Automata and Logic on Trees

Some XML-related Applications

Wim Martens! Stijn Vansummeren?

LUniversity of Dortmund, Germany
?Hasselt University, Belgium

Our story so far

@ Tree automata
deterministic, bottum-up, top-down, constructions, ...
ranked and unranked

@ Decision problems for tree automata
Equivalence, universality, emptiness, intersection emptiness, ...,

@ MSO on trees
equivalent to tree automata

Our story so far

@ Tree automata
deterministic, bottum-up, top-down, constructions, ...
ranked and unranked

@ Decision problems for tree automata
Equivalence, universality, emptiness, intersection emptiness, ...,

@ MSO on trees
equivalent to tree automata

Nice theory, what's the killer application? J

And the winner is: XML!

XML is the lingua franca of data on the Web

<Scientist>
<Name>Alan Turing</Name>
<Bio>
<Born> <When> June 23, 1912 </When> <Where> London </Where> </Born>
<Died> <When> June 7, 1954 </When> <Where> Wilmslow </Where> </Died>
</Bio>
<Article>
<Title> Computability and lambda-Definability </Title>
<Journal> J. Of Symbolic Logic </Journal>
<Year> 1937 </Year>

</Article>

</Scientist>

And the winner is: XML!

Now consider this:

Scientist

_— | \

Name Article

Bio
| PN P N

Alan Turing Born Died Title Journal Year

7\ 7N\ | |

When Where When Where Computability ... 1937

23-6-1912 London 7-6-1954 Wilmslow Symbolic Logic

And the winner is: XML!

Scientist

e

Name Article

Bio
| PN P N

Alan Turing Born Died Title Journal Year

7\ 7N\ | |

When Where When Where Computability ... 1937

23-6-1912 London 7-6-1954 Wilmslow Symbolic Logic

A natural correspondence

@ Trees reflect the hierarchical structure of XML

@ The data model underlying XML is tree-based

XML Processing

Important kinds of XML processing

@ Validation
Check whether an XML document is of given type

@ Querying
Extract information from an XML document

@ Transformation
Construct a new XML document from a given one

XML Processing

Important kinds of XML processing

@ Validation — DTD, XML Schema
Check whether an XML document is of given type

@ Querying — XPath, XQuery
Extract information from an XML document

@ Transformation — XSLT, XDuce, CDuce
Construct a new XML document from a given one

Document Type Definitions (DTDs)

DTDs describe types of XML documents

Example document

<Scientist>
<Name>Alan Turing</Name>
<Bio>
<Born> <When> June 23, 1912 </When> <Where> London </Where> </Born>
<Died> <When> June 7, 1954 </When> <Where> Wilmslow </Where> </Died>
</Bio>
<Article>
<Title> Computability and lambda-Definability </Title>
<Journal> J. Of Symbolic Logic </Journal>

<Year> 1937 </Year> Example DTD

</A.r.ticle> <!DOCTYPE Scientist [
<IELEMENT Scientist (Name, Bio, Article*)>
</Scientist> <IELEMENT Bio (Born, Died?)>

<IELEMENT Born (When, Where)>
<IELEMENT Died (When, Where)>
<IELEMENT Atrticle (Title, Journal, Year)>

Document Type Definitions (DTDs)

Validation algorithm:

@ For each node: check that the children are ok w.r.t. parent’s rule

@ But ignore data values (Alan Turing, 23-6-1912, ...)

Scientist

e

Name Article

| PN RN

Alan Turing Born Died Title Journal Year

/N 7N\ \ ‘ \

When ~ Where When Where Computability ... 1937

23-6-1912 London 7-6-1954 Wilmslow Symbolic Logic

Example DTD

<!DOCTYPE Scientist [
<IELEMENT Scientist (Name, Bio, Article*)>
<IELEMENT Bio (Born, Died?)>
<IELEMENT Born (When, Where)>
<IELEMENT Died (When, Where)>
<IELEMENT Atrticle (Title, Journal, Year)>
1>

Hmmm . ..that looks familiar!

<!DOCTYPE Scientist [
<IELEMENT Scientist (Name, Bio, Article*)>
<IELEMENT Bio (Born, Died?)>
<IELEMENT Born (When, Where)>
<IELEMENT Died (When, Where)>
<IELEMENT Article (Title, Journal, Year)>
1>

Corresponding Tree Automaton

Alphabet(A) = {Scientist,Name, Bio, ..., When, Where}
States(A) = {Scientist, Name, Bio, ..., When, Where}
Final(A) = {Scientist}

. . Scientist . ..
Name, Bio, Article* 2<% Scientist

Actually . ..

