Automata and Logic on Trees

Wim Martens! Stijn Vansummeren?

LUniversity of Dortmund, Germany
2Hasselt University, Belgium

What am | doing here?

@ You know something about finite automata on strings

@ You want to know more about finite automata on trees

Why would | want to do that?

Because Tree Automata are important for data on the web J

Data on the web is in tree-structured XML

muppet
<muppet creator="Henson"> //// ‘ \\\\
<name> Kermit </name> creator name animal
<animal> Frog </animal> ‘ ‘ |
</muppet>

Henson Kermit Frog

Why would | want to do that?

Because Tree Automata are important for data on the web J

@ They are the basis for XML schema languages and validation
@ Form a foundation for XML query languages

@ Aid in static verification

Why would | want to do that?

Because Tree Automata are important for data on the web J

A basis for XML schema languages

Constraint: Every muppet node must have a creator and a name, and
may have an optional animal.

Examples:
muppet muppet
P RN
creator name animal creator name

| | | | |
Henson Kermit Frog Henson Miss Piggy

Why would | want to do that?

Because Tree Automata are important for data on the web J

A basis for XML schema languages

Constraint: Every muppet node must have a creator and a name, and
may have an optional animal.

Many schema languages: DTD, XML Schema, Relax NG, ...

All naturally modeled and executed by tree automata

Why would | want to do that?

Because Tree Automata are important for data on the web J

As a foundation for XML query languages

Query: Retrieve all muppet names.

Examples:

muppet

/ | ™~
creator name animal
| | |
Henson Kermit Frog

muppet
RN

Creator Nname
| |
Henson Miss Piggy

Why would | want to do that?

Because Tree Automata are important for data on the web)

As a foundation for XML query languages

Query: Retrieve all muppet names.

Languages based on Tree Automata: Monadic datalog, Query
automata

Why would | want to do that?

Because Tree Automata are important for data on the web J

Aid in Static Verification.

Given: Program P, input schema /, output schema O.
Question: Is P(t) € O, for every t € 7

Static Type-checking: XDuce, CDuce, XQuery, XLST, ...

In summary . ..

Tree automata provide the underlying guiding principles for data
on the Web J

Like the relational calculus (i.e., first-order logic) and the relational
algebra provide the underlying principles for relational data.

Who are you guys anyway?

Wim Martens Stijn Vansummeren

Course Overview

Day 1: Basics on Ranked Tree Automata

Day 2: Algorithms on Ranked Tree Automata

Day 3: Connection with Monadic Second-Order Logic

Day 4: Basics and Algorithms on Unranked Tree Automata
Day 5: XML-related applications

Warmup: Automata on Strings

Transition Rules

QOiHh
b
do — 9o

etc...

strings with an even number of a's

From Strings to Trees: Binary Trees

binary trees with an even number of a's

a even
a “even a odd

RN 7N

b even a odd b even p even

/N /N /N /N
#H#H F FH HF

How do we put this into transition rules? |

From Strings to Trees: Binary Trees

binary trees with an even number of a's

a even
a “even a odd

RN 7N

b even a odd b even p even

/N /N /A /N
#F H HFH HH

Transition rules

(even,odd) = even (left a-transition)
(even,even) = odd (right a-transition)
etc. ..

Ranked Trees

What are ranked trees? |

A function call f(a,b) is a ranked tree

VAN
a b

A function call f(g(a,b,c),h(i)) is a ranked tree

Ranked Alphabet

A ranked alphabet symbol is a formalization of a function call

A ranked symbol. ..

...is a symbol a together with an integer rank(a)

rank(a) tell us the number of children a is allowed to have

ak): symbol a with rank(a) = k

Ranked Alphabet: Example

Alphabet: {a(®, b2 c(3) 4(O)
Allowed Tree:
a
b/ \a
AR VRN
a c # 7
/ \ N\
#a # b
/ \ /
7 /a\ 7
#

Ranked Tree Automata

A ranked tree automaton A consists of

Alphabet(A): finite set of alphabet symbols
States(A): finite set of states
Rules(A): finite set of transition rules
Final(A): finite set of final states

where

a(k)

Rules(A) are of the form (g1,....qx) — ¢q

2(0)
(If k=0, we write € — q)

