
Evaluation and Enumeration of

Regular Simple Path and Trail

Queries

Von der Universität Bayreuth
zur Erlangung des Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)
genehmigte Abhandlung

von

Tina Popp
aus Bayreuth

1. Gutachter: Prof. Dr. Wim Martens

2. Gutachter: Prof. Dr. Peter Wood

3. Gutachter: Prof. Dr. Pablo Barceló

Tag der Einreichung: 27. Januar 2022

Tag des Kolloquiums: 23. Juni 2022

ii

Abstract

Regular path queries (RPQs) are an essential component of graph query languages. Such
queries consider a regular expression r and a directed edge-labeled graph G and search
for paths in G for which the sequence of labels is in the language of r. In order to avoid
having to consider infinitely many paths, some database engines restrict such paths to
paths without repeated nodes or edges which are called simple paths or trails, respectively.
Whereas arbitrary paths can be dealt with e�ciently, simple paths and trails become
computationally di�cult already for very small RPQs.

In this dissertation we investigate decision and enumeration problems concerning simple
path and trail semantics.

Evaluation Problem on Directed Graphs: Bagan, Bonifati, and Groz [20] gave
a trichotomy for the evaluation problem for simple paths when the RPQ is fixed. We
complement their work by giving a similar trichotomy for the evaluation problem for
trails and studying various characteristics of this class.

We also study RPQs used in query logs and define a class of simple transitive ex-
pressions that is prominent in practice and for which we can prove dichotomies for the
evaluation problem when the input language is not fixed, but used as a parameter. We
observe that, even though simple path and trail semantics are intractable for RPQs in
general, they are feasible for the vast majority of RPQs that are used in practice. At
the heart of this study is a result of independent interest: the two disjoint paths prob-
lem in directed graphs is W[1]-hard if parameterized by the length of one of the two paths.

Evaluation Problem on Undirected Graphs: While graph databases focus on
directed graphs, there are edges which are naturally bidirectional, such as “sibling” or
“married”. Furthermore, database systems often allow to navigate an edge in its inverse
direction (2RPQ), thus the study of the undirected setting gives us a better idea of
what is possible. We are able to identify several tractable and intractable subclasses
of regular languages when the input language is fixed. In particular, we establish that
trail evaluation for simple chain regular expressions, which are common in practice, is
tractable, whereas simple path evaluation is tractable for a large subclass. The problem
of fully classifying all regular languages on undirected graphs is quite non-trivial, since
it subsumes an intriguing problem that has been open for 30 years. Interestingly, the
class of languages that are tractable under simple path semantics on undirected graphs
is larger than on directed graphs, while under trail semantics the tractable classes are
incomparable (assuming P ”= NP).

We again complement our work using the input language as a parameter. We can show
that the tractable subclass of simple transitive expressions on directed graphs is also

iii

tractable on undirected graphs, both under simple path and trail semantics. Under trail
semantics, the tractable subclass of simple transitive expressions on undirected graphs is
a strict superset of the one on directed graphs (under standard complexity assumptions,
namely FPT ”= W[1]).

Enumeration: We conclude our work by studying the enumeration setting. In this
setting, the goal is to not only decide if a path with certain properties exists, but to
output all such paths. Based on Yen’s algorithm [209] for enumerating simple paths
in directed and undirected graphs, we show that polynomial time algorithms for RPQ
evaluation problems give rise to enumeration algorithms with polynomial delay between
consecutive answers.

iv

Zusammenfassung

Reguläre Pfadabfragen (RPQs) sind ein wesentlicher Bestandteil von Graphabfrage-
sprachen. Solche Abfragen betrachten einen regulären Ausdruck r und einen gerichteten
kantenbeschrifteten Graphen G und suchen nach Pfaden in G, deren Abfolge von Kan-
tenbeschriftungen ein Wort in der Sprache von r ergibt. Um zu vermeiden, dass unendlich
viele Pfade berücksichtigt werden müssen, beschränken sich einige Datenbank-Systeme
auf Pfade ohne Wiederholungen von Knoten oder ohne Wiederholungen von Kanten,
sogenannte einfache Pfade oder Trails. Während beliebige Pfade e�zient behandelt
werden können, werden einfache Pfade und Trails schon bei sehr kleinen RPQs rechnerisch
schwierig.

In dieser Dissertation untersuchen wir Entscheidungs- und Aufzählungsprobleme
bezüglich der Semantik von einfachen Pfaden und Trails.

Evaluationsproblem auf Gerichteten Graphen: Bagan, Bonifati und Groz [20]
fanden eine Trichotomie für das Evaluationsproblem für einfache Pfade, wenn der
RPQ fest ist. Wir ergänzen ihre Arbeit, indem wir eine ähnliche Trichotomie für
das Evaluierungsproblem für Trails angeben und verschiedene Eigenschaften dieser Klasse
untersuchen.

Desweiteren untersuchen wir RPQs, die in Abfrageprotokollen (englisch: query logs)
vorkommen, und definieren eine Klasse einfacher transitiver Ausdrücke, die in der Praxis
häufig vorkommt und für die wir Dichotomien für das Evaluationsproblem beweisen
können, wenn die Eingabesprache nicht fest ist, sondern als Parameter verwendet wird.
Wir stellen fest, dass, obwohl einfache Pfad- und Trailsemantiken für RPQs im Allge-
meinen schwer sind, die zugehörigen Evaluationsprobleme für die große Mehrheit der in
der Praxis verwendeten RPQs e�zient lösbar sind. Im Mittelpunkt dieser Studie steht
ein Ergebnis von unabhängigem Interesse: Das Problem zwei disjunkte Pfade in einem
gerichteten Graphen zu finden ist W[1]-schwer, wenn es durch die Länge eines der beiden
Pfade parametrisiert wird.

Evaluationsproblem auf Ungerichteten Graphen: Während sich Graphendaten-
banken auf gerichtete Graphen konzentrieren, gibt es Kanten, die von Natur aus bidi-
rektional sind, wie “Geschwister” oder “verheiratet” Relationen. Außerdem erlauben
Datenbanksysteme oft eine Kante in ihrer umgekehrten Richtung zu navigieren (2RPQ),
so dass die Untersuchung der ungerichteten Umgebung uns eine bessere Vorstellung davon
vermittelt, was möglich ist. Wir sind in der Lage, mehrere e�zient und nicht e�zient
lösbare Unterklassen der regulären Sprachen zu identifizieren, wenn der RPQ fest ist.
Insbesondere stellen wir fest, dass das Evaluationsproblem für Trails für eine Teilklasse
regulärer Ausdrücke, die in der Praxis häufig vorkommen, e�zient lösbar ist, während das

v

Evaluationsproblem einfacher Pfade für eine große Unterklasse davon e�zient lösbar ist.
Das Problem der vollständigen Klassifizierung aller regulären Sprachen auf ungerichteten
Graphen ist nicht trivial, da es ein faszinierendes Problem umfasst, das seit 30 Jahren
o�en ist. Interessanterweise ist die Klasse der Sprachen, die unter einfacher Pfadsemantik
auf ungerichteten Graphen e�zient lösbar sind, größer als auf gerichteten Graphen,
während unter Trailsemantik die e�zient lösbaren Klassen (unter der Annahme P ”= NP)
nicht vergleichbar sind.

Wir ergänzen unsere Arbeit erneut, indem wir die Eingabesprache als Parameter ver-
wenden. Wir können zeigen, dass die e�zient lösbare Unterklasse der einfachen transitiven
Ausdrücke auf gerichteten Graphen auch auf ungerichteten Graphen e�zient lösbar ist,
sowohl unter einfacher Pfad- als auch unter Trailsemantik. Desweiteren können wir zeigen,
dass unter Trailsemantik die e�zient lösbare Unterklasse der STEs auf ungerichteten
Graphen eine strikte Obermenge der entsprechenden Klasse auf gerichteten Graphen ist
(unter der komplexitätstheoretischen Annahme FPT ”= W[1]).

Aufzählung: Wir schließen unsere Arbeit ab, indem wir das Aufzählungsproblem
untersuchen. Hier geht es nicht nur darum zu entscheiden, ob ein Pfad mit bestimmten
Eigenschaften existiert, sondern auch darum, alle solchen Pfade auszugeben. Basierend
auf Yens Algorithmus [209] zur Aufzählung einfacher Pfade in gerichteten und un-
gerichteten Graphen zeigen wir, dass Polynomialzeitalgorithmen für die vorher betra-
chteten Evaluationsprobleme zu Aufzählungsalgorithmen mit polynomieller Zeit zwischen
aufeinanderfolgenden Ausgaben führen.

vi

Acknowledgements

First and foremost I am extremely grateful to my supervisor Prof. Dr. Wim Martens
for his invaluable advice, continuous support, and patience during my PhD study. His
immense knowledge and plentiful experience have encouraged me in all the time of my
academic research and daily life. Thanks to him and the University of Bayreuth I was able
to gain valuable experience in teaching, attend and participate in several international
conference meetings, and immerse myself in research.

I am grateful to Prof. Dr. Peter Wood, Prof. Dr. Pablo Barceló, Prof. Dr. Jörg Müller
and Prof. Dr. Christian Knauer for taking part in the examination commission reviewing
my thesis. I would also like to acknowledge Susanne Süss for patiently answering all my
questions regarding the formalities required for this thesis, and Dr. Johannes Doleschal
and Gregor Sönnichsen for helpful comments on an earlier version of this thesis.

I would like to extend my sincere thanks to my coauthors, colleagues, and all the other
researchers and people I met on the way. Your comments, suggestions, and discussions
were instructive and inspiring. Among them, I especially want to mention my colleague
and coauthor Dr. Matthias Niewerth, who would always have some space on his white-
board to discuss proof ideas.

On a personal note, I wish to thank my family and friends for their support and
encouragement throughout the years. Thank you for checking in so often and brightening
my days. I also want to thank my husband Matthias Popp for always being there for me,
both in good and sad moments.

vii

Contents

Acknowledgements vii

Introduction 1

1 Graph Databases and Regular Path Queries 3

1.1 Structure of this Thesis . 5
1.2 Connection to Published Works . 7
1.3 Contributions by Other Authors . 8
1.4 Related Work . 8

2 Preliminaries 15

2.1 Regular Expressions and RPQs . 15
2.2 Automata . 16
2.3 Graph Databases and Paths . 16
2.4 Main Problems . 18
2.5 Fundamental Subclasses of Regular Languages 18

I Evaluation on Directed Multigraphs 21

3 A Trichotomy for Regular Trail Queries 23

3.1 The Tractable Class Ttract . 23
3.2 A Syntactic Characterization of Ttract 27
3.3 Comparison of Ttract to Other Classes 37
3.4 The Trichotomy . 40
3.5 Recognition and Closure Properties of Ttract 51

4 Regular Path Queries in Practice 57

4.1 SPARQL Logs . 57
4.2 Simple Transitive Expressions . 59

5 Fine-grained Dichotomy for STEs 61

5.1 Parameterized Complexity . 61
5.2 Dichotomies for STEs . 62
5.3 Main Upper Bound for PSimPath . 68
5.4 Main Lower Bound for PSimPath . 77

ix

Contents

5.5 Connection Between Simple Paths and Trails 86
5.6 Bounds for PTrail . 89

II Evaluation on Undirected Multigraphs 97

6 Towards a Dichotomy for Regular Simple Path and Trail Queries 99

6.1 Definitions and Main Problems . 99
6.2 Context . 100
6.3 First Observations . 104
6.4 The Gadget G3SAT for Lower Bounds 111
6.5 Generalizing Two Disjoint Paths . 115
6.6 Word Iterations . 119
6.7 Simple Chain Regular Expressions . 122
6.8 Parity Languages . 141

7 Towards Fine-grained Dichotomies for STEs 145

7.1 Tractable Fragments are Preserved for Undirected Multigraphs 145
7.2 Extension of the Tractable Fragment 150

III Enumeration 157

8 Enumeration Framework 159

8.1 Preliminaries Enumeration . 159
8.2 Enumeration of Arbitrary Paths and Shortest Paths 160
8.3 Enumerating Simple Paths: Yen’s algorithm 162
8.4 New Variants of Yen’s algorithm . 164
8.5 The Framework . 168

9 Enumeration Results 171

9.1 With Arbitrary Order . 171
9.2 With Order of Increasing Length . 173
9.3 With Radix Order . 174

Conclusions and Future Work 179

A On the Complexity of Properly Edge Colored Disjoint Paths 185

Bibliography 189

Index of Notations 205

Index 205

x

Introduction

1

Chapter 1

Graph Databases and Regular Path

Queries

Graph databases are a popular tool to model, store, and analyze data [81, 167, 173,
201, 204] and are rapidly gaining importance [184]. They are engineered to make the
connectedness of data easier to analyze. This is indeed a desirable feature, since some of
today’s largest companies have become so successful because they understood how to
use the connectedness of the data in their specific domain (for example, Web search and
social media). One aspect of graph databases is to bring tools for analyzing connectedness
to the masses.

Regular path queries (RPQs) are a crucial component of graph databases, because
they allow reasoning about arbitrarily long paths in the graph and, in particular, paths
that are longer than the size of the query. We give an example. Consider the toy graph
database in Figure 1.1, which is loosely inspired on a part of the Wikidata graph. If we
want to find artists, we can easily do so using a regular path query. For instance, we can
retrieve the persons who are artists with a Cypher-like query of the form

CONSTRUCT (x)
MATCH (x:Person)-[:occupation]->()-[:subclassof*]->(y:Profession)
WHERE y.name = ’artist’

This query asks for persons whose occupation is a profession that is connected with a
subclassof-path to “artist”. Here, we used the regular expression subclassofú to allow
arbitrarily long directed paths in which every edge is labeled with subclassof. Since we
may not know in advance how many subclassof-edges we have to consider, it is very
comfortable to be able to use the regular path query subclassofú. The example also
illustrates the robustness of regular path queries. Even when the graph database changes
(for example, by introducing an additional profession such as “string instrumentalist”),
the query still returns the correct results.

RPQs started as an academic idea in Cruz et al.’s seminal paper [74] and are nowadays
part of SPARQL, Cypher and Oracle’s PGQL. Although the main idea behind RPQs is
always to match regular expressions against paths in a graph database, academic research
and real-world systems do not always agree on how this should be done. Already the return
type of the query varies: whereas most academic research on RPQs [16, 26, 29, 146, 160]
and SPARQL [116] focuses on the first and last node of matching paths, Cypher [172]

3

Chapter 1 Graph Databases and Regular Path Queries

name: Jimi Hendrix

aka: James Marshall Hendrix

name: Marilyn Monroe

aka: Norma Jean Baker

name: Brian Jones

aka: Lewis Brian Hopkin Jones

name: guitarist

name: instrumentalist

name: musician

name: artist

name: singer

name: actor

occupation

occupation

occupation

occupation
subclassof

subclassof

subclassof

subclassof

subclassof

Person

Person

Person

Profession

Profession

Profession

Profession Profession

Profession

occupation

Figure 1.1: A graph database (as a property graph), inspired by a fragment of WikiData.
A similar graph was used in [77].

returns the entire paths. Another di�erence lies in which paths should be considered for
matching, and the most considered candidates are all paths or paths without repeated
nodes or edges. Whereas academic research most commonly allows all paths (which allow
polynomial time algorithms to test if a matching path exists between two given nodes),
graph database systems usually revert to paths without repeated nodes or edges. There
seem to be di�erent reasons for this. First of all, this restriction always ensures that
the number of paths that can match is finite, so one does not have to deal with infinity.
Second, paths without repeated nodes or edges give the semantics that some users seem
to prefer [Lindaaker, personal communication].

We illustrate this with an example. If we want to know which other occupation singers
have, we can execute the following two-way navigational Cypher-like query on the graph
in Figure 1.1.

CONSTRUCT (x)
MATCH (x:Profession)<-[:occupation]-(:Person)-[:occupation]->(z:Profession)
WHERE z.name = ’singer’

This query asks for a profession that is connected with a reverse occupation-edge to a
person who has the occupation “singer”. If we only allow simple paths or trails, then this
query returns guitarist and actor. On the other hand, if we allow arbitrary paths, then
the query additionally returns singer, which might be counter-intuitive. Therefore, it
seems natural to allow di�erent modes and leave the choice to the user.

Indeed, industry and academia [109] collaborated to create the graph query language
GQL [84, 108] which is currently going through ISO standardization. While the GQL

4

1.1 Structure of this Thesis

project is directly influenced1 by academic work on regular queries [180] and GXPath
[145], it builds heavily on GCore [10], which is a light-weight query language for property
graphs, developed by partners in academia and industry. Indeed, in the most recent
publicly available documents on the development of GQL [84], they use restrictions
to simple paths or trails as means to ensure only finitely many matches and therefore
termination.

Whereas unrestricted and shortest paths are fairly well understood, this is much less
so for trails and simple paths. In fact, this situation is a discrepancy between research
and industry, since research has a plethora of results on unrestricted (conjunctions
of) RPQs [26, 28, 30, 62, 64, 85, 94, 96, 100, 160, 183], even with two-way navigation
[27, 45, 46, 60, 61, 93, 181] and other extensions [28, 101, 145, 191], whereas current
industrial graph database engines like Neo4j default to trails or simple paths [167].

Although simple path evaluation has already been studied in the late 80’s and mid
90’s [74, 160], these early results showed that even relatively simple expressions like (aa)ú

or aúbaú are NP-hard to evaluate. After these results, research on RPQ evaluation mainly
focused on unrestricted paths. A renewed interest in trails and simple paths [16, 20, 146]
was pushed by graph query language standards and systems, but is still lagging behind.
Since trail and simple path evaluation are planned to be included in the upcoming GQL
standard relatively soon, there is an urgent need for fundamentally understanding these
modes.

1.1 Structure of this Thesis

In Part I we focus on directed graphs. In Chapter 2, we formally define the basic notions
that are used throughout the first part of the thesis. In Chapter 3, we study the data
complexity of RPQ evaluation under trail semantics. That is, we study variants of RPQ
evaluation in which the RPQ r is considered to be fixed. As such, the input of the
problem only consists of an edge-labeled (multi-)graph G and a pair (s, t) of nodes, and
the task is to determine if there exists a trail from s to t on which the sequence of labels
matches r. One of our main results is a trichotomy on the RPQs for which this problem
is in AC0, NL-complete, or NP-complete, respectively. By Ttract, we refer to the class of
tractable languages (assuming NP ”= NL).

In order to increase our understanding of Ttract, we study several important aspects of
this class of languages. A first set of results is on characterizations of Ttract in terms of
closure properties and syntactic and semantic conditions on their finite automata. In
a second set of results, we therefore compare the expressiveness of Ttract with yardstick
languages such as FO

2[<], FO
2[<, +], FO[<] (or aperiodic languages), and SPtract. The

latter class, SPtract, is the closely related class of languages for which the data complexity
of RPQ evaluation under simple path semantics is tractable.2 Interestingly, Ttract is
strictly larger than SPtract and includes languages outside SPtract such as aúbcú and (ab)ú

1
This can be seen in the GQL influence graph [109].

2
Bagan et al. [20] called the class Ctract, which stands for “tractable class”. We distinguish between

SPtract and Ttract here to avoid confusion between simple paths and trails.

5

Chapter 1 Graph Databases and Regular Path Queries

that are relevant in application scenarios in network problems, genomic datasets, and
tracking provenance information of food products [175] and were recently discovered
to appear in public query logs [53, 55]. Furthermore, every single-occurrence regular
expression [41] is in Ttract, which can be a convenient guideline for users of graph databases,
since single-occurrence (every alphabet symbol occurs at most once) is a very simple
syntactical property. It is also popular in practice: we analyzed the 50 million RPQs
found in the logs of [54] and discovered that over 99.8% of the RPQs are single-occurrence
regular expressions.

We then study the recognition problem for Ttract, that is: given an automaton, does its
language belong to Ttract? This problem is NL-complete (respectively, PSPACE-complete)
if the input automaton is a DFA (respectively, NFA). We also treat closure under common
operations such as union, intersection, reversal, quotients and morphisms.

In Chapter 4 we take into account the types of expressions occurring in the query logs
of the study by Bonifati et al. [53], and define the class of simple transitive expressions
(STEs), which capture over 99.99% of the expressions in the logs. The remainder of the
expressions are unions of STEs, except for one single expression. In Chapter 5 we want
to take a closer look at the evaluation problem of STEs. For arbitrary and shortest paths
it is again known to be tractable, thus we first consider simple path semantics. This
problem is challenging because it contains special cases that are quite non-trivial. One
such case is testing if there exists a directed simple path of length exactly log n between
two given nodes in a directed graph with n nodes, which was shown to be in P by Alon
et al., using their color coding technique [7]. The question if it can be decided in P if
there is a simple path of length log2 n has been open since 1995 [7]. Notice that these
two problems are special cases of RPQ evaluation under simple path semantics (that is,
evaluate the RPQs alog n and alog2 n in a directed graph where every edge has label a).

We therefore investigate RPQ evaluation from the angle of parameterized complexity
where we use the size of the RPQ as parameter in Chapter 5. We identify a property of
simple transitive expressions that we call cuttability and prove a dichotomy, showing that
the parameterized complexity for evaluating a class R of STEs is in FPT if R is cuttable
and W[1]-hard otherwise. Examples of cuttable classes of expressions are {akaú

| k œ N}

and {(a + b)kaú
| k œ N}. Examples of non-cuttable classes are {akbú

| k œ N},
{akbaú

| k œ N}, and {ak(a + b)ú
| k œ N}.

We then turn to trail semantics and prove a dichotomy similar to the one for simple
path semantics. Here we show that, if a class R of STEs is almost conflict-free, the
parameterized complexity of evaluation for R is in FPT and W[1]-hard otherwise. It
should be noted that every cuttable class of expressions is also almost conflict-free, which
makes evaluation under trail semantics slightly “easier” than under simple path semantics.

At the core of the dichotomies are two results of independent interest (Sections 5.3
and 5.4). The first is by the authors of [97], who showed that it can be decided in FPT if
there is a simple path of length at least k between two nodes in a graph (Theorem 5.3.5).
The second is proved in this thesis and states that the Two Disjoint Paths problem in
directed graphs is W[1]-hard when parameterized by the length of one of the two paths
(Theorem 5.4.7).

6

1.2 Connection to Published Works

In Part II we turn to evaluation of RPQs on undirected graphs. Studying simple
path and trail evaluation on undirected graphs is important since today’s leading graph
database engines and query languages allow undirected (aka bidirectional) edges and
two-way navigation.3 In Chapter 6 we obtain a number of closure and non-closure
properties of the tractable classes of languages. Furthermore, we can show that the
tractable classes of languages on undirected graphs both subsume SPtract, while they
are both incomparable to Ttract. We present a dichotomy on a generalization of the
undirected two disjoint path problem with edge labels. We use this dichotomy to fully
classify the complexity of trail and simple path evaluation of languages of the form
AúwBú on undirected graphs, where A and B are sets of symbols and w is a word. We
fully classify the complexity of languages of the form wú, except in the case where this
problem degenerates to testing the length of paths modulo some k > 2, which is an open
problem since 1991 [17]. We study simple chain regular expressions (SCREs), which is
a class of practically common languages and show that their trail evaluation is always
tractable. This, however, is not the case for simple path evaluation, but we are able to
identify large tractable subclasses. We generalize recent results on group-labeled graphs
to obtain that the data complexity of parity languages is tractable for both trail and
simple path evaluation.

In Chapter 7 we again study the RPQ evaluation from the angle of parameterized
complexity. We can prove that the tractability results from Chapter 5 also hold on
undirected graphs. Furthermore, we identify a class of STEs with arbitrary number of
conflict positions, for which trail evaluation on undirected graphs is tractable.

In Part III we show that all tractability results imply that enumeration of the output
with polynomial time delay between answers is possible. Technically, this means that
we have to prove that we cannot only solve a decision variant of the RPQ evaluation
problem, but we also need to find witnessing paths. We prove that the algorithms for the
decision problems can be extended to return paths which can then be combined with a
variant of Yen’s Algorithm [209] to give a polynomial delay enumeration algorithm. In
terms of parameterized complexity, we prove that tractability on STEs also carries over
to the enumeration setting, that is, FPT delay.

1.2 Connection to Published Works

The work on a trichotomy for trail semantics, Chapter 3, is based on joint work with
Wim Martens and Matthias Niewerth. A preliminary version of this work was published
in the International Symposium on Theoretical Aspects of Computer Science 2020 [154].
An extended version is currently under review and can be found on arXiv [153].

The work on query logs and parameterized complexity, presented in Chapters 4 and
5, is joint work with Wim Martens. A preliminary version of this work was presented

3
Tigergraph allows undirected edges [196, Defining a Graph Schema] and Neo4j Cypher allows specifying

match patterns direction-agnostically. Two-way navigation is possible in either Tigergraph’s GSQL,

Neo4j’s Cypher, and SPARQL 1.1. Also the newest documents regarding GQL [84] allow undirected

and bidirectional edges.

7

Chapter 1 Graph Databases and Regular Path Queries

at International Conference on Database Theory 2018 [156] and received the best paper
award. An extended version was invited and published in ACM Transaction on Database
Systems 2019 [158]. The work also received an ACM SIGMOD Research Highlight Award
2018. To this end, a shorter version was published in Sigmod Record [157].

Chapter 6 contains joint work with Wim Martens. A prelimary version of this work
was accepted to the Symposium on Principles of Database Systems 2022 [155].

Part III contains joint work with Wim Martens and Matthias Niewerth. Some of
the results on directed graphs have been published in International Conference on
Database Theory 2018 [156], ACM Transactions on Database Systems 2019 [158], SIG-
MOD Record [157], and International Symposium on Theoretical Aspects of Computer
Science 2020 [154], while results on undirected graphs were accepted to the Symposium
on Principles of Database Systems 2022 [155].

1.3 Contributions by Other Authors

The starting research questions were given by my PhD advisor, Wim Martens, and then
jointly developed depending on the results. Furthermore, the papers on which this thesis
is based have been jointly written with the co-authors which significantly helped to put
the work in a broader research perspective and improve their presentation. The technical
results in this thesis, however, were mainly obtained by the author of this thesis. We
thank Jean-Éric Pin and Luc Segoufin for helping with the proof of Proposition 3.3.4(b).

1.4 Related Work

RPQs on graph databases have been studied since the end of the 80’s [69, 74, 208]. A
central component of querying a graph database consists of answering the following
question: Given a graph database G, an RPQ r, and two nodes s and t, is there a path
from s to t (possibly with loops) in G that matches r? When no loops are allowed, then
we name this problem SimPath.

Simple Path Semantics Cruz, Mendelzon and Wood [74] designed one of the earliest
navigational languages for graph databases. Motivated by early applications of graph
databases, their language uses simple paths semantics, that is, they do not allow loops in
the path. Mendelzon and Wood [160] observed that under simple path semantics querying
a graph database is already NP-complete for relatively simple expressions like aúbaú and
(aa)ú. These two results heavily rely on the work of Fortune et al. [98], who showed
NP-completeness of the two disjoint paths problem on directed graphs, and LaPaugh and
Papadimitriou [140], who showed that the even length simple path problem on directed
graphs is NP-complete.

8

1.4 Related Work

While Mendelzon and Wood [160] showed that the problem can be decided in polynomial
time for downward closed languages, the overall complexity of simple path semantics was
considered as too high and database systems therefore preferred arbitrary path semantics.

New interest in simple path semantics was sparked in 2010 when the W3C added
regular expressions to SPARQL 1.1 queries in the form of SPARQL property paths. These
property path were evaluated under a semantics based on simple paths. Because of the
studies about the complexity of SPARQL 1.1 property paths [16, 146], SPARQL switched
their semantics away from counting simple paths. Shortly afterwards, Bagan et al. [20]
provided a dichotomy for the data complexity of SimPath.They defined a class SPtract
such that the problem is in P for each language in SPtract and NP-complete otherwise.
We introduce this class in more detail in Section 2.5.2.

There is also work that takes the shape of the database into account. For example,
Mendelzon and Wood [160] proved that the complexity of SimPath becomes polynomial if
both the graph and language are restricted with regard to their cycles. Other work showed
the polynomiality for the class of outerplanar graphs [166] or on graphs of bounded
treewidth [34]. In this setting, the polynomial time even holds if the language is not fixed.
On the other hand, Barrett et al. [34] show that the problem SimPath is NP-complete for
the class of grid graphs, even when the language is fixed.

Arbitrary Path Semantics In the meantime, most work focused on arbitrary and
shortest paths semantics, for which the evaluation problem is well-known to be tractable
using standard product automata techniques [160]. Recently, Casel and Schmid [64]
showed that this approach is essentially optimal. There is a wide literature on RPQs,
which led to several surveys [11, 14, 26, 63, 205].

Indeed, RPQs have been extended in various ways. For example, to two-way regular
path queries [28, 33, 60] that allow navigation in the reverse direction of an edge, or
nested regular path queries [32] that extend two-way regular path queries with additional
node-tests. The favorable complexity of RPQs also carries over to these classes, see [26]
for an overview.

Graph Pattern Matching Modern graph query languages are often based on graph
pattern matching. Examples are Cypher from Neo4j [99], GSQL from TigerGraph [196],
and PGQL from Oracle [176], as well as industry/academia prototypes such as G-
CORE [10] and GPML [84].

Abstractly, the graph pattern matching problem is to find a homomorphic, isomorphic,
or “similar” image of a given graph pattern in the data graph. Graph patterns can use
regular expressions or transitive closure to allow an edge-to-path matching.

In this sense, conjunctions of regular path queries are a graph pattern based on
homomorphism semantics. Conjunctions of RPQs (CRPQs) have been introduced in [74]
and been studied in several follow-up works, for example [45, 63, 62, 183]. Also the static
analysis of CRPQs [60, 85, 93, 94, 96] has been extensively studied. Furthermore, CRPQs
were extended with the ability to output and/or compare paths in [28, 30, 31, 101] and
with data value comparisons [145]. Reutter et al. [181] study regular queries, which are

9

Chapter 1 Graph Databases and Regular Path Queries

nonrecursive Datalog programs extended with transitive closure, and show elementary
tight bounds for the containment problem for regular queries.

There is also a plethora of work that focuses on tree-shaped patterns [3, 15, 50, 77,
78, 95, 137, 162, 189, 206]. This line of work has especially focused on querying XML
documents, which can be seen as node-labeled, tree-shaped graph databases, but the
patterns can also be used to query arbitrary node-labeled graph databases. In several
important cases [77, 162], static analysis problems on these queries are even exactly the
same, independent from whether we use them to query tree-structured or graph-structured
data.

Pattern matching in terms of subgraph isomorphism has been introduced by Ull-
mann [202]. Here, one is given two graphs G and H as input and has to determine
whether G contains a subgraph which is isomorphic to H. Although this problem is
NP-complete [73], it has been extensively studied on node-labeled graphs, see for example
[56, 70, 102] for surveys. Wang et al. [203] extended this notion of pattern matching with
a subclass of regular expressions and studied algorithms which return the best K match-
ings. In their work the nodes of the pattern graph H must be mapped bijectively into
G, while edges can be mapped to arbitrary paths as long as the regular expressions match.

Another line of work defines pattern matching in terms of graph simulation [2, 57, 117].
This notion of matching relaxes subgraph isomorphism. More precisely, graph simulation
is a relation R ™ VQ ◊ V between the nodes VQ of the graph pattern and the nodes VG of
the directed graph such that (u, v) œ R if u and v have the same label and for each uÕ with
(u, uÕ) œ EQ there is a vÕ with (v, vÕ) œ EG and (uÕ, vÕ) œ R. For example, an a-b-cycle can
be mapped into an a-b-a-b-cycle. This relaxation leads to a polynomial time evaluation
problem, as opposed to the NP-completeness of subgraph isomorphism and conjunctive
query evaluation [65, 73]. Fan et al. [91] show that graph pattern matching under
graph simulation semantics can be extended with a subclass of regular expressions while
maintaining the polynomial time complexity for evaluation, minimization, equivalence
and containment problems.

Broader Scientific Context There are several ways of representing graph databases,
see for example [13, 112]. Two of the most popular ways of representing graphs are the
Resource Description Framework (RDF)[76], and property graphs [11]. In RDF, the data
is modeled as triples (s, p, o) representing the subject s, the predicate p, and the object
o of a statement about these resources. Each triple can be viewed as two nodes, s and
o, and an edge labeled p from s to o. Yet, unlike in edge-labeled directed graphs, RDF
triples allow an “edge-label” to be the subject of another triple, for example (s, p, o) and
(p, q, t). On the other hand, property graph models the data as a mixed multigraph,
that is, a multigraph with directed and/or undirected edges. Both nodes and edges
can be labeled. Unlike RDF with its query language SPARQL [116], which is a W3C
standard, there is no query language standard for property graphs yet. In 2019 the Joint
Technical Committee 1 of ISO/IEC, which defines information technology standards for
the International Organization for Standardization, and International Electrotechnical

10

1.4 Related Work

Commission, approved a project to create a standard property graph query language,
GQL. This standardization process is governed by WG3, who work together with the
Linked Data Benchmark Council (LDBC).

Recently, the members of WG3 and LDBC [84] published a summary of their view on
the new graph pattern matching languages. In order to allow paths to be returned, they
want to ensure that there is only a finite number of results. To enforce this for paths,
they either restrict results to being simple paths, trails, shortest paths, or select only k
many paths.

The LDBC and the WG3 do not only collaborate on query language design. The
LDBC also has a number of working groups focusing on the design of schema languages
for property graphs. These groups have generated an initial proposal for key constraints
for property graphs [12] and their generalization to cardinality constraints, which evolved
into a deeper study on threshold queries [52]. Cardinality constraints are similar to key
constraints in the sense that they do not impose uniqueness of an element in the database,
but allow a given number to exist. Similarly, threshold queries return the answers of a
given query until a given number of outputs is reached.

Interestingly, restricting the number of returned paths seems again important when
considering keys for graphs. More precisely, Angles et al. [12] give as example that a
constraint that requires a path to be unique implies that the path cannot have a cycle
because these can be traversed multiple times. Thus simple path or trail semantics might
be preferable over arbitrary path semantics.

The graph pattern matching language presented in [84] extends CRPQs syntactically
and semantically. Syntactically, it introduces group variables and variables binding
to entire paths, which allows to treat paths as first-class citizens, as advocated in the
G-CORE proposal [10]. Semantically, they support a finer-grained notion of match, which
permits binding variables to paths, using multiplicity-sensitive aggregation such as sum,
count, and average, and restricting the number of possible returned paths.

Methodology In terms of methodology, some of this work is heavily inspired on a line
of work initiated by Frank Neven [40, 41, 151]. A practical study on the shapes of regular
expressions [40] motivated the study of simple regular expressions and k-occurrence
regular expressions or REÆk [151] and later work on schema inference, for example, [41].4
Similarly, a practical study on the use of complex types in schemas for XML data [39]
motivated inference algorithms for learning XML Schema [42] and the design of the
BonXai schema language [150].

Graph Theory Edge-labeled graphs are a generalization of unlabeled graphs, which
have been studied in depth by graph theoreticians. We recall some results in this field.

There is a seminal line of work accomplished by Robertson and Seymour [182] that
resulted in the Robertson–Seymour theorem, also called graph minor theorem. An
important consequence is that, for each fixed undirected unlabeled graph H, there is a

4
Later work used the term (extended) chain regular expressions to refer to the simple regular expressions

from [151].

11

Chapter 1 Graph Databases and Regular Path Queries

polynomial time algorithm for testing whether an undirected unlabeled graph G has H
as a minor. Their line of work has been followed by a plethora of works on simplifying
the proof, extending the results, and obtaining better running time [111, 131, 133, 134].
Huynh [119] extended this minor theorem to group-labeled graphs. Although group-
labeled graphs are quite di�erent from undirected graphs, they coincide modulo 2 (but not
for other modulos). Thus, in particular, Huynh’s work extends the graph minor theorem
with parity conditions. Independently and with di�erent methods, Kawarabayashi et
al. [132] also proved this result and with an improved running time. The problem of
finding a simple path of length 0 modulo 3 between two given nodes on undirected
graphs has also been studied extensively, but its complexity is not yet known. Arkin et
al. [17] give a linear-time algorithm to decide whether all paths between two specified
nodes are of length P mod Q, for fixed integers P and Q. Many works also look for
simple paths whose length is a certain modulo in very restricted kinds of graphs. For
example, Deng and Papadimitriou [83] show that between any two nodes of a cubic,
planar, three-connected undirected graph there are three paths whose lengths are 0, 1,
and 2 modulo 3, respectively. Amar and Manoussakis [8] give several su�cient conditions
on the half-degrees of a bipartite digraph for the existence of cycles and paths of various
lengths. On the other hand, on directed graphs, already the problem of deciding whether
there is a simple path of even length between two given nodes is NP-complete [140].

Another important problem is the kDisjointPaths problem, which asks for k node-
or edge-disjoint paths between k pairs of nodes. The first polynomial time algorithms
for the kDisjointPaths with k = 2 on undirected graphs where given by Ohtsuki [171],
Seymour [186], Shiloach [187], and Thomassen [199]. A consequence of the minor
theorem [182] is that the kDisjointPaths problem on undirected graph is in polynomial
time for every fixed k. If k is part of the input, the kDisjointPaths problem is NP-
complete [90, 128] on both directed and undirected graphs. On directed graph the
problem is already NP-complete for k = 2 [98]. For k = 2, Perl and Shiloach [174] gave
a polynomial time algorithm for the kDisjointPaths problem on directed acyclic graphs.
Fortune et al. [98] generalized their algorithm to fixed k. There has also been a lot of
work with length constraints on path(s), for example [7, 36, 43, 47, 59, 89, 97, 192].

Some of the problems we study in this work are an extension of determining whether
a compatible path in forbidden-transition graphs exists. In these undirected graphs,
certain transitions are forbidden and one asks for a path whose consecutive edges respect
these constraints. Determining the existence of such a path that additionally does not
repeat nodes is already NP-complete [194], as are other problems which are solvable in
polynomial time on standard graphs, for example [5, 35, 88, 106, 107, 126, 127, 194].

A specific case of compatible paths in forbidden-transition graphs are so called properly
edge-colored paths in edge-colored (undirected) graphs. A path or cycle is properly edge-
colored (PEC) if no two consecutive edges have the same color. Bang-Jensen and
Gutin [24, 25] showed that one can test in linear time if there is a PEC path in an
undirected edge-colored multigraph with two colors, while Szeider [194] extended their
result to arbitrarily many colors. Many results and concepts from directed graphs extend

12

1.4 Related Work

to undirected edge-colored graphs [25, 67, 149].5 We refer the reader to [23, 25, 114]
for surveys on PEC paths and cycles. For example, the problem of properly colored
Hamiltonian cycles and its variants have been studied extensively, recent developments
can be found in [22, 71, 72, 113, 143, 144]. PEC simple paths and trails and their variants
have also been studied on directed and undirected edge-colored graphs [4, 5, 106, 107].
For instance, a characterization of c-edge-colored graphs containing PEC cycles was first
presented by Yeo [211] and generalized in [5] to properly-edge-colored closed trails. In
[105], the authors consider a number of path and trail problems restricted to edge-colored
graphs with no PEC cycles or PEC closed trails. They studied these classes since they
can be seen as an edge-colored counterpart of directed acyclic graphs.

Enumeration In the last decades we have seen increased interest in enumerating
answers to queries on data which is subject to updates, sometimes also called incremental
validation or incremental evaluation [9, 21, 37, 38, 49, 51, 80, 120, 121, 136, 147, 169, 170].
While we do study results on enumerating answers to graph database queries, the data in
our setting is static, that is, we do not consider scenarios in which the data is changed.

Ackerman and Shallit [6] proved that one can enumerate the words accepted by a given
NFA in polynomial delay. This is easily extended to RPQ evaluation on directed and
undirected multigraphs with respect to arbitrary paths and shortest paths semantics, as
we observe in Section 8.2. Simple paths can be dealt with using Yen’s algorithm [209],
which takes an directed or undirected (unlabeled) graph, nodes s and t, and a parameter
K as input and returns the K shortest simple paths from s to t. In the case of undirected
graphs, Katoh, Ibaraki, and Mine [129] improved the running time of Yen’s algorithm
from O(K(|V | + |V |

3)) to O(K(|E| + |V | log |V |)). As we observe in Theorem 8.3.1, Yen’s
algorithm can also enumerate all simple paths between two given nodes in polynomial
delay. Yen’s algorithm was generalized by Lawler [142] and Murty [165] to a tool
for designing general algorithms for enumeration problems. Lawler-Murty’s procedure
has been used for solving enumeration problems in databases in various contexts, for
example [104, 125, 138].

Casel and Schmid [64] take a di�erent approach: instead of enumerating the paths
between two given nodes, they enumerate pairs of nodes (u, v) such that there is a path
from u to v that matches r. They give an enumeration algorithm with delay linear in the
size of G.

5
The idea is to split each directed edge e into two undirected edges with two colors according to the

direction of e. To ensure that the paths start with the correct color, one can replace every start node

si with a new one sú
i that has only an undirected edge of color 2 to the respective si.

13

Chapter 2

Preliminaries

We use [n] to denote the set of integers {1, . . . , n}. Let � be an infinite set of symbols.
We denote by � a finite subset of �. A (�-)symbol is an element of �. We always denote
symbols by a, b, c, d and their variants, like aÕ, a1, b1, etc. We denote sets of symbols by
uppercase letters like A, B, and their variants, like AÕ, A1, AÕ

1 etc. The size of a set of
symbols A, denoted |A|, is the number of elements in the set. A word (over �) is a finite
sequence w = a1 · · · an of �-symbols. The length of w, denoted by |w|, is its number of
symbols n. We denote the empty word by Á. The reverse of w is wrev = an · · · a1. For
0 Æ i Æ j Æ n, we denote by w[i, j] the substring ai · · · aj of w.

2.1 Regular Expressions and RPQs

Regular expressions over an alphabet � are defined as follows: ÿ, Á, and every �-symbol
is a regular expression; and if r and s are regular expressions, then (r · s), (r + s), and (rú)
are regular expressions. To improve readability, we use associativity and the standard
priority rules to omit braces in regular expressions. We usually also omit the outermost
braces. The size |r| of a regular expression is the number of occurrences of �-symbols in
r. For example, |((a · b) · a)ú

| = 3. We define the language L(r) of r as usual.
We use the following standard abbreviations and alternative notations: (rs) abbreviates

(r · s), (r?) abbreviates (r + Á), and (r+) abbreviates (rrú). Furthermore, if S =
{a1, . . . , an} ™ �, then we identify S with the expression (a1 + · · · + an). We allow S = ÿ,
in which case L(S) = ÿ. As such, L(�ú) contains every word and L(ÿú) = {Á}. For n œ N,
we use rn to abbreviate the n-fold concatenation r · · · r of r. We abbreviate (r?)n by rÆn.
In the context of graph databases, regular path queries (RPQs) are regular expressions
that can be evaluated on graphs and return an output. In this thesis, we will blur the
distinction between them (language acceptors vs. queries) and use “regular expression”
and RPQ as synonyms.

The reversal of a language L is Lrev = {wrev
| w œ L}. Given a language L and a word

w, the derivative1 of L with respect to w is defined as

w≠1L := {v | wv œ L}.

1
Also known as Brzozowski derivative [58].

15

Chapter 2 Preliminaries

2.2 Automata

A nondeterministic finite automaton (NFA) N over � is a tuple (Q, �, ”, I, F), where Q
is a finite set of states, � is a finite alphabet, ” ™ Q ◊ � ◊ Q is the transition relation,
I ™ Q is the set of initial states, and F ™ Q is the set of accepting states. The size of an
NFA N , denoted |N |, is its number of states |Q|. We define the language L(N) of N as
usual.

Strongly connected components of (the graph of) N are simply called components.
Unless noted otherwise, components will be non-trivial, that is, containing at least one
edge. We write C(q) to denote the strongly connected component of state q.

By ”(q, w) we denote the states reachable from state q by reading w. Given a path p
which is labeled w, we also slightly abuse notation and write ”(q, p) instead ”(q, w). We
denote by q1 q2 that state q2 is reachable from q1. Finally, Lq denotes the set of all
words accepted from q and L(A) =

t
qœI Lq is the set of words accepted by A. For every

state q, we denote by Loop(q) the set {w œ �+
| ”L(q, w) = q} of all non-empty words

that allow to loop on q.
A deterministic finite automaton (DFA) is an NFA such that I is a singleton and

for all q œ Q, ‡ œ �: |”(q, ‡)| Æ 1. Let L be a regular language. We denote by
AL = (QL, �, iL, FL, ”L) the (complete) minimal DFA for L and by N the number |QL|

of states. For q0 œ Q, we say that a run from q0 of A on w = a1 · · · an is a sequence
q0 æ · · · æ qn of states such that qi œ ”(qi≠1, ai), for every i œ {1, . . . , n}. When A is a
DFA and q0 its initial state, we also simply call it the run of A on w.

2.3 Graph Databases and Paths

We use edge-labeled directed and undirected multigraphs as abstractions for graph
databases. An edge-labeled directed multigraph G = (V, E, E) consists of a finite set
of nodes V , a finite set of edges E, and a function E : E æ V ◊ � ◊ V that maps each
edge identifier to a tuple (v1, a, v2) describing the origin, the label, and the destination
node of the edge. We denote v1 by origin(e), a by lab(e) and v2 by destination(e). We
emphasize that E does not need to be injective, that is, there might be several edges with
identical origin, label, and destination.

An edge-labeled undirected multigraph G = (V, E, E) consists of a finite set of nodes
V , a finite set of edges E, and a function E : E æ 2V fi� with |E(e) fl �| = 1 and
1 Æ |E(e)flV | Æ 2 for every e œ E. Given an edge e œ E, we denote by Node(e) = E(e)flV
its nodes and by lab(e) = E(e) fl � its label. For convenience, in undirected multigraphs,
we also denote E(e) as (u, a, v), where {u, v} = Node(e) and a = lab(e). As such, (u, a, u)
denotes a self-loop with label a on node u. With this notation, (u, a, v) and (v, a, u) are
the same in undirected graphs, and we will order u and v in our notation such that it
optimizes readability.

Given an (un-)directed multigraph G = (V, E, E), the size of G is defined as |V | + |E|.
A (simple) graph is a multigraph where E is injective. We sometimes denote E(e) as (u, v)

16

2.3 Graph Databases and Paths

if the label does not matter.

s

v1

v2

v3

t

a c
a

c

a

a
a

b

b
s

v1

v2

v3

t

a c
a

c

a

a
a

b

b

Figure 2.1: A directed multigraph (left) and an undirected multigraph (right)

A path p from s to t in an (un-)directed multigraph G is a sequence of edges e1 · · · ek

in G such that E(e1) · · · E(ek) can be written as (s, a1, v1)(v1, a2, v2) · · · (vk≠1, ak≠1, t) for
some nodes v1, . . . , vk≠1 œ V and labels a1, . . . , ak≠1 œ �. The set of nodes of path p is
V (p) = {s, v1, . . . , vk≠1, t}. The length of p, denoted by |p|, is the number of edges in p.
A path is a trail if every edge e appears at most once2 and a simple path if all its nodes
are di�erent, that is, if |V (p)| = |p| + 1. We note that each simple path is a trail but not
vice versa.

We denote lab(e1) · · · lab(ek) by lab(p). Given a language L ™ �ú, path p matches L if
lab(p) œ L. If r is a regular expression (respectively N is an NFA), we simplify notation
and also say that p matches r when p matches L(r). For a subset EÕ

™ E, path p is
EÕ-restricted if every edge of p is in EÕ. We use a-edge to refer to an edge with label
a (that is, with lab(e) = a) and a-path to refer to a path that consists only of a-edges.
Given a trail p and two edges e1 and e2 in p, we denote the subpath of p from e1 to e2
by p[e1, e2]. The concatenation of paths p1 = e1 · · · ek and p2 = ek+1 · · · en is simply the
concatenation p1p2 of the two sequences. Notice that the last node of p1 needs to be the
same as the first node of p2.

The product of a directed multigraph G = (V, E, E) and NFA A = (Q, �, I, F, ”) is a
directed multigraph (V Õ, EÕ, E

Õ) with V Õ = V ◊ Q, EÕ = {(e, (q1, q2)) | (q1, lab(e), q2) œ ”}

and E
Õ((e, (q1, q2))) = ((origin(e), q1), lab(e), (destination(e), q2)).

We illustrate some of these notions on the directed and undirected multigraphs in
Figure 2.1. The path p = e1e2 with E(e1) = (s, b, v2), E(e2) = (v2, b, s) is a trail, both
in the directed and the undirected multigraph, since e1 ”= e2. But it is no simple path
because |p| = 2 and V (p) = {s, v2}, and thus |V (p)| ”= |p| + 1. In both multigraphs there
are two di�erent a-paths from s to t that are simple paths. Both of them can be written
as (s, a, v1)(v1, a, v2)(v2, a, v3)(v3, a, t). Each simple path is also a trail. If we drop the
restriction to simple paths, then there are infinitely many a-paths from s to t in the
undirected multigraph, for example (s, a, v1)(v1, a, s)(s, a, v1)(v1, a, v2)(v2, a, v3)(v3, a, t).

2
We note that it is allowed that for i ”= j it holds that E(ei) = E(ej).

17

Chapter 2 Preliminaries

2.4 Main Problems

In this thesis we will study variants of the SimPath and Trail problem.

SimPath(L)
Given: A directed multigraph G = (V, E, E), two nodes x, y œ V
Question: Is there a simple path from x to y in G that matches L?

Trail(L)
Given: A directed multigraph G = (V, E, E), two nodes x, y œ V .
Question: Is there a trail from x to y in G that matches L?

Note that we study the data complexity of SimPath and Trail, that is, we assume that
the language L (the query) in the problems SimPath(L) and Trail(L) is not part of the
input, but fixed. Therefore, each language gives rise to a di�erent computational problem.
We note that in this setting it plays no role whether L is given as a DFA, NFA, or regular
expression.

We will contrast these problems by also considering variants where the language is not
fixed, but used as a parameter. We explain this in more detail in Section 5.1 and will
denote parameterized versions by a preceding P.

In Part II we will study these problems on undirected multigraphs. Similarly to the
parameterized version, we will denote variants on undirected multigraphs by adding a U.

2.5 Fundamental Subclasses of Regular Languages

We introduce some important languages which will be used throughout this thesis.

2.5.1 Downward Closed Languages (DC)

A language L is downward closed3 (DC) if it is closed under taking subsequences. That is,
for every word w = a1 · · · an œ L and every sequence 0 < i1 < · · · < ik < n + 1 of integers,
we have that ai1 · · · aik œ L. Perhaps surprisingly, downward closed languages are always
regular [115]. Furthermore, they can be defined by a clean class of regular expressions
(which was shown by Jullien [124] and later rediscovered by Abdulla et al. [1]), which is
defined as follows.

Definition 2.5.1. An atomic expression over � is an expression of the form (a + Á) or
of the form (a1 + · · · + an)ú, where a, a1, . . . , an œ �. A product is a (possibly empty)
concatenation e1 · · · en of atomic expressions e1, . . . , en. A simple regular expression is of
the form p1 + · · · + pn, where p1, . . . , pn are products.

3
The term downward closed comes from being closed under taking the smaller elements in the subse-

quence ordering which, due to Higman’s Lemma, is a well quasi ordering.

18

2.5 Fundamental Subclasses of Regular Languages

Another characterization is by Mendelzon and Wood [160], who show that a regular
language L is downward closed if and only if its minimal DFA AL = (QL, �, iL, FL, ”L)
exhibits the su�x language containment property, which says that if ”L(q1, a) = q2 for
some symbol a œ �, then we have Lq2 ™ Lq1 .4 Since this property is transitive, it is
equivalent to require that Lq2 ™ Lq1 for every state q2 that is reachable from q1.

Theorem 2.5.2 ([1, 115, 124, 160]). The following are equivalent:

(1) L is a downward closed language.

(2) L is definable by a simple regular expression.

(3) The minimal DFA of L exhibits the su�x language containment property.

2.5.2 Tractable Class for Regular Simple Path Queries (SPtract)

Bagan et al. [20] introduced5 the class SPtract, which characterizes the class of regular
languages L for which the regular simple path query (SimPath) problem is tractable.
While they studied SimPath on directed simple graphs, their results immediately carry
over to multigraphs: since simple paths can use every node at most once, they cannot use
more than one edge between any pair of nodes. Thus regarding simple path semantics,
the results on a multigraph will be no di�erent from the results on the underlying simple
graph.

Theorem 2.5.3 (Theorem 3 in Bagan et al. [20]). Let L be a regular language.

(1) If L is finite, then SimPath(L) œ AC0.

(2) If L œ SPtract and L is infinite, then SimPath(L) is NL-complete.

(3) If L /œ SPtract, then SimPath(L) is NP-complete.

One characterization of SPtract is the following (Theorem 6 in [20]):

Definition 2.5.4. SPtract is the set of regular languages L such that there exists an
i œ N for which the following holds: for all w¸, w, wr œ �ú and w1, w2 œ �+ we have that,
if w¸wi

1wwi
2wr œ L, then w¸wi

1wi
2wr œ L.

Bagan et al. [20] also gave a characterization of SPtract in terms of regular expression:

Theorem 2.5.5. Let L be a regular language. Then L belongs to SPtract if and only if L
can be written as a union of regular expressions of the form

w¸(w1 + Á)(AØk1
1 + Á)(w2 + Á) · · · (AØkn

n + Á)wr

for some n, k1, . . . , kn œ N, words w¸, w1, . . . , wn, wr œ �ú, and sets A1, . . . , An ™ �.
4
They restrict q1, q2 to be on paths from iL to some state in FL, but the property trivially holds for q2
being a sink-state.

5
They called the class Ctract, which stands for “tractable class”. We distinguish between SPtract and

Ttract here to avoid confusion between simple paths and trails.

19

Chapter 2 Preliminaries

2.5.3 Aperiodic Languages (FO[<])
There are many characterizations of aperiodic languages [185]. A regular language L is
aperiodic if and only if its minimal DFA AL satisfies ”L(q, wN+1) = ”L(q, wN) for every
state q and word w, where N is the number of states of AL. Equivalently, a regular
language L is aperiodic if and only if its minimal DFA does not have a simple cycle
labeled wk for k > 1 and w ”= Á. Thus, for “large enough n” we have: uwnv œ L if and
only if uwn+1v œ L. So, a language like (aa)ú is not aperiodic (take w = a and k = 2),
but (ab)ú is.

Let FO[<] be the set of languages definable in first-order logic with unary predicates
Pa for all a œ � and the binary predicate <. Here, Pa denotes the positions carrying the
symbol a while < denotes the order relation among position. It follows from McNaughton
and Papert [159] and Schützenberger [185] that the aperiodic languages are exactly those
definable in FO[<].6

6
McNaughton and Papert [159] showed the equivalence of first-order definability and star-freeness for

finite words. The equivalence of star-freeness and aperiodicity for finite words is due to Schützen-

berger [185].

20

Part I

Evaluation on Directed

Multigraphs

21

Chapter 3

A Trichotomy for Regular Trail

Queries

In this chapter, we inspect for which regular languages L the problem Trail(L) can be
answered in polynomial time. To this end, we define and characterize the class Ttract and
prove that it contains exactly the languages for which Trail(L) is tractable (under the
assumption NP ”= NL). We compare the expressiveness of Ttract to yardstick languages
such as aperiodic languages, SPtract, and downward closed languages, and study its closure
properties.

3.1 The Tractable Class Ttract

In this section, we define and characterize a class of languages of which we will prove that
it is exactly the class of regular languages L for which Trail(L) is tractable (if NL ”= NP).

The following definitions are the basis of the class of languages for which Trail(L) is
tractable.

Definition 3.1.1. An NFA A satisfies the left-synchronized containment property if
there exists an n œ N such that the following implication holds for all q1, q2 œ Q:

If q1 q2 and if w1 œ Loop(q1), w2 œ Loop(q2) with w1 = awÕ
1 and w2 = awÕ

2,
then wn

2 Lq2 ™ Lq1 .

Similarly, A satisfies the right-synchronized containment property if the same condition
holds with w1 = wÕ

1a and w2 = wÕ
2a.

We note that every minimal DFA of a downward closed language L satisfies the
left-synchronized containment property.

The left-synchronizing length of an NFA A is the smallest value n such that the
implication in Definition 3.1.1 for the left-synchronized containment property holds. We
define the right-synchronizing length analogously.

Observation 3.1.2. Let n0 be the left-synchronizing length of an NFA A. Then the
implication of Definition 3.1.1 is satisfied for every n Ø n0. The reason is that w2 œ

Loop(q2), so w2Lq2 ™ Lq2 .

23

Chapter 3 A Trichotomy for Regular Trail Queries

Definition 3.1.3. A regular language L is closed under left-synchronized power ab-
breviations (respectively, closed under right-synchronized power abbreviations) if there
exists an n œ N such that for all words w¸, wm, wr œ �ú and all words w1 = awÕ

1 and
w2 = awÕ

2 (respectively, w1 = wÕ
1a and w2 = wÕ

2a) we have that w¸wn
1 wmwn

2 wr œ L
implies w¸wn

1 wn
2 wr œ L.

We note that Definition 3.1.3 is equivalent to requiring that there exists an n œ N
such that the implication holds for all i Ø n. The reason is that, given i > n and a
word of the form w¸wi

1wmwi
2wr, we can write it as wÕ

¸w
n
1 wmwn

2 wÕ
r with wÕ

¸ = w¸w
i≠n
1 and

wÕ
r = wi≠n

2 wr, for which the implication holds by Definition 3.1.3.

Lemma 3.1.4. Consider a minimal DFA AL = (QL, �, iL, FL, ”L) with N states. Then
the following is true:

(1) If AL satisfies the left-synchronized containment property, then the left-synchronizing
length is at most N .

(2) If AL satisfies the right-synchronized containment property, then the right-synchronizing
length is at most N .

Proof. We first prove (1). Let n œ N be the left-synchronizing length. Since AL satisfies
the left-synchronized containment property, n is well defined. If n Æ N , we are done,
therefore we assume n > N . By Definition 3.1.1, it holds that: If q1, q2 œ QA such that
q1 q2 and if w1 œ Loop(q1), w2 œ Loop(q2) with w1 = awÕ

1 and w2 = awÕ
2, then we

have wn
2 Lq2 ™ Lq1 .