The XML standard requires all regular expressions occurring in a DTD to be
deterministic

Intuitively, an expression is deterministic if it is always determined which
expression symbol will match the next input symbol of an input string

@ Not deterministic: a(bc+ bb)
@ Deterministic: ab(c+ b)

Not all regular expressions can be written as deterministic regular expressions
[Briiggemann-Klein,Wood 1998] J

Actually . ..

Deterministic regular expressions can be translated into deterministic string
automata in linear time

Immediate corollary

@ Every DTD can be translated into an equivalent stepwise deterministic
unranked tree automaton in linear time

@ Such an automaton gives a validation algorithm!

@ Moreover, since containment of deterministic TA is in ptime, we can also
check that every XML document valid w.r.t a DTD Dy is also valid w.r.t.
a DTD D, (useful in schema evolution, data exchange,...).

Expressive power?

Can DTDs specify all regular tree languages?

@ (a) No, because they can be translated in dop-down deterministic
unranked tree automata

@ (b) No, because they cannot define the boolean circuits that
evaluate to true

@ (c) No, because the labels are the same as the states

@ (d) Yes, but you have to extend them a little

DTD's are quite limited

Observation: There is only one rule for every label in a DTD D)

Hence if € D and € D then eD

We can use this to show that a tree language is not expressible as a DTD)

DTD's are quite limited
Example: there is no DTD recognizing only

/

UsedCars
VRN

ad PP

/\ /\

model year model year

™~

NewCars
VRN
P ad
|
model model

Obviously incorrect:

<!DOCTYPE Dealer |
<IELEMENT Dealer (UsedCars, NewCars)>
<IELEMENT UsedCars (ad*)>
<IELEMENT NewCars (ad*)>
<IELEMENT ad ((model, year) + model)>

XML Schema to the rescue

Dealer
/ \
UsedCars NewCars
VRN VRN
ad ooo ad ad aoc ad
/\ /\ | |
model year model year model model

XML Schema (using abstract syntax):

Dealer — (UsedCars, NewCars)
UsedCars — (ad'*)

NewCars — (ad?*)

ad! + (model, year)

ad? — (model)

Hmm . ..this looks familiar

@ Alphabet(A) = {Dealer,UsedCars, Newcars, ad, model, year}
States(A) = {Dealer, UsedCars, Newcars,ad', ad?, model, year}

Deal
UsedCars, NewCars —=% Dealer

UsedCars
adlx =2, UsedCars
d
model,year 25 ad?!

d
model 25 ad?

XML Schema (using abstract syntax):

Dealer — (UsedCars, NewCars)
UsedCars — (ad'*)

NewCars — (ad?*)

ad! + (model, year)

ad? - (model)

Actually . ..

@ The XML Schema standard forbids rules like

FunkyCars +— (ad'x,sec,ad?x)

in which the same label occurs with two different types

@ When ignoring types, the regular expressions must again be
deterministic

And again things transfer nicely

@ Every XML Schema can be translated into an equivalent
deterministic unranked tree automaton in linear time

@ Such an automaton gives a validation algorithm!

@ Moreover, since containment of deterministic TA is in ptime, we
can also check that every XML document valid w.r.t an XML
Schema D; is also valid w.r.t. an XML Schema D, (useful in
schema evolution, data exchange,...).

@ Moreover, we can minimize XML Schema’s in ptime

Expressive power?

Can XML Schema's specify all regular tree languages?

@ (a) No, because they can be translated in dop-down deterministic
unranked tree automata

@ (b) No, because they cannot define the boolean circuits that
evaluate to true

@ (c) Yes, but you have to extend them a little

XML Schema’s are also limited

Observation: Since rules like
FunkyCars — (ad'x,sec,ad®)

are forbidden, the “type” of a node is determined by the string of labels
encountered on the path from the root to that node.

