
Automata and Logic on Trees:
Algorithms

Wim Martens1 Stijn Vansummeren2

1University of Dortmund, Germany
2Hasselt University, Belgium



Natural Questions

General questions:

Are non-deterministic and deterministic ranked tree automata
equivalent? Yes.

Are regular tree languages closed under Bool. operations?
Yes.

Does it matter whether we read trees top-down or
bottom-up? Yes.

Do we have a pumping lemma? Yes.

Can tree automata be minimized? Yes.



Natural Questions

Complexity questions:
What is the complexity of deciding whether. . .

automaton A accepts a tree t?

automaton A accepts a tree at all?

automaton A accepts a finite number of trees?

automaton A accepts all trees?

automaton A accepts all trees of automaton B?

automaton A accepts precisely the trees of B?

a set of automata accept a common tree?

computing the smallest automaton B equivalent to A?



Natural Questions

We’ll call these questions

Membership

(non)-Emptiness

Finiteness

Universality

Containment / Inclusion

Equivalence

Intersection (non)-Emptimess

Minimization



Why do we do this?

All of these questions have an immediate application in XML

Membership

(non)-Emptiness

Finiteness

Universality

Containment / Inclusion

Equivalence

Intersection (non)-Emptimess

Minimization



Why do we do this?

In XML. . .

tree automaton ≡ database schema

Automaton A accepts tree t

≡XML database d adheres to schema S

Automaton B accepts all trees of A

≡XML schema B is more general than schema A

Compute the smallest automaton B equivalent to A

≡XML schema optimization



Outline

1 Membership

2 (non)-Emptiness

3 Finiteness

4 Universality

5 Containment / Inclusion

6 Equivalence

7 Intersection (non)-Emptimess

8 Minimization



Membership

Definition (Membership Problem)

Given an automaton A and a tree t, is t ∈ Language(A)?



Membership

Example

Automaton with Final(A) = qf and rules

ε
c→ q q

b→ qb q
b→ q qb

b→ qf (q,q) a→ q

b

b

b

a

b

c

b

c{q} {q}

{q,qb} {q,qb}

{q}

{q,qb}

{q,qb,qf }

{q,qb,qf }



Membership: Precise Complexity

It’s definitely in PTIME

non-deterministic automaton: logCFL-complete

deterministic automaton: in logDCFL, precise complexity
unknown



Outline

1 Membership

2 (non)-Emptiness

3 Finiteness

4 Universality

5 Containment / Inclusion

6 Equivalence

7 Intersection (non)-Emptimess

8 Minimization



Non-Emptiness

Definition (Non-Emptiness)

Given a tree automaton A, is Language(A) 6= /0?



Non-Emptiness

Example

Final(A) = (0,1,2)
ε

c→ (0,0,0)
(0,0,0) a→ (1,0,0) (0,0,0) a→ (1,0,1) (0,0,1) a→ (1,0,2)
(1,0,0) a→ (0,0,0) (1,0,0) a→ (0,0,1) (1,0,1) a→ (0,0,2)
(0,1,0) a→ (1,1,0) (0,1,0) a→ (1,1,1) (0,1,1) a→ (1,1,2)
(1,1,0) a→ (0,1,0) (1,1,0) a→ (0,1,1) (1,1,1) a→ (0,1,2)(
(0,0,0),(0,0,0)

) b→ (0,1,0)
(
(0,0,0),(1,0,0)

) b→ (1,1,0)(
(1,0,0),(0,0,0)

) b→ (1,1,0)
(
(1,0,0),(1,0,0)

) b→ (0,1,0)



Non-Emptiness Algorithm

It’s a kind of reachability algorithm

Non-Emptiness Algorithm

Input: Tree automaton A
Marked = /0;
repeat

if ∃a(k) ∈ alph(A),q1, . . . ,qk ∈Marked: (q1, . . . ,qk) a→ q then
add q to Marked;

end if
until No more state can be added to Marked
return Init(A)∩Marked 6= /0



Non-Emptiness Algorithm: Complexity

Complexity: PTIME-complete

in PTIME: At most a quadratic number of iterations over
Rules(A)
PTIME-hard: reduction from Path Systems



Non-Emptiness: PTIME Lower Bound

Definition (Path Systems)

Given

a set of propositions {p1, . . . ,pn};
a set of axioms {a1, . . . ,a`} ⊆ {p1, . . . ,pn};
a set of rules (pi ,pj)→ pk (pk is provable from pi and pj); and

a target proposition p,

is p provable from the axioms by using the rules?