Since n > N and wn
2 Lq2 ™ Lq1 , there must be a loop in the wn

2 part that generates
multiples of w2. Thus we can ignore the loop and obtain that wi

2Lq2 ™ Lq1 for an i < n.
This is a contradiction to n being the left-synchronizing length (that is, the minimality
of n).

The proof of (2) is analogous. We only need to replace w1 = awÕ
1 and w2 = awÕ

2 with
w1 = wÕ

1a, w2 = wÕ
2a, and left with right.

From Definition 3.1.1, Observation 3.1.2, and Lemma 3.1.4, we get the following
corollary.

Corollary 3.1.5. Let A be a minimal DFA with N states, q1, q2 œ QA with q1 q2,
w1 œ Loop(q1), and w2 œ Loop(q2). If A satisfies the

• left-synchronized containment property, w1 = awÕ
1, and w2 = awÕ

2, then wN
2 Lq2 ™

Lq1 .

• right-synchronized containment property, w1 = wÕ
1a, and w2 = wÕ

2a, then wN
2 Lq2 ™

Lq1 .

We need two lemmas to prove Theorem 3.1.9. And their proofs require the following
lemma:

24

3.1 The Tractable Class Ttract

Lemma 3.1.6 (Implicit in [20], Lemma 3 proof). Every minimal DFA satisfying
for all q1, q2 œ QL such that q1 q2 and Loop(q1) fl Loop(q2) ”= ÿ : Lq2 ™ Lq1 (P)

accepts an aperiodic language.

Lemma 3.1.7. If AL has the left-synchronized containment property or right-synchronized
containment property, then L is aperiodic.

Proof. Let AL satisfy the left- or right-synchronized containment property. We show
that L satisfies Property (P), restated here for convenience.

Lq2 ™ Lq1 for all q1, q2 œ QL such that q1 q2 and Loop(q1) fl Loop(q2) ”= ÿ (P)

This proves the lemma since all languages satisfying Property (P) are aperiodic, see
Lemma 3.1.6. Let q1, q2 œ QL and w satisfy q1 q2 and w œ Loop(q1) fl Loop(q2). By
Corollary 3.1.5 we then have that wN Lq2 ™ Lq1 . Since w œ Loop(q1), we have that
”(q1, wN) = q1, which in turn implies that Lq2 ™ Lq1 .

Lemma 3.1.8. If L is closed under left- or right-synchronized power abbreviations, then
L is aperiodic.

Proof. Let L be closed under left- or right-synchronized power abbreviations and n œ N be
as in Definition 3.1.3. We show that AL = (QL, �, iL, FL, ”L) satisfies the Property (P).
The aperiodicity then follows from Lemma 3.1.6.

Let q1, q2 œ QL and w satisfy q1 q2 and w œ Loop(q1) fl Loop(q2). Let w¸, wm œ �ú

be such that q1 = ”L(iL, w¸) and q2 = ”L(q1, wm). Let wr œ Lq2 . Then, w¸wúwmwúwr ™

L by construction. Especially, w¸wnwmwnwr œ L and, by Definition 3.1.3, also
w¸wnwnwr œ L. Since ”L(iL, w¸wnwn) = q1, this means that wr œ Lq1 . Therefore,
Lq2 ™ Lq1 .

Next, we show that all conditions defined in Definitions 3.1.1 and 3.1.3 are equivalent
for DFAs.

Theorem 3.1.9. For a regular language L with minimal DFA AL, the following are
equivalent:

(1) AL satisfies the left-synchronized containment property.

(2) AL satisfies the right-synchronized containment property.

(3) L is closed under left-synchronized power abbreviations.

(4) L is closed under right-synchronized power abbreviations.

Proof. Let AL = (QL, �, iL, FL, ”L) and N = |QL|. (1) ∆ (3): Let AL satisfy the
left-synchronized containment property. We will show that if there exists a word
w¸wi

1wmwi
2wr œ L with i = N + N2 and w1 and w2 starting with the same letter, then

w¸wi
1wi

2wr œ L. To this end, let w¸wi
1wmwi

2wr œ L. Due to the pumping lemma, there are

25

Chapter 3 A Trichotomy for Regular Trail Queries

states q1, q2 and integers h, j, k, ¸, m, n Æ N with j, m Ø 1 satisfying: q1 = ”(iL, w¸wh
1),

q1 = ”(q1, wj
1), q2 = ”(q1, wk

1 wmw¸
2), q2 = ”(q2, wm

2), and wn
2 wr œ Lq2 . This implies that

w¸w
h
1 (wj

1)úwk
1 wmw¸

2(wm
2)úwn

2 wr ™ L .

Since AL satisfies the left-synchronized containment property and by Corollary 3.1.5, we
have (wm

2)N Lq2 ™ Lq1 and therefore

w¸w
h
1 (wj

1)ú(wm
2)N wn

2 wr ™ L .

Now we use that L is aperiodic, see Lemma 3.1.7:

w¸w
h
1 (wj

1)N (w1)ú(wm
2)N (w2)úwn

2 wr ™ L

And finally, we use that i = N + N2 and h, j, m, n Æ N to obtain w¸(w1)i(w2)iwr œ L.
(3) ∆ (4): Let L be closed under left-synchronized power abbreviations and let j œ N

be the maximum of |AL| and n+1, where the n is from Definition 3.1.3. We will show that
if w¸(w1a)jwm(w2a)jwr œ L, then w¸(w1a)j(w2a)jwr œ L. If w¸(w1a)jwm(w2a)jwr œ L,
then we also have w¸(w1a)jwm(w2a)j+1wr œ L since L is aperiodic, see Lemma 3.1.8,
and j Ø |AL|. This can be rewritten as

w¸w1(aw1)j≠1awmw2(aw2)j≠1(aw2awr) œ L .

As L is closed under left-synchronized power abbreviations, and n < j, this implies

w¸w1(aw1)j≠1(aw2)j≠1(aw2awr) œ L .

This can be rewritten into w¸(w1a)j(w2a)jwr œ L.
(4) ∆ (2): Let L be closed under right-synchronized power abbreviations. We will

prove that AL satisfies the right-synchronized containment property, that is, if there are
two states q1, q2 in AL with q1 q2 and w1 œ Loop(q1), w2 œ Loop(q2), such that w1
and w2 end with the same letter, then (w2a)N Lq2 ™ Lq1 . Let q1, q2 be such states. Then
there exist w¸, wm with q1 = ”L(iL, w¸) and q2 = ”L(q1, wm). If Lq2 = ÿ, we are done. So
let us assume there is a word wr œ Lq2 . We define wÕ

r = wN
2 wr. Due to construction, we

have w¸wú
1wmwú

2wÕ
r ™ L. Since L is closed under right-synchronized power abbreviations,

there is an i œ N such that w¸wi
1wi

2wÕ
r œ L. Since we have a deterministic automaton

and q1 = ”L(iL, w¸wi
1) this implies that wi

2wÕ
r = wi

2wN
2 wr œ Lq1 . We now use that L is

aperiodic due to Lemma 3.1.8 to infer that wN
2 wr œ Lq1 .

(2) ∆ (1): We will show that if there exist states q1, q2 œ QL and words w1, w2 œ �ú

with aw1 œ Loop(q1) and aw2 œ Loop(q2) and q1 q2, then (aw2)N Lq2 ™ Lq1 . Let q1, q2
be such states and w1, w2 as above. We define qÕ

1 = ”L(qÕ
1, w1) and qÕ

2 = ”L(qÕ
2, w2). Since

AL is deterministic, the construction implies that w1a œ Loop(qÕ
1) and w2a œ Loop(qÕ

2).
Furthermore, it holds that (i) LqÕ

1
= a≠1Lq1 and (ii) w2Lq2 ™ LqÕ

2
. With this we will

show that (w2a)N LqÕ
2

™ LqÕ
1

implies (aw2)N Lq2 ™ Lq1 . Let (w2a)N LqÕ
2

™ LqÕ
1
. Adding

an a left hand, yields (aw2)N aLqÕ
2

™ aLqÕ
1

™ Lq1 because of (i). We use (ii) to replace
LqÕ

2
to get: (aw2)N+1Lq2 ™ Lq1 . Since L is aperiodic, see Lemma 3.1.7, this is equivalent

to (aw2)N Lq2 ™ Lq1 .

26

3.2 A Syntactic Characterization of Ttract

Corollary 3.1.10. If a regular language L satisfies Definition 3.1.3 and N = |AL| then,
for all i > N2 + N and for all words w¸, wm, wr œ �ú and all words w1 = awÕ

1 and
w2 = awÕ

2 (respectively, w1 = wÕ
1a and w2 = wÕ

2a) we have that w¸wi
1wmwi

2wr œ L
implies w¸wi

1wi
2wr œ L.

Proof. This immediately follows from the proof of (1) ∆ (3).

In Theorem 3.4.1 we will show that, if NL ”= NP, the languages L that satisfy the above
properties are precisely those for which Trail(L) is tractable. To simplify terminology, we
will henceforth refer to this class as Ttract.

Definition 3.1.11. A regular language L belongs to Ttract if L satisfies one of the
equivalent conditions in Theorem 3.1.9.

For example, (ab)ú and (abc)ú are in Ttract, whereas aúbaú, (aa)ú and (aba)ú are not.
The following property immediately follows from the definition of Ttract.

Observation 3.1.12. Every regular expression for which each alphabet symbol under a
Kleene star occurs at most once in the expression defines a language in Ttract.

A special case of these expressions are those in which every alphabet symbol occurs
at most once. These are known as single-occurrence regular expressions (SORE) [41].
SOREs were studied in the context of learning schema languages for XML [41], since
they occur very often in practical schema languages.

3.2 A Syntactic Characterization of Ttract

As we have seen before, regular expressions in which every symbol occurs at most once
define languages in Ttract. We will define a similar notion on automata.

Definition 3.2.1. A component C of some NFA A is called memoryless, if for each
symbol a œ �, there is at most one state q in C, such that there is a transition (p, a, q)
with p in C.

In this section, we will prove the following theorem which provides (in a non-trivial proof
that requires several steps) a syntactic condition for languages in Ttract. The syntactic
condition is item (4) of the theorem, which we define after its statement. Condition (5)
emposes an additional restriction on condition (4).

Theorem 3.2.2. For a regular language L, the following properties are equivalent:

(1) L œ Ttract

(2) There exists an NFA A for L that satisfies the left-synchronized containment property.

(3) There exists an NFA A for L that satisfies the left-synchronized containment property
and only has memoryless components.

27

Chapter 3 A Trichotomy for Regular Trail Queries

(4) There exists a detainment automaton for L with consistent jumps.

(5) There exists a detainment automaton for L with consistent jumps and only memoryless
components.

To define detainment automata, we use finite automata with counters or CNFAs
from Gelade et al. [103], which we slightly adapt to make the construction easier. For
convenience, we first recall the definition of counter NFAs from Gelade et al. [103]. We
introduce a minor di�erence, namely that counters count down instead of up, since
this makes our construction easier to describe. Furthermore, since our construction
only requires a single counter, zero tests, and setting the counter to a certain value, we
immediately simplify the definition to take this into account.

Let c be a counter variable, taking values in N. A guard on c is a statement “ of the
form true or c = 0. We denote by c |= “ that c satisfies the guard “. In the case where
“ is true, this is trivially fulfilled and, in the case where “ is c = 0, this is fulfilled if c
equals 0. By G we denote the set of guards on c. An update on c is a statement of the
form c := c ≠ 1, c := c, or c := k for some constant k œ N. By U we denote the set of
updates on c.

Definition 3.2.3. A non-deterministic counter automaton (CNFA) with a single counter
is a 6-tuple A = (Q, I, c, ”, F, ·) where Q is the finite set of states; I ™ Q is a set of initial
states; c is a counter variable; ” ™ Q ◊ � ◊ G ◊ Q ◊ U is the transition relation; and
F ™ Q is the set of accepting states. Furthermore, · œ N is a constant such that every
update is of the form c := k with k Æ · .

Intuitively, A can make a transition (q, a, “; qÕ, fi) whenever it is in state q, reads a, and
c |= “, that is, guard “ is true under the current value of c. It then updates c according to
the update fi, in a way we explain next, and moves into state qÕ. To explain the update
mechanism formally, we introduce the notion of configuration. A configuration is a pair
(q, ¸) where q œ Q is the current state and ¸ œ N is the value of c. Finally, an update fi
defines a function fi : N æ N as follows. If fi = (c := k) then fi(¸) = k for every ¸ œ N.
If fi = (c := c ≠ 1) then fi(¸) = max(¸ ≠ 1, 0). Otherwise, that is, if fi = (c := c), then
fi(¸) = ¸. So, counters never become negative.

An initial configuration is (q0, 0) with q0 œ I. A configuration (q, ¸) is accepting if q œ F
and ¸ = 0. A configuration –Õ = (qÕ, ¸Õ) immediately follows a configuration – = (q, ¸)
by reading a œ �, denoted – æa –Õ, if there exists (q, a, “; qÕ, fi) œ ” with c |= “ and
¸Õ = fi(¸).

For a word w = a1 · · · an and two configurations – and –Õ, we denote by – ∆w –Õ that
– æa1 · · · æan –Õ. A configuration – is reachable if there exists a word w such that
–0 ∆w – for some initial configuration –0. A word w is accepted by A if –0 ∆w –f

where –0 is an initial configuration and –f is an accepting configuration. We denote by
L(A) the set of words accepted by A. It is easy to see that CNFA accept precisely the
regular languages. (Due to the value · , counters are always bounded by a constant.)

We are now ready to define detainment automata. Let A be a CNFA with one
counter c. Initially, the counter has value 0. The automaton has transitions of the form

28

3.2 A Syntactic Characterization of Ttract

C1 C2

p1

q1

p2

q2a a ∆

C1 C2

p1

q1

p2

q2a a
a

Figure 3.1: Consistent jump property (simplified, that is, without preconditions, counter
and update) used in Theorem 3.3.3. C1 and C2 are components (not neces-
sarily di�erent) such that C2 is reachable from C1.

(q1, a, P ; q2, U) where P is a precondition on c and U an update operation on c. For
instance, the transition (q1, a, c = 5; q2, c := c ≠ 1) means: if A is in state q1, reads a,
and the value of c is five, then it can move to q2 and decrease c by one. If we decrease
a counter with value zero, its value remains zero. We denote the precondition that is
always fulfilled by true.

We say that A is a detainment automaton if, for every component C of A:

• every transition inside C is of the form (q1, a, true; q2, c := c ≠ 1);

• every transition that leaves C is of the form (q1, a, c = 0; q2, c := k) for some k œ N;1

Intuitively, if a detainment automaton enters a non-trivial component C, then it must
stay there for at least some number of steps, depending on the value of the counter c.
The counter c is decreased for every transition inside C and the automaton can only
leave C once c = 0. We say that A has the consistent jump property if, for every pair of
components C1 and C2, if C1 C2 and there are transitions (pi, a, true; qi, c := c ≠ 1)
inside Ci for all i œ {1, 2}, then there is also a transition (p1, a, P ; q2, U) for some
P œ {true, c = 0} and some update U .2 We note that C1 and C2 may be the same
component. The consistent jump property is the syntactical counterpart of the left-
synchronized containment property. The memoryless condition carries over naturally to
CNFAs, ignoring the counter.

The next lemmas characterize the internal language of a component and are needed to
show the “memoryless” in Theorem 3.2.2.

Lemma 3.2.4. Let L œ Ttract, a œ �, C be a component of AL, and q1, q2 œ C. If there
exist w1a œ Loop(q1) and w2a œ Loop(q2), then, for all ‡ œ �, we have that ”L(q1, ‡) œ C
if and only if ”L(q2, ‡) œ C.

Proof. Let q1 ”= q2 be two states in C. Let ‡ satisfy ”L(q1, ‡) œ C and let w œ

Loop(q1) fl ‡�úa. Such a w exists since ”L(q1, ‡) œ C and ”L(q1, w1a) = q1. Let
q3 = ”L(q2, wN). We will prove that q1 = q3, which implies that ”L(q2, ‡) œ C. As L
is aperiodic, w œ Loop(q3). Consequently, there is an n œ N such that wnLq3 ™ Lq1 by
Definition 3.1.1. Since w œ Loop(q1), this also implies Lq3 ™ Lq1 . Furthermore, q2 has

1
If q2 is a trivial component, then k should be 0 for the transition to be useful.

2
The values of P and U depend on whether C1 is the same as C2 or not.

29

Chapter 3 A Trichotomy for Regular Trail Queries

a loop ending with a and AL satisfies the right-synchronized containment property, so
wN Lq1 ™ Lq2 by Corollary 3.1.5. Hence, Lq1 ™ (wN)≠1Lq2 and, by definition of q3, we
have (wN)≠1Lq2 = Lq3 . So we showed Lq3 ™ Lq1 and Lq1 ™ Lq3 which, by minimality of
AL, implies q1 = q3.

The following is a direct consequence thereof.

Corollary 3.2.5. Let L œ Ttract, a œ �, C be a component of AL, and q1, q2 œ C.
If there exist w1a œ Loop(q1) and w2a œ Loop(q2), then ”L(q1, w) œ C if and only if
”L(q2, w) œ C for all words w œ �ú.

Lemma 3.2.6. Let AL satisfy the left-synchronized containment property. If states q1
and q2 belong to the same component of AL and Loop(q1) fl Loop(q2) ”= ÿ, then q1 = q2.

Proof. Let q1, q2 be as stated and let w be a word in Loop(q1) fl Loop(q2). According to
Definition 3.1.1, there exists an n œ N such that wnLq2 ™ Lq1 . Since w œ Loop(q1), this
implies that Lq2 ™ Lq1 . By symmetry, we have Lq2 = Lq1 , which implies q1 = q2, since
AL is the minimal DFA.

To this end, we use the following synchronization property for AL.

Lemma 3.2.7. Let L œ Ttract, let C be a component of AL, let q1, q2 œ C, and let w be
a word of length N2. If ”L(q1, w) œ C and ”L(q2, w) œ C, then ”L(q1, w) = ”L(q2, w).

Proof. Assume that w = a1 · · · aN2 . For each i from 0 to N2 and – œ {1, 2}, let
q–,i = ”L(q–, a1 · · · ai). Since there are at most N2 distinct pairs (q1,i, q2,i), there exist
i, j with 0 Æ i < j Æ N2 such that q1,i = q1,j and q2,i = q2,j . Since ”L(q1, w) œ C and
”L(q2, w) œ C, q1,i, q2,i œ C. Let wÕ = ai+1 · · · aj . We have wÕ

œ Loop(q1,i) fl Loop(q2,i),
hence q1,i = q2,i by Lemma 3.2.6. As a consequence, ”L(q1, w) = ”L(q2, w).

Furthermore, we show that every language in Ttract satisfies an inclusion property which
is stronger than indicated by Definition 3.1.1. That is, we show that it is not necessary
to repeat some word w2 multiple times. Instead, we show that any word w that stays
in a component, given that w is long enough and starts with a suitable symbol, already
implies an inclusion property.

Lemma 3.2.8. Let L œ Ttract and let q1, q2 be two states such that q1 q2 and
Loop(q1) fl a�ú

”= ÿ. Let C be the component of AL that contains q2. Then,

Lq2 fl La
q2�ú

™ Lq1

where La
q2 is the set of words w of length N2 that start with a and such that ”L(q2, w) œ C.

Proof. If Loop(q2) = ÿ, then Lq2 fl La
q2�ú = ÿ and the inclusion trivially holds. Therefore

we assume from now on that Loop(q2) ”= ÿ. Since the proof of this lemma requires
a number of di�erent states and words, we provide a sketch in Figure 3.2. Let w œ

Lq2 fl La
q2�ú, u be the prefix of w of length N2 and wÕ be the su�x of w such that

30

3.2 A Syntactic Characterization of Ttract

q1· · ·

q2

q3q qÕ

a..

a..

u≠1
1 (uv)N

u1

u≠1
1 uvu2

u1
u2

u

v

wÕ

Figure 3.2: Sketch of the proof of Lemma 3.2.8

w = uwÕ. Since q2 and ”L(q2, u) are both in the same component C, there exists a word
v with uv œ Loop(q2). Corollary 3.1.5 implies that

(uv)N Lq2 ™ Lq1 . (3.1)

Let q3 = ”L(q1, (uv)N). Due to aperiodicity we have uv œ Loop(q3). Since AL is
deterministic, this implies Lq3 = ((uv)N)≠1Lq1 and, together with Equation (3.1) that

Lq2 ™ Lq3 . (3.2)

We now show that there is a prefix u1 of u such that ”L(q1, u1) = q and ”L(q3, u1) = qÕ

with Loop(q) fl Loop(qÕ) ”= ÿ. Assume that u = a1 · · · aN2 . Let q–,0 = q– and, for each
i from 1 to N2 and – œ {1, 3}, let q–,i = ”L(q–, a1 · · · ai). Since there are at most N2

distinct pairs (q1,i, q3,i), there exist i, j with 0 Æ i < j Æ N2 such that q1,i = q1,j and
q3,i = q3,j . Let u1 = a1 · · · ai and u2 = ai+1 · · · aj . We have u2 œ Loop(q1,i) fl Loop(q3,i).
We define q := ”L(q1, u1) and qÕ = ”L(q3, u1). Since q qÕ and u2 œ Loop(q) fl Loop(qÕ),
Corollary 3.1.5 implies uN

2 LqÕ ™ Lq. Since u2 œ Loop(q), we also have that

LqÕ ™ Lq . (3.3)

By definition of q and the determinism of AL, we have that Lq = u≠1
1 Lq1 . Thus,

Equation (3.3) implies LqÕ ™ u≠1
1 Lq1 . The definition of qÕ implies that LqÕ = u≠1

1 Lq3 , so
u≠1

1 Lq3 ™ u≠1
1 Lq1 . In other words, we have Lq3 fl u1�ú

™ Lq1 fl u1�ú. Since u1 is a prefix
of u, and by Equation (3.2), we also have Lq2 fl u�ú

™ Lq1 . This implies that w œ Lq1 ,
which concludes the proof.

The following lemma is the implication (1) ∆ (5) from Theorem 3.2.2

Lemma 3.2.9. If L œ Ttract, then there exists a detainment automaton for L with
consistent jumps and only memoryless components.

Proof. Let AL = (QL, �, iL, FL, ”L) be the minimal DFA for L. The proof goes as follows:
First, we define a CNFA A with two counters. Second, we show that we can convert A
to an equivalent CNFA AÕ with only one counter that is a detainment automaton with
consistent jumps and only memoryless components. This conversion is done by simulating

31

Chapter 3 A Trichotomy for Regular Trail Queries

one of the counters using a bigger set of states. Last, we show that L(A) = L(AL), which
shows the lemma statement as L(A) = L(AÕ).

Before we start we need some additional notation. For a number k œ N, we abbreviate
{0, . . . , k} with [0, k]. We write p1 ya q2 to denote that C(p1) C(q2) and there are
states q1 œ C(p1) and p2 œ C(q2) such that (pi, a, qi) œ ”L for i œ {1, 2}. Let q be a
state, then we write ��(q) to denote the set of symbols a, such that there is a word
w = awÕ

œ Loop(q).
Let ≥ ™ QL ◊ QL be the smallest equivalence relation over QL that satisfies p ≥ q if

C(p) = C(q) and ��(p) fl ��(q) ”= ÿ. For q œ QL, we denote by [q] the equivalence class
of q. By [QL] we denote the set of all equivalence classes. We also write [C] to denote the
equivalence classes that only use states from some component C. We extend the notion
C(q) to [QL], that is, C([q]) = C(q) for all q œ QL.

We will use the following observation that easily follows from Lemma 3.2.4 using the
definition of ≥.

Observation 3.2.10. Let q1, q2 be states with [q1] = [q2], then for all a œ � it holds that
”L(q1, a) œ C(q1) if and only if ”L(q2, a) œ C(q1).

We define a CNFA A = (Q, I, c, d, ”, F, N2) that has two counters c and d. The counter
c is allowed to have any initial value from [0, N2], while the counter d has initial value 0.
We note that we will eliminate counter c when converting to a one counter automaton,
thus this is not a contradiction to the definition of CNFA with one counter that we use.

We use QÕ = QL fi [QL], that is, we can use the states from AL and the equivalence
classes of the equivalence relation ≥. The latter will be used to ensure that components
are memoryless, while the former will only be used in trivial components. We use
I = {iL, [iL]} and F = FL.

”1
� = {(q1, a, {c > 0, d = 0}; q2, {c := c ≠ 1}) | (q1, a, q2) œ ”L, C(q1) = C(q2)}

”2
� = {([q1], a, {c = N2

}; [q2], {d := d ≠ 1}) | (q1, a, q2) œ ”L, C(q1) = C(q2)}
”3
� = {([q1], a, {c = N2, d = 0}; q2, {c := c ≠ 1}) | (q1, a, q2) œ ”L, C(q1) = C(q2)}

”1
æ = {(q1, a, {c = 0, d = 0}; q2, {c := i}) | (q1, a, q2) œ ”L, C(q1) ”= C(q2), i œ [0, N2

≠ 1]}
”2

æ = {(q1, a, {c = 0, d = 0}; [q2], {c := N2
}) | (q1, a, q2) œ ”L, C(q1) ”= C(q2)}

”y = {([q1], a, {c = N2, d = 0}; [q2], {d := N2
}) | q1 ya q2, C(q1) ”= C(q2)}

” = ”1
� fi ”2

� fi ”3
� fi ”1

æ fi ”2
æ fi ”y

We say that a component C of AL is a long run component of a given word w = a1 · · · an,
if |{i | ”(iL, a1 · · · ai) œ C}| > N2, that is, if the run stays in C for more than N2 symbols.
All other components are short run components.

For short run components, we use states from QL. We use the counter c to enforce
that these parts are indeed short. For long run components, we first use states in [QL].
Only the last N2 symbols in the component are read using states from QL. The left-
synchronized containment property guarantees that for long run components the precise
state is not important, which allows us to make these components memoryless.

32

3.2 A Syntactic Characterization of Ttract

The transition relation is divided into transitions between states from the same
component of AL (indicated by ”� = ”1

� fi ”2
� fi ”3

�) and transitions between di�erent
components (indicated by ”æ = ”1

æ fi ”2
æ). Transitions in ”y are added to satisfy the

consistent jumps property. They are the only transitions that increase the counter d.
This is necessary, as the left-synchronized containment property only talks about the
language of the state reached after staying in the component for some number of symbols.
If we added the transitions in ”y without using the counter, we would possibly add
additional words to the language. This concludes the definition of A.

We now argue that the automaton AÕ = (QÕ
◊ [0, N2], iL, d, ”Õ, F ◊ {0}, N2) derived

from A by pushing the counter c into the states is a detainment automaton with consistent
jumps that only has memoryless components. The states of AÕ have two components,
first the state of A and second the value of the second counter that is bounded by N2.
We do not formally define ”Õ. It is derived from ” in the obvious way, that is, by doing the
precondition checks that depend on c on the second component of the state. Similarly,
updates of c are done on the second component of the states.

It is straightforward to see that AÕ is a detainment automaton with consistent jumps
that only has memoryless components using the following observations:

• Every transition in A that does not have c = N2 before and after the transition
requires d = 0.

• Let Cuts be the set of components of A, then the set of components of AÕ is
{[C] ◊ {N2

} | C œ Cuts}.

The consistent jumps are guaranteed by the transitions in ”y. As AÕ only has memoryless
components, the consistent jump property is trivially satisfied for states inside the same
component.

We now show that L(AL) ™ L(A). Let w = a1 · · · an be some word in L(AL) and
q0 æ · · · æ qn be the run of AL on w. countdown : N æ N that gives us how long we
stay inside some component as countdown : i ‘æ j ≠ i, where j is the largest number such
that C(qj) = C(qi).

It is easy to see by the definitions of the transitions in ”æ and ”�, that the run
!
p0, min(N2, countdown(0)), 0

"
æ · · · æ

!
pn, min(N2, countdown(n)), 0

"

is an accepting run of A, where pi is qi if ci < N2 and [qi] otherwise. We note that the
counter d is always zero, as we do not use any transitions from ”y. The transitions in
”y are only there to satisfy the consistent jumps property. This shows L(AL) ™ L(A).

Towards the lemma statement, it remains to show that L(A) ™ L(AL). Let therefore
w = a1 · · · an be some word in L(A), (p0, c0, d0) æ · · · æ (pn, cn, dn) be an accepting run
of A, and q0 æ · · · æ qn be the unique run of AL on w.

We now show by induction on i that there are states q̂1, . . . , q̂n in QL such that the
following claim is satisfied. The claim easily yields that qn œ FL, as both counters have

33

Chapter 3 A Trichotomy for Regular Trail Queries

to be zero for the word to be accepted.

Lq̂i fl ai+1 · · · ai+di�ú
™ Lqi and q̂i œ

Y
_]

_[

{pi} if ci = di = 0
[pi] if ci + di > 0 and pi œ QL

pi if ci + di > 0 and pi œ [QL]

The base case i = 0 is trivial by the definition of I. We now assume that the
induction hypothesis holds for i and are going to show that it holds for i + 1. Let
fl = (pi≠1, ai, P ; pi, U) be the transition used to read ai. We distinguish several cases
depending on fl.

Case fl œ ”æ: In this case, ci = 0 by the definition of ”æ. Therefore, the claim for i + 1
follows with q̂i+1 = pi+1, as q̂i = pi by the induction hypothesis and (pi, a, pi+1) œ ”L by
the definition of ”æ.

Case fl œ ”2
�: We note that pi, pi+1 œ [QL]. The claim for i + 1 follows with q̂i+1 =

”(q̂i, ai+1) using C(qÕ) = C(”(qÕ, ai+1) for all qÕ
œ [pi] (by Observation 3.2.10), C(pi) =

C(pi+1) (by definition of ”�), and q̂i œ pi (by the induction hypothesis).

Case fl œ ”3
�: We want to show that Lpi+N2 ™ LqN2 establishing the claim directly

for the position i + N2 using q̂i+N2 = pi+N2 . Therefore, we first want to apply
Lemma 3.2.7 to show that ”(q̂i, ai+1 · · · ai+N2) = pi+N2 . The preconditions of the
lemma require us to show that (i) C(q̂i) = C(pi), (ii) C(pi) = C(pi+N2), and (iii)
C(q̂i) = C(”L(q̂i, ai+1 · · · ai+N2)). Precondition (i) is given by the induction hypothesis,
precondition (ii) is by the definition of ”�, that is, that all transitions in ”� are inside
the same component of AL, and precondition (iii) is by the fact that each transition in
”� has a corresponding transition in ”L that stays in the same component. Therefore,
we can actually apply Lemma 3.2.7 to conclude that ”(q̂i, ai+1 · · · ai+N2) = pi+N2 . As
we furthermore have that Lq̂i fl ai+1 · · · ai+di�ú

™ Lqi by the induction hypotheses,
we can conclude that Lpi+N2 ™ LqN2 . This establishes the claim for position i + N2

using q̂i+N2 = pi+N2 . As we only need the claim for position n (and not for all smaller
positions), we can continue the induction at position i + N2. Especially there is no need
to look at the case where fl œ ”1

�.

Case fl œ ”y: By the definition of ”y, we have that pi, pi+1 œ [QL]. Furthermore,
there are transitions (pi, ai+1, pÕ) and (pÕÕ, ai+1, pi+1) in ”L such that C(pÕ) = C(pi),
C(pÕÕ) = C(pi+1), and pÕ pÕÕ. This (and the fact that q̂i œ pi by the induction
hypothesis) allows us to apply Observation 3.2.10 , which yields ”(q̂i, ai+1) œ C(pi). From
pÕ pÕÕ and q̂i œ C(pÕ) we can conclude that q̂i pÕÕ. We now can apply Lemma 3.2.8
that gives us LpÕÕ fl Lai+1

pÕÕ �ú
™ Lq̂i .

Now we argue that the subword ai+2 · · · ai+N2+1 is in Lai+1
pÕÕ . By the definition of ”y,

we have di+1 = N2, enforcing that the next N2 transitions are all from ”2
�, as these are

the only transitions that allow d > 0 in the precondition. Applying Observation 3.2.10 N2

times yields that ”(pÕÕ, ai+2 · · · ai+N2+1) œ C(pÕÕ) and therefore ai+2 · · · ai+N2+1 œ Lai+1
pÕÕ .

Using this and LpÕÕ fl Lai+1
pÕÕ �ú

™ Lq̂i , we get that L”(pÕÕ,ai+1) fl ai+2 · · · ai+N2+1�ú
™

L”(q̂i,ai+1) yielding the claim for i + 1. This concludes the proof of the lemma.

34

3.2 A Syntactic Characterization of Ttract

Proof sketch of Theorem 3.2.2. The implications (3) ∆ (2) and (5) ∆ (4) are trivial.
We sketch the proofs of (1) ∆ (5) ∆ (3) and (4) ∆ (2) ∆ (1) below, establishing the
theorem.

(1) ∆ (5) uses a very technical construction that essentially exploits that—if the
automaton stays in the same component for a long time—the reached state only depends
on the last N2 symbols read in the component. This is formalized in Lemma 3.2.7 and
allows us to merge any pair of two states p, q which contradict that some component is
memoryless. To preserve the language, words that stay in some component C for less
than N2 symbols have to be dealt with separately, essentially avoiding the component
altogether. Finally, the left-synchronized containment property allows us to simply
add transitions required to satisfy the consistent jumps property without changing the
language.

(5) ∆ (3) and (4) ∆ (2): We convert a given CNFA to an NFA by simulating the
counter (which is bounded) in the set of states. The consistent jump property implies
the left-synchronized containment property on the resulting NFA. The property that all
components are memoryless is preserved by the construction.

(2) ∆ (1): One can show that the left-synchronized containment property is invariant
under the powerset construction.

Proof of Theorem 3.2.2. We show (1) ∆ (5) ∆ (3) ∆ (2) ∆ (1) and (5) ∆ (4) ∆ (2).
(1) ∆ (5): Holds by Lemma 3.2.9.

(5) ∆ (3) and (4) ∆ (2): Let A = (Q, I, c, ”, F, ¸) be a detainment automaton with
consistent jumps. We compute an equivalent NFA AÕ = (Q◊{0, . . . , ¸}, ”Õ, I◊{0}, F ◊{0})
in the obvious way, that is, ((p, i), a, (q, j)) œ ”Õ if and only if A can go from configuration
(p, i) to configuration (q, j) reading symbol a. By the definition of detainment automata,
we get that the components of AÕ are

{ C ◊ {0} | C is a component of A }

This directly shows that AÕ only has memoryless components if A only has memoryless
components.

To prove the left-synchronizing containment property, we choose n = ¸. Let now
(q1, c1), (q2, c2) œ Q ◊ {0, . . . , ¸}, a œ �, and wÕ

1, wÕ
2 œ �ú be such that (q1, c1) (q2, c2),

w1 = awÕ
1 œ Loop((q1, c1)), and w2 = awÕ

2 œ Loop((q2, c2)). We have to show that

wn
2 L(q2,c2) ™ L(q1,c1) . (3.4)

We distinguish two cases. If q1 and q2 are in the same component, we know that there is
a transition (q1, a, true; q3; c := c ≠ 1) œ ”, as A has consistent jumps. Therefore, there is
a transition ((q1, 0), a, (q2, 0)) œ ”Õ, which directly yields (3.4).

If q1 and q2 are in di�erent components, then there is a transition (q1, a, c = 0; q3; c :=
k) œ ”, as A has consistent jumps. Therefore, there is a transition ((q1, 0), a, (q2, k)) œ ”Õ

for some k œ [0, ¸]. We have w2 œ Loop(q2). The definition of detainment automata
requires that every transition inside a component—thus every transition used to read

35

Chapter 3 A Trichotomy for Regular Trail Queries

w2 using the loop—is of the form (p, a, true; q, c := c ≠ 1), that is, it does not have
a precondition and it decreases the counter by one. Therefore in AÕ, we have that
”Õ((q2, k), w¸) ´ ”((q2, 0), w¸). This concludes the proof of (5) ∆ (3) and (4) ∆ (2)

(5) ∆ (4) and (3) ∆ (2): Trivial.

(2) ∆ (1): Let A = (Q, �, ”, I, F) be an NFA satisfying the left-synchronized contain-
ment property and AL be the minimal DFA equivalent to A. We show that AL satisfies
the left-synchronized containment property establishing (1).

Let M be the left synchronizing-length of A and q1, q2 œ QL be states of AL such that

• q1 q2; and

• there are words w1 œ Loop(q1) and w2 œ Loop(q2) that start with the same symbol
a.

We need to show that there exists an n œ N with wn
2 Lq2 ™ Lq1 . Let w be a word such

that ”(q1, w) = q2. Let P1 ™ Q be a state of the powerset automaton of A with LP1 = Lq1

and let P2 = ”(P1, wwú
2) be the state in the powerset automaton of A that consists of all

states reachable from P1 reading some word from wwú
2 .

It holds that LP2 = Lq2 , as ”(q1, wwú
2) = q2 and Lq1 = LP1 .

We define

P Õ
2 = { p œ P2 | wi

2 œ Loop(p) for some i > 0 }

P ÕÕ
2 = ”(P1, w|A|

2)

We obviously have P ÕÕ
2 ™ P Õ

2 ™ P2. Furthermore, we have

LP2 = Lq2 = L
”(q2,w|A|

2) = LP ÕÕ
2

The second equation is by ”(q2, w|A|
2) = q2. We can conclude that Lq2 = LP Õ

2
.

Let fl : Q æ Q be a function that selects for every state p2 œ P Õ
2 a state p1 œ P1 such

that p1 p2. By definition of P Õ
2, such states exist. Using the fact that A satisfies the

left-synchronized containment property, we get that wM
2 Lp2 ™ Lfl(p2) for each p2 œ P2.

We can conclude

wM
2 Lq2 = wM

2 LP Õ
2

=
€

p2œP Õ
2

wM
2 Lp2 ™

€

p2œP Õ
2

Lfl(p2) ™ LP1 = Lq1

and therefore w|A|+M
2 Lq2 ™ Lq1 . So AL satisfies the left-synchronized containment

property with n = M , where M is the left synchronizing-length of A. This concludes the
proof for (2) ∆ (1) and thus the proof of the theorem.

36

3.3 Comparison of Ttract to Other Classes

aperiodic languages (= FO[<]) (acúbcú)ú

DC
SPtract

a

aúbcú

Ttract

(ab)ú

FO
2[<]

aúbaú

FO
2[<, +]

aúbaú(cd)ú

Figure 3.3: Expressiveness of subclasses of the aperiodic languages

3.3 Comparison of Ttract to Other Classes

From Definition 2.5.4 it is easy to see that every language in SPtract is also in Ttract, since
our definition imposes an extra “synchronizing” condition on w1 and w2, namely that
they share the same first (or last) symbol (Definition 3.1.3).

We now fully classify the expressiveness of Ttract and SPtract compared to yardsticks as
DC, FO[<], FO

2[<], and FO
2[<, +] (see also Figure 3.3). Some of these classes are used

throughout the work and defined in Section 2.5. Here, FO
2[<] and FO

2[<, +] are the
two-variable restrictions of FO[<] and FO[<, +] over words, respectively. By FO[<, +]
we mean the first-order logic with unary predicates Pa for all a œ � (denoting positions
carrying the letter a) and the binary predicates +1 and < (denoting the successor
relation and the order relation among positions). FO[<] is FO[<, +] without the binary
predicate +1.

While some of the following proofs are relatively easy: for example, every downward
closed (DC) language is in Ttract, since Ttract relaxed the containment property, others
need some algebraic techniques. We refer the reader to the book [177] for a general
overview of syntactic semigroups and the di�erent hierarchies. We will need the following
notation. The syntactic preorder of a language L of �ú is the relation ÆL defined on �ú

by x ÆL y if and only if for all u, v œ �ú we have uxv œ L ∆ uyv œ L. The syntactic
congruence of L is the associated equivalence relation ≥L defined by x ≥L y if and only
if x ÆL y and y ÆL x. The quotient �+/ ≥L (�ú/ ≥L) is called the syntactic semigroup
(monoid) of L. A word e œ �ú is idempotent if e2 = e. Given a finite semigroup S, it is
folklore that there is an integer Ê(S) (denoted by Ê when S is understood) such that
for all s œ S, sÊ is idempotent. More precisely, sÊ is the limit of the Cauchy sequence
(sn!)nØ0.

Using this notation, we can give yet another characterization of SPtract and Ttract.

Observation 3.3.1.

(1) A language L is in SPtract if and only if its syntactic semigroup satisfies xÊuyÊ
Æ

xÊyÊ, for all non-empty words x, y.

37

Chapter 3 A Trichotomy for Regular Trail Queries

(2) A language L is in Ttract if and only if its syntactic semigroup satisfies (xy)Êu(xz)Ê
Æ

(xy)Ê(xz)Ê, for every non-empty word x.

Proof. Item (1) follows from Definition 2.5.4 and the observation that if there exists an
i for which Definition 2.5.4 holds, then it also holds for each iÕ

Ø i. This can easily be
seen by choosing wÕ

¸ = w¸w
iÕ≠i
1 and wÕ

r = wiÕ≠i
2 wr. Item (2) follows from Theorem 3.1.9,

Definition 3.1.3 and the paragraph after it.

With this notation we can now prove the next lemma.

Lemma 3.3.2. Ttract ™ FO
2[<, +]

Proof. Let L be a language in Ttract and AL be the minimal DFA of L. We use the
characterization of FO

2[<, +] from Place and Segoufin [179]: A language L is definable
in FO

2[<, +] if and only if the syntactic semigroup of L satisfies

(esete)Ê = (esete)Êt(esete)Ê (‡)

for each e, s, t œ �+ with e being idempotent.
In particular, L is expressible in FO

2[<, +] if the above equivalence holds for all
e, s, t œ �+, that is, dropping the condition that e is an idempotent.

Let L œ Ttract. We show that there exists a nÕ such that for each n Ø nÕ and all words
u, v œ �ú and all e, s, t œ �ú it holds that u(esete)nv = u(esete)nt(esete)nv œ L.

We choose n Ø 2N2. Let q = ”(iL, u(esete)n/2) be the state after reading u(esete)n/2

in AL. By standard pumping arguments, we know that we have read the last copy of
esete inside some nontrivial component C of AL. By Corollary 3.2.5, we can conclude
that ”(q, (esete)n/2) œ C, ”(q, (esete)n/2t) œ C and ”(q, (esete)n/2t(esete)n) œ C. By
Lemma 3.2.7, we can conclude that ”(q, (esete)n/2) = ”(q, (esete)n/2t(esete)n), which
yields (‡).

Theorem 3.3.3.

(a) DC (SPtract ((FO
2[<] fl Ttract)

(b) Ttract (FO
2[<, +]

(c) Ttract and FO
2[<] are incomparable

Since FO
2[<, +] (FO[<], we also have Ttract (FO[<]. Thus, every language in Ttract

is aperiodic.

Proof. We first show (a). As DC is definable by simple regular expressions, we have
for each downward closed language L that w¸wi

1wwi
2wr œ L implies w¸wi

1wi
2wr œ L

for every integer i œ N and all words w¸, w1, w, w2, wr œ �ú. Therefore, L œ SPtract
by Definition 2.5.4. The language {a} is not downward closed, but in SPtract using
Definition 2.5.4 with i = 1.

As SPtract ™ Ttract by definition and aúbcú is a language that is not in SPtract, but in
Ttract and in FO

2[<], it only remains to show SPtract ™ FO
2[<].

38

3.3 Comparison of Ttract to Other Classes

Thérien and Wilke [198] proved that DA=FO
2[<], where DA is defined by the identity

(xyz)Êy(xyz)Ê = (xyz)Ê. Thus we only have to prove that each syntactic semigroup
of a language in SPtract satisfies this identity. Let L œ SPtract. By Observation 3.3.1, it
immediately follows that the syntactic semigroup of L satisfies (xyz)Êy(xyz)Ê

Æ (xyz)Ê.
Thus it remains to show that there exists an nÕ such that for each n Ø nÕ and all
u, v, x, y, z œ �ú it holds that:

u(xyz)ny(xyz)nv œ L if u(xyz)nv œ L.
For this direction, we use that Bagan et al. [20, Theorem 6] give a definition of SPtract

in terms of regular expressions, showing that each component can be represented as
(AØk + Á) for some set A ™ � and k œ N. So if there is xyz œ �ú with u(xyz)M v œ L for
some u, v œ �ú, then we also have u(xyz)M (Alph(xyz))ú(xyz)M v ™ L, where Alph(x)
denotes the set of symbols x uses. Thus we especially have u(xyz)M y(xyz)M v œ L, which
proves the other direction. The same holds for each M Õ

Ø M . This concludes the proof
of (a).

Statement (b) follows from Lemma 3.3.2 and the observation that aúbaú is a language
in FO

2[<, +] but not in Ttract.
It remains to show (c), which simply follows from the facts that the language aúbaú is

in FO
2[<] but not in Ttract whereas the language (ab)ú is in Ttract but not in FO

2[<].

Next, we show where SPtract and Ttract are in the Straubing-Thérien hierarchy [190, 197])
and the dot-depth hierarchy (also known as Brzozowski hierarchy [68]). Both hierarchies
are particular instances of concatenation hierarchies, which means that they can be built
through a uniform construction scheme. Pin [178] summarized numerous results and
conjectures around these hierarchies. We note that Jean-Éric Pin and Luc Segoufin
helped with the proof of Part 3.3.4(b).

Proposition 3.3.4.

(a) SPtract is in V3/2, the 3/2th level of the Straubing-Thérien hierarchy.

(b) Every language L in Ttract fl �+ is in B1, the 1st level of the dot-depth hierarchy.

Proof. We start with (a). Let L œ SPtract. The 3/2th level of the Straubing-Thérien
hierarchy is defined by the profinite inequality xÊ

Æ xÊyxÊ where Alph(x) = Alph(y)
[177, Theorem 8.9]. This means that we have to show that there exists an nÕ such that
for all n Ø nÕ and words w¸, wr it holds: if w¸xnwr in L, then also w¸xnyxnwr in L.
We can easily see that every language in SPtract satisfies this: The components have the
form (AØk + Á) for some set of symbols A by the definition of SPtract in terms of regular
expressions, see [20, Theorem 6]. Therefore, the implication immediately holds for all y
with Alph(y) = Alph(x).

For (b), we first note that B1 is defined over languages of �+, thus excluding Á, see [177,
Proposition 8.17]. We will therefore show that the syntactic semigroup of each language
in Ttract satisfies the Knast identity: (exfye)Êexfte(esfte)Ê = (exfye)Ê(esfte)Ê, where
f, e are non-empty idempotents. The algebraic characterization of Ttract by the profinite
inequality (xy)Ês(xz)Ê

Æ (xy)Ê(xz)Ê (see Observation 3.3.1) implies ese Æ e for each
non-empty idempotent e. So the Æ is obvious.

39

Chapter 3 A Trichotomy for Regular Trail Queries

For the other direction, we show how to rewrite (exfye)Ê(esfte)Ê. In the first step,
we use that for the idempotent f , it holds that f = ff . Then we use the aperiodicity
of languages in Ttract and afterwards the definition of Ttract, namely (xy)Ês(xz)Ê

Æ

(xy)Ê(xz)Ê. Then we again use the aperiodicity of languages in Ttract and the equation
f = ff .

(exfye)Ê(esfte)Ê = (exffye)Ê(esffte)Ê

= ex(fyeexf)Êyees(fteesf)Êfte

Æ ex(fyeexf)Ê(fteesf)Êfte

= (exfye)Êexfte(esfte)Ê

Thus L satisfies the Knast identity and is therefore in B1.

Thus Proposition 3.3.4 implies that every language in SPtract can be described by a
formula in �2[<] and every language in tractable language Ttract by a boolean combination
of formulas in �1[<, +, min, max], see Pin [178, Theorem 4.1].

3.4 The Trichotomy

This section is devoted to the proof of the following theorem.

Theorem 3.4.1. Let L be a regular language.

(1) If L is finite then Trail(L) œ AC0.

(2) If L œ Ttract and L is infinite, then Trail(L) is NL-complete.

(3) If L /œ Ttract, then Trail(L) is NP-complete.

3.4.1 Finite Languages

We now turn to proving Theorem 3.4.1. We start with Theorem 3.4.1(1). Clearly, we can
express every finite language L as a FO-formula. Since we can also test in FO that no
edge e is used more than once, the multigraphs for which Trail(L) holds are FO-definable.
By Immerman [122], this implies that Trail(L) is in AC0.

3.4.2 Languages in Ttract

We now sketch the proof of Theorem 3.4.1(2). We note that we define several concepts
(trail summary, local edge domains, admissible trails) that have a natural counterpart for
simple paths in Bagan et al.’s proof of the trichotomy for simple paths [20]. However, the
underlying proofs of the technical lemmas are quite di�erent. For instance, components
of languages in SPtract behave similarly to Aú for some A ™ �, while components of
languages in Ttract are significantly more complex. Furthermore, the trichotomy for trails
leads to a strictly larger class of tractable languages.

40

3.4 The Trichotomy

Let L be a regular language and N the number of states of a minimal DFA for L. For
the remainder of this section, we fix the constant K = N2.

We will show that in the case where L belongs to Ttract, we can identify a number of
edges that su�ce to check if the path is (or can be transformed into) a trail that matches
L. This number of edges only depends on L and is therefore constant for the Trail(L)
problem. These edges will be stored in a summary. We will define summaries formally
and explain how to use them to check whether a trail between the input nodes that
matches L exists. To this end, we need a few definitions.

Definition 3.4.2. Let p = e1 · · · em be a path and r = q0 æ · · · æ qm the run of AL over
lab(p). For a set C of states of AL, we denote by leftC the first edge ei with qi≠1 œ C and
by rightC the last edge ej with qj œ C. A component C of AL is a long run component
of p if leftC and rightC are defined and |p[leftC , rightC]| > K.

Next, we want to reduce the amount of information that we require for trails. The
synchronization property, see Lemma 3.2.7, motivates the use of summaries, which we
define next.

Definition 3.4.3. Let Cuts denote the set of components of AL and Abbrv = Cuts ◊

(V ◊ Q) ◊ EK . A component abbreviation (C, (v, q), eK · · · e1) œ Abbrv consists of a
component C, a node v of G and state q œ C to start from, and K edges eK · · · e1. A
trail fi matches a component abbreviation, denoted fi |= (C, (v, q), eK · · · e1), if ”L(q, fi) œ

C, it starts at v, and its su�x is eK · · · e1. Given an arbitrary set of edges EÕ, we
write fi |=EÕ (C, (v, q), eK · · · e1) if fi |= (C, (v, q), eK · · · e1) and all edges of fi are from
EÕ

fi {e1, . . . , eK}. For convenience, we write e |=ÿ e.
If p is a trail, then the summary Sp of p is the sequence obtained from p by replacing,

for each long run component C the subsequence p[leftC , rightC] by the abbreviation
(C, (v, q), psu�), where v is the source node of the edge leftC , q is the state in which AL is
immediately before reading leftC , and psu� is the su�x of length K of p[leftC , rightC].

We note that the length of a summary is always bounded by O(N3), that is, a constant
that depends on L. Indeed, AL has at most N components and, for each of them, we store
at most K + 3 many things (namely, C, v, q, and K edges). Our goal is to find a summary
S and replace all abbreviations with matching pairwise edge-disjoint trails which do not
use any other edge in S, because this results in a trail that matches L. However, not
every sequence of edges and abbreviations is a summary, because a summary needs to be
obtained from a trail. So, we will work with candidate summaries instead.

Definition 3.4.4. A candidate summary S is a sequence of the form S = –1 · · · –m

with m Æ N where each –i is either (1) an edge e œ E or (2) an abbreviation
(C, (v, q), eK · · · e1) œ Abbrv. Furthermore, all components in S are distinct and each
edge e occurs at most once. A path p that is derived from S by replacing each –i œ Abbrv

by a trail pi such that pi |= –i is called a completion of the candidate summary S.

The following corollary is immediate from the definitions and Lemma 3.2.7, as the
lemma ensures that the state after reading p inside a component does not depend on the
whole path but only on the labels of the last K edges, which are fixed.

41

Chapter 3 A Trichotomy for Regular Trail Queries

Corollary 3.4.5. Let L be a language in Ttract. Let S be the summary of a trail p that
matches L and let pÕ be a completion of S. Then, pÕ is a path that matches L.

Together with the following lemmas, Corollary 3.4.5 can be used to obtain an NL
algorithm3 that gives us a completion of a summary S. The lemma heavily relies on
other results on the structure of components in AL.

Lemma 3.4.6. There exists a NL algorithm that, given a directed graph G and nodes s
and t, outputs a shortest path from s to t in G.

Proof. We show that Algorithm 1 can output a shortest path in NL. Recall that
nondeterministic algorithms with output either give up, or produce a correct output and
that at least one computation does not give up. We note that Algorithm 1 is a mixture
of the Immermann-Szelepscényi Theorem [122, 195] and reachability. To this end, S(k)
denotes the set of states reachable from s with k edges. Using the algorithm given by
Immermann [122] and Szelepscényi [195] to show that non-reachability is in NL, we can
find in lines 1–27 the smallest n such that a path from s to t of length n but none of
length n ≠ 1 exists. Indeed, we only added a test in line 19 to find the smallest k for
which t œ S(k)—this k is the length of a shortest path from s to t. After line 28 we then
use the smallest k (which we name n) together with a standard reachability algorithm to
nondeterministically output a path of this length. (If we are only interested in the length
of a shortest path, we can return n instead.)

That Algorithm 1 is in NL follows from the Immermann-Szelepscényi Theorem and
reachability being in NL.

We explain how to use the algorithm described in Lemma 3.4.6 to output a shortest
path that satisfies some additional constraints.

Lemma 3.4.7. Let L œ Ttract, let (C, (v, q), eK · · · e1) be an abbreviation and EÕ
™

E. There exists an NL algorithm that outputs a shortest trail p such that p |=EÕ

(C, (v, q), eK · · · e1) if it exists and rejects otherwise.

Proof Sketch. We use the algorithm described in Lemma 3.4.6 to search and output a
shortest path p from (v, q) to (t, qÕ) for t being the target node of e1 and some qÕ

œ C in
the product of G (restricted to the edges EÕ

fi {e1, . . . , eK}) and C such that eK , . . . , e1
are only used once, and eK · · · e1 is the su�x of p. Since K is a constant, this is in
NL.

Proof. Let G be a directed (labeled) multigraph. In order to find a path in G that
matches C, ends on eK · · · e1, and uses edges {e1, . . . , eK} only once, we use Algorithm 1
on the product of G (restricted to the edges EÕ

fi {e1, . . . , eK}) and C extended with
numbers ¸ œ [K]. Since we cannot store the product in O(log n), we will construct it
on-the-fly. Intuitively, the value of ¸ will tell us if we are in the last K edges and if so,

3
That is, a nondeterministic Turing Machine with read-only input and write-only output that only uses

O(log n) space on its working tapes.

42

3.4 The Trichotomy

Algorithm 1: Extension of the Immermann-Szelepscényi Theorem
Input: A directed graph G = (V, E, E), nodes s, t in G, s ”= t
Output: A shortest path from s to t in G or “no” if no path from s to t exists

1 n Ω ≠1 B n will be the length of a shortest path from s to t
2 |S(0)| Ω 1
3 for k = 1, 2, . . . , |V | ≠ 1 do B Compute |S(k)| from |S(k ≠ 1)|
4 ¸ Ω 0
5 foreach u œ V do B Test if u œ S(k)
6 m Ω 0
7 reply Ω false

8 foreach v œ V do B Test if v œ S(k ≠ 1)
9 w0 Ω s

10 for p = 1, . . . , k ≠ 1 do

11 guess a node wp

12 if (wp≠1, wp) is not an edge in G then

13 give up

14 if wk≠1 ”= v then

15 give up

16 m Ω m + 1
17 if (v, u) is an edge in G then

18 reply Ω true

19 if u = t then

20 n Ω k
21 continue in line 28

22 if m < |S(k ≠ 1)| then

23 give up

24 if reply = true then

25 ¸ Ω ¸ + 1

26 |S(k)| Ω ¸

27 return “no” B t /œ S(k) for any k
28 w0 Ω s
29 for p = 1, . . . , n ≠ 1 do

30 guess a node wp

31 if (wp≠1, wp) is not an edge in G then

32 give up

33 output an edge from wp≠1 to wp in G

34 if wn≠1 ”= t then

35 give up

43

Chapter 3 A Trichotomy for Regular Trail Queries

then which of the last K edges we expect next. The “product” of G, C, and [K] is a
directed multigraph Gú = (V ú, Eú, E

ú) defined as follows: V ú = V ◊ Q ◊ [K] and

Eú = {(e¸, (q1, q2, ¸)) | ¸ œ [K] and (q1, lab(e¸), q2) œ C}

fi {(e, (q1, q2, K)) | e œ EÕ
≠ {e1, . . . , eK} and (q1, lab(e), q2) œ C}

E
ú((e, (q1, q2, K))) = (origin(e), q1, K), lab(e), (destination(e), q2, K)) if e ”= eK

E
ú((e, (q1, q2, K))) = ((origin(e), q1, K), lab(e), (destination(e), q2, K ≠ 1)) if e = eK

E
ú((e¸, (q1, q2, ¸))) = ((origin(e¸), q1, ¸), lab(e¸), (destination(e¸), q2, ¸ ≠ 1)) if ¸ < K

Since K is a constant, the size of each state in V ú is logarithmic in the input, and for
two states x, y œ V ú, we can test in logarithmic space if there is an edge e œ Eú such
that E

ú(e) = (x, lab(e), y). This is necessary for lines 12, 17, and 31.
We then output a shortest path from (v, q, K) to (t, qÕ, 1) for t being the target node of

e1 and some qÕ
œ C.4 More precisely, since we want a path in G and not in the product,

we project away the unnecessary state and number and only output the corresponding
edge in G in line 33.

