
Automata and Logic on Trees

Wim Martens1 Stijn Vansummeren2

1University of Dortmund, Germany
2Hasselt University, Belgium

Outline

Outline

What am I doing here?

You know something about finite automata on strings

You want to know more about finite automata on trees

Why would I want to do that?

Because Tree Automata are important for data on the web

Data on the web is in tree-structured XML

<muppet creator="Henson">
<name> Kermit </name>
<animal> Frog </animal>

</muppet>

muppet

creator

Henson

name

Kermit

animal

Frog

Why would I want to do that?

Because Tree Automata are important for data on the web

They are the basis for XML schema languages and validation

Form a foundation for XML query languages

Aid in static verification

Why would I want to do that?

Because Tree Automata are important for data on the web

A basis for XML schema languages

Constraint: Every muppet node must have a creator and a name, and

may have an optional animal.

Examples:

muppet

creator

Henson

name

Kermit

animal

Frog

muppet

creator

Henson

name

Miss Piggy

Why would I want to do that?

Because Tree Automata are important for data on the web

A basis for XML schema languages

Constraint: Every muppet node must have a creator and a name, and

may have an optional animal.

Many schema languages: DTD, XML Schema, Relax NG, . . .

All naturally modeled and executed by tree automata

Why would I want to do that?

Because Tree Automata are important for data on the web

As a foundation for XML query languages

Query: Retrieve all muppet names.

Examples:

muppet

creator

Henson

name

Kermit

animal

Frog

muppet

creator

Henson

name

Miss Piggy

Why would I want to do that?

Because Tree Automata are important for data on the web

As a foundation for XML query languages

Query: Retrieve all muppet names.

Languages based on Tree Automata: Monadic datalog, Query

automata

Why would I want to do that?

Because Tree Automata are important for data on the web

Aid in Static Verification.

Given: Program P, input schema I , output schema O.
Question: Is P(t) ∈ O, for every t ∈ I?

Static Type-checking: XDuce, CDuce, XQuery, XLST, . . .

In summary . . .

Tree automata provide the underlying guiding principles for data
on the Web

Like the relational calculus (i.e., first-order logic) and the relational
algebra provide the underlying principles for relational data.

Who are you guys anyway?

Wim Martens Stijn Vansummeren

Course Overview

Day 1: Basics on Ranked Tree Automata

Day 2: Algorithms on Ranked Tree Automata

Day 3: Connection with Monadic Second-Order Logic

Day 4: Basics and Algorithms on Unranked Tree Automata

Day 5: XML-related applications

Outline

Warmup: Automata on Strings

strings with an even number of a’s

q0start q1

b

a

b

a

Transition Rules

q0
a→ q1

q0
b→ q0

etc. . .

From Strings to Trees: Binary Trees

binary trees with an even number of a’s

a

a

b

#

even a

#

odd

even a

b

#

even b

#

even

odd

even

How do we put this into transition rules?

From Strings to Trees: Binary Trees

binary trees with an even number of a’s

a

a

b

#

even a

#

odd

even a

b

#

even b

#

even

odd

even

Transition rules

(even,odd)
a→ even (left a-transition)

(even,even)
a→ odd (right a-transition)

etc. . .

Ranked Trees

What are ranked trees?

A function call f (a,b) is a ranked tree

f

a b

A function call f (g(a,b,c),h(i)) is a ranked tree

f

g

a b c

h

i

Ranked Alphabet

A ranked alphabet symbol is a formalization of a function call

A ranked symbol. . .

. . . is a symbol a together with an integer rank(a)

rank(a) tell us the number of children a is allowed to have

Notation

a(k): symbol a with rank(a) = k

Ranked Alphabet: Example

Example

Alphabet: {a(2),b(2),c(3),#(0)}

Allowed Tree:

a

b

a

#

c

a

#

b

a

#

#

a

#

Ranked Tree Automata

A ranked tree automaton A consists of

Alphabet(A): finite set of alphabet symbols

States(A): finite set of states

Rules(A): finite set of transition rules

Final(A): finite set of final states

where

Rules(A) are of the form (q1, . . . ,qk)
a(k)

→ q

(If k = 0, we write ε
a(0)

→ q)

Ranked Tree Automata

How do they work?

Example

∧

∨

∧

true t false f

f true t

t ∧

true t ∨

false f true t

t

t

t

ε
true→ t

ε
false→ f

(t, t)
∧→ t

(t, f)
∧→ f

. . .

