Automata and Logic on Trees

Monadic Second Order Logic on Trees

Wim Martens! Stijn Vansummeren?

LUniversity of Dortmund, Germany
?Hasselt University, Belgium

Our story so far

@ Tree automata
deterministic, bottum-up, top-down, constructions, ...

@ Decision problems for tree automata
Equivalence, universality, emptiness, intersection emptiness, ...,

Our story so far

@ Tree automata
deterministic, bottum-up, top-down, constructions, ...

@ Decision problems for tree automata
Equivalence, universality, emptiness, intersection emptiness, ...,

Automata and Logic on Trees
Where's the logic?

@ Trees as structures
© First Order Logic on Trees

© Monadic Second Order Logic over Trees

@ Trees as structures

Trees as structures

Recall that in mathematical logic

@ A relational vocabulary is a sequence of relation names (R,...,S)
with associated arities arity(R),...,arity(S).

@ A structure . over (R,...,S) is a tuple
(D,R”,...,57)

with D a finite set, and R” C D>®(R) &7 C parity($)

Trees as structures

A tree t over a ranked alphabet Y~ = {a,..., b} naturally corresponds
to a structure t over the vocabulary Vs = (E,<,L,,...,L})
Tree Structure

1
a o Dt={1,23,...}
2b/ \33 o E%(1,2),E%(1,3),
4 / \ 5 6 / \ 7 E£(2,4)7
? 7 #* # 2<t3 4 <t
AN AN ° 2<t3,4<t5
A S S o L,={1,3,4,10,15}
2 #
13 12 I o L,={2,12}
#
17 18 o ...

© First Order Logic on Trees

First Order Logic over Trees

FO over the vocabulary Vs = (E,<,L,,...,Lp):

¢ = x=y|E(xy)|[x<y|L(x)[-|Ls(y)
| ¢Ad[—9|3x0

with the usual abbreviations ¢ V@, ¢ — @, Vx¢, ...

All a-labeled nodes in t have a b-labeled child if, and only if,

t | x(La(x) = 3y(Ls(y) A E(x,y)))

First Order Logic over Trees

FO over the vocabulary Vs = (E,<,L,,...,Lp):

¢ = x=y|E(xy)|[x<y|L(x)[-|Ls(y)
| ¢Ad[—9|3x0

with the usual abbreviations ¢ V@, ¢ — @, Vx¢, ...

Notation and terminology

@ If ¢ is a sentence over Vs then

Language(¢) := {t | t a ranked tree over ¥ such that t = ¢}

@ A tree language S is FO-definable if there is some ¢ with
S = Language(9)

First Order Logic over Trees

Why consider logic on trees?

@ A formula describes a specification for a language

@ An automaton gives an algorithm for recognizing a language

"2 even Vx(La(x) — Jy(Lo(y) NE(x,y)))

3
a “even a odd

4/\5 6/

7
b even a odd b even b even

2

P # #““# P

€VEN even eveneven eveneven eveneven

First Order Logic over Trees

Question: is every regular tree language FO-definable?

(a) Yes (b) No (c) Only if P = NP

First Order Logic over Trees

The language L consisting of all trees with an even number of a-nodes is
not FO-definable

1
a _even

/\3

2
a “even a odd

s 7\ s o 7\

7
b even a odd b even b even

P # #“”# e

€Ven even eveneven eveneven eveneven

Intuitively, this is because FO cannot “count”
Formal argumentation trough Ehrenfeucht-Fraissé games

First Order Logic over Trees

The language L consisting of all trees with an even number of a-nodes is
not FO-definable

Proof sketch:

@ Fact: if ¢ is a first-order sentence with quantifier depth k
and the duplicator wins the Ehrenfeucht-Fraissé game of k
rounds on t and t’ then both t = ¢ and t' = ¢ or both

tpE¢ and t' = ¢
@ Then show that for every quantifier depth k you can find ¢t

and t' such that t € L, t/ & L, and the duplicator wins the
k-round Ehrenfeucht-Fraissé game on t and t’

© Monadic Second Order Logic over Trees

Monadic Second Order Logic

MSO is the extension of FO with set variables X:

¢ = x=ylEMxy)|x<y|Lax)| | Ls(y)
| AP0 [3x¢ | X(x)|3IX¢

with the usual abbreviations ¢ V@, ¢ — ¢, Vx¢, VX9, ...