It remains to show that p is a trail (in G). Assume towards contradiction that
p = d1 · · · dmeK · · · e1 is not a trail. Then there exists an edge di = dj that appears at
least twice in p. Note that dj is not in the su�x eK · · · e1 by definition of p. We define

pÕ = d1 · · · didj+1 · · · dmeK · · · e1

and show that pÕ is a shorter than p but meets all requirements. Let q1 = ”(q, d1 · · · di)
and q2 = ”(q, d1 · · · dj). By definition, q1, q2 œ C and both have an incoming edge with
label lab(di) = lab(dj). This allows us to use Corollary 3.2.5 to ensure that

”(q1, dj+1 · · · dmeK · · · e1) œ C.

We can then apply Lemma 3.2.7 to prove that

”(q1, dj+1 · · · dmeK · · · e1) = ”(q2, dj+1 · · · dmeK · · · e1) .

So pÕ is indeed a trail satisfying pÕ
|=EÕ (C, (v, q), eK · · · e1). Furthermore, pÕ is shorter

than p, contradicting our assumption.

Using the algorithm of Lemma 3.4.7 we can, in principle, output a completion of S
that matches L using nondeterministic logarithmic space. However, such a completion
does not necessarily correspond to a trail. The reason is that, even though each trail pC

we guess for some abbreviation involving a component C is a trail, the trails for di�erent
components may not be disjoint. Therefore, we will define pairwise disjoint subsets of
edges that can be used for the completion of the components.

4
Algorithm 1 can also output a shortest path from s to some node in a set T by testing u œ T in line 19

and wn≠1 /œ T in line 34.

44

3.4 The Trichotomy

v

e
fi

Edgei fi {e1, . . . eK}

v
eK · · · e1

e

fi

Edge¸ fi {e1, . . . , eK}

Figure 3.4: Sketch of case (1) and (2) in the proof of Lemma 3.4.10

The following definition fulfills the same purpose as the local domains on nodes in
Bagan et al. [20, Definition 7]. Since our components can be more complex, we require
extra conditions on the states (the ”L(q, fi) œ C condition).

Definition 3.4.8 (Local Edge Domains). Let S = –1 · · · –k be a candidate summary and
E(S) be the set of edges appearing in S. We define the local edge domains Edgei ™ Ei

inductively for each i from 1 to k, where Ei are the remaining edges defined by E1 =
E \ E(S) and Ei+1 = Ei \ Edgei. If there is no trail p such that p |= –i or if –i is a single
edge, we define Edgei = ÿ.

Otherwise, let –i = (C, (v, q), eK · · · e1). We denote by mi the minimal length of a
trail p with p |=Ei –i and define Edgei as the set of edges used by trails fi that start at v,
only use edges in Ei, are of length at most mi ≠ K, and satisfy ”L(q, fi) œ C.

By definition of Edgei, we can conclude that E(ei) ”= E(ej) for all ei œ Edgei, ej œ

Edgej , i ”= j, as ei œ Edgei and E(ei) = E(ej) imply that ej œ Edgei. We note that a
shortest trail using ei but not ej can use ej instead of ei. We note that the sets E(S)
and (Edgei)iœ[k] are always disjoint.

Definition 3.4.9 (Admissible Trail). We say that a trail p is admissible if there exist
a candidate summary S = –1 · · · –k and trails p1, . . . , pk such that p = p1 · · · pk is a
completion of S and pi |=Edgei

–i for every i œ [k].

We show that shortest trails that match L are always admissible. Thus, the existence
of a trail is equivalent to the existence of an admissible trail.

Lemma 3.4.10. Let G and (s, t) be an instance for Trail(L), with L œ Ttract. Then every
shortest trail from s to t in G that matches L is admissible.

Proof sketch. We assume towards a contradiction that there is a shortest trail p from s
to t in G that matches L and is not admissible. That means there is some ¸ œ N, and
an edge e used in p¸ with e /œ Edge¸. There are two possible cases: (1) e œ Edgei for
some i < ¸ and (2) e /œ Edgei for any i. In both cases, we construct a shorter trail p that
matches L, which then leads to a contradiction. We depict the two cases in Figure 3.4.
We construct the new trail by substituting the respective subtrail with fi.

Proof. In this proof, we use the following notation for trails. By p[e1, e2) we denote the
prefix of p[e1, e2] that excludes the last edge (so it can be empty). Analogously, p(e1, e2]

45

Chapter 3 A Trichotomy for Regular Trail Queries

denotes the su�x of p[e1, e2] that excludes the first edge. Notice that p[e1, e2], p[e1, e2),
and p(e1, e2] are always well-defined for trails. Let p = d1 · · · dm be a shortest trail from
s to t that matches L. Let S = –1 · · · –k be the summary of p and let p1, . . . , pk be trails
such that p = p1 · · · pk and pi |= –i for all i œ [k]. We denote by lefti and righti the first
and last edge in pi. By definition of pi and the definition of summaries, lefti and righti

are identical with leftC and rightC if –i œ Abbrv is an abbreviation for the component C.
Assume that p is not admissible. That means there is some edge e used in p¸ such that

e /œ Edge¸. There are two possible cases:

(1) e œ Edgei for some i < ¸; and

(2) e /œ Edgei for any i.

In case (1), we choose i minimal such that some edge e œ Edgei is used in pj for some
j > i. Among all such edges e œ Edgei, we choose the edge that occurs latest in p. This
implicitly maximizes j for a fixed i. Especially no edge from Edgei is used in pj+1 · · · pk.

Let –i = (Ci, (v, q), eK · · · e1). By definition of Edgei, there is a trail fi from v, ending
with e, with ”L(q, lab(fi)) œ Ci, and that is shorter than the subpath p[lefti, righti] and
therefore shorter than p[lefti, e].

We now show that pÕ = p1 · · · pi≠1fip(e, dm] is a trail. Since p is a trail, it su�ces to
prove that the edges in fi are disjoint with other edges in pÕ. We note that all intermediate
edges of fi belong to Edgei. By minimality of i, no edge in p1 · · · pi≠1 can use any edge of
Edgei and by our choice of e, no edge in p after e can use any edge of Edgei. This shows
that pÕ is a trail.

We now show that pÕ matches L. Since e appears in pj , there is a path from leftj to
rightj over e that stays in Cj . Let q1 and q2 be the states of AL before and after reading
e in p and, analogously, qÕ

1 and qÕ
2 the states of AL before and after reading e in pÕ. That

is

q1 = ”L(iL, p[d1, e)) q2 = ”L(q1, e)
qÕ

1 = ”L(iL, pÕ[d1, e)) qÕ
2 = ”L(qÕ

1, e)

We note that in pÕ, e is at the end of the subtrail fi.
We can conclude that the states q1 and qÕ

1 both have loops starting with a = lab(e),
as the transition (q1, lab(e), q2) is read in Cj and the transition (qÕ

1, lab(e), qÕ
2) is read in

Ci. Furthermore, qÕ
1 q1, since qÕ

1 œ Ci and q1 œ Cj . Therefore, Lemma 3.2.8 implies
that Lq1 fl La

q1�ú
™ LqÕ

1
where La

q1 denotes all words w of length K that start with a and
such that ”L(q1, w) œ Cj .

We have that lab(p[e, dm]) œ Lq1 by the fact that p matches L. We have that
lab(p[e, dm]) œ La

q1�ú, as, by the definition of summaries, AL stays in Cj for at least K
more edges after reading e in p. We can conclude that lab(p[e, dm]) œ LqÕ

1
, which proves

that pÕ matches L.
This concludes case (1). For case (2), we additionally assume without loss of generality

that there is no edge e œ Edgei that appears in some pj with j > i, that is, no edge
satisfies case (1). By definition of Edge¸, there is a trail fi with fi |=Edge¸

–¸ that is shorter
than p[left¸, right¸]. We choose pÕ as the path obtained from p by replacing p¸ with fi.

46

3.4 The Trichotomy

We now show that pÕ = p1 · · · p¸≠1 ·fi ·p¸+1 · · · pk is a trail. Since p is a trail, it su�ces to
prove that the edges in fi are disjoint with other edges in pÕ. We note that all intermediate
edges of fi belong to Edge¸.

By definition of Edge¸, no edge in p1 · · · p¸≠1 is in Edge¸. And by the assumption that
there is no edge satisfying case (1), no edge in p¸+1 · · · pk is in Edge¸. Therefore, pÕ is a
trail.

It remains to prove that pÕ matches L. Let (C, (v, q̂), eK · · · e1) = –¸ and let q and qÕ

be the states in which AL is before reading eK in p and pÕ, respectively. By definition
of a summary, we have that ”L(q, eK · · · e1) œ C and, by definition of |=, we have
that ”L(qÕ, eK · · · e1) œ C. By Lemma 3.2.7 we can conclude that ”L(q, eK · · · e1) =
”L(qÕ, eK · · · e1). As p matches L, we can conclude that also pÕ matches L.

So, if there is a solution to Trail(L), we can find it by enumerating the candidate
summaries and completing them using the local edge domains. We next prove that
testing if an edge is in Edgei can be done in logarithmic space. We will name this decision
problem Pedge(L) and define it as follows:

Pedge(L)
Given: A multigraph G = (V, E, E), nodes s, t, a candidate summary S, an

edge e œ E and an integer i.
Question: Is e œ Edgei?

Lemma 3.4.11. Pedge(L) is in NL for every L œ Ttract.

Proof. The proof is similar to the proof of Lemma 17 by Bagan et al. [20], which is based
on the following result due to Immerman [122]: NLNL = NL. In other words, if a decision
problem P can be solved by an NL algorithm using an oracle in NL, then this problem
P belongs to NL. Let, for each k Ø 0, P Æk

edge(L) be the decision problem Pedge(L) with the
restriction i Æ k, that is, (G, s, t, S, e, i) is a positive instance of P Æk

edge(L) if and only if
(G, s, t, S, e, i) is a positive instance of Pedge(L) and i Æ k. Notice that i belongs to the
input of P Æk

edge(L) while this is not the case for k. Obviously, Pedge(L) = P Æ|S|
edge (L). We

prove that P Æk
edge(L) œ NL for each k Ø 0. If k = 0, P Æ0

edge(L) always returns false because
Edgei is not defined for i = 0. So P Æ0

edge(L) is trivially in NL. Assume, by induction, that
P Æk

edge(L) œ NL. It su�ces to show that there is an NL algorithm for P Æk+1
edge (L) using

P Æk
edge(L) as an oracle. Since NLNL = NL, this implies that P Æk+1

edge (L) œ NL.
Let (G, s, t, S, e, i) be an instance of P Æk+1

edge (L). If i Æ k, we return the same answer as
the oracle P Æk

edge(L). If i = k + 1 and –i œ E, we return false, as Edgei = ÿ. If i = k + 1
and –i œ Abbrv, we first compute the length m of a minimal trail p such that p |=Ei –i

using the NL algorithm of Lemma 3.4.7. We note that we can compute Ei using the NL
algorithm for P Æk

edge.
To test whether the edge e can be used by a trail from some (v, q) in at most m ≠ K

steps, we use the on-the-fly product of G and AL restricted to the edges in Ei and states

47

Chapter 3 A Trichotomy for Regular Trail Queries

in C. We search for a shortest path5 from (v, q) to some (vÕ, qÕ) œ V ◊ C that ends with
e. We remind that reachability is in NL.

We note that this trail in the product might correspond to a path p with a cycle in G.
As we project away the states, some distinct edges in the product are actually the same
edge in G. However, by Lemma 3.2.4, we can remove all cycles from p without losing the
property that ”L(q, p) œ C. This concludes the proof.

With this, we can finally give an NL algorithm that decides whether a candidate
summary can be completed to an admissible trail that matches L.

Lemma 3.4.12. Let L be a language in Ttract. There exists an NL algorithm that given
an instance G, (s, t) of Trail(L) and a candidate summary S = –1 · · · –k tests whether
there is a trail p from s to t in G with summary S that matches L.

Proof. We propose the following algorithm, which consists of three tests:

(1) Guess, on-the-fly, a path p from S by replacing each –i by a trail pi such that
pi |=Edgei

–i for each i œ [k]. This test succeeds if and only if this is possible.

(2) In parallel, check that p matches L.

(3) In parallel, check that S is a summary of p.

We first prove that the algorithm is correct. First, we assume that there is a trail with
summary S from s to t that matches L. Then, there is also a shortest such trail and, by
Lemma 3.4.10, this trail is admissible. Therefore, the algorithm will succeed.

Conversely, assume that the algorithm succeeds. Since E(S) and all the sets Edgei are
mutually disjoint, the path p is always a trail. By tests (2) and (3), it is a trail from s to
t that matches L.

We still have to check the complexity. We note that the sets Edgei are not stored in
memory: we only need to check on-the-fly if a given edge belongs to those sets, which only
requires logarithmic space according to Lemma 3.4.11. Therefore, we use an on-the-fly
adaption of the NL algorithm from Lemma 3.4.7, which requires a set Edgei as input,
which we will provide on-the-fly.

Testing if p matches L can simply be done in parallel to test (1) on an edge-by-edge
basis, by maintaining the current state of AL in memory. If we do so, we can also check
in parallel if S = –1 · · · –k is a summary of p. This is simply done by checking, for each
–i of the form (C, (v, q), eK · · · e1) and –i+1 = e, whether e /œ C. This ensures that, after
being in C for at least K edges, the path p leaves the component C, which is needed
for summaries. Furthermore, we test if there is no substring –i · · · –j in S that purely
consists of edges that are visited in the same component C, but which is too long to
fulfill the definition of a summary. Since this maximal length is a constant, we can check
it in NL.

We eventually show the main Lemma of this section, proving that Trail(L) is tractable
for every language in Ttract.

5
A shortest path is necessarily a trail.

48

3.4 The Trichotomy

Lemma 3.4.13. Let L œ Ttract. Then, Trail(L) œ NL.

Proof. We simply enumerate all possible candidate summaries S with respect to (L, G, s, t),
and apply on each summary the algorithm of Lemma 3.4.12. We return “yes” if this
algorithm succeeds and “no” otherwise. Since the algorithm succeeds if and only if there
exists an admissible path from s to t that matches L, and consequently, if and only if
there is a trail from s to t that matches L (Lemma 3.4.10), this is the right answer. Since
L is fixed, there is a polynomial number of candidate summaries, each of logarithmic size.
Consequently, they can be enumerated within logarithmic space.

Lemma 3.4.14. Let L œ Ttract and L be infinite. Then, Trail(L) is NL-complete.

Proof. The upper bound is due to Lemma 3.4.13, the lower due to reachability in directed
graphs being NL-hard.

Corollary 3.4.15. Let L œ Ttract, G be a directed multigraph, and s, t be nodes in G.
If there exists a trail from s to t that matches L, then we can output a shortest such trail
in polynomial time (and in nondeterministic logarithmic space).

Proof. For each candidate summary S, we first use Lemma 3.4.12 to decide whether
there exists an admissible trail with summary S. With the algorithm in Lemma 3.4.7,
we then compute the minimal length mi of each pi. The sum of these mis then is the
length of a shortest trail that is a completion of S. We will keep track of a summary of
one of the shortest trails and finally recompute the overall shortest trail completing this
summary and outputting it. Notice that this algorithm is still in NL since the summaries
have constant size and overall counters never exceed |E|.

3.4.3 Languages not in Ttract

In this section we prove the NP hardness for graphs, and therefore also for multigraphs.
The proof of Theorem 3.4.1(3) is by reduction from the following NP-complete problem:

TwoEdgeDisjointPaths

Given: A directed graph G = (V, E, E), and two pairs of nodes (s1, t1),
(s2, t2).

Question: Are there two paths p1 from s1 to t1 and p2 from s2 to t2 such that
p1 and p2 are edge-disjoint?

The proof is very close to the corresponding proof for simple paths by Bagan et al. [20,
Lemma 4] (which is a reduction from the two vertex-disjoint paths problem).

Lemma 3.4.16 (Fortune et al. [98]). TwoEdgeDisjointPaths is NP-complete.

To prove the lower bound, we first show that every regular language that is not in
Ttract admits a witness for hardness, which is defined as follows.

49

Chapter 3 A Trichotomy for Regular Trail Queries

Definition 3.4.17. A witness for hardness is a tuple (q, wm, wr, w1, w2) with q œ QL,
wm, wr, w1, w2 œ �ú, w1 œ Loop(q) and there exists a symbol a œ � with w1 = awÕ

1 and
w2 = awÕ

2 and satisfying

• wm(w2)úwr ™ Lq, and

• (w1 + w2)úwr fl Lq = ÿ.

Before we prove that each regular language that is not in Ttract has such a witness,
recall Property P :

Lq2 ™ Lq1 for all q1, q2 œ QL such that q1 q2 and Loop(q1) fl Loop(q2) ”= ÿ

Lemma 3.4.18. Let L be a regular language that does not belong to Ttract. Then, L
admits a witness for hardness.

Proof. Let L be a regular language that does not belong to Ttract. Then there exist
q1, q2 œ QL and words w1, w2 with w1 = awÕ

1 and w2 = awÕ
2 such that w1 œ Loop(q1), w2 œ

Loop(q2), and q1 q2 such that wM
2 wÕ

r /œ Lq1 for a wÕ
r œ Lq2 . Let wm be a word with

q2 = ”L(q1, wm). We set wr = wM
2 wÕ

r.
We now show that the so defined tuple (q1, wm, wr, w1, w2) is a witness for hardness.

By definition, we have wm(w2)úwr ™ Lq1 . We distinguish two cases, depending on
whether L satisfies Property P or not. If L does not satisfy P , we can assume without
loss of generality that in our tuple we have w1 = w2 and since wM

2 wÕ
r /œ Lq1 , we also have

wú
2wr fl Lq1 ”= ÿ, so it is indeed a witness for hardness.
Otherwise, L is aperiodic, see Lemma 3.1.6. We assume without loss of generality

that w1 = (wÕ
1)M for some word wÕ

1. Then, we claim that LqÕ ™ Lq1 for every qÕ in
”L(q1, �úw1). Indeed, every qÕ

œ ”L(q1, �úw1) loops over w1 by the pumping lemma
and aperiodicity of L, hence w1 œ Loop(q1) fl Loop(qÕ) and therefore LqÕ ™ Lq1 due to
Property P .

It remains to prove that (w1 + w2)úwr fl Lq1 = ÿ. Every word in (w1 + w2)úwr can
be decomposed into uv with u œ Á + (w1 + w2)úw1 and v œ wú

2wr. For qÕ = ”L(q1, u)
we have proved that LqÕ ™ Lq1 , so it su�ces to show that v /œ Lq1 . This is immediate
from wr = wM

2 wÕ
r /œ Lq1 and the aperiodicity of L. So we have uv /œ Lq1 and the tuple

(q, wm, wr, w1, w2) is indeed a witness for hardness.

We can now show the following

Lemma 3.4.19. Let L be a regular language that does not belong to Ttract. Then, Trail(L)
is NP-complete.

Proof. The proof is almost identical to the reduction from two node-disjoint paths to
the SimPath(L) problem by Bagan et al. [20]. Clearly, Trail(L) is in NP for every regular
language L, since we only need to guess a trail of length at most |E| from s to t and
verify that the word on the trail is in L. Let L /œ Ttract. We exhibit a reduction from
TwoEdgeDisjointPaths to Trail(L). According to Lemma 3.4.18, L admits a witness for
hardness (q, wm, wr, w1, w2). Let w¸ be a word such that ”L(iL, w¸) = q. By definition

50

3.5 Recognition and Closure Properties of Ttract

of a witness we get w¸(w1 + w2)úwr fl L = ÿ and w¸wú
1wmwú

2wr ™ L. Let a œ � and
wÕ

1, wÕ
2 œ �ú such that w1 = awÕ

1 and w2 = awÕ
2. If wÕ

1 or wÕ
2 is empty, we replace it with

a.
In the following construction, whenever we say that we a add a path from v0 to vn

labeled by a word w = a1 · · · an, denoted by v0 w vn we mean that we add n ≠ 1 new
nodes v1, . . . , vn≠1 and n new edges e1, . . . , en such that E

Õ(ei) = (vi≠1, ai, vi).
Let G = (V, E, E) be a directed (unlabeled) graph for the TwoEdgeDisjointPaths problem

and s1, t1, s2, t2 be nodes in V . We build from G a directed, labeled graph GÕ = (V Õ, EÕ, E
Õ)

such that (G, s1, t1, s2, t2) is a yes-instance of TwoEdgeDisjointPaths if and only if there
is a trail from s to t matching L in GÕ. We start with the nodes from G and add two
new nodes s and t and three paths s w¸ s1, t1

wm s2, and t2
wr t. Furthermore, for

each edge (v1, v2) in G, we add a new node v12 and three paths v1 a v12, v12
wÕ

1 v2, and
v12

wÕ
2 v2. An example for the language daúc(abc)úef and some graph G can be seen in

Figure 3.5.
By construction, two edge-disjoint paths p1 and p2 in G going from s1 to t1 and from

s2 to t2 correspond to a trail p from s to t in GÕ that contains the path t1
wm s2. Such

a trail p matches a word in w¸(w1 + w2)úwm(w1 + w2)úwr. And, as w1 and w2 can be
used interchangeably, we can find a path pÕ matching w¸wú

1wmwú
2wr. Thus pÕ is a trail

matching L.
For the other direction, we have to show two things. First, we show that every trail p

in GÕ from s to t that uses the path t1
wm s2 proves the existence of two edge disjoint

paths p1 and p2 in G from s1 to t1 and from s2 to t2. Indeed p1 and p2 can be computed
from p by keeping only those nodes that are from G and splitting p between t1 and
s2. The paths are disjoint, as otherwise some edge vi to vij has to be used twice by
p. Second, we show that there can be no trail p from s to t in GÕ that matches L and
does not use the path t1

wm s2. Indeed, every trail p from s to t in GÕ that does not
contain the path t1

wm s2 matches a word in w¸(w1 + w2)úwr. By definition of witness
for hardness, no such word is in L. Thus, Trail(L) returns “yes” for (GÕ, s, t) if and only
if there is a trail from s to t in GÕ that contains the edge (t1, wm, s2) that is, if and only
if TwoEdgeDisjointPaths returns “yes” for (G, s1, t1, s2, t2).

3.5 Recognition and Closure Properties of Ttract

The following theorem establishes the complexity of deciding if a regular language is in
Ttract.

Before we establish the complexity of deciding for a regular language L whether
L œ Ttract, we need some lemmas. The first has been adapted from the simple path case
(Lemma 6 in [20]).

Lemma 3.5.1. Let L be a regular language. Then, L belongs to Ttract if and only if for all
pairs of states q1, q2 œ QL and symbols a œ � such that q1 q2 and Loop(q1) fl a�ú

”= ÿ,
the following statement holds: (Loop(q2) fl a�ú)N Lq2 ™ Lq1 .

51

Chapter 3 A Trichotomy for Regular Trail Queries

G
s1 t1

t2 s2

GÕ

s1 t1

t2 s2

s

t

a a

bc

a a

bca

abc

a
bc

a

abc

a

c

d

ef

Figure 3.5: Example of the reduction in Lemma 3.4.19 for the language daúc(abc)úef . We
use w¸ = d, wm = c, wr = ef , w1 = aa, and w2 = abc for the construction.
For the ease of readability, we omit the intermediate nodes on the bc and ef
paths.

q1· · ·

q2

q3
q4

q5

a..

v1, . . . , vN

u3

u2

u1 w, u2wN

Figure 3.6: Sketch of the proof of Lemma 3.5.1

Proof. The (if) implication is immediate by Corollary 3.1.5. Let us now prove the (only
if) implication. Since the proof of this lemma requires a number of di�erent states and
words, we provide a sketch in Figure 3.6. Assume L œ Ttract. Let q1, q2 be two states
such that Loop(q1) fl a�ú

”= ÿ and q1 q2. If Loop(q2) fl a�ú = ÿ, the statement
follows immediately. So let us assume without loss of generality that Loop(q2) fl a�ú

”= ÿ.
Let v1, . . . , vN œ (Loop(q2) fl a�ú) be arbitrary words and q3 = ”L(q1, v1 · · · vN). We
want to prove Lq2 ™ Lq3 . For some i, j with 0 Æ i < j Æ N , we get ”L(q1, v1 · · · vi) =
”L(q1, v1 · · · vj) due to the pumping Lemma. (We have ”L(q1, v1 · · · vi) = q1 for i = 0.)
Let u1 = v1 · · · vi, u2 = vi+1 · · · vj and u3 = vj+1 · · · vk. Let q4 = ”L(q1, u1).

We claim that Lq2 ™ Lq4 . The result then follows from Lq2 = u≠1
3 Lq2 ™ u≠1

3 Lq4 = Lq3 .
To prove the claim, let w = u1uN

2 and q5 = ”L(q1, wN). As w œ Loop(q2), we can use
Corollary 3.1.5 to obtain wN Lq2 ™ Lq1 . Together with Lq5 = (wN)≠1Lq1 this implies
Lq2 ™ Lq5 . Furthermore, u2 belongs to Loop(q5) because L is aperiodic. To conclude
the proof, we observe that Lq5 ™ Lq4 , by Corollary 3.1.5 with q5, q4 and u2, and because
”L(q4, uN

2) = q4 and u2 œ Loop(q5).

Theorem 3.5.2. Testing whether a regular language L belongs to Ttract is

(1) NL-complete if L is given by a DFA and

52

3.5 Recognition and Closure Properties of Ttract

(2) PSPACE-complete if L is given by an NFA or by a regular expression.

Proof. The proof is inspired by Bagan et al. [20]. The upper bound for (1) needs several
adaptions, the lower bound for (1) and the proof for (2) works exactly the same as in [19],
a preliminary version of [20] (just replacing SPtract by Ttract).

We first prove (1). W.l.o.g., we can assume that L is given by the minimal DFA AL,
as testing Nerode-equivalence of two states is in NL.

By Lemma 3.5.1, we need to check for each pair of states q1, q2 and symbol a œ �
whether

(i) q1 q2;

(ii) Loop(q1) fl a�ú
”= ÿ; and

(iii) (Loop(q2) fl a�ú)N Lq2 \ Lq1 = ÿ.

Statements (i) and (ii) are easily verified using an NL algorithm for transitive closure.
For (iii), we test emptiness of (Loop(q2) fl a�ú)N Lq2 \ Lq1 using an NL algorithm for
reachability in the product automaton of AL with itself, starting in the state (q2, q1).
More precisely, the algorithm checks whether there does not exist a word that is in Lq2 ,
is not in Lq1 , starts with an a, and leaves the state q2 (in the left copy of AL) at least N
times with an a-transition.

The remainder of the proof is from [19] and only included for self containedness.
For the lower bound of (1), we give a reduction from the Emptiness problem. Let

L ™ �ú be an instance of Emptiness given by a DFA AL. W.l.o.g. we assume that Á /œ L,
since this can be checked in constant time. Furthermore, we assume that the symbol 1
does not belong to �. Let LÕ = 1+L1+. A DFA ALÕ that recognizes LÕ can be obtained
from AL as follows. We add a state qI that will be the initial state of ALÕ . and a state
qF that will be the unique final state of ALÕ . The transition function ”LÕ is the extension
of ”L defined as follows:

• ”LÕ(qI , 1) = qI and ”LÕ(qI , a) = iL for every symbol a œ �.

• For every final state q œ FL, ”LÕ(q, 1) = qF .

• ”LÕ(qF , 1) = qF .

We will show that LÕ
œ Ttract if and only if L is empty. If L is empty, then LÕ = ÿ

belongs to Ttract. For the other direction, assume that L is not empty. Let w œ L. Then,
for every n œ N, 1nw1n

œ LÕ and 1n1n /œ LÕ. Thus LÕ /œ Ttract.
For the upper bound of (2), we first observe the following fact: Let A, B be two problems

such that A œ NL and let t be a reduction from B to A that works in polynomial space
and produces an exponential output. Then B belongs to PSPACE. Thus, we can apply
the classical powerset construction for determinization on the NFA and use the upper
bound from (1).

For the lower bound of (2), we give a reduction from Universality. Let L ™ {0, 1}
ú

be an instance of Universality given by an NFA or a regular expression. Consider

53

Chapter 3 A Trichotomy for Regular Trail Queries

LÕ = (0 + 1)úaúbaú + Laú over the alphabet {0, 1, a, b}. We show that L = {0, 1}
ú if and

only if LÕ
œ Ttract. Our reduction associates LÕ to L and keeps the same representation

(NFA or regular expression). If LÕ = {0, 1}
ú, then LÕ = (0 + 1)úaú(b + Á)aú and thus

LÕ
œ Ttract. Conversely, assume L ”= {0, 1}

ú. Let w œ {0, 1}
ú

\ L. Then, for every n œ N,
wanban

œ LÕ and wanan /œ LÕ. Thus LÕ /œ Ttract.

We wondered if, similarly to Theorem 2.5.2, it could be the case that languages closed
under left-synchronized power abbreviations are always regular, but this is not the case.
For example, the (infinite) Thue-Morse word [164, 200] has no subword that is a cube
(that is, no subword of the form w3) [200, Satz 6]. The language containing all prefixes of
the Thue-Morse word thus trivially is closed under left-synchronized power abbreviations
(with i = 3), yet it is not regular.

We now give (and repeat) some closure properties of SPtract and Ttract. Bagan et al. [20]
showed that SPtract is closed under union, intersection, and reversal.

Lemma 3.5.3 ((i), (ii), (iii) for SPtract in Bagan et al. [20]). Both classes SPtract and
Ttract are closed under (i) finite unions, (ii) finite intersections, (iii) reversal, (iv) left
and right quotients, (v) inverses of non-erasing morphisms, (vi) removal and addition of
individual words.

Proof. Let C œ {SPtract, Ttract} and L1, L2 œ C. Let n = max(n1, n2), where ni œ N is
the smallest number such that w¸w

ni
1 wmwni

2 wr œ Li implies w¸w
ni
1 wmwni

2 wr œ Li for
i œ {1, 2}.

The proofs for (i) to (vi) all establish that closure under left-synchronized power
abbreviations (or the analogous property for SPtract) is preserved under the operations.
Let therefore w¸, wm, wr œ �ú and w1, w2 œ �+ (if C = SPtract) or w1, w2 œ a�ú for some
a œ � (if C = Ttract).

(i) If w¸wn
1 wmwn

2 wr œ L1 fi L2, then there exists i œ {1, 2} with w¸wn
1 wmwn

2 wr œ Li

and thus w¸wn
1 wn

2 wr œ Li. So, w¸wn
1 wn

2 wr œ L1 fi L2.

(ii) If w¸wn
1 wmwn

2 wr œ L1 fl L2, then w¸wn
1 wmwn

2 wr œ Li and thus w¸wn
1 wn

2 wr œ Li

for i œ {1, 2}. So, w¸wn
1 wn

2 wr œ L1 fl L2.

(iii) The “reversal” of the definitions define the same class of languages, see Defini-
tion 2.5.4 (Definition 3.1.11 and Theorem 3.1.9, respectively).

(iv) Let w œ �ú. If w¸wn
1 wmwn

2 wr œ w≠1L1, then (ww¸)wn
1 wmwn

2 wr œ L1 and therefore
(ww¸)wn

1 wn
2 wr œ L1. This implies w¸wn

1 wn
2 wr œ w≠1L1. Closure under right-

quotients follows from closure under left-quotients together with closure under
reversal.

(v) Let h be a non-erasing morphism. Let w¸wn
1 wmwn

2 wr œ h≠1(L1). Then we
have h(w¸wn

1 wmwn
2 wr) œ L1, so h(w¸)h(w1)nh(wm)h(w2)nh(wr) œ L1. Since

h(w1), h(w2) are nonempty in the case C = SPtract and h(w1), h(w2) are in h(a)�ú

in the case C = Ttract, it follows that h(w¸)h(w1)nh(w2)nh(wr) œ L1. This implies
w¸wn

1 wn
2 wr œ h≠1(L1).

54

3.5 Recognition and Closure Properties of Ttract

(vi) Let wÕ be any word from L1. Here we choose n = max(n1, |wÕ
|). Let w¸wn

1 wmwn
2 wr œ

L1 ≠ {wÕ
}. As w¸wn

1 wmwn
2 wr œ L1 we have w¸wn

1 wn
2 wr œ L1 and therefore

w¸wn
1 wn

2 wr œ L1 ≠ {wÕ
}. We note that |wÕ

| < |w¸wnÕ

1 wnÕ

2 wr|. The proof for
L fi {wÕ

} is analogous.

This lemma implies that SPtract and Ttract each are a positive Cne-variety of lan-
guages, that is, a positive variety of languages that is closed under inverse non-erasing
homomorphisms.

Lemma 3.5.4. The classes SPtract and Ttract are not closed under complement.

Proof. Let � = {a, b}. The language of the expression bú clearly is in SPtract and Ttract.
Its complement is the language L containing all words with at least one a. It can be
described by the regular expression �úa�ú. Since biabi

œ L for all i, but bibi /œ L for any
i, the language L is neither in SPtract nor in Ttract.

It is an easy consequence of Lemma 3.5.3 (vi) that there do not exist best lower or
upper approximations for regular languages outside SPtract or Ttract.

Corollary 3.5.5. Let C œ {SPtract, Ttract}. For every regular language L such that L /œ C

and

• for every upper approximation LÕÕ of L (that is, L (LÕÕ) with LÕÕ
œ C it holds that

there exists a language LÕ
œ C with L (LÕ (LÕÕ;

• for every lower approximation LÕÕ of L (that is, LÕÕ (L) it holds that there exists a
language LÕ

œ C with LÕÕ (LÕ (L.

The corollary implies that Angluin-style learning of languages in SPtract or Ttract is not
possible. However, learning algorithms for single-occurrence regular expressions (SOREs)
exist [41] and can therefore be useful for an important subclass of Ttract.

Conclusion In the next section, we will see that the types of RPQs that users ask are
di�erent from those that lead to high worst-case complexity.

55

Chapter 4

Regular Path Queries in Practice

In the previous chapter we have seen that there are languages for which Trail(L) is
NP-complete. The picture for SimPath(L) is analogous. In this chapter we study real-
world query logs to understand why database systems are not regularly brought to their
knees by NP-complete queries. We define the class of simple transitive expressions which
captures 99.99% of the queries found in the logs and study their complexity in detail in
the next chapter.

4.1 SPARQL Logs

To the best of our knowledge, the first study on huge logs of structured queries was done
by Bonifati et al. [53]. The study had a total of about 180 million SPARQL queries
which came almost exclusively from DBpedia, Semantic Web Dog Food, LinkedGeoData,
BioPortal, OpenBioMed, and the British Museum, ranging from 2009 until 2016.

The study of Bonifati et al. [53] had 247k SPARQL property paths in unique queries,
which gave us a first impression what kind of RPQs actually occur. Syntactically,
SPARQL property paths are extensions of RPQs. This is important, because it means
that the types of regular expressions we will see are not syntactically constrained by the
query language. On top of the ordinary operators for RPQs, SPARQL allows operators
for wildcards and for following edges in the reverse direction. This would not be the case
for Cypher, for example. (In Neo4j’s Cypher 3.2 manual, only single labels or wildcards
were allowed below Kleene stars [168]. Cypher 9 is becoming more liberal and allows
disjunction below a Kleene star, see [99, Figure 3: Syntax of Cypher patterns]. In the
near future, Cypher plans to support full regular path queries [99].)

In Table 4.1, we provide a summary of the types of property paths found in the data of
[53]. That is, Table 4.1 is not the table appearing in [53], but we went over the raw data
again and aggregated the types of expressions slightly di�erently. We use the following
conventions:

• Lower case letters denote single symbols.

• Upper case letters denote sets of symbols.

57

Chapter 4 Regular Path Queries in Practice

Expression Type ¸ Relative STE?
(a1 + · · · + a¸)ú 2–4 29.10% yes

Û 25.48% yes(ú)

aú 19.66% yes
a1 · · · a¸ 2–6 8.66% yes

aúb 7.73% yes
(a1 + · · · + a¸) 1–6 6.61% yes

(a1 + · · · + a¸)+ 1–2 1.54% yes
a1?a2? · · · a¸? 1–5 1.15% yes
a(b1 + b2)? 0.01% yes
a1a2? · · · a¸? 2–3 0.01% yes

aúb? < 0.01% yes

Expression Type ¸ Relative STE?
abcú < 0.01% yes

A1 · · · A¸ 2–6 < 0.01% yes
(a1 + a2)? < 0.01% yes

Û
ú < 0.01% yes(ú)

Ûbú < 0.01% yes(ú)

Û? < 0.01% yes(ú)

(abú) + c < 0.01% no
aú + b < 0.01% no
a + b+ < 0.01% no

a+ + b+ < 0.01% no
(ab)ú < 0.01% no

Table 4.1: Structure of the 247,404 SPARQL property paths that were also used in the
query logs investigated by Bonifati et al. [53]. The structure is sometimes in
terms of a variable ¸ œ N, for which the second column indicates the values
that were found in the logs. Relative indicates which percentage of the 247,404
property paths have this structure.

• We denote a wildcard test by Û.1

• We do not distinguish between following an edge in the forward or backward
direction.2

• Each expression type also encompasses its symmetric form. For instance, when we
write aúb, we count the expressions of the form aúb and baú. We always list the
variant that occurred most often in the data. That is, aúb occurred more often
than baú.

Under Expression Type, the table summarizes which types of expressions are in Bonifati
et al.’s data set, sometimes parameterized by a number ¸ for which the next column
describes the values that were found. Relative describes which percentage of the 247,404
expressions fall into this expression type. We discuss STE? in the next section.

In Table 4.1 we can immediately observe that the property paths found in the query
logs of Bonifati et al. are not very complex and almost all are in SPtract and Ttract. In
fact, the query (ab)ú occured only once and we found out that this query was posed by a
theoretician testing the robustness of the engine [Vrgo�, personal communication].

Another thing to keep in mind is how to interpret the classification in Table 4.1. After
all, property paths do not occur often in the logs of Bonifati et al. [53]: only about 0.4%

1
We treat every expression of the form !a (“match every label that is not a”) as a wildcard. In the

total corpus, 17 expressions use the operator “!” in a slightly more complex way than just !a, for

instance, (!a+!b)
ú

or (a+!a)
ú
, which boil down to reachability tests in the graph and both of which

we classified as Ûú
.

2
That is, we treat the property path a the same way as ˆa. The operator ˆ was used in 306 expressions.

58

4.2 Simple Transitive Expressions

of the queries have them. However, this seems to be an artifact of the underlying data.
Most of the property paths appear in DBpedia queries, but DBpedia was designed when
property paths were not yet part of SPARQL. In a more recent study on Wikidata query
logs, containing 35 million unique queries, a drastically larger 38.94% of the queries use
property paths [55]. Moreover, the structure of these property paths shows a picture
similar to what we see in Table 4.1 [55].

4.2 Simple Transitive Expressions

We now define a class of RPQs called simple transitive expressions (STEs), with the
intent of capturing the vast majority of the expressions in Table 4.1, while avoiding
languages like (aa)ú and aúbaú for which SimPath and Trail are NP-complete. Intuitively,
simple transitive expressions aim at capturing very basic navigation in graphs: first do
some local navigation, followed by an optional transitive step, and finally again some local
navigation. The rationale is that, if we want to connect entities in a graph database,
then this is a natural way to navigate. Let us again consider our introductory example of
people who are artists. When we want to find out if a Person is an artist, we first need to
do some local navigation (following an occupation-edge) and then perform a transitive
reflexive step (following an arbitrarily long path of subclassof-edges). More precisely,
simple transitive expressions allow to:

1. first follow a path of length exactly k1 or at most k1 (for some k1 œ N),

2. then do a (reflexive) transitive closure step,

3. finally, follow a path of length exactly k2 or at most k2 (for some k2 œ N).

All three steps are subject to label tests. Furthermore, any step can be omitted, so a
simple transitive expression can also express that paths must have length between k1
and k1 + k2. In the following definition, we use sets A = {a1, . . . , a¸} ™ � to abbreviate
disjunctions (a1 + · · · + a¸).

Definition 4.2.1. An atomic expression is of the form A ™ � with A ”= ÿ. A bounded
expression is a regular expression of the form A1 · · · Ak or A1? · · · Ak?, where k Ø 0 and
each Ai is an atomic expression. Finally, a simple transitive expression (STE) is a regular
expression

BpreT úBsu�,

where Bpre and Bsu� are bounded expressions and T is Á or an atomic expression.

A minor technicality is that we can take T = Á. This means that T ú will only match
the empty word, and therefore the STE defines a finite language. In Table 4.1 the column
STE? indicates whether the expression is an STE. Here, we write “yes(ú)” to indicate
that the expression is an STE if a wildcard is treated the same as a set of labels A. (Our
algorithms indeed can be generalized to incorporate wildcards.)

59

Chapter 4 Regular Path Queries in Practice

In total, we saw that only 20 property paths are not STEs or trivially equivalent to
an STE (by taking T = Á in the definition of STEs, for example). For instance, the
expression type a1a2? · · · a¸? is equivalent to an STE where Bpre = a1, T = Á, and
Bsu� = a2? · · · a¸?. In this sense, 99.992% of the property paths in Table 4.1 correspond
to STEs.

In fact, all expressions in the table except for (ab)ú are unions of STEs. Unions of STEs
can actually be handled in the same way than STEs, by applying the STE evaluation
algorithm to each part of the union.

60

Chapter 5

Fine-grained Dichotomy for STEs

In the last chapter we have defined the class of simple transitive expressions (STEs).
Since these expressions are relevant in practice, we want to study their complexity in more
detail. To this end, we will study SimPath and Trail from a parameterized complexity
perspective. The reason why we focus on parameterized complexity is that we want to
obtain a more precise view on the complexity of di�erent languages L, but at the same
time, if we give L as part of the input, then SimPath is trivially NP-complete because
it encompasses the NP-complete Hamilton Path problem. Indeed, given a directed
graph G with n nodes and only a-edges, nodes s and t, and RPQ an≠1, the SimPath

problem asks if there is a Hamiltonian path from s to t in G. Using Lemma 5.5.1(3),
NP-completeness also follows for Trail.

On the other hand, the RPQ a is trivially tractable. This example tells us that
we should also take the size of RPQs into account, which is why we parameterize our
problems with the size of the RPQ. Alon et al. [7] proved that SimPath for graphs with
n nodes and RPQs of the form ak is fixed-parameter tractable in k, using their famous
color-coding technique. We note that a precise view on the parameterized complexity
of SimPath subsumes long-standing open problems. For instance, Alon et al. [7] showed
that SimPath is in P if k = log n, but the question if SimPath is in P if k = log2 n has
been open since 1995 [7].1

5.1 Parameterized Complexity

We give a quick overview on parameterized complexity and the parameterized versions of
SimPath and Trail that we consider. We follow the exposition of Cygan et al. [75] and
refer to their work for further details. A parameterized problem is a language L ™ �ú

◊N
where, as before, � is a fixed, finite alphabet. For an instance (x, p) œ �ú

◊ N, we call p
the parameter. The size |(x, p)| of an instance (x, p) is defined as |x|+p. A parameterized
problem L is called fixed-parameter tractable if there exists an algorithm A, a computable
function f : N æ N, and a constant c such that, given (x, p) œ �ú

◊ N, the algorithm A

1
Björklund et al. [48] showed that, under the Exponential Time Hypothesis (ETH), for any nondecreasing

polynomial time computable function f that tends to infinity there is no P algorithm that can decide

if there exists a simple path of length �(f(n) log
2 n) between two nodes in a graph of size n. Chen

and Flum [66, Theorem 12] showed that, under the ETH, deciding whether there exists a simple path

of length log
2 n in an undirected graph cannot be in polynomial time.

61

Chapter 5 Fine-grained Dichotomy for STEs

correctly decides whether (x, p) œ L in time at most f(p) · |(x, p)|c. The complexity class
containing exactly the fixed-parameter tractable problems is called FPT.

In terms of parameterized complexity, Downey and Fellows [86] introduced the W-
hierarchy, where FPT = W[0] and W[i] ™ W[j] for all i Æ j. It is a standard assumption
in parameterized complexity theory that FPT ”= W[1]. In order to prove W[1] hardness,
we need the notion of fpt-reduction. If L and LÕ are two parameterized problems, an
fpt-reduction from L to LÕ is an algorithm R that, given an instance (x, k) of L, outputs
an instance (xÕ, kÕ) of LÕ such that

• (x, k) is a yes-instance of L if and only if (xÕ, kÕ) is a yes-instance of LÕ,

• kÕ
Æ g(k) for some computable function g, and

• the running time of R is f(k) · |x|
O(1) for some computable function f .

Let R be a class of regular expressions. We will consider the following parameterized
variants of SimPath and Trail.

PSimPath(R)
Given: A directed multigraph G = (V, E, E), two nodes x, y œ V , r œ R

Parameter: |r|

Question: Is there a simple path from x to y in G that matches r?

PTrail(R)
Given: A directed multigraph G = (V, E, E), two nodes x, y œ V .
Parameter: |r|

Question: Is there a trail from x to y in G that matches r?

If R is just a single regular expression r, then we simply write PSimPath(r) instead of
PSimPath({r}), and analogously for PTrail.

5.2 Dichotomies for STEs

Our main technical results of this chapter are two dichotomies for evaluating STEs under
simple path and trail semantics. That is, we precisely characterize for which classes R

of STEs the problems PSimPath(R) and PTrail(R) are easy and for which classes these
problems are di�cult. Here, “easy” and “di�cult” refer to complexities in parameterized
complexity, namely fixed-parameter tractable and W[1]-hard. Our results will imply that
PSimPath and PTrail are “easy” for the types of expressions in Table 4.1—except for
(ab)ú. Furthermore, the parameters on which the complexity can exponentially depend
are small.

62

5.2 Dichotomies for STEs

Some Examples and Intuition

We give a bit of intuition about our results. Throughout the example, we use the following
notation. The input graph is always denoted as G, and it has n nodes and m edges. We
always denote the start and end nodes in the input of the PSimPath problem by s and
t, respectively. We will abbreviate long concatenations with a power notation, that is,
we use rk to denote a sequence of k times the expression r. For instance a4 denotes the
expression aaaa. Let ak denote the class {ak

| k œ N} of STEs. We define the classes
(a?)k, akaú, bakaú, and akbaú analogously. (We do this to be able to discuss some classes
of expressions, using a simple notation. If we use this convention, we will consistently
denote the variable by “k”.)

We now discuss the complexities of PSimPath for these classes. As a first example,
we consider PSimPath for (a?)k. This problem is easy to solve: one can simply use an
algorithm that tests reachability with a-labeled edges. The crux is that loops do not
matter: if there is a path from s to t that matches (a?)k then there is also a simple such
path, since removing loops does not change matching (a?)k.

This technique does not work for our second example: PSimPath for ak. However,
Alon et al.’s color coding technique [7] can solve this problem in time 2O(k)m log n. Color
coding therefore shows that PSimPath for ak is fixed-parameter tractable, where the
parameter is the size k of the RPQ: it is an algorithm with complexity f(k) · p(|G| + k),
where f is a computable function and p is a polynomial. The function f is even single
exponential in this case. Notice that, if P ”= NP, we cannot hope for f to be a polynomial
function, because PSimPath for ak is at least as di�cult as the Hamiltonian Path problem.
(Indeed, the cases of PSimPath for ak where we give a graph G with only a-labeled edges
and the RPQ am+1 are equivalent to the Hamiltonian Path problem for G.)

As a third example, we consider PSimPath for akaú. This problem requires yet another
technique, since color coding is designed to work for fixed-length paths. It can be solved
in time 2O(k)(n2 + mn), however, using the representative sets technique of Fomin et
al. [97]. The representative sets technique is nontrivial and addresses the following
problem. Assume that we try to deal with akaú naively by considering all simple paths
P of length k that start in s. For each such path P , assuming it ends in some node
xP , we could then test reachability from xP to t while avoiding the nodes of P . But
this algorithm is too ine�cient. We may have up to nk di�erent possibilities for P ,
which means that the running time is not of the form f(k) · p(|G| + k) for a polynomial
p and computable function f . In other words, it does not show that the problem is
fixed-parameter tractable. This is where the representative sets technique is useful. It
shows that the number of di�erent paths P we have to consider can be limited to 2O(k)n,
which makes the problem fixed-parameter tractable. The representative sets technique
can even be adapted so that it enumerates all the simple paths.

We turn to two cases where the edge labels become important. First, consider
PSimPath(bakaú). Here, we can simply enumerate all b-edges that start in x and then
use the algorithm for PSimPath(akaú) from there (and making sure that we don’t visit
x). This shows that PSimPath(bakaú) is fixed-parameter tractable.

63

Chapter 5 Fine-grained Dichotomy for STEs

s
tØ 3

Figure 5.1: Intuition behind cuttability, using bbbaú

Second, take PSimPath(akbaú). At its core, this problem is a variant of the Two Disjoint
Paths problem. We are essentially searching for two nodes x and y such that there is a
path P1 of length k from s to x and a path P2 from y to t. Moreover, P1 and P2 should
be node-disjoint and there should be a b-edge from x to y. Since we can prove that this
Two Disjoint Paths problem (with parameter k) is W[1]-hard, see Theorem 5.4.7, it turns
out that PSimPath(akbaú) is hard as well.

The central notion in our dichotomy for PSimPath is cut borders of STEs. We first
explain this notion intuitively, based on two simple examples. Consider the expressions
r1 = aaaaú and r2 = aaabú. Assume that, as in Figure 5.1, we found a path p (that may
contain a loop) from s to t that matches r1. Intuitively, if we want to test if the simple
path pÕ obtained from p by deleting all loops still matches r1, we just need to test if pÕ

has length at least three. For r2, however, we additionally need to test that the loop
does not occur in the prefix of length 3 of p. For this reason, the cut border of r2 will be
equal to 3. We can prove that this notion of cut border is indeed the crucial one for the
complexity of PSimPath.

Dichotomy for Simple Paths

We first define the notions that we need for the dichotomy for simple paths.

Definition 5.2.1. Let r = BpreT úBsu� be an STE. If Bpre = A1 · · · Ak1 , then the left
cut border c1 of r is the largest value such that T ”™ Ac1 if it exists and zero otherwise. If
Bpre = A1? · · · Ak1?, then the left cut border is zero. Symmetrically, if Bsu� = AÕ

k2
· · · AÕ

1,
then the right cut border c2 of r is the largest value such that T ”™ AÕ

c2 if it exists and
zero otherwise. (Notice that the indices in Bsu� are reversed.) If Bsu� = AÕ

k2
? · · · AÕ

1?,
then the right cut border is zero.

We explain the intuition behind cut borders in Figure 5.2. For c œ N, an expression
is c-bordered if the sum of its left and right cut borders is c. We call a class R of STEs
cuttable if there exists a constant c œ N such that each expression in R is cÕ-bordered for
some cÕ

Æ c.
We can now prove a dichotomy on the complexity of PSimPath(R) for classes of STEs

R, if R satisfies the following mild condition. We say that R can be sampled if there
exists an algorithm that, given k œ N, returns an expression in R that is kÕ-bordered with
kÕ

Ø k, and “no” if there is no such expression. We need the condition that R can be
sampled to prove the W[1]-hardness. For this reason, this condition is no longer needed
in the upper bound results (Lemma 5.3.16 and Theorem 9.3.2).

64

5.2 Dichotomies for STEs

We now state our main result on PSimPath and explain the cut borders, cuttability,
and the sampling condition after its statement. (We only require the condition that R

can be sampled for the lower bound proof in part (b).)
Here, FPT is the class of problems that is fixed-parameter tractable. It is a standard

assumption in parameterized complexity theory that FPT ”= W[1]. This assumption has
a similar calibre as the P ”= NP assumption in terms of decision problems.

We now explain cut borders, cuttability, and the condition that R can be sampled. To
this end, the left (respectively, right) cut border of an STE r = A1 · · · Ak1T úAÕ

k2
· · · AÕ

1
is the largest value i such that T has a symbol that is not in Ai (respectively, AÕ

i). If
we have A1? · · · Ak1? (respectively, AÕ

k2
? · · · AÕ

1?), then the left (respectively, right) cut
border is 0. The cut border of r is the sum of its left and right cut border. A class R of
STEs is cuttable if there exists a c œ N such that the cut border of each expression r œ R

is at most c. The intuition of cut borders is explained in Figure 5.2: they characterize
parts of paths in which it is not allowed to remove loops to obtain a simple path that
still matches the expression.

Finally, we say that R can be sampled if there exists an algorithm that, given a number
k in unary, returns an expression from R that has cut border at least k. Notice that this
is a very weak restriction on R.

Theorem 5.2.2. Let R be a class of STEs that can be sampled.

(a) If R is cuttable, then PSimPath(R) is in FPT and

(b) otherwise, PSimPath(R) is W[1]-hard.

The result will follow immediately from Lemma 5.3.16 and Lemma 5.4.8.
Notice that the di�erence between cuttable and non-cuttable classes of STEs can be

subtle. For instance, akbú and ak(a + b)ú are non-cuttable, but (a + b)kaú is cuttable.
Looking back at Table 4.1, we see that abcú is 2-bordered and all other STEs are either
0-bordered or 1-bordered. It therefore seems that cut borders in practice are small and
over 99% of the expressions fall on the tractable side of Theorem 5.2.2.

Dichotomy for Trails

We now present a similar dichotomy for trails. The dichotomy is, perhaps surprisingly,
di�erent from the one in Theorem 5.2.2 in the sense that more classes fall on the tractable
side. For instance, PSimPath(akbú) is intractable, whereas PTrail(akbú) is fixed parameter
tractable because the a-path and the b-path can be evaluated independent of each other
(no a-edge will be equal to a b-edge).

Before we can give the dichotomy, we first need some definitions.

Definition 5.2.3. Let r = A1 · · · Ak1T úAÕ
k2

· · · AÕ
1 be an STE with left cut border c1

and right cut border c2. We say that Ai with i Æ c1 (respectively, AÕ
j with j Æ c2) is a

conflict position if Ai fl T ”= ÿ (respectively, AÕ
j fl T ”= ÿ). We say that a class R of STEs

is almost conflict-free if there exists a constant c such that each r œ R has at most c
conflict positions and conflict-free if this constant is 0.

65

Chapter 5 Fine-grained Dichotomy for STEs

s t
c¸ cr

k1 k2

c¸ : left cut border
cr : right cut border

Figure 5.2: Assume r = A1 · · · Ak1T úAÕ
k2

· · · AÕ
1 has left and right cut borders c1 and

c2, respectively. Assume that an arbitrary path from s to t matches r such
that its length k1 prefix and length k2 su�x do not have loops and are node
disjoint. If, after removing all loops, (1) the length c1 prefix and length c2
su�x are still the same and (2) the path still has length at least k1 + k2, then
it matches r.

s t
c¸ cr

k1 k2

c¸ : left cut border
cr : right cut border

◊ : conflict position

◊ ◊◊ ◊ ◊ ◊

Figure 5.3: Visualization of the e�ect of conflict positions in a path that matches an STE
r. If we start with an arbitrary path and remove loops, we mainly need to be
careful about labels behind the cut borders that can be identical to labels in
the transitive part.

In Figure 5.3 we give a visual intuition about the meaning of conflict positions. The
class akbú is not cuttable, but it is conflict-free because {a} and {b} have an empty
intersection. The point is that an edge labeled by some symbol in {a} can never be the
same than an edge labeled by some symbol in {b}, since their labels must be di�erent.
Therefore, we can evaluate ak and bú separately.

We say that R can be conflict-sampled if there exists an algorithm that, given k œ N,
returns an expression in R that has kÕ conflict positions with kÕ

Ø k, and “no” if there is
no such expression. Our main dichotomy for trails is the following.

Theorem 5.2.4. Let R be a class of STEs that can be conflict-sampled.

(a) If R is almost conflict-free, then PTrail(R) is in FPT and

(b) otherwise, PTrail(R) is W[1]-hard.

This theorem follows immediately from Lemma 5.6.3 and Lemma 5.6.5.

Core Techniques At the core of our tractability results lies the representative sets
technique of Fomin et al. [97]. This technique can be used to find simple paths and trails

66

5.2 Dichotomies for STEs

of length at least k in time 2O(k)(n2 + nm), given a graph and the number k. If regular
path queries are involved, the technique is only compatible with certain languages, such
as cuttable or conflict-free STEs. The compatible languages have the property that we
only need to guard a constant number of nodes/edges at the beginning and at the end of
the path, to make sure that the rest of the path does not re-use the same nodes/edges.

Indeed, we can show that for languages violating this property, the problem becomes
intractable. The reason is that it becomes at least as hard as a parameterized version of
the two-disjoint paths problem. This parameterized problem asks: given a graph G, node
pairs (x1, y1) and (x2, y2), and parameter k œ N, are there two disjoint paths p1 from x1
to y1 and p2 from x2 to y2 such that p1 has length k. (One can consider node-disjoint or
edge-disjoint paths here.) We prove that this problem is W[1]-hard, both when node- or
edge disjointness is required.

What Does This Mean?

If we interpret Theorems 5.2.2 and 5.2.4 in the light of the real world property paths in
Table 4.1 we can observe the following. Let n and m be the number of nodes and edges
of the graph, respectively.

Concerning simple paths semantics, Theorem 5.2.2 tells us that PSimPath(R) is fixed-
parameter tractable for cuttable classes R. This result, together with the observation
that the largest cut border in Table 4.1 is two, and therefore very small, can be seen as
an explanation why, in practice, simple path semantics usually does not bring systems to
their knees, even though this would theoretically be possible using regular expressions
such as (aa)ú. Since the evaluation problem under simple path semantics generalizes
the Hamilton Path problem (if |r| = |V | ≠ 1), we cannot hope for a significantly better
complexity unless P = NP.

Looking closer, we prove that PSimPath is in time 2O(|r|)
· |V |

c+3
· |E| in the worst case

(Lemma 5.3.16), where |r| is the size of the RPQ, c is the largest cut border in R, and |V |

and |E| are the number of nodes and edges in the graph, respectively. In Table 4.1, the
largest value of c in STEs or unions thereof is two (for abcú), and |r| is relatively small.
One should keep in mind that this is a worst-case bound. In most practical settings, we
expect that the run-time of even more naive evaluation algorithms will not come close
to requiring nc+3 time for these simple expressions. For instance, the nc factor comes
from considering all paths that start in a given node s and obey a label constraint. For
instance, for the expression abcú, these are just the paths that start in s and are labeled
ab. While this can, in the worst case, be |V |

2 many paths, we expect this to be much
less in real databases.

