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ABSTRACT
Fundamental research on data manipulation languages is often

motivated by the search for balance between desirable properties,

such as expressiveness, robustness, compositionality, the existence

of efficient algorithms, etc. Real-world data can be helpful for this

search in many different respects. Data sets may exhibit common

structures that efficient algorithms can exploit. Query logs and

schemas can give us an idea of single features that are used very

often, or groups of features that are frequently used together. In

this sense, they can guide us towards features or fragments of

data manipulation languages that are common in practice and may

therefore be worthy of deeper study. In other cases, wemay even get

a glimpse on features that are not well-understood by users, which

may inspire us to redesign them or develop tools that increase their

ease-of-use.

This tutorial aims to provide, first of all, an overview on several

practical studies that have been conducted in the areas of tree-

structured and graph-structured data, with a focus on cases with

strong interaction between analysis of the data and fundamental

research. Second, it aims to provide a set of lessons learned after

the investigation of some large-scale logs consisting of more than

850 million queries.
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• Information systems→Query languages for non-relational
engines; •Theory of computation→Database query languages
(principles); Regular languages.
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1 INTRODUCTION
Database theory studies the underlying mathematical principles of

data management. Data management, in turn, studies essentially

all aspects of computer science that deal with large amounts of

data, which is clearly of huge practical relevance. To facilitate the

symbiosis between theory and practice, the main database the-

ory conferences are colocated with database systems conferences,

which gives the theory community the opportunity to interact with

the broader data management community, whether it is to draw in-

spiration from current applied research or to disseminate its results

to a broad audience. Database theory is therefore a field in which

the interaction between theory and practice is an important and

challenging aspect.

Another important aspect in database theory is the search for

language fragments with desirable properties. Despite their domain-

specific nature, data manipulation languages in their entirety are

often still too complex or expressive, which leads to undecidability

of optimization or even evaluation problems. Therefore, we search

for fragments for which we can identify a balance between many

factors such as expressiveness, robustness, computational complex-

ity, declarativity, compositionality, etc. Since some of these factors

are mutually exclusive (increased expressiveness usually leads to

worse computational complexity properties), desirable fragments

may differ depending on their intended use.

These two aspects of database theory come together in practical

studies that investigate real-world data in order to understand how

data manipulation languages are used in practice. Such studies can

help us understand how real-world data is organized, they can iden-

tify practically relevant features of query or schema languages, or

they can identify subsets of languages that suffice to cover impor-

tant cases that we see in the wild. In short, they can give database

researchers yet another perspective in the search for a good balance

between expressiveness, usefulness, and computational complexity.

The idea of using practical studies for identifying useful language

fragments is not new. Already conjunctive queries, the most studied

query language in the field (and a fragment of first-order logic or

relational algebra) were at least partly motivated by a practical

study [27]. In the early years of database theory, the language

Query-by-Example [90], designed to appeal to the non-professional

user with little mathematical background, was based on a core of

conjunctive queries. A practical study of Thomas and Gould [85],

performed on a group of 39 students, showed that this core is learnt

and used most readily.

The advent and steep growth of the Web in the 21st century has

made different kinds of practical studies possible. Ever since theWeb

made real-life data available for research in an unprecedented scale,

we have seen practical studies that analyze this data, providing

many valuable insights. This paper provides an overview of various

practical studies on data sets, schemas, and queries for tree- and
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graph-structured data, together with a selection of insights that

are relevant to fundamental research. It will also identify areas in

which, to the best of the author’s knowledge, such insights are still

largely missing. We will see examples showing that

(1) a theoretical perspective can add significant value to practical

studies and

(2) such studies can motivate new and exciting research questions,

both theoretical and practical.

Concerning (1), theoreticians are trained to have a deep understand-

ing of data manipulation languages and can pinpoint combinations

of features that will lead to intractability or other undesired be-

havior. Concerning (2), the paper will provide several concrete

examples how practical evidence motivated new research avenues.

(There will be a focus on fundamental and theoretical questions.)

This paper will not deal with user studies or questionnaires,

which are another important tool to get an idea for real-life usage

of data. The focus on tree- and graph-structured data is due to the

broad availability of such data on the Web. Despite the effort to

be comprehensive, there will undoubtedly be studies that are not

covered here.

We will discuss both real-world objects in this paper (e.g., when

discussing practical studies) and their theoretical abstractions. The

reader should be aware that theoretical abstractions are not in-

tended to cover every feature of the real-life object but usually

aim at presenting a simple and elegant definition that captures

its essence. We will assume basic familiarity with the real-world

objects treated in the paper.

The paper is structured as follows. After presenting preliminaries

on regular expressions (Section 2), which are a recurring theme

through the paper, we have two blocks (Sections 3–6 and 7–10) that

give an overview on practical studies on tree-structured and graph-

structured data, respectively. The structure of these two blocks

is identical: we discuss data sets, schemas, queries, and conclude.

Section 11 provides some lessons learned after having done a fair

amount of practical studies. We wrap up in Section 12.

2 PRELIMINARIES
Let Lab denote a countably infinite set of labels. We use Lab as an

abstraction for the set of labels that can be assigned to nodes in

trees (such as element names in XML or keys in JSON) or to edges

in graphs (such as IRIs in RDF). Following convention, we usually

use the letter Σ to denote finite subsets of Lab and use the term

alphabet to refer to such sets.

The set of regular expressions over Lab is inductively defined as

follows. The expressions ∅ and 𝜀 are regular expressions over Lab,
each symbol 𝑎 ∈ Lab is a regular expression over Lab and, if 𝑒1 and

𝑒2 are regular expressions over Lab, then so are 𝑒1 · 𝑒2, 𝑒1 + 𝑒2, 𝑒
∗
1
,

𝑒1?, and 𝑒
+
1
. As usual, we often omit the concatenation symbol “·”.

Notice that a regular expression 𝑒 over Lab can only use a finite

subset Σ of Lab. We therefore also refer to 𝑒 as a regular expression

over Σ. By RE we denote the class of all regular expressions.

A word (over Σ) is a sequence 𝑎1 · · ·𝑎𝑛 where 𝑎𝑖 ∈ Σ for every

𝑖 ∈ {1, . . . , 𝑛}. By 𝜀 we denote the empty word (i.e., the case where

𝑛 = 0). A word language is a set of words. Assume that 𝐿, 𝐿1, and

𝐿2 are word languages. We define 𝐿1 · 𝐿2 = {𝑤1 ·𝑤2 | 𝑤1 ∈ 𝐿1 and

𝑤2 ∈ 𝐿2} and 𝐿𝑛 = {𝑤1 · · ·𝑤𝑛 | 𝑤𝑖 ∈ 𝐿 for every 𝑖 ∈ {1, . . . , 𝑛}}.

The language 𝐿(𝑒) of a regular expression 𝑒 over Σ is the set of

words over Σ inductively defined as follows. For the base case, we

have 𝐿(∅) = ∅, 𝐿(𝜀) = {𝜀}, and 𝐿(𝑎) = {𝑎}. Furthermore, 𝐿(𝑒1 ·
𝑒2) = 𝐿(𝑒1) · 𝐿(𝑒2), 𝐿(𝑒1 + 𝑒2) = 𝐿(𝑒1) ∪ 𝐿(𝑒2), 𝐿(𝑒∗

1
) = ∪𝑛

𝑖=0
𝐿(𝑒1)𝑖 ,

𝐿((𝑒1?) = 𝐿(𝑒1) ∪ {𝜀}, and 𝑒+
1
= ∪𝑛

𝑖=1
𝐿(𝑒1)𝑖 . The expressions 𝑒1 and

𝑒2 are equivalent, if 𝐿(𝑒1) = 𝐿(𝑒2). A word language 𝐿 is regular if
there exists a regular expression 𝑒 with 𝐿 = 𝐿(𝑒).

3 TREE-STRUCTURED DATA SETS
We start with discussing practical studies for tree-structured data

because of historic reasons. Data sets, schemas, and queries for XML
(eXtensible Markup Language) started to become publicly available

on the Web since the early 2000’s. Today, we have similar material

available for data in JSON (JavaScript Object Notation). We treat

both of these formats in Sections 3–6. There is an emphasis on

XML because, to the best of the author’s knowledge, the interaction

between practical studies and fundamental research has been more

pronounced for XML than for JSON. Due to the focus on underlying

principles, the insights gained from analyzing XML data may also

be relevant to JSON.

Theoretical research usually abstracts XML and JSON data as

labeled trees. We denote a node-labeled tree as a tuple𝑇 = (𝑉 , 𝐸, lab)
where

• 𝑉 is its finite set of nodes,
• 𝐸 ⊆ 𝑉 ×𝑉 is its child relation, and
• lab : 𝑉 → Lab associates a label to each node.

A tree has a unique node 𝑟 without incoming edges, which is its

root. For XML data, the trees are formed by considering the nesting

structure of their tags (also called “element names”). Here, the label

of each node is the corresponding tag in the XML document. In this

sense, the trees are always ordered, which means that the children

of a node are always considered as an ordered sequence 𝑢1, . . . , 𝑢𝑛
rather than a set. Although JSON data allows a mix between ordered

and unordered content in its tree structure (arrays are ordered, while

sets of objects are unordered), this is not crucial for this paper.

Example 3.1. Figure 1 contains an XML document, a JSON docu-

ment containing similar data, and a labeled ordered tree showing

the data’s tree structure. We note that there is not a single “correct”

way to model XML or JSON data as node-labeled trees. Some ambi-

guity is already present in Figure 1: depending on the theoretical

properties one wants to study, one could also model the pers_id
attribute name of Figure 1a as a child of the person-nodes in Fig-

ure 1c. Similarly, one could also add nodes that are labeled with the

data values: the attribule value “1”, the name “Aretha”, etc.

The abstraction of XML or JSON data as node-labeled trees is

sufficient for modeling XML and JSON data for many purposes,

but certainly not for all. In XML, for example, the accompanying

schema may declare some attributes as ID / IDREF, which play a

similar role as key / foreign key constraints. In this sense, one may

want to consider an IDREF value as an edge to the referred node,

in which case the underlying structure of the data may no longer

be a tree. In the case of JSON, it has been argued that edge-labeled

trees represent the data more naturally [24]. For this paper, this

difference is not important.



<persons>
<person pers_id="1">
<name> Aretha </name>
<birthplace>
<city> Memphis </city>
<state> Tennessee </state>
<country> United States </country>

</birthplace>
</person>
<person pers_id="2">
...

</person>
...

</persons>

(a)

{"persons": [
{"person":
{ "pers_id":"1",
[{"name":"Aretha"},
{"birthplace":

[{"city":"Memphis"},
{"state": "Tennessee"},
{"country", "United States"}]}],

}
},
{"person":
{ "pers_id":"2", ...

}, ...
}

(b)

persons

person

name birthplace

city state country

person

. . .

. . .