Hence if €S and € S then €S

We can use this to show that a tree language is not definable in XML Schema)

XML Schema’s are also limited

Exercise: Show that boolean circuit evaluation is hence not definable by
an XML Schema J

XML Schema’s are also limited

Exercise: Show that boolean circuit evaluation is hence not definable by
an XML Schema J

By allowing rules like

FunkyCars + (ad'#,sec,ad?+)

in which the same label occurs with two different types and by allowing
all regular expressions we reach the full regular languages

In summary

Tree automata

@ Form a general framework for schema languages
@ Provide an execution environment for linear time validation

@ Also serve as a basis for restricted classes with better algorithmic
properties w.r.t. static analysis

XPath expressions select sets of nodes of XML documents by spec-
ifying navigational patterns

Example document

<Scientist>
<Name>Alan Turing</Name>
<Bio>
<Born> <When> June 23, 1912 </When> <Where> London </Where> </Born>
<Died> <When> June 7, 1954 </When> <Where> Wilmslow </Where> </Died>
</Bio>
<Article>
<Title> Computability and lambda-Definability </Title>
<Journal> J. Of Symbolic Logic </Journal>
<Year> 1937 </Year>

</Article>

</Scientist>

Example query
//Bio/Died/*

XPath expressions select sets of nodes of XML documents by spec-
ifying navigational patterns

Example document

<Scientist>
<Name>Alan Turing</Name>
<Bio>
<Born> <When> June 23, 1912 </When> <Where> London </Where> </Born>
<Died> <When> June 7, 1954 </When> <Where> Wilmslow </Where> </Died>
</Bio>
<Article>
<Title> Computability and lambda-Definability </Title>
<Journal> J. Of Symbolic Logic </Journal>
<Year> 1937 </Year>

</Article>

</Scientist>

Example query
//Bio/Died/*

Node-Selecting Queries

Observation: Such queries can also be expressed by MSO formulas with
one free variable

Example document

<Scientist>
<Name>Alan Turing</Name>
<Bio>
<Born> <When> June 23, 1912 </When> <Where> London </Where> </Born>
<Died> <When> June 7, 1954 </When> <Where> Wilmslow </Where> </Died>
</Bio>
<Article>
<Title> Computability and lambda-Definability </Title>
<Journal> J. Of Symbolic Logic </Journal>
<Year> 1937 </Year>

</Article>

</Scientist>

Example query
¢(x) := Iy E(y,x) A Lpiea(y)

Node-Selecting Queries

Terminology

@ A (node-selecting) query is a function g: tree — nodes

@ A query is MSO-definable if there exists a MSO formula ¢(x) such
that n € g(t) iff t = ¢(n), for all trees t and all nodes n

Node-Selecting Queries
Terminology

@ A (node-selecting) query is a function g: tree — nodes

@ A query is MSO-definable if there exists a MSO formula ¢(x) such
that n € g(t) iff t = ¢(n), for all trees t and all nodes n

v

@ Every XPath query is MSO-definable

@ But XPath cannot express every MSO-definable query

Node-Selecting Queries
Terminology

@ A (node-selecting) query is a function g: tree — nodes

@ A query is MSO-definable if there exists a MSO formula ¢(x) such
that n € g(t) iff t = ¢(n), for all trees t and all nodes n

v

@ Every XPath query is MSO-definable

@ But XPath cannot express every MSO-definable query

@ Every XPath query is FO-definable when FO is endowed with the
descendant and sibling relations (as opposed to parent and brother)

@ But XPath cannot express every FO-definable query [Marx, 2004]

Node-Selecting Queries

@ MSO provides a general framework for node-selecting queries

@ although practical languages are often less expressive

Automaton Model?

Question: What is the corresponding automaton model?]

Motivation for this question:
@ A formula ¢(x) gives a declarative specification for a query

@ An automaton gives an algorithm for computing the query

Automaton Model?

Question: What is the corresponding automaton model?)

Let's try this:

A query automaton @ consists of a non-deterministic bottom-up
automaton A plus a select function

s: States(A) x Alphabet(A) — {0,1}

Node n is in the result for tree t if there is an accepting computation on
t in which n gets a state g such that s(q,a) = 1, where a is the label of n

Example of a Query Automaton

Select all b-labeled nodes for which there is an ancestor with an a-labeled child)

° States(A) = {qu qavqb} / T \
Final(A) = {40}

° e c e
@ States(A)* 2 g, /A a

a c¢ b ¢
@ States(A)* 2 g, /\ /A

- b ¢ e b

@ (e+qj+States(A)*g,States(A)* = qo ¢
@ s(gp,b)=1
@ all others: 0

Example of a Query Automaton

Select all b-labeled nodes for which there is an ancestor with an a-labeled child)