The story for trails is similar. Here our upper bound admittedly gives less e�ciency
guarantees than the one for simple paths, but this is mainly because we have developed our
methods for simple paths and then adapted them for trails. Furthermore, the dichotomy
shows that it is easier to deal with trails than with simple paths: for every class of queries
for which we have fixed-parameter tractable algorithms for simple path semantics, we
also have them for trail semantics, but not vice versa.

67

Chapter 5 Fine-grained Dichotomy for STEs

5.3 Main Upper Bound for PSimPath

In this section we will prove part (a) of Theorem 5.2.2. To this end, we first need some
preliminary results.

Preliminary Technical Result: Downward Closed Languages

We first recall a useful result which we will use to deal with downward closed parts of
STEs, to be more precise, with bounded expressions of the form A1? · · · Ak? and the
transitive part T ú. Note that this lemma is restricted to downward closed languages,
since simple paths in the product of a directed multigraph and an NFA may use nodes
(u, q1) ”= (u, q2) and may therefore correspond to non-simple paths in G. Recall that
downward closed languages were introduced in Section 2.5.1. We will use the following
lemma.

Lemma 5.3.1 (Theorem 5 in [160]). Let N be an NFA for a downward closed language.
Let G be a directed multigraph and s and t be nodes in G. Then we can decide if there is
a simple path from s to t that matches N in time O(|N ||G|).

Proof. The algorithm consists of two steps. First construct the product between N and
G, which takes time O(|N ||G|). Then, test if (t, f) is reachable from (s, i) for some
accepting state f and initial state i. Indeed, (t, f) is reachable from (s, i), if and only if
there exists some path p from s to t that matches N . Since L(N) is downward closed,
the simple path obtained from p by removing all loops still matches N .

Representative Sets and Simple Paths with Length Constraints

To prove Theorem 5.2.2(a), we need the representative sets technique [97]. At their core,
this technique can be used to prove that the following parameterized problems are in
FPT:

• PSimPathLength: Given a directed multigraph G, nodes s, t, and a parameter k œ N,
is there a simple path from s to t of length exactly k in G?

• PSimPathLength
Ø: Given a directed multigraph G, nodes s, t, and a parameter

k œ N, is there a simple path from s to t of length at least k in G?

Before we explain the representative sets technique, we first restate some important
results on these problems: Alon et al. [7] proved that PSimPathLength is in FPT, using
their famous color coding technique. For the theorem statement, we assume that
G = (V, E, E) is a directed multigraph.

Theorem 5.3.2 (Alon et al. [7]). PSimPathLength is in time 2O(k)
|E| log |V | and there-

fore in FPT.

Bagan et al. [19, Theorem 7] combine color coding and dynamic programming to prove
that, given a directed graph G, nodes s, t, an NFA N , and a parameter k œ N, deciding

68

5.3 Main Upper Bound for PSimPath

if there is a simple path from s to t of length at most k that matches L(N) can be
done in time 2O(k)

|N ||G| log |G|. In their proof they actually show that it is in time
2O(k)

|N ||G| log |V |. From this, the following can be inferred.

Lemma 5.3.3 (Immediate consequence of Corollary 1 in Bagan et al. [19]). Let G =
(V, E, E) be a directed multigraph, s, t be nodes of G, and N be an NFA accepting a finite
language. It can be decided in time 2O(|N |)

|G| log |V | if there exists a simple path from s
to t in G, labeled with a word from L(N).

Corollary 5.3.4. Let R be a class of STEs defining finite languages. Then PSimPath(R)
is in FPT or, more precisely, in time 2O(|r|)

|G| log |V |.

PSimPathLength
Ø can be shown to be in FPT by adapting methods from Fomin et

al. [97]. They proved that testing the existence of simple directed cycles of length at least
k is in FPT and discovered that their technique also works for paths [82]. The following
theorem is therefore by the authors of [97].

Theorem 5.3.5 (Similar to Theorem 5.3 in [97]). PSimPathLengthØ is in FPT. More
precisely, it is in time 2O(k)

· |E||V | log |V |.

We received a proof sketch of the result from Holger Dell [82] (who attributed the result
to Fomin et al., the authors of [97]). Next, we provide a self-contained generalization of
Theorem 5.3.5 that deals with edge labels, based on the proof sketch we received. Our
contribution is the generalization of the approach towards the extra condition that checks
the labels of the path. We emphasize that the most complex part of the proof concerns
the length constraints and is due to the authors of [97].

One way to test whether there exists a simple path from s to t of length at least k is
to find a simple path pk of length exactly k such that there is a path from the last node
of pk to t that avoids pk. But the number of such paths pk is n!/(k!(n ≠ k)!). So naively
testing and enumerating all paths is not fixed-parameter tractable in k. We therefore
need a way to decrease the number of such paths we need to consider. We can do this
using the following notion, originally introduced by Monien [163].

Definition 5.3.6 (k-representative family [97]). Given a set of nodes V , an integer
k œ N, and a set S containing subsets of V , all of size ¸, for some ¸ œ N, we say that a
subfamily Ŝ ™ S is k-representative for S if the following holds: for every set Y ™ V of
size at most k, if there is a set X œ S disjoint from Y , then there is a set X̂ œ Ŝ disjoint
from Y . We abbreviate this by Ŝ ™

k
rep S.

Intuitively, if one needs to be able to avoid k-element sets, it is su�cient to store a
k-representative set. Notice that each set S is trivially k-representative for itself. The
crux is that we want to be able to compute k-representative sets that are small. The
condition that all sets in S have the same size is just a technicality that allows us to
simplify proofs later.

In the following, s, v are nodes and r is a regular expression of the form A1 · · · Ak for
some k œ N. We define

P r
s,v := {V (p) | there is a simple path p from s to v in G that matches r}.

69

Chapter 5 Fine-grained Dichotomy for STEs

Notice that, by definition of r, these simple paths from s to v in G have length k.
Therefore, all sets in P r

s,v have exactly k + 1 elements.
We next show that representative sets P̂ r

s,v ™
k+1
rep P r

s,v exist for each node v œ V
and can be constructed in fixed parameter tractable time. We restate the relevant
parts of Lemma 3.3 and Corollary 4.16 from [97] since we need them in the proof. We
note that while they only considered simple graphs, their results immediately hold for
(unlabeled) multigraphs. Lemma 5.3.7 states that the relation “is a k-representative set
for” is transitive. Corollary 5.3.8 gives a rough time and space bound for computing
k-representative sets.

Lemma 5.3.7 (Lemma 3.3 in [97] for directed graphs). Given a directed multigraph
G = (V, E, edge) and a family S of subsets of V . If Ŝ ™

k
rep S

Õ and S
Õ

™
k
rep S, then

Ŝ ™
k
rep S.

Corollary 5.3.8 (Corollary 4.16 in [97], without weight function). There is an algorithm
that, given a family A of sets of size ¸ over a set V of nodes and an integer k, computes
in time

O

A
|A| ·

3
k + ¸

k

4k

· 2o(k+¸)
· log |V |

B

a subfamily Â ™
k
rep A such that |Â| Æ

!k+¸
¸

"
· 2o(k+¸).

We now adapt Lemma 5.2 in Fomin et al. [97] to show a time and space bound for
representative sets P̂ r

s,v ™
k
rep P r

s,v under label constraints. We will need this to deal with
the bounded parts of STEs later.

Lemma 5.3.9. For each regular expression r = A1 · · · A¸ and k Ø ¸, there is a collection
of families P̂ r

s,v ™
k
rep P r

s,v with v œ V \ {s}, each of size at most
!k+¸+1

¸+1
"

· 2o(k+¸). This
collection of families can be computed in time O(8k+o(k)

|E| log |V | + |r||E|).

Proof. Fomin et al. use in their complexity analysis that, given (u, v), one can test if
there exists an edge from u to v in the graph in constant time. We first preprocess the
multigraph so that, given (u, v) œ V ◊ V and i œ {1, . . . , ¸}, we can test in constant time
whether there is an edge from u to v with a label in Ai. Such preprocessing consists of
annotating each edge with a ¸-bit vector and takes time O(|r||E|). (For each edge, and
each Ai, test if the edge label is in Ai.)

We describe a dynamic programming algorithm. We assume without loss of generality
that the nodes in V are named {s, v1, . . . , vn≠1}. Let D be an ¸ ◊ (n ≠ 1) matrix where
the rows are indexed with integers in 1, . . . , ¸ and the columns are indexed with nodes in
{v1, . . . , vn≠1}. For i = 1, . . . , ¸, we will denote by ri the prefix A1 · · · Ai of r. The entry
D[i, v] will store a family P̂ ri

s,v ™
k+¸≠i
rep P ri

s,v of size at most
!k+¸+1

i+1
"

· 2o(k+¸). We fill the
entries in the matrix D in increasing order of rows. For i = 1, we set D[1, v] = {{s, v}}

if G has an edge (s, a, v) with a œ A1, and D[1, v] = ÿ otherwise. Assume that we have
filled all the entries until row i ≠ 1. For two families of sets A and B, we define

A • B = {X fi Y | X œ A, Y œ B, and X fl Y = ÿ}.

70

5.3 Main Upper Bound for PSimPath

We denote by ÷(u, Ai, v) that there exists an edge (u, a, v) with a œ Ai. Let

N
ri
s,v =

€

÷(u,Ai,v)
P̂ ri≠1

s,u • {v}.

Before we continue, we adapt Claim 5.1 in [97] such that it takes r into account, that is:

Claim 5.3.10. N
ri
s,v ™

k+¸≠i
rep P ri

s,v

Proof. The proof is by induction on i. Let S œ P ri
s,v and Y be a set of size at most

k + ¸ ≠ i such that S fl Y = ÿ. We will show that there exists a set SÕ
œ N

ri
s,v such that

SÕ
fl Y = ÿ. This will imply the desired result. Since S œ P ri

s,v, there exists a simple
path P = (s, u1) · · · (ui≠1, v) in G such that S = V (P) and the predicate ÷(ui≠1, Ai, v)
is true. The existence of the path P [0, i ≠ 1], the subpath of P from s to ui≠1, implies
that X Õ = S \ {v} œ P ri≠1

s,ui≠1 . Take Y Õ = Y fi {v}. Observe that X Õ
fl Y Õ = ÿ and

|Y Õ
| Æ k + ¸ ≠ i + 1. Since P̂ ri≠1

s,ui≠1 ™
k+¸≠i+1
rep P ri≠1

s,ui≠1 by induction, there exists a set
X̂ Õ

œ P̂ ri≠1
s,ui≠1 such that X̂ Õ

fl Y Õ = ÿ. However, since ÷(ui≠1, Ai, v) and v /œ X̂ Õ (because
X̂ Õ

fl Y Õ = ÿ), we have X̂ Õ
• {v} = X̂ Õ

fi {v} and X̂ Õ
fi {v} œ N

ri
s,v. Taking SÕ = X̂ Õ

fi {v}

su�ces for our purpose. This completes the proof of the claim.

We fill the entry for D[i, v] for i Ø 2 as follows. Observe that

N
ri
s,v =

€

÷(u,Ai,v)
D[i ≠ 1, u] • {v}.

Let us denote by d≠(v) the indegree of v, that is, the number of edges that end in v.
We already have computed the family corresponding to D[i ≠ 1, u] for all u. By con-
struction, we have |P̂ ri≠1

s,u | Æ
!k+¸+1

i

"
2o(k+¸) and thus also |N

ri
s,v| Æ d≠(v)

!k+¸+1
i

"
2o(k+¸).

Furthermore, we can compute N
ri
s,v in time O

1
d≠(v)

!k+¸+1
i

"
2o(k+¸)

2
. Recall that, due

to the preprocessing, we can test if there’s an edge with label in Ai in constant time.
Now, we use Corollary 5.3.8 on N

ri
s,v, which contains sets of size (i + 1), to obtain a

(k + ¸ + 1 ≠ (i + 1))-representative, that is, (k + ¸ ≠ i)-representative subfamily N̂
ri
s,v of

size at most
!k+¸+1

i+1
"

· 2o(k+¸) in time

O

A
d≠(v)

3
k + ¸ + 1

i

4
2o(k+¸)

·

3
(k + ¸ ≠ i) + (i + 1)

k + ¸ ≠ i

4k+¸≠i

· 2o((k+¸≠i)+(i+1))
· log |V |

B
.

By Claim 5.3.10, we know that N
ri
s,v ™

k+¸≠i
rep P ri

s,v. Thus, Lemma 5.3.7 implies that
N̂

ri
s,v ™

k+¸≠i
rep P ri

s,v. We define P̂ ri
s,v = N̂

ri
s,v and assign this family to D[i, v]. This completes

the description and the correctness of the algorithm.
Notice that, if we keep the elements in the sets in the order in which they were built

using the • operation, then they directly correspond to paths. As such, every ordered set
in our family represents a path in the graph.

71

Chapter 5 Fine-grained Dichotomy for STEs

Algorithm 2: FLPS Algorithm with restricted STE
Input: A directed multigraph G = (V, E, E), nodes s, t in G, regular expression

rT ú with r = A1 · · · Ak and T ™ Ai for all i
Output: Decide if there exists a simple path from s to t that matches rT ú

1 for every v œ V do

2 Compute P̂ r
s,v ™

k+1
rep P r

s,v

3 for every X œ P̂ r
s,v do

4 V Õ
Ω (V \ X) fi {v}

5 EÕ
Ω {e œ E | E(e) œ V Õ

◊ T ◊ V Õ
}

6 if there exists a path from v to t in (V Õ, EÕ, E
--
EÕ) then

7 return “yes”

8 return “no”

s

vk1

vk1+1

t

P

P Õ
Q s

vk1

vk1+1

vn≠k≠1

vn≠k
vi

t

P

P Õ

Q

R

Figure 5.4: This figure shows how we partition a shortest simple path p in the proof of
Lemma 5.3.11 if p is short (left) or if p is long (right). Notice that V (P), V (Q),
and V (R) are pairwise disjoint.

Since our only change was that we test ÷(u, Ai, v) instead of the existence of an edge
(u, v), the time bound O

!
8k+o(k)

|E| log |V |
"

[97, Lemma 5.2] carries over, modulo the
additive O(|r||E|) term for preprocessing that we used to test ÷(u, Ai, v) in constant time.
The size bound is still guaranteed by Corollary 5.3.8.

Notice that Claim 5.3.10 will not work for arbitrary regular expressions. We used in
the claim that if there exists an edge (ui≠1, a, v) with a œ Ai, then we can add v to any
set X̂ Õ œ P̂ ri≠1

s,ui≠1 to obtain a valid set in N
ri
s,v. For arbitrary regular expressions this is

not the case, an example being (aa + bb).

5.3.1 Algorithms for PSimPath

We now present an algorithm that solves PSimPath for the case where the RPQ is of
the form A1 · · · AkT ú and is 0-bordered, that is, T ™ Ai for all i, see Algorithm 2. The
algorithm computes, for every node v, a (k + 1)-representative set P̂ r

s,v in line 2 (for
r = A1 · · · Ak) and subsequently iterates over each set of nodes X in P̂ r

s,v to test if there
is a path from v to t that avoids X.

72

5.3 Main Upper Bound for PSimPath

For the correctness of the algorithm, the next lemma is crucial.

Lemma 5.3.11. Let r1T ú be a 0-bordered expression with r1 = A1 · · · Ak1 and let L(r2)
be an arbitrary finite language with words up to length k2. We define k = k1 + k2. Then,
a directed multigraph G = (V, E, E) has a simple path from s to t that matches r1T úr2 if
and only if there exists a node v œ V and X œ P̂ r1

s,v ™
k+1
rep P r1

s,v, such that G has a simple
path from s to t that matches r1T úr2 and with the first k1 + 1 nodes belonging to X.

Proof. The if direction is straightforward. For the only-if direction, let p = e1 · · · en be a
shortest simple path from s to t that matches r1T úr2. We first give the intuition of the
proof. We will partition p as depicted in Figure 5.4, depending on whether p is short or
long. Here, p is the path consisting of the solid edges. Since P and Q are disjoint, we will
find a path P Õ with V (P Õ) œ P̂ r1

s,vk1
that is node-disjoint from Q. We then show that, if p

is long, P Õ and R must be disjoint, otherwise it will contradict p being a shortest path.
More precisely, we make the following case distinction. If |p| Æ 2k1 + k2 + 1, we

define P = e1 · · · ek1 and Q = ek1+2 · · · en. Clearly, P matches r1 and ek1+1 · Q matches
T úr2. Let vk1 = destination(ek1). We have that V (P) œ P r1

s,vk1
, |V (Q)| Æ k + 1, and

V (P) fl V (Q) = ÿ. Let P̂ r1
s,vk1

be a (k + 1)-representative set of P r1
s,vk1

. Then there exists
a set X œ P̂ r1

s,vk1
with X fl V (Q) = ÿ. By definition of P r1

s,vk1
, there exists a simple path

P Õ from s to vk1 with V (P Õ) = X that matches r1. Therefore, P Õ
· ek1+1 · Q is a simple

path from s to t that matches r1T úr2.
Otherwise, we have |p| > 2k1 + k2 + 1. We define P = e1 · · · ek1 , R = ek1+2 · · · en≠k≠1,

and Q = en≠k+1 · · · en. We thus have

p = P · ek1+1 · R · en≠k · Q.

Since p matches r1T úr2, we furthermore know that P matches r1, R matches T ú, and
Q matches T úT k1r2.2 Let vk1 = destination(ek1). Since |V (Q)| = k + 1, V (P) œ P r1

s,vk1
,

and V (P) fl V (Q) = ÿ, the definition of P̂ r1
s,vk1

™
k+1
rep P r1

s,vk1
guarantees, similar as in the

previous case, the existence of a path P Õ from s to vk1 that matches r1 with V (P Õ) œ P̂ r1
s,vk1

and V (P Õ) fl V (Q) = ÿ. Let P Õ = eÕ
1 · · · eÕ

k1
. If V (P Õ) is disjoint from V (R), the path

pÕ = P Õ
· ek1+1 · R · en≠k · Q

is a simple path matching r1T úr2, and we are done.
We show that P Õ must be disjoint from R. Towards a contradiction, assume that there

exists an i œ [k1≠1] such that destination(eÕ
i) = origin(ej) for some j œ {k1+2, . . . , n≠k}.3

We choose i minimal and build a new simple path pÕ = eÕ
1 · · · eÕ

iej · · · en. This path matches
A1 · · · AiT úT k1r2. And since r1T ú is 0-bordered, we have T ™ Ai for all 1 Æ i Æ k1, so
the new path matches r1T úr2. Finally, we note that pÕ does not contain the edge ek1+1,
so pÕ is shorter than p, which contradicts the assumption that p was a shortest simple
path from s to t that matches r1T úr2. So P Õ must be disjoint from R.

2
The path Q does not necessarily match T k1 r2, since r2 might contain words shorter than k2.

3
Since P and R are disjoint, we have s, vk1 /œ V (R).

73

Chapter 5 Fine-grained Dichotomy for STEs

Notice that we allow T = ÿ in Lemma 5.3.11. Since L(ÿú) = {Á}, this means that the
lemma also deals with the case where the expression is just A1 · · · Ak1 . From the proof
of Lemma 5.3.11 we can also infer the following corollary, which states that shortest
matching paths can also be found with this method. It will be useful when considering
enumeration problems in Part III.

Corollary 5.3.12. Let r1T ú be a 0-bordered expression with r1 = A1 · · · Ak1 and let
L(r2) be an arbitrary finite language with words up to length k2. We define k = k1 + k2.
Then, a directed multigraph G = (V, E, E) has a simple path from s to t that matches
r1T úr2 if and only if there exists a node v œ V and X œ P̂ r1

s,v ™
k+1
rep P r1

s,v, such that G has
a shortest simple path from s to t that matches r1T úr2 and with the first k1 + 1 nodes
belonging to X.

The following lemma states that Algorithm 2 is correct and runs in fixed parameter
tractable time.

Lemma 5.3.13. PSimPath(R) is in FPT for the class R of 0-bordered STEs of the form
r = A1 · · · AkT ú. More precisely, it is in time 2O(|r|)

· |E||V |
2.

Proof. The problem can be solved using Algorithm 2. Its correctness follows directly
from Lemma 5.3.11 with r2 = Á. Using Lemma 5.3.9, we now show that the algorithm is
indeed an FPT algorithm.

We obtain from Lemma 5.3.9 that line 2 takes O
!
8k+o(k)

|E| log |V | + |r||E|
"

time for
each v œ V . Since we need to consider at most |V | ·

!2(k+1)
k+1

"
· 2o(2(k+1)) sets X in line 3,

the number of such sets we need to consider throughout the entire algorithm is at most
O(|V |4k+o(k)). Finally, line 6 can be checked by a reachability test (say, depth-first
search) in time O(|V | + |E|), so the overall running time of Algorithm 2 is bounded by

O
1

|V | · (8k+o(k)
|E| log |V | + |r||E|) + 4k+o(k)

· (|V |
2 + |E||V |)

2
,

which is clearly in FPT for the parameter k.

We now extend the algorithm to 0-bordered STEs of the form A1 · · · Ak1T úAÕ
k2

· · · AÕ
1.

Since STEs allow bounded expressions on both sides, we need to do more than simply
apply Algorithm 2. Instead, we will use a nesting thereof, which we present in Algorithm 3.
The next Lemma shows the correctness and running time of Algorithm 3.

Lemma 5.3.14. Let R be the class of 0-bordered STEs of the form A1 · · · Ak1T úAÕ
k2

· · · AÕ
1.

Then PSimPath(R) is in FPT. More precisely, it is solvable in time 2O(|r|)
· |V |

3
|E|.

Proof. We prove that Algorithm 3 solves the problem in the required time. Recall that

P r
s,v := {V (p) | there is a simple path p from s to v in G that matches r} .

We first show correctness. Let k = k1 + k2. Obviously, k Æ |r|. Using Lemma 5.3.11 with
r1 = A1 · · · Ak1 and r2 = AÕ

k2
· · · AÕ

1, it su�ces to consider paths in which the first k1 + 1

74

5.3 Main Upper Bound for PSimPath

Algorithm 3: Algorithm for 0-bordered STEs
Input: A directed multigraph G = (V, E, E), nodes s, t in G, and 0-bordered

regular expression r = A1 · · · Ak1T úAÕ
k2

· · · AÕ
1

Output: Does there exist a simple path from s to t matching r?
1 for all v œ V do

2 Compute P̂ r1
s,v ™

k1+k2+1
rep P r1

s,v in G with r1 = A1 · · · Ak1 .
3 for all sets X œ P̂ r1

s,v do

4 V Õ
Ω (V \ X) fi {v}

5 EÕ
Ω {e œ E | E(e) œ V Õ

◊ � ◊ V Õ
}

6 for all u œ V Õ
do

7 Compute P̂ r2
u,t ™

k2+1
rep P r2

u,t in (V Õ, EÕ, E
--
EÕ) with r2 = AÕ

k2
· · · AÕ

1.
8 for all sets X Õ

œ P̂ r2
u,t do

9 V ÕÕ
Ω (V Õ

\ X Õ) fi {u}

10 EÕÕ
Ω {e œ E | E(e) œ V ÕÕ

◊ T ◊ V ÕÕ
} B (V ÕÕ, EÕÕ) has only

T -edges
11 if there exists a path from v to u in (V ÕÕ, EÕÕ, E

--
EÕÕ) then

12 return “yes”

13 return “no”

nodes belong to a set X œ P̂ r1
s,v ™

k+1
rep P r1

s,v for some v œ V . Then we need to find the rest
of the path, that is, a simple path from v to t that matches T úAÕ

k2
· · · AÕ

1 and that does
not use nodes in X \ {v}.

We can apply Lemma 5.3.11 on the graph obtained from (V Õ, EÕ, E
--
EÕ) by reversing all

edges and using the expression AÕ
1 · · · AÕ

k2
T úÁ. Hence, if such a path exists in (V Õ, EÕ), then

there exists a node u such that its last k2 + 1 nodes belong to a set X Õ
œ P̂ r2

u,t ™
k2+1
rep P r2

u,t.
It then remains to test if there is a path from v to u that matches T ú and avoids the
nodes in (X fi X Õ) \ {u, v}, which is done in line 11. This concludes the correctness proof.

We next show that the algorithm is indeed in FPT. Lemma 5.3.9 allows us to com-
pute, after the preprocessing phase which takes O(|r||E|) time, P̂ r1

s,v on line 2 in time
O(8k+o(k)

|E| log |V |) and such that its size is at most
!2k1+k2+2

k1+1
"

· 2o(k1+k2). Similarly,
we can compute P̂ r2

u,t on line 7 in time O(8k+o(k)
|E| log |V |) and such that its size is at

most
!2k2+2

k2+1
"

· 2o(k2).
This means that we need to consider O(|V | · 4k+o(k)) many sets in line 3. Computing

P̂ r2
u,t takes time O

!
8k+1+o(k+1)

|E| log |V |
"

for each u œ V , so we have O(|V |
2

· 4k+o(k)
·

8k+o(k)
|E| log |V |) time for this part and need to consider at most O(|V |

2
·4k+o(k)

·4k+o(k))
many sets in line 8. Finally, the reachability test in line 11 is in O(|V | + |E|), so in sum
we obtain a running time of

O
1

|r||E| + |V |
2

· 4k+o(k)
·

1
8k+o(k)

|E| log |V | + 4k+o(k)
· (|V | + |E|)

2 2
.

75

Chapter 5 Fine-grained Dichotomy for STEs

The previous lemma only dealt with 0-bordered STEs of the form A1 · · · Ak1T úAÕ
k2

· · · AÕ
1.

The next lemma generalizes this to all 0-bordered STEs.

Lemma 5.3.15. Let R be the class of 0-bordered STEs. Then PSimPath(R) is in FPT.
More precisely, it is solvable in time 2O(|r|)

· |V |
3
|E|.

Proof. We prove the lemma by case distinction on the form of r. Recall that r =
BpreT úBsu�. We di�erentiate between the forms of Bpre and Bsu�. There are two
possible forms, that is (1) B1? · · · B¸? with ¸ Ø 0 or (2) B1 · · · B¸ with ¸ Ø 1. If Bpre and
Bsu� are of form (1), the language of r is downward closed. Therefore the entire problem
reduces to a reachability problem on a product between G and an NFA for r. According
to Lemma 5.3.1, this problem can be solved in time O(|G||r|), since it is possible to
compute an NFA of size |r| for each STE r.

If Bpre and Bsu� are both of form (2), the result follows from Lemma 5.3.14, which
internally uses Algorithm 3, in time 2O(|r|)

· |V |
3
|E|. We now explain how Algorithm 3

can be changed to work if Bpre is of form (2) and Bsu� of form (1). Assume we have
r = A1 · · · Ak1T úAÕ

k2
? · · · AÕ

1?. Then we replace everything from line 6 to line 12 with a
test for a simple path from v to t matching the downward closed language T úAÕ

k2
? · · · AÕ

1?.
The correctness is again by Lemma 5.3.11. For the running time we observe that testing
if there is a simple path matching T úAÕ

k2
? · · · AÕ

1? is in time O(|G||r|) by Lemma 5.3.1,
since the language is downward closed. The running time in this case is therefore

O
1

|r||E| + |V | ·

1
8|r|+o(|r|)

|E| log |V | + 4|r|+o(|r|)
· |G||r|

22
.

The case r = A1? · · · Ak1?T úAÕ
k2

· · · AÕ
1 is symmetric. To see this, notice that it is

equivalent to deciding if there is a simple path from t to s that matches the regular
expression AÕ

1 · · · AÕ
k2

T úAk1? · · · A1? in the multigraph G with all edges reversed.

Lemma 5.3.16. Let c œ N be a constant and let R be the class of STEs with cut border
at most c. Then SimPath(R) is in FPT. More precisely, it is in time 2O(|r|)

· |V |
c+3

|E|.

Proof. Let r œ R and let c1 and c2 be the left and right cut border of r, respectively.
Hence, r = A1 . . . Ac1rÕAÕ

c2 · · · AÕ
1. (If ci = 0, then the respective part of r is simply

missing.) Let G = (V, E, E) a directed multigraph. We can compute, for all u, v œ V ,
all paths p1 from s to u matching A1 · · · Ac1 and all paths p2 from v to t matching
AÕ

c2 · · · AÕ
1 in time O(|V |

c).4 We then do a loop over all pairs (p1, p2) of such paths that
are node-disjoint. For the remainder of the proof, fix such a pair (p1, p2). We delete in
G all nodes in (V (p1) \ {u}) fi (V (p2) \ {v}). In the remaining multigraph, we search a
path from u to v that matches the rest of the regular expression. The rest rÕ can have
one of the following forms.

4
For the purpose of the proof, it su�ces to compute the paths without the edge labels here. For deciding

whether there exists a simple path, it su�ces to know that there exist node-disjoint simple paths

matching A1 · · · Ac1 and AÕ
c2 · · · AÕ

1 and which nodes they use. We dropped the exact labels to have

O(|V |c) complexity.

76

5.4 Main Lower Bound for PSimPath

• rÕ = Ac1+1 · · · Ak1T úAÕ
k2

· · · AÕ
c2+1,

• rÕ = A1? · · · Ak1?T úAÕ
k2

· · · AÕ
c2+1,

• rÕ = Ac1+1 · · · Ak1T úAÕ
k2

? · · · AÕ
1?, or

• rÕ = A1? · · · Ak1?T úAÕ
k2

? · · · AÕ
1?.

These are the only possibilities and each of them is 0-bordered. Thus, we can use
Lemma 5.3.15, which allows us to solve PSimPath(rÕ) in time 2O(|rÕ|)

· |V |
3
|E|. Since

|rÕ
| Æ |r|, this shows that PSimPath(R) is in FPT. So we need 2O(|rÕ|)

· |V |
3
|E| time for

each set of nodes of size c1+c2, and therefore have an overall time of 2O(|r|)
·|V |

c+3
|E|.

5.4 Main Lower Bound for PSimPath

We prove part (b) of Theorem 5.2.2 by a reduction from variants of the TwoDisjointPaths

problem. A two-colored graph is a directed graph in which every edge is labeled a or b.
We consider the following parameterized problems:

• PTwoDisjointPaths: Given a directed graph G, nodes s1, t1, s2, t2, and parameter
k œ N, are there simple paths p1 from s1 to t1 and p2 from s2 to t2 such that p1
and p2 are node-disjoint and p1 has length k?

• PTwoColorDisjointPaths: Given a two-colored directed graph G, nodes sa, ta, sb, tb,
and parameter k œ N, is there a simple a-path pa from sa to ta and a simple b-path
pb from sb to tb such that pa and pb are node-disjoint and pa has length k?

It is well-known that TwoDisjointPaths, the non-parameterized version of PTwoDisjoint-

Paths, is NP-complete [98].
We will prove that both PTwoColorDisjointPaths and PTwoDisjointPaths are W[1]-hard.

The latter result is stronger, but we start by proving W[1]-hardness for PTwoColorDisjoint-

Paths, because it makes the proof for PTwoDisjointPaths, which relies on it, easier to
understand.

5.4.1 Parameterized Two Color Disjoint Paths

In this section, we prove the following theorem.

Theorem 5.4.1. PTwoColorDisjointPaths is W[1]-hard.

To prove the theorem, we use an adaptation of a proof of Slivkins [188, Theorem 2.1],
who proved that Edge-Disjoint-Paths parameterized with the number of disjoint paths
is W[1]-hard in directed acyclic graphs (DAG). Furthermore, we use the idea of control
nodes by Grohe and Grüber [110, Lemma 16], who showed that Slivkins’ construction
can be extended to show that finding disjoint cycles in a directed graph is W[1]-hard
when parameterized by the number of cycles.

The proof is by reduction from the parameterized version of Clique defined as follows:

77

Chapter 5 Fine-grained Dichotomy for STEs

u1

v1

a

u2

v2

a

uk

vk

a

uk+1

vk+1

a

b

b

b

b

· · ·

· · ·

Figure 5.5: Internal structure of each of the gadgets Gi,j .

• PClique: Given an undirected graph G and a parameter k œ N, is there a clique of
size k in G?

It is well-known that PClique is W[1]-complete [87].

Construction 5.4.2. (Construction of Gcol and kcol.) Given an input instance (G, k) of
PClique, we construct a directed two-colored graph Gcol, nodes sa, ta, sb, tb, and parameter
kcol such that (G, k) œ PClique if and only if (Gcol, sa, ta, sb, tb, kcol) œ PTwoColorDisjoint-

Paths. Let n be the number of nodes of G. The graph Gcol contains kn gadgets Gi,j

with i œ [k] and j œ [n], each consisting of 2(k + 1) nodes. Gadgets will be ordered in
k rows, where row i has the gadgets Gi,1, . . . , Gi,n. Furthermore, Gcol contains k + 1
additional nodes r1, . . . , rk+1 that link the rows together, and k + 1 + k(k ≠ 1)/2 control
nodes c1, . . . ck+1 and ci1,i2 with 1 Æ i1 < i2 Æ k that will limit the number of disjoint
paths from row i ≠ 1 to row i or from row i1 to i2, respectively. (The edge cases, c1 and
ck+1, do not link rows together but just serve as start and end node, respectively.) We
define sa = c1, ta = ck+1, sb = r1, and tb = rk+1. We will now explain how the nodes
are connected in Gcol. We will denote by u

a
æ v that there is an a-edge from u to v

(similar for b-edges). Each gadget Gi,j contains a disjoint copy of 2(k + 1) nodes which
we call u1, u2, . . . , uk+1 and v1, v2, . . . , vk+1. To simplify notation, we sometimes give
these nodes the same name (for example in Figures 5.6, 5.7, and 5.8), even though they
are di�erent. One such gadget is depicted in Figure 5.5. To avoid ambiguity, we may
also refer to node u¸ in gadget Gi,j by Gi,j [u¸]. Each gadget contains edges u¸

a
æ v¸ (for

every ¸ œ [k + 1]) and u¸
b

æ u¸+1 and v¸
b

æ v¸+1 (for every ¸ œ [k]).
We now explain how the gadgets Gi,j are connected within the same row, see Figure 5.6.

In each row i œ [k], node ri has two outgoing edges ri
b

æ Gi,1[u1] and ri
b

æ Gi,2[v1]. We
also have two incoming edges for ri+1, namely Gi,n≠1[uk+1] b

æ ri+1 and Gi,n[vk+1] b
æ ri+1.

Furthermore, we have the edges Gi,j [uk+1] b
æ Gi,j+1[u1] and Gi,j [vk+1] b

æ Gi,j+1[v1] for
every j œ [n ≠ 1]. We also add edges Gi,j [uk+1] b

æ Gi,j+2[v1] for every j[n ≠ 2]. The
latter edges ensure that every b-labeled path from ri to ri+1 “skips” exactly one gadget
Gi,j for some j œ [n].

We now explain how the gadgets Gi,j are connected in di�erent rows via the control
nodes ci and ci1,i2 (Figure 5.7). We first consider the edges from row i to i + 1. In each
row i = 1, . . . , k ≠ 1, and every j = 1, . . . , n, we add the edges Gi,j [vk+1] a

æ ci+1 and
ci+1

a
æ Gi+1,j [ui+2]. Furthermore, we add the edges c1

a
æ G1,j [u2] and Gk,j [vk+1] a

æ ck+1.

78

5.4 Main Lower Bound for PSimPath

ri

ri+1

u1

v1

uk+1

vk+1

u1

v1

uk+1

vk+1

u1

v1

uk+1

vk+1

u1

v1

uk+1

vk+1

Gi,1 Gi,2 Gi,3 Gi,n

Figure 5.6: The b-edges in row i. The internal structure of the Gi,j is as in Figure 5.5.

u1

v1

uk+1

vk+1

u1

v1

uk+1

vk+1

u1

v1

uk+1

vk+1

u1

v1

uk+1

vk+1

u1

v1

uk+1

vk+1

u1

v1

uk+1

vk+1

Gi,1 Gi,2 Gi,3

Gi+1,1 Gi+1,2 Gi+1,3

ui+2

vi+2

ui+2

vi+2

ui+2

vi+2

ui

vi

ui

vi

ui

vi

ui+1

vi+1

ui+1

vi+1

ui+1

vi+1

ci,i+1 ci+1

Figure 5.7: The a-edges from row i to row i + 1. (We assume n = 3 in the picture).

We connect two rows i1, i2, with 1 Æ i1 < i2 Æ k, by adding the edges Gi1,j [vi2] a
æ ci1,i2 ,

and ci1,i2
a

æ Gi2,j [ui1] for all j = 1, . . . , n.
The edges of the original graph G are modeled in Gcol by adding the edge Gi2,x[vi1] a

æ

Gi1,y[ui2+1] if and only if 1 Æ i1 < i2 Æ k, x ”= y, and (x, y) œ E. This is illustrated in
Figure 5.8.

Finally, we define kcol = k(k ≠ 1)/2 · 5 + 3k. ⇤

We denote by Ga
col the subgraph of Gcol from Construction 5.4.2 that contains only

the a-edges. We now prove a lemma that summarizes useful properties of Ga
col.

Lemma 5.4.3. The directed graph Ga
col has the following properties:

(a) Ga
col is a DAG. Moreover, there is a strict total order <c on all control nodes C such

that, for every path from a node v œ C to another node vÕ
œ C where no intermediate

vertex is in C, node vÕ is the successor of v in <c. The smallest and largest nodes in
<c are c1 to ck+1, respectively.

79

Chapter 5 Fine-grained Dichotomy for STEs

u1

v1

uk+1

vk+1

u1

v1

uk+1

vk+1

u1

v1

uk+1

vk+1

ui2

vi2

ui1

vi1

ui2

vi2

ui2+1

vi2+1

ui2+1

vi2+1
.

.

.
Gi1,y Gi1,z

Gi2,x

ci1,i2

Figure 5.8: The a-edges in the gadgets and between gadgets Gi1,y, Gi1,z and Gi2,x, with
i1 < i2 ≠ 1, under the assumption that (x, y) œ E and (x, z) /œ E.

(b) Each path in Ga
col from c1 to ck+1 visits all control nodes, that is, it contains all ci

and ci1,i2 , with i œ [k + 1] and 1 Æ i1 < i2 Æ k. Furthermore, it visits the control
nodes in the order <c.

(c) Each path in Ga
col has length at most kcol. Its length is exactly kcol if and only if it is

from c1 to ck+1.

(d) Each path in Ga
col of length kcol has at least one edge u¸

a
æ v¸ in every row of Ga

col.

Proof. First observe that Ga
col contains a fixed part that depends only on n and k, plus a

set of edges that represent edges in G, that is, edges that are present in Gcol if and only
if there exists a corresponding edge in G. Therefore, every possible graph Gcol that the
reduction produces is a subgraph of the case where G is a complete graph (that is, if G
has n nodes, it is the n-clique). Let Ga

clique denote the graph Ga
col in the case where G is

the n-clique.
We first prove part (a). We show that, if Ga

clique has a cycle, then this cycle must
contain a control node. Indeed, within the same row, the graph Ga

clique only has the edges
from ui to vi in all the gadgets. So, there cannot be a cycle that only contains nodes
from a single row. Therefore, the cycle must contain a path from some node in a row i1
to a node in row i2, for i1 < i2. Since every path in Ga

clique from row i1 to i2 with i1 < i2
contains at least one control node by construction, we have that every cycle in Ga

clique
must contain a control node. It therefore remains to show that Ga

clique contains no cycle
that uses a control node. To this end, observe that the relation ª where n1 ª n2 if and
only if n1 ”= n2 and n2 is reachable from n1 is a strict total order

c1 ª c1,2 ª c1,3 ª . . . ª c1,k ª c2 ª c2,3 ª . . . ª ck≠2,k ª ck≠1,k ª ck ª ck+1 (†)

on the control nodes C. That is, the order is such that control nodes are reachable in
Ga

clique from all “smaller” control nodes and none of the “larger” control nodes. Notice

80

5.4 Main Lower Bound for PSimPath

that ª satisfies the requirements for <c. Part (b) follows from (a). By (a), the smallest
and largest nodes in <c are c1 and ck+1, respectively. Assume that p is a path from c1
to ck+1. Again by (a), p must visit every control node, in the order <c.

We now prove part (c). First we prove that, between two consecutive5 control nodes
in Ga

clique, each path has a fixed length that depends only on the kind of control nodes.
Then, since Ga

clique is a DAG by part (a), we can simply concatenate paths to obtain the
length of paths from c1 to ck+1, showing (c). In this proof, when we consider a path that
visits nodes in row i in Ga

clique, then by construction of Ga
clique, the length of this path

is independent of the gadget Gi,j that the path visits. That is, the path’s length is the
same for every j œ [n]. To simplify notation, we therefore omit the j in Gi,j [u] and write
Gi[u] instead.

We first consider the length of paths between consecutive control nodes in the ordering
(†). Therefore, fix two such consecutive control nodes n1 and n2. We make a case
distinction:

• n1 = ci and n2 = ci,i+1: Each path from ci to ci,i+1 uses exactly the nodes
ci, Gi[ui+1], Gi[vi+1], ci,i+1 in that order and therefore has length 3.

• n1 = ci,j and n2 = ci,j+1: Each path from ci,j to ci,j+1 with 1 Æ i < j Æ k ≠ 1
uses exactly the nodes ci,j , Gj [ui], Gj [vi], Gi[uj+1], Gi[vj+1], ci,j+1 in that order and
therefore has length 5.

• n1 = ci,k and n2 = ci+1: Each path from ci,k to ci+1 uses exactly the nodes
ci,k, Gk[ui], Gk[vi], Gi[uk+1], Gi[vk+1], ci+1 in that order and therefore has length 5.

• n1 = ck and n2 = ck+1: Each path from ck to ck+1 uses exactly the nodes
ck, Gk[uk+1], Gk[vk+1], ck+1 in that order and therefore has length 3.

Since ª is a strict total order, this means that each path from c1 to ck+1 in Ga
clique has

the same length. We show that this length is exactly k(k ≠ 1)/2 · 5 + 3k = kcol. The paths
ci to ci,i+1 (for all i œ [k ≠ 1]) and ck to ck+1 sum up to length 3k. For a fixed i we have
5 · (k ≠ i ≠ 1) paths from ci,i+1 to ci,k, which sum up to length 5(k(k ≠ 1)/2) ≠ 5k + 5 for
i œ [k ≠ 2]. Finally, we need to consider the paths from ci,k to ci+1, which, for i œ [k ≠ 1],
sum up to length 5k ≠ 5. This shows that each path Ga

clique from c1 to ck+1 has length
exactly kcol.

Since Ga
clique is a DAG and every node in Ga

clique is reachable from c1, and ck+1 is
reachable from all nodes and does not have outgoing edges in Ga

clique, the longest paths
in Ga

clique are from c1 to ck+1. This shows (c).
Due to (b) and (c) each path of length kcol in Ga

clique contains ci for i œ [k + 1]. Since
each path from ci to the next control node contains (Gi,j [ui+1], Gi,j [vi+1]), for a j œ [n]
we also have (d).

We are now ready to prove Theorem 5.4.1.
5
Control nodes x and y such that x <c y and there are no other control nodes in between.

81

Chapter 5 Fine-grained Dichotomy for STEs

Proof of Theorem 5.4.1. We prove that (G, k) is a yes-instance of PClique if and only if
(Gcol, sa, ta, sb, tb, kcol) is a yes-instance of PTwoColorDisjointPaths. Let us first assume
that the undirected graph G has a k-clique with nodes {n1, . . . , nk}. Then an a-path
can go from c1 to ck+1 using only the gadgets Gi,ni with i œ [k]. The reason is that,
since (ni1 , ni2) œ E, the edges Gi2,ni2

[vi1] a
æ Gi1,ni1

[ui2+1] exist for all i1 < i2. Due to
Lemma 5.4.3(c), this path has exactly kcol edges. The b-path, on the other hand, can
go from r1 to rk+1 and skip exactly Gi,ni for all i œ [k] (using the diagonal edges in
Figure 5.6). Since it skips these Gi,ni , it is node-disjoint from the a-path and therefore
we have a solution for PTwoColorDisjointPaths.

For the other direction let us assume that there exists a simple a-path pa from c1 to
ck+1 and a simple b-path pb from r1 to rk+1 in Gcol such that pa and pb are node-disjoint
and pa has length kcol. We show that G has a k-clique. Since every b-path from r1
to rk+1 goes through each row, that is, from ri to ri+1 for all i œ [k], this is also the
case for pb. By construction, pb must also skip exactly one gadget in each row, using
the diagonal edges in Figure 5.6. Indeed, this is the only way to move from ri to ri+1
using only b-edges. Furthermore, for each gadget Gi,j that pb visits, it must be the case
that it either visits all nodes u1, . . . , uk+1 or all nodes v1, . . . , vk+1. (This is immediate
from Figure 5.5, showing all internal edges of a gadget.) Therefore, since pa and pb are
node-disjoint, the path pa cannot visit any gadget Gi,j already visited by pb. Therefore,
pa, which goes from c1 to ck+1, can only do so through the k skipped gadgets, call them
Gi,ni for i œ [k]. Recall that the edges Gi2,ni2

[vi1] a
æ Gi1,ni1

[ui2+1] with i1 < i2 only
exist if (ni1 , ni2) œ E. As these edges are necessary for the existence of the a-path from
c1 to ck+1 that uses only the skipped gadgets, all nodes ni must be pairwise adjacent in
G. That is, they form a clique of size k in G.

Parameterized Two Disjoint Paths

The two colors in the proof of Theorem 5.4.1 play a central role: since the a-path cannot
use any b-edges and vice versa, we have much control over where the two paths can be.
We now show that the construction in Theorem 5.4.1 can be strengthened so that we do
not need the two colors. To this end, we replace the b-edges by long paths to ensure that
all paths from sa to ta that have length at most kcol cannot use b-edges.

Construction 5.4.4. We construct the directed graph Gnode from Gcol by replacing
each b-edge with a b-path of length kcol. (Even though PTwoDisjointPaths does not care
about a-edges or b-edges, we keep them to simplify the reasoning in the remainder of the
proof.) We define s1 = sa, t1 = ta, s2 = sb, and t2 = tb. (Notice that Gcol has O(k2n)
nodes while Gnode has O(k2n · kcol) nodes.) ⇤
Lemma 5.4.5. In Gnode, we have that

(a) every path from s1 to t1 has length at least kcol and

(b) every path from s1 to t1 has length exactly kcol if and only if it is an a-path.

(c) Furthermore, all properties of Ga
col from Lemma 5.4.3 also hold for Ga

node.

82

5.4 Main Lower Bound for PSimPath

Proof. For part (a) we have two cases. If a path from s1 to t1 is an a-path, the result is
immediate from Lemma 5.4.3(c). If it uses at least one b-edge, then it uses at least kcol
b-edges by construction. Thus, the path will have length at least kcol.

For part (b), if a path from s1 to t1 has length exactly kcol, it uses at least one a-edge
since t1 only has incoming a-edges. If it used at least one b-edge, it would therefore use
at least kcol + 1 edges which contradicts that the length is kcol. The converse direction is
immediate from Lemma 5.4.3(c). The last point is obvious since Ga

col and Ga
node are the

same.

Lemma 5.4.6. If (Gnode, s1, t1, s2, t2, kcol) œ PTwoDisjointPaths, then each solution
p1, p2 is such that p1 is an a-labeled path and p2 a b-labeled path.

Proof. It follows from Lemma 5.4.5 that p1 can only use a-edges. We now show that the
path p2 from s2 to t2 can only use b-edges, that is, we show that it cannot use a-edges.
There are three types of a-edges in Gnode: (i) the ones from and to control nodes, (ii)
“upward” edges that connect row i2 to row i1 with i1 < i2, and (iii) edges from u¸ to v¸

in one gadget.
Notice that, by construction, p2 must visit nodes in row 1 and later also nodes in

row k. To do so, p2 cannot use edges from or to control nodes (type (i)), since, due to
Lemma 5.4.3(b), p1 already visits all control nodes. So p2 cannot go from row i to a row
j with i < j via a-edges. This means that, if i < j, then p2 can only go from row i to
row j through ri+1 (and through nodes in row i + 1), since every remaining path from
row i to a larger row goes through ri+1. So, in order to go from row 1 to row k, path p2
needs to visit all nodes r2, . . . , rk, in that order. This means that it is also impossible for
p2 to use edges of type (ii). Indeed, if p2 used an edge from row j to row i with j > i,
then it would need to visit ri+1 a second time to arrive back in row j. Finally, if p2 used
an edge of type (iii) in row i, then, by construction, it would have to visit every gadget
in this row. But since p1 already uses at least one edge from u¸ to v¸ in each row, see
Lemma 5.4.3(d), this means that p2 cannot be node-disjoint with p1. This completes the
proof.

Theorem 5.4.7. PTwoDisjointPaths is W[1]-hard.

Proof. We reduce from PTwoColorDisjointPaths, which is W[1]-hard due to Theorem 5.4.1.
We show that (Gcol, sa, ta, sb, tb, kcol) œ PTwoColorDisjointPaths if and only if (Gnode, s1,

t1, s2, t2, kcol) œ PTwoDisjointPaths. If (Gcol, sa, ta, sb, tb, kcol) œ PTwoColorDisjointPaths,
then we can use the corresponding paths in Gnode (where we follow the longer b-paths in
Gnode instead of the b-edges in Gcol).

Conversely, if (Gnode, s1, t1, s2, t2, kcol) œ PTwoDisjointPaths, it follows from Lemma 5.4.6
that the paths p1 and p2 correspond to paths pa and pb that are solutions for (Gcol, sa, ta, sb,
tb, kcol) œ PTwoColorDisjointPaths.

Reduction to PSimPath

We are now ready to proof the hardness side of Theorem 5.2.2, that is, Theorem 5.2.2(b).

83

Chapter 5 Fine-grained Dichotomy for STEs

Lemma 5.4.8. Let R be a class of STEs that can be sampled. If R is not cuttable, then
the problem PSimPath(R) is W[1]-hard.

Proof. Let R be an arbitrary but fixed class of STEs that is not cuttable and that
can be sampled. We show that PSimPath(R) is W[1]-hard by giving an FPT reduction
from PTwoDisjointPaths restricted to instances of the form (Gnode, s1, t1, s2, t2, kcol) from
Construction 5.4.4. The problem PTwoDisjointPaths is W[1]-hard due to Theorem 5.4.7.

Consider an input (Gnode, s1, t1, s2, t2, kcol) of PTwoDisjointPaths. We construct an in-
put (Glab, s, t, r) for PSimPath(R) such that (Gnode, s1, t1, s2, t2, kcol) œ PTwoDisjointPaths

if and only if (Glab, s, t, r) œ PSimPath(R).
Since R is not cuttable and can be sampled, a kÕ-bordered expression r œ R for some

kÕ
Ø 2kcol + 1 can be computed within time f(kcol), for some computable function f .

Since r can be computed in time f(kcol), we know that |r| Æ f(kcol). Let klab be the
maximum of the left and right cut border of r. Since kÕ is the sum of the left and right
cut borders, klab Ø kcol + 1. Here we only consider the case that the left cut border is
klab, that is, T ”™ Aklab , the other case is symmetric. We therefore know that r is of the
form

r = A1 · · · Akcol · · · Aklab · · · Ak1T úAÕ
k2 · · · AÕ

1

or

r = A1 · · · Akcol · · · Aklab · · · Ak1T úAÕ
k2? · · · AÕ

1? .

We now construct (Glab, s, t). Fix three words w1, w2, and w3 such that

• w1 œ L(A1 · · · Akcol),

• w2 œ L(Akcol+1 · · · Aklab · · · Ak1), and

• w3 œ L(AÕ
k2

· · · AÕ
1).6

Notice that such words indeed exist. For the construction of Glab, we start with the
graph Gnode. The main idea is to have at most one edge with a label in Aklab that is
reachable from s by a path of length klab ≠ 1. More formally, fix an x œ (T \ Aklab), which
must exist due to choice of klab.

• We replace each b-edge in Gnode with an x-path of length klab (using klab ≠ 1 new
nodes for each replacement). We need to do this, because klab is potentially much
larger than kcol.

• We change the labels of the a-edges in Gnode such that each path from s1 to t1 is
labeled w1. Notice that the label for each such edge is well-defined. Indeed, by
Lemma 5.4.3(c) we have that each a-path from s1 to t1 has length exactly kcol. If
there were an edge e on an a-path from s1 to t1 that is reachable from s1 through
n1 edges and also through n2 edges, with n1 ”= n2, then, since t1 is reachable from
e, it means that there would be paths of di�erent lengths from s1 to t1.

6
We use w3 œ L(AÕ

k2
· · · AÕ

1) in case that r ends with AÕ
k2

· · · AÕ
1 but also if it ends with AÕ

k2
? · · · AÕ

1?.

84

5.4 Main Lower Bound for PSimPath

• We add a path labeled w2 from t1 to s2. We refer to this path as the w2-labeled
path in the remainder of the proof.

• We add a path labeled w3 from t2 to a new node t, to which we will refer as the
w3-labeled path in the remainder of the proof.

The resulting tuple (Glab, s1, t, r) serves as input for PSimPath(R). This concludes the
construction.

We now show that the reduction is correct. Therefore, we show that (Gnode, s1, t1, s2, t2,
kcol) œ PTwoDisjointPaths if and only if (Glab, s1, t, r) œ PSimPath(R). If (Gnode, s1, t1, s2,
t2, kcol) œ PTwoDisjointPaths with solution p1 and p2, then there exists a (unique) simple
path from s1 to t in Glab that contains the nodes V (p1) fi V (p2) and matches r.

Conversely, if (Glab, s1, t, r) œ PSimPath(R), then there exists a simple path p from s1
to t in Glab that matches r. We will now prove the following:

(i) Consider the graph Ga
node, obtained from Gnode by deleting all b-edges and nodes

that have no adjacent a-edges. The nodes of p[0, kcol] form a simple path from s1
to t1 in Ga

node.

(ii) The path p[0, k1] ends in s2 and is labeled w1w2.

(iii) The path p is labeled w1w2wÕw3 with wÕ
œ L(T ú). Its su�x of length |w3| starts in

t2 and ends in t.

(iv) The subpath of p from s2 to t2 is an x-path.

We prove (i). By definition of r, the edge p[klab ≠ 1, klab] is labeled by some symbol in
Aklab . Therefore, this symbol cannot be x. By construction of Glab, this edge is either
an edge that was labeled a in Gnode, an edge on the w2-labeled path, or an edge on the
w3-labeled path (since all other edges are labeled x).

The w3-labeled path is not reachable from s1 with a path of length smaller than klab,
so this cannot be the case. Furthermore, the w2-labeled path starts in t1 and is therefore
only reachable with a path of length at least kcol (see Lemma 5.4.5), so we can also
exclude that. Therefore, the first kcol + 1 nodes must form an a-path in Gnode. From
Lemma 5.4.3(c), we know that each path in Ga

node of length kcol goes from s1 to t1 which
implies (i). Since all nodes (except s2) that belong to the w2-labeled path of length
k1 ≠ kcol have only one outgoing edge, we have that p[0, k1] ends in s2 and must match
w1w2. This shows (ii).

Since p matches r = A1 · · · Ak1T úAÕ
k2

· · · AÕ
1 or r = A1 · · · Ak1T úAÕ

k2
? · · · AÕ

1?, and
since each word in A1 · · · Ak1 has length k1, it follows that lab(p) = w1w2wÕ with
wÕ

œ L(T úAÕ
k2

· · · AÕ
1) fi L(T úAÕ

k2
? · · · AÕ

1?).
By construction of Glab, the w3-labeled path is the unique path of length |w3| leading

to t. Therefore, each path from s1 to t in Glab must end with the w3-labeled path
which is from t2 to t. Since w3 œ L(AÕ

k2
· · · AÕ

1) and |w3| is the length of every word in
L(AÕ

k2
· · · AÕ

1), we have that lab(p) = w1w2wÕw3 where wÕ
œ L(T ú). So we have (iii). Let

pÕ be the part of p labeled wÕ. It follows from (ii) and (iii) that pÕ is a path from s2 to t2.

85

Chapter 5 Fine-grained Dichotomy for STEs

Since it must be node-disjoint from p[0, kcol], which is entirely in Ga
node, it follows from

Lemma 5.4.6 that pÕ cannot use edges that correspond to ones in Ga
node.

Therefore, pÕ consists only of edges labeled x. This shows that Gnode and kcol are in
PTwoDisjointPaths, because p[0, kcol] corresponds to a path p1 and pÕ to p2, which are
solutions to PTwoDisjointPaths.

Finally, we note that the construction of (Glab, s1, t, r) can indeed be done in FPT
since the expression r œ R can be determined in time f(kcol) for a computable function
f , and all changes we made to the graph are in time h(kcol) · |Gnode|, for a computable
function h, which is FPT. Indeed, we only relabeled all edges, replaced each edge at most
once with klab new edges and added other paths of length at most |r|. Since |r| Æ f(kcol),
we indeed have an fpt-reduction.

5.5 Connection Between Simple Paths and Trails

LaPaugh and Rivest [141, Lemma 1 and Lemma 2] and Perl and Shiloach [174, Theorem
2.1 and Theorem 2.2] showed that there is a strong correspondence between trail and
simple path problems that we will use extensively and therefore revisit here. Since the
statements of the results do not precisely capture what we need, we have to be a bit
more precise.

The Split Graph The following construction is from LaPaugh and Rivest [141, Proof
of Lemma 1]. Let (G, s1, t1, . . . , sk, tk) be a directed multigraph G together with nodes
s1, t1, . . . , sk, tk. We define split(G, s1, t1, . . . , sk, tk) as the tuple (GÕ, sÕ

1, tÕ
1, . . . , sÕ

k, tÕ
k)

obtained as follows. The directed multigraph GÕ is obtained from G by replacing each
node v by two nodes vin and vout. A directed edge is added from vin to vout. All incoming
edges of v become incoming edges of vin and all outgoing edges of v become outgoing
edges of vout. For every si and ti, we define sÕ

i = sin
i and tÕ

i = tout
i . For a path p in

G, we denote by split(p) the path in GÕ that is obtained from p by replacing for each
edge e the node origin(e) by origin(e)out, destination(e) by destination(e)in, and adding
edges of the form (uin, uout) to the path. We give an example. If p can be written as
(u1, u2) · · · (un≠1, un), then split(p) can be written as

(uin
1 , uout

1)(uout
1 , uin

2) · · · (uout
n≠1, uin

n)(uin
n , uout

n).

The following Lemma is immediate from LaPaugh and Rivest’s construction.

