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Our story so far

Tree automata
deterministic, bottum-up, top-down, constructions, . . .
ranked and unranked

Decision problems for tree automata
Equivalence, universality, emptiness, intersection emptiness, . . . ,

MSO on trees
equivalent to tree automata

Nice theory, what’s the killer application?
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And the winner is: XML!

XML is the lingua franca of data on the Web

Consider this:

<Scientist>
<Name>Alan Turing</Name>
<Bio>

<Born> <When> June 23, 1912 </When> <Where> London </Where> </Born>
<Died> <When> June 7, 1954 </When> <Where> Wilmslow </Where> </Died>

</Bio>
<Article>

<Title> Computability and lambda-Definability </Title>
<Journal> J. Of Symbolic Logic </Journal>
<Year> 1937 </Year>
. . .

</Article>
. . .

</Scientist>
. . .
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A natural correspondence

Trees reflect the hierarchical structure of XML

The data model underlying XML is tree-based
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XML Processing

Important kinds of XML processing

Validation

→ DTD, XML Schema

Check whether an XML document is of given type

Querying

→ XPath, XQuery

Extract information from an XML document

Transformation

→ XSLT, XDuce, CDuce

Construct a new XML document from a given one
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Document Type Definitions (DTDs)

Example document

<Scientist>
<Name>Alan Turing</Name>
<Bio>

<Born> <When> June 23, 1912 </When> <Where> London </Where> </Born>
<Died> <When> June 7, 1954 </When> <Where> Wilmslow </Where> </Died>

</Bio>
<Article>

<Title> Computability and lambda-Definability </Title>
<Journal> J. Of Symbolic Logic </Journal>
<Year> 1937 </Year>
. . .

</Article>
. . .

</Scientist>

Example DTD

<!DOCTYPE Scientist [
<!ELEMENT Scientist (Name, Bio, Article*)>
<!ELEMENT Bio (Born, Died?)>
<!ELEMENT Born (When, Where)>
<!ELEMENT Died (When, Where)>
<!ELEMENT Article (Title, Journal, Year)>

]>

DTDs describe types of XML documents



Document Type Definitions (DTDs)

Scientist

Name

Alan Turing

Bio

Born

When

23-6-1912

Where

London

Died

When

7-6-1954

Where

Wilmslow

Article

Title

Computability . . .

Journal

Symbolic Logic

Year

1937

Example DTD

<!DOCTYPE Scientist [
<!ELEMENT Scientist (Name, Bio, Article*)>
<!ELEMENT Bio (Born, Died?)>
<!ELEMENT Born (When, Where)>
<!ELEMENT Died (When, Where)>
<!ELEMENT Article (Title, Journal, Year)>

]>

Validation algorithm:

For each node: check that the children are ok w.r.t. parent’s rule

But ignore data values (Alan Turing, 23-6-1912, . . . )



Hmmm . . . that looks familiar!

Corresponding Tree Automaton

Alphabet(A) = {Scientist,Name,Bio, . . . ,When,Where}
States(A) = {Scientist,Name,Bio, . . . ,When,Where}
Final(A) = {Scientist}

Name, Bio, Article*
Scientist−−−−−→ Scientist

. . .

Example DTD

<!DOCTYPE Scientist [
<!ELEMENT Scientist (Name, Bio, Article*)>
<!ELEMENT Bio (Born, Died?)>
<!ELEMENT Born (When, Where)>
<!ELEMENT Died (When, Where)>
<!ELEMENT Article (Title, Journal, Year)>

]>



Actually . . .

Fact

The XML standard requires all regular expressions occurring in a DTD to be
deterministic

Example

Intuitively, an expression is deterministic if it is always determined which
expression symbol will match the next input symbol of an input string

Not deterministic: a(bc +bb)

Deterministic: ab(c +b)

Not all regular expressions can be written as deterministic regular expressions
[Brüggemann-Klein,Wood 1998]



Actually . . .

