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Abstract. We study the data complexity of regular trail and simple path queries on
undirected graphs. Using techniques from structural graph theory, ranging from the
graph minor theorem to group-labeled graphs, we are able to identify several tractable
and intractable subclasses of the regular languages. In particular, we establish that trail
evaluation for simple chain regular expressions, which are common in practice, is tractable,
whereas simple path evaluation is tractable for a large subclass. The problem of fully
classifying all regular languages is quite non-trivial, even on undirected graphs, since it
subsumes an intriguing problem that has been open for 30 years.

1. Introduction

Graph databases are rapidly gaining importance [SBV+21]. Indeed, the graph query language
GQL [DFG+21, GQLa] is now going through ISO standardization, which is a significant
milestone. The standardization effort is a result of intense collaboration between industry
and academia [GQLb]. While the GQL project is directly influenced1 by academic work on
regular queries [RRV15] and GXPath [LMV16], it builds heavily on GCore [AAB+18], which
is a light-weight query language for property graphs, developed by partners in academia
and industry. In GQL [DFG+21], the evaluation of regular path queries (RPQs) is being
considered in different modes: simple paths, trails, shortest paths, or at most k many paths.
These variants are chosen to ensure that only a finite number of results needs to be returned.

The LDBC and the WG3 do not only collaborate on query language design. The LDBC
also has a number of working groups focusing on the design of schema languages for property
graphs. These groups have generated an initial proposal for key constraints for property
graphs [ABD+21] and their generalization to cardinality constraints, which evolved into
a deeper study on threshold queries [BDF+21]. Cardinality constraints are similar to key
constraints in the sense that they do not impose uniqueness of an element in the database,
but allow a given number to exist. Similarly, threshold queries return the answers of a given
query until a given number of outputs is reached.

Key words and phrases: Graph databases, regular path queries, regular languages, enumeration, query
languages, trails, simple paths.
∗ A preliminary version of this paper is accepted to PODS 2022 [MP22].

1This can be seen in the GQL influence graph [GQLb].
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Shortest paths and arbitrary path semantics have been studied in depth, for example
in [Bar13, BFR19, BLLW12, BLR14, BOS15, BT16, CGLV02, CGLV00b, CGLV00a, CS21,
DT01, FSS14, FGK+20, FLS98, MW95, LMV13, RRV17].

Although simple path evaluation has already been studied in the late 80’s and mid
90’s [CMW87, MW95], these early results showed that even relatively simple expressions
are NP-hard to evaluate. After these results, research on RPQ evaluation mainly focused on
unrestricted paths. A renewed interest in trails and simple paths [ACP12, BBG20, MNT20,
MT19, LM13] was pushed by graph query language standards and systems, but is still
lagging behind.

The present article continues the line of work that was started in [BBG20, MNT20].
These two papers fully classify the data complexity of RPQ simple path evaluation [BBG20]
and trail evaluation [MNT20] over edge-labeled directed graphs. In a nutshell, these papers
discovered the classes of regular languages SPtract, resp., Ttract, for which, assuming P 6= NP,
the data complexity of simple path, resp., trail evaluation, is tractable if and only if the
expression belongs to SPtract, resp., Ttract. For the broad community, the take-away messages
are the following. First, the majority of RPQs that users ask in practice2 indeed belong to the
tractable classes, which is good news. Second, SPtract ( Ttract, that is, “efficient” evaluation
is possible for more RPQs under trail evaluation than under simple path evaluation.

This paper wants to take two navigational features of graph databases into account:
undirected (aka bidirectional) edges and two-way navigation. Both of these features are
supported by today’s leading graph database engines and query languages3 and significantly
impact the trail and simple path evaluation of RPQs. Indeed, property graphs [AAB+17]
model the data as a mixed multigraph, that is, a multigraph with directed and/or undirected
edges and the GQL standardization [DFG+21] supports navigation on undirected edges.

Our focus here is on the data complexity of trail and simple path evaluation of ordinary
RPQs on undirected graphs. As we discuss later, our results also contribute to understanding
two-way RPQs (2RPQs).

Related Work. Cruz, Mendelzon and Wood [CMW87] designed one of the earliest naviga-
tional languages for graph databases. Motivated by early applications of graph databases,
their language uses simple paths semantics, that is, they do not allow loops in the path.
Mendelzon and Wood [MW95] observed that under simple path semantics querying a graph
database is already NP-complete for relatively simple expressions like a∗ba∗ and (aa)∗. These
two results heavily rely on the work of Fortune et al. [FHW80], who showed NP-completeness
of the two disjoint paths problem on directed graphs, and LaPaugh and Papadimitriou [LP84],
who showed that the even length simple path problem on directed graphs is NP-complete.

While Mendelzon and Wood [MW95] showed that the problem can be decided in
polynomial time for downward closed languages, the overall complexity of simple path
semantics was considered as too high and database systems therefore preferred arbitrary
path semantics.

New interest in simple path semantics was sparked in 2010 when the W3C added regular
expressions to SPARQL 1.1 queries in the form of SPARQL property paths. These property
path were evaluated under a semantics based on simple paths. Because of the studies about

2We refer to [BMT20, BMT19] for detailed overviews of RPQs used in query logs.
3Tigergraph allows undirected edges [Tig21, Defining a Graph Schema] and Neo4j Cypher allows specifying

match patterns direction-agnostically. Two-way navigation is possible in either Tigergraph’s GSQL, Neo4j’s
Cypher, and SPARQL 1.1.
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the complexity of SPARQL 1.1 property paths [ACP12, LM13], SPARQL switched their
semantics away from counting simple paths. Shortly afterwards, Bagan et al. [BBG20]
provided a dichotomy for the data complexity of SimPath. They defined a class SPtract such
that the problem is in P for each language in SPtract and NP-complete otherwise. Martens
et al. [MNT20] give a similar dichotomy for paths that do not allow repetition of edges.

In the meantime, most work focused on arbitrary and shortest paths semantics, for
which the evaluation problem is well-known to be tractable using standard product au-
tomata techniques [MW95]. Recently, Casel and Schmid [CS21] showed that this approach
is essentially optimal. There is a wide literature on RPQs, which led to several sur-
veys [AAB+17, ARV19, Bar13, CGLV03, Woo12].

Indeed, RPQs have been extended in various ways. For example, to two-way regular
path queries [BLLW12, BRV13, CGLV00a] that allow navigation in the reverse direction of
an edge, or nested regular path queries [BPR12] that extend two-way regular path queries
with additional node-tests. The favorable complexity of RPQs also carries over to these
classes, see [Bar13] for an overview.

Modern graph query languages are often based on graph pattern matching. Examples
are Cypher from Neo4j [FGG+18], GSQL from TigerGraph [Tig21], and PGQL from
Oracle [PGQ21], as well as industry/academia prototypes such as G-CORE [AAB+18] and
GPML [DFG+21]. Conjunctions of RPQs (CRPQs) have been introduced in [CMW87] and
been studied in several follow-up works, for example [BOS15, CGLV03, CGLV00a, CGLV02,
DT01, Fig20, FGK+20, FLS98, RRV17, RBV17]. Furthermore, CRPQs were extended with
the ability to output and/or compare paths in [BLLW12, BLR14, BM17, FS13] and with
data value comparisons [LMV16].

Graph theoreticians have extensively studied closely related problems on unlabeled
or edge-colored undirected graphs, for example [ADF+08, ADdlV+10, APY91, GdLMM12,
GLM+09, GLMM13, GKMW11, KTW18, KW10, Men27, RS95]. We discuss the connection
to this field in Section 2.6.

Our Contribution. Our contributions can be summarized as follows. After obtaining a
number of closure and non-closure properties of the tractable classes of languages, we present
a dichotomy on a generalization of the undirected two disjoint path problem with edge labels.
We use this dichotomy to fully classify the complexity of trail and simple path evaluation of
languages of the form A∗wB∗ on undirected graphs, where A and B are sets of symbols and
w is a word. We fully classify the complexity of languages of the form w∗, except in the case
where this problem degenerates to testing the length of paths modulo some k > 2, which is
an open problem since 1991 [APY91]. We study simple chain regular expressions (SCREs),
which is a class of practically common languages and show that their trail evaluation is
always tractable. This, however, is not the case for simple path evaluation, but we are able
to identify large tractable subclasses. We generalize recent results on group-labeled graphs
to obtain that the data complexity of parity languages is tractable for both trail and simple
path evaluation. Finally, we show that all tractability results imply that enumeration of the
output with polynomial-time delay is possible.

A preliminary version of this article is published as [MP22]. We extend this work by
providing full proofs and showing that SPtract ⊆ UTtract.

While the last part focused on directed multigraphs, we now turn to undirected multi-
graphs. This will help us to understand the data complexity of RPQs on graph databases with
undirected or bidirectional edges, which is supported by the major systems. Furthermore, it
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helps us to understand the complexity of SimPath and Trail for two-way languages, that is,
regular languages over Σ ] {ā | a ∈ Σ}, where ] denotes disjoint union and the symbols ā
allow to match edges in reverse direction. More precisely, this means that, whenever there is
an edge (u, a, v) in a directed graph, we are also allowed to consider it as the edge (v, ā, u).
For instance, in the directed graph in Figure 1 (left), the word bāc matches the path from s
to t going through v2 and v1.

While interesting in their own right, RPQs over undirected multigraphs also teach
us something about two-way RPQs on directed multigraphs. To see this, it is useful to
consider for a directed multigraph its underlying undirected multigraph, which we do not
define formally but illustrate in Figure 1. (Essentially, it is obtained by “forgetting” the
direction of the edges.)

If we denote by h the homomorphism that maps every Σ-symbol a to (a+ ā), then a
language L(r) is tractable for USimPath if and only if the language L(h(r)) is tractable for
SimPath. For example, simple path evaluation of the two-way regular expression ((a+ ā)(a+
ā))∗ corresponds to finding a simple a-path of even length in the underlying undirected
graph.

2. Definitions and Main Problems

We use [n] to denote the set of integers {1, . . . , n}. By Σ we always denote a finite alphabet,
that is, a finite set of symbols. A (Σ-)symbol is an element of Σ. We always denote symbols
by a, b, c, d and their variants, like a′, a1, b1, etc. We denote sets of symbols by uppercase
letters like A, B, and their variants, like A′, A1, A′1 etc. The size of a set of symbols A,
denoted |A|, is the number of elements in the set. A word (over Σ) is a finite sequence
w = a1 · · · an of Σ-symbols. The length of w, denoted by |w|, is its number of symbols n.
We denote the empty word by ε. The reverse of w is wrev = an · · · a1. For 0 ≤ i ≤ j ≤ n, we
denote by w[i, j] the substring ai · · · aj of w.

2.1. Regular Expressions and RPQs. Regular expressions are defined as follows: ∅, ε,
and every Σ-symbol is a regular expression; and if r and s are regular expressions, then
(r · s), (r + s), and (r∗) are regular expressions. To improve readability, we use associativity
and the standard priority rules to omit braces in regular expressions. We usually also omit
the outermost braces. The size |r| of a regular expression is the number of occurrences of
Σ-symbols in r. For example, |((a · b) · a)∗| = 3. We define the language L(r) of r as usual.

We use the following standard abbreviations and alternative notations: (rs) abbreviates
(r·s), (r?) abbreviates (r+ε), and (r+) abbreviates (rr∗). Furthermore, if S = {a1, . . . , an} ⊆
Σ, then we identify S with the expression (a1 + · · ·+ an). We allow S = ∅, in which case
L(S) = ∅. As such, L(Σ∗) contains every word and L(∅∗) = {ε}. For n ∈ N, we use rn

to abbreviate the n-fold concatenation r · · · r of r. We abbreviate (r?)n by r≤n. In the
context of graph databases, regular path queries (RPQs) are regular expressions that can
be evaluated on graphs and return an output. In this thesis, we will blur the distinction
between them (language acceptors vs. queries) and use “regular expression” and RPQ as
synonyms.
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The reversal of a language L is Lrev = {wrev | w ∈ L}. Given a language L and a word
w, the derivative4 of L with respect to w is defined as

w−1L := {v | wv ∈ L}.

2.2. Automata. A nondeterministic finite automaton (NFA) N is a tuple (Q,Σ, δ, QI , QF ),
where Q is a finite set of states, Σ is a finite alphabet, δ : Q×Σ×Q is the transition relation,
QI ⊆ Q is the set of initial states, and QF ⊆ Q is the set of accepting states. By δ∗(w) we
denote the set of states reachable by N after reading w, that is, δ∗(ε) = QI and, for every
word w and symbol a, we define δ∗(wa) = {q | (q′, a, q) ∈ δ and q′ ∈ δ∗(w)}. The size of an
NFA N , denoted |N |, is its number of states |Q|. We define the language L(N) of N as
usual.

We define an NFA A to be a tuple (Q,Σ, I, F, δ) where Q is the finite set of states;
I ⊆ Q is a set of initial states; δ ⊆ Q× Σ×Q is the transition relation; and F ⊆ Q is the
set of accepting states.

2.3. Graph Databases and Paths. We use edge-labeled directed and undirected multi-
graphs as abstractions for graph databases. We start with the definition of directed multi-
graphs. An edge-labeled directed multigraph G = (V,E, E) consists of a finite set of nodes
V , a finite set of edges E, and a function E : E → V ×Σ× V that maps each edge identifier
to a tuple (v1, a, v2) describing the origin, the label, and the destination node of the edge.
We denote v1 by origin(e), a by lab(e) and v2 by destination(e). We emphasize that E does
not need to be injective, that is, there might be several edges with identical origin, label,
and destination.

An edge-labeled undirected multigraph G = (V,E, E) consists of a finite set of nodes V , a
finite set of edges E, and a function E : E → 2V ∪Σ with |E(e)∩Σ| = 1 and 1 ≤ |E(e)∩V | ≤ 2
for every e ∈ E. Given an edge e ∈ E, we denote by Node(e) = E(e) ∩ V its nodes and by
lab(e) = E(e) ∩ Σ its label. For convenience, in undirected multigraphs, we also denote E(e)
as (u, a, v), where {u, v} = Node(e) and a = lab(e). As such, (u, a, u) denotes a self-loop
with label a on node u. With this notion, (u, a, v) and (v, a, u) are the same in undirected
graphs, and we will order u and v in our notation such that it optimizes readability.

Given an (un-)directed multigraph G = (V,E, E), the size of G is defined as |V |+ |E|.
A (simple) graph is a multigraph where E is injective. We sometimes denote E(e) as (u, v) if
the label does not matter.
For an undirected multigraph G = (V,E, E) and a set X ⊆ V , the induced subgraph of G
on X is the multigraph G′ = (X,E′, E

∣∣
E′

) with E′ = {e | e ∈ E and Node(e) ⊆ X}. For a
label a, we denote by Ga the subgraph of G = (V,E, E) restricted to edges labeled a, that
is, Ga = (V,Ea, E

∣∣
Ea

) is a multigraph with Ea = {e | e ∈ E and lab(e) = a}.
A path p from s to t in an (un-)directed multigraph G is a sequence of edges e1 · · · ek

in G such that E(e1) · · · E(ek) can be written as (s, a1, v1)(v1, a2, v2) · · · (vk−1, ak−1, t) for
some nodes v1, . . . , vk−1 ∈ V and labels a1, . . . , ak−1 ∈ Σ. The set of nodes of path p is
V (p) = {s, v1, . . . , vk−1, t}. The length of p, denoted by |p|, is the number of edges in p. A
path is a trail if every edge e appears at most once5 and a simple path if all its nodes are

4Also known as Brzozowski derivative [Brz64].
5We note that it is allowed that for i 6= j it holds that E(ei) = E(ej).
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Figure 1. A directed multigraph (left) and an undirected multigraph (right)

different, that is, if |V (p)| = |p|+ 1. We note that each simple path is a trail but not vice
versa.

A path p from v to v is a simple cycle if |V (p)| = |p|. An example of a simple cycle is
the path p = e1e2 with E(e1) = (s, b, v1), E(e2) = (v1, b, s) in Figure 1.

We denote lab(e1) · · · lab(ek) by lab(p). Given a language L ⊆ Σ∗, path p matches L if
lab(p) ∈ L. If r is a regular expression (respectively N is an NFA), we simplify notation and
also say that p matches r when p matches L(r). We use a-edge to refer to an edge with label a
(that is, with lab(e) = a) and a-path to refer to a path that consists only of a-edges. Given a
trail p and two edges e1 and e2 in p, we denote the subpath of p from e1 to e2 by p[e1, e2]. The
concatenation of paths p1 = e1 · · · ek and p2 = ek+1 · · · en is simply the concatenation p1p2 of
the two sequences. Notice that the last node of p1 needs to be the same as the first node of p2.

We illustrate some of these notions on the directed and undirected multigraphs in
Figure 1. The path p = e1e2 with E(e1) = (s, b, v2), E(e2) = (v2, b, s) is a trail, both
in the directed and the undirected multigraph, since e1 6= e2. But it is no simple path
because |p| = 2 and V (p) = {s, v2}, and thus |V (p)| 6= |p| + 1. In both multigraphs
there are two different a-paths from s to t that are simple paths. Both of them can be
written as (s, a, v1)(v1, a, v2)(v2, a, v3)(v3, a, t). Each simple path is also a trail. If we drop
the restriction to simple paths, then there are infinitely many a-paths from s to t in the
undirected multigraph, for example (s, a, v1)(v1, a, s)(s, a, v1)(v1, a, v2)(v2, a, v3)(v3, a, t).

2.4. Main Problems. We will study variants of the SimPath and Trail problem.

SimPath(L)
Given: A directed multigraph G = (V,E, E), two nodes x, y ∈ V
Question: Is there a simple path from x to y in G that matches L?

Trail(L)
Given: A directed multigraph G = (V,E, E), two nodes x, y ∈ V .

Question: Is there a trail from x to y in G that matches L?

Note that we study the data complexity of SimPath and Trail, that is, we assume that
the language L (the query) in the problems SimPath(L) and Trail(L) is not part of the input,
but fixed. Therefore, each language gives rise to a different computational problem. We note
that in this setting it plays no role whether L is given as a DFA, NFA, or regular expression.

We will study these problems on undirected multigraphs. On directed (multi-)graphs
these problems have already been studied in depth [BBG20, MNT20, MNP21]. We will
denote variants on undirected multigraphs by adding a U.
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USimPath(L)
Given: An undirected multigraph G, nodes s, t.

Question: Is there a simple path from s to t in G that matches L?

UTrail(L)
Given: An undirected multigraph G, nodes s, t.

Question: Is there a trail from s to t in G that matches L?

2.5. Fundamental Subclasses of Regular Languages.

2.5.1. Downward Closed Languages (DC). A language L is downward closed6 (DC) if it is
closed under taking subsequences. That is, for every word w = a1 · · · an ∈ L and every
sequence 0 < i1 < · · · < ik < n + 1 of integers, we have that ai1 · · · aik ∈ L. Perhaps
surprisingly, downward closed languages are always regular [Hai69]. Furthermore, they can
be defined by a clean class of regular expressions (which was shown by Jullien [Jul69] and
later rediscovered by Abdulla et al. [ACBJ04]), which is defined as follows.

Definition 2.1. An atomic expression over Σ is an expression of the form (a + ε) or
of the form (a1 + · · · + an)∗, where a, a1, . . . , an ∈ Σ. A product is a (possibly empty)
concatenation e1 · · · en of atomic expressions e1, . . . , en. A simple regular expression is of
the form p1 + · · ·+ pn, where p1, . . . , pn are products.

Another characterization is by Mendelzon and Wood [MW95], who show that a regular
language L is downward closed if and only if its minimal DFA AL = (QL,Σ, iL, FL, δL)
exhibits the suffix language containment property, which says that if δL(q1, a) = q2 for some
symbol a ∈ Σ, then we have Lq2 ⊆ Lq1 .7 Since this property is transitive, it is equivalent to
require that Lq2 ⊆ Lq1 for every state q2 that is reachable from q1.

Theorem 2.2 ([ACBJ04, Hai69, Jul69, MW95]). The following are equivalent:

(1) L is a downward closed language.
(2) L is definable by a simple regular expression.
(3) The minimal DFA of L exhibits the suffix language containment property.

2.5.2. Tractable class for Regular Simple Path Queries (SPtract). Bagan et al. [BBG20]
introduced8 the class SPtract, which characterizes the class of regular languages L for which
the regular simple path query (SimPath) problem is tractable. While they studied SimPath
on directed simple graphs, their results immediately carry over to multigraphs: since simple
paths can use every node at most once, they cannot use more than one edge between any
pair of nodes. Thus regarding simple path semantics, the results on a multigraph will be no
different from the results on the underlying simple graph.

Theorem 2.3 (Theorem 3 in Bagan et al. [BBG20]). Let L be a regular language.

6The term downward closed comes from being closed under taking the smaller elements in the subsequence
ordering which, due to Higman’s Lemma, is a well quasi ordering.

7They restrict q1, q2 to be on paths from iL to some state in FL, but the property trivially holds for q2
being a sink-state.

8They called the class Ctract, which stands for “tractable class”. We distinguish between SPtract and Ttract

here to avoid confusion between simple paths and trails.
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(1) If L is finite, then SimPath(L) ∈ AC0.
(2) If L ∈ SPtract and L is infinite, then SimPath(L) is NL-complete.
(3) If L /∈ SPtract, then SimPath(L) is NP-complete.

One characterization of SPtract is the following (Theorem 6 in [BBG20]):

Definition 2.4. SPtract is the set of regular languages L such that there exists an i ∈ N
for which the following holds: for all w`, w, wr ∈ Σ∗ and w1, w2 ∈ Σ+ we have that, if
w`w

i
1ww

i
2wr ∈ L, then w`w

i
1w

i
2wr ∈ L.

Bagan et al. [BBG20] also gave a characterization of SPtract in terms of regular expression:

Theorem 2.5. Let L be a regular language. Then L belongs to SPtract if and only if L can
be written as a union of regular expressions of the form

w`(w1 + ε)(A≥k11 + ε)(w2 + ε) · · · (A≥knn + ε)wr

for some n, k1, . . . , kn ∈ N, words w`, w1, . . . , wn, wr ∈ Σ∗, and sets A1, . . . , An ⊆ Σ.