Every a-labeled node in t has a b-labeled descendant if, and only if
tEVnLy(n) = 3IX(@AYAP)
where () ::X(n)/\Vme’(E(m7m/)/\X(m) —>X(m'))

v :=3Im(X(m) A Lp(m))
p =YY (¢(Y)—VYm(X(m)— Y(m)))

Monadic Second Order Logic

MSO is the extension of FO with set variables X:

¢ = x=ylEMxy)|x<y|Lax)| | Ls(y)
| AP0 [3x¢ | X(x)|3IX¢

with the usual abbreviations ¢ V@, ¢ — ¢, Vx¢, VX9, ...

Notation and terminology

@ If ¢ is an MSO sentence over Vs then

Language(¢) := {t | t a ranked tree over X such that t = ¢}

@ A tree language S is MSO-definable if there is some MSO formula ¢
with S = Language(9)

Monadic Second Order Logic

Exercise: construct an MSO formula ¢ that recognizes the set of
all trees with an even number of a’s J

1
a even

2 3
a “even a odd

PN 7N\

5 6 7
b even a odd b even p even

8/\910/\112/\314/\5
4w w # Ty £ 4

€VeNn even eveneven eveneven eveneven

Regularity implies MSO-definability

Theorem: Every ranked regular tree language is MSO-definable

For every tree automaton A there exists an MSO formula ¢ with
Language(A) = Language(¢).

Observation 1. If States(A) = {q1,...,qn} then every run of A on a tree

t can be represented by sets of nodes Q1,...,Q,
"a even EVEN := {1,2,4,6,7,...}
v = &=y Ty My By
2 / \3 ODD := {3,5}
a “even a odd

s 7\ s o 7\

7
b even a odd b even b even

' #”’# #“”# PR

€Ven even eveneven eveneven eveneven

Regularity implies MSO-definability

Theorem: Every ranked regular tree language is MSO-definable

For every tree automaton A there exists an MSO formula ¢ with
Language(A) = Language(¢).

Observation 2. We can define that Q,..., Q, represents an accepting
run in FO.

@ Every node is assigned at most one state:

¢ = QVX (Q,-(x) — —|Qj(x))

Regularity implies MSO-definability

Theorem: Every ranked regular tree language is MSO-definable

For every tree automaton A there exists an MSO formula ¢ with
Language(A) = Language(¢).

Observation 2. We can define that Q,..., Q, represents an accepting
run in FO.

@ The root node is assigned an accepting state:

b2:=x(<GYEG) » V@)

g;€Final(A)

Regularity implies MSO-definability

Theorem: Every ranked regular tree language is MSO-definable

For every tree automaton A there exists an MSO formula ¢ with
Language(A) = Language(¢).

Observation 2. We can define that Q,..., Q, represents an accepting
run in FO.

@ Leaf nodes are assigned a state in accordance with Rules(A):

@3 = /\ Vx (La(x) — \/ Q;(X))

acAlphabet(A) £-3g;cRules(A)
rank(a)=0

Regularity implies MSO-definability

Theorem: Every ranked regular tree language is MSO-definable

For every tree automaton A there exists an MSO formula ¢ with
Language(A) = Language(¢).

Observation 2. We can define that Q,..., Q, represents an accepting
run in FO.

@ Internal nodes are assigned a state in accordance with Rules(A):

Oy 1= /\ VxVy1...Vy,
acAlphabet(A)
rank(a)=n
(LH(X) N E(val)/\”'/\ E(X7yn)/\y1 <Yya2A-Ayn-1 <)/n)
- V (@ (Y1) A+ A Qi (vn) A Qi)

(i -+)i €Rules(A)

Regularity implies MSO-definability

Theorem: Every ranked regular tree language is MSO-definable

For every tree automaton A there exists an MSO formula ¢ with
Language(A) = Language(¢).

