Automata and Logic on Trees:

Unranked Tree Automata

Wim Martens! Stijn Vansummeren?

LUniversity of Dortmund, Germany
2Hasselt University, Belgium

€ Unranked Tree Automata
© Connection to Ranked Tree Automata
© Minimization

@ MSO on Unranked Trees

€ Unranked Tree Automata

Why Unranked Tree Automata?

Data on the Web

<animated_characters>
<muppet creator="Henson">
<name> Kermit </name>
<animal> Frog </animal>
</muppet>
</animated_characters>

animated_characters

muppet

TN

creator name 3nimal

Henson Kermit Frog

Why Unranked Tree Automata?

Data on the Web

<animated_characters>
<muppet creator="Henson">
<name> Kermit </name>
<animal> Frog </animal>
<series> Muppet Show </series>
</muppet>
<cartoon creator="MacFarlane">
<name> Stewie Griffin </name>
<goal> World Domination </goal>
<series> Family Guy </series>
</cartoon>
</animated_characters>

Why Unranked Tree Automata?

Data on the Web

animated_characters

/ \
muppet cartoon

_— N T~ _— / N\ \
creator name animal series creator name goal series
|

Henson

| | |
Frog MacFarlane ‘ Family Guy
Kermit Muppet Show Stewie Griffin

World Domination

The number of children is not predetermined by a node label
...and can be arbitrarily (though finitely) many

Hence, the name unranked trees

What are Unranked Tree Automata?

So, let's extend our automata the straigtforward way

(Let's take the Boolean Circuit example. That one's easy.)

Boolean Circuit Evaluation for Binary Trees

£ T ¢
e feis)e £
(t,t) & t (tf) D f (F,t) D f () D f
(t,t) > t (t,f) > t (f,t) > t (f,f) > f

What are Unranked Tree Automata?

Boolean Circuit Evaluation for Binary Trees

£ T ¢

P fa_ls)e £

(t,t) & t (tf) D f (F,t) D f () D f
(t,t) > t (t,f) > t (f,t) > t (f,f) > f
£ T ¢

P fa_ls)e £

(t) EAN (t,t) A

(t,t,t) D ¢ (t,t,t,t) O ¢

What are Unranked Tree Automata?

An Unranked Tree Automaton A consists of:
@ States(A): its set of states
@ Alphabet(A): the (non-ranked) alphabet

@ Rules(A): the transition rules
@ Final(A): the final states

Here the rules in Rules(A) are of the form

L% q,

where L is a regular language over States(A)

a a
We assume that no two rules L1 — g, Lo, — g occur

(Instead, L1 ULy = q)

V 't Nt
VRN VRN
N _f truet truet Vot
truet falsef truet falsef truet truet

Boolean Circuit Evaluation

t
ik t+

<l

false
— f fr

(Blockwise) Deterministic Unranked Tree Automata

Definition ((Blockwise) Deterministic Unranked Tree Automaton)

An unranked tree automaton A is blockwise deterministic if

for all rules L; = q1, Lo i g, LiNLly =10

Why can this be seen as bottom-up determinism?

unique! A

\/v\/ \/A\

/ /l\ f\ true true - \|/ \

truet falsef truet false true true

© Connection to Ranked Tree Automata

First-Child Next-Sibling Encoding

First-Child Next-Sibling Encoding

a— #

/

b——m—eé —— 8 —— #
/ J /
c—d f h— |

L VA
#o# ## # # #

e fcns(L): first-child next-sibling encoding of (unranked)
language L

o fcns '(L): first-child next-sibling decoding of (ranked)
language L

fcns is a bijection between

@ unranked trees over alphabet X and

o binary trees over L {#(0)} (every a € X is binary)
B 4

First-Child Next-Sibling Encoding: Automata

Lemma (Tree Automata Encoding Lemma)

(1) For each UTA A, there is a
BTA fcns(A) accepting fcns(Language(A))
(2) For each BTA A there is a
UTA fens 1 (A) accepting fcns *(Language(A))

fcns(A) and fens *(A) are constructible in linear time.