Ranked Tree Automata

How do they work?)
Vot Nt
VRN VAN
N f true t true t Vot
VRN VRN
true t false f false f true t
£ T ¢
false
£ — f
(t,t) A ¢ Ifrootis labeled by g € Final(A):
(t.f) & f ACCEPT
(f,f) = f

Terminology
Terminology .|

Terminology
@ Language(A): set of trees accepted by A

@ Regular tree language: Set of trees S such that
S = Language(A) for some ranked tree automaton A

Tree automaton A over {a(?) p(2) c(3) £ for trees with even

number of a's

Alphabet(A): {a,b,c,#}
States(A): {even,odd}

Final(A

): {even}
Rules(A):

a
even,even) — odd

a
even,odd) = even

odd, even) = even
odd,odd) 2 odd

(
(
(
(

b
even,even) — even

even,odd) 2, odd
odd, even) 2, odd

odd, odd) 2, even

Cc
(even,even, even) — even

(o
(even,even,odd) = odd

Cc
(even,odd,even) = odd

(even,odd,odd) < even

Deterministic Ranked Tree Automaton

No two rules of the form

(k)
(qu---qu) a_> q
5(k)

(q1,---,9%x) = ¢

/

for different states g and ¢’

Deterministic Ranked Tree Automaton: Example

a
even,even) — odd

even,odd) = even

(
(
(odd, even) 2, even
(

) 2 odd

(
(
(
(

b
even,even) — even

b
even,odd) — odd

b
odd,even) — odd

odd, odd) 2, even

c
(even,even, even) — even

Cc
(even,even,odd) = odd

(o
(even,odd,even) = odd

(even,odd,odd) < even

Some immediate natural questions

General questions:

@ Are non-deterministic and deterministic ranked tree automata
equivalent?

@ Are regular tree languages closed under Boolean operations?
@ Does it matter whether we read trees top-down or bottom-up?
@ Do we have a pumping lemma?

@ Can tree automata be minimized?

Complexity questions:
What is the complexity of deciding whether. ..

@ automaton A accepts a tree t?
@ automaton A accepts a tree at all?
@ automaton A accepts all trees of automaton B?

@ a set of automata accept a common tree?

Can Ranked Tree Automata be Determinized?

Take this non-deterministic Tree Automaton:

Automaton with Final(A) = gr and rules
c b b b a
€=qg 9q—q q9—4qg a—q (9.9)—>q

Can Ranked Tree Automata be Determinized?

Automaton with Final(A) = gr and rules
c b b b a
€—q 9—q 9—q gp—aq (9.9)>q

StateS(Adet) — {{q}7 {q7 qb}) {qa db, qa}} and rules
€= 14y

{q} > {q,q5)
19,95} 5, {9,9b,qr}

{9,95,0¢} = {q, 96, ¢}
(51,5) > {q} for all 51,5, € States(A)

Ranked Automata can be Determinized

From each non-deterministic tree automaton, an equivalent

deterministic tree automaton can be constructed in exponential
time

Non-deterministic and deterministic tree automata recognize the
same languages

Ranked Automata can be Determinized

Ranked Automata can be determinized in exponential time \

Is this optimal?

Natural Questions

General questions:

@ Are non-deterministic and deterministic ranked tree automata
equivalent? Yes.

@ Are regular tree languages closed under Boolean operations?
@ Does it matter whether we read trees top-down or bottom-up?
@ Do we have a pumping lemma?

@ Can tree automata be minimized?

Complexity questions:
What is the complexity of deciding whether. ..

@ automaton A accepts a tree t?
@ automaton A accepts a tree at all?
@ automaton A accepts all trees of automaton B?

@ a set of automata accept a common tree?