Observation 3. We can guess @y, ...,Q, in MSO:

0 =3Q1...3Qn L AP AP3 NP4

Clearly, Language(A) = Language(9).
Hence, every ranked regular tree language is MSO-definable J

First Order Logic over Trees

Question: is every MSO-definable tree language regular?

(a) Yes (c) Only if P = NP
(b) No (d) Who cares?

Does MSO-definability imply regularity?

Question: Is Language(¢) regular for every MSO sentence ¢? J

Observation 1: ¢ is equivalently expressed by a formula
v = XCY[Sing(X)|E(X.Y)| X< Y[XCL| | XCL
| vAy oy |3Xe
where
@ the X's range over sets of nodes
@ Sing(X) indicates that X is a singleton

@ E(X,Y) indicates that X and Y are singletons {x} and {y} with x
a parent of y

@ X < Y indicates that X and Y are singletons {x} and {y} with x a
left sibling of y

@ X C L, indicates that all nodes in X are labeled a

Does MSO-definability imply regularity?

Question: Is Language(¢) regular for every MSO sentence ¢? J

Observation 1: ¢ is equivalently expressed by a formula

v o= XCVY|[Sing(X)|EX,Y)|X<Y|XCL|--|XCLy
| wAy |-y |3X¢

t = Vx(La(x) = Jy(E(x,y) A Ls(y)))
if and only if

t = VX ((Sing(X)AX C La) = Y E(X,Y)AY C Lp)

Does MSO-definability imply regularity?

Question: Is Language(¢) regular for every MSO sentence ¢? J

Observation 1: ¢ is equivalently expressed by a formula

v o= XCVY|[Sing(X)|EX,Y)|X<Y|XCL|--|XCLy
| wAy |-y |3X¢

t = Vx(La(x) = Jy(E(x,y) A Ls(y)))
if and only if

t = VX ((Sing(X)AX C La) = Y E(X,Y)AY C Lp)

Denote this logic by MSOq

Does MSO-definability imply regularity?

New question: Is Language(y) regular for every MSOy sentence y?)

Observation 2: We can view a formula y(X,...,X,) as defining a tree
language over the extended alphabet X x {0,1}"

1 1
a (a,1,1)

) / \3) / \ 5
a a (2.0,1) (2.0,0)
‘) /N I) VRN) . 7N s N\ 5
(b.1,0) (a.0,1) (b.1,0) (b.1,0)
9 10 1 12 13 14 s/ No 10/ N1 o1/ Nzouw/ Ny
(#:0.0) (#:0.0) (H.1.0) (4:0.0) (4.0.0) (4:0.0) (#.0.0) (#:0.0)

V1 = {1,4710} VQ = {172,5}

Tree t + two sets of nodes V4 and V) Single tree t[V4, V5] over ¥ x {0,1}2

Does MSO-definability imply regularity?

New question: Is Language(y) regular for every MSOy sentence y?)

Observation 2: We can view a formula y(X,...,X,) as defining a tree
language over the extended alphabet X x {0,1}"

@ For a formula w(X,...,X,), define
Language(y; Xq,...,X,) = {t[V4,.... Vo] | t E w(V4,...,Vi)}

@ In particular, when y is a sentence we have

Language(y;) = Language(y).

Does MSO-definability imply regularity?

New question: Is Language(y; Xi,...,X,) regular for every MSOq formula l[I?J

Answer: Yes, by induction on y:

@ Case y = X; C X.

Exercise: construct the automaton for Language(X; C Xj; X,...,X,). It
can be done using only two states.

Does MSO-definability imply regularity?

New question: Is Language(y; Xi,...,X,) regular for every MSOq formula l[I?J

Answer: Yes, by induction on y:

@ Case y = X; C X.

Construct Ay with States(Ay) = {ok, notok}, Final(Ay) = {ok}, and
rules of the form

(ok, .., 0k) (2,b1bn) notok when b; =1 but b; =0
ok otherwise
(...,notok,...) (a’bl’;;’b") notok

@ Case y = X; C Lg is similar.

Does MSO-definability imply regularity?

New question: Is Language(y; Xi,...,X,) regular for every MSOq formula l[I?J

Answer: Yes, by induction on y:

@ Case y = Sing(X;).

