes.Br�uggemann-Klein and Wood gave a
lean formalization for the
on
ept ofdeterminism needed for DTDs in terms of 1-unambiguous regular expressions [3℄.Intuitively, a regular expression is 1-unambiguous if, when pro
essing the inputfrom left to right, it is always determined whi
h symbol in the expression mat
hesthe next input symbol. Just as Br�uggemann-Klein and Wood
ontributed to theformal underpinnings of DTDs, our
hara
terization
ontributes to the founda-tion of XML S
hema by providing a
omplete notion for 1-pass preorder typeables
hemas.How do these results relate to existing standards? The XML S
hema spe
i�-
ation requires XSDs to be single-type (end of Se
tion 4.5 in [6℄ and the ElementDe
larations Consistent
onstraint in Se
tion 3.8.6 in [7℄) and regular expressions(after dropping the supers
ripts des
ribing the types) to be deterministi
 or 1-unambiguous [3℄ (
f. Se
tion 3.8.6 of [7℄, Unique Parti
le Attribution). Althoughsu
h s
hemas are always restrained
ompetition, it is easy to prove that theydo not
apture the
omplete
lass of 1-pass preorder typeable s
hemas. Indeed,from a 1-ambiguous regular language a restrained
ompetition expression
an beeasily
onstru
ted by giving to ea
h symbol the same supers
ript. The results inthe present paper, therefore, indi
ate that repla
ing the Element De
larationsConsistent and Unique Parti
le Attribution
onstraints by the single requirementthat regular expressions are restrained
ompetition allows for a larger expressivepower without (essential) loss in eÆ
ien
y. Indeed, for both
lasses, validationand typing is possible in linear time, allowed s
hemas
an still be re
ognized inquadrati
 time and an allowed s
hema
an be
onstru
ted in exponential time,if one exists [3℄. The latter would also eliminate the heavily debated restri
tionto 1-unambiguous regular expressions (
f., e.g., pg 98 of [23℄ and [10, 20℄).On the negative side, both 1-unambiguous expressions and restrained
om-petition expressions la
k a
omprehensive synta
ti
al
ounterpart. Whether su
han equivalent synta
ti
al restri
tion exists remains open. It would also be inter-esting to �nd synta
ti
 restri
tions whi
h imply an eÆ
ient
onstru
tion of anequivalent restrained
ompetition SDTD.We already mentioned that Murata, Lee, and Mani showed that DTD 6�SDTDst 6� SDTDr
 6� SDTD. They exhibited
on
rete tree languages that arein one
lass but not in the other. Our semanti
al
hara
terizations provide atoolbox to show inexpressibility for arbitrary tree languages. For instan
e, usingthe
losure of restrained-
ompetition SDTDs under an
estor-guarded subtreeex
hange, it is immediate that SDTDr

annot de�ne the set of all Booleantree-shaped
ir
uits evaluating to true.14

A
knowledgmentsWe thank Geert Jan Bex, Christoph Ko
h, Ni
ole S
hweikardt, Lu
 Segou�nand Stijn Vansummeren for helpful dis
ussions.Referen
es1. R. Alur and P. Madhusudan. Visibly pushdown languages. In STOC 2004, pages202-211, 2004.2. A. Br�uggemann-Klein, M. Murata, and D. Wood. Regular tree and regular hedgelanguages over unranked alphabets: Version 1, april 3, 2001. Te
hni
al ReportHKUST-TCSC-2001-0, The Hongkong University of S
ien
e and Te
hnology, 2001.3. A. Br�uggemann-Klein and D. Wood. One-unambiguous regular languages. Infor-mation and Computation, 142(2):182{206, 1998.4. World Wide Web Consortium. Extensible Markup Language (XML).http://www.w3.org/XML.5. World Wide Web Consortium. XML S
hema. http://www.w3.org/XML/S
hema.6. World Wide Web Consortium. XML S
hema Part 0: Primer.http://www.w3.org/TR/xmls
hema-0/.7. World Wide Web Consortium. XML S
hema Part 1: Stru
tures.http://www.w3.org/TR/xmls
hema-1/.8. H. Hosoya and B. C. Pier
e. XDu
e: A stati
ally typed XML pro
essing language.ACM Transa
tions on Internet Te
hnology (TOIT), 3(2):117{148, 2003.9. C. Ko
h and S. S
herzinger. Attribute grammars for s
alable query pro
essing onXML streams. In DBPL, pages 233{256, 2003.10. M. Mani. Keeping
hess alive - Do we need 1-unambiguous
ontent models? InExtreme Markup Languages, Montreal, Canada, 2001.11. W. Martens and F. Neven. Type
he
king top-down uniform unranked tree trans-du
ers. In ICDT 2003, pages 64{78, 2003.12. W. Martens and F. Neven. Frontiers of tra
tability for type
he
king simple XMLtransformations. In PODS 2004, pages 23{34, 2004.13. W. Martens, F. Neven, and T. S
hwenti
k. Complexity of de
ision problems forsimple regular expressions. In MFCS 2004, pages 889{900, 2004.14. M. Murata, D. Lee, and M. Mani. Taxonomy of XML s
hema languages usingformal language theory. In Extreme Markup Languages, Montreal, Canada, 2001.15. F. Neven. Automata, logi
, and XML. In CSL 2002, pages 2{26. Springer, 2002.16. Y. Papakonstantinou and V. Vianu. DTD inferen
e for views of XML data. InPODS 2000, pages 35{46. ACM Press, 2000.17. Y. Papakonstantinou and V. Vianu. In
remental validation of XML do
uments.In ICDT 2003, pages 47{63. Springer, 2003.18. L. Segou�n and V. Vianu. Validating streaming XML do
uments. In PODS 2002,pages 53{64. ACM Press, 2002.19. H. Seidl. De
iding equivalen
e of �nite tree automata. SIAM Journal on Comput-ing, 19(3):424{437, 1990.20. C. M. Sperberg-M
Queen. XML S
hema 1.0: A language for do
ument grammars.In XML 2003 - Conferen
e Pro
eedings, 2003.21. L. J. Sto
kmeyer and A. R. Meyer. Word problems requiring exponential time:Preliminary report. In STOC 1973, pages 1{9, 1973.22. D. Su
iu. Type
he
king for semistru
tured data. In DBPL 2001, 2001.23. E. van der Vlist. XML S
hema. O'Reilly, 2002.24. E. van der Vlist. Relax NG. O'Reilly, 2003.15