(c)

Figure 1: An XML document, a JSON document, and a tree

3.1 Practical Studies
To the best of the author’s knowledge, XML or JSON data sets have

not yet been subjected to a large-scale practical study that focuses

on their structure. However, real-life XML data has been exten-

sively used for benchmarking, which led to rudimentary analysis

of several prominent data sets, like XML versions of DBLP [35],

UPenn’s Treebank data [60], and Swissprot [84]. The focus usually

was on explaining the difference between the data sets to justify

possible run-time differences between experiments, rather than

generating deep insights about the data. We know that DBLP has a

depth of 7, Treebank has depth 37, and Swissprot has depth 6. Since

the number of nodes in these data sets runs in the millions, their

tree structure is broad and shallow. This structure of XML trees has

been exploited in, e.g., XML document compression [26, 41].

A notable study by Grijzenhout and Marx [46] collected 180k

unique XML files together with their schema (if available), and

obtained that 85% of the XML files is well-formed. When studying

which errors occur and to which extent they can be automatically

repaired, they identified 74 different error categories, 9 of which

were already responsible for 99% of the errors in well-formedness.

This situation seems promising for (semi-)automatic repair. The

three most prominent error types, already responsible for 79.9% of

the errors, were opening and ending tag mismatch, premature end

of data in a tag, or improper UTF-8 encoding of the file.

Concerning JSON, we see different usage patterns in practice

than for XML, for instance because JSON is a popular format for

APIs. Although large data sets are available in JSON format, JSON

data is also available for large collections of small, similarly struc-

tured documents, such as tweets on Twitter. This property of JSON

collections has been used to, e.g., develop efficient algorithms for

analytics on JSON-structured data in databases [38].

4 SCHEMAS FOR TREE-STRUCTURED DATA
Another way to get insight in the structure of data is by analyzing

its schema. Schema analysis has attracted a fair amount of attention,

both for XML [16, 28, 61, 64, 76] and for JSON [9, 57].

The aforementioned study of Grijzenhout and Marx [46] dis-

covered that only 25% of their XML files contain a reference to a

valid schema. Furthermore, only just over 10% of the well-formed

documents are valid with respect to their schema. Although this

may sound alarming at first, it also needs a bit of perspective. For

instance, it may be possible that a schema is referenced but cannot

be retrieved. Since schemas can reference each other, this may al-

ready happen because one of the schemas referenced in the “main”

schema file was replaced by a newer version under a different URL.

4.1 Document Type Definitions (DTDs)
Early practical studies on schemas for XML data focused on rudi-

mentary properties of Document Type Definitions or DTDs. We

provide a formal abstraction based on [4].

Definition 4.1. A Document Type Definition (DTD) over alphabet
Σ is a triple 𝑑 = (Σ, 𝜌, 𝑆), where

• Σ ⊆ Lab is a finite set of labels,
• 𝜌 is a function from Σ to the regular expression over Σ, and
• 𝑆 ⊆ Σ is a set of start labels.

We say that a labeled ordered tree 𝑇 = (𝑉 , 𝐸, lab) is valid w.r.t.

𝑑 if lab(𝑟 ) ∈ 𝑆 (where 𝑟 is the root of 𝑇 ) and, for every 𝑣 ∈ 𝑉 with

ordered sequence of children 𝑣1, . . . , 𝑣𝑛 , the word lab(𝑣1) · · · lab(𝑣𝑛)
is in 𝐿(𝑒), where 𝑒 = 𝜌 (lab(𝑣)). In real-world DTDs, 𝜌 is usually

written as a set of rules rather than a function. We will follow this

convention and write 𝑎 → 𝑒 if 𝜌 (𝑎) = 𝑒 .

Example 4.2. The tree in Figure 1c satisfies the DTD consisting

of the rules

persons → person∗

person → name birthplace
birthplace → city state country?

and start labels 𝑆 = {persons}. The set Σ is implicitly defined as

the set of labels that occur in the rules of the DTD.

Whereas the present definition of DTDs has been widely used

in research, it omits some aspects of the language. We will touch

upon some of these later, such as deterministic regular expressions.

Early Studies. Early studies on the use of DTDs in practice were

performed on small sets of schemas, consisting of twelve [76] or

sixty [28] DTDs. Sahuguet [76] concluded, among others, that (1)

even though DTDs should prescribe what are well-formed docu-

ments, many of them are erroneous themselves; and (2) it seemed

that users wanted to express the unordered concatenation operator

“&” from SGML
1
but, being absent in DTD, they used workarounds

1
The unordered concatenation 𝑎1& · · ·&𝑎𝑛 defines the set of words that consist of

permutations of 𝑎1, . . . , 𝑎𝑛 .



such as encoding (𝑎&𝑏&𝑐) as (𝑎 +𝑏 + 𝑐)∗. Notice that the latter is a
drastic overapproximation of (𝑎&𝑏&𝑐), which is actually equivalent
to 𝑎𝑏𝑐 + 𝑎𝑐𝑏 + 𝑏𝑎𝑐 + 𝑏𝑐𝑎 + 𝑐𝑎𝑏 + 𝑐𝑏𝑎.

Choi [28] investigated somewhat deeper structural properties

of DTDs such as recursion. Here, a DTD 𝑑 = (Σ, 𝜌, 𝑆) is recursive, if
the directed graph with nodes Σ and edges {(𝑎, 𝑏) | 𝑏 appears in

some word in 𝜌 (𝑎)} has a directed cycle. While 35 out of 60 DTDs

in Choi’s sample were recursive, the non-recursive DTDs allowed

for trees up to depth 20. On the theoretical side, it is known that

recursive DTDs can pose challenges, e.g., for streaming validation

algorithms. Although the non-recursive DTDs are precisely those

for which a constant-memory streaming validation algorithm ex-

ists [79], the picture is much less clear if we can already assume

that the XML document is well-formed [78].

4.2 Regular Expressions in DTDs
DTDs mainly prescribe the structure of their data using the regular

expressions 𝑒 in the rules of the form 𝑎 → 𝑒 . As such, a number of

studies has focused on getting a clearer picture on the use of these

expressions in practice [16, 50, 53, 54, 68].

4.2.1 Deterministic Regular Expressions. Choi [28] performed a

first analysis on the regular expressions in DTDs. In his corpus, the

parse depth of the regular expressions was 1 to 9, which tells us that

these expressions are structurally not very complex. Furthermore,

he observed that a number of DTDs use non-deterministic regular
expressions, which is in violation of the XML standard [39, Appen-

dix D]. Here, a regular expression is deterministic if, when reading

a word from left to right without looking ahead, it is always clear

to where the current symbol can be matched in the expression.
2

For example, 𝑒 = (𝑎 + 𝑏)∗𝑎 is not deterministic, because if a word

starts with label 𝑎, we need to look ahead to see if we reached the

end of the word in order to know if we need to match to the first

or second 𝑎 in expression 𝑒 . On the other hand, 𝑒 ′ = 𝑏∗𝑎(𝑏∗𝑎)∗ is
deterministic and equivalent to 𝑒 .

Understanding determinism in regular expressions is theoreti-

cally challenging. Brüggemann-Klein and Wood discovered that

deterministic expressions
3
cannot define all regular languages [25]

and provided a characterization of the definable languages in terms

of their minimal deterministic finite automaton. In particular, the

expression (𝑎 + 𝑏)∗𝑎(𝑎 + 𝑏), which is very similar to the afore-

mentioned expression 𝑒 does not have an equivalent deterministic

regular expression. In fact, it is PSPACE-complete to decide if a

given regular expression can be transformed to a deterministic

one [33, 56] and determinizing regular expressions can give rise to

an unavoidable exponential blow-up [55]. The canonical translation

from regular expressions to deterministic regular expressions goes

through deterministic finite automata. While it is known that there

are unavoidable exponential blow-ups from regular expressions

to deterministic finite automata, and from deterministic finite au-

tomata to deterministic regular expressions [55], it is not known if

there are cases in which the determinization of a regular expression

can cause an unavoidable double exponential blow-up.

Finally, we note that determinism in regular expressions is also

required in XML Schema [88, Section 3.8.6.4], the successor of DTD

2
For a formal definition, we refer to [25, 33].

3
They referred to determinism in regular expressions as one-unambiguity.

which we will discuss in Section 4.3. Here, the constraint is called

the unique particle attribution constraint.

4.2.2 Sequential and Chain-like Regular Expressions. In 2004, Bex

et al. [16] performed a detailed structural analysis on regular expres-

sions in DTDs. They collected a sample of 103 DTDs and discovered

that over 92% of the regular expressions used in DTDs have a highly

constrained syntactical structure. We make this more precise.

Definition 4.3 (Sequential Regular Expression). A simple factor
(over Σ) is a regular expression of the form (𝑎1 + · · · +𝑎𝑘 ), (𝑎1 + · · · +
𝑎𝑘 )?, (𝑎1 + · · · + 𝑎𝑘 )∗, or (𝑎1 + · · · + 𝑎𝑘 )+ where {𝑎1, . . . , 𝑎𝑘 } ⊆ Σ.
A sequential regular expression (over Σ) is a regular expression of

the form 𝑓1 · · · 𝑓𝑛 , where each 𝑓𝑖 is a simple factor.

For example, 𝑎∗𝑎𝑏𝑏∗ and (𝑎 +𝑏)∗𝑎(𝑎 +𝑏)? are sequential regular
expressions, where as (𝑎∗ + 𝑏∗) is not. Notice that sequential regu-
lar expressions are not necessarily deterministic. Variants of such

expressions were first studied in [62] under the name simple regu-
lar expressions, chain regular expressions [18], and extended chain
regular expressions [63].

The discovery that themajority of expressions in practical schemas

has a very restricted syntax can be theoretically interesting. For

instance, fundamental problems on DTDs such as containment and

intersection non-emptiness reduces to the same problems on regu-

lar expressions [63]. Furthermore, the usual worst-case complexity

analysis for these problems on regular expressions does not work

with these restricted expressions. We define these problems next

and use R to denote a class of regular expressions.

R-Containment
Given: Two regular expressions 𝑒1 and 𝑒2 from R.
Question: Is 𝐿(𝑒1) ⊆ 𝐿(𝑒2)?

R-Intersection
Given: Regular expressions 𝑒1, . . . , 𝑒𝑛 from R.
Question: Is 𝐿(𝑒1) ∩ · · · ∩ 𝐿(𝑒𝑛) ≠ ∅?

Both problems are PSPACE-complete for general regular expres-

sions [51, 83]. Notice that the intersection problem considers an

arbitrary number of regular expressions. If we would consider the

intersection problem for a fixed number of expressions, it can al-

ways be solved in polynomial time by standard automata-theoretic

methods (construct a product automaton for the intersection and

test non-emptiness).

Motivated by understanding the complexity of containment,

equivalence, and intersection non-emptiness of real-life schemas,

Martens et al. [63] revisited the complexity of these problems for

sequential regular expressions, where fragments with different

types of factors were considered.
4
We denote such fragments as

RE(𝑓1, . . . , 𝑓𝑘 ), where 𝑓𝑖 ∈ {𝑎, 𝑎?, 𝑎∗, 𝑎+, (+𝑎), (+𝑎)?, (+𝑎)∗, (+𝑎)+}
for all 𝑖 ∈ {1, . . . , 𝑘}. Here, “𝑎” always stands for an arbitrary sym-

bol from Σ. The factor types (+𝑎), (+𝑎)?, (+𝑎)∗, and (+𝑎)+ allow

disjunction in factors, whereas the types 𝑎, 𝑎?, 𝑎∗, 𝑎+ do not. For

instance, RE(𝑎, 𝑎∗) denotes those expressions in which every factor

is a single symbol 𝑎 ∈ Σ or is of the form 𝑎∗ with 𝑎 ∈ Σ. For instance,
the expression 𝑎𝑏∗𝑎∗𝑎𝑏 is of this form. The following is known:

Theorem 4.4 ([63]). (a) RE(𝑎, 𝑎+)-Containment is in PTIME.

