Automata and Logic on Trees:

Algorithms

Wim Martens! Stijn Vansummeren?

lUniversity of Dortmund, Germany
2Hasselt University, Belgium

Natural Questions

General questions:

@ Are non-deterministic and deterministic ranked tree automata
equivalent? Yes.

@ Are regular tree languages closed under Bool. operations?
Yes.

@ Does it matter whether we read trees top-down or
bottom-up? Yes.

@ Do we have a pumping lemma? Yes.

@ Can tree automata be minimized? Yes.

Natural Questions

Complexity questions:
What is the complexity of deciding whether. ..

@ automaton A accepts a tree t?

automaton A accepts a tree at all?

automaton A accepts a finite number of trees?
automaton A accepts all trees?

automaton A accepts all trees of automaton B?
automaton A accepts precisely the trees of B?

a set of automata accept a common tree?

computing the smallest automaton B equivalent to A?

Natural Questions

We’'ll call these questions
@ Membership

(non)-Emptiness

Finiteness

Universality

Containment / Inclusion

Equivalence

Intersection (non)-Emptimess

Minimization

Why do we do this?

All of these questions have an immediate application in XML J

Membership
(non)-Emptiness
Finiteness

Universality
Containment / Inclusion
Equivalence

Intersection (non)-Emptimess

Minimization

Why do we do this?
tree automaton = database schema \

Automaton A accepts tree t
= database d adheres to schema S

Automaton B accepts all trees of A

=xpmL Schema B is more general than schema A

Compute the smallest automaton B equivalent to A

=xML Schema optimization

€@ Membership

Definition (Membership Problem)

Given an automaton A and a tree t, is t € Language(A)?

Membership

Automaton with Final(A) = g and rules
eSq q>a 929 aoar (9.9)>q
b 19,4, 9r}
b {9,9b,9r}
ll) {g,ab}
@
{g,q5} b b {g,95}
{q} : : {q}

Membership: Precise Complexity

It's definitely in PTIME

@ non-deterministic automaton: logCFL-complete

@ deterministic automaton: in logDCFL, precise complexity
unknown

© (non)-Emptiness

Definition (Non-Emptiness)

Given a tree automaton A, is Language(A) # 07

Non-Emptiness

()

/N 7N 7N /N

/N 77 N 77N /N

N— e N N

/N 77 N 77N /N

N— e N N

/N

/N

N—"

Non-Emptiness Algorithm

It's a kind of reachability algorithm

Non-Emptiness Algorithm

Input: Tree automaton A
Marked = 0;
repeat
if 3a%) calph(A), q1,...,qx € Marked: (qu,...,qx) > q then
add g to Marked,
end if
until No more state can be added to Marked
return Init(A) N Marked # 0

Non-Emptiness Algorithm: Complexity

Complexity: PTIME-complete

@ in PTIME: At most a quadratic number of iterations over
Rules(A)

@ PTIME-hard: reduction from Path Systems

Non-Emptiness: PTIME Lower Bound

Definition (Path Systems)
Given
@ a set of propositions {p1,...,pn};
@ a set of axioms {a1,...,ar} C{p1,...,pPn};
@ a set of rules (p;, pj) — px (pk is provable from p; and p;); and

@ a target proposition p,

is p provable from the axioms by using the rules?

Non-Emptiness: PTIME Lower Bound

Reduction from PATH SYSTEMS

Given instance

@ propositions {p1,...,pn}, axioms {a1,...,as} C{p1,-..,pn}
® (pi,pj) — Pk, and target proposition p,
of PATH SYSTEMS,

define automaton A such that
. i
o for each axiom a;: € — g5, € Rules(A);
a

o for each rule (p;, p;) — pr: (ap:,Gp;) — Gp, € Rules(A); and
e Final(A) ={q,}.