Lemma 5.5.1. Let (GÕ, sÕ
1, tÕ

1, . . . , sÕ
k, tÕ

k) = split(G, s1, t1, . . . , sk, tk). Then the following
hold:

(1) For every i œ [k], the path p is a simple path from si to ti in G if and only if split(p)
is a trail from sÕ

i to tÕ
i in GÕ.

(2) For every i œ [k], the number of simple paths from si to ti in G equals the number of
trails from sÕ

i to tÕ
i in GÕ.

86

5.5 Connection Between Simple Paths and Trails

(3) There exist pairwise node disjoint simple paths of length ki from si to ti in G for
every i œ [k] if and only if there exist pairwise edge disjoint trails of length 2ki + 1
from sÕ

i to tÕ
i in GÕ for every i œ [k].

The Line Graph We denote by line(G, s1, t1, . . . , sk, tk) a variation on the line graph
of G [141, Proof of Lemma 2]. The line graph construction was used by LaPaugh and
Rivest to reduce the edge disjoint subgraph homeomorphism problem to the node disjoint
subgraph homeomorphism problem. We adapt it to multigraphs. More precisely, we
denote by line(G, s1, t1, . . . , sk, tk) the tuple (GÕ, s1, t1, . . . , sk, tk) obtained as follows. Let
G = (V, E, E) be a directed (unlabeled) multigraph. We construct the directed graph
GÕ = (V Õ, EÕ, E

Õ) were V Õ = {ve | e œ E} fi {s1, t1, . . . , sk, tk} and EÕ is the disjoint union
of

• {(ve1 , ve2) | e1, e2 œ E and destination(e1) = origin(e2)},

• {(si, ve) | i œ [k], e œ E, and si = origin(e)}, and

• {(ve, ti) | i œ [k], e œ E, and ti = destination(e)}.

For completeness, we define E
Õ((x, y)) = (x, y) for every edge (x, y) œ EÕ.

Lemma 5.5.2. Let (GÕ, s1, t1, . . . , sk, tk) = line(G, s1, t1, . . . , sk, tk). Then the following
hold:

(1) For every i œ [k], the path e1 · · · en is a trail from si to ti in G if and only if

(si, ve1)(ve1 , ve2) · · · (ven≠1 , ven)(ven , ti)

is a simple path in GÕ.

(2) For every i œ [k], the number of trails from si to ti in G equals the number of simple
paths from si to ti in GÕ.

(3) There exist pairwise edge-disjoint trails of length ki from si to ti in G for every
i œ [k] if and only if there exist pairwise node-disjoint simple paths of length ki + 1
from si to ti in GÕ for every i œ [k].

Proof. Properties (1) and (2) are immediate from the construction. Property (3) follows
from (1): if we have edge-disjoint trails, then the same simple paths as obtained in (1) are
node-disjoint and the other way around. If they were not node-disjoint, at least two would
share a node, say, ve in GÕ, but they only contain this node both if the corresponding
trails in G have the edge e, contradicting the edge-disjointness of the trails in G.

Adding Edge Labels If we additionally consider edge labels and RPQs, the corre-
spondence between simple paths and trails is a bit more complex. We prove here that
upper bounds transfer from simple path problems to trail problems. That is, we give a
variant of Lemma 5.5.2 for labeled graphs.

87

Chapter 5 Fine-grained Dichotomy for STEs

Notice that strengthening Lemma 5.5.1 for labeled graphs without changing the
language of the RPQ is impossible if FPT ”= W[1]. To see this, we note that the
expression akbú is conflict-free, but not cuttable. This implies that PTrail(akbú) is in
FPT while PSimPath(akbú) is W[1]-hard (see Theorem 5.2.2 and Theorem 5.2.4). Since
a strengthened version of Lemma 5.5.1 would imply that PSimPath(akbú) is at most as
hard as PTrail(akbú), such a lemma can only exist if FPT = W[1].

Lemma 5.5.3. Let r be an RPQ, let ‡ be an arbitrary symbol in �, let G be a directed
multigraph with labels in �, and s, t nodes in G. Then there exist a directed graph H and
nodes sÕ, tÕ such that there exists a trail from s to t in G that matches r if and only if there
exists a simple path from sÕ to tÕ in H that matches the RPQ ‡ · r. Furthermore, H, sÕ,
and tÕ can be computed using logarithmic space and H = (VH , EH , EH) with |VH | = O(|E|)
and |EH | = O(|E|

2).

Proof. Given a directed multigraph G = (V, E, E) and nodes s, t œ V , we will con-
struct a directed graph H and nodes sÕ and tÕ such that there exists a simple path
from sÕ to tÕ in H matching the RPQ ‡ · r if and only if there exists a trail from s
to t matching r in G. In fact, (H, sÕ, tÕ) = line(G, s, t) with labels. More precisely,
let ‡ œ � be fixed. Let H = (VH , EH , EH) with VH = {ve | e œ E} fi {sÕ, tÕ

} and
EH = {(ve1 , lab(e1), ve2) | e1, e2 œ E and destination(e1) = origin(e2)}fi{(sÕ, ‡, ve) | e œ

E and origin(e) = s} fi {(ve, lab(e), tÕ) | e œ E and destination(e) = t}. For complete-
ness, we define EH((x, a, y)) = (x, a, y) for every edge (x, a, y) œ EH . An example of this
reduction can be seen in Figure 5.9. Note that in the figure the nodes are named vE(e)
instead of ve to give a better overview. From this construction, it immediately follows
that |VH | = O(|E|) and |EH | = O(|E|

2).
We argue that this construction is correct. Indeed, assume there exists a path p =

e1 · · · en from s to t in G that matches r and has pairwise disjoint edges. Then the path

pÕ = (sÕ, ‡, ve1)(ve1 , lab(e1), ve2)(v(e2 , lab(e2), ve3) · · · (ven , lab(en), tÕ)

is a simple path from sÕ to tÕ in H that matches ‡ · r. The other direction follows
analogously since each path from sÕ to tÕ in H that matches ‡ · r has this form and we
can therefore find the corresponding path from s to t in G.

We note that, in the proof of Lemma 5.5.3, there is a clear correspondence between
nodes in H and edges in G. To be more precise, each node in H, except for sÕ and tÕ,
corresponds to exactly one edge in G. We therefore obtain the following corollary:

Corollary 5.5.4. Let r be an RPQ, G a directed multigraph, and s, t nodes in G. Let
(H, sÕ, tÕ) and ‡ · r be the instance obtained from G, s, and t as in Lemma 5.5.3. Then
there exists a bijection fsp from the set of trails from s to t in G to the set of simple
paths from sÕ to tÕ in H such that ‡ · lab(p) = lab(fsp(p)). Moreover, fsp and f≠1

sp are
computable in linear time.

Proof. Let p = e1 · · · en be a trail from s to t in G. Then we define

fsp(p) = (sÕ, ‡, ve1)(ve1 , lab(e1), ve2)(v(e2 , lab(e2), ve3) · · · (ven , lab(en), tÕ)

88

5.6 Bounds for PTrail

G

s

2

3

4

t

a

b

e

c

d

e

f
g =∆

H

sÕ

tÕ

v(s,a,2)

v(3,b,s)

v(2,c,3)

v(3,d,t)

v(2,e,4)

v(4,f,t)v(t,g,2)

v(s,e,3)

‡

b

a

c

c
d

e

fd

fg

a

g

‡

e

eb

Figure 5.9: Example of a part of the reduction in Lemma 5.5.3. There exists a trail from
s to t matching r in the left graph G if and only if there exists a simple path
from sÕ to tÕ matching ‡ · r in the right graph H. So we e�ectively have to
find a simple path that matches r in the right graph (H) from sÕ

1 = v(s,a,2)
to tÕ or from sÕ

2 = v(s,e,3) to tÕ.

in H. Since all edges in p are pairwise di�erent, the nodes ve1 , ve2 , . . . , ven (and sÕ and
tÕ) must be pairwise di�erent. The mapping fsp is a bijection since each simple path pÕ

from sÕ to tÕ in H has such a form and we can therefore find the corresponding unique
path f≠1

sp (pÕ) from s to t in G.

5.6 Bounds for PTrail

In this section, we prove Theorem 5.2.4. To this end, we first consider the following
fundamental parameterized problems for trails:

• PTrailLength: Given a directed multigraph G, nodes s and t, and parameter k œ N,
is there a trail from s to t of length exactly k in G?

• PTrailLength
Ø: Given a directed multigraph G, nodes s and t, and parameter k œ N,

is there a trail from s to t of length at least k in G?

By Lemma 5.5.2, the complexities of Theorems 5.3.2 and 5.3.5 carry over from simple
paths to trails.

Theorem 5.6.1. PTrailLength and PTrailLengthØ are in FPT. More precisely, PTrailLength
is in time 2O(k)

· |E|
3 and PTrailLengthØ in time 2O(k)

· |E|
4 log |E|.

Similarly, we can consider the trail version of the parameterized two disjoint paths
problem, where we require the paths to be edge-disjoint trails.

• PTwoDisjointTrails: Given a directed graph G, nodes s1, t1, s2, t2, and parameter
k œ N, are there trails p1 from s1 to t1 and p2 from s2 to t2 such that p1 and p2
are edge-disjoint and p1 has length k?

89

Chapter 5 Fine-grained Dichotomy for STEs

The following theorem is immediate from Theorem 5.4.7 and Lemma 5.5.1(3).

Theorem 5.6.2. PTwoDisjointTrails is W[1]-hard.

Cai and Ye [59] proved that PTwoDisjointTrails is in FPT for undirected graphs. They
left the node-disjoint and edge-disjoint cases for directed graphs open [59, Problems 3
and 4]. These two problems are W[1]-hard, due to Theorems 5.4.7 and 5.6.2. Next we
will prove our dichotomy for trails.

Upper Bound for PTrail

Lemma 5.6.3. Let c œ N be a constant and let R be the class of STEs with at most c
conflict positions, that is, R is almost conflict-free. Then, PTrail(R) is in FPT. More
precisely, it is in time 2O(|r|)

· |E|
c+6.

Proof. We use the construction from the proof of Lemma 5.5.3 on the directed multigraph
G to obtain a directed graph H = (VH , EH , EH). By construction, there is a trail from s
to t matching r in G if and only if there is a simple path from sÕ to tÕ matching ‡ · r in
H (we can take ‡ to be an arbitrary label). So we need to decide whether there exists a
simple path matching ‡ · r in H. To this end, we will do the following:

(1) We relabel the expression r to a conflict-free expression r̃. Then we enumerate all
possible sets S of nodes of size up to c and relabel H depending on S, obtaining the
graph HS . We show that there is a simple path from sÕ to tÕ in H that matches ‡ · r
if and only if there is a set S such that there is a simple path from sÕ to tÕ in HS

that matches ‡ · r̃.

(2) Using a simple brute force algorithm, we can get rid of ‡.

(3) We prove that Algorithm 3 does not only work for 0-bordered STEs, but also for
conflict-free STEs when we restrict the graphs such that every node has only outgoing
edges with the same label. Such graphs are obtained from the construction in
Lemma 5.5.3. This allows us to use the methods from Lemma 5.3.15 to decide
whether there exists a simple path matching r̃.

From (1)–(3) we can then conclude that deciding whether there exists a trail from s to t
matching r with at most c conflict positions can be done using |VH |

c+1 applications of
Lemma 5.3.15, more precisely, |VH |

c times for all di�erent sets S and |VH | times from
the brute force algorithm to get rid of the ‡. Since the time needed to find a simple path
in Lemma 5.3.15 is 2O(|r|)

· |VH |
3
|EH |, and VH and EH are of size O(|E|) and O(|E|

2),
respectively (Lemma 5.5.3), we obtain a running time of 2O(|r|)

· |E|
c+6.

We start with (1). Let r1 = Bpre and r2 = Bsu� with r = r1T úr2. We change r1 and
r2 by relabeling the labels in conflict positions. Let c1 and c2 denote the left and right
cut borders of r. In r1, we replace each conflict position Ai, where i Æ c1, with Ãi. Here,
Ãi is (Ai \ T) fi {ã | a œ Ai fl T}, where we assume without loss of generality that ã is a
new symbol, not occurring in r. Analogously, we replace each AÕ

j , where j Æ c2 with ÃÕ
j ,

90

5.6 Bounds for PTrail

where ÃÕ
j = (AÕ

j \ T) fi {ã | a œ AÕ
j fl T}. We name the resulting expressions r̃1, r̃2, and

r̃ = r̃1T úr̃2 to avoid confusion. Notice that the relabeling a�ects only conflict positions,
thus at most c many Ai or AÕ

j .
Then, we enumerate all subsets of up to c nodes in H. For each possible subset S, we

generate the graph HS by changing each edge (u, a, v) with u œ S and a œ T to (u, ã, v).
We prove that there is a simple path from sÕ to tÕ in H that matches ‡ · r if and only

if there is a set S such that there is a simple path from sÕ to tÕ in HS that matches
‡ · r̃. Assume that there is a simple path p = (sÕ, ‡, v1)(v1, a1, v2) · · · (v¸, a¸, tÕ) from
sÕ to tÕ in H that matches ‡ · r. We choose I1 = {i | ai œ Ai fl T and i Æ c1} and
I2 = {¸ + 1 ≠ i | a¸+1≠i œ AÕ

i fl T and i Æ c2} and S = {vi | i œ I1 fi I2}. Then, the path
in HS consisting of the same nodes as p, in the same order, is a simple path from sÕ to tÕ

matching ‡ · r̃ in HS . Conversely, if there is a simple path from sÕ to tÕ matching ‡ · r̃ in
HS , for some set S, the path using the same nodes in the same order in H will match
‡ · r. This concludes (1).

For (2), we enumerate all nodes v œ VH with (sÕ, ‡, v) œ EH . Since sÕ has no incoming
edges by construction, we cannot reach sÕ (unless we start in sÕ) and therefore we do not
need to explicitly delete sÕ.

For (3), we prove in Lemma 5.6.4 that Algorithm 3 also works for conflict-free STEs
when the graphs are restricted to those where every node has only outgoing edges with
the same label. Its proof is similar to the one of Lemma 5.3.11. The crucial part is that
Ã1 · · · Ãc1 (where c1 is the left cut border) and T have di�erent labels. Since every node
in HS has only outgoing edges with the same labels, the first c1 nodes of a path matching
Ã1 · · · Ãc1 must therefore be node-disjoint from every path matching T ú.

Thus, we can use the methods7 from Lemma 5.3.15 to decide whether, for any set
S from (1) and node v from (2), there exists a simple path matching r̃ from v to tÕ in
HS .

The following lemma is the counterpart to Lemma 5.3.11 and needed to complete the
proof of Lemma 5.6.3.

Lemma 5.6.4 (similar to Lemma 5.3.11). Let H be the class of directed graphs in which
each node has only outgoing edges with the same label. Let r1 = A1 · · · Ak1 be such that
r1T ú has no conflict positions and let L(r2) be an arbitrary finite language with length of
longest word k2. We define k = k1 + k2 and r = r1T úr2. Then, H = (VH , EH , EH) œ H

has a simple path from s to t that matches r if and only if there exists a node v œ VH

and a set of nodes X œ P̂ r1
s,v ™

k+1
rep P r1

s,v, such that H has a simple path from s to t that
matches r and with the first k1 + 1 nodes belonging to X.

Proof. The if direction is straightforward. For the only-if direction, let p = e1 · · · en be a
shortest simple path from s to t that matches r. We make the following case distinction
on the length of p.

If |p| Æ 2k1 + k2 + 1, we define P = e1 · · · ek1 and Q = ek1+2 · · · en. Clearly, P matches
r1 and ek1+1 · Q matches T úr2. Let vk1 = destination(ek1). We have that V (P) œ P r1

s,vk1
,

7
That is, depending on the form of r̃, we use a simple reachability test, Algorithm 3, or a mixture of

both.

91

Chapter 5 Fine-grained Dichotomy for STEs

|V (Q)| Æ k + 1, and V (P) fl V (Q) = ÿ. Let P̂ r1
s,vk1

be a (k + 1)-representative set of
P r1

s,vk1
. Then there exists a set X œ P̂ r1

s,vk1
with X fl V (Q) = ÿ. By definition of P r1

s,vk1
,

there exists a simple path P Õ from s to vk1 with V (P Õ) = X that matches r1. Therefore,
P Õ

· ek1+1 · Q is a simple path from s to t that matches r1T úr2.
Otherwise, we have |p| > 2k1 + k2 + 1. P = e1 · · · ek1 , R = ek1+2 · · · en≠k≠1, and

Q = en≠k+1 · · · en. We thus have

p = P · ek1+1 · R · en≠k · Q.

Since p matches r, we furthermore know that P matches r1, R matches T ú, and Q
matches T úT k1r2.8 Let vk1 = destination(ek1). Since |V (Q)| = k + 1, V (P) œ P r1

s,vk
,

and V (P) fl V (Q) = ÿ, the definition of P̂ r1
s,vk1

™
k+1
rep P r1

s,vk1
guarantees, similar as in the

previous case, the existence of a simple path P Õ from s to vk1 that matches r1 with
V (P Õ) œ P̂ r1

s,vk1
and V (P Õ) fl V (Q) = ÿ. Let P Õ = eÕ

1 = · · · eÕ
k1

. If P Õ is disjoint from R,
the path

pÕ = P Õ
· ek1+1 · R · en≠k · Q

is a simple path matching r, and we are done.
We show that P Õ must be disjoint from R. Let c1 be the left cut border of r1T úr2.

Clearly, the paths P Õ and R cannot intersect in the first c1 nodes of P Õ since those nodes
only have outgoing edges that have labels not in T because of the definition of H œ H

and r1T ú has no conflict positions.
Towards a contradiction, assume that there is an i œ {c1, . . . , k1 ≠ 1} such that

destination(eÕ
i) = origin(ej) for some j œ {k1 + 2, . . . , n ≠ k}.9

We choose i minimal and build a new simple path pÕ = eÕ
1 · · · eÕ

iej · · · en. This path
matches A1 · · · Ac1 · · · AiT úT k1r2. Since c1 is the left cut border of r, we have T ™ Ai for
all c1 + 1 Æ i Æ k1, so the new path matches r. Finally, we note that pÕ does not contain
the edge ek1+1, so pÕ is shorter than p, which contradicts that p was a shortest simple
path from s to t matching r. So P Õ must be disjoint from R.

Lower Bound for PTrail

Lemma 5.6.5. Let R be a class of STEs that can be conflict-sampled. If R is not almost
conflict-free, then PTrail(R) is W[1]-hard.

Proof. The proof follows the lines of Lemma 5.4.8, that is, we give a reduction from
PTwoDisjointPaths restricted to instances of the form (Gnode, s1, t1, s2, t2, kcol) from Con-
struction 5.4.4. Let (Gnode, s1, t1, s2, t2, kcol) be an instance from PTwoDisjointPaths.
Since R is not almost conflict-free and can be conflict-sampled, we can find an r œ R

with at least 4kcol + 1 conflict positions in time f(kcol), for some computable function f .
Let us assume that we have at least 2kcol + 1 conflict positions in A1 · · · Ac1 , where c1

is the left cut border of r. The case where we have at least 2kcol + 1 conflict positions in
8
Since r2 might have shorter words, we cannot simply write T k1 r2.

9
Since P and R are disjoint, we have s, vk1 /œ V (R).

92

5.6 Bounds for PTrail

AÕ
c2 · · · AÕ

1 is symmetric. Therefore, r is of the form

A1 · · · Ak1T úAÕ
k2 · · · AÕ

1 or A1 · · · Ak1T úAÕ
k2? · · · AÕ

1?

Starting from Gnode, we will now split the nodes as in Lemma 5.5.1, and relabel the
directed graph depending on r. More precisely, fix three words w1, w2, and w3 such that

• w1 = a1 · · · ac1 œ L(A1 · · · Ac1), such that |w1| Ø 2kcol + 1 and ai œ Ai fl T in at
least 2kcol positions i œ [c1 ≠ 1]},

• w2 œ L(Ac1+1 · · · Ak1), and

• w3 œ L(AÕ
k2

· · · AÕ
1).10

Notice that, since A1 · · · Ac1 has at least 2kcol + 1 conflict positions, we can indeed choose
w1 such that |w1| Ø 2kcol + 1 and ai œ Ai fl T in at least 2kcol positions with i Æ c1 ≠ 1.
We will refer to the first 2kcol such positions as the conflict indices of w1. If i is a conflict
index, we refer to the symbol ai as conflict symbol.

We explain how Gnode is changed. By definition of cut borders, we have that T ”™ Ac1 .
So we can fix an x œ (T \ Ac1).

• As in Lemma 5.5.1, we split each node v into vin and vout. Furthermore, if v has
an adjacent (incoming or outgoing) a-edge in Gnode, we label the edge from vin to
vout with a. Otherwise, we label it b. Observe that the resulting graph is the split
graph of Gnode, with some additional labels. We therefore call the resulting graph
split(Gnode).

• We replace each b-edge of split(Gnode) by an x-path of length c1.

• We will now relabel the a-edges in split(Gnode) such that the resulting paths from
sin

1 to tout
1 match w1. We do this in several steps. The conflict positions on w1

play a crucial role in the graph and the substrings of w1 between conflict indices
will serve as “padding” on the paths. Recall that w1 has exactly 2kcol conflict
indices {i1, . . . , i2kcol}. Furthermore, 2kcol is the length of every a-path from sin

1 to
tin
1 in split(Gnode) (due to the construction in Lemma 5.5.1 and Lemma 5.4.3(c)).

Therefore, on each path from sin
1 to tin

1 , we can label the ¸-th edge with the conflict
symbol ai¸ from w1.
Since we only used the conflict indices of w1 until now, we will still need to
add padding to the paths to ensure that every path from sin

1 to tout
1 matches w1.

Furthermore, for the reduction to be correct, this padding needs to be done in
a particular way, which we explain next. We label (tin

1 , ac1 , tout
1) with ac1 œ Ac1 .

(Since w1 has 2kcol + 1 conflict positions, c1 is not a conflict index.) All paths from
sin

1 to tout
1 are of the form

(uin
1 , uout

1)(uout
1 , uin

2)(uin
2 , uout

2) · · · (uin
kcol+1, uout

kcol+1)
10

We use w3 œ L(AÕ
k2

· · · AÕ
1) in case that r ends with AÕ

k2
· · · AÕ

1 but also if it ends with AÕ
k2

? · · · AÕ
1?.

93

Chapter 5 Fine-grained Dichotomy for STEs

for some nodes u1, . . . , ukcol+1 from Gnode. For the correctness of the reduction, it
will be crucial that, for each j = 2, . . . , kcol, the edge from uin

j to uout
j is labeled with

a conflict symbol, so we can only replace the edges from uout
j to uin

j+1 with longer
paths. Therefore, for every j œ [kcol ≠ 1], we replace each such edge (uout

j , ai¸ , uin
j+1)

with a path labeled w[i¸≠1 + 1, i¸+1 ≠ 1] (where all internal nodes on these paths are
new). Notice that, for each such edge, we have that 2 Æ ¸ Æ 2kcol ≠ 1, so i¸≠1 and
i¸+1 are indeed conflict indices of w1. Additionally we replace (uout

kcol
, ai¸ , uin

kcol+1)
with the word w1[i2kcol , |w| ≠ 1]. If the word w1[1, i1 ≠ 1] is non-empty, we replace
the edge (sin

1 , ai1 , sout) with a new path labeled w1[1, i1]. As a result, every path
from sin

1 to tout
1 is now labeled with w1.

• We add a path labeled w2 from tout
1 to sin

2 , which we will call the w2-labeled path,
and a path labeled w3 from tout

2 to a new node t, which we will call the w3-labeled
path.

This completes the construction. Call the resulting directed graph Gedge.
We will now prove correctness, that is, (Gnode, s1, t1, s2, t2, kcol) is a yes-instance from

PTwoDisjointPaths if and only if there is a trail from sin
1 to t matching r in Gedge.

For the direction from left to right, let p1 = u1, . . . , ukcol+1 be a simple path of length
kcol from s1 to t1 and p2 a simple path from s2 to t2 in Gnode, such that p1 and p2
are node-disjoint. By Lemma 5.5.1 the path split(p1) is a trail in split(Gnode). By
construction, there is a unique path P1 from sin

1 to tout
1 in Gedge that contains all the

edges of split(p1). (Indeed, P1 is the path split(p1) with the extra padding.) Moreover,
this path P1 is a trail that matches w1. Likewise, the path P2 = split(p2) is a trail in
split(Gnode) and, by construction, also a trail in Gedge. Moreover, it matches T ú because
every edge is either labeled x or labeled with a conflict symbol. Since p1 and p2 are
node-disjoint, P1 and P2 are also node-disjoint and therefore edge-disjoint. Finally, if
Pw2 and Pw3 are the w2- and w3-labeled paths respectively, then P1Pw2P2Pw3 is a trail
from sin

1 to t that matches r.
For the other direction, let p be a trail from sin

1 to t in Gedge that matches r. We need
some additional notions. For a path p in Gedge, we denote by contract(p) the path in
Gnode obtained from p by removing the padding and contracting node pairs (uin, uout)
back to u. Formally, if p = e1 · · · en, then such a path is obtained from p by removing all
edges of the form (uin,out) and replacing, in the remaining edges, all nodes named uin or
uout by u. By definition of Gedge, the resulting sequence of nodes forms a path in Gnode.

We will prove:

(i) The path p1 = contract(p[0, c1]) is a simple path from s1 to t1 in Gnode. Moreover,
p1 has length kcol and each edge in p1 is labeled a (so it is even a path in Ga

node).

(ii) The prefix of p of length k1 ends in sin
2 and is labeled w1w2.

(iii) The path p is labeled w1w2wÕw3 with wÕ
œ L(T ú). The w3-labeled su�x of p starts

in tout
2 and ends in t.

94

5.6 Bounds for PTrail

We prove (i). By definition of r, the edge p[c1 ≠ 1, c1] in Gedge is labeled by some symbol
in Ac1 . Therefore, this symbol cannot be x. By construction of Gedge, the only edges that
are not labeled x are either on some w1-labeled path from sin

1 to tout
1 , on the w2-labeled

path, or on the w3-labeled path. Since the w3-labeled path is not reachable from s1 by
a path of length at most c1 and the w2-labeled path starts in tout

1 and is therefore only
reachable from s1 with a path of length at least c1, the edge p[c1 ≠ 1, c1] must be on one
of the w1-labeled paths from sin

1 to tout
1 . Furthermore, the entire path p[0, c1] must be a

prefix of some w1-labeled path from sin
1 to tout

1 . Indeed, if this were not be the case, then
p[0, c1] would have to contain an x-path of length c1 (since we replaced every b-edge in
split(Gnode) by an x-path of length c1), which is impossible because it is too short for
that.

This means that p1 = contract(p[0, c1]) is indeed a path in Gnode and every edge of p1
is labeled a. Therefore, it is a path in Ga

node. Since p[0, c1] has precisely 2kcol conflict
indices and additionally contains the edge (tin

1 , ac1 , tout
1), it contains precisely 2kcol + 1

edges of the form (uin, uout) or (uout, vin) for some nodes u, v œ Vnode. Since, for each
path p in Gnode, the length of split(p) is 2|p| + 1, this means that the length of p1 is
precisely kcol. This implies (i).

Since all nodes that belong to the w2-labeled path have only one outgoing edge, and
since the path has length k1 ≠ c1, we have that p[0, k1] ends in sin

2 and must match w1w2.
This shows (ii).

Since p matches r = A1 · · · Ak1T úAÕ
k2

· · · AÕ
1 (the case r = A1 · · · Ak1T úAÕ

k2
? · · · AÕ

1? is
analogous) and each word in A1 · · · Ak1 has length k1, it follows that lab(p) = w1w2wÕ

with wÕ
œ L(T úAÕ

k2
· · · AÕ

1). By construction of Gedge, the w3-labeled path is the unique
path of length |w3| leading to t. Therefore, each path from sin

1 to t in Gedge must end
with the w3-labeled path which is from tout

2 to t. Since w3 œ L(AÕ
k2

· · · AÕ
1) and |w3| is the

length of every word in L(AÕ
k2

· · · AÕ
1), we have that lab(p) = w1w2wÕw3 where w œ L(T ú).

So we have (iii).
Let pÕ be the part of p labeled wÕ. It follows from (ii) and (iii) that pÕ is a path from

sin
2 to tout

2 . Let p2 = contract(pÕ). First note that, by definition of Gedge, the resulting
sequence of nodes is indeed a path in Gnode. We show that p1 and p2 are node-disjoint.
We first note that p[0, c1] and pÕ contain vin if only if they contain vout, since they start
in sin

1 and sin
2 and end in tout

1 and tout
2 , respectively. Indeed, this is since vin has only one

outgoing edge and vout only one incoming edge. So, if vout belongs to p[0, c1], it cannot
be part of pÕ, otherwise p[0, c1] and pÕ both contain the edge (vin, vout), which would
contradict that p is a trail. The same holds for nodes vout that belong to pÕ. This implies
that p1 and p2 cannot share a node and are therefore node-disjoint. Together with (i), we
know that |p1| = kcol, which implies that p1 and p2 are solutions to PTwoDisjointPaths.

Finally, we note that the construction can indeed be done in FPT since the expression
r œ R can be determined in time f(kcol) for a computable function f , and all changes we
made to the graph Gnode are in time h(kcol) · |Gnode|, for a computable function h, which
is FPT. Indeed, we only relabeled all edges, replaced each edge at most once with c1 new
edges, split each node at most once into two new ones, and added other paths of length
at most |r|. Since |r| Æ f(kcol), we have an fpt-reduction.

95

Part II

Evaluation on Undirected

Multigraphs

97

Chapter 6

Towards a Dichotomy for Regular

Simple Path and Trail Queries

While the last part focused on directed multigraphs, we now turn to undirected multi-
graphs. This will help us to understand the data complexity of RPQs on graph databases
with undirected or bidirectional edges, which is supported by the major systems. Fur-
thermore, it helps us to understand the complexity of SimPath and Trail for two-way
languages, that is, regular languages over � ‡ {ā | a œ �}, where ‡ denotes disjoint
union and the symbols ā allow to match edges in reverse direction. More precisely, this
means that, whenever there is an edge (u, a, v) in a directed graph, we are also allowed
to consider it as the edge (v, ā, u). For instance, in the directed graph in Figure 2.1 (left),
the word bāc matches the path from s to t going through v2 and v1.

While interesting in their own right, RPQs over undirected multigraphs also teach
us something about two-way RPQs on directed multigraphs. To see this, it is useful to
consider for a directed multigraph its underlying undirected multigraph, which we do not
define formally but illustrate in Figure 2.1. (Essentially, it is obtained by “forgetting”
the direction of the edges.)

If we denote by h the homomorphism that maps every �-symbol a to (a + ā), then
a language L(r) is tractable under simple path semantics on undirected multigraphs if
and only if the language L(h(r)) is tractable under simple path semantics on directed
multigraphs. For example, simple path evaluation of the two-way regular expression
((a + ā)(a + ā))ú corresponds to finding a simple a-path of even length in the underlying
undirected graph. The situation for trails is analogous.

6.1 Definitions and Main Problems

Additionally to the preliminaries provided in Chapter 2, we need some more notation.
A path p from v to v is a simple cycle if |V (p)| = |p|. An example of a simple cycle is

the path p = e1e2 with E(e1) = (s, b, v1), E(e2) = (v1, b, s) in Figure 2.1.
For an undirected multigraph G = (V, E, E) and a set X ™ V , the induced subgraph of

G on X is the multigraph GÕ = (X, EÕ, E
--
EÕ) with EÕ = {e | e œ E and Node(e) ™ X}.

For a label a, we denote by Ga the subgraph of G = (V, E, E) restricted to edges labeled
a, that is, Ga = (V, Ea, E

--
Ea

) is a multigraph with Ea = {e | e œ E and lab(e) = a}.

99

Chapter 6 Towards a Dichotomy for Regular Simple Path and Trail Queries

Main Problems

We now consider the following SimPath and Trail on undirected graphs:

USimPath(L)
Given: An undirected multigraph G, nodes s, t.
Question: Is there a simple path from s to t in G that matches L?

UTrail(L)
Given: An undirected multigraph G, nodes s, t.
Question: Is there a trail from s to t in G that matches L?

6.2 Context

The task of understanding USimPath and UTrail for all regular languages (which is a
major step towards understanding SimPath and Trail for all two-way regular languages)
is very general and subsumes a long open standing problem to which we will get later in
this section. First, consider the following problems.

kDisjointPaths

Given: A multigraph G, node pairs (s1, t1), . . . , (sk, tk).
Question: Are there pairwise disjoint paths from si to ti in G for every i œ [k]?

These problems come in four variants for each k: for multigraphs that are directed or
undirected, and for paths that are required to be node-disjoint (no common node) or
edge-disjoint (no common edge).

Mod-k-Path

Given: A multigraph G, nodes s, t.
Question: Is there a path of length 0 modulo k from s to t in G?

These problems also come in four variants: for multigraphs that are directed or undirected,
and for simple paths or trails.

These problems are very relevant to SimPath and Trail on directed and undirected multi-
graphs: the Mod-k-Path problem is equivalent to deciding if there is a simple path/trail
from s to t that matches (ak)ú in G. Let Lequiv = aúa1akaúa2ak+1...aúak≠1a2k≠2aú,
where a, a1, . . . , a2k≠2 œ � are pairwise di�erent. The kDisjointPaths problem is equiva-
lent to deciding if there is a simple path/trail from s1 to tk that matches Lequiv in a G.1
We make this equivalence more explicit.

1
We use two di�erent symbols aiak≠1+i to simulate a directed edge even if G is an undirected multigraph.

If G is a directed multigraph, the langugage can be simplified.

100

6.2 Context

• We can find a simple path/trail from s to t in G that matches Lequiv as follows:
We iterate over all tuples (p1, . . . , pk≠1) of node/edge-disjoint simple paths/trails
pi such that pi matches aiak≠1≠i. Assume that path pi is from ui to vi. It then
remains to test for k node/edge-disjoint paths matching aú from s to u1, vi to ui+1,
and from vk≠1 to t. This is equivalent to solving kDisjointPaths in the subgraph Ga

of G.

• We can solve kDisjointPaths as follows: (Re)label every edge in G with a. Add
new nodes and edges labeled aiak≠1+i from ti to si+1 for each i œ [k ≠ 1]. Then
this is equivalent to deciding if there is a simple path/trail from s1 to tk in G that
matches Lequiv.

Since Mod-k-Path and kDisjointPaths are NP-complete for k Ø 2 on directed graphs [140,
98], these problems can be used to show NP-hardness. For example, Mendelzon and
Wood [160] use TwoDisjointPaths to show that SimPath(aúbaú) is NP-complete. Bagan et
al. [20] also use a reduction from TwoDisjointPaths to show that SimPath(L) is NP-complete
for regular languages L /œ SPtract. We use a similar reduction from the edge-disjoint
variant in Lemma 3.4.19. Even our W[1]-hardness proofs in Lemmas 5.4.8 and 5.6.5 rely
on the W[1]-hardness of the parameterized version of TwoDisjointPaths.

On the other hand, some of these problems are tractable on undirected multigraphs.
This allows us to prove tractability results for USimPath and UTrail by reductions to cases
in which Mod-k-Path and kDisjointPaths are tractable.

We now discuss in detail what is known about Mod-k-Path and kDisjointPaths on
undirected (multi-)graphs.

Unlabeled, Undirected The famous minor theorem [182] implies that kDisjointPaths

is tractable for every fixed k on undirected graphs, independent of whether we require
node-disjoint or edge-disjoint paths. Indeed, for node-disjoint paths, this problem is
equivalent to deciding if the set of k distinct edges (s1, t1), . . . , (sk, tk) is a minor of a
given undirected graph. We note that for node-disjoint paths, it does not play a role
whether we consider multigraphs or restrict ourselves to graphs, since every node can
only be used once and therefore, no edge between a pair of nodes can be used more than
once. For edge-disjoint paths, Jarry and Pérennes [123, Lemma 2] show how to decide
if k edge-disjoint paths in undirected, unlabeled multigraphs in polynomial time exist:
They split each edge before applying the line graph construction and then use the minor
theorem.

Therefore, the following Proposition follows from Robertson and Seymour’s Graph
Minor Project [182] and Jarry and Pérennes [123, Lemma 2]:

Proposition 6.2.1. kDisjointPaths on undirected multigraphs is in polynomial time for
node- and edge-disjoint paths.

The Mod-k-Path problem for k = 2 is tractable for simple paths [140].2 The situation
for k Ø 3 is rather intriguing. Arkin et al. [17] proved that, for every fixed k > 1, one can

2
They attribute the first algorithm for this problem to Jack Edmonds due to private communication.

101

Chapter 6 Towards a Dichotomy for Regular Simple Path and Trail Queries

test in polynomial time whether there is an undirected simple path of length di�erent
from 0 mod k between two given nodes. Although this result allows to solve Mod-k-Path

for k = 2, there is no clear reduction from Mod-k-Path to this problem if k > 2. Indeed,
the complexity of Mod-k-Path for k = 3 has been open for 30 years [17].

When it comes to parity (mod 2) conditions, there has been recent progress. For
instance, the minor theorem has been extended to incorporate parities [119, 132], which
was a non-trivial e�ort. As a consequence, we now know that we can test in polynomial
time if a given undirected graph has, k node-disjoint simple paths of even length.

Concerning edge-disjoint trails, Kawarabayashi and Kobayashi [130] defined the ex-
tended line graph construction, which maintains parity information and allows to transfer
from known results on node-disjoint simple paths with parity constraints.

The construction replaces every vertex with a clique in which every edge is subdivided
into two edges. The size of the clique replacing v is the number of edges adjacent to v.

We show how this idea can be tweaked to cope with arbitrary modulos. If we want to
test path lengths modulo m, we subdivide every edge of the new cliques into m edges.
Furthermore, start- and end-nodes (s1, t1), . . . , (sk, tk) can be incorporated by adding
extra nodes.

Lemma 6.2.2. Let G be an undirected multigraph. There are trails from si to ti of
length ji mod mi in G which are pairwise edge-disjoint if and only if there are simple
paths from sú

i to tú
i of length ji mod mi in the extended line-graph of G with respect to

(si, ti)iœ[k] modulo m1 · m2 · · · mk which are pairwise node-disjoint.

Proof. We start with the exact definition of extension to the extended line graph from
Kawarabayashi and Kobayashi [130] which now incorporates node-pairs and arbitrary
modulo m conditions. Let an undirected multigraph G = (V, E, E), and node-pairs
(s1, t1), . . . , (sk, tk) be given. Let < be some order on E. We can assume without loss of
generality that si ”= ti or ji ”= 0 for each i (otherwise, this pair is trivially satisfied and
can thus be removed). The extended line graph

Lm1·m2···mk (G, (sj , tj)jœ[k]) = ((Gú), (sú
j , tú

j)jœ[k])

where Gú = (V ú, Eú, E
ú) is an undirected graph defined by:

V ú = V ú
1 fi V ú

2 fi V ú
s fi V ú

t

V ú
1 = {(v, e) | v œ V, e œ E, e is adjacent to v}

V ú
2 = {(v, {e1, e2}, i) | v œ V, e1, e2 œ E, e1 and e2 are adjacent to v and i œ [m ≠ 1]}

V ú
s = {sú

j | j œ [k]} fi {(sú
j , (sj , e), i) | e is adjacent to sj , j œ [k], i œ [m ≠ 1]}

V ú
t = {tú

j | j œ [k]} fi {(tú
j , (tj , e), i) | e is adjacent to tj , j œ [k], i œ [m ≠ 1]}

Eú = Eú
1 fi Eú

2 fi Eú
s fi Eú

t

Eú
1 = {((v, e1)(v, {e1, e2}, 1)), ((v, {e1, e2}, m ≠ 1), (v, e2)) |

e1 < e2, (v, e1), (v, {e1, e2}) œ V ú, v œ V }

fi {((v, {e1, e2}, i)(v, {e1, e2}, i + 1)) |

102

6.2 Context

(v, {e1, e2}, i), (v, {e1, e2}, i + 1) œ V ú, i œ [m ≠ 2]}
Eú

2 = {((v1, e)(v2, e)) | e is an edge connecting v1 and v2}

Eú
s = {(sú

j , (sú
j , (sj , e), 1)), ((sú

j , (sj , e), m ≠ 1), (sj , e)) |

sú
j , (sú

j , (sj , e), 1), (sj , e) œ V ú, j œ [k]}
fi {((sú

j , (sj , e), i), (sú
j , (sj , e), i + 1)) |

(sú
j , (sj , e), i), (sú

j , (sj , e), i + 1) œ V ú, j œ [k], i œ [m ≠ 2]}
Eú

t = {(tú
j , (tú

j , (tj , e), 1)), ((tú
j , (tj , e), m ≠ 1), (tj , e)) |

tú
j , (tú

j , (tj , e), 1), (tj , e) œ V ú, j œ [k]}
fi {((tú

j , (tj , e), i), (tú
j , (tj , e), i + 1)) |

(tú
j , (tj , e), i), (tú

j , (tj , e), i + 1) œ V ú, j œ [k], i œ [m ≠ 2]}

Furthermore, E
ú(x, y) = (x, y) for all (x, y) œ Eú. We note that the sets V ú

s fi V ú
t and

Eú
s fi Eú

t are empty if no distinguished nodes sj , tj exist.
We now prove the lemma. Let ((Gú), (sú

j , tú
j)jœ[k]) = Lm1·m2···mk (G, (sj , tj)jœ[k]). Since

in Gú each path through each newly added clique has length 0 mod mi, only edges of
the form ((v1, e)(v2, e)) count towards length modulo mj . Given a simple path from sú

j

to tú
j in Gú, one can construct a trail from sj to tj with the same length modulo mj by

replacing edges of the form ((v1, e)(v2, e)) with e and omitting all edges of di�erent forms.
On the other hand, starting from a trail in G, one can add transitions (via the cliques)
between each pair of edges to obtain a simple path in Gú. Since adding those transitions
does not count towards the length modulo mj , the so-constructed simple path has the
same length modulo mj . Finally, we note that node-disjoint paths in Gú cannot share
edges of the form ((v1, e)(v2, e)), thus their corresponding trails must be edge-disjoint
and vice versa.

This version of the extended line graph will be useful in Section 6.8.

Labeled, Undirected On undirected labeled graphs, the problem USimPath((ab)ú)
has been studied under the name properly edge-colored (PEC) simple path in a two-colored
graph. Here, a path is defined to be PEC if its adjacent edges have di�erent colors. It is
decidable in polynomial time if a PEC simple path from s to t exists. For two colors,
this result is attributed to Edmonds [149] and was generalized by Szeider [194] to any
number of colors. Abouelaoualim et al. [5] give a polynomial time algorithm that decides
in polynomial time if a PEC trail exists. Since their idea also works on multigraphs,
USimPath((ab)ú) and UTrail((ab)ú) are in polynomial time.

Next, we discuss a number of results on two disjoint paths, since we will sometimes
rely on them later in the thesis. To this end, for two languages L1 and L2, the problem of
finding node- (respectively, edge-) disjoint L1/L2 simple paths (respectively, trails) refers
to finding two node- (respectively, edge-) disjoint simple paths (respectively, trails) p1

103

Chapter 6 Towards a Dichotomy for Regular Simple Path and Trail Queries

and p2 such that lab(p1) œ L1 and lab(p2) œ L2 between given nodes (s1, t1), (s2, t2).3
As such, finding disjoint aú/bú paths is equivalent to finding two monochromatic disjoint
paths in an undirected graph with two edge colors. For edge-disjointness, the latter
problem is in P as a-paths will always be edge-disjoint from b-paths. The problem
therefore reduces to reachability. For node-disjointness, the problem is NP-complete, see
[105, Theorem 16]. Finding node- or edge-disjoint (ab)ú/(ab)ú paths is NP-hard [5] (a
closely related problem was studied in [67]). Finally, node-disjoint (ab)ú/aú simple paths
is NP-complete by Gourvès et al. [105, Proof of Corollary 10].

6.3 First Observations

Let USPtract be the class of regular languages for which USimPath is in P and let UTtract
be the corresponding class for UTrail. While SPtract and Ttract are closed under intersection
and union, see Lemma 3.5.3, USPtract and UTtract are not closed under intersection if
P ”= NP.

Theorem 6.3.1. The following hold if P ”= NP.

(a) USPtract and UTtract are closed under (finite) union.

(b) USPtract and UTtract are not closed under intersection.

(c) USPtract and UTtract are not closed under complement.

(d) USPtract and UTtract are closed under taking derivatives, that is, if L is tractable, then
so is w≠1L = {u | wu œ L}.

(e) USPtract and UTtract are closed under reversal.

Proof. We first prove (a). If we have two languages L1, L2 for which USimPath(L1) and
USimPath(L2) (UTrail(L1) and UTrail(L2), respectively) are in P, we obtain a P algorithm
for USimPath(L1 fi L2) (UTrail(L1 fi L2), respectively) by using the two P algorithms
for L1 and L2. If any of them answers “yes”, there is a simple path (trail, respectively)
matching L1 fi L2.

We start the proof of (b) with USPtract. By Theorem 6.8.1 for the language contain-
ing an even number of a’s and arbitrary number of bs USimPath is tractable, that is
USimPath(bú(abúabú)ú) is in P. Since aúbú is downwardclosed, USimPath(aúbú) is in P.
On the other hand, USimPath((aa)úbú) is NP-hard. NP hardness follows from G3SAT
with words ws = a, wb = aa, wm = a, wr = b, wo = wt = Á and Theorem 6.4.2.

We now turn to UTtract. By Theorem 6.8.1 the language containing an even number
of a’s and arbitrary number of b, c, and ds is tractable for UTrail, that is UTrail((b + c +
d)ú(a(b + c + d)úa(b + c + d)ú)ú) is in P. Since aú(b + c)úaú(b + d)ú is downwardclosed,
UTrail(aú(b + c)úaú(b + d)ú) is in P. Let L be the intersection of both languages, that is,

3
The relationship between such problems and ours is that finding node-disjoint L1/L2 simple paths is

closely related to finding a single simple path labeled L1aL2, for some label a (similar for edge-disjoint

paths and trails).

104

6.3 First Observations

L = {an(b + c)úam(b + d)ú
|n + m being even}. We show that UTrail(L) is NP-hard. NP

hardness follows from G3SAT with words ws = a, wb = c, wm = a, wo = b, wr = d, wt = Á
and Theorem 6.4.2.

For (c), we first observe that by (a), USPtract and UTtract are closed under union. If
they were also closed under complement, we could simulate closure under intersection,
which would contradict (b).

We now turn to prove (d). Let w be an arbitrary word. We first prove that there is a
word wÕ of constant length such that w≠1L = (wÕ)≠1L. Let L be a regular language. Let
A an DFA for the language L, and w an arbitrary word. Then a DFA AÕ for w≠1L can
be obtained by changing the start state of A. (If w≠1L = ÿ, we can choose a sink state
as start.) Let q be the start state of A and qÕ be the start state of AÕ. Now we can find a
word wÕ of length at most |A| such that ”(q, wÕ) = qÕ.

We are now ready to prove (d). Let a graph G with nodes s and t be given. We can find
a simple path (or trail) from s to t matching w≠1L as follows: we add a new node sÕ and
a path labeled wÕ from sÕ to s. Then there exists a simple path (trail, respectively) from
s to t matching LÕ if and only if there exists a simple path (respectively trail) from sÕ to t
matching L. Thus, if L œ USPtract (in UTtract, respectively), it follows that LÕ

œ USPtract
(in UTtract, respectively).

Part (e) is trivial because the question concerns undirected graphs.

Although USimPath and UTrail are tractable for every language for which SimPath is
tractable, UTrail and Trail are incomparable. An intuitive reason is that a trail for the
language (abc)ú in directed multigraphs is easy to find since loops which repeat edges can
always be removed. On the other hand, we cannot use the same argument on undirected
multigraphs since every edge can be used in one or the other direction and we can only
remove loops if the joint edge is used in the same direction.

Theorem 6.3.2.

(a) SPtract ™ USPtract.

(b) SPtract ™ UTtract.

(c) If P ”= NP, then Ttract and UTtract are incomparable.

Proof. We first prove (a). Let GÕ = (V, EÕ, E
Õ) be the directed multigraph obtained

from the undirected graph G = (V, E, E) by replacing every undirected edge e œ E with
the two directed edges e1, e2 such that if E(e) = (u, a, v), then E

Õ(e1) = (u, a, v) and
E

Õ(e2) = (v, a, u). Since a simple path can use at most one edge between any pair of
nodes, a simple path in GÕ can use either e1 or e2, but not both. Thus, there is a simple
path from s to t that matches L in G if and only if there is a simple path from s to t
that matches L in GÕ.

We now prove (b). We will use that Bagan et al. [20, Theorem 6], see Theorem 2.5.5,
give a definition of SPtract in terms of regular expressions, showing that a language is in
SPtract if and only if it can be expressed as a union of regular expressions of the form

w1(AØk1
1 + Á)(w2 + Á)(AØk2

2 + Á) · · · (wn + Á)(AØkn
n + Á)wn+1 (ù)

105

Chapter 6 Towards a Dichotomy for Regular Simple Path and Trail Queries

for some n œ N, words wj œ �ú with j œ [n + 1], sets Ai ™ � and numbers ki œ N with
i œ [n]. Since UTtract is closed under union by Theorem 6.3.1, it su�ces to prove that
UTrail(r) is tractable for each regular expression r of the form (ù).

Let G = (V, E, E) be an undirected multigraph, s, t œ V , and r of the form (ù). We
will construct in polynomial time a directed graph GÕ and regular expression rÕ such that
there exists a trail matching r from s to t in G if and only if there is a trail from s to
t matching rÕ in GÕ that satisfies some additional restrictions. We then show that its
existence can be tested in polynomial time.

Let $1, $2 be two symbols which occur neither in G nor in r. We construct from
G = (V, E, E) a new directed graph GÕ = (V Õ, EÕ) with V Õ = V fi {xe, ye | e œ E},
and EÕ = {(u, $1, xe), (v, $2, xe), (xe, a, ye), (ye, $2, u), (ye, $1, v) | e œ E, E(e) = {u, a, v}}.
Intuitively, we replace every edge e with the gadget presented in Figure 6.1. We note that
these gadgets introduce loops labeled $1a$1 from u to u and labeled $2a$2 from v to v.

u v
a =∆ u v

xe

ye

$1 $2

a

$1 $2

Figure 6.1: Illustration of the construction of the directed graph GÕ in the proof of
Theorem 6.3.2(b).

Let h : � æ � fi {$1, $2} be a substitution with h(‡) = ($1‡$2 + $2‡$1) for each
‡ œ �. That is, if w = a1a2 · · · a¸ œ �+, then h(w) is a set of words, namely, h(w) =
($1a1$2 + $2a1$1) ($1a2$2 + $2a2$1) · · · ($1a¸$2 + $2a¸$1), furthermore, h(Á) = Á, and
h(A) = ($1A$2 + $2A$1) for every set A. Depending on r, we define

r̃ = h(w1)((h(A1))Øk1 + Á)(h(w2) + Á)((h(A2))Øk2 + Á) · · ·

(h(wn) + Á)((h(An))Økn + Á)h(wn+1) .

Note that n, wj for all j œ [n + 1], and Ai, ki for all i œ [n] are defined by r.
We now prove that there is a trail p matching r from s to t in G if and only if there is

a trail pÕ matching r̃ in GÕ. Let p = e1 · · · en be a trail from s to t in G that matches r.
Then a trail pÕ can be obtained from p by replacing every edge ei with its corresponding
path matching $1lab(ei)$2 or $2lab(ei)$1 in GÕ. The so-constructed path clearly is a trail
from s to t matching r̃ in GÕ and does not use subpaths labeled $1‡$1 or $2‡$2. On the
other hand, let pÕ be a trail from s to t that matches r̃ in GÕ. By construction of GÕ and
the definition of r̃, pÕ is a concatenation of paths of the form (u, $1, x)(x, ‡, y)(y, $2, v) or
(u, $2, x)(x, ‡, y)(y, $1, v) for nodes u, v œ V and x, y œ V Õ

≠ V and some symbol ‡ œ �.
By construction of GÕ, each such path corresponds to a unique edge in G, thus we can
replace each such subpath of length 3 with the corresponding edge to obtain a trail from
s to t matching r in G.

106

6.3 First Observations

Unfortunately, expressions of the form r̃ are in general neither in SPtract nor in Ttract.
The reason is that the subexpressions ($1A$2 + $2A$1)ú do not satisfy the criteria in
Definitions 2.5.4 or 3.1.11. Indeed, SimPath(r̃) and Trail(r̃) are NP-hard in general, but
the graph GÕ has a very special form. To prove tractability, we first consider a similar
expression rÕ defined as follows:

rÕ = h(w1)((A1 fi {$1, $2})Ø3k1 + Á)(h(w2) + Á)((A2 fi {$1, $2})Ø3k2 + Á) · · ·

(h(wn) + Á)((An fi {$1, $2})Ø3kn + Á)h(wn+1) .

The connection between r̃ and rÕ is as follows: because of the special form of GÕ, there is
a trail from s to t matching r̃ in GÕ if and only if there is a trail pÕ from s to t matching
rÕ in GÕ and pÕ does not have a subpath labeled $1‡$1 or $2‡$2 for any ‡ œ �.

In order to show that we can decide in polynomial time whether a trail pÕ from s
to t matching rÕ that does not contain a subpath labeled $1‡$1 or $2‡$2 for some
symbol ‡ exists in GÕ, we adapt the methods from Section 3.4.2. Indeed, rÕ

œ SPtract by
Theorem 2.5.5 and since SPtract ™ Ttract by Theorem 3.3.3 it follows that rÕ

œ Ttract. We
can thus use the results from Section 3.2. Let N be the size of the minimal DFA for rÕ.
For convenience, we choose K = N2 + 4 (instead of K = N2 as in Section 3.4.2. We need
the additional 4 edges to ensure that the path is “long enough” even if we remove some
loops).

We now adapt some definitions to enforce that each shortest trail is “admissible”. To
this end, we define an extended abbreviation to be of the form Cuts◊(V ◊Q)◊E2

◊EK≠2.
An example is (C, (v, q), eKeK≠1, eK≠2 · · · e1). A trail fi matches (C, (v, q), eKeK≠1eK≠2,
eK≠3 · · · e1) if ”L(q, fi) œ C, it starts in v with prefix eKeK≠1 and its su�x is eK≠2 · · · e1.
We denote this with fi |= (C, (v, q), eKeK≠1, eK≠2 · · · e1). For an arbitrary set EÕ we
write fi |=EÕ (C, (v, q), eKeK≠1, eK≠2 · · · e1) if fi |= (C, (v, q), eKeK≠1, eK≠2 · · · e1) and all
edges of fi are from EÕ

fi {e1, . . . , eK}. In the extended summary of a trail, every long run
component is replaced by an extended abbreviation. An extended candidate summary is
an extended summary of the form S = –1 · · · –m where each –i is an edge or an extended
abbreviation and all edges occurring in S are distinct.

Since all paths matching $1‡$1 or $2‡$2 are loops in GÕ, a shortest path will not use
such a subpath. Using this, we can use the NL algorithm from Lemma 3.4.74 to show
the following

Lemma 6.3.3. Let rÕ, GÕ = (V Õ, EÕ, E
Õ) be as in the proof of Lemma 6.3.2(b), – =

(C, (v, q), eKeK≠1, eK≠2 · · · e1) be an extended abbreviation, and EÕÕ
™ EÕ. Then there

is an NL algorithm that outputs a shortest trail p such that p |=EÕÕ – if it exists and
rejects otherwise. Furthermore, if a shortest path fi from v to destination(e1) with su�x
eK≠2 · · · e1 and with ”L(q, fi) œ C exists, for which fi |=EÕÕ – holds and such that fi does
not contain a subpath labeled $1‡$1 or $2‡$2, then p does not contain a subpath labeled
$1‡$1 or $2‡$2.

We postpone the proof for readability.
4
We can adapt the algorithm such that the returned path starts with eKeK≠1.

107

Chapter 6 Towards a Dichotomy for Regular Simple Path and Trail Queries

We now turn to local edge domains. Let Ei be as defined in Definition 3.4.8. We
define Edgei to be the set of edges used by trails fi that start with eKeK≠1, use only
edges in Ei, and are of length at most mi ≠ K + 2. A trail p is extended admissible if
there exists an extended candidate summary S = –1 · · · –k and trails p1, . . . , pk such that
p = p1 · · · pk is a completion of S and pi |=Edgei

–i for every i œ [k]. Then the counterpart
of Lemma 3.4.10 holds.

Lemma 6.3.4. Let rÕ, GÕ be as in the proof of Lemma 6.3.2(b). Then each shortest trail
p from s to t that matches rÕ in GÕ and such that no subpath matches $1‡$1 or $2‡$2 is
extended admissible.

We postpone the proof of Lemma 6.3.4 for readability.
We can now give an NL algorithm similar to Lemma 3.4.13, that is, we enumerate all

possible extended candidate summaries S with respect to (rÕ, GÕ, s, t) and apply on each
extended summary the following algorithm which consists of four tests:

1. Guess, on-the-fly, a path p from S by replacing each –i by a trail pi such that
pi |=Edgei

–i for each i œ [k]. This test succeeds if and only if this is possible.

2. In parallel, check that p matches rÕ.

3. In parallel, check that S is an extended summary of p.

4. In parallel, check that p does not contain a subpath matching $1‡$1 or $2‡$2 for
any ‡ œ �.

If all tests succeed on some candidate summary, then we answer “yes”, and if on each
candidate summary at least one test fails, the answer is “no”.

To prove correctness, let there be a shortest trail pÕ from s to t matching rÕ that does
not contain a subpath matching $1‡$1 or $2‡$2 for any symbol ‡. Then, there is also a
shortest such trail, and by Lemma 6.3.4 this trail is extended admissible. Conversely, if
the algorithm succeeds, the path p is a trail because E(S) and the sets Edgei are mutually
disjoint. By tests (2), (3), and (4), it is a trail from s to t that matches rÕ and does not
contain a subpath matching $1‡$1 or $2‡$2 for any ‡ œ �.

For the complexity, we note that compared to the NL algorithm in Lemma 3.4.13 we
only need to additionally test (4), which can clearly be done in NL.