(f , f)
∨→ f

If root is labeled by q ∈ Final(A):

ACCEPT

Terminology

Terminology

Language(A): set of trees accepted by A

Regular tree language: Set of trees S such that
S = Language(A) for some ranked tree automaton A

Example

Tree automaton A over {a(2),b(2),c(3),#(0)} for trees with even
number of a’s

Alphabet(A): {a,b,c ,#}
States(A): {even,odd}
Final(A): {even}
Rules(A):

(even,even)
a→ odd (even,even)

b→ even (even,even,even)
c→ even

(even,odd)
a→ even (even,odd)

b→ odd (even,even,odd)
c→ odd

(odd,even)
a→ even (odd,even)

b→ odd (even,odd,even)
c→ odd

(odd,odd)
a→ odd (odd,odd)

b→ even (even,odd,odd)
c→ even

ε
#→ even . . .

Deterministic Ranked Tree Automaton

Deterministic:

No two rules of the form

(q1, . . . ,qk)
a(k)

→ q

(q1, . . . ,qk)
a(k)

→ q′

for different states q and q′

Deterministic Ranked Tree Automaton: Example

(even,even)
a→ odd (even,even)

b→ even (even,even,even)
c→ even

(even,odd)
a→ even (even,odd)

b→ odd (even,even,odd)
c→ odd

(odd,even)
a→ even (odd,even)

b→ odd (even,odd,even)
c→ odd

(odd,odd)
a→ odd (odd,odd)

b→ even (even,odd,odd)
c→ even

ε
#→ even . . .

Outline

Some immediate natural questions

General questions:

Are non-deterministic and deterministic ranked tree automata
equivalent?

Are regular tree languages closed under Boolean operations?

Does it matter whether we read trees top-down or bottom-up?

Do we have a pumping lemma?

Can tree automata be minimized?

Complexity questions:
What is the complexity of deciding whether. . .

automaton A accepts a tree t?

automaton A accepts a tree at all?

automaton A accepts all trees of automaton B?

a set of automata accept a common tree?

Can Ranked Tree Automata be Determinized?

Take this non-deterministic Tree Automaton:

Example

Automaton with Final(A) = qf and rules

ε
c→ q q

b→ qb q
b→ q qb

b→ qf (q,q)
a→ q

Can Ranked Tree Automata be Determinized?

Example

Automaton with Final(A) = qf and rules

ε
c→ q q

b→ qb q
b→ q qb

b→ qf (q,q)
a→ q

Determinization

States(Adet) = {{q},{q,qb},{q,qb,qa}} and rules

ε
c→{q}

{q} b→{q,qb}
{q,qb}

b→{q,qb,qf }
{q,qb,qf }

b→{q,qb,qf }
(S1,S2)

a→{q} for all S1,S2 ∈ States(A)

Ranked Automata can be Determinized

Theorem

From each non-deterministic tree automaton, an equivalent
deterministic tree automaton can be constructed in exponential
time

Corollary

Non-deterministic and deterministic tree automata recognize the
same languages

Ranked Automata can be Determinized

Theorem

Ranked Automata can be determinized in exponential time

Is this optimal?

(a+b)

...

(a+b)

a

(a+b)

...

(a+b)

#

n

Natural Questions

General questions:

Are non-deterministic and deterministic ranked tree automata
equivalent? Yes.

Are regular tree languages closed under Boolean operations?

Does it matter whether we read trees top-down or bottom-up?

Do we have a pumping lemma?

Can tree automata be minimized?

Complexity questions:
What is the complexity of deciding whether. . .

automaton A accepts a tree t?

automaton A accepts a tree at all?

automaton A accepts all trees of automaton B?

a set of automata accept a common tree?

Closure under Union and Intersection:
Product Construction

Example

Automaton A: even number of a’s

(even,even)
a→ odd

Automaton B: even number of b’s

(even,even)
a→ even

a

b even
even

a even
even

odd even

(
(even,even),(even,even)

) a→ (odd,even)

Closure under Union and Intersection

Product Construction:

Given A, B, construct A×B

Alphabet(A×B) = Alphabet(A)∪Alphabet(B)

States(A×B) = States(A)×States(B)

Final(A×B) = {(sA,sB) | sA ∈ Final(A)∧ sB ∈ Final(B)}
Rules(A×B) = {

(
(s1

A,s1
B), . . . ,(sk

A,sk
B)