Hence, Language(A) # 0 iff

p provable from the axioms by using the rules

Non-Emptiness: Complexity Refined

Complexity Refined

@ in PTIME for non-deterministic tree automata
@ PTIME-hard for (bottom-up) deterministic tree automata

© Finiteness

Finiteness

Definition

Finiteness Given a tree automaton A, is Language(A) finite?

Observation

Language(A) is infinite if and only if there is a loop on a useful
state

useful state: state that appears in some accepting run

Finiteness

@ Step 1: find the useful states

@ Step 2: search for loops

State Reachability
@ A state g is reachable from g

@ If p is reachable from g, and there is a rule

(p17°°'7pn) ipa

then p1,...,p, are reachable from g

Finiteness

@ Step 1: find the useful states

@ Step 2: search for loops

For g € States(A), let A, be A with Final(A) = {q}

Finding useful states

@ Test, for each g, whether Language(A,) =0

o If Language(Ay) =0, remove g from A:

e remove g from States(A) and
o remove each rule from Rules(A) in which g occurs

@ For all remaining states, test whether they are reachable from
a state in Final(A)

@ Remove all non-reachable g from A

y

Finiteness

@ Step 1: find the useful states

@ Step 2: search for loops

Searching for Loops

For each pair of useful states p # g test whether
@ p is reachable from g and
@ g is reachable from p

(Or, alternatively, use a smarter cycle detection algorithm)

Finiteness

Finiteness: Complexity

e in PTIME
@ PTIME-hard for (bottom-up) deterministic tree automata

@ Universality

Universality

Definition (Universality)

Given automaton A, is

Language(A) the set of all ranked trees over Alphabet(A)?

Universality

Test whether the language of A's complement is empty

@ Determinize A (exponential time)

@ Complete and complement the result (poly time)

@ Test emptiness

y

Universality: Complexity

Universality: Complexity

e in EXPTIME
o EXPTIME-hard (reduction from 2-player corridor tiling)

Universality: EXPTIME lower bound

Reduction from 2-player corridor tiling

Corridor Tiling:

s 4 P PP

w X y Z

@ The bottom row of tiles: w

@ The top row of tiles:

Universality: EXPTIME lower bound

Reduction from 2-player corridor tiling

Corridor Tiling:

Can we make a correct corridor tiling?

Universality: EXPTIME lower bound

2-Player Corridor Tiling

@ CONSTRUCTOR: tries to build a corridor tiling
@ SPOILER: tries to prevent CONSTRUCTOR from doing so

Universality: EXPTIME lower bound
2-Player Corridor Tiling |

2-Player Corridor Tiling
Does CONSTRUCTOR have a winning strategy?

2
N
< <

/ \
e AN e AN

M M P K<

2-Player Corridor Tiling: the Reduction

How do we encode tilings?

Three sets of symbols:

@ leaves: #

e for each tile t: unary symbol a; (CONSTRUCTOR moves)
@ for each tile t: binary symbol b; (SPOILER moves)

So our trees look like

2-Player Corridor Tiling: the Reduction

...accept all trees iff no winning strategy exists \

Automaton A should accept if. ..

@ there is a symbol b; at odd depth;

@ there is a symbol a; at even depth;

@ the top n levels of the tree don't encode the start row;
)

there is a path on which the lowermost n nodes don't encode
the final row;

@ there is a path in which the number of tiles is not a multiple
of n;

@ there is a binary symbol in the middle of the tree with two
equally labeled children;

@ there is a horizontal mistake; or

@ there is a vertical mistake.

o

Universality: Complexity Revisited

Universality: Complexity Revisited
e in EXPTIME
@ EXPTIME-hard for non-deterministic tree automata

@ in PTIME for deterministic tree automata!

© Containment / Inclusion

Definition (Containment)

Given tree automata A and B, is Language(A) C Language(B)?

l.e., is Language(A) NLanguage(B) =07

Containment Complexity

o in EXPTIME
o EXPTIME-hard (from Universality)

@ Equivalence

Equivalence

Definition (Equivalence)

Given tree automata A and B, is Language(A) = Language(B)?

l.e., is
@ Language(A) C Language(B) and
@ Language(B) C Language(A)?