2.5.3. Tractable class for Regular Trail Queries (Ttract). Martens et al. [MNT20] introduced
the class Ttract, which charaterized the class of regular language L for which the regular trail
query (Trail) problem is tractable. They show in an extended version [MNP21] that their
results also hold on multigraphs.

Theorem 2.6 (Theorem 4.1 in Martens et al. [MNT20, MNP21]). Let L be a regular
language.

(1) If L is finite, then Trail(L) ∈ AC0.
(2) If L ∈ Ttract and L is infinite, then Trail(L) is NL-complete.
(3) If L /∈ Ttract, then Trail(L) is NP-complete.

Martens et al. [MNT20] give several equivalent definitions of Ttract, one of them is the
following:

Definition 2.7. Ttract is the class of regular languages L such that there exists an i ∈ N for
which the following holds: for all w`, w, wr ∈ Σ∗ and w1 = aw′1 and w2 = w′2 we have that
w`w1ww2wr ∈ L implies w`w1w2wr ∈ L.

2.6. Context. The task of understanding USimPath and UTrail for all regular languages
(which is a major step towards understanding SimPath and Trail for all two-way regular
languages) is very general and subsumes a long open standing problem to which we will get
later in this section. First, consider the following problems.

kDisjointPaths
Given: A multigraph G, node pairs (s1, t1), . . . , (sk, tk).

Question: Are there pairwise disjoint paths from si to ti in G for every i ∈ [k]?

These problems come in four variants for each k: for multigraphs that are directed or
undirected, and for paths that are required to be node-disjoint (no common node) or
edge-disjoint (no common edge).

Mod-k-Path
Given: A multigraph G, nodes s, t.

Question: Is there a path of length 0 modulo k from s to t in G?
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These problems also come in four variants: for multigraphs that are directed or undirected,
and for simple paths or trails.

These problems are very relevant to SimPath and Trail on directed and undirected
multigraphs: the Mod-k-Path problem is equivalent to deciding if there is a simple path/trail
from s to t that matches (ak)∗ in G. Let Lequiv = a∗a1aka

∗a2ak+1...a
∗ak−1a2k−2a

∗, where
a, a1, . . . , a2k−2 ∈ Σ are pairwise different. The kDisjointPaths problem is equivalent to
deciding if there is a simple path/trail from s1 to tk that matches Lequiv in a G.9 We make
this equivalence more explicit.

• We can find a simple path/trail from s to t in G that matches Lequiv as follows: We
iterate over all tuples (p1, . . . , pk−1) of node/edge-disjoint simple paths/trails pi such that
pi matches aiak−1−i. Assume that path pi is from ui to vi. It then remains to test for k
node/edge-disjoint paths matching a∗ from s to u1, vi to ui+1, and from vk−1 to t. This
is equivalent to solving kDisjointPaths in the subgraph Ga of G.
• We can solve kDisjointPaths as follows: (Re)label every edge in G with a. Add new nodes

and edges labeled aiak−1+i from ti to si+1 for each i ∈ [k − 1]. Then this is equivalent to
deciding if there is a simple path/trail from s1 to tk in G that matches Lequiv.

Since Mod-k-Path and kDisjointPaths are NP-complete for k ≥ 2 on directed graphs [LP84,
FHW80], these problems can be used to show NP-hardness. For example, Mendelzon and
Wood [MW95] use TwoDisjointPaths to show that SimPath(a∗ba∗) is NP-complete. Bagan
et al. [BBG20] also use a reduction from TwoDisjointPaths to show that SimPath(L) is
NP-complete for regular languages L /∈ SPtract, as do Martens et al. [MNT20] for trail
semantics.

On the other hand, some of these problems are tractable on undirected multigraphs.
This allows us to prove tractability results for USimPath and UTrail by reductions to cases
in which Mod-k-Path and kDisjointPaths are tractable.

We now discuss in detail what is known about Mod-k-Path and kDisjointPaths on
undirected (multi-)graphs.

Unlabeled, Undirected. The famous minor theorem [RS95] implies that kDisjointPaths is
tractable for every fixed k on undirected graphs, independent of whether we require node-
disjoint or edge-disjoint paths. Indeed, for node-disjoint paths, this problem is equivalent to
deciding if the set of k distinct edges (s1, t1), . . . , (sk, tk) is a minor of a given undirected
graph. We note that for node-disjoint paths, it does not play a role whether we consider
multigraphs or restrict ourselves to graphs, since every node can only be used once and
therefore, no edge between a pair of nodes can be used more than once. For edge-disjoint
paths, Jarry and Pérennes [JP09, Lemma 2] show how to decide if k edge-disjoint paths in
undirected, unlabeled multigraphs in polynomial time exist: They split each edge before
applying the line graph construction and then use the minor theorem.

Therefore, the following Proposition follows from Robertson and Seymour’s Graph Minor
Project [RS95] and Jarry and Pérennes [JP09, Lemma 2]:

Proposition 2.8. kDisjointPaths on undirected multigraphs is in polynomial time for node-
and edge-disjoint paths.

9We use two different symbols aiak−1+i to simulate a directed edge even if G is an undirected multigraph.
If G is a directed multigraph, the langugage can be simplified.
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The Mod-k-Path problem for k = 2 is tractable for simple paths [LP84].10 The situation
for k ≥ 3 is rather intriguing. Arkin et al. [APY91] proved that, for every fixed k > 1, one
can test in polynomial time whether there is an undirected simple path of length different
from 0 mod k between two given nodes. Although this result allows to solve Mod-k-Path for
k = 2, there is no clear reduction from Mod-k-Path to this problem if k > 2. Indeed, the
complexity of Mod-k-Path for k = 3 has been open for 30 years [APY91].

When it comes to parity (mod 2) conditions, there has been recent progress. For instance,
the minor theorem has been extended to incorporate parities [KRW11, Huy09], which was a
non-trivial effort. As a consequence, we now know that we can test in polynomial time if a
given undirected graph has, k node-disjoint simple paths of even length.

Concerning edge-disjoint trails, Kawarabayashi and Kobayashi [KK16] defined the
extended line graph construction, which maintains parity information and allows to transfer
from known results on node-disjoint simple paths with parity constraints. The construction
replaces every vertex with a clique in which every edge is subdivided into two edges. The
size of the clique replacing v is the number of edges adjacent to v.

We show how this idea can be tweaked to cope with arbitrary modulos. If we want
to test path lengths modulo m, we subdivide every edge of the new cliques into m edges.
Furthermore, start- and end-nodes (s1, t1), . . . , (sk, tk) can be incorporated by adding extra
nodes.

Lemma 2.9. Let G be an undirected multigraph. There are trails from si to ti of length ji
mod mi in G which are pairwise edge-disjoint if and only if there are simple paths from s∗i
to t∗i of length ji mod mi in the extended line-graph of G with respect to (si, ti)i∈[k] modulo
m1 ·m2 · · ·mk which are pairwise node-disjoint.

Proof. We start with the exact definition of extension to the extended line graph from
Kawarabayashi and Kobayashi [KK16] which now incorporates node-pairs and arbitrary
modulo m conditions. Let an undirected multigraph G = (V,E, E), and node-pairs
(s1, t1), . . . , (sk, tk) be given. Let < be some order on E. We can assume without loss
of generality that si 6= ti or ji 6= 0 for each i (otherwise, this pair is trivially satisfied and
can thus be removed). The extended line graph

Lm1·m2···mk
(G, (sj , tj)j∈[k]) = ((G∗), (s∗j , t

∗
j )j∈[k])

where G∗ = (V ∗, E∗, E∗) is an undirected graph defined by:

V ∗ = V ∗1 ∪ V ∗2 ∪ V ∗s ∪ V ∗t
V ∗1 = {(v, e) | v ∈ V, e ∈ E, e is adjacent to v}
V ∗2 = {(v, {e1, e2}, i) | v ∈ V, e1, e2 ∈ E, e1 and e2 are adjacent to v and i ∈ [m− 1]}
V ∗s = {s∗j | j ∈ [k]} ∪ {(s∗j , (sj , e), i) | e is adjacent to sj , j ∈ [k], i ∈ [m− 1]}
V ∗t = {t∗j | j ∈ [k]} ∪ {(t∗j , (tj , e), i) | e is adjacent to tj , j ∈ [k], i ∈ [m− 1]}
E∗ = E∗1 ∪ E∗2 ∪ E∗s ∪ E∗t
E∗1 = {((v, e1)(v, {e1, e2}, 1)), ((v, {e1, e2},m− 1), (v, e2)) |

e1 < e2, (v, e1), (v, {e1, e2}) ∈ V ∗, v ∈ V }
∪ {((v, {e1, e2}, i)(v, {e1, e2}, i+ 1)) |

(v, {e1, e2}, i), (v, {e1, e2}, i+ 1) ∈ V ∗, i ∈ [m− 2]}

10They attribute the first algorithm for this problem to Jack Edmonds due to private communication.
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E∗2 = {((v1, e)(v2, e)) | e is an edge connecting v1 and v2}
E∗s = {(s∗j , (s∗j , (sj , e), 1)), ((s∗j , (sj , e),m− 1), (sj , e)) |

s∗j , (s
∗
j , (sj , e), 1), (sj , e) ∈ V ∗, j ∈ [k]}

∪ {((s∗j , (sj , e), i), (s∗j , (sj , e), i+ 1)) |
(s∗j , (sj , e), i), (s

∗
j , (sj , e), i+ 1) ∈ V ∗, j ∈ [k], i ∈ [m− 2]}

E∗t = {(t∗j , (t∗j , (tj , e), 1)), ((t∗j , (tj , e),m− 1), (tj , e)) |
t∗j , (t

∗
j , (tj , e), 1), (tj , e) ∈ V ∗, j ∈ [k]}

∪ {((t∗j , (tj , e), i), (t∗j , (tj , e), i+ 1)) |
(t∗j , (tj , e), i), (t

∗
j , (tj , e), i+ 1) ∈ V ∗, j ∈ [k], i ∈ [m− 2]}

Furthermore, E∗(x, y) = (x, y) for all (x, y) ∈ E∗. We note that the sets V ∗s ∪V ∗t and E∗s ∪E∗t
are empty if no distinguished nodes sj , tj exist.

We now prove the lemma. Let ((G∗), (s∗j , t
∗
j )j∈[k]) = Lm1·m2···mk

(G, (sj , tj)j∈[k]). Since
in G∗ each path through each newly added clique has length 0 mod mi, only edges of the
form ((v1, e)(v2, e)) count towards length modulo mj . Given a simple path from s∗j to t∗j in
G∗, one can construct a trail from sj to tj with the same length modulo mj by replacing
edges of the form ((v1, e)(v2, e)) with e and omitting all edges of different forms. On the
other hand, starting from a trail in G, one can add transitions (via the cliques) between
each pair of edges to obtain a simple path in G∗. Since adding those transitions does not
count towards the length modulo mj , the so-constructed simple path has the same length
modulo mj . Finally, we note that node-disjoint paths in G∗ cannot share edges of the form
((v1, e)(v2, e)), thus their corresponding trails must be edge-disjoint and vice versa.

This version of the extended line graph will be useful in Section 11.

Labeled, Undirected. On undirected labeled graphs, the problem USimPath((ab)∗) has
been studied under the name properly edge-colored (PEC) simple path in a two-colored
graph. Here, a path is defined to be PEC if its adjacent edges have different colors. It is
decidable polynomial time if a PEC simple path from s to t exists. For two colors, this
result is attributed to Edmonds [Man95] and was generalized by Szeider [Sze03] to any
number of colors. Abouelaoualim et al. [ADF+08] give a polynomial time that decides in
polynomial time if a PEC trail exists and also works on multigraphs. Thus USimPath((ab)∗)
and UTrail((ab)∗) are in polynomial time.

Next, we discuss a number of results on two disjoint paths, since we will sometimes rely
on them in the paper. To this end, for two languages L1 and L2, the problem of finding
node- (respectively, edge- ) disjoint L1/L2 simple paths (respectively, trails) refers to finding
two node- (respectively, edge-) disjoint simple paths (respectively, trails)

p1 and p2 such that lab(p1) ∈ L1 and lab(p2) ∈ L2 between given nodes (s1, t1), (s2, t2).11

As such, finding disjoint a∗/b∗ paths is equivalent to finding two monochromatic disjoint
paths in an undirected graph with two edge colors. For edge-disjointness, the latter problem
is in P as a-paths will always be edge-disjoint from b-paths. The problem therefore reduces to
reachability. For node-disjointness, the problem is NP-complete, see [GdLMM12, Theorem
16]. Finding node- or edge-disjoint (ab)∗/(ab)∗ paths is NP-hard [ADF+08] (a closely

11The relationship between such problems and ours is that finding node-disjoint L1/L2 simple paths is
closely related to finding a single simple path labeled L1aL2, for some label a (similar for edge-disjoint paths
and trails).
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related problem was studied in [CMM+94]). Finally, node-disjoint (ab)∗/a∗ simple paths is
NP-complete by Gourvès et al. [GdLMM12, Proof of Corollary 10].

2.7. Related Work. Paths on undirected graphs have been extensively studied. A seminal
line of work was accomplished by Robertson and Seymour [RS95] and resulted in the Graph
Minor Theorem, which was followed by work on simplifying the proof, extending the results,
and obtaining better running times [GKMW11, KTW18, KW10]. Huynh [Huy09] extended
this minor theorem to group-labelled graphs. Although group-labelled graphs are quite
different form undirected graphs, they coincide modulo 2 (but not for other modulos). Thus,
in particular, Huynh’s work of implies a minor theorem with parity conditions, i.e., it gives
an algorithm to find structures with certain path length modulo 2 in polynomial time.
Independently and with different methods, Kawarabayashi et al. [KRW11] also proved this
result and with an improved running time.

The problem of finding a simple path of length modulo 3 has also been studied extensively,
but is not yet solved on undirected graphs. Arkin et al. [APY91] give a linear-time algorithm
to decide whether all paths between two specified nodes are of length P mod Q, for fixed
integers P and Q.

Many works also look for paths of certain modulo in very restricted kinds of graphs.
For example, Deng and Papadimitriou [DP91] show that between any two nodes of a cubic,
planar, three-connected graph there are three paths whose lengths are 0, 1, and 2 modulo
3, respectively. Amar and Manoussakis [AM90] give several sufficient conditions on the
half-degrees of a bipartite digraph for the existence of cycles and paths of various lengths.

Another line of work, which is similar to what we consider here, was obtained by
Abouelaoualim et al. [ADF+08, ADdlV+10] and Gourvès et al. [GdLMM12, GLM+09,
GLMM13]. They study simple paths and trails with certain color conditions in edge-colored
graphs. Also in this setting, people studied this problem on restricted variants of graph.
For example, Manoussakis [Man95] studied the existence of properly edge colored paths in
complete graphs, while Abouelaoualim et al. [ADdlV+10] focused on graphs with degree
conditions. Others try to characterize graphs that can be colored with 2 colors such that
there are properly edge-colored (simple) paths or trails between any pair of nodes, see
e.g. [GM18].

3. First Observations

Let USPtract be the class of regular languages for which USimPath is in P and let UTtract be
the corresponding class for UTrail. While SPtract and Ttract are closed under intersection and
union [BBG20, MNT20], USPtract and UTtract are not closed under intersection if P 6= NP.

Theorem 3.1. The following hold if P 6= NP.

(a) USPtract and UTtract are closed under (finite) union.
(b) USPtract and UTtract are not closed under intersection.
(c) USPtract and UTtract are not closed under complement.
(d) USPtract and UTtract are closed under taking derivatives, that is, if L is tractable, then

so is w−1L = {u | wu ∈ L}.
(e) USPtract and UTtract are closed under reversal.
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Proof. We first prove (a). If we have two languages L1, L2 for which USimPath(L1) and
USimPath(L2) (UTrail(L1) and UTrail(L2), respectively) are in P, we obtain a P algorithm
for USimPath(L1 ∪ L2) (UTrail(L1 ∪ L2), respectively) by using the two P algorithms for L1

and L2. If any of them answers “yes”, there is a simple path (trail, respectively) matching
L1 ∪ L2.

We start the proof of (b) with USPtract. By Theorem 11.1 for the language contain-
ing an even number of a’s and arbitrary number of bs USimPath is tractable, that is
USimPath(b∗(ab∗ab∗)∗) is in P. Since a∗b∗ is downwardclosed, USimPath(a∗b∗) is in P. On
the other hand, USimPath((aa)∗b∗) is NP-hard. NP hardness follows from G3SAT with words
ws = a, wb = aa, wm = a, wr = b, wo = wt = ε and Theorem 4.1.

We now turn to UTtract. By Theorem 11.1 the language containing an even number
of a’s and arbitrary number of b, c, and ds is tractable for UTrail, that is UTrail((b + c +
d)∗(a(b + c + d)∗a(b + c + d)∗)∗) is in P. Since a∗(b + c)∗a∗(b + d)∗ is downwardclosed,
UTrail(a∗(b + c)∗a∗(b + d)∗) is in P. Let L be the intersection of both languages, that is,
L = {an(b + c)∗am(b + d)∗|n + m being even}. We show that UTrail(L) is NP-hard. NP
hardness follows from G3SAT with words ws = a, wb = c, wm = a, wo = b, wr = d, wt = ε
and Theorem 4.1.

For (c), we first observe that by (a), USPtract and UTtract are closed under union. If they
were also closed under complement, we could simulate closure under intersection, which
would contradict (b).

We now turn to prove (d). Let w be an arbitrary word. We first prove that there is a
word w′ of constant length such that w−1L = (w′)−1L. Let L be a regular language. Let
A an DFA for the language L, and w an arbitrary word. Then a DFA A′ for w−1L can be
obtained by changing the starting state of A. (If w−1L = ∅, we can choose a sink state as
start.) Let q be the start state of A and q′ be the start state of A′. Now we can find a word
w′ of length at most |A| such that δ∗(q, w′) = q′.

We are now ready to prove (d). Let a graph G with nodes s and t be given. We can find
a simple path (or trail) from s to t matching w−1L as follows: we add a new node s′ and a
path labeled w′ from s′ to s. Then there exists a simple path (trail, respectively) from s
to t matching L′ if and only if there exists a simple path (respectively trail) from s′ to t
matching L. Thus, if L ∈ USPtract (in UTtract, respectively), it follows that L′ ∈ USPtract (in
UTtract, respectively).

Part (e) is trivial because the question concerns undirected graphs.

Although USimPath and UTrail are tractable for every language for which SimPath is
tractable, UTrail and Trail are incomparable. An intuitive reason is that a trail for the
language (abc)∗ in directed multigraphs is easy to find since loops can always be removed.
On the other hand, we cannot use the same argument on undirected multigraphs since every
edge can be used in one or the other direction and we can only remove loops if the joint
edge is used in the same direction.

Theorem 3.2.

(a) SPtract ⊆ USPtract.
(b) SPtract ⊆ UTtract.
(c) If P 6= NP, then Ttract and UTtract are incomparable.

Proof. We first prove (a). Let G′ = (V,E′, E ′) be the directed multigraph obtained from
the undirected graph G = (V,E, E) by replacing every undirected edge e ∈ E with the two
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directed edges e1, e2 such that if E(e) = (u, a, v), then E ′(e1) = (u, a, v) and E ′(e2) = (v, a, u).
Since a simple path can use at most one edge between any pair of nodes, a simple path in G′

can use either e1 or e2, but not both. Thus, there is a simple path from s to t that matches
L in G if and only if there is a simple path from s to t that matches L in G′.

We now prove (b). We will use that Bagan et al. [BBG20, Theorem 6], see Theorem 2.5,
give a definition of SPtract in terms of regular expressions, showing that a language is in
SPtract if and only if it can be expressed as a union of regular expressions of the form

w1(A≥k11 + ε)(w2 + ε)(A≥k22 + ε) · · · (wn + ε)(A≥knn + ε)wn+1 (�)

for some n ∈ N, words wj ∈ Σ∗ with j ∈ [n + 1], sets Ai ⊆ Σ and numbers ki ∈ N with
i ∈ [n]. Since UTtract is closed under union by Theorem 3.1, it suffices to prove that UTrail(r)
is tractable for each regular expression r of the form (�).

Let G = (V,E, E) be an undirected multigraph, s, t ∈ V , and r of the form (�). We will
construct in polynomial time a directed graph G′ and regular expression r′ such that there
exists a trail matching r from s to t in G if and only if there is a trail from s to t matching
r′ in G′ that satisfies some additional restrictions. We then show that its existence can be
tested in polynomial time.

Let $1, $2 be two symbols which occurs neither in G nor in r. We construct from
G = (V,E, E) a new directed graph G′ = (V ′, E′) with V ′ = V ∪ {xe, ye | e ∈ E},
and E′ = {(u, $1, xe), (v, $2, xe), (xe, a, ye), (ye, $2, u), (ye, $1, v) | e ∈ E, E(e) = {u, a, v}}.
Intuitively, we replace every edge e with the gadget presented in Figure 2. We note that
these gadgets introduce loops labeled $1a$1 from u to u and labeled $2a$2 from v to v.

u v
a =⇒ u v

xe

ye

$1 $2

a

$1 $2

Figure 2. Illustration of the construction of the directed graph G′ in the
proof of Theorem 3.2((b)).

Let h : Σ → Σ ∪ {$1, $2} be a substitution with h(σ) = ($1σ$2 + $2σ$1) for each
σ ∈ Σ. That is, if w = a1a2 · · · a` ∈ Σ+, then h(w) is a set of words, namely, h(w) =
($1a1$2 + $2a1$1) ($1a2$2 + $2a2$1) · · · ($1a`$2 + $2a`$1), furthermore, h(ε) = ε, and h(A) =
($1A$2 + $2A$1) for every set A. Depending on r, we define

r̃ = h(w1)((h(A1))≥k1 + ε)(h(w2) + ε)((h(A2))≥k2 + ε) · · ·

(h(wn) + ε)((h(An))≥kn + ε)h(wn+1) .