4
The work also considers more expressive factors, which we do not treat here.



(b) RE(𝑎, (+𝑎))-Containment is in PTIME.
(c) RE(𝑎, 𝑎∗)-Containment is coNP-complete.
(d) RE(𝑎, 𝑎?)-Containment is coNP-complete.
(e) RE(𝑎, (+𝑎)?)-Containment is coNP-complete.
(f) RE(𝑎, (+𝑎)∗)-Containment is PSPACE-complete.
(g) RE(𝑎, (+𝑎)+)-Containment is PSPACE-complete.

While (a–b) are easy to see because expressions in RE(𝑎, 𝑎+) and
RE(𝑎, (+𝑎)) can be translated to deterministic finite automata in

polynomial time, the arguments for (c–g) are less trivial and shown

in [63]. The hardness in items (c) and (d) is perhaps remarkable since

the involved regular languages are so inexpressive. (We provide a

proof sketch in Appendix A.) Remarkably, testing equivalence of
expressions in RE(𝑎, 𝑎∗) or RE(𝑎, 𝑎?), i.e., testing if they define the

same language, is in PTIME [63], despite Theorem 4.4(c–d). Finally,

containment of RE(𝑎?, (+𝑎∗)) is in PTIME [1]. The reason for the

latter result is that, since the languages of such expressions are

closed under taking subsequences, containment can be checked

with a greedy strategy. Details can be found in Abdulla et al. [1].

Concerning intersection, the problem is PSPACE-complete for

general regular expressions [51], but the complexities for sequential

regular expressions are lower:

Theorem 4.5 ([63]). (a) RE(𝑎, 𝑎+)-Intersection is in PTIME.
(b) RE(𝑎, (+𝑎))-Intersection is in PTIME.
(c) RE(𝑎, 𝑎∗)-Intersection is NP-complete.
(d) RE(𝑎, 𝑎?)-Intersection is NP-complete.
(e) RE(𝑎, (+𝑎)?)-Intersection is NP-complete.
(f) RE(𝑎, (+𝑎)∗)-Intersection is NP-complete.
(g) RE(𝑎, (+𝑎)+)-Intersection is NP-complete.

Here, the argument for (a) is based on a normal form of the

expressions, from which intersection can easily be decided. Item

(b) is easy to see, because all words in the language have the same

length. The upper bounds for (c–g) hold because it is possible to

guess a polynomial-size representation of a candidate witness word

𝑤 in the intersection of the languages, and to test in polynomial

time if𝑤 (which possibly has exponential length) is in each of the

languages. The lower bounds for (c–d) and (g) are non-trivial.

4.2.3 𝑘-Occurrence Regular Expressions. Another kind of expres-

sions studied by [62] are now known as 𝑘-occurrence regular ex-
pressions (𝑘-OREs), which are regular expressions in which every

alphabet symbol occurs at most 𝑘 times. The basic decision prob-

lems for 𝑘-OREs have the following complexities.

Theorem 4.6 ([63]).
(a) 𝑘-ORE-Containment is in PTIME for every fixed 𝑘 ∈ N.
(b) 𝑘-ORE-Intersection is PSPACE-complete for every fixed 𝑘 ≥ 3.

Theorem 4.6(a) holds because a 𝑘-ORE over Σ can always be

converted to a deterministic finite automaton with at most |Σ| · 2𝑘
states. The upper bound in Theorem 4.6(b) already holds for general

regular expressions, whereas the lower bound is less trivial.

By re-investigating the data of Bex et al. [16], it was discovered

that over 99% of the regular expressions in DTDs and XML Schema

Documents are 1-OREs, also known as single-occurrence regular
expressions or SOREs [17].

SOREs and𝑘-OREs turn out to be interesting for schema inference.
Here, the task is, given a set of trees {𝑇1, . . . ,𝑇𝑛}, to compute a DTD

𝐷 such that {𝑇1, . . . ,𝑇𝑛} ⊆ 𝐿(𝐷) and such that 𝐷 is useful in a

similar way as a hand-crafted schema would be. To this end, it is

important that 𝐷 is not too specific (we should not take 𝐿(𝐷) =

{𝑇1, . . . ,𝑇𝑛}) and not too general (we should not take 𝐿(𝐷) to be

the set of all trees).

Since above scenario for schema inference only provides positive
examples for an inference algorithm, the notion of learning in the
limit [43] has been adopted for schema inference.

Definition 4.7. A sample is a finite set of words over Σ. Let R be

a class of regular expressions. An algorithm 𝐴 that maps samples

to expressions in R is said to learn R from positive data if (1) 𝑆 ⊆
𝐿(𝐴(𝑆)) for every sample 𝑆 and (2) to every 𝑒 ∈ R we can associate a

so-called characteristic sample 𝑆𝑒 ⊆ 𝐿(𝑒) such that, for each sample

𝑆 with 𝑆𝑒 ⊆ 𝑆 ⊆ 𝐿(𝑒), we have that 𝐴(𝑆) is equivalent to 𝑒 .

A class R of regular expressions is then said to be learnable from
positive data if an algorithm exists that learns R from positive data.

Gold [43] already showed that the class of regular expressions is

not learnable in the limit. Bex et al. [15, Theorem 1.4] show:

Theorem 4.8. The class of deterministic regular expressions is not
learnable from positive data.

For this reason, also DTDs are not learnable from positive data.

However, this is different for 𝑘-OREs.

Theorem 4.9. For each fixed 𝑘 , the class of deterministic 𝑘-OREs is
learnable from positive data.

The algorithm to prove this result, however, is not very practical

as it does not provide a method to automatically determine the best

value of 𝑘 for the given sample and, in some cases, needs exponen-

tially many samples in the alphabet of the target expression [15].

But the result did encourage to dig deeper. Bex et al. [15] develop

and experimentally evaluate an algorithm iDRegEx which learns

deterministic 𝑘-OREs for increasing values of 𝑘 . The method is

probabilistic, based on Hidden Markov Models, and it first learns an

automaton for the sample 𝑆 , which is then translated into a 𝑘-ORE.

In a companion paper [18], Bex et al. present an inference algo-

rithm for regular expressions that are both SOREs and sequential

regular expressions, which still constitute over 90% of the regular

expressions in the corpus of [16]. The algorithm performs well in

practice, even in scenarios with little data available [18].

4.3 XML Schema
The second major schema language for XML is XML Schema [88].
In a nutshell, XML Schema adds to DTDs (a) a wider range of simple
types, such as dates, floats, integers, etc. and (b) the ability to use

complex types. In our theoretical abstraction, we focus on the latter,

which we define in two steps.

Definition 4.10. An extended DTD (EDTD) is a tuple 𝐷 = (Σ, Γ, 𝜌,
𝑆, 𝜇), where

• Σ ⊆ Lab is a finite set of labels,
• Γ ⊆ Lab is a finite set of types,
• (Γ, 𝜌, 𝑆) is a DTD over alphabet Γ, and
• 𝜇 : Γ → Σ.

A labeled ordered tree 𝑇 = (𝑉 , 𝐸, lab) is valid w.r.t. an EDTD if

there exists an assignment of types to the nodes in 𝑉 such that the



typed tree is valid w.r.t. the underlying DTD (Γ, 𝜌, 𝑆). Formally, for

a tree𝑇 Γ
using labels in Γ, let us denote by 𝜇 (𝑇 Γ) the tree obtained

from𝑇 Γ
by replacing each label 𝑎 ∈ Γ with 𝜇 (𝑎) ∈ Σ. Hence, 𝜇 (𝑇 Γ)

only uses labels in Σ. We now say that 𝑇 satisfies 𝐷 if there exists

a tree 𝑇 Γ
such that 𝑇 Γ ∈ 𝐿((Γ, 𝜌, 𝑆)) and 𝜇 (𝑇 Γ) = 𝑇 . We call 𝑇 Γ

a witness for 𝑇 . Again, we denote the set of trees satisfying 𝐷 by

𝐿(𝐷).
Example 4.11. Consider the EDTD consisting of the rules

persons → person∗

person → name (birthplace-US + birthplace-Intl)
birthplace-US → city state country?
birthplace-Intl → city state country

with 𝜇 (birthplace-US) = 𝜇 (birthplace-Intl) = birthplace.
This schema assigns different types to birthplaces: birthplace-US
to birthplaces forwhich country is optional, and birthplace-Intl
for the others. The tree in Figure 1c is in the language of the schema.

The schema in Example 4.11, however, does not satisfy XML

Schema’s Element Declarations Consistent constraint, which for-

bids the occurrence of different types associated to the same el-

ement name in a regular expression 𝜌 (𝑡). In the example, both

birthplace-US and birthplace-Intl are indeed on the same

right-hand side of a rule and are associated to the same element

name birthplace.

Definition 4.12. Let 𝐷 = (Σ, Γ, 𝜌, 𝑆, 𝜇) be an EDTD. A regular

expression 𝑟 over Γ is single-type if it does not contain distinct

types 𝑡1 and 𝑡2 with 𝜇 (𝑡1) = 𝜇 (𝑡2). We say that 𝐷 is a single-type
EDTD (stEDTD) when every regular expression 𝜌 (𝑡) is single-type
and 𝑆 does not have distinct types 𝑡1 and 𝑡2 with 𝜇 (𝑡1) = 𝜇 (𝑡2).

Structurally, XML Schema corresponds closely to single-type

EDTDs. Themost substantial difference between single-type EDTDs

and XML Schema is that XML Schema has an additional restriction

on regular expressions in 𝜌 , calledUnique Particle Attribution, which
mimics the determinism constraint from DTDs.

Problems such as Intersection andContainment for XML Schema

or single-type EDTDs are known to reduce to the corresponding

problems for regular expressions [63], which we already discussed

in Section 4.2. Similarly, although XML Schema inference is more in-

volved than DTD inference, the regular expression inference which

we discussed in Section 4.2 remains at its core [18].

4.4 XML Schema Complex Types in Practice
The usage of XML Schema in practice has been investigated in

several studies [16, 52, 61, 64]. Bex et al. [16] investigated the use

of complex types in 30 XSDs. They concluded that 25 out of these

30 are structurally equivalent to a DTD, whereas the remaining five

use complex types beyond the power of DTDs. These five schemas

use types such that a node is always assigned with a type that

depends on its label, its parent’s label, or its grandparent’s label.

An example of such a schema can be found in Figure 2a, where we

use the types Γ = {𝑎, 𝑏, 𝑐, 𝑑1, 𝑑2, 𝑒, 𝑓 , 𝑔, ℎ1, ℎ2, 𝑖, 𝑗, 𝑘} and define 𝜇 as

𝜇 (𝑑1) = 𝜇 (𝑑2) = 𝑑 , 𝜇 (ℎ1) = 𝜇 (ℎ2) = ℎ, and the identity elsewhere.