Fact

Deterministic regular expressions can be translated into deterministic string
automata in linear time

Immediate corollary

Every DTD can be translated into an equivalent stepwise deterministic
unranked tree automaton in linear time

Such an automaton gives a validation algorithm!

Moreover, since containment of deterministic TA is in ptime, we can also
check that every XML document valid w.r.t a DTD D1 is also valid w.r.t.
a DTD D2 (useful in schema evolution, data exchange,. . . ).



Expressive power?

Can DTDs specify all regular tree languages?

(a) No, because they can be translated in dop-down deterministic
unranked tree automata

(b) No, because they cannot define the boolean circuits that
evaluate to true

(c) No, because the labels are the same as the states

(d) Yes, but you have to extend them a little



DTD’s are quite limited

Observation: There is only one rule for every label in a DTD D

Hence if a ∈D and a ∈D then a ∈D

We can use this to show that a tree language is not expressible as a DTD



DTD’s are quite limited

Example: there is no DTD recognizing only

Dealer

UsedCars

ad

model year

. . . ad

model year

NewCars

ad

model

. . . ad

model

Obviously incorrect:

<!DOCTYPE Dealer [
<!ELEMENT Dealer (UsedCars, NewCars)>
<!ELEMENT UsedCars (ad*)>
<!ELEMENT NewCars (ad*)>
<!ELEMENT ad ((model, year) + model)>

]>



XML Schema to the rescue

Example: there is an XML Schema recognizing only

Dealer

UsedCars

ad

model year

. . . ad

model year

NewCars

ad

model

. . . ad

model

XML Schema (using abstract syntax):

Dealer 7→ (UsedCars, NewCars)
UsedCars 7→ (ad1*)
NewCars 7→ (ad2*)
ad1 7→ (model, year)
ad2 7→ (model)



Hmm . . . this looks familiar

Corresponding Tree Automaton

Alphabet(A) = {Dealer,UsedCars,Newcars,ad,model,year}
States(A) = {Dealer,UsedCars,Newcars,ad1,ad2,model,year}

UsedCars, NewCars
Dealer−−−−→Dealer

ad1∗ UsedCars−−−−−→ UsedCars

model,year
ad−→ ad1

model
ad−→ ad2

. . .

XML Schema (using abstract syntax):

Dealer 7→ (UsedCars, NewCars)
UsedCars 7→ (ad1*)
NewCars 7→ (ad2*)
ad1 7→ (model, year)
ad2 7→ (model)



Actually . . .

Fact

The XML Schema standard forbids rules like

FunkyCars 7→ (ad1∗,sec,ad2∗)

in which the same label occurs with two different types

When ignoring types, the regular expressions must again be
deterministic



And again things transfer nicely

Facts:

Every XML Schema can be translated into an equivalent
deterministic unranked tree automaton in linear time

Such an automaton gives a validation algorithm!

Moreover, since containment of deterministic TA is in ptime, we
can also check that every XML document valid w.r.t an XML
Schema D1 is also valid w.r.t. an XML Schema D2 (useful in
schema evolution, data exchange,. . . ).

Moreover, we can minimize XML Schema’s in ptime



Expressive power?

Can XML Schema’s specify all regular tree languages?

(a) No, because they can be translated in dop-down deterministic
unranked tree automata

(b) No, because they cannot define the boolean circuits that
evaluate to true

(c) Yes, but you have to extend them a little



XML Schema’s are also limited

Observation: Since rules like

FunkyCars 7→ (ad1∗,sec,ad2∗)

are forbidden, the “type” of a node is determined by the string of labels
encountered on the path from the root to that node.