Note that n, wj for all j ∈ [n+ 1], and Ai, ki for all i ∈ [n] are defined by r.
We now prove that there is a trail p matching r from s to t in G if and only if there

is a trail p′ matching r̃ in G′. Let p = e1 · · · en be a trail from s to t in G that matches r.
Then a trail p′ can be obtained from p by replacing every edge ei with its corresponding
path matching $1lab(ei)$2 or $2lab(ei)$1 in G′. The so-constructed path clearly is a trail
from s to t matching r̃ in G′ and does not use subpaths labeled $1σ$1 or $2σ$2. On the
other hand, let p′ be a trail from s to t that matches r̃ in G′. By construction of G′ and
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the definition of r̃, p′ is a concatenation of paths of the form (u, $1, x)(x, σ, y)(y, $2, v) or
(u, $2, x)(x, σ, y)(y, $1, v) for nodes u, v ∈ V and x, y ∈ V ′ − V and some symbol σ ∈ Σ. By
construction of G′, each such path corresponds to a unique edge in G, thus we can replace
each such subpath of length 3 with the corresponding edge to obtain a trail from s to t
matching r in G.

Unfortunately, expressions of the form r̃ are in general neither in SPtract nor in Ttract.
Indeed, SPtract(r̃) and Ttract(r̃) are NP-hard in general, but the graph G′ has a very special
form. To prove tractability, we first consider a similar expression r′ defined as follows:

r′ = h(w1)((A1 ∪ {$1, $2})≥3k1 + ε)(h(w2) + ε)((A2 ∪ {$1, $2})≥3k2 + ε) · · ·

(h(wn) + ε)((An ∪ {$1, $2})≥3kn + ε)h(wn+1) .

The connection between r̃ and r′ is as follows: because of the special form of G′, there is a
trail from s to t matching r̃ in G′ if and only if there is a trail p′ from s to t matching r′ in
G′ and p′ does not have a subpath labeled $1σ$1 or $2σ$2 for any σ ∈ Σ.

In order to show that we can decide in polynomial time whether a trail p′ from s to
t matching r′ that does not contain a subpath labeled $1σ$1 or $2σ$2 for some symbol σ
exists in G′, we adapt the methods used in [MNT20]. Indeed, r′ ∈ SPtract by Theorem 2.5
and since SPtract ⊆ Ttract [MNT20], it follows that r′ ∈ Ttract.

We now adapt some definitions from [MNT20, Section 4.2] to enforce that each
shortest trail is “admissible”. To this end, let N be the size of the minimal DFA for
r′. We choose K = N2 + 4.12 Let Cuts denote the set of non-trivial strongly con-
nected components of the minimal DFA Ar′ = (Q,Σ, δ, QI , QF ) for r′. We define an
extended abbreviations to be of the form Cuts × (V × Q) × E2 × EK−2. An example
is (C, (v, q), eKeK−1, eK−2 · · · e1). A trail π matches (C, (v, q), eKeK−1eK−2, eK−3 · · · e1)
if δL(q, π) ∈ C, it starts in v with prefix eKeK−1 and its suffix is eK−2 · · · e1. We de-
note this with π |= (C, (v, q), eKeK−1, eK−2 · · · e1). For an arbitrary set E′ we write
π |=E′ (C, (v, q), eKeK−1, eK−2 · · · e1) if π |= (C, (v, q), eKeK−1, eK−2 · · · e1) and all edges of
π are from E′ ∪{e1, . . . , eK}. Let p = e1 · · · em be a path and r = q0 · · · qm be the run of Ar′
over p. For a set C of states of Ar′ , we denote by leftC the first edge ei with qi−1 ∈ C and
by rightC the last edge ej with qj ∈ C. A strongly connected component C of Ar′ is a long
run component of p if leftC and rightC are defined and |p[leftC , rightC ]| > K. In the extended
summary of a trail, every long run component is replaced by an extended abbreviation. An
extended candidate summary is an extended summary of the form S = α1 · · ·αm where each
αi is an edge or an extended abbreviation and all edges occurring in S are distinct. A path
p that is derived from S by replacing each αi by a trail pi such that pi |= αi is called a
completion of the (extended) candidate summary S.

Since all paths matching $1σ$1 or $2σ$2 are loops in G′, a shortest path will not use
such a subpath. Using this, we can use the NL algorithm from [MNT20, Lemma 4.7]13 to
show the following

Lemma 3.3. Let r′, G′ = (V ′, E′, E ′) be as in the proof of Lemma 3.2(b), α = (C, (v, q),
eKeK−1, eK−2 · · · e1) be an extended abbreviation, and E′′ ⊆ E′. Then there is an NL
algorithm that outputs a shortest trail p such that p |=E′′ α if it exists and rejects otherwise.
Furthermore, if a shortest path π from v to destination(e1) with suffix eK−2 · · · e1 and with

12We choose this instead of K = N2 [MNT20] because we need 4 additional edges to ensure that the path
is “long enough” even if we remove some loops.

13We can adapt the algorithm such that the returned path starts with eKeK−1.
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δL(q, π) ∈ C exists, for which π |=E′′ α holds and such that π does not contain a subpath
labeled $1σ$1 or $2σ$2, then p does not contain a subpath labeled $1σ$1 or $2σ$2.

We postpone the proof for readability.
We now turn to local edge domains. Let Ei be as defined in [MNT20, Definition 4.8],

that is, E1 = E \E(S) and Ei+1 = Ei \Edgei. We define Edgei to be the set of edges used by
trails π that start with eKeK−1, use only edges in Ei, and are of length at most mi −K + 2.
A trail p is extended admissible if there exists an extended candidate summary S = α1 · · ·αk
and trails p1, . . . , pk such that p = p1 · · · pk is a completion of S and pi |=Edgei αi for every
i ∈ [k]. With these notions, we can now show the counterpart of [MNT20, Lemma 4.10],
which is the heart of the correctness proof.

Lemma 3.4. Let r′, G′ be as in the proof of Lemma 3.2(b). Then each shortest trail p from
s to t that matches r′ in G′ and such that no subpath matches $1σ$1 or $2σ$2 is extended
admissible.

We postpone the proof of Lemma 3.4 for readability.
With these ingredients we can now give an NL algorithm similar to [BBG20, Algorithm

1] and [MNT20, MNP21, Lemma 4.12], that is, we enumerate all possible extended candidate
summaries S with respect to (r′, G′, s, t) and apply on each extended summary the following
algorithm which consists of four tests:

(1) Guess, on-the-fly, a path p from S by replacing each αi by a trail pi such that pi |=Edgei αi
for each i ∈ [k]. This test succeeds if and only if this is possible.

(2) In parallel, check that p matches r′.
(3) In parallel, check that S is an extended summary of p.
(4) In parallel, check that p does not contain a subpath matching $1σ$1 or $2σ$2 for any

σ ∈ Σ.

If all tests succeed on some candidate summary, then we answer “yes”, and if on each
candidate summary at least one test fails, the answer is “no”.

To prove correctness, let there be a shortest trail p′ from s to t matching r′ that does not
contain a subpath matching $1σ$1 or $2σ$2 for any symbol σ. Then, there is also a shortest
such trail, and by Lemma 3.4 this trail is extended admissible. Conversely, if the algorithm
succeeds, the path p is a trail because E(S) and the sets Edgei are mutually disjoint. By
tests (2), (3), and (4), it is a trail from s to t that matches r′ and does not contain a subpath
matching $1σ$1 or $2σ$2 for any σ ∈ Σ.

For the complexity, we note that compared to the NL algorithm in [MNT20, MNP21,
Lemma 4.12] we only need to additionally test (4), which can clearly be done in NL.

We now prove (c). On the one hand, UTrail(a∗ba∗) is in polynomial time by Theorem 5.2,
while a∗ba∗ /∈ Ttract. On the other hand, (abc)∗ is in Ttract but UTrail((abc)∗) is NP-hard,
see Theorem 6.1.

To conclude the proof of part (b), we still need to prove Lemmas 3.3 and 3.4.

Proof of Lemma 3.3. Let α = (C, (v, q), eKeK−1, eK−2 · · · e1) be an extended abbreviation,
and E′′ ⊆ E′. Let L = L(r′). We use the NL algorithm from [MNT20, Lemma 4.7] to obtain
a shortest trail p with p |=E′′ (C, (destination(eK−1), δL(q, eKeK−1)), eK−2 · · · e1). Then
eKeK−1p is a shortest trail with eKeK−1p |=E′′ α.

Furthermore, let us assume that there exists a shortest path π from v to destination(e1)
with suffix eK−4 · · · e1 and with δL(q, π) ∈ C exists, π does not contain a subpath labeled
$1σ$1 or $2σ$2, and such that π |=E′′ α.
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Let eKeK−1p = eKeK−1d1 · · · dneK−2 · · · e1. We assume towards contradiction that
eKeK−1p contains a subpath labeled $1σ$1 or $2σ$2. Since π does not contain such a
subpath, it cannot be in eK−2 · · · e1. Thus the subpath(s) labeled $1σ$1 or $2σ$2 can only
be in eKeK−1d1d2, d1 · · · dn, or dn−1dneK−2eK−3. By definition of G′, we can remove the
loops labeled $1σ$1 or $2σ$2 from these to obtain a trail p′′ from v to destination(e1).
Since components of r′ have the form A≥ki for some ki ∈ N and some set of symbols A,
δL(q, p′′) ∈ C. Furthermore, p′′ has the suffix eK−4 · · · e1. Since eKeK−1p is a shortest trail
with eKeK−1p |=E′′ α, we have |eKeK−1p| = |π|. Since p′′ is obtained from eKeK−1p by
removing edges, |p′′| < |π|, contradicting the choice of π.

Proof of Lemma 3.4. We use the notion of extended abbreviation, extended (candidate)
summary, and extended admissible from the proof of Theorem 3.2. The majority of the
proof is similar to the proof of [MNT20, MNP21, Lemma 4.10], indeed, we only have to
additionally prove that the resulting paths p′ do not have subpaths matching $1σ$1 or $2σ$2

or can be replaced with shorter paths that do not have such subpaths. By p(e1, e2] we denote
the suffix of p[e1, e2] that excludes the first edge (so it can be empty). Notice that p[e1, e2]
and p[e1, e2) are always well-defined for trails.

Let L be the language of r′. Let p = d1 · · · dm be a shortest trail from s to t that
matches r′ in G′ and such that no subpath matches $1σ$1 or $2σ$2. Let S = α1 · · ·αk be
the extended summary of p. Let p1, . . . , pk be trails such that p = p1 · · · pk and pi |= αi for
all i ∈ [k]. We denote by lefti and righti the first and last edge in pi. By definition of pi and
the definition of extended summaries, lefti and righti are identical with leftC and rightC if
αi ∈ Abbrv is an extended abbreviation for the component C.

Assume that p is not extended admissible. That means there is some edge e used in p`
such that e /∈ Edge`. There are two possible cases:

(1) e ∈ Edgei for some i < `; and
(2) e /∈ Edgei for any i.

In case (1), we choose i minimal such that some edge e ∈ Edgei is used in pj for some j > i.
Among all such edges e ∈ Edgei, we choose the edge that occurs latest in p. This implicitly
maximizes j for a fixed i. Especially no edge from Edgei is used in pj+1 · · · pk.

Let αi = (Ci, (v, q), eKeK−1, eK−2 · · · e1). By definition of Edgei, there is a trail π from
v, starting with eKeK−1 and ending with e, with δL(q, lab(π)) ∈ Ci, and that is shorter
than the subpath p[lefti, righti] and therefore shorter than p[lefti, e]. Let π be a shortest such
path.

It was shown in [MNT20, MNP21, Lemma 4.10] that p′ = p1 · · · pi−1πp(e, dm] is a trail
matching r′ and that the subpath e′K−2 · · · e′1 from (Cj , (v

′, q′), e′Ke
′
K−1, e

′
K−2 · · · e′1) is used

in p(e, dm]. In order to contradict the choice of p, we additionally need that p′ does not
contain a subpath labeled $1σ$1 or $2σ$2.

To this end, recall that all paths labeled $1σ$1 or $2σ$2 in G′ are loops.

• By choice of p, neither p1 · · · pi−1eKeK−1 nor p[e, dm] contain a subpath labeled $1σ$1 or
$2σ$2.
• If π(eK−1, e] contained a subpath labeled $1σ$1 or $2σ$2, then its removal would yield a

shorter path π′ starting with eKeK−1 and ending with e, and, by definition of r′, with
δL(q, lab(π′)) ∈ Ci, contradicting the choice of π.

Thus, only πp(e, dm] could contain subpath(s) labeled $1σ$1 or $2σ$2: either in the first
four edges of π or in the last two edges of π and the first two of p(e, dm]. For example, π
could end on $1a while p(e, dm] starts with $1.
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DC
SPtract
a

(ab)∗

UTtract

a∗bc∗
USPtract

(abc)∗

Figure 3. Expressiveness of USPtract and UTtract.

Since each path labeled $1σ$1 or $2σ$2 is a loop in G′, the path obtained from p′ by
removing all subpaths labeled $1σ$1 or $2σ$2 is indeed a path, and more precisely, a trail.
By definition of r′, subpaths of p′ that are labeled $1σ$1 or $2σ$2 must be matched by a
strongly connected component of r′. Thus, in order to prove that p′′ matches r′, we have
to prove that enough edges in Cj are used. Thus, it suffices to prove that removing the
subpath(s) did not remove an edge of e′K−4 · · · e′1. Since e′K−2 · · · e′1 is in p(e, dm], and the
removal of subpaths matching $1σ$1 or $2σ$2 could only remove the first two edges in
p(e, dm], their removal does not affect e′K−4 · · · e′1. Thus p′′ still matches r′.

This concludes case (1). For case (2), we additionally assume without loss of generality
that there is no edge e ∈ Edgei that appears in some pj with j > i, that is, no edge satisfies
case (1). By definition of Edge`, there is a trail π with π |=Edge` α` that is shorter than
p[left`, right`]. We choose p′ as the path obtained from p by replacing p` with a shortest such
π.

It was shown in [MNT20, MNP21, Lemma 4.10] that p′ = p1 · · · p`−1 · π · p`+1 · · · pk is a
trail matching r′. Again, in order to contradict the choice of p, we additionally need that p′

does not contain a subpath labeled $1σ$1 or $2σ$2. Let (C, (v, q̂), eKeK−1, eK−2 · · · e1) = α`.
Since p does not contain a subpath labeled $1σ$1 or $2σ$2, neither p1 · · · pi−1eKeK−1 nor
eK−2 · · · e1p`+1 · · · pk contain a subpath labeled $1σ$1 or $2σ$2.

Thus, subpaths labeled $1σ$1 or $2σ$2 can only occur in π[eK , eK−3]. Because all
paths labeled $1σ$1 or $2σ$2 are loops in G′, we can remove these paths from π and the
resulting path π′ is still a trail. Furthermore, π′ is a trail from v that ends with eK−4 · · · e1

and, by definition of r′ and its components, with δL(q, π′) ∈ C. Since |eK−4 · · · e1| = N2,
[MNT20, MNP21, Lemma 4.3] implies that δL(q, π′) = δL(q, π). Thus p′′ = p1 · · · p`−1 · π′ ·
p`+1 · · · pk is a trail matching r′ that has no subpaths labeled $1σ$1 or $2σ$2 and is shorter
than p, contradicting the choice of p.

Since every downward closed language is in SPtract by definition, it follows that:

Corollary 3.5. USimPath(L) and UTrail(L) are solvable in polynomial time for every
downward closed language L.

We present in Figure 3 an overview of the inclusion properties. The regular expressions
provided in this figure can be used to distinguish the classes from one another. For example,
the class UTtract can be distinguished from the class USPtract by the language a∗bc∗, while
the language (abc)∗ is neither in USPtract nor in UTtract. It is not known if there exists a
language in USPtract that is not in UTtract, which is why we do not give a language in that
case.

Proposition 3.6. Let L be a regular language and F1, F2 be finite languages. Then

(a) if L ∈ UTtract, then F1LF2 ∈ UTtract and
(b) if L ∈ USPtract, then F1LF2 ∈ USPtract.



THE COMPLEXITY OF RPQS ON UNDIRECTED GRAPHS 19

Proof. To prove (a), let L ∈ UTtract. Then there exists a P algorithm A which given nodes
x and y, decides if there is a trail from x to y matching L. We can use A to decide if there
exists a trail from s to t matching F1LF2 as follows: We enumerate over all possible pairs of
nodes (x, y) ∈ V 2 and all possible edge-disjoint trails (p1, p2) with p1 from s to x matching
F1 and p2 from y to t matching F2. Then we use A to decide if there is a trail matching L
from x to y in G without the edges in (p1, p2).

To prove (b), let L ∈ USPtract. Then there exists a P algorithm A which given nodes x
and y, decides if there is a simple path from x to y matching L. We can use A to decide if
there exists a simple path from s to t matching F1LF2 as follows: We enumerate over all
possible pairs of nodes (x, y) ∈ V 2 and all possible node-disjoint simple paths (p1, p2) with
p1 from s to x matching F1 and p2 from y to t matching F2. Then we use A to decide if
there is a simple path matching L from x to y in G without the nodes in (p1, p2).

As a corollary, all languages definable by simple transitive expressions [MT19], are in
UTtract and USPtract.

4. The Gadget G3SAT for Lower Bounds

In this section, we construct a gadget for obtaining NP-hardness results throughout the
paper. We will reduce from 3SAT, which is well known to be NP-complete. An instance is a
3CNF formula ϕ = ∧mi=1Ci using variables {x1, . . . , xn}. The question is if ϕ is satisfiable,
that is, there exists an assignment α : {x1, . . . , xn} → {true, false} that satisfies ϕ. In fact,
it is known that 3SAT is NP-complete, even if every variable appears exactly twice negated
and twice unnegated in ϕ [DD21].

We will explain how to construct a generic undirected graph G3SAT that we will later
provide with labels to show NP-completeness of USimPath(L) and UTrail(L) for various
languages L. The definition of G3SAT is somewhat technical14 and is inspired on a gadget
that was used by Eilam-Tzoreff [Eil98] to reduce 3SAT to a variant of the disjoint paths
problem with length constraints.

Construction 4.1. (Construction of G3SAT.) Let ϕ be a formula in 3CNF with m clauses
and n variables. In the following description, we will sometimes say that we will add a
w-path from u to v for some word w. If |w| ≥ 1 this means that, between the nodes u and v,
we will add |w| − 1 new nodes and connect them such that the new nodes form a path from
u to v that is labeled w. If |w| = 0, this means that u and v are merged together.

For each clause (`i,1 ∨ `i,2 ∨ `i,3) in ϕ, we construct a clause gadget as in Figure 4 (left).
For each variable xj in ϕ, we construct a variable gadget as in Figure 4 (right). The words
wr and wo are written on the paths in the usual “left-to-right” reading direction. We will
refer to the edges on wr-paths as red edges.

We now define a switch gadget that we will add for each occurrence of a variable, which
leads to 3m such gadgets. Let `i,k be the kth literal in the ith clause. We add new nodes u1

i,k

and u2
i,k and connect them as follows. We add a wb-path from u1

i,k to `2i,k and from `1i,k to

u2
i,k. If `i,k is the pth negated occurrence of variable xj , we additionally add wb-paths from

u1
i,k to x2

j,p and from x1
j,p to u2

i,k. On the other hand, if `i,k is the pth unnegated occurrence

of variable xj , we additionally add wb-paths from u1
i,k to x2

j,p and from x1
j,p to u2

i,k.

14In fact, some of the reductions in Gourvès et al. [GdLMM12], which use a similar gadget, seem to be
flawed, see Appendix A.
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Finally, we explain how to connect all gadgets. For each i ∈ [m− 1] we add a wo-path
from ci,2 to ci+1,1, from cm,2 to v1,1 and for each j ∈ [n− 1] we add a wo-path from vj,2 to
vj+1,1.

We then add wo-paths from u2
i,1 to u1

i,2, from u2
i,2 to u1

i,3, and from u2
i,3 to u1

i+1,1. We

set s2 = c1,1, t2 = vn,2, s1 = u1
1,1, and t1 = u1

m,3. Finally, we add a wm-path from t1 to
s2, new nodes s and t, a ws-path from s to s1, and a wt-path from t2 to t. We sketch the
construction in Figure 5.
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Figure 4. Clause gadget for the clause Ci = (`i1 ∨ `i2 ∨ `i3) (left) and
variable gadget for xj (right). The paths are labeled such that the words
wr, wo can be read from left to right.
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Figure 5. Sketch of the extension from two edge-disjoint paths to a single
trail matching a language. The concrete placement of the (blue dashed)
switch-edges depends on the occurrences of literals in clauses. The arrows
indicate the “reading direction” of the words on the paths.

Theorem 4.1. Let wb, wr ∈ Σ+ and G3SAT as described in Construction 4.1. The following
are equivalent:

(a) ϕ is satisfiable.
(b) There exist node-disjoint paths p1 from s1 to t1 and p2 from s2 to t2 in G3SAT such

that p1 does not use red edges.
(c) If wo 6= ε then there exist edge-disjoint paths p1 from s1 to t1 and p2 from s2 to t2 in

G3SAT such that p1 does not use red edges.
(d) There exists a simple path p from s to t in G3SAT that uses the wm-path from t1 to s2

before using any red edge.
(e) If wo 6= ε then there exists a trail p from s to t in G3SAT which reads the wm-edge before

using any red edge.