A Appendix: Full ProofsFor the
onvenien
e of the referees we give the full proofs of those theorems whi
honly have proof sket
hes in the main text. The point where the proof in the maintext ended is indi
ated by � � � . We also restate the respe
tive theorems.Before that we �rst des
ribe some notions related to trees and tree automata.As an abstra
tion of XML-do
uments, we de�ne do
uments over a set � oftags and a set � of basi
 symbols as follows. For w 2 � , haiwh=ai is a do
ument.If a 2 � and x1; : : : ; xk are do
uments then haix1 � � �xkh=ai is also a do
ument.We refer to the string en
losed by mat
hing tags as an element. Figure 1 showsan example of a do
ument. It also indi
ates how do
uments
an be representedas trees.Of
ourse, elements in XML do
uments
an also
ontain referen
es to nodes.But as XML s
hema languages usually do not
onstrain these and
an onlyspe
ify the format of data values o

urring at leaves (e.g., a string should betelephone number), it is safe to view s
hemas as simply de�ning do
uments overan empty alphabet � , i.e., where the only basi
 string is the empty word ".Formally, we asso
iate an unranked �-tree t = t(x) with a do
ument x asfollows.(i) if x = hai"h=ai, for some a 2 �, then the set of nodes of t, denoted byDom(t), is f"g. The label labt(") is a;(ii) if x = haix1 � � �xnh=ai, then Dom(t) = f"g [Sni=1fiu j u 2 Dom(t(xi))g,labt(") = a, and for ea
h iu 2 Dom(t), labt(iu) = labt(xi)(u).We
all a node ui a
hild of u and u the parent of ui. If w = uv, for some v thenu is an an
estor of w. A node ui, i < j, is a left sibling of uj.The set of all unranked �-trees is denoted by T� . A tree language is a setof trees. In the remainder of this paper we will identify do
uments with their
orresponding trees.In the remainder of the appendix, we denote by (d; ai) the spe
ialized DTDd = (�;�0; (d; r); �), where we repla
e the DTD (d; r) by (d; ai).The robust notion of regular string and ranked tree languages,
an easilybe generalized to the unranked
ounterparts. The latter
lass is usually de�nedin terms of non-deterministi
 tree automata and posses similar
losure proper-ties [2℄.De�nition 21. A nondeterministi
 tree automaton (NTA) is a tuple B = (Q;�;Æ; F), where Q is a �nite set of states, F � Q is the set of �nal states, and Æ is afun
tion Æ : Q� � ! 2Q� su
h that Æ(q; a) is a regular string language over Qfor every a 2 � and q 2 Q.A run of B on a tree t is a labeling � : Dom(t) ! Q su
h that for everyv 2 Dom(t) with n
hildren, �(v1) � � ��(vn) 2 Æ(�(v); labt(v)): Note that whenv has no
hildren, then the
riterion redu
es to " 2 Æ(�(v); labt(v)). A run is16

a

epting i� the root is labeled with an a

epting state, that is, �(") 2 F . A treeis a

epted if there is an a

epting run. The set of all a

epted trees is denotedby L(B). The
lass of tree languages a

epted by NTAs is
alled the unrankedregular tree languages.An NTA is bottom-up deterministi
 i� Æ(q; a)\ Æ(q0; a) = ; for all q 6= q0. Forevery unranked regular tree language there is a bottom-up deterministi
 NTAwhi
h a

epts it.Semanti
 Chara
terizations of Single-Type and RestrainedCompetition SDTDsProof of Theorem 9. A trimmed SDTD d has pre
eding based types if andonly if it is restrained
ompetition.The \if"-part of the statement is obvious. We show the \only if". A
tually,it is easy to show that every trimmed SDTD d with an
estor-sibling based typesis restrained
ompetition. Otherwise, a
ounterexample
ould be
onstru
ted ina straightforward manner. Hen
e, it only remains to show that ea
h SDTD withpre
eding based types already has an
estor-sibling based types.� � � Let d = (�;�0; d; �) be an SDTD whi
h has pre
eding based types.Towards a
ontradi
tion we assume that d has types whi
h are not an
estor-sibling based. Hen
e, there are trees t1; t2 2 L(d) with nodes v1 2 t1 and v2 2 t2su
h that an
-sib-strt1(v1) = an
-sib-strt2(v2) but v1 has a di�erent label int01 than v2 in t02. We
all t1; t2; v1; v2 a
ounterexample. Let t1; t2; v1; v2 be a
ounterexample for whi
h the length of an
-sib-strt1(v1) is minimal.Let u1; : : : ; un be the nodes that are siblings of an
estors of v1 in the orderin whi
h they appear in a depth-�rst left-to-right walk on t1. Let w1; : : : ; wn bethe
orresponding nodes in t2. Be
ause the
ounterexample is minimal, for ea
hi � n, the label of ui in t01 is the same as the label of wi in t02. Let s be thetree resulting from t1 by repla
ing, for every i, the subtree rooted at ui by thesubtree rooted at wi in t2.Let the labels in s0 be de�ned as in t02 for the nodes that
ome into sby repla
ements and as in t01 for the others. Obviously, s0 2 L(d). But aspre
edings(v1) = pre
edingt2(v1), v1 must have the same label in s0 as in t02.As it also has the same label in t01 as in s0 it follows that the labels in t01 and t02are the same whi
h leads to the desired
ontradi
tion. This
ompletes the proofof the theorem. �Proof of Theorem 11. For a regular tree language T the following are equiv-alent:(a) T is de�nable by a single-type SDTD;(b) T is de�ned by an SDTD with an
estor-based types;(
) T is
losed under an
estor-guarded subtree ex
hange;(d) T
an be
hara
terized by an
estor-based patterns; and,(e) T is de�nable by an an
estor-guarded DTD.17