Similar findings were confirmed on larger sets of schemas [61, 64].

The observation of how complex types are used in practical

schemas gave rise to the development of a schema language called

BonXai [61], which is equivalent to XML Schema (and thus includes

𝑎 → 𝑏 + 𝑐
𝑏 → 𝑒𝑑1 𝑓

𝑐 → 𝑒𝑑2 𝑓

𝑑1 → 𝑔ℎ1𝑖

𝑑2 → 𝑔ℎ2𝑖

ℎ1 → 𝑗

ℎ2 → 𝑘

(a)

𝑎 → 𝑏 + 𝑐
𝑏 → 𝑒𝑑 𝑓

𝑐 → 𝑒𝑑 𝑓

𝑑 → 𝑔ℎ𝑖

//𝑏//ℎ → 𝑗

//𝑐//ℎ → 𝑘

(b)

Figure 2: A single-type extended DTD and an equivalent
pattern-based schema [64]

all bells and whistles concerning, e.g., XML Schema simple types),

but aims to facilitate the use of complex types. The main conceptual

idea behind BonXai is to specify the Figure 2a schema as the set of

rules in Figure 2b. The philosphy behind the schema in Figure 2b is

that we have a set of rules 𝜑 → 𝑒 , where 𝜑 selects a set of nodes in a

tree𝑇 and 𝑒 is a regular expression. For instance, the left-hand side 𝑎

of the first rule selects all nodes labeled 𝑎, and the XPath expression

//𝑏//ℎ selects all ℎ-labeled nodes with a 𝑏-labeled ancestor. A tree

𝑇 satisfies the schema if, for every node 𝑣 of 𝑇 we have that (1) 𝑣 is

selected by some left-hand-side 𝜑 and (2) for every rule 𝜑 → 𝑒 such

that 𝑣 is selected by 𝜑 , the children of 𝑣 match 𝑒 , as in a DTD. The

conceptual advantage of a schema as in Figure 2b is that one does

not need the set of types Γ. The entire schema is specified using

labels that actually appear in 𝑇 , which can be conceptually easier

to do for users.

4.5 JSON Schema
The interaction between theory and practical studies on JSON

Schema is not yet as mature as for DTD or XML Schema. For this

reason, we do not provide a formal definition for JSON schema but

refer the reader to [24]. In a nutshell, whereas DTD or XML Schema

make heavy use of regular expressions, JSON schema follows a

logic-based approach [24, Section 5]. JSON Schemas are logical

combinations of assertions that describe classes of constraints on

objects, arrays, and base values [9].

Maiwald et al. [57] collected 159 JSON schemas from Schema-

Store and performed a study in the style of Choi [28], investigating

the size of schema, the usage of types, recursion, and maximal nest-

ing depth of nonrecursive schemas. The study found 26 recursive

schemas. The non-recursive ones allowed for maximum depths

ranging from 3 to 43, wich an average of 11.

They also looked at the usage of JSON’s schema-full vs schema-
mixed feature. Here, schema-full means that the schemas only allow

documents that have the properties as specified in the schema.

Schema-mixed means that the properties specified in the schema

must be present in the document (properties can be declared as

optional), but additional properties which are not even mentioned

by the schema are allowed. JSON Schemas are schema-mixed by

default, and the schema-full mode was explicitly used in 8 schemas.

This observation is in stark contrast to what practical studies

have seen in DTDs. In DTD, one can argue that the ANY-type is

a way to specify arbitrary additional content. In a study with 103

DTDs, ANY was only used in one schema [16].



A recent study by Baazizi et al. collected 11.5k unique schemas

from GitHub looked at the usage of negation in JSON Schema [9].

Negation is used in 2.6% of these files and, in many cases, is a work-

around for features that seem to be missing in the language (such as

a keyword forbidden as a dual to required or an implication 𝑥 ⇒ 𝑦

which is encoded as ¬𝑥 ∨ 𝑦).

Concerning connections to theory, there is early work on JSON

schema containment [42], but the area still seems very young. This

contrasts with the work on containment for schemas for XML data,

where many principled approaches exist (e.g., [29–31, 63]). JSON

schema inference is also starting to attract attention, with systems

being developed (e.g., [7, 82]) and theoretical underpinnings such

as the design of a first type system that allows the user to configure

levels of precision and succinctness [8].

5 QUERIES FOR TREE-STRUCTURED DATA
There are many query languages for tree-structured data, including

XPath, XQuery, XSLT, JSONiq, and JSONPath. A recent study by

Baelde et al. [11] considered a corpus of 21.1k XPath queries and

analyzed these concerning their size, navigational features, and

relationship to fragments that were considered in work on XPath

satisfiability. Their size analysis shows a power law on the number

of nodes in their syntax trees, where a majority of the queries has

size at most 13, but still 256 queries with size at least 100.

Navigation in XPath is done using so-called axes. These are child,
descendant(-or-self), parent, ancestor(-or-self), attribute, following,
following-sibling, preceding, preceding-sibling, self, and namespace.
In their corpus, such axes were used in 46.5% of the XPath ex-

pressions, the most popular being child (31.1%), attribute (17.1%),

descendant(-or-self) (3.6%), and ancestor(-or-self) (3.6%).

Baelde et al. study fragments of XPath that were considered in

the literature, such as positive XPath, Core XPath 1.0, and downward
XPath. Such fragments are indeed prominent in their logs (around

25%–30% of the expressions for positive XPath, Core XPath 1.0, and

downward XPath). However, since most of these fragments were

intended for theoretical investigation, they further investigated

how many queries are expressible in each of these fragments, in

which case the coverage grew significantly (to e.g., 60% for positive

XPath, 70% for Core XPath 1.0, and 35% for downward XPath).

In terms of less expressive fragments, a master’s thesis from 2009

by Pasqua [72] gathered 218 XQuery files, and 1882 XSLT docu-

ments, from which around 95k XPath-expressions were extracted.

In contrast to Baelde et al. [11], who removed duplicate expressions

within each source, Pasqua only removed duplicate XQuery- and

XSLT-files. Pasqua purely focused on the navigational features of

the expressions (the usage of axes) and stripped away everything

else. He concluded that over 90% of the expressions in his corpus

are tree patterns [34, 67] (aka twig queries). If we consider the 10%
largest XPath expressions, then this fragment drops to 68%, whereas

it drops to 58% in the top 5% largest expressions.

6 CONCLUDING TREE-STRUCTURED DATA
Although the structure of tree-structured data sets and queries

has not been subject of intense research, there has been a lot of

investigation on schemas for tree-structured data. Here, most of

the theory-practice interaction has taken place around the analysis

of regular expressions in schemas and the usage of complex types,

leading to algorithms for containment, intersection non-emptiness,

and inference for DTD and XML Schema (Sections 4.2), as well as

the development of a possibly user-friendlier alternative for XML

Schema (Section 4.4).

Concerning JSON, the theory still seems less developed than

for XML. While formal models exist [24], JSON standards are still

evolving and the formal models may need to be revisited at some

point. We are also seeing recent practical studies going hand-in-

hand with fundamental work in areas such as schema containment

and inference, indicating interesting opportunities for active re-

search in this area (Section 4.5). Since much of the fundemental

research on XML focused on the broader concept of tree-structured

data, it may be leveraged to contribute to research on JSON as well.

7 GRAPH-STRUCTURED DATA SETS
Graph databases today are mostly available in Resource Description

Framework (RDF) format. An RDF data set 𝐺 is a set of triples

(𝑠, 𝑝, 𝑜), where we refer to 𝑠 as subject, 𝑝 as predicate, and 𝑜 as object.
The RDF specification [75] states that 𝑠 , 𝑝 , and 𝑜 can come from

pairwise disjoint sets I (IRIs), B (blank nodes), and L (literals) as
follows: 𝑠 ∈ I ∪ B, 𝑝 ∈ I, and 𝑜 ∈ I ∪ B ∪ L. For this paper, the

precise definition of IRIs, blank nodes, and literals is not important.

Technically, we assume that I ⊆ Lab, i.e., literals are labels.
Abstractly, RDF data is often seen as an edge-labeled directed

graph, where each triple (𝑠, 𝑝, 𝑜) corresponds to an edge from node

𝑠 to node 𝑜 with label 𝑝 . Notice that, per specification, RDF triples

can use a predicate 𝑝 in the subject or object position of another

triple, which means that the abstraction as edge-labeled directed

graphs would be inaccurate (an edge can leave or go to a label of

another edge). A practical study by Fernandez et al. [40, Table 3],

however, shows that this is not very common. More precisely, they

showed that, in their corpus, the ratios |𝑃𝐺 ∩ 𝑆𝐺 |/|𝑃𝐺 ∪ 𝑆𝐺 | and
|𝑃𝐺 ∩𝑂𝐺 |/|𝑃𝐺 ∪𝑂𝐺 | (where 𝑆𝐺 , 𝑃𝐺 , and𝑂𝐺 are the sets of subjects,

predicates, and objects in a dataset 𝐺) are often zero and, if not, in

the order of 10
−7

to 10
−3
.

7.1 Practical Studies
The structure of RDF data has been studied mostly in the Semantic

Web community [10, 40], with a notable exception in the Database

Theory community [59]. We first discuss main findings that focus

only on structure before moving to a study that includes labels [40].

7.1.1 Structure. Power law distributions have been discovered in

a wide range of metrics for RDF data. Ding and Finin [37] ob-

served a power law for the number of triples per RDF document

in their collection of 1.7 million RDF documents. Bachlechner and

Strang [10] focused on 1.6 million Friend-of-a-Friend (FOAF3) doc-

uments, reaching similar conclusions for the in- and out-degree

distributions of nodes (number of triples related to a subject and

the number of triples related to an object, respectively). The skewed

distribution is illustrated by a maximum degree of 7739, whereas

the average is 9.56. Fernandez et al. [40] observed power law dis-

tributions for in-degrees and out-degrees of nodes in various data

sets (Jamendo, LinkedMDB, Dbtune, Flickr, SWDF, DBLP, 2011 Aus-

tralian Census, 2000 US Census, Wordnet 3.0, DBpedia, AEMET,

Ike, Linked Geo Data, Affymetrix).



Dataset #nodes #edges lower tw upper tw

HongKong 321,210 409,038 32 145

Paris 4,325,486 5,395,531 55 521

Wikipedia 252,335 2,427 434 1,007 19,876

Gnutella 65,586 147,892 244 9,374

Royal 3,007 4,862 11 24

Table 1: Upper and lower bounds for the treewidth (tw) of
some real-world datasets considered by Maniu et al. [59]

Maniu et al. [59] studied the treewidth of real-world graph data,

which is a very challenging metric to compute. Indeed, determining

if the treewidth of a given graph is at most 𝑘 is NP-complete when

the graph and 𝑘 are the input [6]. Since Maniu et al. dealt with

graphs with millions of nodes and values of 𝑘 ranging in the thou-

sands, they can only provide intervals for the treewidth of the data,

despite long computation times and serious optimization efforts.