) a(k)

→ (sA,sB) |

(s1
A, . . . ,sk

A)
a(k)

→ sA ∈ Rules(A)

(s1
B , . . . ,sk

B)
a(k)

→ sB ∈ Rules(B)}

Closure under Union and Intersection: Union

Given A, B, construct A∪B

Alphabet(A∪B) = Alphabet(A)∪Alphabet(B)

States(A∪B) = States(A)×States(B)

Rules(A∪B) = {

(
(s1

A,s1
B), . . . ,(sk

A,sk
B)

) a(k)

→ (sA,sB) |

(s1
A, . . . ,sk

A)
a(k)

→ sA ∈ Rules(A)

(s1
B , . . . ,sk

B)
a(k)

→ sB ∈ Rules(B)}

Final(A∪B) = {(sA,sB) | sA ∈ Final(A)∨ sB ∈ Final(B)}

Closure under Union and Intersection: Intersection

Given A, B, construct A∩B

Alphabet(A∩B) = Alphabet(A)∪Alphabet(B)

States(A∩B) = States(A)×States(B)

Rules(A∩B) = {

(
(s1

A,s1
B), . . . ,(sk

A,sk
B)

) a(k)

→ (sA,sB) |

(s1
A, . . . ,sk

A)
a(k)

→ sA ∈ Rules(A)

(s1
B , . . . ,sk

B)
a(k)

→ sB ∈ Rules(B)}

Final(A∩B) = {(sA,sB) | sA ∈ Final(A)∧ sB ∈ Final(B)}

Product Construction: Blow-up

Product Construction: Blow-up

|States(A×B)|= |States(A)|× |States(B)|
|Rules(A×B)| ≤ |Rules(A)|× |Rules(B)|

Blow-up: Quadratic

Closure under Complement: Completion

Definition (Complete tree automaton)

For each a(k) ∈ Alphabet(A) and q1, . . . ,qk ∈ States(A), there is a
rule

(q1, . . . ,qk)
a→ q

for some q.

Example (Incomplete (deterministic) Tree Automaton)

Tree automaton A for {a(b,b)}:

ε
b→ qb

(qb,qb)
a→ qa

with Final(A) = qa

Closure under Complement: Completion

Example (Incomplete (deterministic) Tree Automaton)

Tree automaton A for {a(b,b)}:

ε
b→ qb

(qb,qb)
a→ qa

with Final(A) = qa

Example (Complementing A)

Add a sink state qs :

ε
b→ qb ε

a→ qs

(qb,qb)
a→ qa (qb,qa)

a→ qs (qa,qb)
a→ qs (qa,qa)

a→ qs

(qb,qb)
b→ qs (qb,qa)

b→ qs (qa,qb)
b→ qs (qa,qa)

b→ qs

(qs ,q)
a,b→ qs for all q ∈ {qa,qb,qs}

(q,qs)
a,b→ qs for all q ∈ {qa,qb,qs}

with Final(A) = {qb,qs}

Closure under Complement

Complementing A

(1) Determinize A

(2) Complete the result

(3) Switch final ↔ non-final states

Complement construction: Blow-up

Determinizing A: exponential blow-up (states: 2States(A))

Completing the result: blow-up in rules:
|Alphabet|× (2|States(A)|)k , where k is maximal rank
Alphabet(A)

Switching final ↔ non-final states: linear

Overall: Exponential blow-up

Natural Questions

General questions:

Are non-deterministic and deterministic ranked tree automata
equivalent? Yes.

Are regular tree languages closed under Bool. operations?
Yes.

Does it matter whether we read trees top-down or bottom-up?

Do we have a pumping lemma?

Can tree automata be minimized?

Complexity questions:
What is the complexity of deciding whether. . .

automaton A accepts a tree t?

automaton A accepts a tree at all?

automaton A accepts all trees of automaton B?

a set of automata accept a common tree?