Proof. We first show (b) implies (a). If there exist two node-disjoint paths p1 from s1 to t1
and p2 from s2 to t2 in G3SAT such that p1 does not use red edges, then p1 has to use all
nodes u1

i,k and u2
i,k for each i ∈ [m] and k ∈ [3]. Since p2 is node-disjoint to p1, it cannot
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Figure 6. Example of the reduction from 3SAT with the boolean formula
(x1 ∨ x1 ∨ x2) ∧ (x2 ∨ x3 ∨ x3) to the language da∗c(a+ b)∗e. We use G3SAT

with words ws = d,wb = wo = a,wm = c, wr = b, wt = e. For readability, we
colored the edges of the switch blue (and dashed) and omitted the labels on
these edges (which all were a). Note that the path starting from s must use
the c-labeled edge before it can use any of the red edges.

use these vertices, so it can only pass through vertices of clause or variable gadgets. In the
variable gadgets, it passes through one of two possible paths, if it passes through x1

j,1, we
assign the variable xj the value true, otherwise, we assign it the value false. We prove that
this assignment satisfies ϕ. If p2 used the path including x1

j,1, then p1 cannot use this node,

and thus has to use the nodes `1i,k and `2i,k with `i,k = xj instead. Because of this, in clause
gadgets, p2 can only use edges which correspond literals which are set to true. Since p2 has
to traverse all clause gadgets in order to go from s2 to t2 while avoiding the nodes u1

i,k and

u2
i,k for all i ∈ [m] and k ∈ [3], it follows that there must be at least one literal with value

true in each clause gadget. Thus, ϕ is satisfiable.
The proof that (c) implies (a) is analogous.
We now prove that (a) implies (b) and (c): Let θ be a satisfying assignment of true

values to variables in ϕ. We construct a path p2 as follows: in each variable gadget, p2

passes through the path with xj,1 if θ(xj) = true and through xj,1 if θ(xj) = false. In each
clause gadget, p2 passes through a path which corresponds to a literal which is set to true.
This is possible since there is at least one in each clause. We can then construct a path p1,
which is (node- and edge-)disjoint from p2. Between each pair of nodes u1

i,k and u2
i,k, there

are two possible paths which do not use red edges: one via a clause and one via a variable
gadget. Let us assume that `i,k represents the literal `. We have chosen p2 in such a way
that it uses at most one of these two edges, so p1 uses the other. If ` is false, then p2 uses
the edge in the variable, but not in the clause gadget. If ` is true, then p2 does not use the
edge in the variable gadget.

Finally, we observe that (b) and (d) are equivalent: From node-disjoint paths p1 and
p2 it is straight forward to construct a simple path from s to t by connecting p1 via wm to
p2. On the other hand, we can split a simple path p which does not use red edges before
reading wm into node-disjoint paths p1 = p[s1, t1] and p2 = p[s2, t2].

The proof that (c) and (e) are equivalent is analogous.
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Application of G3SAT for 2RPQs. We note that G3SAT can also be used to prove hardness
for 2RPQs in which not every symbol is of the form (a + a). More precisely, we can use
G3SAT to show that the 2 disjoint paths problem where one path is directed and one path is
undirected is NP-hard, even in a graph without labels/only a-labels.

Lemma 4.2. Node-/Edge-disjoint a∗/(a+ a)∗-paths in directed graphs is NP-complete.

Proof. We use G3SAT with directed paths/edges. More precisely, we direct all wb = a and
wo = a edges in direction of the usual word, while wr = aa will be a path of length 2 where

the directions point to the node in the middle. Graphically, wr looks like:
a→ · a←.

Then, the directed path from s1 to t1 cannot use wr-paths. The correctness follows
similar as in Theorem 4.1.

This implies hardness for several “mixed” 2RPQs like a∗b(a+ a)∗. Interestingly, G3SAT

is much less complex than the gadget used in the hardness proof of 2 disjoint paths in the
purely directed case [FHW80].

We believe that G3SAT can be used to prove hardness for many more languages, and it
would be an interesting direction for future work.

5. Generalizing Two Disjoint Paths

We already discussed the close relationship between 2-disjoint-path problems and UTrail and
USimPath in Section 2.6, which we can now make more concrete. Indeed, using G3SAT from
Construction 4.1 and Theorem 4.1, we can obtain the following:

Theorem 5.1. Let A and B be non-empty subsets of Σ.

• The node-disjoint A∗/B∗-paths problem on undirected multigraphs is in P if A = B, and
it is NP-complete otherwise.
• The edge-disjoint A∗/B∗-paths problem on undirected multigraphs is in P if A = B or
A ∩B = ∅, and it is NP-complete otherwise.

Proof. For node-disjoint paths: If A = B, then we can use the minor theorem (see Propo-
sition 2.8) to find node-disjoint paths in the multigraph restricted to A labels. If A 6= B,
we can assume without loss of generality that B 6⊆ A (otherwise rename). Let a ∈ A and
b ∈ B \ A. We use G3SAT with wb = a, wo = ε, wr = b. Since the A∗ path cannot use
b-edges, Theorem 4.1 implies the NP hardness. Since USimPath(L) is in NP for every regular
language, NP-completeness follows.

For edge-disjoint paths: If A = B, we can use the minor theorem (see Proposition 2.8)
to find edge-disjoint paths in the multigraph restricted to A. Otherwise, if A ∩B = ∅, we
can find paths in the subgraph restricted to A or restricted to B separately. If A 6= B and
A ∩B 6= ∅, we can assume without loss of generality that B 6⊆ A (otherwise rename). Let
a ∈ A ∩ B and b ∈ B \ A. We use G3SAT with wb = a, wo = a, wr = b. Since the A∗ path
cannot use b-edges, Theorem 4.1 implies the NP hardness. Since UTrail(L) is in NP for every
regular language, NP-completeness follows.

This result can be used to completely classify the complexity of UTrail and USimPath
for languages of the form A∗wB∗, where w is an arbitrary word. If w = ε, then the language
is A∗B∗, which is downward-closed and therefore always tractable. The other cases are in
the following theorem.
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Theorem 5.2. Let A, B non-empty subsets of Σ and w = σ1 . . . , σn ∈ Σ∗ with n ≥ 1. Then
USimPath(A∗wB∗) is in P if:

(1) A = B; or
(2) n = 1 and A− {σ1} = B − {σ1}; or
(3) σ1 = . . . = σn and (A = {σ1} or B = {σ1}); or
(4) σ1 = . . . = σi 6= σi+1 = . . . = σn and A = {σ1} and B = {σn}; or
(5) σ1 6= σ2 = . . . = σn and B = {σn} and A = {σ1, σn}; or
(6) σ1 = . . . = σn−1 6= σn and A = {σ1} and B = {σ1, σn};
and it is NP-complete otherwise.

UTrail(A∗wB∗) is in P if one of (1)–(6) holds; or A ∩B = ∅; or n = 1 and A ∩B = {σ1};
and NP-complete otherwise.

Proof. We first show that (1)–(6) imply tractability. To this end, we rewrite A∗wB∗ in each
case to a language of the form w1C

∗w2C
∗w3 or w1C

∗D∗w2 for C,D ⊆ Σ and w1, w2, w3 ∈ Σ∗

with |w1|+ |w2|+ |w3| ≤ n. Languages of these forms are tractable because we can enumerate
over all possible simple paths/trails matching w1, w2, w3 and find in the subgraph without
w1, w2, w3 either a path matching a downward closed language, namely C∗D∗, from the
end of w1 to the start of w2, or two node-/edge-disjoint C-paths from the end of w1 to
the start of w2 and from the end of w2 to the start of w3 with Theorem 5.1. These tests
are in polynomial time since there are at most |E|n many edges where n is a constant,
Corollary 3.5, and Theorem 5.1.

In case (1), we can rewrite A∗wB∗ into A∗wB∗, in case (2) into (A∪{σ1})∗σ1(A∪{σ1})∗,
in case (3) into σn1σ

∗
1B
∗ or A∗σ∗1σ

n
1 , in case (4) into σi1σ

∗
1σ
∗
nσ

n−i
n for some i ∈ [n], in case (5)

into A∗σ1A
∗σn−1
n , and in case (6) into σn−1

1 B∗σnB
∗.

Furthermore, if A ∩ B = ∅, UTrail(A∗wB∗) is also in P since we can first enumerate
over all possible trails matching w and then find paths matching A∗ and B∗ separately, see
Theorem 5.1. The case that UTrail(Aσ1B) is in P if A ∩B = {σ1} is more complex and will
be proved in Lemma 5.3.

On the other hand, if none of the conditions hold, we can prove NP completeness:
For every regular language L, UTrail(L) and SimPath(L) are in NP, thus we only need to

prove NP-hardness. We first prove that if (1)–(6) fail, then USimPath(A∗wB∗) is NP-hard.
Since A 6= B and all rules are symmetric, we can assume without loss of generality that
B 6⊆ A, that is, ∃b ∈ B \A. We perform a case distinction on w.

• if n = 1, then by ¬(3) we know that there exist a ∈ A, b ∈ B : a 6= σ1 6= b. Since B 6⊆ A
and by ¬(2) B 6= A \ {σ1}, there exist a ∈ A, b ∈ B \ A with a 6= σ1 6= b. We use these
symbols to label G3SAT as follows: ws = ε, wb = a,wo = ε, wm = σ1, wr = b, wt = ε. Since
the A∗-path starting in s cannot use b-edges, it has to follow the path until t1 (the start
of σ1). By Theorem 4.1 this implies NP hardness.
• if ∃i < j < k with σi 6= σj 6= σk, then take an arbitrary a ∈ A and use G3SAT with words
ws = wt = ∅, wb = an, wr = bn, wo = ε and wm = w. Since wb and wr have length n,
concatenations of wb and wr do not yield the substring w.
• if σ1 = . . . = σn and A 6= {σ1} 6= B: Then there exist a ∈ A \ {σ1}, and, since B 6⊆ A,

there is b ∈ B \ {σ1} with b /∈ A. We then use G3SAT with words ws = wt = ∅, wb = a,
wr = b, wo = ε and wm = w.
• if σ1 = . . . = σi 6= σj = . . . = σn: due to (4) we distinguish between (a) A 6= {σ1} and (b)
B 6= {σn}.
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Case (a): If A 6= {σ1}, we can pick a ∈ A\{σ1} and use G3SAT with words ws = wt = ∅,
wb = an, wr = bn, wo = ε and wm = w. This works because a 6= σ1, b /∈ A, and w 6= bn.

Case (b): So let us assume that A = {σ1} and B 6= {σn}. If there exists a b ∈ B \ A
with b 6= σn, we can use G3SAT with words ws = wt = ∅, wb = σ1, wr = b, wo = ε and
wm = w. So let us assume that not such b exists, that is, A = {σ1} and B = {σ1, σn}. If w
contains 2 σn, we can use G3SAT with words ws = wt = ∅, wb = σ1, wr = σ1σnσ1, wo = ε
and wm = w. On the other hand, if w contains only a single σn, we are contradicting that
(6) fails.

We now prove that if A ∩ B 6= ∅, and in case n = 1 additionally A ∩ B 6= {σ1}, and
(1)–(6) fail, then UTrail(A∗wB∗) is NP-hard. Since A 6= B and all rules are symmetric, we
can assume without loss of generality that B 6⊆ A, that is, ∃b ∈ B \A. We perform a case
distinction on w.

• if n = 1, then we additionally know that A∩B 6= {σ1}. Thus, there exists a ∈ A∩B with
a 6= σ. Together with ¬(2) and B 6⊆ A this implies that there exist a ∈ A ∩B, b ∈ B \A
with a 6= σ1 6= b. We can now prove NP-hardness with G3SAT using the labels ws = ∅,
wb = wo = a, wm = σ, wr = b, wt = ∅. Since b /∈ A, and a 6= σ1 6= b, the A-path starting
from s is not allowed to use b-edges before reaching t1. Therefore, Theorem 4.1 implies
NP hardness.
• if ∃i < j < k with σi 6= σj 6= σk, then take an arbitrary a ∈ A ∩ B and use G3SAT with

words ws = wt = ∅, wb = an, wr = bn, wo = an and wm = w. Since wb, wo, and wr have
length n, concatenations of wb and wr do not yield the substring w.
• if σ1 = . . . = σn and A 6= {σ1} 6= B: Then there exist a ∈ A \ {σ1}, and, since B 6⊆ A,

there is b ∈ B \ {σ1} with b /∈ A. Let c ∈ A∩B arbitrary. We then use G3SAT with words
ws = wt = ∅, wb = a, wr = b, wo = c and wm = w. This works because |w| ≥ 2 and wo

never appears twice in a row.
• if σ1 = . . . = σi 6= σj = . . . = σn: due to (4) we distinguish between (a) A 6= {σ1} and (b)
B 6= {σn}.

Case (a): A 6= {σ1}. If A ∩ B 6= {σ1}, we can pick a ∈ A ∩ B \ {σ1} and use G3SAT

with words ws = wt = ∅, wb = an, wr = bn, wo = an and wm = w. This works because
a 6= σ1, b /∈ A, and w 6= bn. If A∩B = {σ1}, then, since B 6⊆ A, B 6= {σ1}. So there exist
a, b with {σ1, a} ⊆ A and {σ1, b} ⊆ B. We now perform a case distinction on σn.
– if a = σn, we use G3SAT with words ws = wt = ∅, wb = σ1, wr = b, wo = σ1 and
wm = w. Then σn only appears in wm.

– if b = σn, we show that UTrail(B∗wrevA∗) is NP-hard. Therefore, we use G3SAT with
words ws = wt = ∅, wb = σ1, wr = a, wo = σ1 and wm = wrev. The result for
UTrail(A∗wB∗) then follows since UTtract is closed under reversal, see Theorem 3.1.

– if a 6= σn 6= b, we use G3SAT with words ws = wt = ∅, wb = σ1, wr = b, wo = σ1 and
wm = w. Then σn only appears in wm.
Case (b): So let us assume that A = {σ1} and B 6= {σn}. Since A ∩B 6= ∅, σ1 ∈ B. If

there exists a b ∈ B \A with b 6= σn, we can use G3SAT with words ws = wt = ∅, wb = σ1,
wr = b, wo = σ1 and wm = w. So let us assume that not such b exists, that is, A = {σ1}
and B = {σ1, σn}. If w contains 2 σn, we can use G3SAT with words ws = wt = ∅, wb = σ1,
wr = σ1σnσ1, wo = σ1 and wm = w. On the other hand, if w contains only a single σn,
we are contradicting that (6) fails.

Since USimPath(L) and UTrail(L) are in NP for every regular language, NP-completeness
follows.
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To complete the proof of Theorem 5.2 it remains to prove the next lemma.

Lemma 5.3. UTrail(A∗σB∗) is in P if A ∩B = {σ}.

Proof. If A = {σ} or B = {σ}, then tractability follows from condition (3) in Theorem 5.2.
So let a ∈ A \B and b ∈ B \A. We denote by GA the subgraph of G restricted to edges with
labels in A and by GB the subgraph of G restricted to edges with labels in B. We describe
a polynomial time algorithm that solves UTrail(A∗σB∗). Let G = (V,E, E) be an undirected
multigraph. We enumerate over all tuples of nodes (u1, u2) ∈ V × V such that there is at
least one σ-edge between u1 and u2. We name one such edge eσ. Let G′ be a copy of G
without eσ (we delete only a single edge, even if there are multiple σ-edges between u1 and
u2). In G′, we rename every σ-edge

• which is only on a trail from s to u1 path in G′A and not on a trail from u2 to t path in
G′B to an a-edge,
• which is not on a trail from s to u1 in G′A, but on a trail from u2 to t in G′B to a b-edge,
• whose deletion would make t unreachable from u2 in G′B to a b-edge. That is, each σ-edge

separating u2 and t in G′B is renamed to a b-edge.

If, after the renaming, there exist paths (not necessarily disjoint) from s to u1 in G′A and
from u2 to t in G′B, we return true. If, after enumerating over all tuples (u1, u2) no such
paths were found, we return false.

We now prove correctness. Let us assume the algorithm returned true. Then there
exists a tuple of nodes (u1, u2), a σ-edge eσ with endpoints u1 and u2, an A-path from s
to u1 and a B-path from u2 to t in G′. Consider an arbitrary trail p from s to u1 in G′A.
If p is σ-free, every path from u2 to t in G′B will be disjoint from p. Thus we can build
a trail matching A∗σB∗ by concatenating p with eσ and a shortest path from u2 to t in
G′B. Otherwise, let p = e1 · · · e` and ei be the first σ-edge in p. Let x ∈ Node(ei) be the
destination of e1 · · · ei. We will construct a trail p2 from x to t in G′B which does not use ei.
Since ei was the first σ-edge in p and A ∩B = {σ}, the prefix of p will be disjoint from p2

and therefore e1 · · · ei · p2 will be a trail from s to t that matches A∗σB∗.
Let Node(ei) = {x, y}. Since ei was not relabeled, there is a trail from u2 to t in G′B

which uses ei. If this trail can be split into a trail from u2 to y and from x to t, then the
trail from x to t is our p2. Otherwise, let us assume the B-path is split into a trail from u2

to x and one from y to t. Since there is a trail from u2 to t not using ei (otherwise, this
edge had been relabeled b), we can construct a B-path not using ei by concatenating the
path from x to u2 with this path from u2 to t. Removing cycles in which edges are used
more than once then yields the trail p2 from x to t which does not use ei.

We now turn to the other direction. Let p = e1 · · · e` be a trail from s to t matching
A∗σB∗. Then there exists an i ∈ [`] such that e1 · · · ei−1 matches A∗, lab(ei) = σ, and
ei+1 · · · e` matches B∗. Since the algorithm enumerates over all tuples of nodes, it will have
enumerated over Node(ei). Let (u1, u2) be the nodes of ei in the order they appear in p.
Since all edges in e1 · · · ei−1 are on a trail from s to u1, they will only be renamed to a-edges
(if at all). With the same argument, the edges in ei+1 · · · e` will only be renamed to b-edges
(if at all). Thus, even after renaming the edges in G′ as described in the algorithm, there
are still paths from s to u1 in G′A and from u2 to t in G′B. Thus the algorithm will return
true.
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6. Word Iterations

In this section we give an overview of the complexity of USimPath and UTrail for word
iterations, that is, languages of the form w∗, where w is a word. This setting has essentially
three cases. The first case, where w = an with n ≥ 3, has been an open problem since
1991 [APY91]. The other two cases are the following.

Theorem 6.1. Let w be a word.

(a) If |w| ≤ 2, then USimPath(w∗) and UTrail(w∗) are in P.
(b) If |w| ≥ 3 and w has at least 2 different symbols, then UTrail(w∗) and USimPath(w∗)

are NP-complete.

Proof. We first prove (a). If |w| = 1, finding a simple path or trail is equivalent to finding
an arbitrary path. If |w| = 2, then we can find simple paths labeled by a word in L(w∗)
in P using the graph duplication technique of Edmonds [LP84, Man95]. We note that this
technique also works on multigraphs. For trails, if w = aa, using the extended line graph
construction, the problem reduces to the one for simple paths, see Lemma 2.9. If w = ab,
then Abouelaoualim et al. [ADF+08] give a polynomial time algorithm which builds on
the work of Szeider [Sze03] and also works on multigraphs. The case w = ba is equivalent
to w = ab. We now prove (b). Since USimPath(L) and UTrail(L) in NP for every regular
language, is remains to prove NP hardness. Assume that |w| ≥ 3 and w has at least 2
different symbols. We distinguish the following cases:

(1) w is periodic, that is, w = wi1 for some i ≥ 2;
(2) w has at least 3 different symbols; or
(3) w is not periodic and has exactly 2 different symbols.

We note that we will use different methods here since we do not see how to handle w = abab
with a reduction from 3SAT, while showing hardness for w = aab seems impossible with a
reduction from the two node-/edge-disjoint paths problem on directed graphs.

(1) We use a reduction from TwoDisjointPaths or TwoEdgeDisjointPaths, respecitvely.
Both problems are NP-complete on directed graphs [FHW80]. Let the node pairs s1, t1 and
s2, t2 be given and GD = (VD, ED, ED) be a directed graph. Similar to Chou et al. [CMM+94],
the main idea is to replace the directed edges with undirected paths labeled with some word
which implies the direction. Furthermore, we add paths from a new node s to s1, from t1 to
s2, and possibly from t2 to a new node t, such that the languages enforce a valid path to
take the path from t1 to s2.

For this reduction it is necessary that the paths may not be traversed in the opposite
direction. If w 6= wrev, we can directly replace each directed edge e ∈ ED with an undirected
path labeled w from origin(e) to destination(e), and add a path labeled (w1)i−1 from t1 to
s2 and a new start node s with a path labeled w1 to s1. Furthermore, we define t = t2.

In the case that w = wrev, we first need to “shift” w. Let w = wi1. Since w1 has at least
two different symbols, we can write w1 in the form w`wr such that wr starts with a symbol
which is different from the symbol on which w` ends. Let w2 = wrw`. Then, w2 6= wrev

2

and L(w+) = L(w`(w
i
2)∗wi−1

2 wr) = L(w`(w
i
2)∗wi−1

2 (wi2)∗wr). Thus, we replace every edge
e ∈ ED with an undirected path labeled wi2 from origin(e) to destination(e). Furthermore,

we add a path labeled w` from a new node s to s1, an edge labeled wi−1
2 from t1 to s2, and

an edge labeled wr from t2 to a new node t. Let GU be the so-constructed undirected graph.
We now show that there are two node-/edge-disjoint paths from s1 to t1 and from s2 to

t2 in GD if and only if there exists a simple path/trail matching w∗ from s to t in GU . To
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Figure 7. Parts of G3SAT for the proof of Theorem 6.1(b), cases (2) and
(3). We show the “shared” wo-path for the language (aibjckw′)∗ on the left
and for the language (abbjw′)∗ (where w′ is ε or starts with a) on the right.
For orientation, we added dotted edges together with nodes s and t.

this end, we first observe that for each edge e ∈ ED we find exactly one path of length |w|
from origin(e) to destination(e). (Depending on whether w = wrev, this path is either labeled
w or wi2.) We name this path corresp(e). We note that for each e ∈ ED, corresp(e) is simple
and does not use any nodes of VD besides origin(e) and destination(e). Let p = e1 · · · en be
a path. We define corresp(p) = corresp(e1) · · · corresp(en). If there exist two edge-disjoint
trails p1 from s1 to t1 and p2 from s2 to t2 in GD, then we obtain a trail p′ from s to t in
GU matching w∗ by concatenating the path from s to s1, corresp(p1), the path from t1 to
s2, corresp(p2), and the path from t2 to t. If p1 and p2 are node-disjoint simple paths, then
the so-constructed path p′ is a simple path by construction. On the other hand, if there is a
path p′ from s to t in GU matching w∗, then it must start with the path from s to s1, and
end with the path from t2 to t. Since p′ matches w∗, and by definition of GU , p′ must use
the path from t1 to s2. Furthermore, since w 6= wrev or w2 6= wrev

2 , the subpaths p′1 from s1

to t1 and p′2 from s2 to t2 must follow the paths in the “intended direction”. Let p1 and
p2 be the paths in GD obtained from p′1 and p′2 by deleting nodes not in VD and making
its two neighbors adjacent. Furthermore, if p′ is a simple path, then p1 and p2 must be
node-disjoint simple paths. And if p′ is a trail, then p1 and p2 must be edge-disjoint trails.