We show the following sequen
e of impli
ations.(a)) (e)) (d)) (b)) (
)) (a).(a)) (e) : Let T be de�ned by a single-type SDTD d = (�;�0; (d; sd); �) with? 62 �0. Let A be a DFA over � with state set Q = �0 [f?g and let Æ(ai; b)equal the unique bj o

urring in d(ai) if su
h a symbol exists, otherwise ?. Notethat the single-type property ensures that A is deterministi
.Now we de�ne a guarded DTD d0 = (d0; sd) by putting all triples (ra;i; a; �(d(ai)))into d0, where ra;i is a regular expression whi
h des
ribes the set fw j Æ�(sd; w) =aig of strings whi
h bringA into state ai. Of
ourse, the languagesL(ra;1); : : : ; L(ra;ka)are all disjoint where fa1; : : : ; akag are the symbols mapped to a by �. � � � Itremains to show that d0 de�nes the same set of trees as d. Let t be in L(d).Hen
e, there is t0 in L(d) with �(t0) = t. It is easily shown by indu
tion that, forea
h node v of t0, labt0(v) = Æ�(sd; an
-strt(v)). Hen
e, for ea
h node v labeledwith ai, the triple of d0 responsible for v is (ra;i; a; �(d(ai))) and
an thereforebe applied. The proof of the opposite in
lusion is similar.(e)) (d) : Let T be de�ned by the an
estor-guarded DTD d = (d; sd). LetL be the set fua#v j ua 2 L(r); v 2 L(s); (r; a; s) 2 dg:� � � By de�nition, for every tree t 2 T it holds that Pan
(t) � L. For the otherdire
tion, let t be a tree whi
h is not in T . Hen
e, there is a node w in t with somelabel a su
h that either there is no triple (r; a; s) 2 d with an
-str(w) 2 L(r) orfor every su
h triple
h-str(w) 62 L(s). This implies that an
-str#
h-str(w) 62 L.Therefore, a tree t is in T if and only if Pan
(t) � L whi
h shows (d).(d)) (b) : Let T be
hara
terized by an
estor-based patterns using thelanguage L. Let A = (�;Q; Æ; s; F) be a DFA for L. Let d = (�;�0; d; �) bede�ned as follows. �0 is the set of all pairs (a; q), where a 2 � and q 2 Q.We let d((a; q)) be a regular expression whi
h des
ribes the set of all strings(b1; q1) � � � (bn; qn), for whi
h A a

epts #b1 � � � bn when started from state q andqi = Æ(q; bi), for every i � n. � � � Obviously, d de�nes T . Furthermore, forea
h node v in a tree t 2 T , (a; q) is uniquely determined and only depends onan
-str(v). Hen
e, d has an
estor-based types.(b)) (
) : Let T be de�ned by an SDTD d = (�;�0; d; �) with an
estor-based types. Let t1; t2 be in T and let u1 and u2 be nodes in t1 and t2, respe
tively,with an
-strt1(u1) = an
-strt2(u2). Let t01 and t02 be the unique trees in L(d) with�(t01) = t1 and �(t02) = t2. As the labels of u1 in t01 and the label of u2 in t02are determined by an
-strt1(u1) = an
-strt2(u2), they are the same. Hen
e, byrepla
ing the subtree rooted at u1 in t01 with the subtree rooted at u2 in t02 we geta tree t0 2 L(d). Therefore, �(t0) = t1[u1 subtreet2(u2)℄ is in T , as required.(
)) (a) : The idea of the proof is as follows. In a sense, we
lose a givenSDTD d for T with respe
t to the single-type property. Assume, e.g., that theregular expression d(ai)
ontains two di�erent types bj and bk. Then, we re-pla
e all o

urren
es of bj and bk by a new type bfj;kg obtaining a single-typeexpression with respe
t to b. Of
ourse, we now need a new rule with bfj;kg on18

the left-hand side. This rule should
apture the union of d(bj) and d(bk). Byapplying this step indu
tively, we arrive at an SDTD d1 whi
h is single-type butuses types of the form bS , for S � f1; : : : ; kbg and fb1; : : : ; bkbg are the types ofb in �0. In a se
ond step we prove that L(d1) = T unless T fails to ful�ll (
).Let T be a tree language de�ned by an SDTD d = (�;�0; d; �). Let thealphabet �01
onsist of all symbols aS , where S � f1; : : : ; kag and fa1; : : : ; akagare the types of a in �0.We extend this notation to sets C � �0 in a natural way. We write aC forthe type aS with S = fi j ai 2 Cg. For example, for C = fa1; a2; b1; b3g, aC isthe type af1;2g. For a regular expression r over �0 and C � �0 let rC denote theexpression whi
h is obtained from r by repla
ing every symbol ai by aC .We de�ne the SDTD d1 = (�;�01; d1; �1) as follows. For ea
h symbol aS ,�1(aS) = a, and d1(aS) = [i2S d(ai)C(aS);where C(aS) is the set of all bj in [i2S d(ai).For instan
e, for S = f1; 2g, d(a1) = a1b1(a2 + b1) and d(a2) = (a3 +b3)a1, d1(aS) equals the expression (af1;2;3gbf1;3g(af1;2;3g+ bf1;3g))+((af1;2;3g+bf1;3g)af1;2;3g).Note that in d1(aS), for ea
h symbol b 2 �, there is at most one symbol ofthe form bS0 , hen
e d1 is a single-type SDTD. We show next that, if L(d) 6=L(d1), the language T is not
losed under an
estor-guarded subtree ex
hange.By
ontraposition we get that (
) implies (a).� � � To this end, �rst observe that when moving from d to d1 no trees arelost. Indeed, let t0 2 L(d) be a witness for t 2 L(d). We get a tree t00 2 L(d1)with �1(t00) = t as follows. We assign to ea
h node v a type from �01 in a top-down fashion. If the root node has type ai in t0 it gets type afig. Let now v bea node with type ai in t0 and already assigned type aS in t00. Then a
hild u ofv with label b gets the type bC(aS) in t00. Of
ourse, the sequen
e of t00-types atthe
hildren of u mat
hes d1(aS) be
ause the sequen
e of t0-types mat
hes d(ai).Hen
e, we have L(d) � L(d1).Consider now a tree t 2 L(d1) � L(d) and its extension t0 2 L(d1) with�1(t0) = t. Ea
h node u has a type aS in t0, and we write S(u) for S. For ea
hu,
h-str(u) mat
hes d1(aS(u)). More pre
isely, it mat
hes d(ai)C(aS), for somei 2 S(u). Let g be a fun
tion, whi
h �xes one su
h ai, for ea
h node u. Onthe other hand, as
h-str(u) = v1; : : : ; vn mat
hes d(ai)C(aS) we
an assign toea
h node vi a type f(vi) 2 �0 su
h that f(v1) � � � f(vn) is in L(d(ai)). Notethat f is de�ned for ea
h node besides the root. Furthermore, if the type of anode v in t0 is aS then f(v) is of the form ai, for some i 2 S. We
all a nodev
riti
al, if f(v) 6= g(v). Note that t must
ontain at least one
riti
al node,19