Top-Down Tree Automata: Connection to Strings

Example (Strings are Unary Trees)

abcd = a(b(c(d))) =

a

b

c

d

Reading strings left-to-right
= Reading trees top-down

Top-Down Tree Automata

Example

∧

∨

∧

true false

true

∧

true ∨

false true

ε
true→ t

ε
false→ f

(t, t)
∧→ t (t, t)

∨→ t

(t, f)
∧→ f (t, f)

∨→ t

(f , t)
∧→ f (f , t)

∨→ t

(f , f)
∧→ f (f , f)

∨→ f

We need different rules

Top-Down Tree Automata

Example

∧

∨

∧

true false

true

∧

true ∨

false true

Init(A) = t

t
∧→ (t, t) t

∨→ (t,t)

f
∧→ (t, f) t

∨→ (t,f)

f
∧→ (f , t) t

∨→ (f,t)

f
∧→ (f , f) f

∨→ (f,f)

t
true→ ε f

false→ ε

We need different rules

Top-Down Tree Automata

A top-down tree automaton A consists of

Alphabet(A): finite set of alphabet symbols

States(A): finite set of states

Rules(A): finite set of transition rules

Init(A): finite set of initial states

where

Rules(A) are of the form q
a(k)

→ (q1, . . . ,qk)

Top-down tree automata also recognize all regular tree languages

Can Top-Down Tree Automata Be Determinized?

Top-Down Deterministic Tree Automaton

For every q ∈ States(A) and a ∈ Alphabet(A) there’s at most one
rule

q
a(k)

→ (q1, . . . ,qk)

Can Top-Down Tree Automata Be Determinized?

Top-Down TA do not recognize all regular languages!

Example

a

b c

a

c b

Init(A) = q0

q0
a→ (q,q)

q
b→ ε

q
c→ ε

also recognizes. . .
a

b b

a

c c

Natural Questions

General questions:

Are non-deterministic and deterministic ranked tree automata
equivalent? Yes.

Are regular tree languages closed under Bool. operations?
Yes.

Does it matter whether we read trees top-down or
bottom-up? Yes.

Do we have a pumping lemma?

Can tree automata be minimized?

Complexity questions:
What is the complexity of deciding whether. . .

automaton A accepts a tree t?

automaton A accepts a tree at all?

automaton A accepts all trees of automaton B?

a set of automata accept a common tree?

Pumping Lemma

Definition (Context)

A context is a tree with a hole

x

Pumping Lemma

Definition (Context Application)

Given the context C and a tree t, C [t] is obtained by plugging t
into C .

x

One can also apply a context to a context: C1[C2]
The result is a new context

The Pumping Lemma

Lemma (Pumping Lemma)

If L is regular, there is a constant k such that,

for every tree t ∈ L with depth at least k

there is a context C1, a (non-empty) context C2, and a small
tree t ′

such that

t = C1[C
′
2[t

′]] and

for every n ∈ N, C1[C
n
2 [t ′]] is in L.

What’s the use?

Show that languages are not regular.

Example (The Usual Suspect)

a

b

b

b

...

b

#

b

b

b

...

b

#

n n

Natural Questions

General questions:

Are non-deterministic and deterministic ranked tree automata
equivalent? Yes.

Are regular tree languages closed under Bool. operations?
Yes.

Does it matter whether we read trees top-down or
bottom-up? Yes.

Do we have a pumping lemma? Yes.

Can tree automata be minimized?

Complexity questions:
What is the complexity of deciding whether. . .

automaton A accepts a tree t?

automaton A accepts a tree at all?

automaton A accepts all trees of automaton B?

a set of automata accept a common tree?

Minimization: Myhill-Nerode Theorem

Definition (Congruence)

A congruence is an equivalence relation on trees closed under
context

If ≡ then

∀ : ≡

Minimization: Myhill-Nerode Theorem

Definition (Congruence of a Language)

If L is a tree language then we define

t1 ≡L t2 if, for all contexts C : C [t1] ∈ L⇔ C [t2] ∈ L

Minimization: Myhill-Nerode Theorem

Theorem (Myhill-Nerode for Trees)

The following are equivalent:

(a) L is a regular tree language

(b) L is the union of some equivalence classes of finite index

(c) the relation ≡L is a congruence of finite index

Minimal automaton A for L follows from this classification:
size of A = number of equivalence classes of ≡L

Natural Questions

General questions:

Are non-deterministic and deterministic ranked tree automata
equivalent? Yes.

Are regular tree languages closed under Bool. operations?
Yes.

Does it matter whether we read trees top-down or
bottom-up? Yes.

Do we have a pumping lemma? Yes.

Can tree automata be minimized? Yes.

Complexity questions:
What is the complexity of deciding whether. . .

automaton A accepts a tree t?

automaton A accepts a tree at all?

automaton A accepts all trees of automaton B?

a set of automata accept a common tree?

	Introduction
	Ranked Tree Automata
	Properties and Algorithms