Maniu et al. considered 25 data sets from eight different domains,

namely infrastructure networks (road networks, public transporta-

tion, power grid), social networks (explicit as in social networking

sites, or derived from interaction patterns), web-like networks, a

communication network, data with a hierarchical structure (geneal-

ogy trees), knowledge bases, traditional OLTP data, as well as a bi-

ological interaction network. We present a selection of their results

in Table 1. Here, HongKong and Paris are road networks, Wikipedia

is a web-like network, Gnutella is a communication network, and

Royal is a hierarchical network extracted from a genealogy of royal

families in Europe.

They obtain that, generally, the treewidth of the data is too large

to be able to directly use treewidth-based algorithms with any

hope of efficiency. However, partial decompositions may still be

helpful, since complex networks often have a dense core together

with a tree-like fringe structure [71], which allows the use of tree

decomposition methods on the fringe. This is in stark contrast

with tree-likeness of queries for graph-structured data, which we’ll

discuss in Section 9.

7.1.2 Distribution of Labels. From a database perspective, it is

important to take label information into account when investigating

labeled graph-structured data. This is because the role of edge labels

in graph databases is often similar to the role of relation names in

relational data.

Fernandez et al. [40, Section 3.5] study predicate lists per subject 𝑠 .
If we denote by 𝑆𝐺 and𝑂𝐺 the set of subjects and objects in an RDF

data set𝐺 respectively, then these lists are defined as 𝐿𝐺 = {𝐿𝑠 | 𝑠 ∈
𝑆𝐺 } where 𝐿𝑠 for a subject 𝑠 is the set {𝑝 | ∃𝑧 ∈ 𝑂𝐺 , (𝑠, 𝑝, 𝑧) ∈ 𝐺}.
They discover that subjects almost always have the same set of

labels in outgoing edges, i.e., in around 99% of the cases. They also

show that each pair (𝑠, 𝑝) of subject and predicate is mostly related

to a unique object 𝑜 and each pair (𝑝, 𝑜) is often related to one 𝑠 ,

but there is a high standard deviation of the latter, which means

that the distribution is skewed. In their data set, the number of

predicates per object is close to 1, which means that objects 𝑜 very

often just have one incoming edge.

8 SCHEMAS FOR GRAPH-STRUCTURED
DATA

The languages that play a similar role to database schemas in RDF

(i.e., for validation purpuses) are ShEx [81] and SHACL [80]. How-

ever, the author is not aware of any systematic study of the real-

world usage of these schema languages, similar to those that we

saw in Section 4. A first study on the theoretical underpinnings of

schema inference for graph-structured data, based on the frame-

work of grammatical inference was done by Groz et al. [47].

9 QUERIES FOR GRAPH-STRUCTURED DATA
Queries for graph-structured data have mostly been analyzed in

the form of SPARQL query logs. Such logs became accessible to

the research community in the early 2010’s through the USEWOD

workshop series [86], which provided query logs for BioPortal,

OpenBioMed, LinkedGeoData, and DBpedia.

We assume familiarity with SPARQL, but recall the basics of the

language for our discussion. Our presentation is strongly based

on Picalausa and Vansummeren [74] and Bonifati et al. [21]. Let

V = {?𝑥, ?𝑦, ?𝑧, ?𝑥1, . . .} be an infinite set of variables, disjoint from

I (IRIs),B (blank nodes), andL (literals). As in SPARQL, we always

prefix variables by a question mark. A SPARQL query𝑄 can be seen

as a tuple of the form

(query-type, pattern 𝑃 , solution-modifier).

Here, query-type is one of Select, Ask, Construct, and Describe,
possibly with additional features. (E.g., Select is usually accompa-

nied with a list of variables, for which the query is to return the

results.) The pattern is the central component of the query, which

we will discuss in more detail next, and the solution-modifier is for
performing aggregation, grouping, sorting, duplicate removal, and

returning only a specific window (e.g., the first ten) of the solutions

returned by the pattern.

Patterns. A triple pattern is an element of (I ∪ B ∪V) × (I ∪
V) × (I ∪ B ∪ L ∪ V). A property path is a regular expression

over the set I and is SPARQL’s version of a regular path query (see,

e.g., [4, 14, 32] for basics on regular path queries). A property path
pattern is an element of (I ∪ B ∪ V) × 𝑝𝑝 × (I ∪ B ∪ L ∪ V),
where 𝑝𝑝 is a property path. A SPARQL pattern 𝑃 is an expression

generated from the following grammar:

𝑃 ::= 𝑡 | 𝑝𝑝 | 𝑄 | 𝑃1 And 𝑃2 | 𝑃 Filter 𝑅 | 𝑃1 Union 𝑃2 |
𝑃1 Optional 𝑃2 | Bind 𝑋 AS 𝑣 | Service 𝑛 𝑃 | Values 𝑡𝑢𝑝 𝑇

Here, 𝑡 is a triple pattern, 𝑝𝑝 is a property path pattern, 𝑄 is again

a SPARQL query, and 𝑅 is a so-called SPARQL filter constraint.
SPARQL filter constraints 𝑅 are built-in conditions which can have

unary predicates, (in)equalities between variables, and Boolean

combinations thereof. Bind associates a unary expression to a sin-

gle variable 𝑣 . Service calls a remote service with name 𝑛 and sends

it a pattern 𝑃 . Finally, Values binds a tuple 𝑡𝑢𝑝 to values in a given

table 𝑇 . Property paths (𝑝𝑝) and subqueries (𝑄) in the above gram-

mar are new features since SPARQL 1.1. We refer to [73, 87] for

further details.

We illustrate by example how parts of our definition correspond

to real SPARQL queries. The following query comes fromWikidata’s

example queries (“Locations of archaeological sites”) [89].



SELECT ?label ?coord ?subj
WHERE { ?subj wdt:P31/wdt:P279* wd:Q839954 .

?subj wdt:P625 ?coord .
?subj rdfs:label ?label FILTER(lang(?label)="en") }

The query uses the property path wdt:P31/wdt:P279*, the literal
wd:Q839954, and the triple pattern ?subj wdt:P625 ?coord. It also
uses a filter constraint. Notice that SPARQL denotes concatenation

in regular expressions by “/” and the And operator by a dot.

In Sections 9.1 and 9.2, we give an overview of studies that

happened on SPARQL 1.0 and SPARQL 1.1 queries. In Sections 9.3–

9.6, we look at specific types of analyses that have been done on

SPARQL queries [21, 22], using the largest logs to date. To make

the (sometimes relatively dry) material more interesting, we will

interleave the presentation with a storyline that aims at shedding

light on the following questions that are relevant to database theory:

(1) How prominent are conjunctive queries?
(2) What is the structure of conjunctive queries?

(3) How prominent are conjunctive regular path queries?
(4) What is the structure of conjunctive regular path queries?

(5) Which kinds of regular path queries are used?

We refer to [4, 14] for basic definitions of conjunctive queries and

conjunctive regular path queries.

Several studies [21, 22, 74] investigated both the multiset of

syntactically correct queries that are in original query logs (Valid)
and the set of queries obtained from those by duplicate elimination

(Unique). For a given analysis, it is often interesting to present

results with respect to both of these datasets. Therefore, whenever

we report a number or a percentage as X (Y), the number X refers

to the Valid and the number Y to the Unique set of queries.

9.1 Studies on SPARQL 1.0
Early studies on SPARQL queries in 2010–2016 [2, 5, 48, 49, 69]

mostly focused on rudimentary properties of queries, such as the

number of triple patterns per query and the identification of popular

features of the languague.

Arias et al. [5] already observed that small queries are common

in logs, that star- and chain-shaped queries are common, and that

SPARQL’s Union and Optional operators are used in a significant

amount of queries. The significant use of Optional is important,

because it has a high impact on the complexity of pattern matching.

Pattern matching for SPARQL queries using various subsets of

operators was studied by Perez et al. [73], who define the evaluation
problem as follows.

5

Evaluation
Given: An RDF dataset 𝐷 , a SPARQL pattern 𝑃 , and a

candidate answer 𝜇.

Question: Is 𝜇 an answer to 𝑃 over 𝐷?

Crucially, Perez et al. prove that Evaluation can be solved in

linear time combined complexity for SPARQL patterns using only

the And and Filter operators [73, Theorem 3.1],
6
while the problem

becomes PSPACE-complete if Optional is additionally allowed [73,

Theorem 3.3]. This high increase in complexity led them to the

5
Perez et al. also provide a formal definition of when 𝜇 is an answer to 𝑃 over 𝐷 ,

which we omit here.

6
We note that SPARQL patterns do not have projection, which would make Evaluation
NP-complete for these queries, as for conjunctive queries.

Source Total #Q Valid #Q Unique #Q

DBpedia9-12 28,651,075 27,622,233 13,437,966

DBpedia13 5,243,853 4,819,837 2,628,000

DBpedia14 37,219,788 33,996,486 17,217,416

DBpedia15 43,478,986 42,709,781 13,253,798

DBpedia16 15,098,176 14,687,870 4,369,755

DBpedia17 169,110,041 164,297,723 34,440,636

LGD13 1,927,695 1,531,164 357,843

LGD14 1,999,961 1,951,973 628,640

BioP13 4,627,270 4,624,449 687,773

BioP14 26,438,932 26,404,716 2,191,151

BioMed13 883,375 882,847 27,030

SWDF13 13,853,604 13,670,550 1,229,759

BritM14 1,555,940 1,545,643 135,112

WikiRobot/OK 207,538,912 207,498,419 34,527,051

WikiOrganic/OK 676,297 665,472 260,723

WikiRobot/TO 33,616 33,465 3,168

WikiOrganic/TO 14,528 14,087 8,729

Total 558,352,049 546,956,715 125,404,550

Table 2: Queries in the logs of [21, 22].

notion of well-designed SPARQL patterns, which use OPTIONAL

in a restricted fashion such that their evaluation is coNP-complete

[73, Theorem 4.6].

One early study, by Picalausa and Vansummeren [74], performed

a fairly deep structural analysis, which was a major inspiration for

later work [21, 22]. They gathered around threemillion queries from

DBpedia 2010 logs, containing approximately one million unique

queries. Their study discovered (independently from [5]) that the

operators Union and Optional occur very often. More precisely, in

their corpus, 65.7% (51.3%) of the patterns, a sizable portion only use

the operators And and Filter (and are therefore closely related to

the conjunctive queries in Database Theory). Union and Optional
was discovered in 20.9% (26.9%) and 29.6% (46.4%) of the queries.

They therefore analyzed the structure of queries with And, Filter,
Union, and Optional more deeply. Out of all such patterns that

use Optional, they discovered that roughly 50% are unions of well-

designed patterns. In fact, out of all the patterns that use Optional
or Union, again roughly 50% satisfy an even stronger condition,

called well-behavedness, which makes Evaluation tractable. In their

total logs, 83.8% (75.7%) of the patterns are well-behaved.

9.2 Studies Including SPARQL 1.1
The introduction of property paths in SPARQL 1.1 brought the

language significantly closer to graph database languages as they

have been researched since the late 1980s [32]. Property paths are

SPARQL 1.1’s version of regular path queries, which are the crucial

feature that allows queries to navigate over long distances in graphs,

and which is being developed further in Cypher [70] and GQL [36].