be
ause otherwise f and g would witness that t 2 L(d). By
(t; f; g) we denoteXv
riti
aldepth(v).Now let t 2 L(d1)�L(d), t0 2 L(d1) and f and g be �xed su
h that
(t; f; g)is as small as possible. Let v be a
riti
al node in t su
h that there is no other
riti
al node below v and let labt(v) = bS . Let bj = g(v), bk = f(v) and let tvbe the subtree of t rooted at v, so tv 2 L((d; bj)). Let t0 be an arbitrary treein L((d; bk)) and let t1 denote the tree resulting from t by repla
ing tv witht0. As j; k 2 S, it is easy to see that t1 2 L(d1) with f1 and g1, that
an beobtained by extending f and g su
h that no node below v in t1 is
riti
al andg1(v) = f1(v) = bk. Hen
e,
(t1; f1; g1) <
(t; f; g) and therefore t1 2 L(d).We
onstru
t another tree t2 from t as follows. Let u denote the parent ofv. Let aS0 be the label of u in t0. By our
onstru
tion, there must be an a`,` 2 S0, su
h that bj o

urs in d(a`). Hen
e, there is a string w = w1 � � �wk 2L(d(a`)) su
h that wi = bj , for some i. For ea
h symbol wm, we pi
k a treetwm 2 L((d; wm)), in parti
ular let twi = tv . Let t2 result from t by plugging inthe trees tw1 ; : : : ; twk below u (and deleting all nodes that had been below u int). The node
orresponding to wi is
alled x.Let f2 and g2 be de�ned as f and g, respe
tively, for all nodes in t2 whi
hare not in the subtree rooted at u and let g2(u) = a`. Clearly, t2 2 L(d1). Assubtreet2(u) 2 L((d; a`)), the fun
tions f2 and g2
an be
hosen su
h that nonode below u is
riti
al. Hen
e, in t2 the node v is no longer
riti
al (be
ause itwas deleted) but the node u might have be
ome
riti
al. But, as the depth of uis smaller than the depth of v,
(t2; f2; g2) <
(t; f; g), therefore t2 2 L(d).Note that t
an be obtained from t1 by repla
ing t0 by tx. Hen
e, as an
-strt2(x) =an
-strt1(v),
losure of T under an
estor-guarded subtree ex
hange would implyt 2 L(d), the desired
ontradi
tion. �Proof of Theorem 12. For a regular tree language T the following are equiv-alent:(a) T is de�nable by a restrained
ompetition SDTD;(b) T is de�ned by an SDTD with an
estor-sibling-based types;(
) T is
losed under an
estor-sibling-guarded subtree ex
hange;(d) T
an be
hara
terized by an
estor-sibling-based patterns; and(e) T is de�nable by an an
estor-sibling-guarded DTD.Again we show (a)) (e)) (d)) (b)) (
)) (a).(e)) (d), (d)) (b), (b)) (
) : These proofs are almost word for word thesame as for Theorem 11. Only an
estor has to be repla
ed by an
estor-sibling.In the proof (d)) (b), the states qi must be de�ned so that qi = Æ�(q; b1 � � � bi)for every i � n.(
)) (a) : The proof is similar as but a bit more involved than the
orre-sponding proof in Theorem 11. Let T be a tree language de�ned by an SDTDd = (�;�0; d; �). 20

Let, for ea
h type ai of d, Aa;i = (Qa;i; �0; Æa;i; sa;i; Fa;i) be an NFA forL(d(ai)). W.l.o.g. we assume that the sets Qa;i are pairwise disjoint.Let �01 be de�ned as in the proof of Theorem 11. We de�ne, for ea
h aS 2 �01a DFA Aa;S = (Qa;S ; �01; Æa;S ; sa;S; Fa;S) as follows.{ Qa;S = fq?g [Si2S 2Qa;i ;{ sa;S = fsa;i j i 2 Sg;{ Fa;S = fB 2 Qa;S j B \ Fa;i 6= ;; i 2 Sg;{ In order to de�ne Æa;S, let B 2 Qa;S and b 2 �. We setS0 := fj j Æa;i(p; bj) 6= ;; i 2 S; j � kb; p 2 Bgand Æa;S(B; bS0) := [i;p;j Æi(p; bj);where the latter union is over all i 2 S, p 2 B and j � kb. For all other setsS00, we set Æa;S(B; bS00) := q?.Intuitively, Aa;S
an be seen as obtained in two steps from d. First, we take theprodu
t of the power set automata of the Aa;i, i 2 S. Then, for ea
h symbol b,for ea
h state of this intermediate automaton, all outgoing edges with label ofthe form bj are
ombined into one transition whi
h ends in the (
omponent-wise)union of the all possible target states. The transition is labeled by b to the unionof all outgoing b-labels.We now de�ne the SDTD d1 = (�;�01; d1; �1), where, for ea
h a and S,d1(aS) is a regular expression
orresponding to Aa;S .Note that ea
h d1(aS) has restrained
ompetition. Indeed, as Aa;S is deter-ministi
, for ea
h string w, Aa;S enters a unique state. Furthermore, for ea
hb 2 � there is only one outgoing transition of the form bS0 that
an lead toa