(2) Since w has at least 3 different symbols, say a, b, and c, we can write it as w+ =
ws(a

ibjckw′)∗wt for some words ws, w
′, wt ∈ Σ∗ and numbers i, j, k ≥ 1. We then use G3SAT,

see Construction 4.1, with the words ws = aibj , wo = bj , wr = wb = ckw′ai, wt = bjckw′,
wm = bj to prove NP-hardness.

Note that every path matching w∗ that starts in s has use the wm-path from t1 to s2

before it can use any red edge because before and after every “shared” bj-path (that is, every
undirected path labeled bj from `1i,k to `2i,k, from x1

j,k to x2
j,k, or from x1

j,k to x2
j,k) there is

at most one a and at most one c-edge and no other b-edge, see Figure 7 (left). Thus the
correctness follows from Theorem 4.1.

(3) Since w is not periodic and has exactly two different symbols, say a and b, it can be
written as w+ = ws(abb

iw′)wt for some words ws, w
′, wt ∈ {a, b}∗ and a number j ≥ 1 such

that w′ = ε or w′ begins with a (that is, j is maximal).
We then use G3SAT with words wo = b, wb = wr = bjw′a, ws = ab, wt = bbj , wm = b.
Again, every path matching w∗ that starts in s has use the wm-path from t1 to s2 before

it can use any red edge. The reason can be seen in Figure 7 (right): If the path starting in s
would use a red edge before reading the wm-path from t1 to s2, it would contain a substring
abja or aba instead of abbja. Thus, this path would not be labeled w∗. Thus the correctness
follows from Theorem 4.1.
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7. Simple Chain Regular Expressions

We consider a simple variant of chain regular expressions, which were introduced to study
static analysis of schemas for XML [MNS09] and used for studying the complexity of SPARQL
query evaluation [LM13].

Definition 7.1 (Simple Chain Regular Expression (SCRE)). A factor is a regular expression
of the form a, a∗, or a? where a is some symbol from Σ. A simple chain regular expression
(SCRE) is a (possibly empty) concatenation of factors.

We use a similar shorthand notation for SCREs as in [MNS09]. In short, we write
SCRE(f1, . . . , fk) for the class of SCREs in which we allow factors f1, . . . , fk. For example,
the expression a∗b∗ab∗a? is in SCRE(a, a?, a∗, b∗). We will use a special symbol ? to abbreviate
“all alphabet symbols that were not listed yet”. For example, SCRE(a, a∗, ??) is the class
of SCREs that use factors in {a, a∗} ∪ {b? | b ∈ Σ − {a}}. Next, we study UTrail(L) and
USimPath(L) for languages L that are definable by SCREs.

Trails are Tractable. Remarkably, finding trails is tractable for every language definable
by an SCRE.

Theorem 7.2. UTrail(L) is in P for every language L definable by an SCRE.

Proof. We can write every expression r ∈ SCRE(??, ?, ?∗) in the form r = r1a
∗
1r2 · · · a∗`−1r`,

where ri ∈ SCRE(??, ?) for each i ∈ [`]. Since ` is a constant and since each path that
matches ri has constant length, we can iterate in polynomial time over all tuples (p1, . . . , p`)
of disjoint (sub)trails of the multigraph G such that each pi matches ri. Let G′ be G without
the edges of (p1, . . . , p`). Assume that path pi is from ui to vi (with u1 = s and v` = t). In
order to complete the subtrails to a trail that matches r, we will test, for each symbol a ∈ Σ
and all i ∈ [`− 1], for edge-disjoint trails in G′a. More precisely, let k = |{ai | ai = a}|. For
each a ∈ Σ, we test if there exist k edge-disjoint paths pai1 , . . . , p

a
ik

such that aij = a and paij
is a path from vij to uij+1 in G′a. Since k is a constant, their existence can be tested in
polynomial time, see Proposition 2.8. Since G′ai and G′aj are mutually edge-disjoint graphs

for all ai 6= aj , the so-constructed paths will be edge-disjoint.

Simple Paths are Not So Simple. The situation for finding simple paths is much more
complex, however. In order to maintain an overview, we differentiate between the number
of alphabet symbols used in the SCREs. Since the number of alphabet symbols in RPQs
recently found in query logs is typically low [BMT17, BMT19], even the results on one or
two alphabet symbols are of practical interest.

One or Two Alphabet Symbols. If the SCREs just use a single alphabet symbol, that is, we
have languages definable by an SCRE(a, a?, a∗), then USimPath is always tractable. The
next theorem shows that, for a second alphabet symbol b, factor types b, b? or b?, b∗ can be
added. We will see later that allowing both b, b∗ leads to NP-completeness.

Theorem 7.3. USimPath(L) is in P

(a) for every language definable by an SCRE(a, a?, a∗, b, b?) and
(b) for every language definable by an SCRE(a, a?, a∗, b?, b∗).
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Proof. For (a), assume that r ∈ SCRE(a, a?, a∗, b, b?). Then there exists an ` ∈ N with
r = r1a

∗
1r2 · · · a∗`−1r`, where ri ∈ SCRE(a, a?, b, b?) for each i ∈ [`]. Since ` is a constant that

depends only on r and since paths that match each such ri have constant length, we can
iterate in polynomial time over all tuples (p1, . . . , p`) of node-disjoint simple (sub)paths such
that each pi matches ri. Assume that path pi is from ui to vi (with u1 = s and v` = t).
In order to complete the subpaths to a path that matches r, we need to test if there exist
` − 1 paths that are a-labeled, mutually node-disjoint, node-disjoint from p1, . . . , p`, and
respectively from vi to ui+1, for each i ∈ [`− 1]. Testing if these paths exist can be done
by running the polynomial-time algorithm for k-node-disjoint simple paths on the graph
obtained from the input multigraph by deleting all inner nodes of p1, . . . , p`. The proof of
(b) follows from Lemma 9.5. We now turn to (b). As in (a), we can rewrite every regular
expression of this form in a normal form. We then show in Lemma 9.5 that Algorithm 1
correctly decides this problem in polynomial time.

The next few pages are devoted to the proof of Lemma 9.5. We first give some necessary
definitions and explain the outline of our proof and the idea of Algorithm 1.

Observation 8. Every regular expression r in SCRE(a, a?, a∗, b?, b∗) can be written in a
normal form

r = r1a
∗
1b
∗
1r2a

∗
2b
∗
2 · · · r` (†)

with ai ∈ {a, ε}, bi ∈ {b, ε}, and ri ∈ SCRE(a, a?, b?). As such, each path that matches r can
be seen as a path that consists of the following subpaths:

• paths pi matching ri from nodes zi−1 to xi, for i ∈ [`],
• a-paths from nodes xi to yi, for i ∈ [`− 1], and
• b-paths from nodes yi to zi, for i ∈ [`− 1],

where z0 = s and x` = t.

Thus USimPath(L) is in P for every language definable by an SCRE(a, a?, a∗, b?, b∗) if
and only if USimPath(L) can be decided in polynomial time for languages definable by
regular expressions of the form (†).
Definition 8.1. We say that a multigraph H is 2-connected if (1) it contains at least two
nodes and (2) for each node x, the multigraph H−{x} is connected. A 1-(node-)cut between
two nodes u and v is a node x such that every path from u to v uses x. A 2-connected
component of H is a subgraph C of H that is 2-connected and maximal. Maximal means here
that there is no node x /∈ C such that the induced subgraph of H on C ∪ {x} is 2-connected.

We say a path p hits a 2-connected component C if an inner node of p is a node of C.

Furthermore, given a simple path p and two nodes x, y in p, we denote by p[x, y] the
subpath of p from x to y.

A connection between node-disjoint paths and minimum node cuts was given by
Menger [Men27].15

Theorem 8.2 (Menger’s theorem). Let u and v be distinct, non-adjacent nodes in a
connected, undirected multigraph G. Then the maximum number of internally node-disjoint
paths between u and v in G equals the minimum node cut for x and y, which is the number
of nodes, distinct from u and v, whose removal disconnects u and v.

15While Menger worked on graphs, the theorem immediately holds for multigraphs.
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A result of Menger’s theorem is that 2-connected components C have two node-disjoint
paths between each pair of nodes in C.

We now explain how Algorithm 1 can decide USimPath(r) for regular expressions of the
form (†). The outer loop of the algorithm enumerates the tuples (p1, . . . , p`) of constant-
length node-disjoint simple paths that match the subexpressions of ri, for each i ∈ [`]. Once
we have these, we can find a simple path that matches r if we can complete (p1, . . . , p`)
with node-disjoint simple paths that match the subexpressions of the form a∗ or b∗ at the
appropriate places. This problem is essentially the problem of finding disjoint paths where
some of the paths need to be labeled a and others need to be labeled b. The challenge for
the present proof is that this latter problem is NP-complete. Indeed, in a given undirected
graph with edge labels a and b, deciding if there are two node-disjoint simple paths between
(s1, t1) and (s2, t2), one labeled with a’s and the other with b’s, is NP-complete [GdLMM12,
Theorem 16]. We therefore need a different approach.

Our approach uses a structural graph-theoretic argument to reduce the problem to

finding sets of node-disjoint a-paths in graphs GX,NA and sets of node-disjoint b-paths in

other graphs GX,NB . These graphs will be computed from G based on p1, . . . , p` (that is,
inner nodes of p1, · · · , p` will be removed) and a second much more intricate loop, that we
describe later. The crux is that, if these sets of a-paths and b-paths exist for any (p1, . . . , p`)

and any GX,NA and GX,NB , then there is a simple path that matches r in G, because GX,NA

and GX,NB are node-disjoint (up to start/end nodes of paths that we are interested in). If
these sets of paths do not exist, then we need to prove a non-trivial re-routing result that
shows that no simple path that matches r exists in general. This result (Lemma 8.3) shows
that if a simple path that matches r exists, then there exists one that satisfies a number of
conditions that allow us to run the inner loop of the algorithm in polynomial time.

We note that in line 4, we call the tuple of nodes (y1, . . . , y`−1) consistent with
(ai, bi)i∈[`−1] if (xi = yi) is equivalent to ai = ε and (yi = zi) is equivalent to bi = ε.
Thus this line enumerates possible nodes between the ai- and bi-paths.

We now describe the workings of the inner loop.
Let k be the number of occurrences of a factor of the form a in r, that is, k is the length

of the shortest word in L(r), which is a constant for the purposes of the present decision
problem.

Let G′ be the multigraph G without the inner nodes of p1, . . . , p` and their adjacent
edges. For each i ∈ [`− 1] let Gi be the single node xi if xi = yi, and the induced subgraph
of G′a on the nodes of simple paths from xi to yi otherwise (without the nodes zj for which
zj 6= xj+1 and yj 6= zj). Notice that in Gi the 1-cuts between xi and yi are totally ordered
by their proximity to xi. Furthermore, between every pair of such consecutive 1-cut nodes
between xi and yi in Gi, there either is nothing, or

• a 2-connected component with no cycle of length at least 2k, or
• a 2-connected component with a cycle of length at least 2k.

We call a 2-connected component of Gi that has a cycle of length at least 2k a large
component, and otherwise a small component.

We distinguish these components because large components have long simple paths
(length at least k) between every pair of their nodes, while we can show that small components
have simple paths of length at most 4k2 (Lemma 9.1).
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The crux of our argument is in the following lemma, which says that we can assume that
the b-subpaths of solutions of USimPath(L) hit no large component and at most a constant
number of small components.

Lemma 8.3. Let L be a language definable by a regular expression of the form (†). If there
exists a solution of USimPath(L), then there is a solution p1p

a
1p
b
1p2p

a
2p
b
2 · · · p`, such that each

pi matches ri, each pai matches a∗i , each pbi matches b∗i and, furthermore, (1) no pbi hits a
large component and (2) all pbi together hit at most `(`+ k) different small components.

Our algorithm will therefore consider sets X that contain at most `(` + k) different

small components and consider subgraphs GX,NA of G′a through which we will search for
disjoint a-paths. First we construct a set AX , to which we will add all the nodes xi, yi, all
1-cuts between xi and yi, all nodes of large components between xi and yi, and all nodes
of small components C /∈ X. For each small component C ∈ X, observe that, while the
size of C is not necessarily constant,16 a simple path that matches r traverses C at most
`− 1 times. Since simple paths in C have length at most 4k2, there are at most (`− 1)4k2

nodes per C ∈ X that can be used by a simple path that matches r. As such, we can iterate
over sets of N nodes of

⋃
C∈X C, where |N | ∈ O(`3k3). For each such subset, we consider

the graph GX,NA which is the induced subgraph of G′a by AX ∪N . The graph GX,NB is the
induced subgraph of G′b by all nodes yi, zi (that is, start/end nodes of b-subpaths) and the

nodes that are not in GX,NA . Our problem can now be solved by finding `− 1 node-disjoint

paths in GX,NA and `− 1 node-disjoint paths in GX,NB .
This concludes the outline of the proof. We will now give useful observations and

lemmas. We first observe an important property of languages of the form (†). Intuitively,
these languages are special because we can replace substrings with a “long enough” sequence
of the symbol a. Let k be the length of the shortest word in L(r).

Observation 9. Let r be a regular expression of the form (†). Then each word w ∈ L(r)
can be written in the form w1w

a
1w

b
1 · · ·w`−1w

a
`−1w

b
`−1w` such that wi matches ri, and wai

matches a∗i , and wbi matches b∗i . Let x, y ∈ {a, b}. If, for some i, j ∈ {1, . . . ,m}, xi = x and
yj = y, then the word obtained by replacing the substring between wxi and wyj (and arbitrary

parts of wxi and wyj ) with any word in a≥ki,j where ki,j is the number of factors a between

x∗i and y∗j in r, is in L(r). Let k be the number of factors a in r. Since ki,j ≤ k for every

i, j, any word in a≥k can be used.

We now prove that the length of simple paths in 2-connected components without a
cycle of length at least 2k is bounded.

Lemma 9.1. For each 2-connected component C without a cycle of length at least 2k it
holds that the length of the longest simple path between all pairs v1, v2 ∈ C is at most (2k)2.

Proof. Let us assume towards contradiction that there exist two nodes s, t with a simple path
p of length at least (2k)2+1 between them. Due to the 2-connectedness and Menger’s theorem,
see Theorem 8.2, there exist two node-disjoint paths p1, p2 from s to t. If |p1|+ |p2| ≥ 2k, we
find a cycle of length at least 2k by concatenating p1 and p2. Thus we can assume without
loss of generality that |p1| + |p2| < 2k. This implies that |p1| < 2k. We now prove that
there exist nodes x, y in p1 and p such that (1) |p[x, y]| ≥ 2k and (2) p1[x, y] and p[x, y] are
node-disjoint (up to x and y).

16Take C with edges (s, i), (i, t) with i ∈ [n] for arbitrarily large n.
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ALGORITHM 1: Deciding USimPath(L) for L of the form (†)
Input: Undirected Multigraph G = (V,E, E), nodes z0, x`
Output: “Yes” if there is a simple path from z0 to x` in G that matches L; “no” otherwise

1 k ← length of the shortest word in L B This word is of the form ak

2 foreach tuple of simple paths p̄ = (p1, . . . , p`) matching (r1, . . . , r`) do
3 G′ ← G without inner nodes of (p1, p2, . . . , p`) and their adjacent edges

B xi, zj with i, j ∈ [`− 1] are determined by p̄

4 foreach tuple (y1, . . . , y`−1) consistent with (ai, bi)i∈[`−1] do
5 A← ∅ B Set of nodes for a-paths

6 S ← ∅ B Set of small components

7 foreach i ∈ [`− 1] do
8 foreach node v in a 1-cut between xi and yi in Gi do
9 add v to A

10 foreach large component C between xi and yi in Gi do
11 add each node of C to A

12 foreach small component C between xi and yi in Gi do
13 add C to S

14 foreach small component C ∈ S do
15 IC ← {i | C is a small component between xi and yi in Gi}
16 foreach X ⊆ S with |X| ≤ ` · (`+ k) do

B We consider groups X of O(|r|2) many components. For each component C ∈ X we

iterate over all simple paths in C.

17 AX ← ∅
18 foreach C ∈ S −X do
19 add each node of C to AX

20 N ← ∅
21 foreach set of |IC | disjoint simple paths between (siC , t

i
C)i∈IC with C ∈ X do

22 add each node of these paths to N

B The crux is that we do not add every node of C to N , so that we can use some

C-nodes for b-paths.

23 GX,N
A ← induced subgraph of Ga on (A ∪AX ∪N) ∪ (xi, yi)i∈[`−1]

24 GX,N
B ← induced subgraph of Gb on (V ′ − (A ∪AX ∪N)) ∪ (yi, zi)i∈[`−1].

25 if there are node-disjoint simple paths between (xi, yi)i∈[`−1] in GX,N
A and there are

node-disjoint simple paths from between (yi, zi)i∈[`−1] in GX,N
B then

26 return “yes”

27 return “no”

The proof is due to the lengths of p and p1. Since p1 and p are paths from s to t, they
are not node-disjoint. And as p1 has at most 2k nodes while p has length at least (2k)2 + 1,
there must be a subpath p′ of p of length at least 2k which is node-disjoint from p1 (up to its
endpoints). If we choose a maximal such subpath, we can choose its endpoints as x and y.

Thus we obtain a cycle of length at least 2k by joining p[x, y] and p1[x, y], which leads
to a contradiction.
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From this we easily obtain the following lemma, which we will need to bound the running
time of our algorithm.

Lemma 9.2. In a 2-connected component C with n nodes and without a cycle of length at

least 2k there are at most n(2k)2 many different simple paths between every pair of nodes
v1, v2 ∈ C.

Proof. As C has no cycle of length at least 2k and is 2-connected, the length of the longest
path in C is at most (2k)2, see Lemma 9.1. As in each step there are at most n choices for

the next node, this yields at most n(2k)2 many different simple paths from v1 to v2.

On the other hand, we can show that 2-connected components with a cycle of length at
least 2k will always have a path of length at least k between each node-pair.

Lemma 9.3. In a 2-connected multigraph G with a cycle of length at least 2k there is a
simple paths of length at least k between each pair of nodes v1, v2 ∈ G.

Proof. Let C be a cycle of length at least 2k. Let v1, v2 be two nodes in G. We perform a
case distinction on the relation of v1 and v2 regarding C. If they both are on C, we clearly
have a simple path of length at least k between them—we can always choose the longer arc
of C.

If both are not on C, we can choose two nodes y1 and y2 from C. Due to the 2-
connectedness we find a simple path p1 from v1 to y1. We can assume without loss of
generality that y1 is the first hit of this simple path with C (otherwise rechoose y1). Due
to the 2-connectedness, there are two node-disjoint paths from v1 to y2—so at least one
of them avoids y1. We name one of the paths that avoids y1 p2. Again, let y2 be the first
hit of p2 with C (otherwise rechoose y2). Also, there is a simple path p from v2 to y2. If
this one does not hit p1 or p2, we simply choose this path (and rechoose y2 so that it is the
first node of p which is in C) if p hits p1 or p2, we can re-route, using whichever is hit first.
Clearly, we obtain two node-disjoint paths from {v1, v2} to {y1, y2} which are node-disjoint
from C, therefore, we can again route via the longer arc of C.

It remains to consider the case where one of {v1, v2} is on C and the other is not.
Let without loss of generality v1 ∈ C. Due to the 2-connectedness there exists a node
y 6= v1, y ∈ C and two node-disjoint paths from v2 to y. Since they are disjoint, only one
can use v1, so we route over the other and possibly rechoose y to the first hit with C. Then
we can use the path from v2 to y and from y the long arc of C to v1 to construct a path of
length at least k.

Before we continue, we need some more notation. We already defined 1-cuts and 2-
connected components in Definition 8.1. For clarification and readability, we repeat some
definitions given in the outline and add a few new ones. Let z0, x1, y1, z1 . . . , x`−1, y`−1, z`
be distinguished nodes in G. Let (p1, . . . , p`) be a tuple of constant-length node-disjoint
simple paths from zi−1 to xi that match the subexpressions of ri, for each i ∈ [`]. Let G′ be
the induced multigraph obtained from G after removing the inner nodes of (p1, . . . , p`).

Let G′′ be the induced multigraph obtained from G′ after additionally removing the
nodes zi unless zi = xi+1 or zi = yi. (That is, we remove the start/end-nodes which do not
belong to ai-paths.)

We define Gi to be the induced subgraph of G′′a which contains xi and yi and, if xi 6= yi,
all nodes which are on simple paths from xi to yi. If xi = yi, then Gi contains only the node
xi and no edges. We observe that Gi depends only on G, non-empty paths (pj)j∈[`], xi and
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yi. For all empty paths, that is, if pj = ε, we have zj = xj+1, thus empty paths pj will not
be the reason for any removed nodes.

Notice that in Gi the 1-cuts between xi and yi are totally ordered by their proximity to
xi. Furthermore, between every pair of such consecutive 1-cut nodes in Gi (or between xi and
the first 1-cut and between the last 1-cut and yi), there either is nothing, or a 2-connected
component. Thus, the graph Gi resembles a “string-of-beads”, or a single bead if there is a
2-connected component containing xi and yi.