Logs with SPARQL 1.1 queries have become available since the

mid 2010s from several sources. LSQ [77] provided logs from DB-

pedia, Linked Geo Data, Semantic Web Dog Food, and the British

Museum, as did later incarnations of USEWOD [86]. Finally, the
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Figure 3: Percentages queries having a certain number of triples (in colors) for the Valid (left hand side of each bar) and Unique
(right hand side of each bar) queries of [21, 22].

work of Malyshev et al. [58] was accompanied with a huge release

of SPARQL queries for Wikidata.

Our discussion on practical studies in Sections 9.2–9.6 mainly

focuses on the query analysis by Bonifati et al. [21, 22], for which

the details of the data sets are summarized in Table 2. We have all

queries (Total), the ones that parse (Valid), and the unique queries

(Unique). The Wikidata query logs (prefixed with Wiki) are studied
in [21] and the others in [22]. DBpedia9-12 contains the DBpe-

dia logs from USEWOD’13, which are from 2009–2012. All other

DBpediaX sets contain the query logs from the year ’X. Concerning
Wikidata queries, there is a division between robotic (Robot) and
organic (Organic) queries, made by Bielefeldt et al. [19]. The queries

are also divided in those that timed out (TO) versus those that did
not (OK). Only 0.3% (0.8%) of the queries are organic, which means

that human activity in query logs is likely to be hidden by bots [19].

Wikidata logs are particularly interesting due to their common

usage of property paths. Indeed, around 24.0% (38.9%) of the Wiki-

data queries use property paths [21], whereas this is only around

0.4% for the others [22]. The main reasons are that data sets like

DBpedia have been designed when property paths were still absent

from SPARQL and that Wikidata makes extensive use of property

paths for ontological reasoning. For this reason, we will sometimes

distinguish between the Wikidata logs and the others in the follow-

ing. We use DBpedia–BritM to refer to the non-Wikidata logs.

9.3 Size of Queries
Figure 3 gives an overview of the number of triple patterns in the

queries in the Table 2 logs. It illustrates how queries containing 0 to

11+ triples are distributed over each of the data sets. The figure only

considers valid Select, Ask and Construct queries. Describe queries
(which constitute around 0.1% (0.5%) of queries in the Wikidata logs

and 4.9% (3.4%) in the others) are omitted, because their semantics

is implementation-dependent and the overwhelming majority does

not contain a SPARQL pattern [22].

The figure immediately shows that queries with 0 to 2 triple

patterns are extremely common. Indeed, 51.2% (52.6%) of the queries

have at most one triple pattern, whereas 66.1% (75.9%) have at most

two. However, this skew can drastically differ between data sets

(compare BioP13/BioP14 with BritM14)7 or even between logs for

the same data set in different years (compare LGD13 with LGD14). In
the Wikidata sets, the figure clearly shows that (1) organic queries

tend to have more triple patterns than robotic ones and (2) so do

timeout queries compared to OK queries.

The largest queries in the entire corpus have around 200–230

triples and can be found in DBpedia15–DBpedia17 and BioMed13.
There is a fairly significant outlier in DBpedia17, with 19.728 (4.669)
queries with 105 triple patterns. (In all other cases, given a number

𝑘 from 100 to 230, the logs have at most 15 queries with 𝑘 triples.)

While a study on the number of triple patterns in queries is

interesting in its own right, it is also important to put other results

in the right context. Indeed, in order for a query to have a join, it

needs at least two triple patterns. In order to be cyclic, it needs at

least three.

9.4 Feature Analysis
Many studies on SPARQL query logs perform a form of feature

analysis, which studies the keywords that are used in the queries

(e.g., [19, 74]). At least two kinds of such analyses are interesting.

The first kind considers individual features or keywords, and

investigates in which percentage of queries it occurs. Table 3 shows

the result of such an analysis on the data of Table 2. (The columns

with “V” represent results for the Valid queries, and the columns

with “U” for the Unique queries. All relative number are w.r.t. the

Select, Ask, and Construct queries.) Already from this simple anal-

ysis we can see that there are fundamental differences between the

DBpedia–BritM and Wikidata logs. For example, the use of calls

to external services (Service) is negligible in DBpedia–BritM (only

in ∼1k (∼500) out of the 339M (91M) queries), but not uncommon

in Wikidata, amounting to 8.39% (13.00%) of the queries. The most

common usage of Service inWikidata is due to the use of the service

wikibase:label, which fetches labels in the specified language.

We see a similar striking difference in the usage of property paths.

7BritM14 is a collection of queries with fixed templates.



DBpedia–BritM

SPARQL operator AbsoluteV RelativeV AbsoluteU RelativeU

Distinct 96,055,379 29.83% 29,973,843 34.24%

Limit 46,442,906 14.42% 17,043,642 19.47%

Offset 8,651,003 2.69% 4,112,837 4.70%

Order By 3,480,878 1.08% 1,609,784 1.84%

Filter 148,681,834 46.17% 34,609,238 39.53%

And 129,524,401 40.22% 26,737,126 30.54%

Optional 107,447,774 33.37% 13,119,328 14.99%

Union 85,024,735 26.40% 15,761,740 18.00%

Graph 27,556,055 8.56% 1,523,675 1.74%

Values 7,595,570 2.36% 5,086,020 5.81%

Not Exists 2,527,430 0.78% 1,096,077 1.25%

Minus 2,199,143 0.68% 1,664,350 1.90%

Exists 13,964 7,831 0.01%

Group By 9,100,289 2.83% 3,887,124 4.44%

Count 924,467 0.29% 653,749 0.75%

Having 197,455 0.06% 40,393 0.05%

Avg 7,713 730

Min 7,038 3,747

Max 6,500 3,792

Sum 2,767 784

Service 1,066 466

property paths (RPQs) 1,419,195 0.44% 335,816 0.38%

Wikidata

AbsoluteV RelativeV AbsoluteU RelativeU

15,945,026 7.67% 3,795,334 10.96%

38,406,877 18.47% 5,894,510 17.03%

13,886,400 6.68% 3,955,496 11.43%

18,265,458 8.78% 701,109 2.03%

37,026,908 17.80% 5,175,973 14.95%

74,324,520 35.74% 8,220,701 23.75%

31,726,714 15.25% 3,530,184 10.20%

19,037,334 9.15% 875,177 2.53%

20 9

66,474,972 31.96% 1,591,804 4.60%

431,819 0.21% 54,248 0.16%

1,795,060 0.86% 601,604 1.74%

98,557 0.05% 5,143 0.01%

922,759 0.44% 137,456 0.40%

41,822 0.02% 3,917 0.01%

20,972 0.01% 5,053 0.01%

1,700 135

1,379 452

3,424 789

1,663 367

17,445,279 8.39% 4,499,817 13.00%

49,971,258 24.03% 13,480,433 38.94%

Table 3: Use of individual features in the queries of Table 2. Empty cells denote 0.00%.

DBpedia–BritM

Operator Set AbsoluteV RelativeV AbsoluteU RelativeU

none 107.285.001 33,32% 31.785.829 36,31%

And 15,106,733 4.69% 7,769,125 8.87%

Filter 30,679,568 9.53% 14,822,989 16.93%

And, Filter 9,583,469 2.98% 4,176,565 4.77%

CQ+F subtotal 162,654,771 50.51% 58,554,508 66.89%

Table 4: Queries that only use the And and Filter operators
in the DBpedia–BritM logs.

Whereas property paths are rare in DBpedia–BritM (only in 0.44%

(0.38%) of the queries), they occur in 24.03% (38.94%) of theWikidata

queries, which is quite prominent.

A second important feature analysis focuses on identifying frag-

ments of the query logs that only use a given group of features.

Table 4 summarizes for how many DBpedia–BritM queries the

SPARQL pattern doesn’t use any features at all (e.g., a single triple

pattern without Filter), uses the And-operator but nothing else, etc.

To this end, let us classify a SPARQL query𝑄 as CQ if its pattern 𝑃

only uses the operator And. Likewise, a query in CQ+F is a query

for which its pattern 𝑃 uses only the operators And and Filter.
This table gives us a rough idea for howmany queries inDBpedia–

BritM the body closely corresponds to a conjunctive query (so, the

query can still use additional aggregation or grouping). More pre-

cisely, the CQs (“none”+And) constitute around 38.01% (45.18%) of

the queries in the DBpedia–BritM logs.

Wikidata

Operator Set AbsoluteV RelativeV AbsoluteU RelativeU

none 81,505,534 15.38% 11,298,828 9.25%

And 12,961,835 2.45% 359,843 0.29%

Filter 4,243,990 0.80% 2,537,531 2.08%

And, Filter 6,477,005 1.22% 72,615 0.06%

CQ+F subtotal 105,188,364 19.85% 14,268,817 11.68%

2RPQ 19,101,741 3.60% 9,259,665 7.58%

And, 2RPQ 58,659,802 11.07% 2,144,013 1.76%

Filter, 2RPQ 47,402 0.01% 1,672

And, Filter, 2RPQ 765,205 0.14% 138,050 0.11%

C2RPQ+F subtotal 183,762,514 34.67% 25,812,217 21.13%

Table 5: Queries that only useAnd, Filter, and property paths
(2RPQs) in the Wikidata logs.

CQ+F queries, i.e., queries that only use And and Filter, are
very prominent in the logs, constituting 50.51% (66.89%) in the

DBpedia–BritM corpus (Table 4). Since Filter expressions often are

just a simple unary condition on a variable, it can make sense to still

consider the body of a query to be “conjunctive” if it only makes use

of Filter in a limited way. We come back to this idea in Section 9.5.

We now turn to conjunctive (two-way) regular path queries or
C2RPQs [4, 14] in the Wikidata logs. Table 5 summarizes in a sim-

ilar way to Table 4 how property paths (2RPQ), And, and Filter
are used in the Wikidata logs. Here, CQ and CQ+F queries are

much less prominent than in DBpedia–BritM, mostly due to the



DBpedia–BritM: CQ

AbsoluteV RelativeV AbsoluteU RelativeU

FCA 117,669,751 96.14% 36,786,572 93.00%

htw ≤ 1 118,245,505 96.61% 37,211,970 94.08%

htw ≤ 2 122,391,723 100.00% 39,554,945 100.00%

htw ≤ 3 122,391,734 100.00% 39,554,954 100.00%

Total 122,391,734 100.00% 39,554,954 100.00%

DBpedia–BritM: CQ+F

AbsoluteV RelativeV AbsoluteU RelativeU

FCA 152,870,307 93.98% 53,393,206 91.19%

htw ≤ 1 157,167,276 96.63% 55,954,287 95.56%

htw ≤ 2 162,654,760 100.00% 58,554,499 100.00%

htw ≤ 3 162,654,771 100.00% 58,554,508 100.00%

Total 162,654,771 100.00% 58,554,508 100.00%

Table 6: Hypertreewidth and free-connex acyclicity for con-
junctive queries in the DBpedia–BritM logs.

usage of features such as Service, Values, and property paths. “Pure”
C2RPQs, only using And and property paths, constitute around

32.50% (18.88%) of the queries. When we additionally allow Fil-
ter, we arrive at 37.67% (21.13%) of the queries, which is a sizable

fraction.

