
Automata and Logic on Trees
Monadic Second Order Logic on Trees

Wim Martens1 Stijn Vansummeren2

1University of Dortmund, Germany
2Hasselt University, Belgium

Our story so far

Tree automata
deterministic, bottum-up, top-down, constructions, . . .

Decision problems for tree automata
Equivalence, universality, emptiness, intersection emptiness, . . . ,

Automata and Logic on Trees
Where’s the logic?

Our story so far

Tree automata
deterministic, bottum-up, top-down, constructions, . . .

Decision problems for tree automata
Equivalence, universality, emptiness, intersection emptiness, . . . ,

Automata and Logic on Trees
Where’s the logic?

Outline

1 Trees as structures

2 First Order Logic on Trees

3 Monadic Second Order Logic over Trees

Outline

1 Trees as structures

2 First Order Logic on Trees

3 Monadic Second Order Logic over Trees

Trees as structures

Recall that in mathematical logic

A relational vocabulary is a sequence of relation names (R, . . . ,S)
with associated arities arity(R), . . . ,arity(S).

A structure S over (R, . . . ,S) is a tuple

(D,RS , . . . ,SS)

with D a finite set, and RS ⊆ Darity(R), . . . ,SS ⊆ Darity(S)

Trees as structures

A tree t over a ranked alphabet Σ = {a, . . . ,b} naturally corresponds
to a structure t over the vocabulary VΣ = (E ,<,La, . . . ,Lb)

Example

Tree Structure

a

b

a

#
8

#
9

4
c

a

#
13

#
14

10
#
11

b

a

#
17

#
18

15
#

16

12

5

2
a

#
6

#
7

3

1
Dt = {1,2,3, . . .}

E t(1,2),E t(1,3),
E t(2,4), . . .

2 <t 3,4 <t 5, . . .

La = {1,3,4,10,15}

Lb = {2,12}

. . .

Outline

1 Trees as structures

2 First Order Logic on Trees

3 Monadic Second Order Logic over Trees

First Order Logic over Trees

FO over the vocabulary VΣ = (E ,<,La, . . . ,Lb):

φ ::= x = y | E (x ,y) | x < y | La(x) | · · · | Lb(y)
| φ ∧φ | ¬φ | ∃x φ

with the usual abbreviations φ ∨φ , φ → φ , ∀x φ , . . .

Example

All a-labeled nodes in t have a b-labeled child if, and only if,

t |= ∀x(La(x)→∃y(Lb(y)∧E (x ,y)))

First Order Logic over Trees

FO over the vocabulary VΣ = (E ,<,La, . . . ,Lb):

φ ::= x = y | E (x ,y) | x < y | La(x) | · · · | Lb(y)
| φ ∧φ | ¬φ | ∃x φ

with the usual abbreviations φ ∨φ , φ → φ , ∀x φ , . . .

Notation and terminology

If φ is a sentence over VΣ then

Language(φ) := {t | t a ranked tree over Σ such that t |= φ}

A tree language S is FO-definable if there is some φ with
S = Language(φ)

First Order Logic over Trees

Why consider logic on trees?

A formula describes a specification for a language

An automaton gives an algorithm for recognizing a language

a

a

b

#
even

8
#

even

9

even
4

a

#
even

10
#

even

11

odd
5

even
2

a

b

#
even

12
#

even

13

even
6

b

#
even

14
#

even

15

even
7

odd
3

even
1 ∀x(La(x)→∃y(Lb(y)∧E (x ,y)))

First Order Logic over Trees

Question: is every regular tree language FO-definable?

(a) Yes (b) No (c) Only if P = NP

First Order Logic over Trees

Theorem

The language L consisting of all trees with an even number of a-nodes is
not FO-definable

a

a

b

#
even

8
#

even

9

even
4

a

#
even

10
#

even

11

odd
5

even
2

a

b

#
even

12
#

even

13

even
6

b

#
even

14
#

even

15

even
7

odd
3

even
1

Intuitively, this is because FO cannot “count”
Formal argumentation trough Ehrenfeucht-Fräıssé games

First Order Logic over Trees

Theorem

The language L consisting of all trees with an even number of a-nodes is
not FO-definable

Proof sketch:

Fact: if φ is a first-order sentence with quantifier depth k
and the duplicator wins the Ehrenfeucht-Fräıssé game of k
rounds on t and t ′ then both t |= φ and t ′ |= φ or both
t 6|= φ and t ′ 6|= φ

Then show that for every quantifier depth k you can find t
and t ′ such that t ∈ L, t ′ 6∈ L, and the duplicator wins the
k-round Ehrenfeucht-Fräıssé game on t and t ′

Outline

1 Trees as structures

2 First Order Logic on Trees

3 Monadic Second Order Logic over Trees

Monadic Second Order Logic

MSO is the extension of FO with set variables X :

φ ::= x = y | E (x ,y) | x < y | La(x) | · · · | Lb(y)
| φ ∧φ | ¬φ | ∃x φ | X (x) | ∃X φ

with the usual abbreviations φ ∨φ , φ → φ , ∀x φ , ∀X φ , . . .