Hence if a ∈ S and a ∈ S then a ∈ S

We can use this to show that a tree language is not definable in XML Schema



XML Schema’s are also limited

Exercise: Show that boolean circuit evaluation is hence not definable by
an XML Schema

Fact

By allowing rules like

FunkyCars 7→ (ad1∗,sec,ad2∗)

in which the same label occurs with two different types and by allowing
all regular expressions we reach the full regular languages



XML Schema’s are also limited

Exercise: Show that boolean circuit evaluation is hence not definable by
an XML Schema

Fact

By allowing rules like

FunkyCars 7→ (ad1∗,sec,ad2∗)

in which the same label occurs with two different types and by allowing
all regular expressions we reach the full regular languages



In summary

Tree automata

Form a general framework for schema languages

Provide an execution environment for linear time validation

Also serve as a basis for restricted classes with better algorithmic
properties w.r.t. static analysis



Outline



XPath

Example document

<Scientist>
<Name>Alan Turing</Name>
<Bio>

<Born> <When> June 23, 1912 </When> <Where> London </Where> </Born>
<Died> <When> June 7, 1954 </When> <Where> Wilmslow </Where> </Died>

</Bio>
<Article>

<Title> Computability and lambda-Definability </Title>
<Journal> J. Of Symbolic Logic </Journal>
<Year> 1937 </Year>
. . .

</Article>
. . .

</Scientist>

Example query

//Bio/Died/*

XPath expressions select sets of nodes of XML documents by spec-
ifying navigational patterns
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Example document
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Node-Selecting Queries

Example document

<Scientist>
<Name>Alan Turing</Name>
<Bio>

<Born> <When> June 23, 1912 </When> <Where> London </Where> </Born>

<Died> <When> June 7, 1954 </When> <Where> Wilmslow </Where> </Died>

</Bio>
<Article>

<Title> Computability and lambda-Definability </Title>
<Journal> J. Of Symbolic Logic </Journal>
<Year> 1937 </Year>
. . .

</Article>
. . .

</Scientist>

Example query

φ(x) := ∃y E (y ,x)∧LDied(y)

Observation: Such queries can also be expressed by MSO formulas with
one free variable



Node-Selecting Queries

Terminology

A (node-selecting) query is a function q : tree→ nodes

A query is MSO-definable if there exists a MSO formula φ(x) such
that n ∈ q(t) iff t |= φ(n), for all trees t and all nodes n

Theorem

Every XPath query is MSO-definable

But XPath cannot express every MSO-definable query

In fact

Every XPath query is FO-definable when FO is endowed with the
descendant and sibling relations (as opposed to parent and brother)

But XPath cannot express every FO-definable query [Marx, 2004]
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Terminology

A (node-selecting) query is a function q : tree→ nodes
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Theorem
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Node-Selecting Queries

In conclusion

MSO provides a general framework for node-selecting queries

although practical languages are often less expressive



Automaton Model?

Motivation for this question:

A formula φ(x) gives a declarative specification for a query

An automaton gives an algorithm for computing the query

Question: What is the corresponding automaton model?



Automaton Model?

Let’s try this:

A query automaton Q consists of a non-deterministic bottom-up
automaton A plus a select function

s : States(A)×Alphabet(A)→{0,1}

Node n is in the result for tree t if there is an accepting computation on
t in which n gets a state q such that s(q,a) = 1, where a is the label of n

Question: What is the corresponding automaton model?



Example of a Query Automaton

Example tree - run 1

c

e

a c

b c

c e

b c

e b

Example query automaton (A,s)

States(A) = {q0,qa,qb}
Final(A) = {q0}

States(A)∗
a→ qa

States(A)∗
σ→ qb

(ε +q∗0 +States(A)∗qaStates(A)∗
σ→ q0

s(qb,b) = 1

all others: 0

Select all b-labeled nodes for which there is an ancestor with an a-labeled child
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Automaton Model?

Recall: If States(A) = {q1, . . . ,qn} then every run of A on a tree t can be
represented by sets of nodes Q1, . . . ,Qn

a

a

b

#
even

8
#

even

9

even
4

a

#
even

10
#

even

11

odd
5

even
2

a

b

#
even

12
#

even

13

even
6

b

#
even

14
#

even

15

even
7

odd
3

even
1

EVEN := {1,2,4,6,7, . . .}
ODD := {3,5}

Theorem

Every query expressible by a query automaton (A,s) is MSO-definable.