° States(A) = {qu qavqb} / T \
Final(A) = {40}

° e c e
@ States(A)* 2 g, /A a

a c¢ b ¢
@ States(A)* 2 g, /\ /\

- b ¢ e b

@ (e+qj+States(A)*g,States(A)* = qo ¢
@ s(gp,b)=1
@ all others: 0

Example of a Query Automaton

Select all b-labeled nodes for which there is an ancestor with an a-labeled child)

Example query automaton (A, s) Example tree - run 1

@ States(A) = {q0,9a, 95} e
i \

@ Final(A) = {qo} . / | \ .
@ States(A)* iqa /\ N

a C b c
@ States(A)* gqb N\ A\

dpr Cq eq q

o (e-+qj+ States(A)*q.States(A)* 2 qo b ¢ o o ba
° s(qba b) =1
@ all others: 0

Example of a Query Automaton

Select all b-labeled nodes for which there is an ancestor with an a-labeled child)

Example query automaton (A, s) Example tree - run 1

@ States(A) ={q0,92,9p} ¢

@ Final(A) = {qo} e / ‘C \ €

@ States(A)* 2 g, a{Ja\c ab biio\c q0

@ States(A)* 2 g, / A

o (g+q3+States(A)*antateS(A)*g’CIO bdbr Cqo edqo pqo)
@ s(qp,b)=1

@ all others: 0

Example of a Query Automaton

Select all b-labeled nodes for which there is an ancestor with an a-labeled child)

Example query automaton (A, s) Example tree - run 1

@ States(A) ={q0,92,9p} ¢

@ Final(A) = {qo} e do ‘C"“ e

@ States(A)" 2 qa a{Ja\c ab biio\c q0

@ States(A)* 2 g, / A

o (g+q3+States(A)*antateS(A)*g’CIO bar cqo eqo p9o)
@ s(qp,b)=1

@ all others: 0

Example of a Query Automaton

Select all b-labeled nodes for which there is an ancestor with an a-labeled child)

Example query automaton (A, s) Example tree - run 1

o States(4) = {do, .} cqg
Final(A) = {qo} T

e do C 9o € qo
States(A)* 3 g, / \ /\
. adga C bdo cqo
States(A)* — qp /\ / \
bdb» Cqo eqo p9o

(e+ g5 + States(A)* g, States(A)* % qo
s(qp,b) =1
all others: 0

Example of a Query Automaton

Select all b-labeled nodes for which there is an ancestor with an a-labeled child)

° States(A) = {qu qavqb} / T \
Final(A) = {40}

° e c e
@ States(A)* 2 g, /A a

a c¢ b ¢
@ States(A)* 2 g, /\ /A

- b ¢ e b

@ (e+qj+States(A)*g,States(A)* = qo ¢
@ s(gp,b)=1
@ all others: 0

Example of a Query Automaton

Select all b-labeled nodes for which there is an ancestor with an a-labeled child)

° States(A) = {qu qavqb} / T \
Final(A) = {40}

C e c e
@ States(A)* 2 g, /\ /' \
a Cc b Cc

@ States(A)* 2 g, /\ /\

c e
@ (e+qg+States(A)*qaStates(A)* 2 q 5 /
@ s(qp,b)=1
@ all others: 0

Example of a Query Automaton

Select all b-labeled nodes for which there is an ancestor with an a-labeled child)

Example query automaton (A, s) Example tree - run 2

@ States(A) ={q0,92,9p} ¢

@ Final(A) = {qo} e / ‘C \ €

@ States(A)* 2 g, a/ \c b/ \C

@ States(A)* 2 g, / I\

o (g+q3+States(A)*antateS(A)*g’CIO bd» €90 eqo pan)
@ s(qp,b)=1

@ all others: 0

Example of a Query Automaton

Select all b-labeled nodes for which there is an ancestor with an a-labeled child)

Example query automaton (A, s) Example tree - run 2

@ States(A) ={q0,92,9p} ¢

@ Final(A) = {qo} e / ‘C \ €

@ States(A)" 2 qa a/qa\c ab bgo\c ab

@ States(A)* 2 g, / I\

o (g+q3+States(A)*antateS(A)*g’CIO bd» €90 eqo pan)
@ s(qp,b)=1

@ all others: 0

Example of a Query Automaton

Select all b-labeled nodes for which there is an ancestor with an a-labeled child)