The Result Transfer

Corollaries of the FCNS Lemma: |

Unranked Regular Tree Languages are Closed Under

@ Union
@ Intersection

@ Complement

The Result Transfer

Corollaries of the FCNS Lemma:)

Complexities for Unranked Tree Automata
@ Membership: PTIME

@ (non)-Emptiness: PTIME

@ Finiteness: PTIME

Universality: EXPTIME

Containment / Inclusion: EXPTIME
Equivalence: EXPTIME

Intersection (non)-Emptimess: EXPTIME

© Minimization

FCNS encoding revisited

a a
b/|\g b/\#
e
/ \ | / \ /\
c d f h I C e
/ \ VRN
d f 24
/ N\ / N\ / N\
h
/ N\
I
/ N\
#

FCNS encoding and determinism

Observation
Determinism is not preserved by FCNS encoding!
e 4o

Determinism Revisited

An Unranked Tree Automaton A consists of:
@ States(A): its set of states
@ Alphabet(A): the (non-ranked) alphabet
@ Rules(A): the transition rules

@ Final(A): the final states

Here Rules(A) becomes something completely different

v

Rules(A) are of the form

a— D,

where a € Alphabet(A) and D is a finite string automaton

Determinism Revisited

Rules(A) are of the form

a— D,

where a € Alphabet(A) and D is a finite string automaton

D is a finite string automaton with
@ Alphabet(D) = States(A)
@ States(D) = States(A)

Example (Boolean Circuit Evaluation)

Intermezzo: Example

tue 4 tt A ¢ (t+) F(t+f)* D f
falke r Y g (t+) t(t+f) =5 ¢
t f

f

() =

. t f

@) °

R QO

f t,f
@@

Intermezzo: Example

Example (Boolean Circuit Evaluation)

t A\
=t tt 5

N (5 A o LA
false ¢ 5 f (t+) t(t+f) > ¢

(t,true): % (f,false): %
t f
(t,A): % (F,V): %

+ t, f f t,f
(F,A): % (£,V): % |

Intermezzo: Example

Example (Boolean Circuit Evaluation)

t AN
=t tt 5

t (t+) F(t+) > f
false ¢ f+ L f (t+F)*t(t+f)* > ¢

(t,true): % (f,false): %
t f
(t,1): % (f,V): 9

" t,f £ t f
(F,): » (£, V) %

Intermezzo: Example

Example (Boolean Circuit Evaluation)

tue 4 A (t+) F(t+f)* D f
A A R
(t,true): % (f,false): %
t,th, ty f7f/\7f\/
(t /\)_ .t,t/\,tv (f \/)_ _).f,fmf\/
; : N) :
t,ta,ty L, A, Ly
t,tn, by i By f, fa fo Fatn v

v

Intermezzo: Example

Example (Boolean Circuit Evaluation)

t A A\
=t tt 5t (t+f)*F(t+f)" = f
fal \ v
= f fr = f (t+F)t(t+f)* — t
true false
- —
t,ta, ty f,fn, fy
N tvt/\at\/ V f7f/\7f\/
tat/\at\/ t7t/\7t\/
tat/\at\/ f’f/\’fv f,f/\,f\/ f7f/\7f\/

A faf/\af\/
s

V t? t/\at\/
EE—

Intermezzo: Example

Example (Boolean Circuit Evaluation)

true false
- -

Y i, 1y
A t7 t/\7 t\/ V f) f/\) f\/
— —
L, Ia, by t,tn, by
tat/\at\/ f,f/\,f\/ f,f/\,f\/ faf/\af\/

A faf/\7f\/ V tatAat\/

Definition (Stepwise Determinism (Intuitive))

An unranked tree automaton is (stepwise) deterministic if all the
above transitions are deterministic

Let's run the new guy

V Tty A7
VAN VAN
A _fn truet truet V _ty

/|\ /|\

truet falsef truet falsef truet truet

t,th, ty f,fn,fy
true t tmtvs f fmfva

false f, fmfvg t, tmtvg

t,th, ty t,th, ty f f/\7fv t,th, ty
faf/\af\/ faf/\?f\/

L et’'s make him Deterministic

t,tn, by £, fy

true t t/\,tva f f/\,fva

false f, fmfvg t, t/\ﬂ-“v’

fofn v t, th, by

By tasty t,ty, by
fv f/\vf\/

faf/\af\/

true

false
—

Another Example (State Sharing)

Recall our rules: a — D, in which States(D) = States(A)
This has advantages!