Non-Emptiness: PTIME Lower Bound

Reduction from PATH SYSTEMS

Given instance

propositions {p1, . . . ,pn}, axioms {a1, . . . ,a`} ⊆ {p1, . . . ,pn},
(pi ,pj)→ pk , and target proposition p,

of PATH SYSTEMS,

define automaton A such that

for each axiom ai : ε
#→ qai ∈ Rules(A);

for each rule (pi ,pj)→ pk : (qpi ,qpj )
a→ qpk

∈ Rules(A); and

Final(A) = {qp}.

Hence, Language(A) 6= /0 iff

p provable from the axioms by using the rules



Non-Emptiness: Complexity Refined

Complexity Refined

in PTIME for non-deterministic tree automata

PTIME-hard for (bottom-up) deterministic tree automata



Outline

1 Membership

2 (non)-Emptiness

3 Finiteness

4 Universality

5 Containment / Inclusion

6 Equivalence

7 Intersection (non)-Emptimess

8 Minimization



Finiteness

Definition

Finiteness Given a tree automaton A, is Language(A) finite?

Observation

Language(A) is infinite if and only if there is a loop on a useful
state

useful state: state that appears in some accepting run



Finiteness

Step 1: find the useful states

Step 2: search for loops

Definition

State Reachability

A state q is reachable from q

If p is reachable from q, and there is a rule

(p1, . . . ,pn)
a→ p,

then p1, . . . ,pn are reachable from q



Finiteness

Step 1: find the useful states

Step 2: search for loops

Notation

For q ∈ States(A), let Aq be A with Final(A) = {q}

Finding useful states

Test, for each q, whether Language(Aq) = /0
If Language(Aq) = /0, remove q from A:

remove q from States(A) and
remove each rule from Rules(A) in which q occurs

For all remaining states, test whether they are reachable from
a state in Final(A)
Remove all non-reachable q from A



Finiteness

Step 1: find the useful states

Step 2: search for loops

Searching for Loops

For each pair of useful states p 6= q test whether

p is reachable from q and

q is reachable from p

(Or, alternatively, use a smarter cycle detection algorithm)



Finiteness

Finiteness: Complexity

in PTIME

PTIME-hard for (bottom-up) deterministic tree automata



Outline

1 Membership

2 (non)-Emptiness

3 Finiteness

4 Universality

5 Containment / Inclusion

6 Equivalence

7 Intersection (non)-Emptimess

8 Minimization



Universality

Definition (Universality)

Given automaton A, is

Language(A) the set of all ranked trees over Alphabet(A)?



Universality

Test whether the language of A’s complement is empty

Three steps:

Determinize A (exponential time)

Complete and complement the result (poly time)

Test emptiness



Universality: Complexity

Universality: Complexity

in EXPTIME

EXPTIME-hard (reduction from 2-player corridor tiling)



Universality: EXPTIME lower bound

Reduction from 2-player corridor tiling

Corridor Tiling:

Set of tiles T :

w x y z

The bottom row of tiles:

The top row of tiles:



Universality: EXPTIME lower bound

Reduction from 2-player corridor tiling

Corridor Tiling:

Can we make a correct corridor tiling?



Universality: EXPTIME lower bound

2-Player Corridor Tiling

CONSTRUCTOR: tries to build a corridor tiling

SPOILER: tries to prevent CONSTRUCTOR from doing so



Universality: EXPTIME lower bound

2-Player Corridor Tiling

Does CONSTRUCTOR have a winning strategy?



2-Player Corridor Tiling: the Reduction

How do we encode tilings?

Three sets of symbols:

leaves: #

for each tile t: unary symbol at (CONSTRUCTOR moves)

for each tile t: binary symbol bt (SPOILER moves)

So our trees look like



2-Player Corridor Tiling: the Reduction

We want to. . .

. . . accept all trees iff no winning strategy exists

Automaton A should accept if. . .

there is a symbol bt at odd depth;

there is a symbol at at even depth;

the top n levels of the tree don’t encode the start row;

there is a path on which the lowermost n nodes don’t encode
the final row;

there is a path in which the number of tiles is not a multiple
of n;

there is a binary symbol in the middle of the tree with two
equally labeled children;

there is a horizontal mistake; or

there is a vertical mistake.



Universality: Complexity Revisited

Universality: Complexity Revisited

in EXPTIME

EXPTIME-hard for non-deterministic tree automata

in PTIME for deterministic tree automata!



Outline

1 Membership

2 (non)-Emptiness

3 Finiteness

4 Universality

5 Containment / Inclusion

6 Equivalence

7 Intersection (non)-Emptimess

8 Minimization



Containment

Definition (Containment)

Given tree automata A and B, is Language(A)⊆ Language(B)?

I.e., is Language(A)∩Language(B) = /0?