We now prove (c). On the one hand, UTrail(aúbaú) is in polynomial time by Theo-
rem 6.5.2, while aúbaú /œ Ttract. On the other hand, (abc)ú is in Ttract but UTrail((abc)ú)
is NP-hard, see Theorem 6.6.1.

To conclude the proof of part (b), we still need to prove Lemmas 6.3.3 and 6.3.4.

Proof of Lemma 6.3.3. Let – = (C, (v, q), eKeK≠1, eK≠2 · · · e1) be an extended abbrevi-
ation, and EÕÕ

™ EÕ. Let L = L(rÕ). We use the NL algorithm from Lemma 3.4.7 to
obtain a shortest trail p with p |=EÕÕ (C, (destination(eK≠1), ”L(q, eKeK≠1)), eK≠2 · · · e1).
Then eKeK≠1p is a shortest trail with eKeK≠1p |=EÕÕ –.

108

6.3 First Observations

Furthermore, let us assume that there exists a shortest path fi from v to destination(e1)
with su�x eK≠4 · · · e1 and with ”L(q, fi) œ C exists, fi does not contain a subpath labeled
$1‡$1 or $2‡$2, and such that fi |=EÕÕ –.

Let eKeK≠1p = eKeK≠1d1 · · · dneK≠2 · · · e1. We assume towards contradiction that
eKeK≠1p contains a subpath labeled $1‡$1 or $2‡$2. Since fi does not contain such a
subpath, it cannot be in eK≠2 · · · e1. Thus the subpath(s) labeled $1‡$1 or $2‡$2 can only
be in eKeK≠1d1d2, d1 · · · dn, or dn≠1dneK≠2eK≠3. By definition of GÕ, we can remove
the loops labeled $1‡$1 or $2‡$2 from these to obtain a trail pÕÕ from v to destination(e1).
Since components of rÕ have the form AØki for some ki œ N and some set of symbols A,
”L(q, pÕÕ) œ C. Furthermore, pÕÕ has the su�x eK≠4 · · · e1. Since eKeK≠1p is a shortest
trail with eKeK≠1p |=EÕÕ –, we have |eKeK≠1p| = |fi|. Since pÕÕ is obtained from eKeK≠1p
by removing edges, |pÕÕ

| < |fi|, contradicting the choice of fi.

Proof of Lemma 6.3.4. We use the notion of extended abbreviation, extended (candidate)
summary, and extended admissible from the proof of Theorem 6.3.2. The majority of
the proof is similar to the proof of Lemma 3.4.10, indeed, we only have to additionally
prove that the resulting paths pÕ do not have subpaths matching $1‡$1 or $2‡$2 or can
be replaced with shorter paths that do not have such subpaths.By p(e1, e2] we denote the
su�x of p[e1, e2] that excludes the first edge (so it can be empty). Notice that p[e1, e2]
and p[e1, e2) are always well-defined for trails.

Let L be the language of rÕ. Let p = d1 · · · dm be a shortest trail from s to t that
matches rÕ in GÕ and such that no subpath matches $1‡$1 or $2‡$2. Let S = –1 · · · –k be
the extended summary of p. Let p1, . . . , pk be trails such that p = p1 · · · pk and pi |= –i

for all i œ [k]. We denote by lefti and righti the first and last edge in pi. By definition of
pi and the definition of extended summaries, lefti and righti are identical with leftC and
rightC if –i œ Abbrv is an extended abbreviation for the component C.

Assume that p is not extended admissible. That means there is some edge e used in p¸

such that e /œ Edge¸. There are two possible cases:

(1) e œ Edgei for some i < ¸; and

(2) e /œ Edgei for any i.

In case (1), we choose i minimal such that some edge e œ Edgei is used in pj for some
j > i. Among all such edges e œ Edgei, we choose the edge that occurs latest in p. This
implicitly maximizes j for a fixed i. Especially no edge from Edgei is used in pj+1 · · · pk.

Let –i = (Ci, (v, q), eKeK≠1, eK≠2 · · · e1). By definition of Edgei, there is a trail fi from
v, starting with eKeK≠1 and ending with e, with ”L(q, lab(fi)) œ Ci, and that is shorter
than the subpath p[lefti, righti] and therefore shorter than p[lefti, e]. Let fi be a shortest
such path.

It was shown in Lemma 3.4.10 that pÕ = p1 · · · pi≠1fip(e, dm] is a trail matching rÕ and
that the subpath eÕ

K≠2 · · · eÕ
1 from (Cj , (vÕ, qÕ), eÕ

KeÕ
K≠1, eÕ

K≠2 · · · eÕ
1) is used in p(e, dm].

In order to contradict the choice of p, we additionally need that pÕ does not contain a
subpath labeled $1‡$1 or $2‡$2.

To this end, recall that all paths labeled $1‡$1 or $2‡$2 in GÕ are loops.

109

Chapter 6 Towards a Dichotomy for Regular Simple Path and Trail Queries

• By choice of p, neither p1 · · · pi≠1eKeK≠1 nor p[e, dm] contain a subpath labeled
$1‡$1 or $2‡$2.

• If fi(eK≠1, e] contained a subpath labeled $1‡$1 or $2‡$2, then its removal would
yield a shorter path fiÕ starting with eKeK≠1 and ending with e, and, by definition
of rÕ, with ”L(q, lab(fiÕ)) œ Ci, contradicting the choice of fi.

Thus, only fip(e, dm] could contain subpath(s) labeled $1‡$1 or $2‡$2: either in the
first four edges of fi or in the last two edges of fi and the first two of p(e, dm]. For example,
fi could end on $1a while p(e, dm] starts with $1.

Since each path labeled $1‡$1 or $2‡$2 is a loop in GÕ, the path obtained from pÕ by
removing all subpaths labeled $1‡$1 or $2‡$2 is indeed a path, and more precisely, a trail.
By definition of rÕ, subpaths of pÕ that are labeled $1‡$1 or $2‡$2 must be matched by a
strongly connected component of rÕ. Thus, in order to prove that pÕÕ matches rÕ, we have
to prove that enough edges in Cj are used. Thus, it su�ces to prove that removing the
subpath(s) did not remove an edge of eÕ

K≠4 · · · eÕ
1. Since eÕ

K≠2 · · · eÕ
1 is in p(e, dm], and

the removal of subpaths matching $1‡$1 or $2‡$2 could only remove the first two edges
in p(e, dm], their removal does not a�ect eÕ

K≠4 · · · eÕ
1. Thus pÕÕ still matches rÕ.

This concludes case (1). For case (2), we additionally assume without loss of generality
that there is no edge e œ Edgei that appears in some pj with j > i, that is, no edge
satisfies case (1). By definition of Edge¸, there is a trail fi with fi |=Edge¸

–¸ that is shorter
than p[left¸, right¸]. We choose pÕ as the path obtained from p by replacing p¸ with a
shortest such fi.

It was shown in Lemma 3.4.10 that pÕ = p1 · · · p¸≠1 · fi · p¸+1 · · · pk is a trail matching
rÕ. Again, in order to contradict the choice of p, we additionally need that pÕ does
not contain a subpath labeled $1‡$1 or $2‡$2. Let (C, (v, q̂), eKeK≠1, eK≠2 · · · e1) = –¸.
Since p does not contain a subpath labeled $1‡$1 or $2‡$2, neither p1 · · · pi≠1eKeK≠1
nor eK≠2 · · · e1p¸+1 · · · pk contain a subpath labeled $1‡$1 or $2‡$2.

Thus, subpaths labeled $1‡$1 or $2‡$2 can only occur in fi[eK , eK≠3]. Because all
paths labeled $1‡$1 or $2‡$2 are loops in GÕ, we can remove these paths from fi and the
resulting path fiÕ is still a trail. Furthermore, fiÕ is a trail from v that ends with eK≠4 · · · e1
and, by definition of rÕ and its components, with ”L(q, fiÕ) œ C. Since |eK≠4 · · · e1| = N2,
Lemma 3.2.7 implies that ”L(q, fiÕ) = ”L(q, fi). Thus pÕÕ = p1 · · · p¸≠1 · fiÕ

· p¸+1 · · · pk is
a trail matching rÕ that has no subpaths labeled $1‡$1 or $2‡$2 and is shorter than p,
contradicting the choice of p.

An immediate consequence of Theorems 3.3.3 and 6.3.2 is the following:

Corollary 6.3.5. USimPath(L) and UTrail(L) are in P for every downward closed lan-
guage L.

We present in Figure 6.2 an overview of the inclusion properties. Similar to Figure 3.3,
the regular expressions provided in this figure can be used to distinguish the classes from
one another. For example, the class UTtract can be distinguished from the class USPtract
by the language aúbcú, while the language (abc)ú is neither in USPtract nor in UTtract. It

110

6.4 The Gadget G3SAT for Lower Bounds

DC
SPtract

a

(ab)ú

UTtract

aúbcú
USPtract

(abc)ú

Figure 6.2: Expressiveness of USPtract and UTtract.

is not known if there exists a language in USPtract that is not in UTtract, which is why we
do not give a language in that case.

Proposition 6.3.6. Let L be a regular language and F1, F2 be finite languages. Then

(a) if L œ UTtract, then F1LF2 œ UTtract and

(b) if L œ USPtract, then F1LF2 œ USPtract.

Proof. To prove (a), let L œ UTtract. Then there exists a P algorithm A which given
nodes x and y, decides if there is a trail from x to y matching L. We can use A to decide
if there exists a trail from s to t matching F1LF2 as follows: We iterate over all possible
pairs of nodes (x, y) œ V 2 and all possible edge-disjoint trails (p1, p2) with p1 from s to x
matching F1 and p2 from y to t matching F2. Then we use A to decide if there is a trail
matching L from x to y in G without the edges in (p1, p2).

To prove (b), let L œ USPtract. Then there exists a P algorithm A which given nodes
x and y, decides if there is a simple path from x to y matching L. We can use A to
decide if there exists a simple path from s to t matching F1LF2 as follows: We enumerate
over all possible pairs of nodes (x, y) œ V 2 and all possible node-disjoint simple paths
(p1, p2) with p1 from s to x matching F1 and p2 from y to t matching F2. Then we use
A to decide if there is a simple path matching L from x to y in G without the nodes in
(p1, p2).

As a corollary, all languages definable by simple transitive expressions, see Defini-
tion 4.2.1, are in UTtract and USPtract.

6.4 The Gadget G3SAT for Lower Bounds

In this section, we construct a gadget for obtaining NP-hardness results throughout
this thesis. We will reduce from 3SAT, which is well known to be NP-complete. An
instance is a 3CNF formula Ï = ·

m
i=1Ci using variables {x1, . . . , xn}. The question is if

Ï is satisfiable, that is, there exists an assignment – : {x1, . . . , xn} æ {true, false} that
satisfies Ï. In fact, it is known that 3SAT is NP-complete, even if every variable appears
exactly twice negated and twice unnegated in Ï [79].

We will explain how to construct a generic undirected graph G3SAT that we will later
provide with labels to show NP-completeness of USimPath(L) and UTrail(L) for various

111

Chapter 6 Towards a Dichotomy for Regular Simple Path and Trail Queries

languages L. The definition of G3SAT is somewhat technical5 and is inspired on a gadget
that was used by Eilam-Tzore� [89] to reduce 3SAT to a variant of the disjoint paths
problem with length constraints.

Construction 6.4.1. (Construction of G3SAT.) Let Ï be a formula in 3CNF with m
clauses and n variables. In the following description, we will sometimes say that we will
add a w-path from u to v for some word w. If |w| Ø 1 this means that, between the nodes
u and v, we will add |w| ≠ 1 new nodes and connect them such that the new nodes form
a path from u to v that is labeled w. If |w| = 0, this means that u and v are merged
together.

For each clause (¸i,1 ‚¸i,2 ‚¸i,3) in Ï, we construct a clause gadget as in Figure 6.3 (left).
For each variable xj in Ï, we construct a variable gadget as in Figure 6.3 (right). The
words wr and wo are written on the paths in the usual “left-to-right” reading direction.
We will refer to the edges on wr-paths as red edges.

We now define a switch gadget that we will add for each occurrence of a variable,
which leads to 3m such gadgets. Let ¸i,k be the kth literal in the ith clause. We add
new nodes u1

i,k and u2
i,k and connect them as follows. We add a wb-path from u1

i,k to ¸2
i,k

and from ¸1
i,k to u2

i,k. If ¸i,k is the pth negated occurrence of variable xj , we additionally
add wb-paths from u1

i,k to x2
j,p and from x1

j,p to u2
i,k. On the other hand, if ¸i,k is the pth

unnegated occurrence of variable xj , we additionally add wb-paths from u1
i,k to x2

j,p and
from x1

j,p to u2
i,k.

Finally, we explain how to connect all gadgets. For each i œ [m ≠ 1] we add a wo-path
from ci,2 to ci+1,1, from cm,2 to v1,1 and for each j œ [n ≠ 1] we add a wo-path from vj,2
to vj+1,1.

We then add wo-paths from u2
i,1 to u1

i,2, from u2
i,2 to u1

i,3, and from u2
i,3 to u1

i+1,1. We
set s2 = c1,1, t2 = vn,2, s1 = u1

1,1, and t1 = u1
m,3. Finally, we add a wm-path from t1 to

s2, new nodes s and t, a ws-path from s to s1, and a wt-path from t2 to t. We sketch the
construction in Figure 6.4.

ci,1

¸1
i,1

¸1
i,2

¸1
i,3

¸2
i,1

¸2
i,2

¸2
i,3

ci,2

w r
wr

wr

wo

wo

wo

wr
wr

w r

vj,1

x1
j,1 x2

j,1 x1
j,2 x2

j,2

x1
j,1 x2

j,1 x1
j,2 x2

j,2

vj,2
wr

w r

wo

wo

wr

wr

wo

wo
wr

w r

Figure 6.3: Clause gadget for the clause Ci = (¸i1 ‚ ¸i2 ‚ ¸i3) (left) and variable gadget
for xj (right). The paths are labeled such that the words wr, wo can be read
from left to right.

Theorem 6.4.2. Let wb, wr œ �+ and G3SAT as described in Construction 6.4.1. The
following are equivalent:

5
In fact, some of the reductions in Gourvès et al. [105], which use a similar gadget, seem to be flawed,

see Appendix A.

112

6.4 The Gadget G3SAT for Lower Bounds

wo

wo

wo

s2

t2 t
wt

ss1t1 ws
wb

w
b

wb

w
b

w
b

w b

w b

w
b

wm

Figure 6.4: Sketch of the extension from two edge-disjoint paths to a single trail matching
a language. The concrete placement of the (blue dashed) switch-edges depends
on the occurrences of literals in clauses. The arrows indicate the “reading
direction” of the words on the paths.

(a) Ï is satisfiable.

(b) There exist node-disjoint paths p1 from s1 to t1 and p2 from s2 to t2 in G3SAT such
that p1 does not use red edges.

(c) If wo ”= Á then there exist edge-disjoint paths p1 from s1 to t1 and p2 from s2 to t2 in
G3SAT such that p1 does not use red edges.

(d) There exists a simple path p from s to t in G3SAT that uses the wm-path from t1 to
s2 before using any red edge.

(e) If wo ”= Á then there exists a trail p from s to t in G3SAT which reads the wm-edge
before using any red edge.

Proof. We first show (b) implies (a). If there exist two node-disjoint paths p1 from s1
to t1 and p2 from s2 to t2 in G3SAT such that p1 does not use red edges, then p1 has to
use all nodes u1

i,k and u2
i,k for each i œ [m] and k œ [3]. Since p2 is node-disjoint to p1,

it cannot use these vertices, so it can only pass through vertices of clause or variable
gadgets. In the variable gadgets, it passes through one of two possible paths, if it passes
through x1

j,1, we assign the variable xj the value true, otherwise, we assign it the value
false. We prove that this assignment satisfies Ï. If p2 used the path including x1

j,1, then
p1 cannot use this node, and thus has to use the nodes ¸1

i,k and ¸2
i,k with ¸i,k = xj instead.

Because of this, in clause gadgets, p2 can only use edges which correspond literals which
are set to true. Since p2 has to traverse all clause gadgets in order to go from s2 to t2
while avoiding the nodes u1

i,k and u2
i,k for all i œ [m] and k œ [3], it follows that there

must be at least one literal with value true in each clause gadget. Thus, Ï is satisfiable.
The proof that (c) implies (a) is analogous.
We now prove that (a) implies (b) and (c): Let ◊ be a satisfying assignment of true

values to variables in Ï. We construct a path p2 as follows: in each variable gadget, p2
passes through the path with xj,1 if ◊(xj) = true and through xj,1 if ◊(xj) = false. In
each clause gadget, p2 passes through a path which corresponds to a literal which is set

113

Chapter 6 Towards a Dichotomy for Regular Simple Path and Trail Queries

b
b

b

a

a

a

b
b

b

b
b

b

a

a

a

b
b

b

a

b

b

a

a

b

b

a

a b

b b

b

a

a

b

b

a

a b

b

a

b

b

a

a

b

b

a

a b

b

a

c

a

s

t
e

d

Figure 6.5: Example of the reduction from 3SAT with the boolean formula (x1 ‚ x1 ‚

x2) · (x2 ‚ x3 ‚ x3) to the language daúc(a + b)úe. We use G3SAT with words
ws = d, wb = wo = a, wm = c, wr = b, wt = e. For readability, we colored the
edges of the switch blue (and dashed) and omitted the labels on these edges
(which all were a). Note that the path starting from s must use the c-labeled
edge before it can use any of the red edges.

to true. This is possible since there is at least one in each clause. We can then construct
a path p1, which is (node- and edge-)disjoint from p2. Between each pair of nodes u1

i,k

and u2
i,k, there are two possible paths which do not use red edges: one via a clause and

one via a variable gadget. Let us assume that ¸i,k represents the literal ¸. We have chosen
p2 in such a way that it uses at most one of these two edges, so p1 uses the other. If ¸ is
false, then p2 uses the edge in the variable, but not in the clause gadget. If ¸ is true, then
p2 does not use the edge in the variable gadget.

Finally, we observe that (b) and (d) are equivalent: From node-disjoint paths p1 and
p2 it is straight forward to construct a simple path from s to t by connecting p1 via wm
to p2. On the other hand, we can split a simple path p which does not use red edges
before reading wm into node-disjoint paths p1 = p[s1, t1] and p2 = p[s2, t2].

The proof that (c) and (e) are equivalent is analogous.

Application of G3SAT for 2RPQs

We note that G3SAT can also be used to prove hardness for 2RPQs in which not every
symbol is of the form (a + a). More precisely, we can use G3SAT to show that the 2
disjoint paths problem where one path is directed and one path is undirected is NP-hard,
even in a graph without labels/only a-labels.

Lemma 6.4.3. Node-/Edge-disjoint aú/(a + a)ú-paths in directed graphs is NP-complete.

114

6.5 Generalizing Two Disjoint Paths

Proof. We use G3SAT with directed paths/edges. More precisely, we direct all wb = a
and wo = a edges in direction of the usual word, while wr = aa will be a path of length 2
where the directions point to the node in the middle. Graphically, wr looks like: a

æ ·
a

Ω.
Then, the directed path from s1 to t1 cannot use wr-paths. The correctness follows

similar as in Theorem 6.4.2.

This implies hardness for several “mixed” 2RPQs like aúb(a + a)ú. Interestingly, G3SAT
is much less complex than the gadget used in the hardness proof of 2 disjoint paths in
the purely directed case [98].

We believe that G3SAT can be used to prove hardness for many more languages, and it
would be an interesting direction for future work.

6.5 Generalizing Two Disjoint Paths

We already discussed the close relationship between 2-disjoint-path problems and UTrail

and USimPath in Section 6.2, which we can now make more concrete. Indeed, using
G3SAT from Construction 6.4.1 and Theorem 6.4.2, we can obtain the following:

Theorem 6.5.1. Let A and B be non-empty subsets of �.

• The node-disjoint Aú/Bú-paths problem on undirected multigraphs is in P if A = B,
and it is NP-complete otherwise.

• The edge-disjoint Aú/Bú-paths problem on undirected multigraphs is in P if A = B
or A fl B = ÿ, and it is NP-complete otherwise.

Proof. For node-disjoint paths: If A = B, then we can use the minor theorem (see
Proposition 6.2.1) to find node-disjoint paths in the multigraph restricted to A labels. If
A ”= B, we can assume without loss of generality that B ”™ A (otherwise rename). Let
a œ A and b œ B \ A. We use G3SAT with wb = a, wo = Á, wr = b. Since the Aú path
cannot use b-edges, Theorem 6.4.2 implies the NP hardness. Since USimPath(L) is in NP
for every regular language, NP-completeness follows.

For edge-disjoint paths: If A = B, we can use the minor theorem (see Proposition 6.2.1)
to find edge-disjoint paths in the multigraph restricted to A. Otherwise, if A fl B = ÿ,
we can find paths in the subgraph restricted to A or restricted to B separately. If A ”= B
and A fl B ”= ÿ, we can assume without loss of generality that B ”™ A (otherwise rename).
Let a œ A fl B and b œ B \ A. We use G3SAT with wb = a, wo = a, wr = b. Since the Aú

path cannot use b-edges, Theorem 6.4.2 implies the NP hardness. Since UTrail(L) is in
NP for every regular language, NP-completeness follows.

This result can be used to completely classify the complexity of UTrail and USimPath

for languages of the form AúwBú, where w is an arbitrary word. If w = Á, then the
language is AúBú, which is downward-closed and therefore always tractable. The other
cases are in the following theorem.

115

Chapter 6 Towards a Dichotomy for Regular Simple Path and Trail Queries

Theorem 6.5.2. Let A, B non-empty subsets of � and w = ‡1 . . . ‡n œ �ú with n Ø 1.
Then USimPath(AúwBú) is in P if:

(1) A = B; or

(2) n = 1 and A ≠ {‡1} = B ≠ {‡1}; or

(3) ‡1 = . . . = ‡n and (A = {‡1} or B = {‡1}); or

(4) ‡1 = . . . = ‡i ”= ‡i+1 = . . . = ‡n and A = {‡1} and B = {‡n}; or

(5) ‡1 ”= ‡2 = . . . = ‡n and B = {‡n} and A = {‡1, ‡n}; or

(6) ‡1 = . . . = ‡n≠1 ”= ‡n and A = {‡1} and B = {‡1, ‡n};

and it is NP-complete otherwise.
UTrail(AúwBú) is in P if one of (1)–(6) holds; or AflB = ÿ; or n = 1 and AflB = {‡1};
and NP-complete otherwise.

Proof. We first show that (1)–(6) imply tractability. To this end, we rewrite AúwBú

in each case to a language of the form w1Cúw2Cúw3 or w1CúDúw2 for C, D ™ � and
w1, w2, w3 œ �ú with |w1| + |w2| + |w3| Æ n. Languages of these forms are tractable
because we can iterate over all possible simple paths/trails matching w1, w2, w3 and find
in the subgraph without w1, w2, w3 either a path matching a downward closed language,
namely CúDú, from the end of w1 to the start of w2, or two node-/edge-disjoint C-paths
from the end of w1 to the start of w2 and from the end of w2 to the start of w3 with
Theorem 6.5.1. These tests are in polynomial time since there are at most |E|

n many
edges where n is a constant, Corollary 6.3.5, and Theorem 6.5.1.

In case (1), we can rewrite AúwBú into AúwBú, in case (2) into (Afi{‡1})ú‡1(Afi{‡1})ú,
in case (3) into ‡n

1 ‡ú
1Bú or Aú‡ú

1‡n
1 , in case (4) into ‡i

1‡ú
1‡ú

n‡n≠i
n for some i œ [n], in case

(5) into Aú‡1Aú‡n≠1
n , and in case (6) into ‡n≠1

1 Bú‡nBú.
Furthermore, if A fl B = ÿ, UTrail(AúwBú) is also in P since we can first enumerate

over all possible trails matching w and then find paths matching Aú and Bú separately,
see Theorem 6.5.1. The case that UTrail(A‡1B) is in P if A fl B = {‡1} is more complex
and will be proved in Lemma 6.5.3.

On the other hand, if none of the conditions hold, we can prove NP completeness:
For every regular language L, UTrail(L) and SimPath(L) are in NP, thus we only need

to prove NP-hardness. We first prove that if (1)–(6) fail, then USimPath(AúwBú) is
NP-hard. Since A ”= B and all rules are symmetric, we can assume without loss of
generality that B ”™ A, that is, ÷b œ B \ A. We perform a case distinction on w.

• if n = 1, then by ¬(3) we know that there exist a œ A, b œ B : a ”= ‡1 ”= b. Since
B ”™ A and by ¬(2) B ”= A \ {‡1}, there exist a œ A, b œ B \ A with a ”= ‡1 ”= b. We
use these symbols to label G3SAT as follows: ws = Á, wb = a, wo = Á, wm = ‡1, wr =
b, wt = Á. Since the Aú-path starting in s cannot use b-edges, it has to follow the
path until t1 (the start of ‡1). By Theorem 6.4.2 this implies NP hardness.

116

6.5 Generalizing Two Disjoint Paths

• if ÷i < j < k with ‡i ”= ‡j ”= ‡k, then take an arbitrary a œ A and use G3SAT with
words ws = wt = ÿ, wb = an, wr = bn, wo = Á and wm = w. Since wb and wr have
length n, concatenations of wb and wr do not yield the substring w.

• if ‡1 = . . . = ‡n and A ”= {‡1} ”= B: Then there exist a œ A \ {‡1}, and,
since B ”™ A, there is b œ B \ {‡1} with b /œ A. We then use G3SAT with words
ws = wt = ÿ, wb = a, wr = b, wo = Á and wm = w.

• if ‡1 = . . . = ‡i ”= ‡j = . . . = ‡n: due to (4) we distinguish between (a) A ”= {‡1}

and (b) B ”= {‡n}.
Case (a): If A ”= {‡1}, we can pick a œ A \ {‡1} and use G3SAT with words
ws = wt = ÿ, wb = an, wr = bn, wo = Á and wm = w. This works because a ”= ‡1,
b /œ A, and w ”= bn.
Case (b): So let us assume that A = {‡1} and B ”= {‡n}. If there exists a b œ B \A
with b ”= ‡n, we can use G3SAT with words ws = wt = ÿ, wb = ‡1, wr = b, wo = Á
and wm = w. So let us assume that not such b exists, that is, A = {‡1} and
B = {‡1, ‡n}. If w contains 2 ‡n, we can use G3SAT with words ws = wt = ÿ,
wb = ‡1, wr = ‡1‡n‡1, wo = Á and wm = w. On the other hand, if w contains only
a single ‡n, we are contradicting that (6) fails.

We now prove that if A fl B ”= ÿ, and in case n = 1 additionally A fl B ”= {‡1}, and
(1)–(6) fail, then UTrail(AúwBú) is NP-hard. Since A ”= B and all rules are symmetric,
we can assume without loss of generality that B ”™ A, that is, ÷b œ B \ A. We perform a
case distinction on w.

• if n = 1, then we additionally know that AflB ”= {‡1}. Thus, there exists a œ AflB
with a ”= ‡. Together with ¬(2) and B ”™ A this implies that there exist a œ A fl B,
b œ B \ A with a ”= ‡1 ”= b. We can now prove NP-hardness with G3SAT using
the labels ws = ÿ, wb = wo = a, wm = ‡, wr = b, wt = ÿ. Since b /œ A, and
a ”= ‡1 ”= b, the A-path starting from s is not allowed to use b-edges before reaching
t1. Therefore, Theorem 6.4.2 implies NP hardness.

• if ÷i < j < k with ‡i ”= ‡j ”= ‡k, then take an arbitrary a œ A fl B and use G3SAT
with words ws = wt = ÿ, wb = an, wr = bn, wo = an and wm = w. Since wb, wo,
and wr have length n, concatenations of wb and wr do not yield the substring w.

• if ‡1 = . . . = ‡n and A ”= {‡1} ”= B: Then there exist a œ A \ {‡1}, and, since
B ”™ A, there is b œ B \ {‡1} with b /œ A. Let c œ A fl B arbitrary. We then use
G3SAT with words ws = wt = ÿ, wb = a, wr = b, wo = c and wm = w. This works
because |w| Ø 2 and wo never appears twice in a row.

• if ‡1 = . . . = ‡i ”= ‡j = . . . = ‡n: due to (4) we distinguish between (a) A ”= {‡1}

and (b) B ”= {‡n}.
Case (a): A ”= {‡1}. If A fl B ”= {‡1}, we can pick a œ A fl B \ {‡1} and use
G3SAT with words ws = wt = ÿ, wb = an, wr = bn, wo = an and wm = w. This

117

Chapter 6 Towards a Dichotomy for Regular Simple Path and Trail Queries

works because a ”= ‡1, b /œ A, and w ”= bn. If A fl B = {‡1}, then, since B ”™ A,
B ”= {‡1}. So there exist a, b with {‡1, a} ™ A and {‡1, b} ™ B. We now perform
a case distinction on ‡n.

– if a = ‡n, we use G3SAT with words ws = wt = ÿ, wb = ‡1, wr = b, wo = ‡1
and wm = w. Then ‡n only appears in wm.

– if b = ‡n, we show that UTrail(BúwrevAú) is NP-hard. Therefore, we use G3SAT
with words ws = wt = ÿ, wb = ‡1, wr = a, wo = ‡1 and wm = wrev. The
result for UTrail(AúwBú) then follows since UTtract is closed under reversal,
see Theorem 6.3.1.

– if a ”= ‡n ”= b, we use G3SAT with words ws = wt = ÿ, wb = ‡1, wr = b,
wo = ‡1 and wm = w. Then ‡n only appears in wm.

Case (b): So let us assume that A = {‡1} and B ”= {‡n}. Since A fl B ”= ÿ, ‡1 œ B.
If there exists a b œ B \ A with b ”= ‡n, we can use G3SAT with words ws = wt = ÿ,
wb = ‡1, wr = b, wo = ‡1 and wm = w. So let us assume that not such b exists,
that is, A = {‡1} and B = {‡1, ‡n}. If w contains 2 ‡n, we can use G3SAT with
words ws = wt = ÿ, wb = ‡1, wr = ‡1‡n‡1, wo = ‡1 and wm = w. On the other
hand, if w contains only a single ‡n, we are contradicting that (6) fails.

Since USimPath(L) and UTrail(L) are in NP for every regular language, NP-completeness
follows.

To complete the proof of Theorem 6.5.2 it remains to prove the next lemma.

Lemma 6.5.3. UTrail(Aú‡Bú) is in P if A fl B = {‡}.

Proof. If A = {‡} or B = {‡}, then tractability follows from condition (3) in Theo-
rem 6.5.2. So let a œ A \ B and b œ B \ A. We denote by GA the subgraph of G
restricted to edges with labels in A and by GB the subgraph of G restricted to edges
with labels in B. We describe a polynomial time algorithm that solves UTrail(Aú‡Bú).
Let G = (V, E, E) be an undirected multigraph. We iterate over all tuples of nodes
(u1, u2) œ V ◊ V such that there is at least one ‡-edge between u1 and u2. We name one
such edge e‡. Let GÕ be a copy of G without e‡ (we delete only a single edge, even if
there are multiple ‡-edges between u1 and u2). In GÕ, we rename every ‡-edge

• which is only on a trail from s to u1 path in GÕ
A and not on a trail from u2 to t

path in GÕ
B to an a-edge,

• which is not on a trail from s to u1 in GÕ
A, but on a trail from u2 to t in GÕ

B to a
b-edge,

• whose deletion would make t unreachable from u2 in GÕ
B to a b-edge. That is, each

‡-edge separating u2 and t in GÕ
B is renamed to a b-edge.

If, after the renaming, there exist paths (not necessarily disjoint) from s to u1 in GÕ
A and

from u2 to t in GÕ
B , we return true. If, after enumerating over all tuples (u1, u2) no such

paths were found, we return false.

118

6.6 Word Iterations

We now prove correctness. Let us assume the algorithm returned true. Then there
exists a tuple of nodes (u1, u2), a ‡-edge e‡ with endpoints u1 and u2, an A-path from s
to u1 and a B-path from u2 to t in GÕ. Consider an arbitrary trail p from s to u1 in GÕ

A.
If p is ‡-free, every path from u2 to t in GÕ

B will be disjoint from p. Thus we can build a
trail matching Aú‡Bú by concatenating p with e‡ and a shortest path from u2 to t in
GÕ

B . Otherwise, let p = e1 · · · e¸ and ei be the first ‡-edge in p. Let x œ Node(ei) be the
destination of e1 · · · ei. We will construct a trail p2 from x to t in GÕ

B which does not use
ei. Since ei was the first ‡-edge in p and A fl B = {‡}, the prefix of p will be disjoint
from p2 and therefore e1 · · · ei · p2 will be a trail from s to t that matches Aú‡Bú.

Let Node(ei) = {x, y}. Since ei was not relabeled, there is a trail from u2 to t in GÕ
B

which uses ei. If this trail can be split into a trail from u2 to y and from x to t, then the
trail from x to t is our p2. Otherwise, let us assume the B-path is split into a trail from
u2 to x and one from y to t. Since there is a trail from u2 to t not using ei (otherwise,
this edge had been relabeled b), we can construct a B-path not using ei by concatenating
the path from x to u2 with this path from u2 to t. Removing cycles in which edges are
used more than once then yields the trail p2 from x to t which does not use ei.

We now turn to the other direction. Let p = e1 · · · e¸ be a trail from s to t matching
Aú‡Bú. Then there exists an i œ [¸] such that e1 · · · ei≠1 matches Aú, lab(ei) = ‡, and
ei+1 · · · e¸ matches Bú. Since the algorithm enumerates over all tuples of nodes, it will
have enumerated over Node(ei). Let (u1, u2) be the nodes of ei in the order they appear
in p. Since all edges in e1 · · · ei≠1 are on a trail from s to u1, they will only be renamed to
a-edges (if at all). With the same argument, the edges in ei+1 · · · e¸ will only be renamed
to b-edges (if at all). Thus, even after renaming the edges in GÕ as described in the
algorithm, there are still paths from s to u1 in GÕ

A and from u2 to t in GÕ
B. Thus the

algorithm will return true.

6.6 Word Iterations

In this section we give an overview of the complexity of USimPath and UTrail for word
iterations, that is, languages of the form wú, where w is a word. This setting has essentially
three cases. The first case, where w = an with n Ø 3, has been an open problem since
1991 [17]. The other two cases are the following.

Theorem 6.6.1. Let w be a word.

(a) If |w| Æ 2, then USimPath(wú) and UTrail(wú) are in P.

(b) If |w| Ø 3 and w has at least 2 di�erent symbols, then UTrail(wú) and USimPath(wú)
are NP-complete.

Proof. We first prove (a). If |w| = 1, finding a simple path or trail is equivalent to
finding an arbitrary path. If |w| = 2, then we can find simple paths labeled by a word in
L(wú) in P using the graph duplication technique of Edmonds [140, 149]. We note that
this technique also works on multigraphs. For trails, if w = aa, using the extended line
graph construction, the problem reduces to the one for simple paths, see Lemma 6.2.2. If

119

Chapter 6 Towards a Dichotomy for Regular Simple Path and Trail Queries

w = ab, then Abouelaoualim et al. [5] give a polynomial time algorithm which builds on
the work of Szeider [194] and also works on multigraphs. The case w = ba is equivalent
to w = ab. We now prove (b). Since USimPath(L) and UTrail(L) in NP for every regular
language, is remains to prove NP hardness. Assume that |w| Ø 3 and w has at least 2
di�erent symbols. We distinguish the following cases:

(1) w is periodic, that is, w = wi
1 for some i Ø 2;

(2) w has at least 3 di�erent symbols; or

(3) w is not periodic and has exactly 2 di�erent symbols.

We note that we will use di�erent methods here since we do not see how to handle
w = abab with a reduction from 3SAT, while showing hardness for w = aab seems
impossible with a reduction from the two node-/edge-disjoint paths problem on directed
graphs.

(1) We use a reduction from TwoDisjointPaths or TwoEdgeDisjointPaths, respecitvely.
Both problems are NP-complete on directed graphs [98]. Let the node pairs s1, t1 and
s2, t2 be given and GD = (VD, ED, ED) be a directed graph. Similar to Chou et al. [67],
the main idea is to replace the directed edges with undirected paths labeled with some
word which implies the direction. Furthermore, we add paths from a new node s to s1,
from t1 to s2, and possibly from t2 to a new node t, such that the languages enforce a
valid path to take the path from t1 to s2.

For this reduction it is necessary that the paths may not be traversed in the opposite
direction. If w ”= wrev, we can directly replace each directed edge e œ ED with an
undirected path labeled w from origin(e) to destination(e), and add a path labeled
(w1)i≠1 from t1 to s2 and a new start node s with a path labeled w1 to s1. Furthermore,
we define t = t2.

In the case that w = wrev, we first need to “shift” w. Let w = wi
1. Since w1 has

at least two di�erent symbols, we can write w1 in the form w¸wr such that wr starts
with a symbol which is di�erent from the symbol on which w¸ ends. Let w2 = wrw¸.
Then, w2 ”= wrev

2 and L(w+) = L(w¸(wi
2)úwi≠1

2 wr) = L(w¸(wi
2)úwi≠1

2 (wi
2)úwr). Thus,

we replace every edge e œ ED with an undirected path labeled wi
2 from origin(e) to

destination(e). Furthermore, we add a path labeled w¸ from a new node s to s1, an edge
labeled wi≠1

2 from t1 to s2, and an edge labeled wr from t2 to a new node t. Let GU be
the so-constructed undirected graph.

We now show that there are two node-/edge-disjoint paths from s1 to t1 and from s2
to t2 in GD if and only if there exists a simple path/trail matching wú from s to t in GU .
To this end, we first observe that for each edge e œ ED we find exactly one path of length
|w| from origin(e) to destination(e). (Depending on whether w = wrev, this path is either
labeled w or wi

2.) We name this path corresp(e). We note that for each e œ ED, corresp(e)
is simple and does not use any nodes of VD besides origin(e) and destination(e). Let
p = e1 · · · en be a path. We define corresp(p) = corresp(e1) · · · corresp(en). If there exist
two edge-disjoint trails p1 from s1 to t1 and p2 from s2 to t2 in GD, then we obtain a trail
pÕ from s to t in GU matching wú by concatenating the path from s to s1, corresp(p1), the

120

6.6 Word Iterations

ai

bj

ck

ck ai s

t a

b

bj

bj a

a

a
s

t

Figure 6.6: Parts of G3SAT for the proof of Theorem 6.6.1(b), cases (2) and (3). We
show the “shared” wo-path for the language (aibjckwÕ)ú on the left and for
the language (abbjwÕ)ú (where wÕ is Á or starts with a) on the right. For
orientation, we added dotted edges together with nodes s and t.

path from t1 to s2, corresp(p2), and the path from t2 to t. If p1 and p2 are node-disjoint
simple paths, then the so-constructed path pÕ is a simple path by construction. On the
other hand, if there is a path pÕ from s to t in GU matching wú, then it must start with
the path from s to s1, and end with the path from t2 to t. Since pÕ matches wú, and by
definition of GU , pÕ must use the path from t1 to s2. Furthermore, since w ”= wrev or
w2 ”= wrev

2 , the subpaths pÕ
1 from s1 to t1 and pÕ

2 from s2 to t2 must follow the paths in
the “intended direction”. Let p1 and p2 be the paths in GD obtained from pÕ

1 and pÕ
2 by

deleting nodes not in VD and making its two neighbors adjacent. Furthermore, if pÕ is a
simple path, then p1 and p2 must be node-disjoint simple paths. And if pÕ is a trail, then
p1 and p2 must be edge-disjoint trails.

(2) Since w has at least 3 di�erent symbols, say a, b, and c, we can write it as
w+ = ws(aibjckwÕ)úwt for some words ws, wÕ, wt œ �ú and numbers i, j, k Ø 1. We then
use G3SAT, see Construction 6.4.1, with the words ws = aibj , wo = bj , wr = wb = ckwÕai,
wt = bjckwÕ, wm = bj to prove NP-hardness.

Note that every path matching wú that starts in s has use the wm-path from t1 to s2
before it can use any red edge because before and after every “shared” bj-path (that is,
every undirected path labeled bj from ¸1

i,k to ¸2
i,k, from x1

j,k to x2
j,k, or from x1

j,k to x2
j,k)

there is at most one a and at most one c-edge and no other b-edge, see Figure 6.6 (left).
Thus the correctness follows from Theorem 6.4.2.

(3) Since w is not periodic and has exactly two di�erent symbols, say a and b, it can
be written as w+ = ws(abbiwÕ)wt for some words ws, wÕ, wt œ {a, b}

ú and a number j Ø 1
such that wÕ = Á or wÕ begins with a (that is, j is maximal).

We then use G3SAT with words wo = b, wb = wr = bjwÕa, ws = ab, wt = bbj , wm = b.
Again, every path matching wú that starts in s has use the wm-path from t1 to s2

before it can use any red edge. The reason can be seen in Figure 6.6 (right): If the path
starting in s would use a red edge before reading the wm-path from t1 to s2, it would
contain a substring abja or aba instead of abbja. Thus, this path would not be labeled
wú. Thus the correctness follows from Theorem 6.4.2.

121

Chapter 6 Towards a Dichotomy for Regular Simple Path and Trail Queries

6.7 Simple Chain Regular Expressions

We consider a simple variant of chain regular expressions, which were introduced to
study static analysis of schemas for XML [152] and used for studying the complexity of
SPARQL query evaluation [146].

Definition 6.7.1 (Simple Chain Regular Expression (SCRE)). A factor is a regular
expression of the form a, aú, or a? where a is some symbol from �. A simple chain
regular expression (SCRE) is a (possibly empty) concatenation of factors.

We use a similar shorthand notation for SCREs as in [152]. In short, we write
SCRE(f1, . . . , fk) for the class of SCREs in which we allow factors f1, . . . , fk. For example,
the expression aúbúabúa? is in SCRE(a, a?, aú, bú). We will use a special symbol ı to
abbreviate “all alphabet symbols that were not listed yet”. For example, SCRE(a, aú, ı?)
is the class of SCREs that use factors in {a, aú

} fi {b? | b œ � ≠ {a}}. Next, we study
UTrail(L) and USimPath(L) for languages L that are definable by SCREs.

Trails are Tractable

Remarkably, finding trails is tractable for every language definable by an SCRE.

Theorem 6.7.2. UTrail(L) is in P for every language L definable by an SCRE.

Proof. We can write every expression r œ SCRE(ı?, ı, ıú) in the form r = r1aú
1r2 · · · aú

¸≠1r¸,
where ri œ SCRE(ı?, ı) for each i œ [¸]. Since ¸ is a constant and since each path
that matches ri has constant length, we can iterate in polynomial time over all tuples
(p1, . . . , p¸) of disjoint (sub)trails of the multigraph G such that each pi matches ri. Let
GÕ be G without the edges of (p1, . . . , p¸). Assume that path pi is from ui to vi (with
u1 = s and v¸ = t). In order to complete the subtrails to a trail that matches r, we
will test, for each symbol a œ � and all i œ [¸ ≠ 1], for edge-disjoint trails in GÕ

a. More
precisely, let k = |{ai | ai = a}|. For each a œ �, we test if there exist k edge-disjoint
paths pa

i1 , . . . , pa
ik

such that aij = a and pa
ij

is a path from vij to uij+1 in GÕ
a. Since k is

a constant, their existence can be tested in polynomial time, see Proposition 6.2.1. Since
GÕ

ai
and GÕ

aj
are mutually edge-disjoint graphs for all ai ”= aj , the so-constructed paths

will be edge-disjoint.

Simple Paths are Not So Simple

The situation for finding simple paths is much more complex, however. In order to
maintain an overview, we di�erentiate between the number of alphabet symbols used in
the SCREs. Since the number of alphabet symbols in RPQs recently found in query logs
is typically low [53, 55], even the results on one or two alphabet symbols are of practical
interest.

122

6.7 Simple Chain Regular Expressions

One or Two Alphabet Symbols

If the SCREs just use a single alphabet symbol, that is, we have languages definable by
an SCRE(a, a?, aú), then USimPath is always tractable. The next theorem shows that, for
a second alphabet symbol b, factor types b, b? or b?, bú can be added. We will see later
that allowing both b, bú leads to NP-completeness.

Theorem 6.7.3. USimPath(L) is in P

(a) for every language definable by an SCRE(a, a?, aú, b, b?) and

(b) for every language definable by an SCRE(a, a?, aú, b?, bú).

Proof. For (a), assume that r œ SCRE(a, a?, aú, b, b?). Then there exists an ¸ œ N with
r = r1aú

1r2 · · · aú
¸≠1r¸, where ri œ SCRE(a, a?, b, b?) for each i œ [¸]. Since ¸ is a constant

that depends only on r and since paths that match each such ri have constant length,
we can iterate in polynomial time over all tuples (p1, . . . , p¸) of node-disjoint simple
(sub)paths such that each pi matches ri. Assume that path pi is from ui to vi (with
u1 = s and v¸ = t). In order to complete the subpaths to a path that matches r, we need
to test if there exist ¸ ≠ 1 paths that are a-labeled, mutually node-disjoint, node-disjoint
from p1, . . . , p¸, and respectively from vi to ui+1, for each i œ [¸ ≠ 1]. Testing if these
paths exist can be done by running the polynomial-time algorithm for k-node-disjoint
simple paths on the graph obtained from the input multigraph by deleting all inner nodes
of p1, . . . , p¸. The proof of (b) follows from Lemma 6.7.12. We now turn to (b). As in
(a), we can rewrite every regular expression of this form in a normal form. We then show
in Lemma 6.7.12 that Algorithm 4 correctly decides this problem in polynomial time.

The next few pages are devoted to the proof of Lemma 6.7.12. We first give some
necessary definitions and explain the outline of our proof and the idea of Algorithm 4.

Observation 6.7.4. Every regular expression r in SCRE(a, a?, aú, b?, bú) can be written
in a normal form

r = r1aú
1bú

1r2aú
2bú

2 · · · r¸ (†)

with ai œ {a, Á}, bi œ {b, Á}, and ri œ SCRE(a, a?, b?). As such, each path that matches r
can be seen as a path that consists of the following subpaths:

• paths pi matching ri from nodes zi≠1 to xi, for i œ [¸],

• a-paths from nodes xi to yi, for i œ [¸ ≠ 1], and

• b-paths from nodes yi to zi, for i œ [¸ ≠ 1],

where z0 = s and x¸ = t.

Thus USimPath(L) is in P for every language definable by an SCRE(a, a?, aú, b?, bú) if
and only if USimPath(L) can be decided in polynomial time for languages definable by
regular expressions of the form (†).

123

Chapter 6 Towards a Dichotomy for Regular Simple Path and Trail Queries

Definition 6.7.5. We say that a multigraph H is 2-connected if (1) it contains at least
two nodes and (2) for each node x, the multigraph H ≠ {x} is connected. A 1-(node-)cut
between two nodes u and v is a node x such that every path from u to v uses x. A
2-connected component of H is a subgraph C of H that is 2-connected and maximal.
Maximal means here that there is no node x /œ C such that the induced subgraph of H
on C fi {x} is 2-connected.

We say a path p hits a 2-connected component C if an inner node of p is a node of C.

Furthermore, given a simple path p and two nodes x, y in p, we denote by p[x, y] the
subpath of p from x to y.

A connection between node-disjoint paths and minimum node cuts was given by
Menger [161].6

Theorem 6.7.6 (Menger’s theorem). Let u and v be distinct, non-adjacent nodes in
a connected, undirected multigraph G. Then the maximum number of internally node-
disjoint paths between u and v in G equals the minimum node cut for u and v, which is
the number of nodes, distinct from u and v, whose removal disconnects u and v.

A result of Menger’s theorem is that 2-connected components C have two node-disjoint
paths between each pair of nodes in C.

We now explain how Algorithm 4 can decide USimPath(r) for regular expressions of
the form (†). The outer loop of the algorithm enumerates the tuples (p1, . . . , p¸) of
constant-length node-disjoint simple paths that match the subexpressions of ri, for each
i œ [¸]. Once we have these, we can find a simple path that matches r if we can complete
(p1, . . . , p¸) with node-disjoint simple paths that match the subexpressions of the form aú

or bú at the appropriate places. This problem is essentially the problem of finding disjoint
paths where some of the paths need to be labeled a and others need to be labeled b. The
challenge for the present proof is that this latter problem is NP-complete. Indeed, in a
given undirected graph with edge labels a and b, deciding if there are two node-disjoint
simple paths between (s1, t1) and (s2, t2), one labeled with a’s and the other with b’s, is
NP-complete [105, Theorem 16]. We therefore need a di�erent approach.

Our approach uses a structural graph-theoretic argument to reduce the problem to
finding sets of node-disjoint a-paths in graphs GX,N

A and sets of node-disjoint b-paths
in other graphs GX,N

B . These graphs will be computed from G based on p1, . . . , p¸ (that
is, inner nodes of p1, · · · , p¸ will be removed) and a second much more intricate loop,
that we describe later. The crux is that, if these sets of a-paths and b-paths exist for any
(p1, . . . , p¸) and any GX,N

A and GX,N
B , then there is a simple path that matches r in G,

because GX,N
A and GX,N

B are node-disjoint (up to start/end nodes of paths that we are
interested in). If these sets of paths do not exist, then we need to prove a non-trivial
re-routing result that shows that no simple path that matches r exists in general. This
result (Lemma 6.7.7) shows that if a simple path that matches r exists, then there exists
one that satisfies a number of conditions that allow us to run the inner loop of the
algorithm in polynomial time.

6
While Menger worked on graphs, the theorem immediately holds for multigraphs.

124

6.7 Simple Chain Regular Expressions

We note that in line 4, we call the tuple of nodes (y1, . . . , y¸≠1) consistent with
(ai, bi)iœ[¸≠1] if (xi = yi) is equivalent to ai = Á and (yi = zi) is equivalent to bi = Á.
Thus this line enumerates possible nodes between the ai- and bi-paths.

We now describe the workings of the inner loop.
Let k be the number of occurrences of a factor of the form a in r, that is, k is the

length of the shortest word in L(r), which is a constant for the purposes of the present
decision problem.

Let GÕ be the multigraph G without the inner nodes of p1, . . . , p¸ and their adjacent
edges. For each i œ [¸ ≠ 1] we define the undirected multigraph Gi depending on xi and
yi as follows:

• if xi = yi, Gi is the single node xi.

• otherwise, Gi is the the induced subgraph of GÕ
a on the nodes of simple paths from

xi to yi (including xi and yi, but without the nodes zj for which zj ”= xj+1 and
yj ”= zj).

Notice that in Gi the 1-cuts between xi and yi are totally ordered by their proximity to
xi. Furthermore, between every pair of such consecutive 1-cut nodes between xi and yi

in Gi, there either is nothing, or

• a 2-connected component with no simple cycle of length at least 2k, or

• a 2-connected component with a simple cycle of length at least 2k.

We call a 2-connected component of Gi that has a simple cycle of length at least 2k a
large component, and otherwise a small component.

We distinguish these components because large components have long simple paths
(length at least k) between every pair of their nodes, while we can show that small
components have simple paths of length at most 4k2 (Lemma 6.7.9).

The crux of our argument is in the following lemma, which says that we can assume
that the b-subpaths of solutions of USimPath(L) hit no large component and at most a
constant number of small components.

Lemma 6.7.7. Let L be a language definable by a regular expression of the form (†). If
there exists a solution of USimPath(L), then there is a solution p1pa

1pb
1p2pa

2pb
2 · · · p¸, such

that each pi matches ri, each pa
i matches aú

i , each pb
i matches bú

i and, furthermore, (1)
no pb

i hits a large component and (2) all pb
i together hit at most ¸(¸ + k) di�erent small

components.

Our algorithm will therefore consider sets X that contain at most ¸(¸ + k) di�erent
small components and consider subgraphs GX,N

A of GÕ
a through which we will search for

disjoint a-paths. First we construct a set AX , containing all the nodes xi, yi, all 1-cuts
between xi and yi, all nodes of large components between xi and yi, and all nodes of
small components C /œ X. For each small component C œ X, observe that, while the size
of C is not necessarily constant,7 each a-labeled subpath of a simple path that matches

7
Take C with edges (s, i), (i, t) with i œ [n] for arbitrarily large n.

125

Chapter 6 Towards a Dichotomy for Regular Simple Path and Trail Queries

r traverses C at most once. As the number of maximal a-labeled subpaths of a path
matching an expression of the form (†) is bounded by (¸ ≠ 1), they can traverse C at
most (¸ ≠ 1) times. Since simple paths in C have length at most 4k2, there are at most
(¸ ≠ 1)4k2 nodes per C œ X that can be used by a-labeled subpaths of a simple path that
matches r. As such, we can iterate over sets N of nodes of

t
CœX C, where |N | œ O(¸3k3).

For each such subset N , we consider the graph GX,N
A which is the subgraph of GÕ

a induced
by AX fi N . The graph GX,N

B is the subgraph of GÕ
b induced by all nodes yi, zi (that is,

start/end nodes of b-subpaths) and the nodes that are not in GX,N
A . Our problem can

now be solved by finding ¸ ≠ 1 node-disjoint paths in GX,N
A and ¸ ≠ 1 node-disjoint paths

in GX,N
B .

This concludes the outline of the proof. We will now give useful observations and
lemmas. We first observe an important property of languages of the form (†). Intuitively,
these languages are special because we can replace substrings with a “long enough”
sequence of the symbol a. Let k be the length of the shortest word in L(r).

Observation 6.7.8. Let r be a regular expression of the form (†). Then each word
w œ L(r) can be written in the form w1wa

1wb
1 · · · w¸≠1wa

¸≠1wb
¸≠1w¸ such that wi matches

ri, wa
i matches aú

i , and wb
i matches bú

i . Let x, y œ {a, b}. If, for some i, j œ {1, . . . , m},
xi = x and yj = y and there is an h œ {i, . . . , j} with aú

h = aú, then the word obtained by
replacing the substring between wx

i and wy
j (and arbitrary parts of wx

i and wy
j) with any

word in aØki,j where ki,j is the number of factors a between xú
i and yú

j in r, is in L(r).
Let k be the number of factors a in r. Since ki,j Æ k for every i, j, any word in aØk can
be used.

We now prove that the length of simple paths in 2-connected components without a
simple cycle of length at least 2k is bounded.

Lemma 6.7.9. For each 2-connected component C without a simple cycle of length at
least 2k it holds that the length of the longest simple path between all pairs v1, v2 œ C is
at most (2k)2.

Proof. Let us assume towards contradiction that there exist two nodes s, t with a simple
path p of length at least (2k)2 + 1 between them. Due to the 2-connectedness and
Menger’s theorem, see Theorem 6.7.6, there exist two node-disjoint paths p1, p2 from
s to t. If |p1| + |p2| Ø 2k, we find a simple cycle of length at least 2k by concatenating
p1 and p2. Thus we can assume without loss of generality that |p1| + |p2| < 2k. This
implies that |p1| < 2k. We now prove that there exist nodes x, y in p1 and p such that
(1) |p[x, y]| Ø 2k and (2) p1[x, y] and p[x, y] are node-disjoint (up to x and y).

The proof is due to the lengths of p and p1. Since p1 and p are paths from s to t,
they are not node-disjoint. And as p1 has at most 2k nodes while p has length at least
(2k)2 + 1, there must be a subpath pÕ of p of length at least 2k which is node-disjoint
from p1 (up to its endpoints). If we choose a maximal such subpath, we can choose its
endpoints as x and y.

Thus we obtain a simple cycle of length at least 2k by joining p[x, y] and p1[x, y], which
leads to a contradiction.

126

6.7 Simple Chain Regular Expressions

Algorithm 4: Deciding USimPath(L) for L of the form (†)
Input: Undirected Multigraph G = (V, E, E), nodes z0, x¸

Output: “Yes” if there is a simple path from z0 to x¸ in G that matches L; “no”
otherwise

1 k Ω length of the shortest word in L B This word is of the form ak

2 foreach tuple of simple paths p̄ = (p1, . . . , p¸) matching (r1, . . . , r¸) do

3 GÕ
Ω G without inner nodes of (p1, p2, . . . , p¸) and their adjacent edges

B xi, zj with i, j œ [¸ ≠ 1] are determined by p̄
4 foreach tuple (y1, . . . , y¸≠1) consistent with (ai, bi)iœ[¸≠1] do

5 A Ω ÿ B Set of nodes for a-paths
6 S Ω ÿ B Set of small components
7 foreach i œ [¸ ≠ 1] do

8 foreach node v in a 1-cut between xi and yi in Gi do

9 add v to A

10 foreach large component C between xi and yi in Gi do

11 add each node of C to A

12 foreach small component C between xi and yi in Gi do

13 add C to S

14 foreach small component C œ S do

15 IC Ω {i | C is a small component between xi and yi in Gi}

16 foreach X ™ S with |X| Æ ¸ · (¸ + k) do

B We consider groups X of O(|r|
2) many components. For each

component C œ X we iterate over all simple paths in C.
17 AX Ω ÿ

18 foreach C œ S ≠ X do

19 add each node of C to AX

20 N Ω ÿ

21 foreach set of |IC | disjoint simple paths between (si
C , ti

C)iœIC with C œ X
do

22 add each node of these paths to N
B The crux is that we do not add every node of C to N , so that we can

use some C-nodes for b-paths.
23 GX,N

A Ω induced subgraph of Ga on (A fi AX fi N) fi (xi, yi)iœ[¸≠1]
24 GX,N

B Ω induced subgraph of Gb on (V Õ
≠ (A fi AX fi N)) fi (yi, zi)iœ[¸≠1].

25 if there are node-disjoint simple paths between (xi, yi)iœ[¸≠1] in GX,N
A

and there are node-disjoint simple paths from between (yi, zi)iœ[¸≠1] in
GX,N

B then

26 return “yes”

27 return “no”

127

Chapter 6 Towards a Dichotomy for Regular Simple Path and Trail Queries

From this we easily obtain the following lemma, which we will need to bound the
running time of our algorithm.

Lemma 6.7.10. In a 2-connected component C with n nodes and without a simple
cycle of length at least 2k there are at most n(2k)2 many simple paths with di�erent node
sequences between every pair of nodes v1, v2 œ C.