eptan
e.� � � In analogy to the
orresponding proof for Theorem 11 it is suÆ
ientto show that, if L(d) 6= L(d1), the language T is not
losed under an
estor-sibling-guarded subtree ex
hange. Again, L(d) � L(d1). Therefore, for ea
ht 2 L(d1) � L(d) and its extension t0 2 L(d1), we
an de�ne mappings gand f in
orresponden
e to the proof of Theorem 11. Let f and g be fun
-tions whi
h assign to ea
h node of t a type from �0 su
h that, for ea
h nodeu for whi
h g(u) = ai, with type aS in t0 and
hildren v1; : : : ; vn it holds that,Æ�a;S(sa;S ; f(v1) � � � f(vn)) \ Fa;i 6= ;. Furthermore, if a node v has type aS in t0,and g(v) = aj and f(v) = ak, then fj; kg � S. Note that the
onstru
tion ofAa;S guarantees the existen
e of su
h fun
tions.Again, we
all a node v
riti
al if f(v) 6= g(v), and we write
(t; f; g) forPv
riti
al depth(v).Now let again t 2 L(d1) � L(d), t0 2 L(d1) and f and g be �xed su
h that
(t; f; g) is as small as possible. Let v be a
riti
al node in t su
h that there is noother
riti
al node in the subtree tv rooted at v and su
h that it is the leftmost
riti
al
hild of its parent node u. 21

Let aS be the label of u in t0, let v1; : : : ; vn be the
hildren of u from left toright and let m be su
h that v = vm. Let B 2 Qa;S be the state of Aa;S afterreading labt0(v1) � � � labt0(vm�1).Let bj = g(v), bk = f(v) and let t0 be an arbitrary tree in L((d; bk)). Let t1denote the tree resulting from t by repla
ing tv with t0. It is easy to see that t1 2L(d1) with g1(v) = f1(v) = bk and that g1 and f1
an be obtained by extendingf and g su
h that no node below v is
riti
al. Hen
e,
(t1; f1; g1) <
(t; f; g) andtherefore t1 2 L(d).Let t2 be
onstru
ted from t as follows. Re
all that aS is the label of u int0. By our
onstru
tion, there must be an a`, ` 2 S and a string zm+1 � � � znso that f(v1) � � � f(vm�1)bjzm+1 � � � zn 2 L(d(a`)), be
ause bj 2 S0, where S0is unique so that Æa;S(B; bS0) 6= q?. For ea
h symbol f(vi) for i < m, let sibe a tree in L((d; f(vi))), and for ea
h i > m we take a tree si in L((d; zi)).Let t2 result from t by deleting all nodes below u and plugging in the treess1; : : : ; sm�1; tv; sm+1; : : : ; sn below u.Let f2 and g2 be de�ned as f and g respe
tively, for all nodes in t2 whi
hare not in the subtree rooted at u, and let g2(u) = a`. Clearly, t2 2 L(d1).Below u, the fun
tions f2 and g2
an be
hosen su
h that no node below u is
riti
al. Analogously as in Theorem 11, we have that
(t2; f2; g2) <
(t; f; g) andtherefore t2 2 L(d).But for them-th
hild x of u in t2 it holds that an
-sib-strt2(x) = an
-sib-strt(v).Therefore t results from t1 2 T by repla
ing the subtree t0 rooted at v with thesubtree tv rooted at x in t2. Hen
e, if T was
losed under an
estor-sibling-guardedsubtree ex
hange, t would be in T too, a
ontradi
tion.(a)) (e) : Let T be de�ned by a restrained
ompetition DTD d = (�;�0; d; �).For ea
h symbol ai in �0 let Aa;i = (Qa;i; �0; Æa;i; sa;i; Fa;i) be a DFA for d(ai).We
an modify Aa;i su
h that it has exa
tly one state q? from whi
h no a
-
epting state is rea
hable and su
h that it has no unrea
hable states (possiblybesides q?). From the restrained
ompetition property it immediately followsthat in Aa;i, for ea
h state q, if Æ(q; ai) = q1, Æ(q; aj) = q2, q1 6= q2 and i 6= jthen q1 or q2 must be q?. We require that the sets Qa;i are pairwise disjoint.From these DFAs over the extended alphabet �0 we
onstru
t a DFA A =(QA; �; sA; ÆA; FA) as follows. The set QA
onsists of all pairs (q; b), where q 2Qa;i, for some ai, and b 2 �0 [f#g. Intuitively, q is the
urrent state of anautomatonAa;i and b is the last extended symbol or type that has been identi�ed.The initial state sA of A is (sa;i;#) for the initial symbol ai of d. The transitionfun
tion ÆA is de�ned as follows. For ea
h q 2 Qa;i,
 2 �0 and b 2 � we letÆA((q;
); b) = (Æa;i(q; bj); bj), for the unique j with Æa;i(q; bj) 6= q?, if su
h a jexists. Otherwise, ÆA((q;
); b) = (q?;#). Furthermore, we let ÆA((q; bj);#) =(sb;j ;#). We set FA = fq j q 2 Fa;ig.Now we are ready to de�ne the an
estor-sibling guarded DTD d0. It
onsistsof all triples (r; a; s), for whi
h there is a state (q; ai) of A, su
h that r des
ribesthe set of strings w with Æ�A(sA; w) = (q; ai) and s is �(d(ai)).� � � It only remains to show that d0 and d des
ribe the same tree language.By the
onstru
tion it is obvious that every tree in L(d) is also in L(d0): indeed,22

for a tree t 2 L(d) and a node v, the automaton enters a state (q; ai) afterreading the symbol a
orresponding to v if and only if v gets the label ai in theunique labeling with respe
t to d. Hen
e,
h-str(v) is in �(d(ai)).Now let t 2 L(d0) and let v be a node of t. If an
-sib-str(v) mat
hes r in(r; a; s) then, by
onstru
tion, v
an only be labeled by ai if a labeling of t withrespe
t to d exists. But then, as s is �(d(ai)),
h-str(v) is in �(d(ai)). As thisholds for all nodes v, we
an
on
lude that t mat
hes d. �Complexity of Basi
 De
ision ProblemsProof of Theorem 13. It is de
idable in nlogspa
e for an SDTD d whetherit is restrained
ompetition.� � � We need to
he
k that every regular expression r o