We name a 2-connected component C in Gi large component if it contains a cycle of
length at least 2k and small component otherwise. On this “string of beads” from xi to yi,
we name the leftmost node of a 2-connected component C siC and the rightmost one tiC . All
siC and tiC are 1-cuts separating xi and yi (or xi, yi themselves) by construction. Note that
a 2-connected component C can be between different nodes xi, yi and xj , yj , therefore, there

can be different nodes siC ,tiC and sjC ,tjC for i 6= j.
We now have the ingredients to prove Lemma 8.3 which is restated here for readability:

Lemma 9.4. Let L be a language definable by a regular expression of the form (†). If there
exists a solution of USimPath(L), then there is a solution p1p

a
1p
b
1p2p

a
2p
b
2 · · · p`, such that each

pi matches ri, each pai matches a∗i , each pbi matches b∗i and, furthermore, (1) no pbi hits a
large component and (2) all pbi together hit at most `(`+ k) different small components.

Proof Sketch. We start with a solution p where the length of the pbis is as short as possible.
If p contradicts (1) or (2), we successively replace contradicting subpaths with long a-paths,
which is allowed by Observation 9. We will find long a-paths in large components with
Lemma 9.3 or, if many small components in a row are hit, by using a long a-path via the
small components in the middle. Examples of reroutings are depicted in Figure 8. When
replacing subpaths, the newly generated path π will have at least one b-edge less than p,
thus contradicting the choice of p.

Proof. Let r1a
∗
1b
∗
1r2a

∗
2b
∗
2 · · · r` be given and let p be a solution such that the length of the

pbis is as short as possible. Let x1, . . . , x`, y1, . . . , y`, z0, . . . , z` be the respective nodes in p,
such that each path from xi to yi is a a-path, each path from yi to zi is a b-path, and each
path from zi−1 to xi matches ri.

We will show that restriction (1) is valid, that is, if there is solution p, then there is a
solution satisfying (1). Let C be a large component between xh and yh, that is hit by some
b-path. Let x be the first node in p that is also in C and y the last one. Lemma 9.3 ensures
that there is an a-path of length at least k between all nodes in a large component. Let
π[x, y] be an a-path of length at least k from x to y in this large component. Then π[x, y]
uses at least one b-edge less than p[x, y] since it avoids at least some part (at least the first
or last edge) of the b-path that hits C. Let π = p[s, x] · π[x, y] · p[y, t]. The so constructed
path π is a simple path by construction and matches L, see Observation 9. Furthermore, π
contains less b-edges than p, contradicting the choice of p.

Let us now assume that (1) holds. We show that there is a solution for which (1) and (2)
hold. So let us assume that all pbi together hit at least `(`+k)+1 different small components.
Then there exist xh, yh such that at least `+ k + 1 small components between them are hit.
By definition of p, xh and yh, in every small component C from xh to yh there is a path πhC
from shC to thC which only uses nodes in pah.

We now observe that each pai with i 6= h can hit at most one small component from xh to
yh by definition of 2-connected component. Thus there are at least k + 2 small components
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that are hit by some pbi path, but not by any paj with h 6= j. We name the second such
component, Cx, and an other such component which is at least k − 1 small components
closer to yh, Cy. We note that this implies that p[thCx

, shCy
] is a subpath of pah of length at

least k.
Since Cx is only used by b-paths and pah, in Cx there must exist either

(a) a node x in p[s, xh] and in C which is part of a b-path and such that there exists an
a-path in Cx from x to thCx

not using any inner nodes in pbi for any i, or
(b) a node x′ in p[yh, t] and in C which is part of a b-path and such that there exists an

a-path in Cx from x′ to thCx
not using any inner nodes in pbi for any i.

Analogously for Cy, there must exist a node y in p[s, xh] or a node y′ in p[yh, t] which is

part of a b-path and such that there exists an a-path from y to shCy
in Cy (or from y′ to shCy

,

respectively) not using any inner nodes in pbi for any i.
We perform a case-distinction, depending on which of the nodes x, x′, y, y′ exist. By

definition of Cx, either x or x′ has to exist and by definition of Cy, either y or y′ has to exist.

• If x exists, we can reroute as in Figure 8(top), that is, we obtain the simple path

π = p[s, x] · π1 · p[thCx
, t],

where π1 is the a-path from y to thCx
which does exist by definition of y and is therefore

node-disjoint from p[s, x] and p[thCx
, t] (up to y to thCx

).
• If y′ exists, we can reroute as in Figure 8(mid), that is, we obtain the simple path

π = p[s, shCy
] · π1 · p[y′, t],

where π1 is the a-path from to shCy
to y′ which exists by definition of y′ therefore node-

disjoint from p[s, shCy
] and p[y′, t] (up to shCy

and y′).

• If x′ and y exist, we can reroute as in Figure 8(bottom), that is, we obtain the simple path

π = p[s, y] · π1 · (p[thCx
, shCy

])rev · π2 · p[x′, t],

where π1 and π2 exist by definition of x′ and y and are node-disjoint from each other and
from p[s, y], p[thCx

, shCy
], and p[x′, t] (up to start/end-nodes). We note that (p[thCx

, shCy
])rev

is the subpath p[thCx
, shCy

] read from right to left.

We note that in all cases, Observation 9 ensures that π matches L. Furthermore,
x, x′, y, y′ are inner nodes of b-paths. Thus, in each rerouting, we omitted at least the first or
last b-edge of at least one of these b-paths (namely one of the b-paths through x, x′, y, or y′).
This implies that each π is a solution and has at least one b-edge less than p, contradicting
the choice of p.

With this we can finally prove the following lemma, which implies Theorem 7.3(b).

Lemma 9.5. Algorithm 1 works correctly and in polynomial time for fixed languages.

Proof. We first explain why Algorithm 1 is in P:

• The paths (p1, . . . , p`) have constant length and thus all possibilities can be enumerated
in line 2 in polynomial time.
• One can enumerate over all possible tuples (y1, . . . , y`−1) consistent with (ai, bi)i∈[`−1] in

line 4 in polynomial time. Indeed, we can enumerate all possible tuples with xi = yi if
ai = ε and with yi = zi if bi = ε (which is exactly the definition of consistency).
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Figure 8. Three example reroutings in Lemma 8.3. The dashed circles
depict small components, and the red edges exist by definition of x, x′, y, or
y′. The new paths follows the thick edges from s to t.

• Given (p1, . . . , p`), xi, yi, one can construct Gi in polynomial time: If xi = yi, it is only a
single node. Otherwise, if xi 6= yi, we start with Ga and remove some nodes depending on
(p1, . . . , p`). More precisely, we remove all inner nodes of (p1, . . . , p`) and all end-nodes if
they do not coincide with (xi, yi)i∈[`−1]. We can then determine all nodes on simple paths
from xi to yi by adding an edge from xi to yi (if it does not already exist) and using the
polynomial time algorithm of Hopcroft and Tarjan [HT73] to determine (all) biconnected
components in this multigraph.
• The test whether v is in a 1-cut between xi and yi in line 8 can be done by testing

reachability from s to t in Gi and in Gi − {v}.
• To test in line 10 if C is a large component, it suffices to test if C has a cycle of length 2k

as a minor.
• ` · (`+ k) is a constant, and one can enumerate over all possible subsets of constant size in

polynomial time in line 16.
• For each small component C, there are only polynomially many simple paths from siC

to tiC for each i, see Lemma 9.2. Since |IC | ≤ `, we can enumerate over all polynomially
many choices of paths in line 21.
• One can test for ` node-disjoint paths in line 25 in polynomial time, see Proposition 2.8.

We now prove correctness: If Algorithm 1 answers “yes”, we can construct a solution in
an obvious way.

For the other direction, let us assume there is a solution to USimPath(L). Then
Lemma 8.3 guarantees that there exists a solution p = p1p

a
1p
b
1p2p

a
2p
b
2 · · · p` such that pi
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matches ri, each pai matches a∗i , each pbi matches b∗i and, furthermore, (1) no pbi hits a large
component and (2) all pbi together hit at most `(`+ k) different small components, where k
is the length of the shortest path in L.

Since the algorithm checks for each possible combination of paths (p1, . . . , p`) and nodes
(yi)i∈[`−1] if a solution of this form exists, it will return the correct result.

This concludes the proof of Theorem 7.3(b).
A natural question is now if the algorithms in Theorem 7.3 can be combined to show

that USimPath(L) is in P for every language definable by SCRE(a, a?, a∗, b, b?, b∗). This,
however, is not the case, even for SCRE(a, a∗, b, b∗). The following can be obtained by using
G3SAT with ws = ε, wb = b, wo = ε, wr = aa,wm = ab, wt = ε.

Proposition 9.6. USimPath(b∗abb∗a∗) is NP-complete.

Proof. USimPath(b∗abb∗a∗) is trivially in NP. To prove NP hardness, we use G3SAT from
Construction 4.1 with ws = ε, wb = b, wo = ε, wr = aa,wm = ab, wt = ε. Since the “red
edges” are labeled aa, and the wm-path is the only occurrence of a single a followed by
b, every simple path from s to t which matches b∗abb∗a∗ has to read the wm-path before
reading a red edge. Thus NP hardness follows from Theorem 4.1.

On the other hand, it is also not the case that every language that uses all the factors
a, a∗, b, b∗ is NP-hard. An obvious example is a+b+, and a more intriguing one is summarized
in the following theorem.

Theorem 9.7. USimPath(a∗b+a+b∗) is in P.

Proof Sketch. We reduce the problem to two calls to the 2 node-disjoint paths problem. We
iterate over all triples (x1, x2, x3) of nodes. For each such triple, we compute two sets of
nodes A and B. The former set should be avoided by b-paths and the latter by a-paths. We
add each 1-cut node between s and x1 in Ga to A and each 1-cut node between x3 and t in Gb
to B. Intuitively, if a path p labeled a∗b+a+b∗ is supposed to have label alternations at x1,
x2, and x3, then the nodes in A (respectively, B) need to be used by a-labeled (respectively,
b-labeled) subpaths of p. If A and B intersect, we move to the next triple (x1, x2, x3). The
algorithm tests if, for some triple, Ga −B has two node-disjoint paths between (s, x1) and
(x2, x3) and Gb −A has two node-disjoint paths between (x1, x2) and (x3, t). Correctness is
non-trivial.

Proof. We prove in Lemma 10.5 that this problem can be solved with the algorithm in the
proof sketch, which is also depicted as Algorithm 2.

In order to prove Theorem 9.7, we show that Algorithm 2 solves USimPath(a∗b+a+b∗)
and is in P. Since the algorithm starts with enumerating nodes x1, x2, x3, we assume in the
following lemma that G is an undirected multigraph, and x1, x2, x3 are nodes in G.

We start with some notation. Let 1-cut and 2-connected component be as defined in
Definition 8.1. By 2-connected components of Ga from s to x1 we refer to the 2-connected
components in the subgraph of Ga induced by the nodes of simple paths from s to x1, and by
2-connected components of Gb from x3 to t, we refer to the 2-connected components in the
subgraph of Gb induced by the nodes of simple paths from x3 to t. (Note that a 2-connected
component of Ga could contain t.) If s = x1 there are no 2-connected components in Ga
from s to x1, and if x3 = t there are no 2-connected components in Gb from x3 to t. Let A
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be the set of all nodes which are 1-cuts between s and x1 in Ga and let B be a set disjoint
from A which stores all 1-cuts between x3 and t in Gb.

We say that a path p touches a 2-connected component C if a node of p is in C (note
that this can also refer to the start or end-node of p).

Given x1, x2, x3, by pa1 we will always denote an a-path from s to x1, by pb1 a b-path
from x1 to x2, by pa2 an a-path from x2 to x3, and by pb2 a b-path from x3 to t.

The following observation is very important for our algorithm:

Observation 10. If there exist x1, x2, x3 such that there exist 2-disjoint a-paths from s to
x1 and from x2 to x3, and there exist 2-disjoint b-paths from x1 to x2 and from x3 to t, and
the paths s to x1 and from x3 to t do not intersect, then there is a simple path matching
a∗b+a+b∗ from s to t.

Therefore, we will focus mostly on the paths pa1 and pb2.

Lemma 10.1. Let C1 be 2-connected component of Ga from s to x1 and p be a simple b-path
ending in t in Gb −A which

(1) touches C1 in at least 3 nodes, or
(2) touches C1 and another 2-connected component C2 of Ga from s to x1 both at least

twice.

Then there is a simple path matching a∗b+a+b∗ from s to t.

Proof. Let the b-path p be fixed. Let C1 be the first 2-connected component of Ga from s
to x1 that is touched at least twice. That is, we choose C1 as close to s as possible. We
perform a case distinction on whether C1 is touched twice or more often. Case 1: C1 is
touched at least three times. If there are more touch points, we choose v1, v2, v3 such that
the b-path between v1 and v2, and the b-path from v3 to t does not touch any other node in
C1. By definition of C1, every component before C1 is touched at most once, thus we will
find an a-path from s to C1 which is node-disjoint from the b-path (as the b-path does not
use nodes in A and touches every component before C1 at most once, it follows from the
definition of components).

Let now sC1 be the first node in C1 which is seen by the a-path from s to x1. (Note: sC1

is unique.) We add a new node s′ connected to sC1 and v3 and a new node t′ connected to
v1 and v2. Clearly, s′ and t′ belong to the component, so there are two node-disjoint paths
from s′ to t′ due to Menger’s theorem, see Theorem 8.2. Thus there are two node-disjoint
paths, one from sC to v1 or v2 and one from v3 to the other node (v2 or v1) in Ga.

As there are b-paths from v1 to v2 and from v3 to t, and those are undirected, we
can combine them with the node-disjoint a-paths and the a-path from s to sC to obtain a
solution.

We now turn to case 2, in which C1 is touched exactly twice. Then there is another
2-connected component of Ga from s to x1 that is touched at least twice. Let C2, with
C1 6= C2, be the next 2-connected component of Ga from s to x1 that is touched at least
twice.

Since C1 and C2 are the 2-connected components closest to s which are touched at least
twice, we can find an a-path from s to C1 and one from C1 to C2. Especially, these a-paths
can be chosen such that they are node-disjoint with the b-path because the b-path does not
use nodes in A and by definition of 2-connectedness. Let v be the last touch point of the
b-path in C1 or C2, closest to t. Since v leads to t, we must use it last. If v is in C2, we can
use the b-path in C1 (it must exist, because C1 is touched exactly twice), and then use an



THE COMPLEXITY OF RPQS ON UNDIRECTED GRAPHS 39

a-path to v in C2. So we can assume without loss of generality that, v ∈ C1. Let u be the
other touch point in C1. We name the first node of C1 in Ga s1 and the last node of C1

in Ga t1. (Note that s1, t1 ∈ A by definition of 2-connected component and 1-cut.) As we
have a 2-connected component, we can conclude with Menger’s theorem, see Theorem 8.2,
that there are two node-disjoint paths, one from s1 to t1 or u, and one from v to u or t1.
More precisely, we add a new node s′ connected to s1 and v and a new node t′ connected
to u and t1. Then Menger’s theorem implies two node-disjoint paths from s′ to t′ in Ga.
We explain how to construct a simple path matching a∗b+a+b∗ from s1 to v: If there exist
node-disjoint paths from s1 to u and from t1 to v, we can use the first one, then the b-path
to the first node in C2, and from that node in C2 we can use a path to t1 and from there
the node-disjoint one to v. Otherwise, we have node-disjoint paths from s to t1 and from u
to v. We first use the path from s to t1 to go to the second component. As C2 is touched by
the b-path, we go to one of these nodes and use the b-path from there to u, then the a-path
from u to v.

We can then construct a solution by adding the a-path from s to s1 and the b-path
from v to t. The b-paths are node-disjoint since p was a simple b-path, and the a-paths are
node-disjoint by definition of components. This concludes the proof.

By symmetry, the next result follows immediately for components of Gb:

Lemma 10.2. Let C1 be 2-connected component of Gb from x3 to t and p be a simple a-path
starting in s in Ga −B which

(1) touches C1 in at least 3 nodes, or
(2) touches C1 and another 2-connected component C2 of Gb from x3 to t both at least twice.

Then there is a simple path matching a∗b+a+b∗ from s to t.

We now prove that if Algorithm 2 returns “yes”, then we find paths pa1, pa2, pb1, pb2
such that if pa1 and pb2 intersect, then pb2 touches each component of Ga in which they
intersect at least twice. For a set of nodes S, we call a path S-avoiding if none of the edges
in the path uses a node in S.

Lemma 10.3. If there are

• node-disjoint B-avoiding a-paths pa1 from s to x1 and pa2 from x2 to x3 and
• node-disjoint A-avoiding b-paths pb1 from x1 to x2 and pb2 from x3 to t,

then there exist nodes y1, y2, y3 and

• node-disjoint B-avoiding a-paths p′a1 from s to y1 and p′a2 from y2 to y3 and
• node-disjoint A-avoiding b-paths p′b1 from y1 to y2 and p′b2 from y3 to t,

such that, additionally, p′a1 is node-disjoint from p′b2 in every component in Ga from s to y1

that p′b2 touches at most once.

Proof Sketch. If pa1 and pb2 intersect in a 2-connected component of Ga, then we can re-
route pa1 because of the 2-connectedness. If pb2 touches this component only once, then
the re-routed subpath of pa1 is node-disjoint from pb2, but the re-routed path might not be
node-disjoint with pb1 or pa2. We explain how to reroute in these cases (possibly changing
x1, x2, x3). An example is shown in Figure 9.

Proof. Firstly, we can assume without loss of generality that all paths but pa1 and pb2 are
pairwise node-disjoint (otherwise we shortcut and update x1, x2, x3, A, and B accordingly).
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Let C be the component of Ga from s to x1 that is closest to s such that pa1 and pb2
intersect and pb2 touches C at most once. We name the start and end of C in Ga sC and tC ,
respectively. We name the intersection point of pa1 and pb2 in C x.

Let p′ be a rerouting of pa1 in C which avoids x. Since pb2 touches C at most once, p′ is
node-disjoint from pb2. If it is node-disjoint from pb1 and pa2, we can continue with the next
component contradicting the lemma. Otherwise, we perform a case distinction depending
on whether pb1 (case 1) or pa2 (case 2) intersects with p′ first.

Case 1: Let v denote the first intersection of p′ with pb1. We can then shortcut to the
simple path p′[s, v] · pb1[v, x2] · pa2 · pb2. As there is no 2-connected component after C in Ga,
we are done. The result follows with y1 = v, y2 = x2, y3 = x3, p′a1 = p′[s, v], p′b1 = pb1[v, x2],
p′a2 = pa2 and p′b2 = pb2.

Case 2: We show that we either find an alternative a-path which does not touch pa2,
or such that we can reroute as in Figure 9. For this rerouting to work we have to show
that there is an a-path p′′ from sC to the intersection with pa2 which is node-disjoint from
pa1[x, tC ]:

So let us assume that p′ and p[x, tC ] are not node-disjoint. We show how to find a better
choice p′′. Since p′ and p[x, tC ] are not node-disjoint, there exists some node u in p′ and
p[x, tC ], such that p′[sC , u] and p[x, tC ] share only the node u. If p′[sC , u] is disjoint from pa2,
we are done with this specific component C, since we can use the path p′′ = p′[sC , u]·pa1[u, tC ]
which is disjoint from pa2 to reroute in C, taking care of touches from the pb1 path as in
case 1 if necessary.

If p′[sC , u] is not disjoint from pa2, then we can reroute as depicted in Figure 9. Let y
be the node where p′[sC , v] first touches pa2. Note that y 6= sC and y 6= u since pa1 and pa2

are disjoint by assumption. We can choose y1 = x2, y2 = x1, y3 = x and

p′a1 = pa1[s, sC ] · p′[sC , y] · (pa2 [x2, y])rev,

p′b1 = (pb1)rev,

p′a2 = (pa1[x, x1])rev, and

p′b2 = pb2[x, t].

Here, prev denotes the path p read from right to left.
By construction, the paths p′a1, p′a2, and p′b1 are node-disjoint. Furthermore, since pa2

and pb2 were node-disjoint, we do not have any more intersections of p′a1 and p′b2 after C.
Since C was the component closest to s violating the lemma and our new paths starting
from C, that is, p′a1[sC , y1] and pb2 are node-disjoint, the result follows.

Combining the lemmas so far, and rerouting again if necessary, we obtain:

Lemma 10.4. If there are

• node-disjoint B-avoiding a-paths pa1 from s to x1 and pa2 from x2 to x3 and
• node-disjoint A-avoiding b-paths pb1 from x1 to x2 and pb2 from x3 to t,

then there exist nodes y1, y2, y3 and

• node-disjoint B-avoiding a-paths p′a1 from s to y1 and p′a2 from y2 to y3 and
• node-disjoint A-avoiding b-paths p′b1 from y1 to y2 and p′b2 from y3 to t,

such that additionally p′a1 and p′b2 share at most one node.

Proof. Using Lemma 10.3 we know that we can find paths pa1, pa2, pb1, pb2 such that pa1

and pb2 can only intersect in components which are touched more than once by pb2. By
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ALGORITHM 2: Deciding USimPath(a∗b+a+b∗)

Input: Undirected multigraph G = (V,E, uedge), nodes s, t
Output: “Yes” if there is a simple path from s to t in G that matches a∗b+a+b∗; “no” otherwise

1 forall nodes x1, x2, x3 do
2 A← ∅ B nodes exclusively for a-paths

3 B ← ∅ B nodes exclusively for b-paths

4 foreach 1-cut v between s and x1 in Ga do
5 A← A ∪ {v}
6 foreach 1-cut v between x3 and t in Gb do
7 if v ∈ A then
8 continue with next triple of x1, x2, x3

9 B ← B ∪ {v}
10 if there exist two node-disjoint a-paths between (s, x1) and (x2, x3) that do not use nodes in B,

and there exist two node-disjoint b-paths between (x1, x2) and (x3, t) that do not use nodes in
A then

11 return “yes”

12 return “no”

Lemma 10.1 at most one such component can exist. (Otherwise there is a solution, and a
solution implies node-disjoint simple paths pa1 and pb2.) So we only need to show that if pa1

and pb2 meet in an component C of Ga from s to x1 more than once, then we can reroute
in C1. Again by Lemma 10.1, if pa1 and pb2 intersect (at least) three times in C, we are
done (as then pb2 touches C at least three times, so there is a solution and a solution implies
node-disjoint simple paths pa1 and pb2).