Another important fragment of SPARQL queries are the well-
designed queries [73], already mentioned in Section 9.1. These only

use And, Filter, andOptional, but in a restricted way. In total, 62.31%
(74.09%) of the queries in DBpedia–BritM and 27.72% (44.24%) in

Wikidata only useAnd, Filter, andOptional, sowe again see a big dif-
ference between these two data sets. The fraction of well-designed

queries, compared to those that only use And, Filter, and Optional
is very similar though, which is 98.74% (98.18%) in DBpedia–BritM

and 94.18% (98.50%) for Wikidata.

9.5 Shape Analysis
From a database theory perspective, the first question to answer on

the structure of conjunctive queries is probably how many of them

are acyclic. And if they are not, then what is their hypertreewidth?

In order to discuss this, recall that a hypergraph is a pair 𝐻 =

(𝑉 , 𝐸) where 𝑉 is its finite set of nodes and 𝐸 ⊆ 2
𝑉
its set of hy-

peredges. Consider a SPARQL pattern 𝑃 of a query 𝑞 for which the

body only uses And and Filter. The triple hypergraph of 𝑞 is the

hypergraph 𝐻𝑞 = (𝑉 , 𝐸), where 𝐸 = {{𝑥,𝑦, 𝑧} ∩ (V ∪ B) | (𝑥,𝑦, 𝑧)
is a triple pattern in 𝑞} and 𝑉 = {𝑥 | ∃𝑒 ∈ 𝐸 such that 𝑥 ∈ 𝑒}.
Notice that we treat SPARQL blank nodes as variables. The canon-
ical hypergraph of 𝑞 is obtained from 𝐻𝑞 by adding a hyperedge

{𝑥1, . . . , 𝑥𝑘 } for each filter constraint in 𝑃 that uses precisely the 𝑘

variables 𝑥1, . . . , 𝑥𝑘 (and adding the respective elements to 𝑉 ).

Table 6 reports on the hypertree width (htw) of the canonical

hypergraphs of CQ+F queries from DBpedia–BritM, which was

computed using det-𝑘-decomp [45]. The top table considers the

the patterns that only use And, and the bottom table considers the

CQ+F queries. The row “FCA” reports on the amount of queries

that are free-connex acyclic. (For definitions of hypertree width and

free-connex acyclicity, we refer to [13, 44].) From the table, we can

conclude that, indeed, in the DBpedia–BritM logs, the hypertree

width of conjunctive queries is low and that most queries are acyclic,

and even free-connex.

More Precise Shapes. We now dive into more specific shapes by

focusing on those CQ+F queries that can structurally be considered

as graphs. Indeed, most SPARQL patterns 𝑃 do not use variables

as predicates, that is, they use triple patterns (𝑠, 𝑝, 𝑜) where 𝑝 is

an IRI. We call a SPARQL pattern 𝑃 a graph pattern if, for every

triple pattern (𝑠, 𝑝, 𝑜) in 𝑃 , either 𝑝 is an IRI or 𝑝 does not appear

in another triple pattern in 𝑃 . (In the latter case, if 𝑝 is a variable,

it can be considered to be a wildcard.) The triple graph of graph

pattern 𝑃 is the graph 𝐺 = (𝑉 , 𝐸) where 𝐸 = {{𝑥,𝑦}) | (𝑥, 𝑝,𝑦) is a
triple pattern in 𝑃 and 𝑝 ∈ I∪V} and𝑉 = {𝑥 | {𝑥,𝑦} ∈ 𝐸}. Notice
that the triple graph of a pattern includes nodes that correspond to

values in I. Such nodes would correspond to “constant values” in

Database Theory terminology. We will look at the graph shapes of

queries with and without such constants.

We now turn to the extent in which we can include filter con-

straints. Let us say that a Filter condition is safe if it is either a
unary condition on a variable or it is of the form ?𝑥 =?𝑦. It is simple
if it is unary or binary. In on the data from Table 4, around 59.5%

of the unique queries only use And and safe filters. The bodies of

these queries can still be considered to be very close to conjunctive

queries. If one would additionally allow simple filters (which goes

beyond conjunctive queries, since this allows conditions such as

?𝑥 ≠ ?𝑦 or ?𝑥 < ?𝑦), one arrives at about 63.9% of the unique queries.

We call a CQ+F query 𝑞 suitable for graph analysis if it is a graph
pattern and all filter constraints are simple, i.e., at most binary. By

graph-CQ+F we denote those CQ+F queries that are suitable for

graph analysis. If 𝑞 is in graph-CQ+F, we define its canonical graph
as its triple graph, to which we add an edge {𝑥,𝑦} for each filter

constraint that uses the two variables 𝑥 and 𝑦.

We say that an undirected graph 𝐺 = (𝑉 , 𝐸) is a chain (of length
𝑘) if 𝑘 = 0 and 𝐺 is emtpy or isomorphic to the graph (𝑣0, {}); or
𝑘 > 0 and 𝐺 is isomorphic to the undirected graph with edges

{𝑣0, 𝑣1}, {𝑣1, 𝑣2}, . . . , {𝑣𝑘−1, 𝑣𝑘 }, where all 𝑣𝑖 are different. A tree is
an undirected graph such that, for every pair of nodes 𝑥 and𝑦, there

exists exactly one undirected path between 𝑥 and 𝑦. (Hence, every

chain is also a tree.) A forest is a graph in which every connected

component is a tree. A star is a tree for which there exists at most

one node with more than two neighbors, that is, there is at most

one node𝑢 such that there exist𝑢1,𝑢2, and𝑢3, all pairwise different

and different from 𝑢, for which {𝑢,𝑢𝑖 } ∈ 𝐸 for each 𝑖 = 1, 2, 3.

Table 7 summarizes the structure of the canonical graphs of

graph-CQ+F queries, with constants (top) and without (bottom).

The canonical graph “without constants” is obtained from the canon-

ical graph by deleting the nodes that correspond to IRIs and their

incident edges. This analysis considers more and more general

shapes until all queries are classified. Although the vast majority

of the graphs are forests, some queries have treewidth two (tw ≤ 2)

or three (tw ≤ 3). Perhaps most striking is the huge fragment of

queries for which the graph has at most one edge. Beyond this class,

simple shapes reign supreme, with star queries already constituting

98% or 99% of the queries. A second striking fact is the number

of queries for which the canonical graph without constant nodes

doesn’t even have an edge anymore.



graph-CQ+F/ with constants

Shape AbsoluteV RelativeV AbsoluteU RelativeU

no edge 73.155 0,05% 1.284 0,00%

≤ 1 edge 137.634.741 87,56% 46.480.555 83,05%

chain 151.963.570 96,68% 54.131.513 96,72%

star 155.324.994 98,82% 55.416.976 99,02%

tree 155.716.239 99,07% 55.487.740 99,15%

forest 155.748.614 99,09% 55.509.368 99,19%

tw ≤ 2 157,183,687 100.00% 55,965,063 100.00%

tw ≤ 3 157,183,691 100.00% 55,965,066 100.00%

total 157,183,691 100.00% 55,965,066 100.00%

graph-CQ+F/ without constants

Shape AbsoluteV RelativeV AbsoluteU RelativeU

no edge 136.357.782 86,75% 47.047.994 84,07%

≤ 1 edge 150.954.909 96,04% 52.939.341 94,59%

chain 155.832.003 99,14% 55.596.702 99,34%

star 156.787.074 99,75% 55.898.030 99,88%

tree 157.146.828 99,98% 55.944.813 99,96%

forest 157.167.276 99,99% 55.954.287 99,98%

tw ≤ 2 157,183,689 100.00% 55,965,065 100.00%

tw ≤ 3 157,183,691 100.00% 55,965,066 100.00%

total 157,183,691 100.00% 55,965,066 100.00%

Table 7: Cumulative shape analysis of graph patterns in
CQ+F for theDBpedia–BritM logs, for shapeswith constants
(top) and without (bottom). The relative numbers are w.r.t.
the queries that are suitable for graph analysis.

Expression Type AbsoluteV RelativeV AbsoluteU RelativeU

𝑎∗ 27,850,487 50.48% 1,392,865 9.87%

𝑎𝑏∗, 𝑎+ 9,417,166 17.07% 2,816,134 19.96%

𝑎𝑏∗𝑐∗ 823,153 1.49% 67,502 0.48%

𝐴∗
328,895 0.60% 51,860 0.37%

𝑎𝑏∗𝑐 122,286 0.22% 1,680 0.01%

𝑎∗𝑏∗ 62,784 0.11% 608

𝑎𝑏𝑐∗ 27,287 0.05% 4,083 0.03%

𝑎?𝑏∗ 15,893 0.03% 11,999 0.09%

𝐴+
4,674 0.01% 2,043 0.01%

𝐴𝑏∗ 1,562 674

Other transitive 1,643 161

𝑎1 · · ·𝑎𝑘 13,382,005 24.26% 9,368,442 66.41%

𝐴 3,043,725 5.52% 381,434 2.70%

𝐴? 31,150 0.06% 296

𝑎1𝑎2? · · ·𝑎𝑘? 25,872 0.05% 5,940 0.04%

�̂� 21,202 0.04% 471

𝑎𝑏𝑐? 7,620 0.01% 8

Other non-transitive 697 289

Total 55,168,101 100% 14,106,489 100%

Table 8: Property path structure of robotic queries of [21].

9.6 Navigation with Regular Path Queries
The syntactic structure of property paths has been investigated in

several works [21, 22]. We present the main findings for Wikidata

queries [21], since property paths are most prominent there. In

this data set, 49,971,258 (13,480,433) queries use property paths,

which amounts to a total of 24.03% (38.94%) of the entire logs. The

logs contain 165,343 (82,764) property paths in organic queries and

55,168,101 (14,106,489) in robotic ones. (The same query can contain

multiple property paths.)

Due to space reasons, we focus on property paths in robotic

queries, which contain 64 different types. Here, the type of a prop-
erty path is obtained as follows. We replace each variable or IRI by

letters from the alphabet in increasing order. (If a variable or IRI is

repeated in the property path, we replace it by the same alphabet

letter.) For example, wdt:P31∗/wdt:P279∗ is of the type 𝑎∗𝑏∗ and
wdt:P31/wdt:P31∗/wdt:P279∗ is of the type 𝑎𝑎∗𝑏∗.

Table 8 summarizes the most common types of property paths

in robotic queries. For succinctness, we aggregated different types

together. For example, we aggregated each typewith its reverse type.