urring in a rulerestrains
ompetition. We present a nondeterministi
 logspa
e algorithm whi
ha

epts a regular expression if it does not restrain
ompetition. As nlogspa
eis
losed under
omplement, the theorem follows.Let Nr = (�0; Q; Æ; q0; F) be an NFA equivalent to r. The algorithm works asfollows. Let R denote the set fq j 9v 2 �0� su
h that Æ�(q; v) \ F 6= ;g of statesfrom whi
h a �nal state
an be rea
hed.1. it �rst guesses two states (q1; q2) of Nr;2. it veri�es that there is a string u su
h that fq1; q2g � Æ�(q0; u);3. it veri�es that there are a; i; j su
h that Æ(q1; ai)\R 6= ; and Æ(q2; aj)\R 6= ;;4. it a

epts if all these veri�
ations work out.Obviously, this algorithm a

epts r, if and only if there are strings u; v; w su
hthat uaiv and uajw are in L(r) as required. Furthermore, all steps
an be donein logarithmi
 spa
e, as neither the NFA A nor the set R has to be
omputed inadvan
e. Indeed, it
an be
he
ked in logarithmi
 spa
e that, for given p; q; bj ,whether q 2 R and whether q 2 Æ(p; bj). �Let NTA(REG) denote the
lass of NTAs where the regular languages en-
oding the transition fun
tion are represented by regular expressions.Lemma 22. Let a 2 � and let A be an NTA(REG), only having one a

eptstate, su
h that whenever t 2 L(A) then the root of t is labeled a. Then anSDTD d
an be
omputed in ptime su
h that L(A) = L(d).Proof. Let A = (Q;� = fa1; : : : ; ang; Æ; F = fqFg) be an NTA(REG). Thende�ne d = (�;�0; d; �) as follows: �0 = fbq j b 2 �; q 2 Qg, �(bq) = b for everyb 2 �, sd = aqF , and d
onsists of the rules d(bq) = rb;q where rb;q is the regularexpression obtained from Æ(b; q) by repla
ing every o

urren
e of a state p by(ap1 + � � � + apn). As every t 2 L(d) indu
es an a

epting run of A on �(t), it isimmediate that A and d are equivalent. �Proof of Theorem 14. Ea
h of de
iding whether an SDTD has an equivalentDTD, single-type SDTD or restrained
ompetition SDTD is exptime-
omplete.23

In all three
ases, we make use of a redu
tion from the universality problemfor NTAs, whi
h is known to be hard for exptime [19℄.� � � The latter even holds for NTA(REG) where automata only have one�nal state. Therefore, let A be an NTA(REG) over alphabet � = fa; bg. ByLemma 22, an equivalent SDTD d = (�;�0; d; �)
an be
onstru
ted in ptime.We now modify d into an SDTD d1 over the alphabet � = fa; b; �; �; rootgwhi
h a

epts all trees t su
h that t is of the form root(�(t0)) where � is � or �,t0 2 T� , and the tree obtained from t0 by deleting the right-most leaf is a

eptedby A.Let d2 be the SDTD a

epting all trees t of the form root(�(t0)) where theright-most leaf is a (respe
tively, b) when � is � (respe
tively, �).Finally, de�ne d3 as the SDTD a

epting L(d1) [L(d2). Set S := L(d3).We show the following(a) if L(A) = T� then S is de�ned by a DTD; and,(b) if L(A) 6= T� then S is not de�ned by a restrained
ompetition SDTD.Of
ourse (a) and (b) together imply the statement of the theorem.(a) First note that when L(A) = T� , then L(d2) � L(d1) and S equalsfroot(�(t)) j � 2 f�; �g; t 2 T�g. The latter
an
learly be de�ned by a DTD.(b) Let L(A) 6= T� and let t be a tree not in L(A). Let ta and tb be thetrees obtained from t by adding an a and b respe
tively, to the right of theright-most leaf. Then t0a := root(�(ta)) 2 S while t0b := root(�(tb)) 62 S. Let t00bbe the tree obtained from t0b by adding an a-leaf as right-most
hild of �, i.e.t00b := root(�(tba)). By de�nition of B, t00b 2 S. Let vn be the right-most leaf oft0a and let v be its parent. Then note that an
-sib-strt0a(v) = an
-sib-strt00b (v). So,by Theorem 12, t0a[v subtreet00b (v)℄ is in S when S is de�ned by a restrained
ompetition SDTD. Hen
e, (b) follows.The exponential time upper bounds are shown as follows.� � �{ In the
ase of single-type SDTDs we pro
eed as follows. Let d be a givenSDTD. We �rst
onstru
t the SDTD d2 as des
ribed in the proof of Theorem11 (
)) (a). This
an be done in exponential time and d2 might be ofexponential size in d. Then it has to be
he
ked whether they are equivalent.Fortunately, as always L(d) � L(d2), we only have to
he
k whether L(d2)�L(d) is empty. This involves the
omplementation of the tree automaton ford resulting in a tree automaton of possibly exponential size and in the testwhether the automata for L(d2) and the
omplement of L(d) have a non-empty interse
tion. The latter is polynomial in the size of the automata.Hen
e, we altogether get an exponential time algorithm.{ Testing whether a SDTD has an equivalent restrained
ompetition SDTD
an be done along the same lines, this time based on the proof of Theorem12 (
)) (a). Note that, the size of the automata Aa;S is at most exponentialin the size of d. 24