Containment Complexity

in EXPTIME

EXPTIME-hard (from Universality)



Outline

1 Membership

2 (non)-Emptiness

3 Finiteness

4 Universality

5 Containment / Inclusion

6 Equivalence

7 Intersection (non)-Emptimess

8 Minimization



Equivalence

Definition (Equivalence)

Given tree automata A and B, is Language(A) = Language(B)?

I.e., is

Language(A)⊆ Language(B) and

Language(B)⊆ Language(A)?

Equivalence Complexity

in EXPTIME (from Containment)

EXPTIME-hard (from Universality)



Outline

1 Membership

2 (non)-Emptiness

3 Finiteness

4 Universality

5 Containment / Inclusion

6 Equivalence

7 Intersection (non)-Emptimess

8 Minimization



Intersection Non-Emptiness

Definition (Intersection Non-Emptiness)

Given tree automata A1, . . . ,An, is
⋂

i Language(Ai ) 6= /0?

Construct the product automaton A1∩·· ·∩An

(size: product of the sizes of Ai )

Test non-emptiness of the product automaton

Intersection non-Emptiness: Complexity

in EXPTIME

EXPTIME-hard (from 2-player corridor tiling)



Intersection Non-Emptiness: EXPTIME Lower Bound

Tiling system S : construct A1, . . . ,An+2 such that

CONSTRUCTOR has a winning strategy iff A1∩·· ·∩An+2 6= /0

Reduction

Automaton A1: accept all strategy trees

Automaton A2: accept if all horizontal constraints satisfied

For each column i = 1, . . . ,n: Automaton Ai+2 accept if
vertical constraints satisfied in column i



Outline

1 Membership

2 (non)-Emptiness

3 Finiteness

4 Universality

5 Containment / Inclusion

6 Equivalence

7 Intersection (non)-Emptimess

8 Minimization



Minimization

Definition (Minimization)

Given tree automaton A and integer k,

is there an equivalent automaton B such that

B is smaller than k?



Minimization

Minimization in general : EXPTIME-complete
But interesting for deterministic automata



Minimization: Theory

Recall. . .

Theorem (Myhill-Nerode for Trees)

The following are equivalent:

(a) L is a regular tree language

(b) L is the union of some equivalence classes of finite index

(c) the relation ≡L is a congruence of finite index

Minimal automaton A for L follows from this classification: size of
A = number of equivalence classes of ≡L



Minimization Algorithm

Minimization Algorithm

Input: Reduced deterministic automaton A
R = R0 = {Final(A),States(A)−Final(A)}
repeat

R = R0

define p1R0p2 iff

p1 ≡P p2 and
∀a(n) ∈ Alphabet(A), ∀q1, . . . ,qi−1,qi+1, . . . ,qn ∈ States(A)

r1Rr2, where

(q1, . . . ,qi−1,p1,qi+1, . . . ,qn)
a→ r1 and

(q1, . . . ,qi−1,p2,qi+1, . . . ,qn)
a→ r2

until R0 = R
States(Amin) = equivalence classes of P

Rules(Amin) = {([q1], . . . , [qn])
a(n)
→ [q]}

Final(Amin) = {[q] | q ∈ Final(A)}
return Amin



Minimization: Complexity

Complexity Analysis

Number of repeat-until-loops: linear

Cost of refining the equivalence relation: cubic

Refining equivalence relation

Define p1R0p2 iff

p1Rp2 and

∀a(n) ∈ Alphabet(A), ∀q1, . . . ,qi−1,qi+1, . . . ,qn ∈ States(A)
r1Rr2, where

(q1, . . . ,qi−1,p1,qi+1, . . . ,qn)
a→ r1 and

(q1, . . . ,qi−1,p2,qi+1, . . . ,qn)
a→ r2



Minimization: Complexity

Complexity Analysis

Number of repeat-until-loops: linear

Cost of refining the equivalence relation: cubic

Refining equivalence relation

Define ¬(p1R0p2) iff

¬(p1Rp2) or

∃a(n) ∈ Alphabet(A), ∃q1, . . . ,qi−1,qi+1, . . . ,qn ∈ States(A)
¬(r1Rr2), where

(q1, . . . ,qi−1,p1,qi+1, . . . ,qn)
a→ r1 and

(q1, . . . ,qi−1,p2,qi+1, . . . ,qn)
a→ r2



Overview

Membership: PTIME

(non)-Emptiness: PTIME

Finiteness: PTIME

Universality: EXPTIME (PTIME for deterministic)

Containment / Inclusion: EXPTIME (PTIME for
deterministic)

Equivalence: EXPTIME (PTIME for deterministic)

Intersection (non)-Emptimess: EXPTIME (also for
deterministic)

Minimization: EXPTIME (PTIME for deterministic)


	Membership
	(non)-Emptiness
	Finiteness
	Universality
	Containment / Inclusion
	Equivalence
	Intersection (non)-Emptimess
	Minimization