Example

Every a-labeled node in t has a b-labeled descendant if, and only if

t |= ∀nLa(n)→∃X (φ ∧ψ ∧ρ)

where φ := X (n)∧∀m∀m′
(
E (m,m′)∧X (m)→ X (m′)

)
ψ := ∃m (X (m)∧Lb(m))

ρ := ∀Y
(
φ(Y)→∀m(X (m)→ Y (m))

)

Monadic Second Order Logic

MSO is the extension of FO with set variables X :

φ ::= x = y | E (x ,y) | x < y | La(x) | · · · | Lb(y)
| φ ∧φ | ¬φ | ∃x φ | X (x) | ∃X φ

with the usual abbreviations φ ∨φ , φ → φ , ∀x φ , ∀X φ , . . .

Notation and terminology

If φ is an MSO sentence over VΣ then

Language(φ) := {t | t a ranked tree over Σ such that t |= φ}

A tree language S is MSO-definable if there is some MSO formula φ

with S = Language(φ)

Monadic Second Order Logic

Exercise: construct an MSO formula φ that recognizes the set of
all trees with an even number of a’s

a

a

b

#
even

8
#

even

9

even
4

a

#
even

10
#

even

11

odd
5

even
2

a

b

#
even

12
#

even

13

even
6

b

#
even

14
#

even

15

even
7

odd
3

even
1

Regularity implies MSO-definability

Theorem: Every ranked regular tree language is MSO-definable

For every tree automaton A there exists an MSO formula φ with
Language(A) = Language(φ).

Observation 1. If States(A) = {q1, . . . ,qn} then every run of A on a tree
t can be represented by sets of nodes Q1, . . . ,Qn

a

a

b

#
even

8
#

even

9

even
4

a

#
even

10
#

even

11

odd
5

even
2

a

b

#
even

12
#

even

13

even
6

b

#
even

14
#

even

15

even
7

odd
3

even
1

EVEN := {1,2,4,6,7, . . .}
ODD := {3,5}

Regularity implies MSO-definability

Theorem: Every ranked regular tree language is MSO-definable

For every tree automaton A there exists an MSO formula φ with
Language(A) = Language(φ).

Observation 2. We can define that Q1, . . . ,Qn represents an accepting
run in FO.

Every node is assigned at most one state:

φ1 :=
∧
i 6=j

∀x
(
Qi (x)→¬Qj(x)

)

Regularity implies MSO-definability

Theorem: Every ranked regular tree language is MSO-definable

For every tree automaton A there exists an MSO formula φ with
Language(A) = Language(φ).

Observation 2. We can define that Q1, . . . ,Qn represents an accepting
run in FO.

The root node is assigned an accepting state:

φ2 := ∀x
(
¬(∃y E (y ,x))→

∨
qi∈Final(A)

Qi (x)
)

Regularity implies MSO-definability

Theorem: Every ranked regular tree language is MSO-definable

For every tree automaton A there exists an MSO formula φ with
Language(A) = Language(φ).

Observation 2. We can define that Q1, . . . ,Qn represents an accepting
run in FO.

Leaf nodes are assigned a state in accordance with Rules(A):

φ3 :=
∧

a∈Alphabet(A)
rank(a)=0

∀x
(
La(x)→

∨
ε

a→qi∈Rules(A)

Qi (x)
)

Regularity implies MSO-definability

Theorem: Every ranked regular tree language is MSO-definable

For every tree automaton A there exists an MSO formula φ with
Language(A) = Language(φ).

Observation 2. We can define that Q1, . . . ,Qn represents an accepting
run in FO.

Internal nodes are assigned a state in accordance with Rules(A):

φ4 :=
∧

a∈Alphabet(A)
rank(a)=n

∀x ∀y1 . . .∀yn

(
La(x)∧E (x ,y1)∧·· ·∧E (x ,yn)∧y1 < y2∧·· ·∧yn−1 < yn

)
→

∨
(qi1 ,...,qin)

a→qi∈Rules(A)

(Qi1 (y1)∧·· ·∧Qin(yn)∧Qi (x))

Regularity implies MSO-definability

Theorem: Every ranked regular tree language is MSO-definable

For every tree automaton A there exists an MSO formula φ with
Language(A) = Language(φ).