Construct Ay with States(Ay) = {0,1,many}, Final(Ay) = {1}, and rules

of the form

(qlv"'aqk)

(a’b]L)"bn)

many

when every gy =0 and b; =0

when every gy =0 and b; =1

when exactly one g =1 and b; =0
otherwise

Does MSO-definability imply regularity?

New question: Is Language(y; Xi,...,X,) regular for every MSOq formula l[I?J

Answer: Yes, by induction on y:

@ Case y = E(X;,X;). Construct A with States(A) = {0,1} x {ok, notok},

Final(A) = {0,1} x {ok}, and rules of the form

€ (2:61,.-n) (bj, notok)
(bj,0k) if bj =1 and some q; =(1,-)
b1 4eesbn .
(g1,---,9k) (@ ke) (bj,0k) if some g, = (+,0k)

(bj,notok) otherwise
Then Language(Sing(X;)) NLanguage(Sing(X;)) N Language(A) equals

Language(y; Xi,...,X,). The former is regular since regular languages
are closed under intersection.

Does MSO-definability imply regularity?

New question: Is Language(y; Xi,...,X,) regular for every MSOq formula l[I?J

Answer: Yes, by induction on y:

o Case y = X; < X;.

Construct A with States(A) = {0,1}? x {ok,notok},
Final(A) = {0,1}2 x {ok}, and rules of the form

(bi, bj,0k) if some ¢, =(1,-,")
(a,b1,-.-,bn) and ¢i11=(+,1,")
Jeens = .
(@) (bj, bj,ok) if some g, = (+,-,0k)

(bi, bj,notok) otherwise

Then Language(Sing(X;)) N Language(Sing(X;)) NLanguage(A) equals
Language(y; X1,...,X,). The former is regular since regular languages
are closed under intersection.

Does MSO-definability imply regularity?

New question: Is Language(y; Xi,...,X,) regular for every MSOq formula l[I?J

Answer: Yes, by induction on y:

@ Case Y = y; A ys.
Construct A; for y; and Ap for y,. Clearly,

Language(A;) NLanguage(Az) = Language(yi A ya; X, ..., X,).

The former is regular since regular languages are closed under
intersection.

Does MSO-definability imply regularity?

New question: Is Language(y; Xi,...,X,) regular for every MSOq formula l[I?J

Answer: Yes, by induction on y:

@ Case y = y;.

Language(y; Xi,...,X,) is the complement of Language(yq; Xi,...,X,).

Does MSO-definability imply regularity?

New question: Is Language(y; Xi,...,X,) regular for every MSOq formula l[I?J

Answer: Yes, by induction on y:

@ Case y=3Y y;.

Adapt automaton A for Language(ys; Y, X1,...,X,) by replacing every

(a,b,bg..,bn)

(Q17---7Qk) by (qla"'aqk) —

Observe that this makes A non-deterministic

MSO-definability implies regularity!

Theorem in conclusion

Every MSO-definable ranked regular tree language is regular. That is, for
every MSO sentence ¢ there exists a tree automaton A with

Language(A) = Language(9).

Observe that A can effectively be computed given ¢! J

Question: the automaton Ay we construct for ¢ is

(a) as big as ¢ (c) bigger than King Kong
(b) smaller than ¢ (d) a character of Star Trek

Question: the automaton Ay we construct for ¢ is

(a) as big as ¢ (c) bigger than King Kong
(b) smaller than ¢ (d) a character of Star Trek

Answer: a lot bigger than King Kong!

Stockmeyer and Meyer [1973]: For every n there exists
MSQp formula v = 3X;-3Y13Xo—-3Y,>...3X,-3Y, v/

with Y’ quantifier free, such that for every A recognizing the same
language as ¥ we have:

”.2size(y/)
size(A) > 22 } n times

An MSO Normal Form

By inspection of our construction:

o — A — 3Q,...,3Q.¢

with ¢’ first order.

Immediate corollary

Every MSO formula ¢ is equivalent to a formula 3Q1,...,3Q,¢" with ¢’
first order.

	Trees as structures
	First Order Logic on Trees
	Monadic Second Order Logic over Trees