{ Finally, we des
ribe how it
an be tested whether a given SDTD d =(�;�0; d; �) has an equivalent DTD. Let, for ea
h ai 2 �0, ra;i be the regularexpression obtained from d(ai) by repla
ing every symbol bj by b. We de�nea DTD (d1; sd) with alphabet � simply by taking the rules a![i ra;i, forevery a 2 �. It remains to show that d has an equivalent DTD if and onlyif L(d) = L(d1).Analogously as in Theorem 11((
))(a)), we have that L(d) � L(d1). To-wards a
ontradi
tion, suppose that d has an equivalent DTD and thatt 2 L(d1) � L(d). A

ording to Lemma 2.10 in [16℄, L(d) is
losed underparent-guarded subtree ex
hange. As t 62 L(d) there exists a node u in t su
hthat subtreet(u) 62 L((d; ai)) for any ai 2 �0, but for every
hild u1; : : : ; unof u, we have that subtreet(uj) 2 L((d; bijj)) for some bijj 2 �0. By de�ni-tion of d1, for every bijj , there exists an ak su
h that bijj o

urs in d(ak).So, for every uj there exists a tree tj 2 L(d) with a v 2 Dom(t) su
h thatlabtj (v) = bj , the parent of v is labeled a, and subtreetj (v) = subtreet(u).But this means that t
an be
onstru
ted from t1; : : : ; tn by parent-guardedsubtree ex
hange, whi
h is a
ontradi
tion as t 62 L(d). �Appli
ations of the Chara
terizationsIn
lusion and Equivalen
e of S
hemasProof of Theorem 15. Given two restrained
ompetition SDTDs d1 and d2,de
iding whether(a) L(d1) � L(d2), and whether(b) L(d1) = L(d2)is pspa
e-
omplete in general, and ptime-
omplete when d1 and d2 use deter-ministi
 regular expressions.� � � The theorem rather dire
tly follows from the pattern based
hara
teri-zations of the di�erent sub
lasses.For the upper bounds, (b) follows from (a), hen
e we only show (a).It follows from Theorem 12 that for a tree language T de�ned by a restrained
ompetition SDTD it holds that a tree t is in T if and only if Pan
-sib(t) isin Pan
-sib(T) := fPan
-sib(s) j s 2 Tg. Hen
e, L(d1) � L(d2) if and only ifPan
-sib(L(d1)) � Pan
-sib(L(d2)).The statement of the theorem now follows from the fa
t that, for ea
h re-strained
ompetition SDTD d = (�;�0; d; �), an NFA A for Pan
-sib(L(d))
anbe
omputed in polynomial time and equivalen
e of NFAs
an also be
he
kedin polynomial spa
e. Also, A is deterministi
 if d uses deterministi
 regular ex-pressions. 25

The lower bounds are easy redu
tions of the in
lusion and equivalen
e prob-lems of regular expressions, whi
h are pspa
e-
omplete, and from the emptinessproblem of a language de�ned by a DTD, whi
h is ptime-
omplete.For the upper bounds, it remains to show the
onstru
tion of A = (QA; � [f#g; ÆA; sA; FA).Let for ea
h ai 2 �0, Aa;i = (Qa;i; �0; Æa;i; sa;i; Fai) be an NFA that de�nesd(ai) and has a unique state q? from whi
h no �nal state is rea
hable. We adaptAa;i so that it uses alphabet �, but remembers the types of the symbols that itreads, i.e., we de�ne A0a;i = (Q0a;i; �; Æ0a;i; s0a;i; F 0ai) where Q0a;i = Qa;i ��0. Forea
h b 2 � and
 2 �0 we de�ne Æ0a;i((q;
); b) = f(p; bj) j p 2 Æa;i(q; bj)g. Notethat, as d is restrained
ompetition, Æ0a;i((q;
); b)
ontains no (p1; bj1); (p2; bj2)for j1 6= j2. The start state and the set of �nal states are de�ned in the obviousway. W.l.o.g. we assume that all Q0a;i are pairwise disjoint. The NFA A0a;i
anbe
onstru
ted in ptime.We now formally de�ne A. The state set QA is the union of all Q0a;i. Its startstate is s0r, where r is the start symbol of d and the set of a

ept states is theunion of all F 0a;i. It remains to de�ne the transition fun
tion. For every b 2 �,ÆA((qa;i;
j); b) = Æa;i((qa;i;
j); b), where qa;i 2 Q0a;i. Finally, ÆA((qa;i;
j);#) =s0
;j . It is easy to see that the size of A is no larger than the sum of the sizes ofall A0a;i. This
on
ludes the proof. �Minimization of SDTDsWe prove Theorem 16. In order to
onstru
t a unique minimal single-type orrestrained
ompetition grammar, we use DFAs in DTDs instead of regular ex-pressions. We de�ne what it means for an SDTD to be single-type or restrained
ompetition in this
ontext.De�nition 23. A DFA D with alphabet �0 is single-type if L(D)
ontains nostrings wbiv and w0bjv0 for i 6= j. A DFA D restrains
ompetition if L(D)
ontains no strings wbiv and wbjv0 for i 6= j. A SDTD is single-type, resp.restrained
ompetition if all DFAs in its DTD are single-type, resp. restrained
ompetition.An SDTD d = (�;�0; d; �) is bottom-up deterministi
 when for ea
h ai; aj 2�0, i 6= j, L(d(ai))\L(d(aj)) = ;. The size of an SDTD d is j�0j+Pai2�0 jd(ai)j,where we denote by jd(ai)j the number of states of the DFA representing d(ai).We show how to
onstru
t a minimal SDTDst from a given SDTDst. We notethat the minimization algorithm and uniqueness proof is entirely analogous forrestrained
ompetition SDTDs. We merely need to repla
e an
estor-based typesin the proof of Lemma 25 by an
estor-sibling-based types. Let d = (�;�0; d; �)be an SDTDst. We re
all that L((d; ai)) is the language de�ned by d, where thestart symbol of d is repla
ed by ai. The SDTDst dmin with L(d) = L(dmin) isbe
onstru
ted as follows:1. Trim d, that is, remove all unrea
hable rules from d, and remove all ai 2 �0for whi
h L((d; ai)) = ;, and their
orresponding rules.26