Observation 3. We can guess Q1, . . . ,Qn in MSO:

φ := ∃Q1 . . .∃Qn φ1∧φ2∧φ3∧φ4

Clearly, Language(A) = Language(φ).
Hence, every ranked regular tree language is MSO-definable

First Order Logic over Trees

Question: is every MSO-definable tree language regular?

(a) Yes (c) Only if P = NP
(b) No (d) Who cares?

Does MSO-definability imply regularity?

Question: Is Language(φ) regular for every MSO sentence φ?

Observation 1: φ is equivalently expressed by a formula

ψ := X ⊆ Y | Sing(X) | E (X ,Y) | X < Y | X ⊆ La | · · · | X ⊆ Lb
| ψ ∧ψ | ¬ψ | ∃X φ

where

the X ’s range over sets of nodes

Sing(X) indicates that X is a singleton

E (X ,Y) indicates that X and Y are singletons {x} and {y} with x
a parent of y

X < Y indicates that X and Y are singletons {x} and {y} with x a
left sibling of y

X ⊆ La indicates that all nodes in X are labeled a

Does MSO-definability imply regularity?

Question: Is Language(φ) regular for every MSO sentence φ?

Observation 1: φ is equivalently expressed by a formula

ψ := X ⊆ Y | Sing(X) | E (X ,Y) | X < Y | X ⊆ La | · · · | X ⊆ Lb
| ψ ∧ψ | ¬ψ | ∃X φ

Example

t |= ∀x(La(x)→∃y(E (x ,y)∧Lb(y)))

if and only if

t |= ∀X ((Sing(X)∧X ⊆ LA)→∃Y E (X ,Y)∧Y ⊆ Lb)

Does MSO-definability imply regularity?

Question: Is Language(φ) regular for every MSO sentence φ?

Observation 1: φ is equivalently expressed by a formula

ψ := X ⊆ Y | Sing(X) | E (X ,Y) | X < Y | X ⊆ La | · · · | X ⊆ Lb
| ψ ∧ψ | ¬ψ | ∃X φ

Example

t |= ∀x(La(x)→∃y(E (x ,y)∧Lb(y)))

if and only if

t |= ∀X ((Sing(X)∧X ⊆ LA)→∃Y E (X ,Y)∧Y ⊆ Lb)

Notation

Denote this logic by MSO0

Does MSO-definability imply regularity?

New question: Is Language(ψ) regular for every MSO0 sentence ψ?

Observation 2: We can view a formula ψ(X1, . . . ,Xn) as defining a tree
language over the extended alphabet Σ×{0,1}n

a

a

b

#
8

#
9

4
a

#
10

#
11

5

2
a

b

#
12

#
13

6

b

#
14

#
15

7

3

1

V1 := {1,4,10} V2 := {1,2,5}

Tree t + two sets of nodes V1 and V2

(a,1,1)

(a,0,1)

(b,1,0)

(#,0,0)
8

(#,0,0)
9

4
(a,0,1)

(#,1,0)
10

(#,0,0)
11

5

2
(a,0,0)

(b,1,0)

(#,0,0)
12

(#,0,0)
13

6
(b,1,0)

(#,0,0)
14

(#,0,0)
15

7

3

1

Single tree t[V1,V2] over Σ×{0,1}2

Does MSO-definability imply regularity?

New question: Is Language(ψ) regular for every MSO0 sentence ψ?

Observation 2: We can view a formula ψ(X1, . . . ,Xn) as defining a tree
language over the extended alphabet Σ×{0,1}n

Definition

For a formula ψ(X1, . . . ,Xn), define

Language(ψ;X1, . . . ,Xn) := {t[V1, . . . ,Vn] | t |= ψ(V1, . . . ,Vn)}

In particular, when ψ is a sentence we have

Language(ψ;) = Language(ψ).

Does MSO-definability imply regularity?

New question: Is Language(ψ;X1, . . . ,Xn) regular for every MSO0 formula ψ?

Answer: Yes, by induction on ψ:

Case ψ = Xi ⊆ Xj .

Exercise: construct the automaton for Language(Xi ⊆ Xj ;X1, . . . ,Xn). It
can be done using only two states.

Does MSO-definability imply regularity?

New question: Is Language(ψ;X1, . . . ,Xn) regular for every MSO0 formula ψ?

Answer: Yes, by induction on ψ:

Case ψ = Xi ⊆ Xj .

Construct Aψ with States(Aψ) = {ok,notok}, Final(Aψ) = {ok}, and
rules of the form

(ok, . . . ,ok)
(a,b1,...,bn)→

{
notok when bi = 1 but bj = 0

ok otherwise

(. . . ,notok, . . .)
(a,b1,...,bn)→ notok

Case ψ = Xi ⊆ Lσ is similar.

Does MSO-definability imply regularity?