Automaton Model?

Also recall: We can guess such a run in MSO:

∃Q1 . . .∃Qn validrun(Q1, . . . ,Qn)

Theorem

Every query q expressible by a query automaton (A,s) is MSO-definable.



Automaton Model?

Hence: q is equivalently expressed by

φ(x) := ∃Q1 . . .∃Qn validrun(Q1, . . . ,Qn)∧
∨

qi∈States(A)
a∈Alphabet(A)

s(qi ,a)=1

(Qi (x)∧La(x))

Theorem

Every query q expressible by a query automaton (A,s) is MSO-definable.



Automaton Model?

Theorem

Every MSO-definable query φ(x) is expressible by a query automaton.



Automaton Model?

Recall: φ(x) is equivalently expressed as a formula ψ(X ) such that

t |= φ(n)⇔ t |= ψ({n})

where

ψ := X ⊆ Y | Sing(X ) | E (X ,Y ) | X < Y | X ⊆ La | · · · | X ⊆ Lb

| ψ ∧ψ | ¬ψ | ∃X φ

Theorem

Every MSO-definable query φ(x) is expressible by a query automaton.



Automaton Model?

(a,9)

(a,0)

(b,1)

(#,0)
8

(#,0)
9

4
(a,1)

(#,0)
10

(#,0)
11

5

2
(a,0)

(b,0)

(#,0)
12

(#,0)
13

6
(b,0)

(#,0)
14

(#,0)
15

7

3

1

A accepts tree t[{5}] over Σ×{0,1}2

a

a

b

#
8

#
9

4
a

#
10

#
11

5

2
a

b

#
12

#
13

6

b

#
14

#
15

7

3

1

φ selects node 5

t |= φ(5)⇔ t |= ψ({5})

Also recall: We can view a formula ψ(X ) as defining a tree language over
the extended alphabet Σ×{0,1}n. This language is recognizable by a tree
automaton A.

Theorem

Every MSO-definable query φ(x) is expressible by a query automaton.



Automaton Model?

Hence: φ(x) is equivalently expressed by the query automaton (A′,s)
where

A′ is the automaton we obtain from A by replacing every rule

(q1, . . . ,qk)
(a,b)→ q by (q1, . . . ,qk)

a→ q

s is the function such that s(a,q) = 1 if and only if there is a rule in
A of the form

(q1, . . . ,qk)
(a,1)→ q

Theorem

Every MSO-definable query φ(x) is expressible by a query automaton.



Query evaluation

The bad, the ugly, and the good:

Unfortunately, the translation from formula φ(x) to automaton can
be prohibitively expensive. The number of states is proportional to

22·
··

2size(ψ)
size(ψ) times

Actually, unless P = NP there is no elementary f such that
MSO-formulas can be evaluated in time f (size(φ))×p(size(t)) with
p polynomial [Frick, Grohe 2002]

This makes MSO useless as a query language. However Monadic
Datalog [Gottlob, Koch 2002] can also express all MSO-definable
queries and can be evaluated efficiently



Some questions about query automata

Question: does it matter that A is non-deterministic in a query automaton (A,s)?



Some questions about query automata

Example tree - run 2
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all others: 0

Question: does it matter that A is non-deterministic in a query automaton (A,s)?



Some questions about query automata

Quiz:

Can we select all b-labeled nodes for which there is an ancestor with an
a-labeled child when A is deterministic?

Example tree - run 2

c

e

a qa c

b qb c q0

qb

q0 c q0 e

b q0 c

e q0 b qb

qb

qb

qb not accepting!