So let x and x′ be the intersections of pa1 and pb2 in C. For the proof, we will reroute
the a-path in C1 in order to not use x′. If the rerouted path p′a1 touches pb2 in any other
node than x, we are done by Lemma 10.1. If the rerouted path touches pb1 or pa2, we reroute
as in Lemma 10.3 to ensure that p′a1 is node-disjoint from both pb1 and pa2. This completes
the proof.

In Lemma 10.5 we can thus focus on paths where pa1 and pb2 share at most a single
node.

Lemma 10.5. Algorithm 2 is correct.

Proof. If a solution exists, the algorithm will clearly return “yes”. So it remains to show:
If the algorithm returns “yes”, then there exists a solution. By Lemma 10.4 we can then
find such paths where pa1 and pb2 intersect in at most one node x. Since pa1 does not use
nodes in B and pb2 does not use nodes in A, we have x /∈ A ∧B. This implies that there is
a 2-connected component C1 of Ga from s to x1 with x ∈ C1 and a 2-connected component
C2 of Gb from x3 to t with x ∈ C2.

Let now p′a1 be a rerouting of pa1 in C1 and p′b2 be a rerouting of pb2 in C2. Let x′a be
the intersection of p′a1 with pb2 and x′b be the intersection of pa1 with p′b2. (These nodes x′a
and x′b must exist, since otherwise we would be done.) Note that x′a 6= x′b since otherwise
pa1 and pb2 would both contain the node x′a = x′b, which contradicts our choice of pa1 and
pb2 (by Lemma 10.4 they share at most one node, which is x.) Furthermore, since x′a ∈ C1

und x′b ∈ C2, the intersections must be unique—otherwise we can use Lemma 10.1 or 10.2
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to ensure that there is a solution. Using the same argument, it follows that x′a /∈ C2 and
x′b /∈ C1. So the touch points must either be “before” or “after” C1 and C2.

Thus, those intersections then look (up to symmetry, that is, choice of s and t) like
in Figure 10. We note that sC1 , tC1 , sC2 , and tC2 depend on s and t and have therefore
been renamed uC1 , vC1 , uC2 , and vC2 where uC1 = sC1 if s = s1, and uC1 = tC1 otherwise.
Analogously, uC2 = sC2 if t = t2, and uC2 = tC2 otherwise. We note that reroutings in C1 or
C2 are allowed to use nodes in A and B. Yet we can find for each choice of t ∈ {t1, t2} and
s ∈ {s1, s2} a a simple path matching a ∗ b+ a+ b∗ from s to t in Figure 10 as follows:

• If s = s1, t = t1, then a possible solution in Figure 10 is a concatenation of an a-path from
s1 to x, a b-path from x via vC2 to x′b, an a-path from x′b to x′a, and the b-path from x′a
to t1. More formally, we use

p[s, x] · (p[sC2 , x])rev · p′b2[sC2 , x
′
b] · (pa1[tC1 , x

′
b])

rev · (p′a1[x′a, tC1 ])rev · pb2[x′a, t] .

• If s = s1, t = t2, then a possible solution in Figure 10 is a concatenation of an a-path from
s2 to x′b, a b-path from x′b via vC2 to x, an a-path from x to x′a, and an b-path from x′a to
t1. More formally, we use

p[s, x] · (p[x′a, x])rev · p′a1[x′a, tC1 ] · pa1[tC1 , x
′
b] · p′b2[x′b, tC2 ] · pb2[tC2 , t] .

• If s = s2, t = t1, then a possible solution in Figure 10 is a concatenation of an a-path from
s2 to x′b, an b-path from x′b via vC2 to x, an a-path from x to x′a, and a b-path from x′a to
t. More formally, we use

pa1[s, x′b] · (pb2[sC2 , x
′
b])

rev · pb2[sC2 , x] · pa1[x, tC1 ] · (p′a1[x′a, tC1 ])rev · pb2[x′a, t] .

• If s = s2, t = t2, then a possible solution in Figure 10 is a concatenation of an a-path from
s2 to x′b, a b-path from x′b via uC2 to x′a, an a-path from x′a to x, and an b-path from x to
t2. More formally, we use

pa1[s, x′b] · (pb2[sC2 , x
′
b])

rev · (pb2[x′a, sC2 ]rev · p′a1[x′a, tC1 ] · (pa1[x, tC1 ])rev · pb2[x, t] .

We especially note that since the paths between s1 and uC1 , t1 and x′a, x
′
b and s2, and

vC2 and t2 are pairwise node-disjoint, the solution is independent of paths not depicted in
Figure 10 (such as pb1 and pa2).

s sC
x

y

tC x1 x2 x3

t

(a) Original paths

s sC
x

y

tC x1 x2 x3

t

(b) rerouting pa1 leads to a rerouting of pa2.

Figure 9. Possible rerouting in Lemma 10.3. The a-paths are blue and
thick. We show that if the paths pa1 and pb2 touch each other at most once
in a component, then we can reroute, even if this means rerouting pa2.

We note that we see no “easy” way to extend Theorem 9.7 to USimPath(a∗b≥ka+b∗),
because the re-routing arguments of Lemmas 10.1 and 10.2 do not work for k ≥ 2.
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s1 uC1

x′a

vC1 x′b s2
uC2

x

t1

vC2

t2

Figure 10. The paths pa1 and pb2 with reroutings intersecting one another.
Note that s ∈ {s1, s2}, t ∈ {t1, t2}, {uC1 , vC1} = {sC1 , tC1}, and {uC2 , vC2} =
{sC2 , tC2}. The a-path is blue and thick, the b-path is black. The paths only
intersect in the depicted nodes, the reroutings of pa1 and pb2 are dashed.

10.0.1. More than Two Alphabet Symbols. Theorem 7.3 generalizes in the following sense to
larger alphabets, with only minor changes to the proof.

Theorem 10.6. USimPath(L) is in P

(a) for every language definable by an SCRE(a, a?, a∗, ?, ??) and
(b) for every language definable by an SCRE(a, a?, a∗, b?, b∗, ??).

Proof. The proof is closely related to the proof of Theorem 7.3: The only changes are to use in
(a) ri ∈ SCRE(a, a, ?, ??) instead of ri ∈ SCRE(a, a?, b, b?), and in (b) ri ∈ SCRE(a, a?, b?, ??)
instead of ri ∈ SCRE(a, a?, b?).

Whereas USimPath(a∗ba∗) is tractable (Theorem 7.3), it follows from Theorem 5.2 that
the following closely related language is intractable.

Corollary 10.7. USimPath(a∗bc∗) is NP-complete.

This implies that SCRE(a∗, b, c∗) can define languages for which USimPath(L) is NP-
hard and therefore shows that the SCREs used in Theorem 10.6 cannot be further extended
without introducing languages for which USimPath becomes intractable.

11. Parity Languages

We now discuss another interesting difference between directed and undirected multigraphs.
Whereas Mod-2-path is NP-complete for directed graphs [LP84], the problem is in P for
undirected multigraphs [LP84]. We generalize this tractability result to a wide class of
languages involving parity tests.

Assume that Σ = {a1, . . . , a`}. The Parikh vector of a word w is defined as p(w) =
(|w|a1 , . . . , |w|a`), where |w|ai is the number of occurrences of the label ai in w. The Parikh
image of a language L is the set {p(w) | w ∈ L}. A parity set is a semi-linear set of the
form {v1 + v2n | n ∈ N, v1 ∈ V1}, where V1 ⊆ {0, 1}` and v2 = (2, . . . , 2) ∈ {2}`. A parity
language is a language for which its Parikh image is a parity set. Every such language is
regular.

Theorem 11.1. UTrail(L) and USimPath(L) are in P for every parity language L.
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As the proof of this theorem relies on the minor theorem on group-labeled graphs [Huy09],
we start with some background: Let Γ be a finite abelian group. A Γ-labeled graph is a
directed graph whose edges are labeled with a group-label in Γ. The group-label of an edge e
is denoted by γG(e). Following an edge in its direction adds the value γG(e), while following
it in the reverse direction adds the value −γG(e). The group-value of a path is the sum of
the values of its edges. A Γ-labeled graph H = (VH , EH , EH) is a minor of a Γ-labeled graph
G = (VG, EG, EG) if and only if VH ⊆ VG and for each edge e in H, there exists a simple
path pe with value γH(e) from origin(e) to destination(e) in G. Furthermore, except for
their first and last node, all pe are pairwise node-disjoint.

Huynh [Huy09] proves that for any fixed Γ-labeled graph H, there is a polynomial time
algorithm which determines if an input Γ-labeled graph G contains a minor isomorphic to
H. We want to use this to solve some group-labeled variant of the kDisjointPaths problem,
that is, given a group-labeled graph G, pairs of nodes (si, ti)i∈[k] and values (γi)i∈[k], we
want to know if there are simple paths pi from si to ti with group value γi in G such that
the pi are pairwise node-disjoint. However, Kawase et al. [KKY20, Footnote 3] observed
that the reduction in [Huy09] cannot distinguish between two paths, one from sj to tj and
one from si to ti, and two paths, one from si to sj and one from ti to tj for any distinct
i and j. Angela Bonifati and Guillaume Bagan [BB19] pointed out that this can be fixed
by considering Γ× Z3 × · · · × Z3-labeled graphs instead. In these graphs, every edge label
can be interpreted as a vector of length k + 1. Let G′ be the graph obtained from G by
relabeling all edges e with (γG(e), 0, . . . , 0) and adding 2k new nodes (s′j , t

′
j)j∈[k] and edges

from s′i to si and from ti to t′i which are labeled with the eth
i+1 unit vector over Zk+1, that is,

(0, . . . , 0, 1, 0, . . . , 0) where the i+1th entry is 1 and all others are 0. Since the only simple
path with group-label (γi, 0, . . . , 0, 2, 0, . . . , 0), where the i+1th entry is 2, is from s′i to t′i,
this implies: There are simple paths p′i with group value (γi, 0, . . . , 0, 2, 0, . . . , 0) which are
pairwise node-disjoint in G′ if and only if there are simple paths pi from si to ti with group
value γi in G such that the pi are pairwise node-disjoint.

In fact, the fix of Bonifati and Bagan inspired us to the following proof.

Proof of Theorem 11.1. We start with the proof for simple paths. The proof idea is to
interpret L as a language over a finite abelian group for which group-labeled and undirected
graphs are closely related. We then relate the problem of finding a simple path in a undirected
multigraph to the problem of finding a minor in the group-labeled graph, which can be
decided in polynomial time, see Huynh [Huy09].

In order to make group-labeled graphs coincide with undirected graphs, we need that
γG(e) = −γG(e) for every edge e. This is the case if every element of the group is its own
inverse, that is, when there is only a single element or the group is Z2 = ({0, 1},+, 0) or a
direct product thereof, that is, of the form Z2 × Z2 × · · · × Z2.

Every parity language can be interpreted as a language over a finite abelian group of
the form Z2 × Z2 × · · · × Z2. For instance, if Σ = {a, b}, then an a-edge can be encoded as
(1, 0), a b-edge as (0, 1). Conversely, if the value of a path in a so-constructed, group-labeled
graph is (0, 1), we can interpret it as a path with an even number of a’s and odd number of
b’s. In order to find a simple path from s to t that matches L in an undirected multigraph
G (if it exists) we will:

(1) We construct the underlying undirected graph Ggraph of G, that is, if there are edges
e1, e2 in G with E(e1) = E(e2), then we remove one of them and repeat until E is an
injective function.



THE COMPLEXITY OF RPQS ON UNDIRECTED GRAPHS 45

(2) We construct a group-labeled graph G′ that is obtained from Ggraph by relabeling the

edges: We replace ai with the ith unit vector over Z`2, which is (0, . . . , 0, 1, 0, . . . , 0).
Furthermore, we direct each edge in an arbitrary direction.

(3) We define a set of group-labeled graphs H, which are edges from s to t that are labeled
with a vector in V1. (Where V1 comes from the Parikh image of L.)

(4) We then test if there is a graph H ∈ H that is a minor of G′. If such a minor exists,
then there is a simple path from s to t in G that matches L, otherwise there is none.

This procedure can be conducted in polynomial time since all changes to G are linear
in |G|+ k, the graphs in H depend only on L and are therefore of fixed size, and we can
test for |V1| minors G′ using the polynomial time algorithm proposed by Huynh [Huy09].
Towards correctness, we first observe that a simple path in an undirected multigraph G
exists if and only if that simple path exists in its underlying undirected graph Ggraph, since
a simple path can use at most one edge between each pair of nodes. By construction of G′

and since L is a parity language, a simple path from s to t in Ggraph that matches L is a
simple path from s to t in G′ whose group-value is in V1. We can test for the latter using
|V1| minor tests, which completes the correctness proof.

For trails, we proceed similar to the simple path case. That is, we again interpret L as a
language over a finite abelian group of the form Z2 × Z2 × · · · × Z2 and relabel the edges of
the multigraph G accordingly, that is, we replace ai with the ith unit vector over Z`2, which
is (0, . . . , 0, 1, 0, . . . , 0), and direct the edges arbitrarily.

We then relate the problem to the case for simple paths by using some variant of the
extended line graph, introduced in Section 2.6. More precisely, we replace every node v by a
clique in which every edge of the clique is labeled (0, . . . , 0). The size of the clique replacing
v is the number of edges adjacent to v. Similar to Lemma 2.9, if v is the start or end-node
of the trail, we add extra nodes s∗ or t∗ to the newly created clique.

More formally, let G′ = (V ′, E′, E ′) be the group-labeled multigraph obtained from G
by relabeling the edges with unit vectors, and let nodes s and t be given. We define the
group-labeled graph G∗ = (V ∗, E∗, E∗) and s∗, t∗ as follows:

V ∗ = {(v, e) | v ∈ V ′, e ∈ E′, e is incident to v} ∪ {s∗, t∗}
E∗ = {((v, e1), (0, . . . , 0), (v, e2)) | (v, e1), (v, e2) ∈ V ∗}

∪{((v1, e), lab(e), (v2, e)) | (v1, e), (v2, e) ∈ V ∗}
∪{(s∗, (0, . . . , 0), (v, e)) | s = v, (v, e) ∈ V ∗}
∪{(t∗, (0, . . . , 0), (v, e)) | s = v, (v, e) ∈ V ∗},

and E∗((x, σ, y)) = {(x, σ, y) | (x, σ, y) ∈ E∗}.
By construction, there is a trail from s to t in G matching L if and only if there is a

simple path from s∗ to t∗ in G∗ whose group-value is in V1. The latter can again be tested
by constructing a set of group-labeled graphs from V1 and testing if G∗ has one of them as a
minor.

Since Huynh [Huy09] can also deal with more complex minors, (including minors which
are k disjoint edges,) it follows that:

Lemma 11.2. Let L1, . . . , Lk be parity languages over Σ. Then we can find k node-disjoint
simple paths (or k edge-disjoint trails) from si to ti matching Li in polynomial time.

Proof. Since L1, . . . , Lk are parity languages, there exist sets V1,1, . . . , V1,k ⊆ {0, 1}` such
that that each Li can be written in the form {v1 + v2n | n ∈ N, v1 ∈ V1,i} and v2 = (2, · · · , 2)
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with i ∈ [k]. The only change to the proof of Theorem 11.1 is that the group-labeled graphs
in H are not single edges, but k node-disjoint edges. More precisely, a group-labeled graph
in H has for each i ∈ [k] an edge from si to ti that is labeled with a word in V1,i. Since each
possible combination is in H, |H| = |V1,1| · · · |V1,k|.

Remark 11.3. For simple paths it is important that L1, . . . , Lk use the same alphabet, as
the problem of finding two node-disjoint paths, one labeled a∗, the other b∗ is NP-complete,
see Gourves et al. [GdLMM12, Theorem 16].

Corollary 11.4. Let L1, . . . , Lk be parity languages over Σ and let F1, . . . , Fk+1 be finite
languages. Then USimPath(F1L1F2 · · ·LkFk+1) and UTrail(F1L1F2 · · ·LkFk+1) are in P.

Proof. We enumerate the node-disjoint (or edge-disjoint) finite simple paths (or trails)
(p1, . . . , pk+1) matching F1, . . . , Fk+1. Let pi be a path from ti−1 to si for each i ∈ [k + 1].
Then we can use Lemma 11.2 to test in polynomial time if there exist k node-disjoint simple
paths (or edge-disjoint trails) from si to ti matching Li in the multigraph without the inner
nodes (or edges) of the paths (p1, . . . , pk+1).

Using the observation that Ga and Gb are edge-disjoint for all pair of symbols a 6= b we
obtain:

Corollary 11.5. Let L1, . . . , Lk be parity languages over alphabets Σ1, . . . ,Σn, such that
Σi = Σj or Σi ∩ Σj = ∅ for each pair i, j. Let F1, . . . , Fk+1 be finite languages. Then
UTrail(F1L1F2 · · ·LkFk+1) is in P.

Proof. We explain how to decide UTrail(F1L1F2 · · ·LkFk+1) in polynomial time. Let G be
an undirected multigraph. We enumerate the edge-disjoint trails (p1, . . . , pk+1) matching
F1, . . . , Fk+1 in G. Let pi be a path from ti−1 to si for each i ∈ [k + 1]. Let I1, . . . , Im be
sets of indices such that Σi = Σj for all i, j ∈ Ix and Σi ∩ Σj = ∅ for all i ∈ Ix, j ∈ Iy and
x 6= y. Since for each x ∈ [m] the subgraphs of G restricted to edges with labels in Σi with
i ∈ Ix are edge-disjoint from each subgraph of G restricted to edges with labels in Σj with
j /∈ Ix per construction of I1, . . . , Im, we can perform tests on each subgraph separately.
More precisely, for each x ∈ [m] we use Lemma 11.2 to test in polynomial time if there exist
|Ij | edge-disjoint trails from si to ti matching Li with i ∈ Ix in the multigraph restricted to
edges with labels in Σi with i ∈ Ix, and without edges of the paths (p1, . . . , pk+1).

12. Enumeration

Given a path p = e1 · · · en and 1 ≤ i ≤ j ≤ n, we denote by p[i, j] the subpath ei · · · ej .
We denote the set of edges of path p with E(p) = {e1, . . . , en}. For convenience, we define
p[1, 0] = ε and therefore V (p[1, 0]) = E(p[1, 0]) = ∅. Furthermore, let p be a path from s to t.
We denote by destination(p[i, j]) end of the subpath p[i, j] and define destination(p[1, 0]) = s,
that is, the start of p.

An enumeration problem P is a (partial) function that maps each input i to a finite or
countably infinite set of outputs for i, denoted by P(i). Terminologically, we say that, given
i, the task is to enumerate P(i).

An enumeration algorithm for P is an algorithm that, given input i, writes a sequence
of answers to the output such that every answer in P(i) is written precisely once. If A is an
enumeration algorithm for an enumeration problem P, we say that A runs in polynomial
delay if the time before writing the first answer and the time between writing every two
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consecutive answers is polynomial in |i|. By between answers, we mean the number of steps
between writing the first symbol from an answer until writing the first symbol of the next
answer. We use the term preprocessing time to refer to the computation time before writing
the first answer.

For several enumeration problems, we will consider the radix order on paths. To this
end, we assume that there exists an order < on Σ. We extend this order to words and paths.
For words w1 and w2, we say that w1 < w2 in radix order if |w1| < |w2| or |w1| = |w2| and
w1 is lexicographically before w2. For two paths p1 and p2, we say that p1 < p2 in radix
order if lab(p1) < lab(p2).

To this end, a parameterized enumeration problem is defined analogously to an enu-
meration problem, but its input is of the form (x, k) ∈ Σ∗ × N. It is in FPT delay if the
preprocessing time (time before writing the first answer) and the time between writing every
two consecutive answers is bounded by f(k) · |(x, k)|c for a constant c and a computable
function f .

Enumeration Problems. We now consider the following problems:

EnumUSimPaths(L)
Given: An undirected multigraph G, nodes s, t.

Question: Enumerate the simple paths from s to t in G that match L.

EnumUTrails(L)
Given: An undirected multigraph G, nodes s, t.

Question: Enumerate the trails from s to t in G that match L.

Martens et al. [MT19, MNT20] have shown that (variants of) Yen’s algorithm [Yen72]
can be used to enumerate all simple paths or trails matching a regular expression in directed
multigraphs. Since Yen’s original algorithm also works on undirected graphs, their results
immediately carry over to undirected multigraphs. Yet Yen’s algorithm requires a shortest
paths subroutine. But as the next proposition shows, there are languages in USPtract and
UTtract for which no polynomial time algorithm for finding a shortest path is known.

Proposition 12.1. There is no known polynomial time algorithm that returns a shortest
simple path (or trail) from s to t that matches a∗bca∗.

Proof. We will reduce the problem to the min-sum k disjoint paths problem. This problem
asks, given an undirected graph, nodes s1, t1, . . . , sk, tk for k disjoint paths, one from si to
ti for each i ∈ [k], such that the sum of their lengths is minimal. For each integer k, this
problem comes in a node-disjoint and an edge-disjoint variant.

The complexity of min-sum k disjoint paths problem for k ≥ 2 has been open for
several decades, although it has been extensively studied, see Fenner et al. [FLP16] for an
overview of the edge-disjoint variant and Kobayashi and Sommer [KS10] for an overview of
the node-disjoint variant.17

17We note that there exists a polynomial time Monte Carlo algorithm for the case k = 2, see Björklund and
Husfeld [BH19], but no deterministic polynomial time algorithm is known. If there is only one start and one
endnode, a polynomial time algorithm for min-sum k node-/edge-disjoint paths with k = 2 was introduced
by [Suu74, ST84] and later extended to arbitrary k ≥ 2 by Bhandari [Bha97]. Yang and Zheng [YZ06] gave
a polynomial time algorithm for the case k = 2 with s1 = s2 and t1 6= t2.
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We now show that finding a shortest simple path from s to t that matches a∗bca∗ is
possible in polynomial time if and only if the min-sum two node-disjoint paths problem can
be solved in polynomial time.