Example query automaton (A, s) Example tree - run 2

@ States(A) ={q0,92,9p} c
@ Final(A) ={qo0} o (\:qo i

° Sete) S a/qa\c b b{m\c ab

@ States(A)* 2 g, N\ i

® (e+qj+States(A)*q,States(A)* % qo bas cdo eq bar |
® s(qgp.b)=1

@ all others: 0

Example of a Query Automaton

Select all b-labeled nodes for which there is an ancestor with an a-labeled child)

Example query automaton (A, s) Example tree - run 2

@ States(A) ={q0,9a,9p} cq not accepting!
e |
< kA = el e do € 9o eas
@ States(A)* 2 q, / \ /\
pu aqa CY9b bd CAap
@ States(A)* — gp /\ /
@ (£+ g+ States(A)*g.States(A)* > qo ba» cqo edo bav)
@ s(qp,b)=1
@ all others: 0

Automaton Model?

Every query expressible by a query automaton (A,s) is MSO-definable.

Recall: If States(A) ={q1,...,qn} then every run of A on a tree t can be
represented by sets of nodes Q,...,Q,

1
a even EVEN := {1,2,4,6,7,...}

2 / \3 ODD := {3,5}

a “even a odd

s 7\ s o 7\

7
b even a odd b even b even

' #”’# #“”# PR

€Ven even eveneven eveneven eveneven

Automaton Model?

Every query g expressible by a query automaton (A,s) is MSO-definable.

Also recall: We can guess such a run in MSO:

3Q,...3Q, validrun(Qy, ..., Q)

Automaton Model?

Every query g expressible by a query automaton (A,s) is MSO-definable.

Hence: g is equivalently expressed by

O(x):=3Q1...3Q,validrun(Qy,...,Q,) A \/ (Qi(x) A La(x))
gjEStates(A)
acAlphabet(A)
s(gp.a)=1

Automaton Model?

Every MSO-definable query ¢(x) is expressible by a query automaton.

Automaton Model?

Every MSO-definable query ¢(x) is expressible by a query automaton.

Recall: ¢(x) is equivalently expressed as a formula y(X) such that

tE=o(n) & tEy({n})
where
v o= XCY|Sing(X)|E(X,Y)|X<Y|XCLy|-|XCLp
| WAy |-y |3Xe

Automaton Model?

Every MSO-definable query ¢(x) is expressible by a query automaton.

Also recall: We can view a formula w(X) as defining a tree language over
the extended alphabet X x {0,1}". This language is recognizable by a tree

automaton A.
1a
2a/ \33
4b/ \a5 6b/ \b7
E#/\#9 10#/\#11 12/\#13 14#/\#15
¢ selects node 5

tE¢(5) < tEw({5})

1

(a,9)
2 3
(2.0) (2,0)

. 7N s RN

(b,1) (a1) (b,0) (b,0)

8/\9 10/\11 12/\13 14/\15
#O0) (0 (RO (10 (10 (#0) (#0) (#0)

A accepts tree t[{5}] over & x {0,1}2

Automaton Model?

Every MSO-definable query ¢(x) is expressible by a query automaton.

Hence: ¢(x) is equivalently expressed by the query automaton (A',s)
where

@ A’ is the automaton we obtain from A by replacing every rule

(a7b) a
(qla"'aqk) — q by (qla"'7qk)_>q

@ s is the function such that s(a,q) =1 if and only if there is a rule in

A of the form
(a,1)
(q1,---,9x) —'q

Query evaluation

The bad, the ugly, and the good:

@ Unfortunately, the translation from formula ¢(x) to automaton can
be prohibitively expensive. The number of states is proportional to

osize(y)

22 size(y) times

@ Actually, unless P = NP there is no elementary f such that
MSO-formulas can be evaluated in time f(size(¢)) X p(size(t)) with
p polynomial [Frick, Grohe 2002]

@ This makes MSO useless as a query language. However Monadic
Datalog [Gottlob, Koch 2002] can also express all MSO-definable
queries and can be evaluated efficiently

Some questions about query automata

Question: does it matter that A is non-deterministic in a query automaton (A7s)?J

Some questions about query automata

Question: does it matter that A is non-deterministic in a query automaton (A7s)?J

Example query automaton (A, s) Example tree - run 2

@ States(A) ={q0,9a,9p} cq not accepting!
e |
~ [FmelllA) = el e do €9 eds
@ States(A)* 2 q, / \ /\
pu aqa CY9b bd CAap
@ States(A)* — gp /\ /\
@ (£+ g+ States(A)*g.States(A)* > qo ba» cqo edo bav)
@ s(qp,b)=1
@ all others: 0

Some questions about query automata

Question: does it matter that A is non-deterministic in a query automaton (A7s)?J

Example query automaton (A, s) Example tree - run 2

@ States(A) = {q0,9a,9p} cqb not accepting!
® Final(A) = {qo} e cq eas
@ States(A)* 2 q, / \ /\
pu aqa CA9b bd CAap
@ States(A)* — gp /\ /\
@ (£+ g+ States(A)*g.States(A)* > qo ba» cqo edo bav
@ s(qp,b)=1
@ all others: 0

Can we select all b-labeled nodes for which there is an ancestor with an
a-labeled child when A is deterministic?