Equivalence Complexity

e in EXPTIME (from Containment)
o EXPTIME-hard (from Universality)

@ Intersection (non)-Emptimess

Intersection Non-Emptiness

Definition (Intersection Non-Emptiness)

Given tree automata Aj,...,A,, is [); Language(A;) # 07

@ Construct the product automaton A1N---NA,
(size: product of the sizes of A;)

@ Test non-emptiness of the product automaton

Intersection non-Emptiness: Complexity

e in EXPTIME
o EXPTIME-hard (from 2-player corridor tiling)

Intersection Non-Emptiness: EXPTIME Lower Bound

Tiling system S: construct Aq,...,A,2 such that

CONSTRUCTOR has a winning strategy iff AyN---NAp2#0

@ Automaton A;: accept all strategy trees
@ Automaton As: accept if all horizontal constraints satisfied

@ For each column i =1,...,n: Automaton A;,, accept if
vertical constraints satisfied in column

© Minimization

Minimization

Definition (Minimization)

Given tree automaton A and integer k,

is there an equivalent automaton B such that
B is smaller than k7

Minimization

Minimization in general : EXPTIME-complete
But interesting for deterministic automata

Minimization: Theory

Recall. ..

Theorem (Myhill-Nerode for Trees)

The following are equivalent:

(a) L is a regular tree language
(b) L is the union of some equivalence classes of finite index

(c) the relation =, is a congruence of finite index

Minimal automaton A for L follows from this classification: size of
A = number of equivalence classes of =;

Minimization Algorithm
Minimization Algorithm |

Minimization Algorithm

Input: Reduced deterministic automaton A
R = Ry = {Final(A), States(A) — Final(A)}
repeat

R=Ry

define p1 Rypo iff

® p1 =p p2 and
o Val") € Alphabet(A), Yqi,...,qi—1,Gi+1,...,qn € States(A)

r1 Rry, where

(->QI—17P17CII+17--->C7n)i”’l and
a

(di, 7qi—1,p27Qi—|—17-o-7qn)_>r2

until [=R

States(Amin) = equivalence classes of P
4(n)

Rules(Amin) = 1([g1],---,[9n]) = lq]}
Final(Amin) ={lq] | g € FlnaI(A)}
return A,

Minimization: Complexity

Complexity Analysis
@ Number of repeat-until-loops: linear

@ Cost of refining the equivalence relation: cubic

Refining equivalence relation

Define P1 Ropg iff

@ p1Rpy and
o Val") € Alphabet(A), Yqi,...,qi—1,Gi+1,...,qn € States(A)

n RI’Q, where

(q17"'7qi—17p17qi—|—17---;qn) i 5] and
(qu---7qi—17p27qi+17---7qn) i>)

Minimization: Complexity

Complexity Analysis
@ Number of repeat-until-loops: linear

@ Cost of refining the equivalence relation: cubic

Refining equivalence relation

Define —(p1 Ropz) iff

® —(p1Rp2) or
o Jal" € Alphabet(A), 3q1,...,Gi-1,Gi+1,...,qn € States(A)

—(r Rr2), where

(qla---;CIi—1,P1,Qi+1,---,qn) 2 1 and
(qu---yqi—17p27qi—|—17---,qn) i> r

Overview

Membership: PTIME

(non)-Emptiness: PTIME

Finiteness: PTIME

Universality: EXPTIME (PTIME for deterministic)

Containment / Inclusion: EXPTIME (PTIME for
deterministic)

Equivalence: EXPTIME (PTIME for deterministic)

Intersection (non)-Emptimess: EXPTIME (also for
deterministic)

Minimization: EXPTIME (PTIME for deterministic)

	Membership
	(non)-Emptiness
	Finiteness
	Universality
	Containment / Inclusion
	Equivalence
	Intersection (non)-Emptimess
	Minimization