Example (State Sharing with A)

book cd
N N
author title price band title price
author lﬂ ile @ ﬁe

book
€ NE R :
()—O—(E
cd

Final(A) = {5}

Curry(f(a,b,c)) = ((f@a)@b)@c)
(@: pronounced “applied to")

a Curry @
/|\ — / \

b e g @ @
/ A\ | / N\ /N RN
c d f h I @ @ @ I
/N / N\ / \
a @ e f & h

/\
@ d
/7 \
b C

Now, a bottom-up deterministic automaton on the right tree...
does precisely what we want on the left onel!

Currying Relation between Automata

a Yabcd @ Yabcd
\ A
@ Jabc d 4dd
(ga) b (Gap) € (qabc) d (Gabea) RN
db dc dd @ 4ap Cc qgc
/ AN
a 4a b 4b

— — —
2, qabcd

Final(A {qabcd}

Currying Relation between Automata

a Yabcd @ Yabcd
\ Gobe
@ Jabc d 4dd
(ga) b (Gap) C (qabc) d (Gabed) RN
db dc dd @ dab C qc
/ AN
a qa b db

Currying: transition relation between automata

e -5 g in unranked automaton
— £ 2 g in binary automaton

p .
@ g1 — @> In unranked automaton

= (q1,p) A g2 in binary automaton

One-to-one correspondence in transition rules,
which preserves determinism!

y

Currying Tree Automata Encoding Lemma

So we actually proved:

Lemma (Currying Tree Automata Encoding Lemma)
(1) For each UTA A, there is a
BTA Curry(A) accepting Curry(Language(A))
(2) For each BTA A there is a
UTA Curry 1 (A) accepting Curry™*(Language(A))

Moreover,
o Curry(A) and Curry 1(A) are constructible in linear time, and

o Curry and Curry™! preserve (stepwise) determinism!

The Result Transfer

@ ...all the results from the previous transfer also follow here

@ Minimization is in PTIME for stepwise deterministic
automata!

(Just use the minimization algorithm for the ranked automaton and merge
states / transitions in the unranked one iff they should be merged in the ranked
one)

Minimization is NP-hard for the other form of bottom-up determinism,
as it's not entirely deterministic

The Result Transfer

@ ...all the results from the previous transfer also follow here

@ Minimization is in PTIME for stepwise deterministic
automatal

@ Universality: in PTIME for stepwise deterministic automata
@ Equivalence: in PTIME for stepwise deterministic automata

@ Containment / Inclusion: in PTIME for stepwise
deterministic automata

Minimization is NP-hard for the other form of bottom-up determinism,
as it's not entirely deterministic

@ MSO on Unranked Trees

Unranked Trees as Structures

An unranked tree t over an alphabet X = {0,...,06’} also naturally
corresponds to a structure t over Vy = (E,<,Ls,...,Ls)

Tree Structure
1
a o Dt={1,2,3,...}
2b/ \33 e EF(1,2),E4(1,3),
g / \ 5 6 / \ 7 E£(274)7
c a b b
VAN N @ 2<t34<E5 ..
a c a a
8 o /\ 11, /b\ 6 o L,={1,3,5...}
v 5 C o L,={2,67,....)
a b
17 18 @ L.=1{4,9,15,16}

MSQO on Unranked Trees

Syntax:

¢ = x=y|Exy)|x<y|Lix)| |Lp(y)
[oA | =0 | Ix [X | X(x)[IX¢

with the usual abbreviations ¢ V¢, ¢ — ¢, Vx¢, VX0, ...

Familiar looking example

Every a-labeled node in t has a b-labeled descendant if, and only if
t =EVnL,(n) — 33X (¢ Ay)

where ¢ := X(n) /\Vme’(E(m, m')AX(m) — X(m’))
v :=3dm(X(m) A Lp(m))

v

MSQO on Unranked Trees

Syntax:

¢ = x=y|Exy)|x<y|Lix)| |Lp(y)
[oA | =0 | Ix [X | X(x)[IX¢

with the usual abbreviations ¢ V¢, ¢ — ¢, Vx¢, VX0, ...

Notation and terminology

@ If ¢ is an MSO sentence over Vy with X an unranked alphabet then

Language(¢) :={t | t an unranked tree over X such that t = ¢}

@ An unranked tree language S is MSO-definable if there is some
MSO formula ¢ with S = Language(¢)

v

MSQO on Unranked Trees

An unranked tree language is MSO-definable if, and only if, it is regular. l

The proof is exactly the same as in the ranked case.

	Unranked Tree Automata
	Connection to Ranked Tree Automata
	Minimization
	MSO on Unranked Trees