Proof. As C has no simple cycle of length at least 2k and is 2-connected, the length
of the longest path in C is at most (2k)2, see Lemma 6.7.9. As in each step there are
at most n choices for the next node, this yields at most n(2k)2 many simple paths with
di�erent node sequences from v1 to v2.

On the other hand, we can show that 2-connected components with a simple cycle of
length at least 2k will always have a path of length at least k between each node-pair.

Lemma 6.7.11. In a 2-connected multigraph G with a simple cycle of length at least 2k
there is a simple paths of length at least k between each pair of nodes v1, v2 œ G.

Proof. Let C be a simple cycle of length at least 2k. Let v1, v2 be two nodes in G. We
perform a case distinction on the relation of v1 and v2 regarding C. Case(1): If they
both are on C, we clearly have a simple path of length at least k between them—we can
always choose the longer arc of C.

Case (2): If both are not on C, we show that there are nodes y1, y2 on C and two
node-disjoint paths from v1 to y1 and from v2 to y2 which do not use nodes of C other
than y1 and y2. Then we can again route via the longer arc of C to obtain a long path
from v1 to v2. Let z1 and z2 be two nodes from C. Due to the 2-connectedness we find a
simple path p1 from v1 to z1. We can assume without loss of generality that z1 is the
first hit of p1 with C (otherwise rechoose z1). Due to the 2-connectedness, there are two
node-disjoint paths from v1 to z2—so at least one of them avoids z1. We name one of the
paths that avoids z1 p2. Again, let z2 be the first hit of p2 with C (otherwise rechoose
z2). Since v2 and z2 are nodes in the 2-connected multigraph, there is also a simple path
p from v2 to z2. We choose y1 and y2 depending on p. We illustrate the possible behavior
of p in Figure 6.7. If p is node-disjoint with p1 or meets a node in C before it hits p1, we
set y1 = z1 and choose y2 as the first node of p which is in C (possibly z2). Indeed, p1 and
p[v2, y2] are node-disjoint and do not use nodes in C except y1 and y2 by construction.
Otherwise, p uses a node of p1 before it uses a node in C. We will re-route p via p1 or
p2, depending on which is intersected first. Let x be the first node of p that is in p1 or
p2. If x is in p1, we set y1 = z2 and y2 = z1. We note that p2 and p[v2, x)p1[x, z1] are
node-disjoint by construction and do not use nodes in C except y1 and y2. Otherwise x
is in p2, and we set y1 = z1 and y2 = z2. Again, p1 and p[v2, x)p2[x, z2] are node-disjoint
by construction and do not use nodes in C except y1 and y2. This concludes case (2).

Case (3): It remains to consider the case where one of {v1, v2} is on C and the other
is not. Let without loss of generality v1 œ C. Due to the 2-connectedness there exists
a node y ”= v1, y œ C and two node-disjoint paths from v2 to y. Since they are disjoint,
only one can use v1, so we route over the other and possibly rechoose y to the first hit

128

6.7 Simple Chain Regular Expressions

z1/y1

z2

v1 v2

y2

p1

p2

p

C

z1/y2

z2/y1

v1 v2

x
p1

p2
p

C

z1/y1

z2/y2

v1 v2x

p1

p2 p

C

Figure 6.7: Illustration of case (2) in the proof of Lemma 6.7.11.

with C. Then we can use the path from v2 to y and from y the long arc of C to v1 to
construct a simple path of length at least k.

Before we continue, we need some more notation. We already defined 1-cuts and 2-
connected components in Definition 6.7.5. For clarification and readability, we repeat some
definitions given in the outline and add a few new ones. Let z0, x1, y1, z1 . . . , x¸≠1, y¸≠1, z¸

be distinguished nodes in G. Let (p1, . . . , p¸) be a tuple of constant-length node-disjoint
simple paths from zi≠1 to xi that match the subexpressions of ri, for each i œ [¸]. Let GÕ

be the induced multigraph obtained from G after removing the inner nodes of (p1, . . . , p¸).
Let GÕÕ be the induced multigraph obtained from GÕ after additionally removing the

nodes zi unless zi = xi+1 or zi = yi. (That is, we remove the start/end-nodes which do
not belong to ai-paths.)

We define Gi to be the induced subgraph of GÕÕ
a which contains xi and yi and, if xi ”= yi,

all nodes which are on simple paths from xi to yi. If xi = yi, then Gi contains only the
node xi and no edges. We observe that Gi depends only on G, non-empty paths (pj)jœ[¸],
xi and yi. For all empty paths, that is, if pj = Á, we have zj = xj+1, thus empty paths
pj will not be the reason for any removed nodes.

Notice that in Gi the 1-cuts between xi and yi are totally ordered by their proximity
to xi. Furthermore, between every pair of such consecutive 1-cut nodes in Gi (or between
xi and the first 1-cut and between the last 1-cut and yi), there either is nothing, or a
2-connected component. Thus, the graph Gi resembles a “string-of-beads”, or a single
bead if there is a 2-connected component containing xi and yi.

We name a 2-connected component C in Gi large component if it contains a simple
cycle of length at least 2k and small component otherwise. On this “string of beads”
from xi to yi, we name the leftmost node of a 2-connected component C si

C and the
rightmost one ti

C . All si
C and ti

C are 1-cuts separating xi and yi (or xi, yi themselves) by
construction. Note that the same 2-connected component C can be between di�erent
nodes xi, yi and xj , yj , therefore, there can be di�erent nodes si

C ,ti
C and sj

C ,tj
C for i ”= j.

We now have the ingredients to prove Lemma 6.7.7 which is restated here for readability:

Lemma 6.7.7. Let L be a language definable by a regular expression of the form (†). If
there exists a solution of USimPath(L), then there is a solution p1pa

1pb
1p2pa

2pb
2 · · · p¸, such

129

Chapter 6 Towards a Dichotomy for Regular Simple Path and Trail Queries

that each pi matches ri, each pa
i matches aú

i , each pb
i matches bú

i and, furthermore, (1)
no pb

i hits a large component and (2) all pb
i together hit at most ¸(¸ + k) di�erent small

components.

Proof Sketch. We start with a solution p where the length of the pb
is is as short as

possible. If p contradicts (1) or (2), we successively replace contradicting subpaths with
long a-paths, which is allowed by Observation 6.7.8. We will find long a-paths in large
components with Lemma 6.7.11 or, if many small components in a row are hit, by using a
long a-path via the small components in the middle. Examples of reroutings are depicted
in Figure 6.8. When replacing subpaths, the newly generated path fi will have at least
one b-edge less than p, thus contradicting the choice of p.

Proof. Let r1aú
1bú

1r2aú
2bú

2 · · · r¸ be given and let p be a solution such that the length of the
pb

i s is as short as possible. Let x1, . . . , x¸, y1, . . . , y¸, z0, . . . , z¸ be the respective nodes in
p, such that each path from xi to yi is a a-path, each path from yi to zi is a b-path, and
each path from zi≠1 to xi matches ri.

We will show that restriction (1) is valid, that is, if there is solution p, then there is a
solution satisfying (1). Let C be a large component between xh and yh, that is hit by some
b-path. Let x be the first node in p that is also in C and y the last one. Lemma 6.7.11
ensures that there is an a-path of length at least k between all nodes in a large component.
Let fi[x, y] be an a-path of length at least k from x to y in this large component. Then
fi[x, y] uses at least one b-edge less than p[x, y] since it avoids at least some part (at least
the first or last edge) of the b-path that hits C. Let fi = p[s, x] · fi[x, y] · p[y, t]. The so
constructed path fi is a simple path by construction and matches L, see Observation 6.7.8.
Furthermore, fi contains less b-edges than p, contradicting the choice of p.

Let us now assume that (1) holds. We show that there is a solution for which (1) and
(2) hold. So let us assume that all pb

i together hit at least ¸(¸ + k) + 1 di�erent small
components. Then there exist xh, yh such that at least ¸ + k + 1 small components
between them are hit. By definition of p, xh and yh, in every small component C from
xh to yh there is a path fih

C from sh
C to th

C which only uses nodes in pa
h.

We now observe that each pa
i with i ”= h can hit at most one small component from

xh to yh by definition of 2-connected component.8 Thus there are at least k + 2 small
components that are hit by some pb

i path, but not by any pa
j with h ”= j. We name the

second such component, Cx, and an other such component which is at least k ≠ 1 small
components closer to yh, Cy. We note that this implies that p[th

Cx
, sh

Cy
] is a subpath of

pa
h of length at least k.
Since Cx is only used by b-paths and pa

h, in Cx there must exist either

(a) a node x in p[s, xh] and in C which is part of a b-path and such that there exists an
a-path in Cx from x to th

Cx
not using any inner nodes in pb

i for any i, or

8
Let i œ {1, . . . , ¸ ≠ 1} with i ”= h. Since p is a simple path, pa

i and pa
h are disjoint (up to one of their

endpoints). If pa
i hits two di�erent 2-connected components between xh and yh, there would be two

disjoint paths between those components. Thus there could not be a 1-cut between these components,

and therefore be the same 2-connected component, see Definition 6.7.5.

130

6.7 Simple Chain Regular Expressions

(b) a node xÕ in p[yh, t] and in C which is part of a b-path and such that there exists an
a-path in Cx from xÕ to th

Cx
not using any inner nodes in pb

i for any i.

Analogously for Cy, there must exist a node y in p[s, xh] or a node yÕ in p[yh, t] which is
part of a b-path and such that there exists an a-path from y to sh

Cy
in Cy (or from yÕ to

sh
Cy

, respectively) not using any inner nodes in pb
i for any i.

We perform a case-distinction, depending on which of the nodes x, xÕ, y, yÕ exist. By
definition of Cx, either x or xÕ has to exist and by definition of Cy, either y or yÕ has to
exist.

• If x exists, we can reroute as in Figure 6.8(top), that is, we obtain the simple path

fi = p[s, x] · fi1 · p[th
Cx

, t],

where fi1 is the a-path from y to th
Cx

which does exist by definition of y and is
therefore node-disjoint from p[s, x] and p[th

Cx
, t] (up to y to th

Cx
).

• If yÕ exists, we can reroute as in Figure 6.8(mid), that is, we obtain the simple path

fi = p[s, sh
Cy

] · fi1 · p[yÕ, t],

where fi1 is the a-path from to sh
Cy

to yÕ which exists by definition of yÕ therefore
node-disjoint from p[s, sh

Cy
] and p[yÕ, t] (up to sh

Cy
and yÕ).

• If xÕ and y exist, we can reroute as in Figure 6.8(bottom), that is, we obtain the
simple path

fi = p[s, y] · fi1 · (p[th
Cx

, sh
Cy

])rev
· fi2 · p[xÕ, t],

where fi1 and fi2 exist by definition of xÕ and y and are node-disjoint from each
other and from p[s, y], p[th

Cx
, sh

Cy
], and p[xÕ, t] (up to start/end-nodes). We note

that (p[th
Cx

, sh
Cy

])rev is the subpath p[th
Cx

, sh
Cy

] read from right to left.

We note that in all cases, Observation 6.7.8 ensures that fi matches L. Furthermore,
x, xÕ, y, yÕ are inner nodes of b-paths. Thus, in each rerouting, we omitted at least the
first or last b-edge of at least one of these b-paths (namely one of the b-paths through
x, xÕ, y, or yÕ). This implies that each fi is a solution and has at least one b-edge less than
p, contradicting the choice of p.

With this we can finally prove the following lemma, which implies Theorem 6.7.3(b).

Lemma 6.7.12. Algorithm 4 works correctly and in polynomial time for fixed languages.

Proof. We first explain why Algorithm 4 is in P:

• The paths (p1, . . . , p¸) have constant length and thus all possibilities can be enu-
merated in line 2 in polynomial time.

131

Chapter 6 Towards a Dichotomy for Regular Simple Path and Trail Queries

xh yh. . .

Cx

Cy

long a-path

x y
s

t

xh yh. . .

Cx Cy

long a-path

xÕ yÕ

s

t

xh yh. . .

Cx Cy

long a-path

xÕ

y
s

t
xÕ

Figure 6.8: Three example reroutings in Lemma 6.7.7. The dashed circles depict small
components, and the red edges exist by definition of x, xÕ, y, or yÕ. The new
paths follows the thick edges from s to t.

• One can iterate over all possible tuples (y1, . . . , y¸≠1) consistent with (ai, bi)iœ[¸≠1]
in line 4 in polynomial time. Indeed, we can enumerate all possible tuples with
xi = yi if ai = Á and with yi = zi if bi = Á (which is exactly the definition of
consistency).

• Given (p1, . . . , p¸), xi, yi, one can construct Gi in polynomial time: If xi = yi, it
is only a single node. Otherwise, if xi ”= yi, we start with Ga and remove some
nodes depending on (p1, . . . , p¸). More precisely, we remove all inner nodes of
(p1, . . . , p¸) and all end-nodes if they do not coincide with (xi, yi)iœ[¸≠1]. We can
then determine all nodes on simple paths from xi to yi by adding an edge from
xi to yi (if it does not already exist) and using the polynomial time algorithm
of Hopcroft and Tarjan [118] to determine (all) biconnected components in this
multigraph.

• The test whether v is in a 1-cut between xi and yi in line 8 can be done by testing
reachability from s to t in Gi and in Gi ≠ {v}.

132

6.7 Simple Chain Regular Expressions

• To test in line 10 if C is a large component, it su�ces to test if C has a simple
cycle of length 2k as a minor.

• ¸ · (¸ + k) is a constant, and one can iterate over all possible subsets of constant
size in polynomial time in line 16.

• For each small component C, there are only polynomially many simple paths with
di�erent node sequences from si

C to ti
C for each i, see Lemma 6.7.10. Since |IC | Æ ¸,

we can iterate over all polynomially many choices of paths with di�erent node
sequences in line 21.

• One can test for ¸ node-disjoint paths in line 25 in polynomial time, see Proposi-
tion 6.2.1.

We now prove correctness: If Algorithm 4 answers “yes”, we can construct a solution
in an obvious way.

For the other direction, let us assume there is a solution to USimPath(L). Then
Lemma 6.7.7 guarantees that there exists a solution p = p1pa

1pb
1p2pa

2pb
2 · · · p¸ such that pi

matches ri, each pa
i matches aú

i , each pb
i matches bú

i and, furthermore, (1) no pb
i hits a

large component and (2) all pb
i together hit at most ¸(¸ + k) di�erent small components,

where k is the length of the shortest path in L.
Since the algorithm checks for each possible combination of paths (p1, . . . , p¸) and

nodes (yi)iœ[¸≠1] if a solution of this form exists, it will return the correct result.

This concludes the proof of Theorem 6.7.3(b).
A natural question is now if the algorithms in Theorem 6.7.3 can be combined to show

that USimPath(L) is in P for every language definable by SCRE(a, a?, aú, b, b?, bú). This,
however, is not the case, even for SCRE(a, aú, b, bú). The following can be obtained by
using G3SAT with ws = Á, wb = b, wo = Á, wr = aa, wm = ab, wt = Á.

Proposition 6.7.13. USimPath(búabbúaú) is NP-complete.

Proof. USimPath(búabbúaú) is trivially in NP. To prove NP hardness, we use G3SAT from
Construction 6.4.1 with ws = Á, wb = b, wo = Á, wr = aa, wm = ab, wt = Á. Since the “red
edges” are labeled aa, and the wm-path is the only occurrence of a single a followed by b,
every simple path from s to t which matches búabbúaú has to read the wm-path before
reading a red edge. Thus NP hardness follows from Theorem 6.4.2.

On the other hand, it is also not the case that every language that uses all the
factors a, aú, b, bú is NP-hard. An obvious example is a+b+, and a more intriguing one is
summarized in the following theorem.

Theorem 6.7.14. USimPath(aúb+a+bú) is in P.

Proof Sketch. We reduce the problem to two calls to the 2 node-disjoint paths problem.
We iterate over all triples (x1, x2, x3) of nodes. For each such triple, we compute two
sets of nodes A and B. The former set should be avoided by b-paths and the latter by

133

Chapter 6 Towards a Dichotomy for Regular Simple Path and Trail Queries

a-paths. We add each 1-cut node between s and x1 in Ga to A and each 1-cut node
between x3 and t in Gb to B. Intuitively, if a path p labeled aúb+a+bú is supposed to
have label alternations at x1, x2, and x3, then the nodes in A (respectively, B) need to
be used by a-labeled (respectively, b-labeled) subpaths of p. If A and B intersect, we
move to the next triple (x1, x2, x3). The algorithm tests if, for some triple, Ga ≠ B has
two node-disjoint paths between (s, x1) and (x2, x3) and Gb ≠ A has two node-disjoint
paths between (x1, x2) and (x3, t). Correctness is non-trivial.

Proof. We prove in Lemma 6.7.20 that this problem can be solved with the algorithm in
the proof sketch, which is also depicted as Algorithm 5.

In order to prove Theorem 6.7.14, we show that Algorithm 5 solves USimPath(aúb+a+bú)
and is in P. Since the algorithm starts with enumerating nodes x1, x2, x3, we assume in
the following lemma that G is an undirected multigraph, and x1, x2, x3 are nodes in G.

We start with some notation. Let 1-cut and 2-connected component be as defined
in Definition 6.7.5. By 2-connected components of Ga from s to x1 we refer to the
2-connected components in the subgraph of Ga induced by the nodes of simple paths from
s to x1, and by 2-connected components of Gb from x3 to t, we refer to the 2-connected
components in the subgraph of Gb induced by the nodes of simple paths from x3 to
t. (Note that a 2-connected component of Ga could contain t.) If s = x1 there are no
2-connected components in Ga from s to x1, and if x3 = t there are no 2-connected
components in Gb from x3 to t. Let A be the set of all nodes which are 1-cuts between s
and x1 in Ga and let B be a set disjoint from A which stores all 1-cuts between x3 and t
in Gb.

We say that a path p touches a 2-connected component C if a node of p is in C (note
that this can also refer to the start or end-node of p).

Given x1, x2, x3, by pa1 we will always denote an a-path from s to x1, by pb1 a b-path
from x1 to x2, by pa2 an a-path from x2 to x3, and by pb2 a b-path from x3 to t.

The following observation is very important for our algorithm:

Observation 6.7.15. If there exist x1, x2, x3 such that there exist 2-disjoint a-paths
from s to x1 and from x2 to x3, and there exist 2-disjoint b-paths from x1 to x2 and from
x3 to t, and the paths s to x1 and from x3 to t do not intersect, then there is a simple
path matching aúb+a+bú from s to t.

Therefore, we will focus mostly on the paths pa1 and pb2.

Lemma 6.7.16. Let C1 be 2-connected component of Ga from s to x1 and p be a simple
b-path ending in t in Gb ≠ A which

(1) touches C1 in at least 3 nodes, or

(2) touches C1 and another 2-connected component C2 of Ga from s to x1 both at least
twice.

Then there is a simple path matching aúb+a+bú from s to t.

134

6.7 Simple Chain Regular Expressions

Proof. Let the b-path p be fixed. Let C1 be the first 2-connected component of Ga from
s to x1 that is touched at least twice. That is, we choose C1 as close to s as possible.
We perform a case distinction on whether C1 is touched twice or more often. Case 1: C1
is touched at least three times. If there are more touch points, we choose v1, v2, v3 such
that the b-path between v1 and v2, and the b-path from v3 to t does not touch any other
node in C1. By definition of C1, every component before C1 is touched at most once,
thus we will find an a-path from s to C1 which is node-disjoint from the b-path (as the
b-path does not use nodes in A and touches every component before C1 at most once, it
follows from the definition of components).

Let now sC1 be the first node in C1 which is seen by the a-path from s to x1. (Note: sC1

is unique.) We add a new node sÕ connected to sC1 and v3 and a new node tÕ connected
to v1 and v2. Clearly, sÕ and tÕ belong to the component, so there are two node-disjoint
paths from sÕ to tÕ due to Menger’s theorem, see Theorem 6.7.6. Thus there are two
node-disjoint paths, one from sC to v1 or v2 and one from v3 to the other node (v2 or v1)
in Ga.

As there are b-paths from v1 to v2 and from v3 to t, and those are undirected, we can
combine them with the node-disjoint a-paths and the a-path from s to sC to obtain a
solution.

We now turn to case 2, in which C1 is touched exactly twice. Then there is another
2-connected component of Ga from s to x1 that is touched at least twice. Let C2, with
C1 ”= C2, be the next 2-connected component of Ga from s to x1 that is touched at least
twice.

Since C1 and C2 are the 2-connected components closest to s which are touched at
least twice, we can find an a-path from s to C1 and one from C1 to C2. Especially, these
a-paths can be chosen such that they are node-disjoint with the b-path because the b-path
does not use nodes in A and by definition of 2-connectedness. Let v be the last touch
point of the b-path in C1 or C2, closest to t. Since v leads to t, we must use it last. If
v is in C2, we can use the b-path in C1 (it must exist, because C1 is touched exactly
twice), and then use an a-path to v in C2. So we can assume without loss of generality
that, v œ C1. Let u be the other touch point in C1. We name the first node of C1 in Ga

s1 and the last node of C1 in Ga t1. (Note that s1, t1 œ A by definition of 2-connected
component and 1-cut.) As we have a 2-connected component, we can conclude with
Menger’s theorem, see Theorem 6.7.6, that there are two node-disjoint paths, one from
s1 to t1 or u, and one from v to u or t1. More precisely, we add a new node sÕ connected
to s1 and v and a new node tÕ connected to u and t1. Then Menger’s theorem implies
two node-disjoint paths from sÕ to tÕ in Ga. We explain how to construct a simple path
matching aúb+a+bú from s1 to v: If there exist node-disjoint paths from s1 to u and from
t1 to v, we can use the first one, then the b-path to the first node in C2, and from that
node in C2 we can use a path to t1 and from there the node-disjoint one to v. Otherwise,
we have node-disjoint paths from s to t1 and from u to v. We first use the path from s
to t1 to go to the second component. As C2 is touched by the b-path, we go to one of
these nodes and use the b-path from there to u, then the a-path from u to v.

135

Chapter 6 Towards a Dichotomy for Regular Simple Path and Trail Queries

We can then construct a solution by adding the a-path from s to s1 and the b-path
from v to t. The b-paths are node-disjoint since p was a simple b-path, and the a-paths
are node-disjoint by definition of components. This concludes the proof.

By symmetry, the next result follows immediately for components of Gb:

Lemma 6.7.17. Let C1 be 2-connected component of Gb from x3 to t and p be a simple
a-path starting in s in Ga ≠ B which

(1) touches C1 in at least 3 nodes, or

(2) touches C1 and another 2-connected component C2 of Gb from x3 to t both at least
twice.

Then there is a simple path matching aúb+a+bú from s to t.

We now prove that if Algorithm 5 returns “yes”, then we find paths pa1, pa2, pb1, pb2
such that if pa1 and pb2 intersect, then pb2 touches each component of Ga in which they
intersect at least twice. For a set of nodes S, we call a path S-avoiding if none of the
edges in the path uses a node in S.

Lemma 6.7.18. If there are

• node-disjoint B-avoiding a-paths pa1 from s to x1 and pa2 from x2 to x3 and

• node-disjoint A-avoiding b-paths pb1 from x1 to x2 and pb2 from x3 to t,

then there exist nodes y1, y2, y3 and

• node-disjoint B-avoiding a-paths pÕ
a1 from s to y1 and pÕ

a2 from y2 to y3 and

• node-disjoint A-avoiding b-paths pÕ
b1 from y1 to y2 and pÕ

b2 from y3 to t,

such that, additionally, pÕ
a1 is node-disjoint from pÕ

b2 in every component in Ga from s to
y1 that pÕ

b2 touches at most once.

Proof Sketch. If pa1 and pb2 intersect in a 2-connected component of Ga, then we can
re-route pa1 because of the 2-connectedness. If pb2 touches this component only once,
then the re-routed subpath of pa1 is node-disjoint from pb2, but the re-routed path might
not be node-disjoint with pb1 or pa2. We explain how to reroute in these cases (possibly
changing x1, x2, x3). An example is shown in Figure 6.9.

Proof. Firstly, we can assume without loss of generality that all paths but pa1 and
pb2 are pairwise node-disjoint (otherwise we shortcut and update x1, x2, x3, A, and B
accordingly).

Let C be the component of Ga from s to x1 that is closest to s such that pa1 and pb2
intersect and pb2 touches C at most once. We name the start and end of C in Ga sC and
tC , respectively. We name the intersection point of pa1 and pb2 in C x.

136

6.7 Simple Chain Regular Expressions

Let pÕ be a rerouting of pa1 in C which avoids x. Since pb2 touches C at most once, pÕ

is node-disjoint from pb2. If it is node-disjoint from pb1 and pa2, we can continue with
the next component contradicting the lemma. Otherwise, we perform a case distinction
depending on whether pb1 (case 1) or pa2 (case 2) intersects with pÕ first.

Case 1: Let v denote the first intersection of pÕ with pb1. We can then shortcut to
the simple path pÕ[s, v] · pb1[v, x2] · pa2 · pb2. As there is no 2-connected component after
C in Ga, we are done. The result follows with y1 = v, y2 = x2, y3 = x3, pÕ

a1 = pÕ[s, v],
pÕ

b1 = pb1[v, x2], pÕ
a2 = pa2 and pÕ

b2 = pb2.
Case 2: We show that we either find an alternative a-path which does not touch pa2,

or such that we can reroute as in Figure 6.9. For this rerouting to work we have to show
that there is an a-path pÕÕ from sC to the intersection with pa2 which is node-disjoint
from pa1[x, tC]:

So let us assume that pÕ and p[x, tC] are not node-disjoint. We show how to find a
better choice pÕÕ. Since pÕ and p[x, tC] are not node-disjoint, there exists some node u
in pÕ and p[x, tC], such that pÕ[sC , u] and p[x, tC] share only the node u. If pÕ[sC , u] is
disjoint from pa2, we are done with this specific component C, since we can use the path
pÕÕ = pÕ[sC , u] · pa1[u, tC] which is disjoint from pa2 to reroute in C, taking care of touches
from the pb1 path as in case 1 if necessary.

If pÕ[sC , u] is not disjoint from pa2, then we can reroute as depicted in Figure 6.9. Let
y be the node where pÕ[sC , v] first touches pa2. Note that y ”= sC and y ”= u since pa1
and pa2 are disjoint by assumption. We can choose y1 = x2, y2 = x1, y3 = x and

pÕ
a1 = pa1[s, sC] · pÕ[sC , y] · (pa2 [x2, y])rev,

pÕ
b1 = (pb1)rev,

pÕ
a2 = (pa1[x, x1])rev, and

pÕ
b2 = pb2[x, t].

Here, prev denotes the path p read from right to left.
By construction, the paths pÕ

a1, pÕ
a2, and pÕ

b1 are node-disjoint. Furthermore, since pa2
and pb2 were node-disjoint, we do not have any more intersections of pÕ

a1 and pÕ
b2 after C.

Since C was the component closest to s violating the lemma and our new paths starting
from C, that is, pÕ

a1[sC , y1] and pb2 are node-disjoint, the result follows.

Combining the lemmas so far, and rerouting again if necessary, we obtain:

Lemma 6.7.19. If there are

• node-disjoint B-avoiding a-paths pa1 from s to x1 and pa2 from x2 to x3 and

• node-disjoint A-avoiding b-paths pb1 from x1 to x2 and pb2 from x3 to t,

then there exist nodes y1, y2, y3 and

• node-disjoint B-avoiding a-paths pÕ
a1 from s to y1 and pÕ

a2 from y2 to y3 and

• node-disjoint A-avoiding b-paths pÕ
b1 from y1 to y2 and pÕ

b2 from y3 to t,

137

Chapter 6 Towards a Dichotomy for Regular Simple Path and Trail Queries

Algorithm 5: Deciding USimPath(aúb+a+bú)
Input: Undirected multigraph G = (V, E, uedge), nodes s, t
Output: “Yes” if there is a simple path from s to t in G that matches

aúb+a+bú; “no” otherwise
1 forall nodes x1, x2, x3 do

2 A Ω ÿ B nodes exclusively for a-paths
3 B Ω ÿ B nodes exclusively for b-paths
4 foreach 1-cut v between s and x1 in Ga do

5 A Ω A fi {v}

6 foreach 1-cut v between x3 and t in Gb do

7 if v œ A then

8 continue with next triple of x1, x2, x3

9 B Ω B fi {v}

10 if there exist two node-disjoint a-paths between (s, x1) and (x2, x3) that do not
use nodes in B, and there exist two node-disjoint b-paths between (x1, x2) and
(x3, t) that do not use nodes in A then

11 return “yes”

12 return “no”

such that additionally pÕ
a1 and pÕ

b2 share at most one node.

Proof. Using Lemma 6.7.18 we know that we can find paths pa1, pa2, pb1, pb2 such that
pa1 and pb2 can only intersect in components which are touched more than once by pb2.
By Lemma 6.7.16 at most one such component can exist. (Otherwise there is a solution,
and a solution implies node-disjoint simple paths pa1 and pb2.) So we only need to show
that if pa1 and pb2 meet in an component C of Ga from s to x1 more than once, then we
can reroute in C1. Again by Lemma 6.7.16, if pa1 and pb2 intersect (at least) three times
in C, we are done (as then pb2 touches C at least three times, so there is a solution and
a solution implies node-disjoint simple paths pa1 and pb2).

So let x and xÕ be the intersections of pa1 and pb2 in C. For the proof, we will reroute
the a-path in C1 in order to not use xÕ. If the rerouted path pÕ

a1 touches pb2 in any other
node than x, we are done by Lemma 6.7.16. If the rerouted path touches pb1 or pa2, we
reroute as in Lemma 6.7.18 to ensure that pÕ

a1 is node-disjoint from both pb1 and pa2.
This completes the proof.

In Lemma 6.7.20 we can thus focus on paths where pa1 and pb2 share at most a single
node.

Lemma 6.7.20. Algorithm 5 is correct.

Proof. If a solution exists, the algorithm will clearly return “yes”. So it remains to show:
If the algorithm returns “yes”, then there exists a solution. By Lemma 6.7.19 we can then

138

6.7 Simple Chain Regular Expressions

find such paths where pa1 and pb2 intersect in at most one node x. Since pa1 does not
use nodes in B and pb2 does not use nodes in A, we have x /œ A · B. This implies that
there is a 2-connected component C1 of Ga from s to x1 with x œ C1 and a 2-connected
component C2 of Gb from x3 to t with x œ C2.

Let now pÕ
a1 be a rerouting of pa1 in C1 and pÕ

b2 be a rerouting of pb2 in C2. Let xÕ
a

be the intersection of pÕ
a1 with pb2 and xÕ

b be the intersection of pa1 with pÕ
b2. (These

nodes xÕ
a and xÕ

b must exist, since otherwise we would be done.) Note that xÕ
a ”= xÕ

b since
otherwise pa1 and pb2 would both contain the node xÕ

a = xÕ
b, which contradicts our choice

of pa1 and pb2 (by Lemma 6.7.19 they share at most one node, which is x.) Furthermore,
since xÕ

a œ C1 und xÕ
b œ C2, the intersections must be unique—otherwise we can use

Lemma 6.7.16 or 6.7.17 to ensure that there is a solution. Using the same argument, it
follows that xÕ

a /œ C2 and xÕ
b /œ C1. So the touch points must either be “before” or “after”

C1 and C2.
Thus, those intersections then look (up to symmetry, that is, choice of s and t) like in

Figure 6.10. We note that sC1 , tC1 , sC2 , and tC2 depend on s and t and have therefore
been renamed uC1 , vC1 , uC2 , and vC2 where uC1 = sC1 if s = s1, and uC1 = tC1 otherwise.
Analogously, uC2 = sC2 if t = t2, and uC2 = tC2 otherwise. We note that reroutings in C1
or C2 are allowed to use nodes in A and B. Yet we can find for each choice of t œ {t1, t2}

and s œ {s1, s2} a a simple path matching a ú b + a + bú from s to t in Figure 6.10 as
follows:

• If s = s1, t = t1, then a possible solution in Figure 6.10 is a concatenation of an
a-path from s1 to x, a b-path from x via vC2 to xÕ

b, an a-path from xÕ
b to xÕ

a, and
the b-path from xÕ

a to t1. More formally, we use

p[s, x] · (p[sC2 , x])rev
· pÕ

b2[sC2 , xÕ
b] · (pa1[tC1 , xÕ

b])rev
· (pÕ

a1[xÕ
a, tC1])rev

· pb2[xÕ
a, t] .

• If s = s1, t = t2, then a possible solution in Figure 6.10 is a concatenation of an
a-path from s2 to xÕ

b, a b-path from xÕ
b via vC2 to x, an a-path from x to xÕ

a, and
an b-path from xÕ

a to t1. More formally, we use

p[s, x] · (p[xÕ
a, x])rev

· pÕ
a1[xÕ

a, tC1] · pa1[tC1 , xÕ
b] · pÕ

b2[xÕ
b, tC2] · pb2[tC2 , t] .

• If s = s2, t = t1, then a possible solution in Figure 6.10 is a concatenation of an
a-path from s2 to xÕ

b, an b-path from xÕ
b via vC2 to x, an a-path from x to xÕ

a, and
a b-path from xÕ

a to t. More formally, we use

pa1[s, xÕ
b] · (pb2[sC2 , xÕ

b])rev
· pb2[sC2 , x] · pa1[x, tC1] · (pÕ

a1[xÕ
a, tC1])rev

· pb2[xÕ
a, t] .

• If s = s2, t = t2, then a possible solution in Figure 6.10 is a concatenation of an
a-path from s2 to xÕ

b, a b-path from xÕ
b via uC2 to xÕ

a, an a-path from xÕ
a to x, and

an b-path from x to t2. More formally, we use

pa1[s, xÕ
b] · (pb2[sC2 , xÕ

b])rev
· (pb2[xÕ

a, sC2]rev
· pÕ

a1[xÕ
a, tC1] · (pa1[x, tC1])rev

· pb2[x, t] .

139

Chapter 6 Towards a Dichotomy for Regular Simple Path and Trail Queries

We especially note that since the paths between s1 and uC1 , t1 and xÕ
a, xÕ

b and s2, and
vC2 and t2 are pairwise node-disjoint, the solution is independent of paths not depicted
in Figure 6.10 (such as pb1 and pa2).

s sC

x

y

tC x1 x2 x3

t

(a) Original paths

s sC

x

y

tC x1 x2 x3

t

(b) rerouting pa1 leads to a rerouting of pa2.

Figure 6.9: Possible rerouting in Lemma 6.7.18. The a-paths are blue and thick. We show
that if the paths pa1 and pb2 touch each other at most once in a component,
then we can reroute, even if this means rerouting pa2.

s1 uC1

xÕ
a

vC1 xÕ
b

s2uC2

x

t1

vC2

t2

Figure 6.10: The paths pa1 and pb2 with reroutings intersecting one another. Note
that s œ {s1, s2}, t œ {t1, t2}, {uC1 , vC1} = {sC1 , tC1}, and {uC2 , vC2} =
{sC2 , tC2}. The a-path is blue and thick, the b-path is black. The paths only
intersect in the depicted nodes, the reroutings of pa1 and pb2 are dashed.

We note that we see no “easy” way to extend Theorem 6.7.14 to USimPath(aúbØka+bú),
because the re-routing arguments of Lemmas 6.7.16 and 6.7.17 do not work for k Ø 2.

More than Two Alphabet Symbols

Theorem 6.7.3 generalizes in the following sense to larger alphabets, with only minor
changes to the proof.

Theorem 6.7.21. USimPath(L) is in P

(a) for every language definable by an SCRE(a, a?, aú, ı, ı?) and

140

6.8 Parity Languages

(b) for every language definable by an SCRE(a, a?, aú, b?, bú, ı?).

Proof. The proof is closely related to the proof of Theorem 6.7.3: The only changes
are to use in (a) ri œ SCRE(a, a, ı, ı?) instead of ri œ SCRE(a, a?, b, b?), and in (b)
ri œ SCRE(a, a?, b?, ı?) instead of ri œ SCRE(a, a?, b?).

Whereas USimPath(aúbaú) is tractable (Theorem 6.7.3), it follows from Theorem 6.5.2
that the following closely related language is intractable.

Corollary 6.7.22. USimPath(aúbcú) is NP-complete.

This implies that SCRE(aú, b, cú) can define languages for which USimPath(L) is NP-
hard and therefore shows that the SCREs used in Theorem 6.7.21 cannot be further
extended without introducing languages for which USimPath becomes intractable.

6.8 Parity Languages

We now discuss another interesting di�erence between directed and undirected multigraphs.
Whereas Mod-2-path is NP-complete for directed graphs [140], the problem is in P for
undirected multigraphs [140]. We generalize this tractability result to a wide class of
languages involving parity tests.

Assume that � = {a1, . . . , a¸}. The Parikh vector of a word w is defined as p(w) =
(|w|a1 , . . . , |w|a¸), where |w|ai is the number of occurrences of the label ai in w. The
Parikh image of a language L is the set {p(w) | w œ L}. A parity set is a semi-linear set
of the form {v1 + v2n | n œ N, v1 œ V1}, where V1 ™ {0, 1}

¸ and v2 = (2, . . . , 2) œ {2}
¸.

A parity language is a language for which its Parikh image is a parity set. Every such
language is regular.

Theorem 6.8.1. UTrail(L) and USimPath(L) are in P for every parity language L.

As the proof of this theorem relies on the minor theorem on group-labeled graphs [119],
we start with some background: Let � be a finite abelian group. A �-labeled graph is
a directed graph whose edges are labeled with a group-label in �. The group-label of
an edge e is denoted by “G(e). Following an edge in its direction adds the value “G(e),
while following it in the reverse direction adds the value ≠“G(e). The group-value of
a path is the sum of the values of its edges. A �-labeled graph H = (VH , EH , EH) is a
minor of a �-labeled graph G = (VG, EG, EG) if and only if VH ™ VG and for each edge e
in H, there exists a simple path pe with value “H(e) from origin(e) to destination(e) in
G. Furthermore, except for their first and last node, all pe are pairwise node-disjoint.

Huynh [119] proves that for any fixed �-labeled graph H, there is a polynomial time
algorithm which determines if an input �-labeled graph G contains a minor isomorphic
to H.

We want to use this to solve some group-labeled variant of the kDisjointPaths problem,
that is, given a group-labeled graph G, pairs of nodes (si, ti)iœ[k] and values (“i)iœ[k],
we want to know if there are simple paths pi from si to ti with group value “i in G

141

Chapter 6 Towards a Dichotomy for Regular Simple Path and Trail Queries

such that the pi are pairwise node-disjoint. However, Kawase et al. [135, Footnote 3]
observed that the reduction in [119] cannot distinguish between two paths, one from sj

to tj and one from si to ti, and two paths, one from si to sj and one from ti to tj for
any distinct i and j. Angela Bonifati and Guillaume Bagan [18] pointed out that this
can be fixed by considering � ◊ Z3 ◊ · · · ◊ Z3-labeled graphs instead. In these graphs,
every edge label can be interpreted as a vector of length k + 1. Let GÕ be the graph
obtained from G by relabeling all edges e with (“G(e), 0, . . . , 0) and adding 2k new nodes
(sÕ

j , tÕ
j)jœ[k] and edges from sÕ

i to si and from ti to tÕ
i which are labeled with the eth

i+1 unit
vector over Zk+1, that is, (0, . . . , 0, 1, 0, . . . , 0) where the i+1th entry is 1 and all others
are 0. Since the only simple path with group-label (“i, 0, . . . , 0, 2, 0, . . . , 0), where the
i+1th entry is 2, is from sÕ

i to tÕ
i, this implies: There are simple paths pÕ

i with group
value (“i, 0, . . . , 0, 2, 0, . . . , 0) which are pairwise node-disjoint in GÕ if and only if there
are simple paths pi from si to ti with group value “i in G such that the pi are pairwise
node-disjoint.

In fact, the fix of Bonifati and Bagan inspired us to the following proof.

Proof of Theorem 6.8.1. We start with the proof for simple paths. The proof idea is
to interpret L as a language over a finite abelian group for which group-labeled and
undirected graphs are closely related. We then relate the problem of finding a simple
path in a undirected multigraph to the problem of finding a minor in the group-labeled
graph, which can be decided in polynomial time, see Huynh [119].

In order to make group-labeled graphs coincide with undirected graphs, we need that
“G(e) = ≠“G(e) for every edge e. This is the case if every element of the group is its own
inverse, that is, when there is only a single element or the group is Z2 = ({0, 1}, +, 0) or
a direct product thereof, that is, of the form Z2 ◊ Z2 ◊ · · · ◊ Z2.

Every parity language can be interpreted as a language over a finite abelian group
of the form Z2 ◊ Z2 ◊ · · · ◊ Z2. For instance, if � = {a, b}, then an a-edge can be
encoded as (1, 0), a b-edge as (0, 1). Conversely, if the value of a path in a so-constructed,
group-labeled graph is (0, 1), we can interpret it as a path with an even number of a’s
and odd number of b’s. In order to find a simple path from s to t that matches L in an
undirected multigraph G (if it exists) we will:

1. We construct the underlying undirected graph Ggraph of G, that is, if there are
edges e1, e2 in G with E(e1) = E(e2), then we remove one of them and repeat until
E is an injective function.

2. We construct a group-labeled graph GÕ that is obtained from Ggraph by relabeling the
edges: We replace ai with the ith unit vector over Z¸

2, which is (0, . . . , 0, 1, 0, . . . , 0).
Furthermore, we direct each edge in an arbitrary direction.

3. We define a set of group-labeled graphs H, which are edges from s to t that are
labeled with a vector in V1. (Where V1 comes from the Parikh image of L.)

4. We then test if there is a graph H œ H that is a minor of GÕ. If such a minor exists,
then there is a simple path from s to t in G that matches L, otherwise there is
none.

142

6.8 Parity Languages

This procedure can be conducted in polynomial time since all changes to G are linear
in |G| + k, the graphs in H depend only on L and are therefore of fixed size, and we can
test for |V1| minors GÕ using the polynomial time algorithm proposed by Huynh [119].
Towards correctness, we first observe that a simple path in an undirected multigraph G
exists if and only if that simple path exists in its underlying undirected graph Ggraph,
since a simple path can use at most one edge between each pair of nodes. By construction
of GÕ and since L is a parity language, a simple path from s to t in Ggraph that matches
L is a simple path from s to t in GÕ whose group-value is in V1. We can test for the latter
using |V1| minor tests, which completes the correctness proof.

For trails, we proceed similar to the simple path case. That is, we again interpret L
as a language over a finite abelian group of the form Z2 ◊ Z2 ◊ · · · ◊ Z2 and relabel the
edges of the multigraph G accordingly, that is, we replace ai with the ith unit vector over
Z¸

2, which is (0, . . . , 0, 1, 0, . . . , 0), and direct the edges arbitrarily.
We then relate the problem to the case for simple paths by using some variant of the

extended line graph, introduced in Section 6.2. More precisely, we replace every node v
by a clique in which every edge of the clique is labeled (0, . . . , 0). The size of the clique
replacing v is the number of edges adjacent to v. Similar to Lemma 6.2.2, if v is the start
or end-node of the trail, we add extra nodes sú or tú to the newly created clique.

More formally, let GÕ = (V Õ, EÕ, E
Õ) be the group-labeled multigraph obtained from G

by relabeling the edges with unit vectors, and let nodes s and t be given. We define the
group-labeled graph Gú = (V ú, Eú, E

ú) and sú, tú as follows:

V ú = {(v, e) | v œ V Õ, e œ EÕ, e is incident to v} fi {sú, tú
}

Eú = {((v, e1), (0, . . . , 0), (v, e2)) | (v, e1), (v, e2) œ V ú
}

fi{((v1, e), lab(e), (v2, e)) | (v1, e), (v2, e) œ V ú
}

fi{(sú, (0, . . . , 0), (v, e)) | s = v, (v, e) œ V ú
}

fi{(tú, (0, . . . , 0), (v, e)) | s = v, (v, e) œ V ú
},

and E
ú((x, ‡, y)) = {(x, ‡, y) | (x, ‡, y) œ Eú

}.
By construction, there is a trail from s to t in G matching L if and only if there is

a simple path from sú to tú in Gú whose group-value is in V1. The latter can again be
tested by constructing a set of group-labeled graphs from V1 and testing if Gú has one of
them as a minor.

Since Huynh [119] can also deal with more complex minors, (including minors which
are k disjoint edges,) it follows that:

Lemma 6.8.2. Let L1, . . . , Lk be parity languages over �. Then we can find k node-
disjoint simple paths (or k edge-disjoint trails) from si to ti matching Li in polynomial
time.

Proof. Since L1, . . . , Lk are parity languages, there exist sets V1,1, . . . , V1,k ™ {0, 1}
¸

such that that each Li can be written in the form {v1 + v2n | n œ N, v1 œ V1,i} and
v2 = (2, · · · , 2) with i œ [k]. The only change to the proof of Theorem 6.8.1 is that the

143

Chapter 6 Towards a Dichotomy for Regular Simple Path and Trail Queries

group-labeled graphs in H are not single edges, but k node-disjoint edges. More precisely,
a group-labeled graph in H has for each i œ [k] an edge from si to ti that is labeled with
a word in V1,i. Since each possible combination is in H, |H| = |V1,1| · · · |V1,k|.

Remark 6.8.3. For simple paths it is important that L1, . . . , Lk use the same alphabet, as
the problem of finding two node-disjoint paths, one labeled aú, the other bú is NP-complete,
see Gourves et al. [105, Theorem 16].

Corollary 6.8.4. Let L1, . . . , Lk be parity languages over � and let F1, . . . , Fk+1 be finite
languages. Then USimPath(F1L1F2 · · · LkFk+1) and UTrail(F1L1F2 · · · LkFk+1) are in P.

Proof. We enumerate the node-disjoint (or edge-disjoint) finite simple paths (or trails)
(p1, . . . , pk+1) matching F1, . . . , Fk+1. Let pi be a path from ti≠1 to si for each i œ [k + 1].
Then we can use Lemma 6.8.2 to test in polynomial time if there exist k node-disjoint
simple paths (or edge-disjoint trails) from si to ti matching Li in the multigraph without
the inner nodes (or edges) of the paths (p1, . . . , pk+1).

Using the observation that Ga and Gb are edge-disjoint for all pair of symbols a ”= b
we obtain:

Corollary 6.8.5. Let L1, . . . , Lk be parity languages over alphabets �1, . . . , �n, such
that �i = �j or �i fl �j = ÿ for each pair i, j. Let F1, . . . , Fk+1 be finite languages. Then
UTrail(F1L1F2 · · · LkFk+1) is in P.

Proof. We explain how to decide UTrail(F1L1F2 · · · LkFk+1) in polynomial time. Let
G be an undirected multigraph. We enumerate the edge-disjoint trails (p1, . . . , pk+1)
matching F1, . . . , Fk+1 in G. Let pi be a path from ti≠1 to si for each i œ [k + 1]. Let
I1, . . . , Im be sets of indices such that �i = �j for all i, j œ Ix and �i fl �j = ÿ for all
i œ Ix, j œ Iy and x ”= y. Since for each x œ [m] the subgraphs of G restricted to edges
with labels in �i with i œ Ix are edge-disjoint from each subgraph of G restricted to
edges with labels in �j with j /œ Ix per construction of I1, . . . , Im, we can perform tests
on each subgraph separately. More precisely, for each x œ [m] we use Lemma 6.8.2 to test
in polynomial time if there exist |Ij | edge-disjoint trails from si to ti matching Li with
i œ Ix in the multigraph restricted to edges with labels in �i with i œ Ix, and without
edges of the paths (p1, . . . , pk+1).

144

Chapter 7

Towards Fine-grained Dichotomies

for STEs

Similar to Chapter 5 we now have a look at the parameterized complexity of PSimPath

and PTrail on undirected multigraphs. We name the respective problems PUSimPath and
PUTrail to distinguish them from the problems on directed multigraphs. We again focus
on the class of STEs, since they are prominent in practice.

7.1 Tractable Fragments are Preserved for

Undirected Multigraphs

We first note that the tractability results on directed multigraphs also hold on undirected
multigraphs.

Theorem 7.1.1. Let R be a cuttable class of STEs. Then PUSimPath(R) is in FPT.

Proof. Let G = (V, E, E) be an undirected multigraph. Let GÕ = (V, EÕ, E
Õ) be the

directed multigraph obtained from G by replacing every undirected edge e œ E with
Node(e) = {u, v} with two directed edges e1, e2 and E

Õ(e1) = (u, lab(e), v), E
Õ(e2) =

(v, lab(e), u). Since every simple path can use at most one edge between any pair of
nodes, a simple path in GÕ corresponds directly to a simple path in G and vice versa.
Furthermore, since R is cuttable, PSimPath(R) is in FPT by Theorem 5.2.2. Thus, we
can solve PSimPath(R) on GÕ in FPT and give the same answer.

Theorem 7.1.2. Let c œ N be a constant and let R be the class of STEs with at most c
conflict positions, that is, R is almost conflict-free. Then PUTrail(R) is in FPT. More
precisely, for an r œ R, PUTrail(r) is in time 2O(|r|)

· |E|
c+6.

Proof. Let r = BpreT úBsu� œ R and G = (V, E, E) be an undirected multigraph and
s, t œ V . Let $1, $2, #1, #2 be four new symbols which occur neither in r nor in G.
From G, we construct a directed graph GÕ = (V Õ, EÕ, E

Õ) with V Õ = V fi {xe, ye | e œ E},
EÕ = {(u, $1, xe), (u, #1, xe), (v, $2, xe), (v, #2, xe), (xe, lab(e), ye), (ye, $1, u), (ye, #1, u),
(ye, $2, v), (ye, #2, v) | e œ E, Node(e) = (u, v)}, and E

Õ((x, ‡, y)) = (x, ‡, y) with
(x, ‡, y) œ EÕ. That is, every edge is replaced with a gadget as depicted in the middle

145

Chapter 7 Towards Fine-grained Dichotomies for STEs

u v
a =∆ u v

xe

ye

$1 $2

‡

$1 $2

#1 #2
#1 #2

=∆

vu,$1,xe

vu,#1,xe

vv,$2,xe

vv,#2,xe

vxe,‡,ye

vye,$1,u

vye,#1,u

vye,$2,v

vye,#2,v

$1

#1

$2

#2

‡

‡

‡

‡
$1

$1

#1

#1 $2
$2

#2

#2

Figure 7.1: Illustration of the construction of the directed graphs GÕ and H in the proof
of Theorem 7.1.2.

of Figure 7.1. We use di�erent edges labeled $1, #1 to avoid introducing new conflict
positions. The di�erent edges labeled $1 and $2 are used to forbid cycles labeled $1a$1
or $2a$2 for any symbol a. They have been used in the same way as in Lemma 6.3.2(b).
The symbols #1 and #2 are used analogously.

Let c1 be the left cut border of r and c2 be its right cut border. Let f : {1, . . . , c1+c2} æ

{1, 2} be a function and f(i) = 3 ≠ f(i). Let A$ = (A fi {$1, $2}) for any set A. We define

rÕ
f = BÕ

pre,f (T $)úBÕ
su�,f

where BÕ
pre,f =

• (#1+#2)? A1? (#1+#2)? (#1+#2)? A2? (#1+#2)? · · · (#1+#2)? Ak1? (#1+#2)?
if Bpre = A1? · · · Ak1?,

• #f(1)A1#f(1) #f(2)A2#f(2) · · · #f(c1)Ac1#f(c1) T A
c1+1T $

· · · T A
k1

T $ other-
wise, that is, if Bpre = A1 · · · Ak1 .

and BÕ
su�,f =

• (#1 +#2)? AÕ
k2

? (#1 +#2)? · · · (#1 +#2)? AÕ
1? (#1 +#2)? if Bsu� = AÕ

k2
? · · · AÕ

1?.

• T $(AÕ
k2

)$T $
· · · T $(AÕ

c1+c2+1)$T $#f(c1+c2)A
Õ
c2#f(c1+c2) · · · #f(c1+1)A

Õ
1#f(c1+1)

otherwise, that is, if Bpre = A1 · · · Ak1 .

By construction, there is a trail from s to t in G matching r if and only if there is a
function f and a trail from s to t in GÕ matching rÕ

f that does not contain a subpath
labeled $1‡$1 or $2‡$2 for any ‡ œ �.

We now show that the number of conflict positions in r and rÕ
f is identical: To this end,

we first recall some definitions: The left cut border of STEs with Bpre = A1 · · · Ak1 is the
largest value i œ [k1] such that T has a symbol that is not in Ai. The right cut border of
STEs with Bsu� = AÕ

k2
· · · AÕ

1 is the largest value i œ [k2] such that T has a symbol that

146

7.1 Tractable Fragments are Preserved for Undirected Multigraphs

is not in AÕ
i. If Bpre = A1? · · · Ak1? the left cut border is 0. If Bsu� = AÕ

k2
? · · · AÕ

1? , the
right cut border is 0. A position left of the left cut border or right of the right cut border
is a conflict position if T and the set on this position have a non-empty intersection.

By construction, if c1 = 0 (respectively, c2 = 0), then the left (respectively, right) cut
border of rÕ is 0. On the other hand, if c1 Ø 1, the left cut border of rÕ is exactly on the
position of #f(c1). This is because T ™ Ai for each i œ {c1 + 1, . . . , k1} by definition of
c1 and therefore also T $

™ A$
i . Analogously, if c2 Ø 1, the right cut border of rÕ is on the

position of #f(c1+c2). So the left and right cut border of rÕ are 3c1 and 3c2, respectively.
Since {#1, #2} fl T $ = ÿ by definition, the positions of the symbols #1 and #2 cannot

be conflict positions. As T $
fl Ai = ÿ for i œ [c1] if and only if T fl Ai = ÿ for i œ [c1]

and T $
fl AÕ

i = ÿ for i œ [c2] if and only if T fl AÕ
i = ÿ for i œ [c2], the number of conflict

positions in r and rÕ is identical.
Thus the number of conflict positions of rÕ is bounded by a constant c. While

Lemma 5.6.3 allows us to decide whether there exists a trail matching rÕ
f from s to t

in GÕ in time 2O(|rÕ
f |)

· |EÕ
|
c+6, it does not take into account that subpaths matching

$1‡$1 or $2‡$2 are forbidden. In order to prove this, we proceed similar to the proof of
Lemma 5.6.3.

That is, we use the construction from the proof of Lemma 5.5.3 to obtain a directed
graph H = (VH , EH , EH) such that there is a trail from s to t matching rÕ

f in GÕ if and
only if there is a simple path from sÕ to tÕ matching a · rÕ in H where a is a new symbol
not occurring in rÕ

f or GÕ. By construction, we can go a step further: there is a trail from
s to t matching rÕ

f in GÕ that does not contain a subpath labeled $1‡$1 or $2‡$2 for any
‡ œ � if and only if there is a simple path from sÕ to tÕ matching a · rÕ in H that does
not contain a subpath labeled $1‡$1 or $2‡$2 for any ‡ œ �. We relabel the expression
to a conflict-free expression r̃f and iterate over all possible sets S of nodes of size up to c
and relabel H depending on S. Then, in each directed graph HS , we test for a simple
path from s to t matching a · r̃f that does not contain a subpath labeled $1‡$1 or $2‡$2
for any ‡ œ �.

In the following, we will focus on BÕ
pre,f being of the form

#f(1)A1#f(1) #f(2)A2#f(2) · · · #f(c1)Ac1#f(c1) T A
c1+1T $

· · · T A
k1T $.

Similarly to f , we will define a function g with: g : [k1] æ {1, 2} and g(i) = 3 ≠ g(i). Let

BÕ
pre,f,g = #f(1)A1#f(1) #f(2)A2#f(2) · · · #f(c1)Ac1#f(c1)·

$g(c1+1)A
$
c1+1$g(c1+1) · · · $g(k1)A

$
k1$g(k1),

and analogously for BÕ
su�,f,g. Let R1 be the set containing all renamed versions BÕ

pre,f,g.
We define a set R2 for BÕ

su�,f,g analogously.

Lemma 7.1.3 (similar to Lemmas 5.3.11 and 5.6.4). Let HS, r̃f , nodes s, t, and R1
as defined in the proof of Theorem 7.1.2 be given. Let kÕ

1 be the length of the longest
word in R1 and kÕ

2 be the length of the longest word in BÕ
su�,f . We define kÕ = kÕ

1 + kÕ
2.

147

Chapter 7 Towards Fine-grained Dichotomies for STEs

Then, HS = (VH , EH , EH) has a simple path from s to t that matches a · r and does
not contain a subpath labeled $1‡$1 or $2‡$2 for any ‡ œ � if and only if there exists a
regular expression r1 œ R1, a node v œ VH , and a set of nodes X œ P̂ a·r1

s,v ™
kÕ+2
rep P a·r1

s,v ,
such that HS has a simple path from s to t that matches a · r, has no subpath labeled
$1‡$1 or $2‡$2 for any ‡ œ �, and with the first kÕ

1 + 2 nodes belonging to X.

Proof. The if direction is straightforward. For the only-if direction, let p = e1 · · · en be a
shortest simple path from s to t that matches a · r̃f and has no subpath labeled $1‡$1 or
$2‡$2 for any ‡ œ �. We make the following case distinction on the length of p.

If |p| Æ 2kÕ
1 + kÕ

2 + 3, we define P = e1 · · · ekÕ
1+1 and Q = ekÕ

1+3 · · · en. By definition of
R1, there is a r1 œ R1 such that P matches a · r1, and ekÕ

1+2 · Q matches (T $)úBÕ
su�,f .

Let vkÕ
1+1 = destination(ekÕ

1+1) We have that V (P) œ P a·r1
s,vkÕ

1+1
, we have |V (Q)| Æ kÕ + 2,

and V (P) fl V (Q) = ÿ. Let P̂ a·r1
s,vkÕ

1+1
be a (kÕ + 2)-representative set of P a·r1

s,vkÕ
1+1

. Then

there exists a set X œ P̂ a·r1
s,vkÕ

1+1
with X fl V (Q) = ÿ. By definition of P a·r1

s,vkÕ
1+1

, there
exists a simple path P Õ from s to vkÕ

1+1 with V (P Õ) = X that matches a · r1. Therefore,
P Õ

· ekÕ
1+2 · Q is a simple path from s to t that matches a · r̃f and has no subpath labeled

$1‡$1 or $2‡$2 for any ‡ œ �.
Otherwise, we have |p| > 2kÕ

1 +kÕ
2 +3. We define P = e · · · ekÕ

1+1, R = ekÕ
1+3 · · · en≠kÕ≠2,

and Q = en≠kÕ · · · en. We thus have

p = P · ekÕ
1+2 · R · en≠kÕ≠1 · Q.