Example query automaton (A,s)

States(A) = {q0,qa,qb}
Final(A) = {q0}

States(A)∗
a→ qa

States(A)∗
σ→ qb

(ε +q∗0 +States(A)∗qaStates(A)∗
σ→ q0

s(qb,b) = 1

all others: 0

Question: does it matter that A is non-deterministic in a query automaton (A,s)?



Some questions about query automata

The bad, the ugly, and the good

It matters that A is non-deterministic in a query automaton (A,s)!

Non-deterministic query automata cannot be implemented efficiently (need
to check all possible runs)

This renders them essentially useless as an model for specifying query
algorithms

But query automata can equivalently be defined as a triple (A1,A2,s) were
A1 is deterministic bottom-up, A2 is deterministic top-down over
States(A2), and s is a selection function

s : States(A1)×States(A2)×Alphabet(A1)→{0,1}

See [Schwentick, Neven 2002]



Some questions about query automata (2)

Quiz:

Does it matter which semantics we take?

Two possible semantics

Existential semantics
a node is in the result if there is an accepting run that selects it

Universal semantics
a node is in the result if every accepting run selects it.



Some questions about query automata (2)

No: Universal semantics can be stated in MSO:

φ(x) := ∀Q1 . . .∀Qn validrun(Q1, . . . ,Qn)→
∨

qi∈States(A)
a∈Alphabet(A)

s(qi ,a)=1

(Qi (x)∧La(x))

and hence translated back into a query automaton with existential semantics.

Quiz:

Does it matter which semantics we take?

Two possible semantics

Existential semantics
a node is in the result if there is an accepting run that selects it

Universal semantics
a node is in the result if every accepting run selects it.



Some questions about query automata (2)

No: Existential semantics can be transformed into a universal semantics by
adapting A and s. Exercise

Quiz:

Does it matter which semantics we take?

Two possible semantics

Existential semantics
a node is in the result if there is an accepting run that selects it

Universal semantics
a node is in the result if every accepting run selects it.



Outline



XSLT

Example input document

<Scientist>
<Name>Alan Turing</Name>
<Bio>

<Born> <When> June 23, 1912 </When> <Where> London </Where> </Born>
<Died> <When> June 7, 1954 </When> <Where> Wilmslow </Where> </Died>

</Bio>
<Article>

<Title> Computability and lambda-Definability </Title>
<Journal> J. Of Symbolic Logic </Journal>
<Year> 1937 </Year>
. . .

</Article>
. . .

</Scientist>

Example XSLT Program

<xsl:template match="*">
<Person>

<xsl:copy-of select="Name"/>
<xsl:copy-of select="Bio/Born"/>
<xsl:copy-of select="Bio/Died"/>

</Person>
<xsl:template>

XSLT transforms documents by means of templates



XSLT

Example output

<Person>
<Name>Alan Turing</Name>
<Born> <When> June 23, 1912 </When> <Where> London </Where> </Born>
<Died> <When> June 7, 1954 </When> <Where> Wilmslow </Where> </Died>

</Person>

Example XSLT Program

<xsl:template match="*">
<Person>

<xsl:copy-of select="Name"/>
<xsl:copy-of select="Bio/Born"/>
<xsl:copy-of select="Bio/Died"/>

</Person>
<xsl:template>

XSLT transforms documents by means of templates



XML Typechecking

The typechecking problem:

Given an XSLT program P, an XML Schema S and an XML Schema T ,
check that P(t) ∈ T for every t ∈ S .

Motivation for this problem:

t

Microshaft has documents
in S-form

P7→
P(t)

Macrosoft wants those
documents in T -form



XML Typechecking

Theorem

The typechecking problem (without data values) is decidable!

Proof idea:

It is possible to compute the inverse image of T under P:

P−1(T ) = { tree t | P(t) ∈ T}

Moreover, this inverse image is regular

Hence, it suffices to check that S ⊆ P−1(T ) (why?)

Of course: the complexity of the problem varies widely if one takes e.g.
restricted fragments of XSLT or DTDs instead of XML schemas, . . .
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