New question: Is Language(ψ;X1, . . . ,Xn) regular for every MSO0 formula ψ?

Answer: Yes, by induction on ψ:

Case ψ = Sing(Xi).

Construct Aψ with States(Aψ) = {0,1,many}, Final(Aψ) = {1}, and rules
of the form

(q1, . . . ,qk)
(a,b1,...,bn)→


0 when every ql = 0 and bi = 0

1 when every ql = 0 and bi = 1

1 when exactly one ql = 1 and bi = 0

many otherwise

Does MSO-definability imply regularity?

New question: Is Language(ψ;X1, . . . ,Xn) regular for every MSO0 formula ψ?

Answer: Yes, by induction on ψ:

Case ψ = E (Xi ,Xj). Construct A with States(A) = {0,1}×{ok,notok},

Final(A) = {0,1}×{ok}, and rules of the form

ε
(a,b1,...,bn)→ (bj ,notok)

(q1, . . . ,qk)
(a,b1,...,bn)→


(bj ,ok) if bi = 1 and some ql = (1, ·)
(bj ,ok) if some ql = (·,ok)

(bj ,notok) otherwise

Then Language(Sing(Xi))∩Language(Sing(Xj))∩Language(A) equals
Language(ψ;X1, . . . ,Xn). The former is regular since regular languages
are closed under intersection.

Does MSO-definability imply regularity?

New question: Is Language(ψ;X1, . . . ,Xn) regular for every MSO0 formula ψ?

Answer: Yes, by induction on ψ:

Case ψ = Xi < Xj .

Construct A with States(A) = {0,1}2×{ok,notok},
Final(A) = {0,1}2×{ok}, and rules of the form

(q1, . . . ,qk)
(a,b1,...,bn)→


(bi ,bj ,ok) if some ql = (1, ·, ·)

and ql+1 = (·,1, ·)
(bi ,bj ,ok) if some ql = (·, ·,ok)

(bi ,bj ,notok) otherwise

Then Language(Sing(Xi))∩Language(Sing(Xj))∩Language(A) equals
Language(ψ;X1, . . . ,Xn). The former is regular since regular languages
are closed under intersection.

Does MSO-definability imply regularity?

New question: Is Language(ψ;X1, . . . ,Xn) regular for every MSO0 formula ψ?

Answer: Yes, by induction on ψ:

Case ψ = ψ1∧ψ2.

Construct A1 for ψ1 and A2 for ψ2. Clearly,

Language(A1)∩Language(A2) = Language(ψ1∧ψ2;X1, . . . ,Xn).

The former is regular since regular languages are closed under
intersection.

Does MSO-definability imply regularity?

New question: Is Language(ψ;X1, . . . ,Xn) regular for every MSO0 formula ψ?

Answer: Yes, by induction on ψ:

Case ψ = ¬ψ1.

Language(ψ;X1, . . . ,Xn) is the complement of Language(ψ1;X1, . . . ,Xn).

Does MSO-definability imply regularity?

New question: Is Language(ψ;X1, . . . ,Xn) regular for every MSO0 formula ψ?

Answer: Yes, by induction on ψ:

Case ψ = ∃Y ψ1.

Adapt automaton A for Language(ψ1;Y ,X1, . . . ,Xn) by replacing every

(q1, . . . ,qk)
(a,b,b1,...,bn)→ q by (q1, . . . ,qk)

(a,b1,...,bn)→ q

Observe that this makes A non-deterministic

MSO-definability implies regularity!

Theorem in conclusion

Every MSO-definable ranked regular tree language is regular. That is, for
every MSO sentence φ there exists a tree automaton A with

Language(A) = Language(φ).

Observe that A can effectively be computed given φ !

Size?

Question: the automaton Aφ we construct for φ is

(a) as big as φ (c) bigger than King Kong
(b) smaller than φ (d) a character of Star Trek

Size?

Question: the automaton Aφ we construct for φ is

(a) as big as φ (c) bigger than King Kong
(b) smaller than φ (d) a character of Star Trek

Answer: a lot bigger than King Kong!

Stockmeyer and Meyer [1973]: For every n there exists

MSO0 formula ψ = ∃X1¬∃Y1∃X2¬∃Y2 . . .∃Xn¬∃Ynψ
′

with ψ ′ quantifier free, such that for every A recognizing the same
language as ψ we have:

size(A)≥ 22...
2size(ψ)

}
n times

An MSO Normal Form

By inspection of our construction:

φ → A → ∃Q1, . . . ,∃Qnφ
′

with φ ′ first order.

Immediate corollary

Every MSO formula φ is equivalent to a formula ∃Q1, . . . ,∃Qnφ ′ with φ ′

first order.

	Trees as structures
	First Order Logic on Trees
	Monadic Second Order Logic over Trees