• To return a shortest simple path from s to t that matches a∗bca∗ in a undirected multigraph
G, we first iterate over all possible triples of pairwise different nodes x, y, z. For each such
triple, we test for an b-edge from x to y and a c-edge from y to z. If this test succeeds,
we only need to find two node-disjoint path in Ga without y, one from s to x and one
from z to t, such that the sum of their lengths is minimal. Although Ga is a undirected
multigraph, it suffices to consider its underlying undirected graph, since a shortest path
will not use multiple edges between nodes and the node-disjointness ensures that the two
different paths will not use an edge between the same pair of nodes. Thus this problem
is exactly the min-sum two node-disjoint paths problem. After having iterated over all
triples, we return the overall shortest path.
• On the other hand, we can find two node-disjoint paths from s1 to t1 and from s2 to t2

such that the sum of their length is minimal as follows: We relabel every edge with a
and add a path labeled bc from t1 to s2. Then the problem reduces to finding a shortest
simple path matching a∗bca∗ from s1 to t2 and returning the respective subpaths.

We now turn to trail semantics. That is, we now show that finding a shortest trail from
s to t that matches a∗bca∗ is possible in polynomial time if and only if the min-sum two
edge-disjoint paths problem can be solved in polynomial time.

• To return a shortest trail from s to t that matches a∗bca∗ in a directed multigraph G, we
first iterate over all possible pairs of nodes u, v and edges e1, e2 with lab(e1) = b, lab(e2) = c
such that e1e2 is a path from u to v. Since G and therefore Ga is a multigraph, while
the the min-sum two edge-disjoint paths problem is defined over undirected (simple)
graphs, we cannot use Ga directly. To this end, we construct a simple graph G′ by
(1) removing all edges of the form (z, a, z) from Ga and (2) replacing every edge with
two new ones and an extra node. More formally, let Ga = (V,Ea, Ea) be the subgraph
of G restricted to a-edges. We define G′ = (V ′, E′, E ′) with V ′ = V ∪ {ze | e ∈ Ea},
E′ = {e1, e2 | e ∈ Ea and |Node(e)| > 1}, and if Ea(e) = (x, a, y), then E ′(e1) = (x, a, ze)
and E ′(e2) = (ze, a, y). Now we only need to find two edge-disjoint paths in G′, one from
s to u and one from v to t, such that the sum of their lengths is minimal, which is exactly
the min-sum two edge-disjoint paths problem.

After having iterated over all pairs of nodes and edges, we return the overall shortest
trail.
• On the other hand, we can find two edge-disjoint paths from s1 to t1 and from s2 to t2

such that the sum of their length is minimal as follows: We relabel every edge with a and
add a path labeled bc from t1 to s2. Then the problem reduces to finding a shortest trail
matching a∗bca∗ from s1 to t2 and returning the respective subpaths.

This completes the proof.

We will therefore show that Yen’s algorithm can be adapted to work with subroutines
that return a (not necessarily shortest) trail. Note that Martens and Trautner [MT19]
showed the equivalent Theorem for simple paths.

While under simple path semantics one could simply remove the word shortest, we have
to be more careful under trail semantics. More precisely, we additionally need to test before
returning a path p whether it has a prefix which was not yet written to the output. The
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ALGORITHM 3: Yen’s algorithm changed to work with trails on multigraphs, see Martens et
al. [MNT20, MNP21]

Input: Directed or undirected multigraph G = (V,E, E), nodes s, t ∈ V , a regular language L
Output: All trails from s to t in G that match L under bag semantics

1 A← ∅ B A is the set of trails already written to output

2 B ← ∅ B B is a set of trails from s to t matching L

3 p← a shortest trail from s to t matching L B p← ⊥ if no such trail exists

4 while p 6= ⊥ do
5 output p

6 Add p to A

7 for i = 0 to |p| do
8 G′ ← (V,E − E(p[1, i]), E

∣∣
E−E(p[1,i])

) B Delete the edges of p[1, i]

9 S = {e ∈ E | p[1, i] · e is a prefix of a trail in A}
10 p1 ← a shortest trail from destination(p[1, i]) to t in G′ that matches ((lab(p[1, i]))−1L) \ {ε}

and does not start with an edge from S

11 Add p[1, i] · p1 to B

12 p← a shortest trail in B B p← ⊥ if B = ∅
13 Remove p from B

reason herefore is that, if there are trails p1, p2 from s to t such that p1 is a prefix of p2 and
if p2 is first written to the output, then the “original” algorithm might not find p1.

Lemma 12.2. Algorithm 3 is also correct if we make the following changes: (1) the
assignments on lines 3 and 10 assign (possibly non-shortest) trails to p and p2, respectively,
and (2) in line 12 it is additionally tested if p contains a prefix p′ which is a trail from s to
t that matches L and is not yet in A. If this test succeeds, we take a shortest such prefix
instead of p.

Proof. On line 8, Algorithm 3 considers the last path p that was added to A and compares
it to every path p1 in A that shares the first i edges with p. Since the algorithm forbids, for
every such path p1, the next edge to be p1[i + 1, i + 1], we cannot find a trail more than
once. So we just have to show that every trail is eventually found.

Clearly, the algorithm is correct if there exists at most one trail from s to t that matches
L. Assume, towards a contradiction, that there is more than one such trail and the algorithm
terminated, that is, B is empty, but there exists a trail p′ from s to t that matches L and is
not in A. Due to (2), p′ cannot be a prefix of a path already in A. Let C be the set of paths
in A that share the longest prefix with p′. Since all paths in A start in s and A 6= ∅ due to
line 3, we have that C 6= ∅. Let i be the maximal integer with p[1, i] = p′[1, i] for all p ∈ C.
We note that i < |p′| due to (2).

Let p ∈ C be the last path that was added to A. After adding p to A, we must have
executed the for loops again. In line 8, we then cannot have deleted the edge p′[i+ 1, i+ 1],
otherwise this would contradict the definition of C. Since p was the last path from C that we
added to A and B is empty by assumption, p′ must have been found during this execution
of the while-loop. Thus we must have p′ ∈ B or p′ ∈ A. Contradiction.

We now study the time guarantee of Algorithm 3. The time needed depends on the
subroutines in lines 3 and 10. The next lemma implies that if there are polynomial time
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algorithms (FPT algorithms, respectively) for the subroutines, then the enumeration is
possible in polynomial delay (FPT delay, respectively).

Lemma 12.3. Let R be a class of regular expressions. If there exist algorithms A1 and
A2 that, when given as input an undirected multigraph G, nodes s and t, a word w with
|w| ≤ |G|, and r ∈ R, return in time f(|G|, |r|) (with f(|G|, |r|) ≥ |G|),

(1) a trail from s to t in G that matches L(r) if it exists and “no” otherwise and
(2) a trail from s to t in G that matches w−1L(r) if it exists and “no” otherwise

respectively, then EnumUTrails(R) is in delay O(|E|2 · f(|G|, |r|)) with preprocessing time
O(f(|G|, |r|)).

Furthermore, if A1 and A2 always return a shortest trail (respectively, a smallest trail
in radix order), then the enumeration can be done in order of increasing length (respectively,
in radix order), with the same time guarantees.

Proof. We use the variant of Algorithm 3 described in the statement of Lemma 12.2, with
calls to algorithm A1 on line 3, and up to |E| calls of algorithm A2 on line 10. Furthermore,
we choose an arbitrary path, shortest path, or smallest path in radix order in B on line 12,
depending on whether we want to enumerate in arbitrary order, order of increasing length,
or radix order, respectively. The correctness for EnumTrails(R) and EnumUTrails(R) follows
from Lemma 12.2.

Clearly, we need time O(f(|G|, |r|)) to output the first path (if it exists). Then,
Algorithm 3 does up to |E| iterations in line 7. We note that all paths are trails and therefore
have length at most |E|. If we use a prefix tree as a data structure for A, we can insert a
path in time O(|E|2) or find a path p in A in O(|E|) time. Thus we can also find the right
node in the prefix tree and then compute S in line 9 in O(|E|) time. In line 10, we need
multiple calls to A2 to ensure that the path starts with an edge not in S. More precisely, let
G′ = (V ′, E′, E ′) for each edge e ∈ E′ − S, we compute a new multigraph G′e = (V ′e , E

′
e, E ′e)

by adding a new node s′ to G′, and change E ′ such that E ′e(e) = (s′, lab(e), v) instead of
E ′(e) = (destination(p[1, i]), lab(e), v). Then there is a trail from s′ to t in G′e that matches
((lab(p[1, i]))−1L) \ {ε} if and only if there is such a trail from destination(p[1, i])) to t in G′

that starts with e. Furthermore, these trails use the same edges. Thus we can call A2 on
each G′e with e ∈ E′ − S and take an arbitrary, an overall shortest, or an overall smallest
trail in radix order as p1.

In line 12 we need to find a minimal path among the candidates in B. If we again use a
prefix tree as a data structure and start with |p| instead of the first node in p, we can always
output the leftmost path (without the |p|), which is a minimal simple path. Finding and
deleting are in time O(|E|). Thus, we have a delay of O(f(|G|, |r|)) until the first output,
and afterwards delay O(|E|(|E|+ |E| · f(|G|, |r|))).

Since Yen’s algorithm also works on undirected graphs, the undirected version of Martens
and Trautner [MT19, Lemma 8.4] follows:

Lemma 12.4. Let R be a class of regular expressions. If there exist algorithms A1 and
A2 that, when given as input an undirected multigraph G, nodes s and t, a word w with
|w| ≤ |G|, and r ∈ R, return in time f(|G|, |r|) (with f(|G|, |r|) ≥ |G|),

(1) a simple path from s to t in G that matches L(r) if it exists and “no” otherwise and
(2) a simple path from s to t in G that matches w−1L(r) if it exists and “no” otherwise

respectively, then EnumUSimPaths(R) is in delay O(|V |f(|G|, |r|)) with preprocessing time
O(f(|G|, |r|)).
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Furthermore, if A1 and A2 always return a shortest simple path (respectively, a smallest
simple path in radix order), then the enumeration can be done in order of increasing length
(respectively, in radix order), with the same time guarantees.

We now show how to obtain algorithms A1 and A2 for Lemmas 12.3 and 12.4. More
precisely, we use the standard method of self-reducibility to query a decision algorithm
multiple times in order to reconstruct the solution. That is, each polynomial time algorithms
that decide whether a simple path or trail matching L exists in G can be used to obtain a
polynomial time algorithm that can return such a path (if it exists).

Lemma 12.5. Let G = (V,E, E) be a directed or undirected multigraph, s and t two nodes,
and B be an algorithm that decides in time x whether there is a simple path (respectively
trail) from s to t in G that matches L. Then there exists a algorithm that returns in time
O(|E| · x) (respectively O(|E|2 · x)) a simple path (respectively trail) from s to t in G that
matches L if one exists, and “no” otherwise.

Proof. For simple paths, we construct an algorithm A as follows: If B returns “no”, A will
also return “no”. Otherwise, there exists a simple path from s to t in G which matches L.
Let e1 be an edge adjacent to s. Let G′ be the graph obtained from G by removing all edges
adjacent to s except e1. If B returns “no”, we remove e1 from G and repeat the procedure
with the next edge adjacent to s, otherwise, if B returns “yes” on graph G′, we can choose
e1 as first edge and remove the other edges adjacent to s (that is, except e1) permanently
from G. After we have found the ith edge, ending in a node u with u 6= t, we can find
the i+1th edge with a similar method: Let ei+1 be an edge adjacent to u. Let G′ be the
graph obtained from G by removing all edges adjacent to u except ei and ei+1. If B returns
“no”, we remove ei+1 from G and repeat the procedure with the next edge adjacent to u,
otherwise, if B returns “yes” on graph G′, we can choose ei+1 as i+1th edge and remove the
other edges adjacent to u (that is, except ei and ei+1) permanently from G. Once we found
an edge e` ending in t, we return e1 · · · e`.

The so-constructed path e1 · · · e` is a solution by construction. Furthermore, since every
edge is considered at most once, the running time is bounded by O(|E| · x).

We now turn to trail semantics. We construct algorithm A as follows: If B returns “no”,
A will also return “no”. Otherwise, there exists a trail from s to t which matches L.

We enumerate over all edges e1 adjacent to s. Let E(e1) = (s, a, u). We define
G′ = (V ′, E′, E ′) to be the multigraph obtained from G = (V,E, E) by adding a new node s′

and defining E ′(e1) = (s′, a, u). We now use B to decide the existence of a trail from s′ to t
in G′ that matches L. If B returns “no”, there is no solution which uses e1 as first edge, so
we continue with the next edge adjacent to s. If B returns “yes”, then there is a solution
which uses e1 as first edge, and we permanently delete ei from G.

After we have found the ith edge, ending in a node u, we can find the i+1th edge
with a similar method: Let ei+1 be an edge adjacent to u and ei 6= ei+1. Let G′ be the
graph obtained from G by removing ei+1, and adding a new node s′ and a path labeled
lab(e1 · · · ei+1) from s′ to u. We use B to decide if there is a trail from s′ to t matching L in
G′. If it returns “no”, we repeat the procedure with the next edge adjacent to u, otherwise,
if B returns “yes” on graph G′, we can choose ei+1 as i+1th edge and permanently remove
ei+1 from G. Once we found an edge e` ending in t such that lab(e1 · · · e`) ∈ L, we return
e1 · · · e`. If e` ends in t, but lab(e1 · · · e`) /∈ L, we continue with the procedure.
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The so-constructed path e1 · · · e` is a solution by construction. Furthermore, since the
returned trail has length at most |E| and there are at most |E| candidates for the ith edge,
the running time is bounded by a polynomial in O(|E|2 · x).

This implies that we can not only find, but also return simple paths and trails that match
languages in the tractable classes USPtract and UTtract. Since both classes are closed under
taking derivatives, see Theorem 3.1, the algorithms A1 and A2 required in Lemmas 12.3
and 12.4 exist for these languages. This implies the next theorem.

Theorem 12.6. The following problems are in polynomial delay:

• EnumUSimPaths(L) for each L ∈ USPtract, and
• EnumUTrails(L) for each L ∈ UTtract.

13. Conclusions and Open Problems

We studied the data complexity of trail and simple path evaluation of RPQs on undirected
multigraphs. Although this sounds like a single problem, it is actually a very general class
of problems, which subsumes several well-studied problems, such as disjoint-path problems
and trail or simple path problems with length constraints.

Using a wide range of methods, such as the minor theorem from Robertson and Sey-
mour [RS95], the minor theorem on group-labeled graphs [Huy09], the extended line graph
[KK16], Edmond’s matching technique and extensions thereof [Sze03, ADF+08], and several
structural arguments, we were able to pinpoint several interesting tractable cases of the
problem. Our technically most complex contribution in terms of tractability is the structural
argument in the proof of Theorem 7.3.

On the intractable side, we provided the gadget G3SAT that can be used to show NP-
hardness of a wide range of trail and simple path problems (e.g., UTrail((abc)∗)) and used
directed two-disjoint paths techniques for languages such as (abab)∗.

We also compared the tractable classes on undirected (multi-)graphs to the tractable
classes on directed (multi-)graphs. We can show that SPtract ⊆ USPtract and SPtract ⊆ UTtract,
that is, the languages in SPtract are still tractable under simple path and trail semantics on
undirected or bidirectional graphs and multigraphs. On the other hand, Ttract 6⊆ UTtract,
thus SPtract seems more “robust” than Ttract.

Several challenging open problems remain. The most prominent one is probably the
question if it is decidable in polynomial time whether an undirected graph has a simple path
of length 0 modulo 3 between two given nodes. We believe that resolving this question will
be the key to also resolving the question for larger modulo values. Furthermore, our results
seem to suggest that USPtract ( UTtract, but we do not have a proof of the inclusion.

While we did study multigraphs, for all languages for which we showed that UTrail or
USimPath are intractable, we only needed a graph. Since the hardness proofs also imply
hardness for multigraphs, the question arises if the class UTtract would be “the same” if we
consider edge-labeled graphs or multigraphs. (For USPtract, this holds by definition.)

Another interesting direction (which is interesting for designing a query language) is
to look for polynomial-time algorithms for two disjoint paths such that the sum of their
lengths is minimal.
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Appendix A. On the Complexity of Properly Edge Colored Disjoint Paths

The work on Gourvès et al. [GdLMM12] on edge-colored graphs contains some flawed proofs,
which we discuss here. The flawed proofs are Theorem 9 and Corollary 10. We first repeat
their statements in the notation of this thesis, sketch how their proof is flawed, and give an
idea how to fix it.

Theorem A.1 (Theorem 9 in [GdLMM12]). Let Gc be a c-edge-colored graph with no
(almost) PEC closed trails through s or t, and a constant L > 0. Then, the problem
of finding 2 vertex/edge disjoint PEC s-t paths, each having at most L edges in Gc is
NP-complete in the strong sense, even for graphs with maximum vertex degree equal to 3.

We now restate their theorem in the notion of our paper and neglect some restrictions
posed to the graph. Please note that their length L depends on the 3SAT instance, thus it
is no “constant” in the sense of this thesis.

Theorem A.2 (restated version of Theorem 9 in [GdLMM12]). Let G be an edge-labeled,
undirected graph, s, t two nodes, and L ∈ N. Then, the problem of finding 2 node-/edge-
disjoint s-t-paths, labeled (ab)∗ and both having at most length L, is NP-complete.

In their proof, Gourvès et al. consider clause and variable gadgets, similar to the ones
presented in Figure 4. (They use a slightly more elaborate clause gadget to achieve node
degree at most 3, but we will not go into details here.) Due to the length constraints, they
can force a path through the variable gadgets. Yet, they do not see that the path through
the clause gadgets still has the opportunity to skip gadgets, using the unused side of a
variable gadget. We sketch this in Figure 11. We note that the length constraints given in
the original paper allow this skip, as the resulting path will only get shorter.

We note that Theorem A.2 is still correct: From Aboueliam et al. [ADF+08, Theorem
3.2] it follows that two disjoint (ab)∗/(ab)∗-paths, one from s1 to t1 and one from s2 to t2 is
NP-complete. With length constraints, we can add new nodes s and t and (ab)∗-paths of
length L′ = 2|E| from s to s1 and from t2 to t, and (ab)-paths of length 2 from s to s2 and
from t1 to t. Then every path from s to t of length at most 3|E|+ 2 is either from s1 to t1
or from s2 to t2.

For completeness, we note that Theorem A.1 is also correct, which means that the
problem is still NP-hard when restricted to graphs without an cycle labeled (ab)∗ through
s or t (and without an “almost (ab)∗ cycle” through s or t, which means that every cycle
through s or t contains the substring aa or bb at least twice) and with node-degree at most 3.
We can prove it with slight changes to G3SAT. More precisely, we need to change the clause
gadgets similar to [GdLMM12] to ensure that every node has degree at most 3. Furthermore,
we add new nodes s and t and use the path length to ensure that every path labeled (ab)∗

from s to t which uses the path from s to s1 must not use the wr-labeled paths. This then
implies that the path from s1 to t must be via t1 (not t2).

We use G3SAT with the clause gadget depicted in Figure 12 and the words wb = a,
wm = wo = b, wr = a(ba)i. We explain i later. We then add new nodes s and t with an edge
labeled (ab)j from s to s1 and edges labeled ab from s to s2, and labeled b from t1 to t and t2
to t. We choose i and j such that i+ j > L, while the intended path from s2 to t2 does not
exceed length L. Let m be the number of clauses of ϕ and n be the number of variables. The
length of an “intended” path from s1 to t1 is 3m(2|wb|+ 2|wo|)− |wo| = 12m− 1, therefore
the length of an indented path from s to t via s1 is 12m+ j. The length of an “intended”
path from s2 to t2 is m(4|wr|+ 4|wo|) + n(3|wr + 3|wo|)− |wo| = m(8i+ 8) + n(6i+ 6)− 1.
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Figure 11. Example snippet of the reduction from 3SAT to the problem of
finding two properly edge-colored, edge-disjoint paths with length constraints
in a two-colored graph [GdLMM12, Theorem 9]. For readability, we addition-
ally labeled blue edges with b and red edges with a. We note that, although
the “variable path” (thick edges on bottom) only uses variable gadgets, the
“clause path” does not need to use all clause gadgets (see thick path on top).
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Figure 12. Alternative clause gadget for G3SAT if we want to ensure that
every node has degree at most 3.

We set i = 12m+ 1, L = 96m2 + 16m+ 72n+ 12n+ 2 and j = L− 12m to complete the
construction.

The length constraints imply that the path from s to t that uses the path from s to s1

must not use wr-paths. By construction, this path must then enter t via the path from t1.
Thus we have a path from s1 to t1 which must not use any of the wr-paths. The correctness
then follows similar to the proof of Theorem 4.1.

Corollary A.3 (Corollary 10 in [GdLMM12]). Let s and t be two vertices in a c-edge-colored
graph Gc with maximum vertex degree equal to 3 and with no (almost) PEC closed trails
through s or t. Then, it is NP-complete to decide whether there exist 2 vertex/edge disjoint
s-t paths such that exactly one of them is a PEC s-t path.

Corollary A.4 (restated version of Corollary 10 in [GdLMM12]). Let a graph G and nodes
s, t be given. Then it is NP-complete to decide whether there exist 2 node-/edge-disjoint
s-t-paths such that one of them matches (ab)∗.
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In their proof, Gourvès et al. use the same construction as in their Theorem 10, but
color the clause gadgets blue, that is, all edges in the clause gadget get the label a. Since one
path has to be PEC, that is, match (ab)∗, this again forces one of the paths to go through
each variable gadget. But, similar to before, the path using the clause gadgets can shortcut
via the unused side of variable gadgets.

We note that Corollary A.4 and Corollary A.3 are correct. Indeed, we can use the
variant of G3SAT which we used to prove Theorem A.1 and choose wr = aa and relabel the
path from s to s2 with aa. Then the path from s to t that matches (ab)∗ must use the
(ab)∗-labeled path from s to s1 and must not use wr-paths. This implies that the path must
enter t via t1. Since the path from s1 to t1 must not use wr-paths, and the other path from
s to t must be node-/or edge-disjoint and therefore use the disjoint path from s2 to t2, the
correctness follows from Theorem 4.1.
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