Closure under Union and Intersection:

Product Construction

@ Automaton A: even number of a’s
o (even,even) = odd

@ Automaton B: even number of b’s

o (even,even) > even

a odd even

b ‘even a even
even even

((even,even), (even,even)) - (odd, even)

Closure under Union and Intersection

Product Construction:

Given A, B, construct Ax B

@ Alphabet(A x B) = Alphabet(A) U Alphabet(B)
@ States(A x B) = States(A) x States(B)

e Final(Ax B) ={(sa,sg) | sa € Final(A) Asg € Final(B)}
@ Rules(Ax B)={

(k)

((sa,SE),---+(sh,58)) = (sa,s8) |
()

(5hs-..,5%) %> sa € Rules(A)

(k)
(sg,...,s5) > sg € Rules(B)}

Closure under Union and Intersection: Union

Given A, B, construct AUB

e Alphabet(AU B) = Alphabet(A) U Alphabet(B)
@ States(AU B) = States(A) x States(B)
@ Rules(AUB)=/{

(k)
((5}\751}3)7---7(5275?3) = (SAvsB) ‘
(k)
(Sk,---,55) 5 sa € Rules(A)

(k)
(sg,...,s5) > sg € Rules(B)}

o Final(AUB) = {(sa,s5) | sa € Final(A) V sg € Final(B)}

Closure under Union and Intersection: Intersection

Given A, B, construct AN B

o Alphabet(AN B) = Alphabet(A) U Alphabet(B)
@ States(AN B) = States(A) x States(B)
@ Rules(ANB)=/{

(k)
((5}\751}3)7---7(5275?3) = (SAvsB) ‘
(k)
(Sk,---,55) 5 sa € Rules(A)

(k)
(sg,...,s5) > sg € Rules(B)}

o Final(AN B) = {(sa,s8) | sa € Final(A) A sg € Final(B)}

Product Construction: Blow-up

Product Construction: Blow-up

@ |States(A x B)| = |States(A)| x |States(B)|
@ |Rules(A x B)| < |Rules(A)| x |Rules(B)|

Blow-up: Quadratic

Closure under Complement: Completion

Definition (Complete tree automaton)

For each alk) € Alphabet(A) and g1, ..., qx € States(A), there is a
rule

(qla"'aqk) i) q
for some q.

Example (Incomplete (deterministic) Tree Automaton)

Tree automaton A for {a(b,b)}:

b
€ —4p
(96, 95) = qa
with Final(A) = q,

Closure under Complement: Completion

Example (Incomplete (deterministic) Tree Automaton)

Tree automaton A for {a(b,b)}:

b
€ —Qqp

(qb7 qb) - da
with Final(A) = q,

v

Example (Complementing A)

Add a sink state gs:

€ g dp € i ds
(Gb,9b) = g2 (Gb,G2) — Gs (9a,9b) ~> qs (G2, qa) ~> gs

b b b b
(gb,9b) — qs (9b,92) — qs (9a,9p) — as (92,92) — s

b
(9s.9) 2= g5 for all g € {qa,qp, s}

b
(9,9s) 25 g for all g € {q.,qp, s}
with Final(A) = {qgp,qs}

Closure under Complement
Complementing A

(1) Determinize A
(2) Complete the result
(3) Switch final <> non-final states

Complement construction: Blow-up

o Determinizing A: exponential blow-up (states: 25tates(4))

@ Completing the result: blow-up in rules:
|Alphabet| x (2/5tates(A)Yk “\where k is maximal rank

Alphabet(A)
@ Switching final < non-final states: linear

Overall: Exponential blow-up

Natural Questions

General questions:

@ Are non-deterministic and deterministic ranked tree automata
equivalent? Yes.

@ Are regular tree languages closed under Bool. operations?
Yes.

@ Does it matter whether we read trees top-down or bottom-up?
@ Do we have a pumping lemma?

@ Can tree automata be minimized?

Complexity questions:
What is the complexity of deciding whether. ..

@ automaton A accepts a tree t?

@ automaton A accepts a tree at all?

@ automaton A accepts all trees of automaton B?
)

a set of automata accept a common tree?

Top-Down Tree Automata: Connection to Strings

Example (Strings are Unary Trees)

a
|

abed = a(b(c(d))) = ? Reading strings left-to-right
C = Reading trees top-down

|

d

Top-Down Tree Automata
(Example . |

Example
V A\
RN VRN
A\ true true V
RN RN
true false false true

—+
e
c
¢

E — t
P fﬁe £
(t,t) D ¢ (t,t) > t
(t,f) D f (t,f) > t
(f,t) AN (f,t) Yot
(F,f) & f (ff) > f

We need different rules

Top-Down Tree Automata
(Example .