For instance, the row for 𝑎𝑏∗ also contains the expressions of the

form 𝑎∗𝑏. Furthermore, �̂� (“follow an 𝑎-edge in reverse direction”)

is treated the same as a single label. (The operator ˆ is used in 0.80%

(1.10%) of robotic and 2.03% (3.18%) of organic queries.) Finally,

disjunctions are grouped together, denoted by capital letters. In

Table 8, a capital letter 𝐴 denotes a subexpression that matches a

disjunction of at least two symbols. Empirically, an 𝐴 either denotes

an expression of the form !𝑎, (𝑎 |!𝑎), or a disjunction of the form

(𝑎1 | · · · |𝑎𝑘 ) with 𝑘 > 1 (SPARQL denotes disjunction with ‘|’). We

divided Table 8 into transitive expressions (top) and non-transitive
expressions (bottom). Transitive expressions are those that match

arbitrarily long paths (i.e., they use the operators
∗
or

+
). The empty

cells represent values that round down to 0.00%. We note that the

relative percentages differ drastically between the Valid and the

Unique queries.
The structure of the property paths in these logs are remarkably

similar to those in DBpedia-BritM [22]. Martens and Trautner [66]

defined the class of simple transitive expressions, which are syntacti-

cally very restricted, but covered over 99% of the property paths in

the DBpedia-BritM queries [22]. In the Wikidata logs, 1.61% (0.48%)

of the robotic and 3.83% (2.72%) of the organic property paths are

not simple transitive expressions. The most significant reason why

property paths fall out of this fragment is the use of 𝑎∗𝑏∗ as a

subexpression, whereas simple transitive expressions only use one

subexpression with Kleene star. Furthermore, all property paths

except 198 (98) are in Ctractand all except 93 (14) are in Ttract. Here,
Ctractis a broader class introduced by Bagan et al. [12] and which

precisely characterizes the set of regular path queries for which

the data complexity under simple path semantics is tractable if P ≠

NP. Ttractis the corresponding class for which the data complexity

under trail semantics is tractable if P ≠ NP [65].

9.7 Future Languages: GQL
Beyond query languages for RDF, there is currently a lot of activity

around query languages for property graphs, leading to the devel-

opment of the Graph Query Language (GQL). Practical studies on

GQL queries are very premature at this point, since the GQL stan-

dard is not yet publicly available at the time of writing this paper.

The basics of the language are presented in an industry paper in

SIGMOD 2022 [36]. Initial ideas about key constraints for the data

model have been considered in [3].



10 CONCLUSIONS FOR
GRAPH-STRUCTURED DATA

In the world of RDF, Shacl, and SPARQL, we still know relatively

little about the structure of real-world data, and it seems that we

especially need to knowmore about the data when taking predicates

(or edge labels) into account. Likewise, database schemas for graph-

structured data have seen little study to the author’s knowledge.

SPARQL queries for graph-structured have received a fair amount

of attention, giving us insights about several prominent practical

fragments such as CQs and C2RPQs. Due to the wide array of

features that SPARQL offers, the amount of queries that can be

considered to be “CQ-like” is larger than what we have seen here.

In a sense, keywords such as Values can be included Service and
have been considered in [21, 22]. For these queries, simple forms

(chains, star-shapes) are extremely common (Table 7). This study

confirms that these simple types of queries are an interesting class

to study, but we cannot conclude that complex queries are not.

Public query logs don’t necessarily reflect the interests of “power

users” and don’t have data on the importance of single queries. It

could therefore be interesting to perform a study that focuses on

the most complex or largest queries in logs.

Furthermore, conjunctive-like queries are only one fragment. A

quick look on the feature analysis of SPARQL queries tells us that

the already intensely studied Optional, but also Union, for instance,
is quite prominent in the logs. Furthermore, features such as Limit
and Order By are quite common, depending on the concrete log.

11 LESSONS LEARNED
This section treats some lessons learned after analyzing a fair

amount of real-world schemas and queries. In the last years, we

built up most of our experience with SPARQL query log analy-

sis, which we do using SHARQL [23]. Our current database holds

around 850 million queries (around 300 million more than Table 2).

Don’t Expect a Quick and Easy Process. Doing a high-quality

practical study takes planning, patience, and learning. As is often

the case in research, you will not be on the right path the first

time. Especially researchers with a theory background may need

to adjust to the dirtiness of real-world data. That said, the process

can be very rewarding.

Getting Data. There is no rule of thumb for obtaining data. In

the past, we have used Google Web Search and Google Custom

Search for finding sources all over the Web. GitHub is a common

source of a wide variety of files, from which queries or schemas can

sometimes be extracted. Often, the old-fashioned method of talking

to our colleagues at conferences has given us the best results.

Organizing Your Data. Whereas small data sets can be dealt with

using a set of scripts, this approach does not scale once you deal

with hundreds of millions of queries, each of which is subjected to

∼120 analytical tests. Our query log data is managed in (surprise,

surprise!) a database, which we found offers great flexibility, espe-

cially when combined with Jupyter scripts and even spreadsheets.

Keep Your Unaggregated Data Around. Whereas you may write

your “practical study” paper with a certain goal in mind, chances

are very high that you will need a different perspective later. As a

few concrete examples, we have needed a differently aggregated

version of the expressions in Table 8 in [65], and even studied a

completely new aspect of queries (thresholds) in [20].

The Right Perspective. It is instrumental that your results are put

into the right perspective. For example, if 90% of the queries in

your corpus only has one atom (or triple pattern), then it is not

surprising that 95% of the queries are conjunctive. It may even be

misleading to say that 95% of the queries are conjunctive, without

mentioning that this is because 90% only have one atom.

Should Every Fragment Now Be Motivated by a Practical Study?
Of course not. There should be space in the research landscape for

beautiful theory that is not immediately practically motivated. On

top of that, data management has such a wide range of research

topics that is will not always be possible to discover what real users

want using a practical study. That said, you can sometimes really

improve your research with a practical study.

12 CONCLUSIONS AND OUTLOOK
This paper presents an overview of practical studies on data sets,

schemas, and queries, both for both tree- and graph structured

data. We have seen several examples of tight interaction between

theory and practice, especially in the area of schemas for tree-

structured data, andmany examples that illustrate how a theoretical

perspective can add value to a practical study. Although we have

touched upon many practical studies overall, there is still a wide

range of areas that seem interesting for further study. These are (1)

structural aspects of data sets when including label information,

both for tree-structured and graph-structured data, (2) schemas

for JSON data, (3) queries for tree-structured data, (4) schemas for

graph-structured data, and (5) queries for graph-structured data,

especially concerning Cypher or GQL.

Especially in the realm of queries for graph-structured data,

we have seen that different data sets can have wildly different

properties. We should therefore always be careful to draw gen-

eral conclusions from a specific corpus. Furthermore, query logs

give us a means to identify some important fragments, but not to

identify unimportant fragments or features. For instance, the use

of aggregation in the queries in Table 3 is relatively rare, but it is

well-known that aggregation is very important in a myriad of data

science activities.
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A A PROOF SKETCH
We briefly sketch why the containment problem for regular expres-

sions in RE(𝑎, 𝑎∗) and RE(𝑎, 𝑎?) is coNP-hard. A full proof can be

found in [63].

The proof is by reduction from the validity problem of proposi-

tional formulas. In our proof sketch, we will just show how validity

of an example formula is translated to the containment problem.

Consider the formula 𝜑 = (𝑥1 ∧ ¬𝑥2 ∧ 𝑥3) ∨ (¬𝑥1 ∧ 𝑥3 ∧ ¬𝑥4) ∨
(𝑥2 ∧ ¬𝑥3 ∧ 𝑥4) with 𝑛 = 4 variables and𝑚 = 3 clauses.

For RE(𝑎, 𝑎?), validity for 𝜑 is translated to containment of the

expression 𝑒1, defined as

#𝑎$𝑎$𝑎$𝑎#𝑎$𝑎$𝑎$𝑎# 𝑎?𝑎?$𝑎?𝑎?$𝑎?𝑎?$𝑎?𝑎? #𝑎$𝑎$𝑎$𝑎#𝑎$𝑎$𝑎$𝑎#

in the expression 𝑒2, defined as

#?𝑎?$?𝑎?$?𝑎?$?𝑎?#?𝑎?$?𝑎?$?𝑎?$?𝑎?#?

𝑎𝑎? $𝑎?$𝑎𝑎? $𝑎?𝑎? #𝑎? $𝑎?𝑎? $𝑎𝑎? $𝑎? #𝑎?𝑎? $𝑎𝑎? $𝑎? $𝑎𝑎? #

#?𝑎?$?𝑎?$?𝑎?$?𝑎?#?𝑎?$?𝑎?$?𝑎?$?𝑎?#?

Here, the word 𝑎𝑎 should be interpreted as “true” and 𝜀 as “false”.

Expression 𝑒1 first has𝑚 − 1 “buffer” blocks containing 𝑎$𝑎$𝑎$𝑎,

followed by one block that is intended to generate all truth assign-

ments to the four variables, and concludes with the same𝑚−1 buffer
blocks. The expression 𝑒2 also begins with𝑚 − 1 blocks (containing

𝑎?$?𝑎?$?𝑎?$?𝑎?), then𝑚 blocks that encode 𝜑 , and concludes with

the same𝑚 − 1 blocks that it started with.

Notice that the start- and end-blocks of 𝑒2 also match 𝜀. This

is crucial for the following reason. Every word that matches 𝑒1
consists of 2𝑚 − 1 blocks. Since the start- and end-blocks of 𝑒2
match 𝜀, and since 𝑒2 only has𝑚 − 1 start blocks and end blocks,

the middle block of each such word must be matched by one of the

three middle blocks of 𝑒2 that encode the clauses in𝜑 . This structure

of 𝑒1 and 𝑒2 ensure that each truth assignment “generated by” 𝑒1
needs to match on one of the clauses encoded by 𝑒2. The reader can

now check that, using 𝑎𝑎 to encode “true” and 𝜀 to encode “false”,

we indeed have that 𝜑 is valid if and only if 𝐿(𝑒1) ⊆ 𝐿(𝑒2).
For RE(𝑎, 𝑎∗), validity for 𝜑 is translated to containment of the

expression 𝑒1, defined as

#𝑎$𝑎$𝑎$𝑎#𝑎$𝑎$𝑎$𝑎#

𝑎∗𝑏∗𝑎∗$𝑎∗𝑏∗𝑎∗$𝑎∗𝑏∗𝑎∗$𝑎∗𝑏∗𝑎∗

#𝑎$𝑎$𝑎$𝑎#𝑎$𝑎$𝑎$𝑎#

in the expression 𝑒2, defined as

#
∗𝑎∗$∗𝑎∗$∗𝑎∗$∗𝑎∗#∗𝑎∗$∗𝑎∗$∗𝑎∗$∗𝑎∗#∗

𝑎𝑎∗𝑏∗𝑎∗ $𝑏∗𝑎∗ $𝑎𝑎∗𝑏∗𝑎∗ $𝑎∗𝑏∗𝑎∗#
𝑏∗𝑎∗ $𝑎∗𝑏∗𝑎∗ $𝑎𝑎∗𝑏∗𝑎∗ $𝑏∗𝑎∗#
𝑎∗𝑏∗𝑎∗ $𝑎∗𝑏∗𝑎∗ $𝑏∗𝑎∗ $𝑎𝑎∗𝑏∗𝑎∗

#
∗𝑎∗$∗𝑎∗$∗𝑎∗$∗𝑎∗#∗𝑎∗$∗𝑎∗$∗𝑎∗$∗𝑎∗#∗

The general principle is exactly the same as for RE(𝑎, 𝑎?). Here, the
word 𝑎𝑏 encodes “true” and 𝑏𝑎 encodes “false”.
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