Some questions about query automata

The bad, the ugly, and the good

It matters that A is non-deterministic in a query automaton (A,s)!

@ Non-deterministic query automata cannot be implemented efficiently (need
to check all possible runs)

@ This renders them essentially useless as an model for specifying query
algorithms

@ But query automata can equivalently be defined as a triple (A1, A2,s) were
A7 is deterministic bottom-up, A is deterministic top-down over
States(Az), and s is a selection function

s: States(A;) x States(Ap) x Alphabet(A;) — {0,1}

See [Schwentick, Neven 2002]

Some questions about query automata (2)

Two possible semantics

@ Existential semantics
a node is in the result if there is an accepting run that selects it

@ Universal semantics
a node is in the result if every accepting run selects it.

Does it matter which semantics we take?

Some questions about query automata (2)

Two possible semantics

@ Existential semantics
a node is in the result if there is an accepting run that selects it

@ Universal semantics
a node is in the result if every accepting run selects it.

Does it matter which semantics we take?

No: Universal semantics can be stated in MSO:

0(x) :=VQ1...VQuvalidrun(Qy,...,Qn) — \V (Qi(x)ALa(x))
gicStates(A)
acAlphabet(A)
s(gi,a)=1

and hence translated back into a query automaton with existential semantics.

Some questions about query automata (2)

Two possible semantics

@ Existential semantics
a node is in the result if there is an accepting run that selects it

@ Universal semantics
a node is in the result if every accepting run selects it.

Does it matter which semantics we take?

No: Existential semantics can be transformed into a universal semantics by
adapting A and s. Exercise

XSLT

XSLT transforms documents by means of templates

Example input document

<Scientist>
<Name>Alan Turing</Name>
<Bio>
<Born> <When> June 23, 1912 </When> <Where> London </Where> </Born>
<Died> <When> June 7, 1954 </When> <Where> Wilmslow </Where> </Died>
</Bio>
<Atrticle>
<Title> Computability and lambda-Definability </Title>
<Journal> J. Of Symbolic Logic </Journal>

<Year> 1937 </Year> Example XSLT Program

</Article> <xsl:template match="%*">
... <Person>
</Scientist> <xsl:copy-of select="Name"/>

<xsl:copy-of select="Bio/Born"/>

<xsl:copy-of select="Bio/Died" />
</Person>
<xsl:template>

XSLT

XSLT transforms documents by means of templates

Example output

<Person>
<Name>Alan Turing</Name>
<Born> <When> June 23, 1912 </When> <Where> London </Where> </Born>
<Died> <When> June 7, 1954 </When> <Where> Wilmslow </Where> </Died>
</Person>

Example XSLT Program

<xsl:template match="*">
<Person>
<xsl:copy-of select="Name"/>
<xsl:copy-of select="Bio/Born"/>
<xsl:copy-of select="Bio/Died" />
</Person>
<xsl:template>

V.

XML Typechecking

The typechecking problem:

Given an XSLT program P, an XML Schema S and an XML Schema T,
check that P(t) € T for every t € S.

Motivation for this problem:

1o

Microshaft has documents Macrosoft wants those
in S-form documents in T-form

XML Typechecking

The typechecking problem (without data values) is decidable!

Proof idea:

@ It is possible to compute the inverse image of T under P:
P Y (T)={treet|P(t)c T}
@ Moreover, this inverse image is regular

@ Hence, it suffices to check that S C P71(T) (why?)

Of course: the complexity of the problem varies widely if one takes e.g.
restricted fragments of XSLT or DTDs instead of XML schemas, ... J

Acknowledgement

The slides of this lecture are based on the PODS 2004 tutorial of
Thomas Schwentick

http://lsl-www.cs.uni-dortmund.de/~tick/homepage.html

http://ls1-www.cs.uni-dortmund.de/~tick/homepage.html