Example
\4 A\
RN VAN
A\ true true V
RN AN
true false false true
Init(A) =t
t 5 (t,t) t 5 (tt)
f 5 (1) t S5 (tf)
f 5 (1) t 5 (fi)
f= () f = (ff)
true false
t — € f = €

Top-Down Tree Automata

A top-down tree automaton A consists of
Alphabet(A): finite set of alphabet symbols
States(A): finite set of states

Rules(A): finite set of transition rules
Init(A): finite set of initial states

where

(k)

Rules(A) are of the form g = (q1,...,qx)

Top-down tree automata also recognize all regular tree languages)

Can Top-Down Tree Automata Be Determinized?

Top-Down Deterministic Tree Automaton

For every g € States(A) and a € Alphabet(A) there's at most one

rule
3(k)

qg— (q1,---,9k)

Can Top-Down Tree Automata Be Determinized?

Top-Down TA do not recognize all regular languages!

a a
VRN N
b C C b
Init(A) = qo
o — (9,9
g > ¢
(o)
qQ — £
also recognizes. . .
a a
VAN VAN
b b C C

Natural Questions

General questions:

@ Are non-deterministic and deterministic ranked tree automata
equivalent? Yes.

@ Are regular tree languages closed under Bool. operations?
Yes.

@ Does it matter whether we read trees top-down or
bottom-up? Yes.

@ Do we have a pumping lemma?
@ Can tree automata be minimized?

Complexity questions:
What is the complexity of deciding whether. ..

@ automaton A accepts a tree t?

@ automaton A accepts a tree at all?

@ automaton A accepts all trees of automaton B?
@ a set of automata accept a common tree?

Pumping Lemma

Definition (Context)

A context is a tree with a hole

Pumping Lemma

Definition (Context Application)

Given the context C and a tree t, C[t] is obtained by plugging t
into C.

One can also apply a context to a context: Ci[C;]
The result is a new context

The Pumping Lemma

Lemma (Pumping Lemma)

If L is regular, there is a constant k such that,

@ for every tree t € L with depth at least k
@ there is a context Cy, a (non-empty) context C,, and a small
tree t’
such that
o t= G[G[t']] and
o forevery ne N, G [CI[t]] is in L.

What's the use?

Show that languages are not regular.

Example (The Usual Suspect)

d
7N\
b b
| |
b b
| |
n|b b| N
b b
s s

Natural Questions

General questions:

@ Are non-deterministic and deterministic ranked tree automata
equivalent? Yes.

@ Are regular tree languages closed under Bool. operations?
Yes.

@ Does it matter whether we read trees top-down or
bottom-up? Yes.

@ Do we have a pumping lemma? Yes.

@ Can tree automata be minimized?

Complexity questions:
What is the complexity of deciding whether. ..

@ automaton A accepts a tree t?

@ automaton A accepts a tree at all?

@ automaton A accepts all trees of automaton B?
@ a set of automata accept a common tree?

Minimization: Myhill-Nerode Theorem

Definition (Congruence)

A congruence is an equivalence relation on trees closed under

context
If /\ /\then

Minimization: Myhill-Nerode Theorem

Definition (Congruence of a Language)

If L is a tree language then we define

t1 = to if, for all contexts C: C[t;] € L< Clt] € L

Minimization: Myhill-Nerode Theorem

Theorem (Myhill-Nerode for Trees)

The following are equivalent:

(a) L is a regular tree language
(b) L is the union of some equivalence classes of finite index

(c) the relation =, is a congruence of finite index

Minimal automaton A for L follows from this classification:
size of A = number of equivalence classes of =;

Natural Questions

General questions:

@ Are non-deterministic and deterministic ranked tree automata
equivalent? Yes.

@ Are regular tree languages closed under Bool. operations?
Yes.

@ Does it matter whether we read trees top-down or
bottom-up? Yes.

@ Do we have a pumping lemma? Yes.
@ Can tree automata be minimized? Yes.

Complexity questions:
What is the complexity of deciding whether. ..

@ automaton A accepts a tree t?

@ automaton A accepts a tree at all?

@ automaton A accepts all trees of automaton B?
@ a set of automata accept a common tree?

	Introduction
	Ranked Tree Automata
	Properties and Algorithms