2. Test, for ea
h ai and aj in �0, i 6= j, whether L((d; ai)) = L((d; aj)).A

ording to Theorem 15 this is in ptime. If L((d; ai)) = L((d; aj)), thenrepla
e all o

urren
es of aj in d by ai, remove the rule in d that
orrespondsto aj , and remove aj from �0.3. For ea
h ai 2 �0, minimize the DFA representing d(ai).Let dmin = (�;�0min; dmin; �min) be the SDTDst obtained by the above algo-rithm. It remains to show that dmin is the minimal SDTDst for L(d). Moreformally, we show that(a) L(dmin) = L(d); and that(b) every minimal SDTDst d0 for L(dmin) is isomorphi
 to dmin.The following lemma is easy to show.Lemma 24. The SDTD dmin
an be
omputed in ptime.Obviously (a) holds. We pro
eed with showing (b).Lemma 25. Let d1 = (�;�01; d1; �1) and d2 = (�;�02; d2; �2) be trimmed,equivalent single-type SDTDs. If there exist trees t01 2 L(d1), t02 2 L(d2) with�1(t01) = �2(t02) = t, and a node u su
h that labt01(u) = ai and labt02(u) = aj,then L((d1; ai)) = L((d2; aj)).Proof. If jL((d1; ai))j = jL((d2; aj))j = 1, the proof is trivial. We show thatL((d1; ai)) � L((d2; aj)). The other in
lusion is analogous. Let t01 2 L(d1),t02 2 L(d2) with that �1(t01) = �2(t02) = t, and u be a node su
h that labt01(u) = aiand labt02(u) = aj . Towards a
ontradi
tion, assume that there exists a �1 2L((d1; ai))� L((d2; aj)).Let � 01 be the unique typed tree in L((d1; ai)) with �1(� 01) = �1. As d1 istrimmed, there exists a tree T 01 in L(d1), su
h that � 01 is a subtree of T 01 at somenode v. As labt01(u) = ai and labT 01(v) = ai, the tree t[u �1℄ is also in L(d1).As L(d1) = L(d2), t[u �1℄ 2 L(d2). As d2 has an
estor-based types andu has the same an
estor string in t as in t[u �1℄, u gets the same type ajin the unique labeling. Therefore, �1 2 L((d2; aj)), whi
h leads to the desired
ontradi
tion. �The next lemma says that every minimal SDTDst has as many types as dmin.Lemma 26. Let d0 = (�;�0; d; �) be a minimal SDTDst for L(dmin), wheredmin = (�;�0min; dmin; �min). Then for every a 2 � we have jfai 2 �0 j �(ai) =agj = jfai 2 �0min j �min(ai) = agj.Proof. We �rst show that jfai 2 �0gj
annot be larger than jfai 2 �0mingj.Towards a
ontradi
tion, assume that jfai 2 �0gj > jfai 2 �0mingj. For everyai 2 �0, let ti be an arbitrary tree so that ai is a label in the unique t0i;d0 forwhi
h �(t0i;d0) = ti. Also, let t0i;dmin be the unique tree for whi
h �min(t0i;dmin) = ti.A

ording to the Pigeonhole Prin
iple, there must be two trees t0j;d0 and t0k;d0 sothat an aj-labeled node u in t0j;d0 and an ak-labeled node v in t0k;d0 are labeledby the same a` in both t0j;dmin and t0k;dmin .27

From Lemma 25, it now follows that L((d0; aj)) = L((dmin; ai)) = L((d0; ak)).Therefore, renaming all ak to aj in d0 results in an equivalent, stri
tly smallerSDTDst than d0. Contradi
tion.The other dire
tion
an be proved analogously, with the roles of d0 anddmin inter
hanged. Now the
ontradi
tion is that dmin
annot be the outputof the minimization algorithm, as there still exist aj and ak in dmin so thatL((dmin; aj)) = L((dmin; ak)). �We now know that every minimal SDTDst for L((dmin)) has the same num-ber of types for ea
h alphabet symbol. We now argue that there exists a bije
-tion I between �0 and �0min so that I(ai) is the unique aj 2 �0min for whi
hL((d0; ai)) = L((dmin; aj)). In other words, we only need to show that for everyai 2 �0, there exists an aj 2 �0min so that L((d0; ai)) = L((dmin; aj)). But thisimmediately follows from Lemma 25. It now follows that for ea
h ai 2 �0min,we have that L(dmin(ai)) = I�1(L(d(I(ai)))) (where we denoted by I the obvi-ous extension of I to string languages). As minimal DFAs for a given regularlanguage are unique up to isomorphisms, we have the following lemma:Lemma 27. Every minimal SDTDst d0 for L(dmin) is isomorphi
 to dmin.Theorem 16 now follows from Lemma 24 and Lemma 27.Subtree Based S
hemasProof of Theorem 19. For a tree language T the following are equivalent:(a) T is de�nable by an extended restrained
ompetition SDTD;(b) T is de�nable by an SDTD with pre
eding-subtree-based types;(
) T is regular.The dire
tions (a)) (
) and (b)) (
) are trivial. The proof of the oppositedire
tions uses the fa
t that regular languages
an be validated by deterministi
bottom-up automata. (
)) (a) and (
)) (b):Let T be the tree language de�ned by a bottom-up deterministi
 tree automatonB = (Q;�; Æ; F). We
an assume that transition fun
tions are represented byregular expressions. We
onstru
t an SDTD d = (�;�0; d; �) su
h that L(d) =L(B) exa
tly as in Lemma 22. It is immediate that a tree t 2 L(d; aq) i� Æ�(t) =q, where labt(") = a. Here, Æ� is the
anoni
al extension of Æ to trees. As B isdeterministi
, L((d; aq))\L((d; aq0)) = ; for all a 2 � and q 6= q0 2 Q. Hen
e, dis extended restrained
ompetition. By observing that there is only one a

eptingrun for every tree and de�ning f(pre
eding-subtreet(u); u) = Æ�(subtreet(u)), itfollows that d has pre
eding-subtree-based types. �Proof of Theorem 20. It is de
idable in ptime for an SDTD d whether it isextended restrained
ompetition.Let d = (�;�0; d; �) be an SDTD.Let E be the set f(ai; aj) j L((d; ai)) \ L((d; aj)) 6= ;g. This set
an be
omputed in polynomial time by
he
king whether the non-deterministi
 tree28

automata for L((d; ai)) and L((d; aj)) have a non-empty interse
tion [11℄. Here,(d; ai) denotes the SDTD d with start symbol ai.The algorithm now basi
ally pro
eeds as in the proof of Theorem 13. In step3. it additionally has to
he
k that (ai; aj) 2 E. �

29