Since p matches a · r̃f , we furthermore know that P matches a · r1 for some r1 œ R1, R

matches (T $)ú, and Q matches (T $)ú(T $)kÕ
1+1BÕ

su�,f .1 Since |V (Q)| = kÕ + 2, V (P) œ

P a·r1
s,vkÕ

1+1
, and V (P) fl V (Q) = ÿ, the definition of P̂ a·r1

s,vkÕ
1+1

™
kÕ+2
rep P a·r1

s,vkÕ
1+1

guarantees,
similar as in the previous case, the existence of a simple path P Õ from s to vkÕ

1+1 that
matches a · r1 with V (P Õ) œ P a·r1

s,vkÕ
1+1

and V (P Õ) fl V (Q) = ÿ. Let P Õ = eÕ
1 · · · eÕ

kÕ
1+1. If P Õ

is disjoint from R, the path

pÕ = P Õ
· ekÕ

1+2 · R · en≠kÕ≠1 · Q

is a simple path matching r, and we are done.
We show that P Õ must be disjoint from R. Let c1 be the left cut border of r̃f . Clearly,

the paths P Õ and R cannot intersect in the first c1 + 1 nodes2 of P Õ since those nodes
only have outgoing edges that have labels not in T by construction of HS (the outgoing
edges of each node have the same label) and since r̃f has no conflict positions.

Towards a contradiction, assume that there is an i œ {c1 + 1, . . . , kÕ
1}

3 such that
destination(eÕ

i) = origin(ej) for some j œ {kÕ
1 + 3, . . . , n ≠ kÕ

≠ 1}.

1
Since BÕ

su�,f might have shorter words, we cannot simply write (T $
)
kÕ

1+1BÕ
su�,f .

2
Since P Õ

matches a · r̃f , and a is a new symbol, we also have a /œ T .
3
We note that s and vkÕ

1+1 are in V (P) and therefore not in V (R).

148

7.1 Tractable Fragments are Preserved for Undirected Multigraphs

We choose i minimal and build a new simple path

pÕ = eÕ
1 · · · eÕ

iej+1 · · · en.

This path matches a · B1 · · · Bc1 · · · Bi(T $)ú(T $)kÕ
1+1BÕ

su�,f . Since c1 is the left cut border
of r̃f , we have T $

™ Bj for all c1 + 1 Æ j Æ kÕ, so the new path matches a · r̃f . If pÕ has
no subpath labeled $1‡$1 or $2‡$2, we are done since pÕ does not contain the edge ekÕ

1+2,
pÕ is shorter than p, contradicting the choice of p.

On the other hand, if pÕ contains a subpath labeled $1‡$1 or $2‡$2, then this subpath
must be where P Õ and R intersected. An example is given in Figure 7.2. While in HS

the paths labeled $1‡$1 or $2‡$2 are not necessarily loops, they always have the form

(v(u,$i,xe), $i, v(xe,lab(e),ye))(v(xe,lab(e),ye), lab(e), v(ye,$i,u))(v(ye,$i,u), $i, v(u,_,_))

with i œ {1, 2} and _ are some values. By construction of H, that is, Lemma 5.5.3, every
node v(u,_,_) has the same incoming edges, independent of the values of _. Thus, we can
remove the path labeled $1‡$1 or $2‡$2 from pÕ and replace the incoming edge to v(u,$i,xe)
with the one to v(u,_,_) to obtain a new simple path pÕÕ that does not have a subpath
labeled $1‡$1 or $2‡$2. It remains to prove that pÕÕ matches a · r̃f . To this end, we
observe that given HS , P Õ and R, pÕÕ is obtained from pÕ by replacing eÕ

i≠1 with a new edge
eÕÕ

i≠1 that has the same label and removing eÕ
iej+1ej+2, with lab(eÕ

i), lab(ej+2) œ {$1, $2},
lab(ej+1) œ T fl Am with m > c1.4 That is, pÕÕ = eÕ

1 · · · ec1+1 · · · eÕ
i≠2eÕÕ

i≠1ej+3 · · · en and
pÕÕ matches a · B1 · · · Bc1 · · · Bi≠1(T $)ú(T $)kÕ

1+1BÕ
su�,f and therefore a · r̃f .

Finally, we note that pÕÕ does not contain the edge ekÕ
1+2, so pÕÕ is shorter than p, which

contradicts that p was a shortest simple path from s to t matching r and that has no
subpath labeled $1‡$1 or $2‡$2. So P Õ must be disjoint from R.

Similar to Lemmas 5.3.11 and 5.6.4, Lemma 7.1.3 allows us to use (a variant of)
Algorithm 3 to find a path from s to t in HS that matches the conflict-free regular
expression r̃f in FPT. More precisely, we need to additionally iterate over all sets S

for HS , compute P̂ a·r1
s,v for each r1 œ R1 in line 2, and then iterate over all sets X

in
t

r1œR1
P̂ a·r1

s,v in line 3. In line 8 we symmetrically need to iterate over all sets
X Õ

œ
t

r2œR2
P̂ r2

u,t.
We now turn to the running time. First we have 2c1+c2 di�erent expressions rf , where c1

is the left cut border of r and c2 is the right cut border. We can compute H in polynomial
time of its size, which is O(|E|

2), since that is VH = O(|E|) and EH = O(|E|
2). If rf

has c conflict positions, then we have to iterate over all sets of up to c nodes in H to
obtain HS , which multiplies the running time with |E|

c. After preprocessing time of
|r||HS | we can compute P̂ a·r1

s,v for each r1 œ R1 in time 2O(|r|)
|EH | log |VH | · 2k1 . We then

have to consider up to |VH |
2

· 2O(|r|) sets X. We can compute P̂ r2
u,t for each r2 œ R2 in

2O(|r|)
|EH | log |VH | · 2k2 and finally do for each set X Õ a reachability test for a path from

4
Note that m ”= c1 since Ac1 either was a conflict position and therefore renamed, or Ac1 fl T = ÿ.

149

Chapter 7 Towards Fine-grained Dichotomies for STEs

v to u that matches T ú in O(|VH | + |EH |). Thus the running time of PUTrail(r) can be
bounded by

2c1+c2 · |VH |
c
1

|r||HS | + O(2O(|r|)
|EH | log |VH |) · 2k1+

|VH |
2

· 2O(|r|)
·
!
2O(|r|)

|EH | log |VH | · 2k2 + |VH |
2

· 2O(|r|)
· O(|VH | + |EH |)

"2
,

which can be simplified to 2O(|r|)
· |E|

c+6, where |c| is the number of conflict positions
in r.

s

vu,$1,xe
vv,$2,xe

vxe,b,ye

vye,$1,u vye,$2,vvu,$2,xd

· · ·

t

a

a $1 $2

b b

$1

$1

$2

Figure 7.2: Illustration of a case in the proof of Lemma 7.1.3 on a subgraph of
HS . If the paths P Õ (blue) and R (red) intersect, the naive simple path
(s, a, vu,$1,xe

)(vu,$1,xe
, $1, vxe,b,ye)(vxe,b,ye , b, vye,$1,u)(vye,$1,u, $1, vu,$2,xd

) . . .
contains a subpath labeled $1b$1, even though the original paths had no
subpath labeled $1‡$1 for any ‡ œ �. Due to the special structure of the
graph HS , we can remove the subpath labeled $1b$1 by taking the incoming
a-edge to vu,$2,xd

instead of the a-edge to vye,$1,u.

7.2 Extension of the Tractable Fragment

We now prove that the class of tractable STEs on undirected multigraphs is larger than
in the directed case if we consider trail semantics. Cai and Ye [59] studied the closely
related problems:

• UPDisjointTrails(=, ú): Given a undirected graph G, nodes s1, t1, s2, and t2, and
a parameter k œ N, are there two edge-disjoint trails, one from s1 to t1 of length
exactly k and one from s2 to t2?

• UPDisjointTrails(Æ, ú): Given a undirected graph G, nodes s1, t1, s2, and t2, and a
parameter k œ N, are there two edge-disjoint trails, one from s1 to t1 of length at
most k and one from s2 to t2?

150

7.2 Extension of the Tractable Fragment

Lemma 7.2.1 (Cai and Ye [59]). UPDisjointTrails(=, ú) and UPDisjointTrails(Æ, ú) are
in FPT.

Re-inspecting their proof, we can see that with only slight changes5 their FPT result
also holds on multigraphs. Thus a straight-forward result is the following:

Corollary 7.2.2. PUTrail(akbaú) and PUTrail(aÆkbaú) are in FPT.

Proof. Indeed, for undirected graphs we can iterate over all b-edges and then solve
UPDisjointTrails(=, ú) or UPDisjointTrails(Æ, ú) on the remaining subgraph Ga. Taking a
closer look at the proof of Cai and Ye, we can see that it also works on multigraphs—we
make this more concrete in the proof of Theorem 7.2.5.

Since the class of STEs of the form akbaú are not almost conflict-free but tractable,
this is a very interesting result. Indeed, we can lift Cai and Ye’s proof of Lemma 7.2.1 to
show that PUTrail is tractable for classes of STEs BpreT úBsu� with T = �.

To this end, we first need the following lemma.

Lemma 7.2.3. Let G be an undirected multigraph, s1, t1, s2, and t2 nodes and A1, A2
NFAs. Then it is in FPT to decide whether there exist two edge-disjoint trails, one from
s1 to t1 matching A1 of length at most k1 and one from s2 to t2 matching A2 of length at
most k2. More precisely, this can be decided in time 2O(|k1|+|k2|)(|A1| + |A2|)|G| log |E|.

The proof is a combination of dynamic programming and color coding [7]. Indeed, we
closely follow the proof of Bagan et al. [20, Theorem 8] who showed that one can decide
in time 2O(k)

|A| · |G| log |G| whether there is a simple path from s to t of length at most
k matching a given NFA A. We note that instead of coloring nodes, we will color the
edges.

A k-coloring of E is a function c : E æ [k]. A set S ™ E is colorful for c if c(e1) = c(e2)
implies e1 = e2 for every e1, e2 œ S. We use the following result by Alon et al.:

Theorem 7.2.4 ([7]). Given k, m Ø 0 and a set E of m elements, one can compute in
time 2O(k)

|E| log |E| a set of ¸ œ 2O(k) log |E| k-coloring functions c1, . . . , c1 such that
every set S of E of size k is colorful for at least one ci, i œ [¸].

Proof of Lemma 7.2.3. Let G = (V, E, E) be an undirected multigraph, and A1 =
(Q1, �, ”1, {i1}, F1), A2 = (Q, �, ”2, {i2}, F2) NFAs. Let k = k1 + k2 and c1, . . . , c¸

be k-coloring functions as stated in Theorem 7.2.4. We define a function f : V ◊ Q1 ◊

V ◊ Q2 ◊ P([k]) æ {0, 1} such that f(v1, q1, S1, v2, q2, S2) = 1 if and only if S1 and S2
are disjoint and there exists a colorful path p1 from s1 to v1 using only colors of S1 and
such that ”1(i1, p1) = q1 and a colorful path p2 from s2 to v2 using only colors of S2 and
such that ”2(i2, p2) = q2. This function can be computed using dynamic programming
with the following equations:

5
That is, the additional argument that a shortest path p2 uses at most one “nearby-edge” between

any pairs of “nearby-nodes” is needed. We revisit their proof and this argument in the proof of

Theorem 7.2.5.

151

Chapter 7 Towards Fine-grained Dichotomies for STEs

• f(s1, i1, {}, s2, i2, {}) = 1.

• f(v1, q1, S1, v2, q2, S2) = 1 if S1 fl S2 = ÿ and there is
– a subset SÕ

1 (S1 such that f(v1, q1, SÕ
1, v2, q2, S2) = 1, or

– a subset SÕ
2 (S2 such that f(v1, q1, S1, v2, q2, SÕ

2) = 1.

• f(v1, q1, S1, v2, q2, S2) = 1 if S1 fl S2 = ÿ and there is
– an edge e with c(e) œ S1, a state qÕ such that ”1(qÕ, e) = q1, Node(e) = {v1, vÕ

}

and f(vÕ, qÕ, S1 ≠ {c(e)}, v2, q2, S2) = 1, or
– an edge e with c(e) œ S2, a state qÕ such that ”2(qÕ, e) = q2, Node(e) = {v2, vÕ

}

and f(v1, q1, S1, vÕ, qÕ, S2 ≠ {c(e)}) = 1.

This function can be computed in time O(2k1+k2(|A1| + |A2|)|G|) We compute f for
every function ci, i œ [¸] where ¸ œ 2O(k)

· log |E|. Clearly, there are edge-disjoint trails
from s1 to t1 and from s2 to t2 of length at most k1 and k2, respectively, if and only
if there are i œ [¸], S1, S2 ™ [k] with S1 fl S2 = ÿ, q1 œ F1, and q2 œ F2 such that
f(t1, q1, S1, t2, q2, S2) = 1 for some coloring function ci. Consequently, we can decide in
time 2O(k1+k2)(|A1| + |A2|)|G| log |E| whether these trails exist.

Theorem 7.2.5. Let R be a class of STEs of the form Bpre�úBsu�. Then PUTrail(R)
is in FPT.

Proof. We build upon the proof of Cai and Ye [59] that UPDisjointTrails(=, ú) and
UPDisjointTrails(Æ, ú) are in FPT. The main idea of their proof is that if we fix some
path from s1 to t1 of length k, then the shortest edge-disjoint path from s2 to t2 can
only use k2

≠ 1 many edges which are close to s1 and t1. This allows them to give a
randomized algorithm which they then derandomize with the help of universal sets to
obtain a deterministic FPT algorithm.

Let G be an undirected multigraph, r œ R be of the form A1 · · · Ak1�úAÕ
k2

· · · AÕ
1 and

let x, y œ V be two arbitrary nodes in G.
A node is a nearby-node if there are paths to s and x of length at most (k1 + k2)/2 or

there are paths to y and t of length at most (k1 + k2)/2. An edge e is a nearby-edge if all
nodes in Node(e) are nearby-nodes.

Assume there is a trail p1 from s to x labeled A1 · · · Ak1 and a trail p3 from y to t
labeled AÕ

k2
· · · AÕ

1 and such that p1 and p3 are edge-disjoint. Let p2 be a shortest path
labeled Aú from x to y. Then

1. all edges in p1 and p3 are nearby-edges, and

2. p2 contains at most (k1 + k2 + 2)2 many nearby-nodes and (k1 + k2 + 2)2
≠ 1

nearby-edges.

The first statement is obvious, while for the second we assume towards contradiction that
p2 contains at least (k1 + k2 + 2)2 + 1 many nearby-nodes. For each x œ V (p1) fi V (p3)

152

7.2 Extension of the Tractable Fragment

we define

Nú
x = {v | v is a nearby-node in V (p2) and there is a path of length at most

(k1 + k2)/2 from v to x which is node-disjoint from p1 and p3 (up to x)}.

Clearly, every nearby-node of p2 belongs to (at least one) set Nú
x with x œ V (p1) fi V (p3).

Since |V (p1) fi V (p3)| = k1 + k2 + 2, it follows by the pigeon hole principle that there is
some y œ V (p1) fi V (p3) with |Nú

y | Ø (k1 + k2 + 2) + 1. Let xs be the first node of p2 in
Nú

y and xt be the last node. By definition, there exist paths of length at most (k1 + k2)/2
from xs to y and from y to xt and these paths are node- and therefore also edge-disjoint
from p1 and p3 (up to y). Thus there exists a path of length at most k1 + k2 from xs via
y to xt, contradicting the choice of p2 as shortest possible path that is edge-disjoint from
p1 and p3. We illustrate this in Figure 7.3.

Since p2 contains at most (k1 + k2 + 2)2 many nearby-nodes and a shortest path
will not use the same node twice (otherwise, we find a shorter path), p2 uses at most
(k1 + k2 + 2)2

≠ 1 nearby-edges.6
Thus a straight-forward randomized algorithm proceeds as follows:

1. For all possible nodes x, y:

2. Find all nearby-nodes (for example by doing four rounds of BFS, starting from
s, x, y, and t).

3. Between each pair (u, v) of nearby-nodes, randomly color one edge with Node(e) =
{u, v} by color 1 or 2 with probability 1/2, and color all remaining edges with
Node(e) = {u, v} with color 1.7

4. Color all uncolored edges of G with color 2.

5. Find two edge-disjoint trails, one from s to x matching A1 · · · Ak1 and one from
y to t matching AÕ

k2
· · · AÕ

1 in the 1-colored graph, and a trail from x to y in the
2-colored graph. If these paths exist, return “yes”.

Let Gi be the subgraph of G that contains only edges of color i. Let p1, p2, p3 be
a solution that minimizes the length of p2. Then p1 and p3 are entirely in G1 with
probability Ø 1/2(k1+k2) and p2 is entirely inside G2 with probability > 1/2(k1+k2+2)2 .

By Lemma 7.2.3 it takes 2O(|k1|+|k2|)
|r||G| log |E| time to decide if there exist edge-

disjoint trails matching A1 · · · Ak1 and AÕ
k2

· · · AÕ
1, respectively, in G1. Using BFS, it takes

O(|G|) time find a shortest path from x to y in G2. So, if a solution exists, this algorithm
will answer “yes” with probability > 1/2k1+k2+(k1+k2+2)2 in |V |

22O(|k1|+|k2|)
|r||G| log |E|

time.
6
This shortest path argument is needed in the case of multigraphs, since between any pair of nearby-nodes

there can be arbitrary many nearby-edges.
7
Here we use again the argument that the shortest path p2 will use at most one edge between any pair

of nodes.

153

Chapter 7 Towards Fine-grained Dichotomies for STEs

It remains to derandomize the algorithm. Let mÕ be the number of nearby-edges and
¸ = k1 + k2 + (k1 + k2 + 2)2. As was shown by Cai and Ye [59, Proof of Theorem 2]
one can use an (mÕ, d, ¸)-perfect hash family for derandomization, where d is a power
of 2 between ¸(¸ ≠ 1)/2 + 2 and 2¸(¸ ≠ 1) + 4. The running time of the derandomized
algorithm is then 2((k1+k2)·log (k1+k2)) log mÕ

· |V |
22O(|k1|+|k2|)

|r||G| log |E|.

s1 y t1

s2 xs xt t2

length Æ
k1+k2

2 length Æ
k1+k2

2

length Ø k1 + k2 + 1

Figure 7.3: Illustration how to find a shorter path from s2 to t2 in the proof of Theo-
rem 7.2.5 if the path from s2 to t2 uses too many nearby-nodes.

For simple paths, the picture less clear. Indeed, Cai and Ye [59] left the complexity of
the following problems open:

• UPDisjointSimPaths(=, ú): Given a undirected graph G, nodes s1, t1, s2, and t2, and
a parameter k œ N, are there two node-disjoint simple paths, one from s1 to t1 of
length exactly k and one from s2 to t2?

• UPDisjointSimPaths(Æ, ú): Given a undirected graph G, nodes s1, t1, s2, and t2, and
a parameter k œ N, are there two node-disjoint simple paths, one from s1 to t1 of
length at most k and one from s2 to t2?

Since it is not known if these problems are in FPT, also the complexities of PUSimPath(akbaú)
and PUSimPath(aÆkbaú) remain open. We make the connection more concrete in the
next lemma.

Lemma 7.2.6.

(a) PUSimPath(akbaú) is in FPT if and only if UPDisjointSimPaths(=, ú) is in FPT.

(b) PUSimPath(aÆkbaú) is in FPT if and only if UPDisjointSimPaths(Æ, ú) is in FPT.

Proof. We start with (a). We can solve UPDisjointSimPaths(=, ú) by (1) deleting all
non-a-edges, (2) adding a simple path labeled bak+1 from t1 to s2. Then there is are
two disjoint simple path from s1 to t1 of length k and from s2 to t2 if and only if
there is a path labeled akbaú from s1 to t2. Thus if PUSimPath(akbaú) is in FPT, then
UPDisjointSimPaths(=, ú) is also in FPT.

On the other hand, we can solve PUSimPath(akbaú) by enumerating over all possible
b-edges {u, v} in E and asking for two disjoint simple path in Ga, either one from s to

154

7.2 Extension of the Tractable Fragment

u of length k and one from v to t, or one from s to v of length k and one from u to t.
Since every simple path will use at most one edge between any pair of nodes, we can
solve this problem on the underlying graph of Ga, that is, if there are multiple edges
between a pair of nodes {x, y} in Ga, we remove all but one edge between them. Thus,
if UPDisjointSimPaths(=, ú) is in FPT, PUSimPath(akbaú) is also in FPT. The proof for
(b) is analogous.

Interestingly, we could not find a method to prove W[1]-hardness for any class of STEs
in the undirected case.8 Thus we leave as an open question whether there are classes of
STEs for which PUTrail or PUSimPath are W[1]-hard.

8
We cannot use an undirected version of Gcol from Construction 5.4.2 because the direction of the

b-edges depicted in Figure 5.6 ensures that at most one gadget per row can be skipped.

155

Part III

Enumeration

157

Chapter 8

Enumeration Framework

While in Parts I and II we focused on decision problems, we now want to output
or enumerate witnessing paths. In this chapter we define the respective enumeration
problems and give a general framework. In the next chapter, we show that the tractability
results from Parts I and II carry over to the enumeration setting.

8.1 Preliminaries Enumeration

Given a path p = e1 · · · en and 1 Æ i Æ j Æ n, we denote by p[i, j] the subpath ei · · · ej .
We denote the set of edges of path p with E(p) = {e1, . . . , en}. For convenience, we
define p[1, 0] = Á and therefore V (p[1, 0]) = E(p[1, 0]) = ÿ. Furthermore, let p be a
path from s to t. We denote by destination(p[i, j]) end of the subpath p[i, j] and define
destination(p[1, 0]) = s, that is, the start of p.

An enumeration problem P is a (partial) function that maps each input i to a finite or
countably infinite set of outputs for i, denoted by P(i). Terminologically, we say that,
given i, the task is to enumerate P(i).

An enumeration algorithm for P is an algorithm that, given input i, writes a sequence of
answers to the output such that every answer in P(i) is written precisely once. If A is an
enumeration algorithm for an enumeration problem P, we say that A runs in polynomial
delay if the time before writing the first answer and the time between writing every two
consecutive answers is polynomial in |i|. By between answers, we mean the number of
steps between writing the first symbol from an answer until writing the first symbol of
the next answer. We use the term preprocessing time to refer to the computation time
before writing the first answer.

For several enumeration problems, we will consider the radix order on paths. To this
end, we assume that there exists an order < on �. We extend this order to words and
paths. For words w1 and w2, we say that w1 < w2 in radix order if |w1| < |w2| or
|w1| = |w2| and w1 is lexicographically before w2. For two paths p1 and p2, we say that
p1 < p2 in radix order if lab(p1) < lab(p2).

To this end, a parameterized enumeration problem is defined analogously to an enu-
meration problem, but its input is of the form (x, k) œ �ú

◊ N. It is in FPT delay
if the preprocessing time (time before writing the first answer) and the time between
writing every two consecutive answers is bounded by f(k) · |(x, k)|c for a constant c and
a computable function f .

159

Chapter 8 Enumeration Framework

Enumeration Problems

We now consider the following variants of SimPath and Trail:

EnumSimPaths(L)
Given: An directed multigraph G, nodes s, t.
Question: Enumerate the simple paths from s to t in G that match L.

EnumTrails(L)
Given: An directed multigraph G, nodes s, t.
Question: Enumerate the trails from s to t in G that match L.

Again, we will consider parameterized and undirected variants of these enumeration
problems. We will add an U to the problem name when we consider undirected instead
of directed multigraphs and parameterized versions will be denoted by a preceding P.
More precisely, we will also consider the following variants:

• EnumUSimPaths(L): Given an undirected multigraph G, nodes s, t, enumerate the
simple paths from s to t in G that match L.

• EnumUTrails(L): Given an undirected multigraph G, nodes s, t, enumerate the
trails from s to t in G that match L.

• PEnumSimPaths(R): Given a directed multigraph G, nodes s, t, r œ R, parameter
|r|, enumerate the simple paths from s to t in G that match r.

• PEnumTrails(R): Given a directed multigraph G, nodes s, t, r œ R, parameter |r|,
enumerate the trails from s to t in G that match r.

• PEnumUSimPaths(R): Given an undirected multigraph G, nodes s, t, r œ R,
parameter |r|,enumerate the simple paths from s to t in G that match r.

• PEnumUTrails(R): Given an undirected multigraph G, nodes s, t, r œ R, parameter
|r|, enumerate the trails from s to t in G that match r.

8.2 Enumeration of Arbitrary Paths and Shortest

Paths

We first show that enumeration for arbitrary and shortest paths can be done in polynomial
delay on directed and undirected multigraphs.

Mendelzon and Wood [160] showed that for a given directed graph G, nodes s, t, and
regular expression r, it can be decided in P if there is a path from s to t that matches
r in G. Indeed, one only needs to construct the product of the graph (G, s, t) and an
NFA N for the RPQ and test if (t, qf) is reachable from (s, q0), where q0 and qf are an
initial and an accepting state of N , respectively. Since it is already allowed to use edges

160

8.2 Enumeration of Arbitrary Paths and Shortest Paths

multiple times, this result immediately holds on directed multigraphs. This favorable
complexity carries over to the enumeration setting for arbitrary paths. At the core lies
the following result by Ackerman and Shallit.

Theorem 8.2.1 (Theorem 3 in [6]). Given an NFA N and a number ¸ œ N in unary,
enumerating the words in L(N) of length ¸ can be done in polynomial delay, even when
the paths need to be enumerated in radix order.

This result generalizes a result of Mäkinen [148], who proved that the words of length ¸
in L(N) can be enumerated in polynomial delay if the finite automaton N is deterministic.
Ackerman and Shallit genereralized this result to nondeterministic N and proved that,
for a given length ¸ (which they call cross-section), the smallest word in radix order in
L(N) can be found in time O(|Q|

2¸2), where Q is the set of states on N ([6], Theorem
1). They then prove that the set of all words of length ¸ can be enumerated in radix
order in total time O(|Q|

2¸2 + |�||Q|
2x), where x is the sum of the length of the words of

length ¸ ([6], Theorem 2). A closer inspection of their algorithm shows that it has delay
O(|�||Q|

2
|w|) where |w| is the size of the next output.

We now extend the algorithm of Ackerman and Shallit to enumerate paths in a directed
multigraph.

Lemma 8.2.2. Given a directed multigraph G, nodes s, t, a number ¸ œ N, and a regular
expression r, we can enumerate all paths from s to t of length ¸ that match r in polynomial
delay, even when the paths need to be enumerated in radix order.

Proof. We first construct an NFA Nr for r and take the product with G. In the directed
multigraph G ◊ Nr we change the label of every edge (e, (q1, q2)) to (lab(e), e) (instead
of lab(e)). This way, every edge between two nodes has a di�erent label, and thus we
have constructed a directed (simple) graph, which we name GÕ.

We interpret GÕ as an NFA and define its set of initial states as {(s, i) | i is an initial
state of Nr} and its set of accepting states as {(t, f) | f is an accepting state of Nr}.
Enumerating the words of length ¸ from the resulting automaton and projecting away
the first component of each label corresponds to enumerating the paths from s to t in G
of length ¸ that match r.

The first component of each label is indeed used to ensure radix order. We explain
this in more detail now. We extend the order < on � to an order < on (�, E) as follows:
Let <E be an arbitrary order on E. We define < on (�, E) as follows: (a1, e1) < (a2, e2)
if and only if a1 < a2 or a1 = a2 and e1 <E e2. This order implies that, given two paths
(lab(e1), e1) · · · (lab(e¸), e¸) and p2 = (lab(eÕ

1), eÕ
1) · · · (lab(eÕ

¸), eÕ
¸), then p1 < p2 implies

lab(e1) · · · lab(e¸) < lab(eÕ
1) · · · lab(eÕ

¸) or lab(e1) · · · lab(e¸) = lab(eÕ
1) · · · lab(eÕ

¸).
By Theorem 8.2.1 we can enumerate the words of length ¸ in GÕ in polynomial delay

in radix order. By projecting away the first component of each label, we enumerate the
paths from s to t of length ¸ in G in polynomial delay in radix order.

Furthermore, the length of a shortest path from s to t in G that matches r is polynomial
in the size of G and r. Thus it follows that we can also enumerate shortest paths in
polynomial delay.

161

Chapter 8 Enumeration Framework

Lemma 8.2.3. Given a directed multigraph G, nodes s, t, and a regular expression r,
we can enumerate all shortest paths from s to t that match r in polynomial delay, even
when the paths need to be enumerated in radix order.

We note that the results from Lemmas 8.2.2 and 8.2.3 also hold for undirected multi-
graphs.

Theorem 8.2.4. Given a directed or undirected multigraph G, nodes s, t, a number
¸ œ N, and a regular expression r, we can

• enumerate all paths from s to t in G of length ¸ that match r

• enumerate all shortest paths from s to t in G that match r

in polynomial delay, even when the paths need to be enumerated in radix order.

Proof. For directed multigraphs, the result follows from Lemmas 8.2.2 and 8.2.3. So
let G = (V, E, E) be an undirected multigraph. The idea is to replace every undirected
edge with two directed edges. More formally, we construct a directed multigraph
GÕ = (V Õ, EÕ, E

Õ) with V Õ = V, EÕ = {e1, e2 | e œ E}, and E
Õ such that if E(e) = (u, a, v),

then E
Õ(e1) = (u, a, v) and E

Õ(e2) = (v, a, u). We then use Lemma 8.2.2 or 8.2.3 to
enumerate paths in GÕ. If we replace in the output every directed edge e1 or e2 with its
original edge e, then we have a path in G.

8.3 Enumerating Simple Paths: Yen’s algorithm

We now turn to enumerating simple paths in polynomial delay. A starting point is
Yen’s algorithm [209] for enumerating simple paths from a source s to target t, without
label constraints. Yen’s algorithm usually takes another parameter K and returns the
K shortest simple paths. Yen’s algorithm without this parameter K is presented in
Algorithm 6.

We give a high-level explanation. First, observe that each shortest path in a graph is
also a simple one. Therefore, the first solution is obtained by finding a shortest path p.
The next shortest path must di�er in some edge from p. So we search (if it exists), for
all i, the shortest path that shares the first i edges with p, but not the (i + 1)th edge.
One of the shortest paths found this way is the next solution, which we again store in p.
The next shortest path must again di�er in some edge from the paths we already found.
So we search again, for all i, for a shortest path that shares the first i edges with the new
p, but not the (i + 1)th edge. To avoid rediscovering an old path, we also forbid other
edges to appear in the new path (lines 9–10).

We give an sketch of the correctness proof given in [209] next.

Theorem 8.3.1 (Implicit in [209]). Given a directed or undirected graph G and nodes s
and t, Algorithm 6 enumerates all simple paths from s to t in polynomial delay.

162

8.3 Enumerating Simple Paths: Yen’s algorithm

Algorithm 6: Yen’s algorithm
Input: Directed or undirected graph G = (V, E, E), nodes s, t
Output: The simple paths from s to t in G in order of increasing length

1 A Ω ÿ B A is the set of paths already written to output
2 B Ω ÿ B B is a set of paths from s to t
3 p Ω a shortest path from s to t in G
4 while p ”= null do

5 output p
6 Add p to A
7 for i = 0 to |p| ≠ 1 do

8 GÕ
Ω the induced subgraph of G on V Õ = V ≠ V (p[1, i])

9 for every path p1 in A with p1[1, i] = p[1, i] do

10 Delete the edge p1[i + 1, i + 1] in GÕ B Also deletes p[i + 1, i + 1] since
p œ A

B GÕ now no longer has paths already in A
11 p2 Ω a shortest path from destination(p[1, i]) to t in GÕ

12 Add p[1, i] · p2 to B

13 p Ω a shortest path in B B p Ω null if B = ÿ

14 Remove p from B

Proof sketch. The original algorithm of Yen [209] finds, for a given G, s, t, and K œ N,
the K shortest simple paths from s to t in G. Its di�erence with Algorithm 6 is that it
stops after K paths have been returned.

Let G = (V, E, E) be a directed or undirected graph. Yen does not prove that his
algorithm has polynomial delay, but instead shows that the delay is O(K|V | + |V |

3).1 On
lines 3 and 11, he uses an algorithm from [210] to find a shortest, and therefore simple,
path in time O(|V |

2). (Instead, one can also use Dijkstra’s algorithm or breadth-first
search.)

Unfortunately, K can be exponential in |G| in general. However, the reason why the
algorithm has K in the complexity is line 9, which iterates over all paths in A. If we do
not store A as a linked list as in [209] but as a prefix tree of paths instead, the algorithm
only needs O(|V | + |E|) steps to complete the entire for-loop on line 9 (without any
optimizations). Indeed, if paths p and pÕÕ share the first i edges, they will share a path
of length i from the root node in the prefix tree. So we can find all forbidden (i + 1)th
edges by forbidding all edges that start at the end of this path. We therefore obtain
delay O(|V |

3 + |V ||E|) from Yen’s analysis.

1
In [209], Section 5, he notes that computing path number k in the output costs, in his terminology,

O(KN) time in Step I(a) and O(N3
) in Step I(b), with N = |V |.

163

Chapter 8 Enumeration Framework

8.4 New Variants of Yen’s algorithm

Yen’s Algorithm on Labeled Multigraphs

Algorithm 7: Yen’s algorithm with regular expression
Input: Directed or undirected multigraph G = (V, E, E), nodes s, t, regular

language L
Output: The simple paths from s to t in G that match L

1 A Ω ÿ B A is the set of paths already written to output
2 B Ω ÿ B B is a set of candidate paths from s to t
3 p Ω a shortest simple path from s to t in G that matches L
4 while p ”= null do

5 output p
6 Add p to A
7 for i = 1 to |p| ≠ 1 do

8 GÕ
Ω the induced subgraph of G on V Õ = V ≠ V (p[1, i])

9 for every path p1 in A with p1[1, i] = p[1, i] do

10 Delete the edge p1[i + 1, i + 1] in GÕ

B GÕ now no longer has paths already in A
11 p2 Ω a shortest simple path from destination(p[1, i]) to t in GÕ that matches

(lab(p[1, i]))≠1L
12 Add p[1, i] · p2 to B

13 p Ω a shortest path in B B p Ω null if B = ÿ

14 Remove p from B

Since we focus on multigraphs in this work, we first note that Yen’s algorithm easily
extends to multigraphs since each simple path can use at most one edge between any pair
of nodes. Furthermore, Yen’s algorithm can easily be adapted to solve EnumSimPaths

for regular languages, see Algorithm 7. Indeed, the only changes occur in lines 3 and 11,
where the subroutines now need to find a shortest simple path matching a given regular
language instead of only a shortest path. Yet the main idea of Yen’s algorithm still holds
for paths matching a regular language L, and therefore correctness follows immediately
from Yen’s original algorithm.

Remark 8.4.1. Algorithm 7 makes two important calls to a black box algorithm for
computing a shortest simple path that matches a regular language, namely on lines 3
and 11. (There is another mention of “shortest path” on line 13, but here we only need
to find a shortest path stored in B.)

164

8.4 New Variants of Yen’s algorithm

Algorithm 8: Yen’s algorithm changed to work with trails on multigraphs
Input: Directed or undirected multigraph G = (V, E, E), nodes s, t œ V , a

regular language L
Output: All trails from s to t in G that match L under bag semantics

1 A Ω ÿ B A is the set of trails already written to output
2 B Ω ÿ B B is a set of trails from s to t matching L
3 p Ω a shortest trail from s to t matching L B p Ω ‹ if no such trail exists
4 while p ”= ‹ do

5 output p
6 Add p to A
7 for i = 0 to |p| do

8 GÕ
Ω (V, E ≠ E(p[1, i]), E

--
E≠E(p[1,i])) B Delete the edges of p[1, i]

9 S = {e œ E | p[1, i] · e is a prefix of a trail in A}

10 p1 Ω a shortest trail from destination(p[1, i]) to t in GÕ that matches
((lab(p[1, i]))≠1L) \ {Á} and does not start with an edge from S

11 Add p[1, i] · p1 to B

12 p Ω a shortest trail in B B p Ω ‹ if B = ÿ

13 Remove p from B

Yen’s Algorithm on Labeled Multigraphs for Trails

In Algorithm 8 we provide yet another variant of Yen’s algorithm, this time enumerating
trails matching a regular language.

The reason for this variant are twofold. While Lemma 5.5.3 allows us to enumerate
trails from s to t matching L in a directed multigraph G by enumerating simple paths
matching L in directed graphs (H, s1, t1), . . . , (H, sn, tn), there is no equivalent of this
lemma on undirected graphs. Furthermore, the complexity might rise: since SPtract is
a strict subset of Ttract, it is not clear whether this method allows a polynomial delay
algorithm for all languages in Ttract.2

The changes in Algorithm 8 are straightforward: instead of deleting nodes, we only
delete edges. The correctness again follows from Yen’s algorithm.

Enumerating with Possibly Non-Shortest Path Subroutines

Our next variants of Yen’s algorithm are minor changes to Algorithms 7 and 8 that allow
us to use subroutines that return paths which are not necessarily shortest.

2
We recall that the graphs obtained from Lemma 5.5.3 have a special structure. This structure allows

us to decide SimPath(L) in polynomial time even for some languages not in SPtract. For example, we

can decide in polynomial time whether such a directed graph H has a simple path matching (ab)
ú

from s to t because every node only has outgoing a- or outgoing b-edges, which allows us to remove

loops. Indeed, it would be interesting whether SimPath(L) restricted to such graphs is tractable for

all languages L œ Ttract.

165

Chapter 8 Enumeration Framework

These variants will be handy when there is no (known) polynomial time algorithm for
finding a shortest path.

Proposition 8.4.2. There is no known polynomial time algorithm that returns a shortest
simple path (or trail) from s to t that matches aúbcaú.

Proof. We will reduce the problem to the min-sum k disjoint paths problem. This problem
asks, given an undirected graph, nodes s1, t1, . . . , sk, tk for k disjoint paths, one from si

to ti for each i œ [k], such that the sum of their lengths is minimal. For each integer k,
this problem comes in a node-disjoint and an edge-disjoint variant.

The complexity of min-sum k disjoint paths problem for k Ø 2 has been open for
several decades, although it has been extensively studied, see Fenner et al. [92] for an
overview of the edge-disjoint variant and Kobayashi and Sommer [139] for an overview of
the node-disjoint variant.3

We now show that finding a shortest simple path from s to t that matches aúbcaú is
possible in polynomial time if and only if the min-sum two node-disjoint paths problem
can be solved in polynomial time.

• To return a shortest simple path from s to t that matches aúbcaú in a undirected
multigraph G, we first iterate over all possible triples of pairwise di�erent nodes
x, y, z. For each such triple, we test for an b-edge from x to y and a c-edge from
y to z. If this test succeeds, we only need to find two node-disjoint path in Ga

without y, one from s to x and one from z to t, such that the sum of their lengths
is minimal. Although Ga is a undirected multigraph, it su�ces to consider its
underlying undirected graph, since a shortest path will not use multiple edges
between nodes and the node-disjointness ensures that the two di�erent paths will
not use an edge between the same pair of nodes. Thus this problem is exactly the
min-sum two node-disjoint paths problem. After having iterated over all triples, we
return the overall shortest path.

• On the other hand, we can find two node-disjoint paths from s1 to t1 and from
s2 to t2 such that the sum of their length is minimal as follows: We relabel every
edge with a and add a path labeled bc from t1 to s2. Then the problem reduces
to finding a shortest simple path matching aúbcaú from s1 to t2 and returning the
respective subpaths.

We now turn to trail semantics. That is, we now show that finding a shortest trail
from s to t that matches aúbcaú is possible in polynomial time if and only if the min-sum
two edge-disjoint paths problem can be solved in polynomial time.

• To return a shortest trail from s to t that matches aúbcaú in a directed multigraph
G, we first iterate over all possible pairs of nodes u, v and edges e1, e2 with

3
We note that there exists a polynomial time Monte Carlo algorithm for the case k = 2, see Björklund

and Husfeld [47], but no deterministic polynomial time algorithm is known. If there is only one start

and one endnode, a polynomial time algorithm for min-sum k node-/edge-disjoint paths with k = 2

was introduced by [192, 193] and later extended to arbitrary k Ø 2 by Bhandari [44]. Yang and

Zheng [207] gave a polynomial time algorithm for the case k = 2 with s1 = s2 and t1 ”= t2.

166

8.4 New Variants of Yen’s algorithm

lab(e1) = b, lab(e2) = c such that e1e2 is a path from u to v. Since G and therefore
Ga is a multigraph, while the the min-sum two edge-disjoint paths problem is
defined over undirected (simple) graphs, we cannot use Ga directly. To this end, we
construct a simple graph GÕ by (1) removing all edges of the form (z, a, z) from Ga

and (2) replacing every edge with two new ones and an extra node. More formally,
let Ga = (V, Ea, Ea) be the subgraph of G restricted to a-edges. We define GÕ =
(V Õ, EÕ, E

Õ) with V Õ = V fi {ze | e œ Ea}, EÕ = {e1, e2 | e œ Ea and |Node(e)| > 1},
and if Ea(e) = (x, a, y), then E

Õ(e1) = (x, a, ze) and E
Õ(e2) = (ze, a, y). Now we only

need to find two edge-disjoint paths in GÕ, one from s to u and one from v to t,
such that the sum of their lengths is minimal, which is exactly the min-sum two
edge-disjoint paths problem.
After having iterated over all pairs of nodes and edges, we return the overall shortest
trail.

• On the other hand, we can find two edge-disjoint paths from s1 to t1 and from
s2 to t2 such that the sum of their length is minimal as follows: We relabel every
edge with a and add a path labeled bc from t1 to s2. Then the problem reduces to
finding a shortest trail matching aúbcaú from s1 to t2 and returning the respective
subpaths.

This completes the proof.

We now revisit the correctness proof of Yen’s algorithm [209], in order to show that
Algorithm 7 (and therefore also Algorithm 6) also works correctly if the subroutines only
return simple instead of shortest paths.

Lemma 8.4.3. Algorithm 7 is also correct if the assignments on lines 3 and 11 assign
simple (possibly non-shortest) paths to p and p2, respectively.

Proof. On line 10, Algorithm 7 considers the last path p that was added to A and
compares it to every path p1 in A that shares the first i edges with p. Since the algorithm
deletes, for every such path p1, the edges p1[i + 1, i + 1], we cannot find a simple path
more than once. So we just have to show that every simple path is eventually found.

Clearly, the algorithm is correct if there exists at most one simple path from s to t.
Assume, towards a contradiction, that there is more than one such simple path and the
algorithm terminated, that is, B is empty, but there exists a simple path pÕ from s to t
that matches L and is not in A. Let C be the set of paths in A that share the longest
prefix with pÕ. Since all paths in A start in s and A ”= ÿ due to line 3, we have that
C ”= ÿ. Let i be the maximal integer with p[1, i] = pÕ[1, i] for all p œ C. Let p œ C be the
last path that was added to A. After adding p to A, we must have executed the for loops
again. In line 10, we then cannot have deleted the edge pÕ[i + 1, i + 1], otherwise this
would contradict the definition of C. Since p was the last path from C that we added to
A and B is empty by assumption, pÕ must have been found during this execution of the
while-loop. Thus we must have pÕ

œ B or pÕ
œ A. Contradiction.

167

Chapter 8 Enumeration Framework

While under simple path semantics we only needed to omit the “shortest” in Algorithm 7
from lines 3 and 11, we have to be more careful under trail semantics. More precisely, we
additionally need to test before returning a path p whether it has a prefix which was not
yet written to the output. The reason herefore is that, if there are trails p1, p2 from s to
t such that p1 is a prefix of p2 and if p2 is first written to the output, then the “original”
algorithm might not find p1.

Lemma 8.4.4. Algorithm 8 is also correct if we make the following changes: (1) the
assignments on lines 3 and 10 assign (possibly non-shortest) trails to p and p2, respectively,
and (2) in line 12 it is additionally tested if p contains a prefix pÕ which is a trail from
s to t that matches L and is not yet in A. If this test succeeds, we take a shortest such
prefix instead of p.

Proof. On line 8, Algorithm 8 considers the last path p that was added to A and compares
it to every path p1 in A that shares the first i edges with p. Since the algorithm forbids,
for every such path p1, the next edge to be p1[i + 1, i + 1], we cannot find a trail more
than once. So we just have to show that every trail is eventually found.

Clearly, the algorithm is correct if there exists at most one trail from s to t that
matches L. Assume, towards a contradiction, that there is more than one such trail and
the algorithm terminated, that is, B is empty, but there exists a trail pÕ from s to t that
matches L and is not in A. Due to (2), pÕ cannot be a prefix of a path already in A. Let
C be the set of paths in A that share the longest prefix with pÕ. Since all paths in A
start in s and A ”= ÿ due to line 3, we have that C ”= ÿ. Let i be the maximal integer
with p[1, i] = pÕ[1, i] for all p œ C. We note that i < |pÕ

| due to (2).
Let p œ C be the last path that was added to A. After adding p to A, we must have

executed the for loops again. In line 8, we then cannot have deleted the edge pÕ[i+1, i+1],
otherwise this would contradict the definition of C. Since p was the last path from C
that we added to A and B is empty by assumption, pÕ must have been found during this
execution of the while-loop. Thus we must have pÕ

œ B or pÕ
œ A. Contradiction.

8.5 The Framework

We now study the time guarantees of the enumeration algorithms. The time needed by
Algorithms 7 directly depends on the two subroutines in lines 3 and 11. The next lemma
implies that if there are polynomial time algorithms (FPT algorithms, respectively)
for the subroutines, then the enumeration is possible in polynomial delay (FPT delay,
respectively).

Lemma 8.5.1. Let R be a class of regular expressions. If there exist algorithms A1
and A2 that, when given as input a directed (or undirected, respectively) multigraph G,
nodes s and t, a word w with |w| Æ |G|, and r œ R, return in time f(|G|, |r|) (with
f(|G|, |r|) Ø |G|),

1. a simple path from s to t in G that matches L(r) if it exists and “no” otherwise and

168

8.5 The Framework

2. a simple path from s to t in G that matches w≠1L(r) if it exists and “no” otherwise

respectively, then EnumSimPaths(R) (or EnumUSimPaths(R), respectively) is in delay
O(|V |f(|G|, |r|)) with preprocessing time O(f(|G|, |r|)).

Furthermore, if A1 and A2 always return a shortest simple path (respectively, a smallest
simple path in radix order), then the enumeration can be done in order of increasing
length (respectively, in radix order), with the same time guarantees.

Proof. We use Algorithm 7 with calls to algorithm A1 on line 3 and to algorithm A2 on
line 11. Furthermore, we choose an arbitrary path, shortest path, or smallest path in radix
order in B on line 13, depending on whether we want to enumerate in arbitrary order, order
of increasing length, or radix order, respectively. The correctness for EnumSimPaths(R)
and EnumUSimPaths(R) follows from Lemma 8.4.3.

Clearly, we need time O(f(|G|, |r|)) to output the first path (if it exists). Then,
Algorithm 7 does up to |V | iterations in line 7. We note that in |A| we will only store
paths of length at most |V |. If we use a prefix tree as a data structure for A, we can
insert a path in O(|V | · |E|) time or find a path p in A in O(|V |) time. Thus we can also
find the right node in the prefix tree and then delete the up to |E| many outgoing edges
in G line 10 in O(|V | + |E|). In line 11, we call algorithm A2.

In line 13 we need to find a minimal path among the candidates in B. If we again
use a prefix tree as a data structure and start with |p| instead of the first node in p, we
can always output the leftmost path (without the |p|), which is a minimal simple path.
Finding and deleting are in time O(|V |). Thus, we have a delay of O(f(|G|, |r|)) until
the first output, and afterwards time O(|V |(|V | + |E| + f(|G|, |r|))).

We can give similar time guarantees for Algorithm 8. Here, the time needed depends
on the subroutines in lines 3 and 10.

Lemma 8.5.2. Let R be a class of regular expressions. If there exist algorithms A1
and A2 that, when given as input a directed (or undirected, respectively) multigraph G,
nodes s and t, a word w with |w| Æ |G|, and r œ R, return in time f(|G|, |r|) (with
f(|G|, |r|) Ø |G|),

1. a trail from s to t in G that matches L(r) if it exists and “no” otherwise and

2. a trail from s to t in G that matches w≠1L(r) if it exists and “no” otherwise

respectively, then EnumTrails(R) (or EnumUTrails(R), respectively) is in delay O(|E|
2

·

f(|G|, |r|)) with preprocessing time O(f(|G|, |r|)).
Furthermore, if A1 and A2 always return a shortest trail (respectively, a smallest

trail in radix order), then the enumeration can be done in order of increasing length
(respectively, in radix order), with the same time guarantees.

Proof. We use the variant of Algorithm 8 described in the statement of Lemma 8.4.4,
with calls to algorithm A1 on line 3, and up to |E| calls of algorithm A2 on line 10.
Furthermore, we choose an arbitrary path, shortest path, or smallest path in radix order
in B on line 12, depending on whether we want to enumerate in arbitrary order, order of

169

Chapter 8 Enumeration Framework

increasing length, or radix order, respectively. The correctness for EnumTrails(R) and
EnumUTrails(R) follows from Lemma 8.4.4.

Clearly, we need time O(f(|G|, |r|)) to output the first path (if it exists). Then,
Algorithm 8 does up to |E| iterations in line 7. We note that all paths are trails and
therefore have length at most |E|. If we use a prefix tree as a data structure for A, we
can insert a path in time O(|E|

2) or find a path p in A in O(|E|) time. Thus we can also
find the right node in the prefix tree and then compute S in line 9 in O(|E|) time. In
line 10, we need multiple calls to A2 to ensure that the path starts with an edge not
in S. More precisely, let GÕ = (V Õ, EÕ, E

Õ) for each edge e œ EÕ
≠ S, we compute a new

multigraph GÕ
e = (V Õ

e , EÕ
e, E

Õ
e) by adding a new node sÕ to GÕ, and change E

Õ such that
E

Õ
e(e) = (sÕ, lab(e), v) instead of E

Õ(e) = (destination(p[1, i]), lab(e), v). Then there is a
trail from sÕ to t in GÕ

e that matches ((lab(p[1, i]))≠1L) \ {Á} if and only if there is such a
trail from destination(p[1, i])) to t in GÕ that starts with e. Furthermore, these trails use
the same edges. Thus we can call A2 on each GÕ

e with e œ EÕ
≠ S and take an arbitrary,

an overall shortest, or an overall smallest trail in radix order as p1.
In line 12 we need to find a minimal path among the candidates in B. If we again

use a prefix tree as a data structure and start with |p| instead of the first node in p, we
can always output the leftmost path (without the |p|), which is a minimal simple path.
Finding and deleting are in time O(|E|). Thus, we have a delay of O(f(|G|, |r|)) until
the first output, and afterwards delay O(|E|(|E| + |E| · f(|G|, |r|))).

170

Chapter 9

Enumeration Results

We now use the lemmas from Section 8.5 to show tractability for several enumeration
problems.

9.1 With Arbitrary Order

We use the standard method of self-reducibility to query a decision algorithm multiple
times in order to reconstruct the solution. That is, each polynomial time algorithms that
decides whether a simple path or trail matching L exists in G can be used to obtain a
polynomial time algorithm that can return such a path (if it exists).

Lemma 9.1.1. Let G = (V, E, E) be a directed or undirected multigraph, s and t two
nodes, and B be an algorithm that decides in time x whether there is a simple path
(respectively trail) from s to t in G that matches L. Then there exists an algorithm that
returns in time O(|E| · x) (respectively O(|E|

2
· x)) a simple path (respectively trail) from

s to t in G that matches L if one exists, and “no” otherwise.

Proof. For simple paths, we construct an algorithm A as follows: If B returns “no”,
A will also return “no”. Otherwise, there exists a simple path from s to t in G which
matches L. Let e1 be an edge adjacent to s. Let GÕ be the graph obtained from G by
removing all edges adjacent to s except e1. If B returns “no”, we remove e1 from G and
repeat the procedure with the next edge adjacent to s, otherwise, if B returns “yes” on
graph GÕ, we can choose e1 as first edge and remove the other edges adjacent to s (that
is, except e1) permanently from G. After we have found the ith edge, ending in a node
u with u ”= t, we can find the i+1th edge with a similar method: Let ei+1 be an edge
adjacent to u. Let GÕ be the graph obtained from G by removing all edges adjacent to u
except ei and ei+1. If B returns “no”, we remove ei+1 from G and repeat the procedure
with the next edge adjacent to u, otherwise, if B returns “yes” on graph GÕ, we can
choose ei+1 as i+1th edge and remove the other edges adjacent to u (that is, except ei

and ei+1) permanently from G. Once we found an edge e¸ ending in t, we return e1 · · · e¸.
The so-constructed path e1 · · · e¸ is a solution by construction. Furthermore, since

every edge is considered at most once, the running time is bounded by O(|E| · x).

We now turn to trail semantics. We construct algorithm A as follows: If B returns
“no”, A will also return “no”. Otherwise, there exists a trail from s to t which matches L.

171

Chapter 9 Enumeration Results

We enumerate over all edges e1 adjacent to s. Let E(e1) = (s, a, u). We define
GÕ = (V Õ, EÕ, E

Õ) to be the multigraph obtained from G = (V, E, E) by adding a new node
sÕ and defining E

Õ(e1) = (sÕ, a, u). We now use B to decide the existence of a trail from sÕ

to t in GÕ that matches L. If B returns “no”, there is no solution which uses e1 as first
edge, so we continue with the next edge adjacent to s. If B returns “yes”, then there is a
solution which uses e1 as first edge, and we permanently delete ei from G.

After we have found the ith edge, ending in a node u, we can find the i+1th edge
with a similar method: Let ei+1 be an edge adjacent to u and ei ”= ei+1. Let GÕ be
the graph obtained from G by removing ei+1, and adding a new node sÕ and a path
labeled lab(e1 · · · ei+1) from sÕ to u. We use B to decide if there is a trail from sÕ to t
matching L in GÕ. If it returns “no”, we repeat the procedure with the next edge adjacent
to u, otherwise, if B returns “yes” on graph GÕ, we can choose ei+1 as i+1th edge and
permanently remove ei+1 from G. Once we found an edge e¸ ending in t such that
lab(e1 · · · e¸) œ L, we return e1 · · · e¸. If e¸ ends in t, but lab(e1 · · · e¸) /œ L, we continue
with the procedure.

The so-constructed path e1 · · · e¸ is a solution by construction. Furthermore, since the
returned trail has length at most |E| and there are at most |E| candidates for the ith
edge, the running time is bounded by a polynomial in O(|E|

2
· x).

This implies that we can not only find, but also return simple paths and trails that
match languages in the tractable classes SPtract, USPtract, Ttract, and UTtract. Since all
these classes are closed under taking derivatives, see Lemma 3.5.3 and Theorem 6.3.1,
the algorithms A1 and A2 required in Lemmas 8.4.3 and 8.4.4 exist for these languages.
This implies the next theorem.

Theorem 9.1.2. The following problems are in polynomial delay:

• EnumSimPaths(L) for each L œ SPtract

• EnumUSimPaths(L) for each L œ USPtract,

• EnumTrails(L) for each L œ Ttract, and

• EnumUTrails(L) for each L œ UTtract.

In order to extend our tractability on the parameterized versions, We first show that
derivatives of STEs are unions of STEs with at most the same cut border and at most
the same number of conflict positions.

Lemma 9.1.3. Let w œ �ú and r be a c-bordered STE of size n. Then w≠1L(r) is a
union of STEs r1, . . . , rm that can be computed in time O(|w||r|) such that

• m Æ n and

• each ri is cÕ-bordered for some cÕ
Æ c.

Furthermore, if r is an STE with at most c conflict positions then, every STE in w≠1L(r)
also has at most c conflict positions.

172

9.2 With Order of Increasing Length

Proof. Let r = B1 · · · Bn be a c-bordered STE such that each Bi is either of the form
A, A?, or T ú as in Definition 4.2.1. Let w œ �ú, Jw = {j | w œ L(B1 · · · Bj)}. Then a
regular expression for w≠1L(r) consists of the union

�jœJw Bj+1 · · · Bn

and, if w œ L(B1 · · · Bj) with Bj = T ú, we add Bj · · · Bn to the union.
Clearly, the union is of size at most n, and since each expression Bj+1 · · · Bn or

Bj · · · Bn is cÕ-bordered for some cÕ
Æ c by definition, the result follows. Since we can

test w œ L(r) in O(|w||r|), we can compute Jw and therefore also the derivatives in
O(|w||r|).

Example 9.1.4. For the regular expression r = aúaab and the word w = aaa, the
derivative w≠1L(r) is {aúaab + aab + ab + b}.

Theorem 9.1.5. Let R be a class of STEs.

• If R is cuttable, then PEnumSimPaths(R) and PEnumUSimPaths(R) are in FPT
delay.

• If R is almost conflict-free, then PEnumTrails(R) and PEnumUTrails(R) are in FPT
delay.

Proof. By Lemmas 5.6.3 and 5.3.16, and Theorems 7.1.1 and 7.1.2 there exist FPT
algorithms for the respective decision problems. By Lemma 9.1.1 we thus also have
FPT algorithms that can return a solution. Lemma 9.1.3 guarantees that the derivative
w≠1L(r) of an STE r is a union of STEs, each having at most the same cut border and
at most the same number of conflict positions as r. Thus, we can also find a solution
matching w≠1L(r) by using the respective FPT algorithm that returns a solution on
STE in the union separately.

We then use these algorithms as A1 and A2 in Lemma 8.4.3 in the case of simple
paths or in Lemma 8.4.4 in the case of trails to obtain an FPT delay algorithm for the
respective enumeration problem.

9.2 With Order of Increasing Length

We now want to enumerate the paths in order of increasing length. Such an order is
helpful if the user only wants to the the most relevant answers first or if the user is only
interested in the K shortest paths—just as the original version of Yen’s algorithm. In
this section we will only give results on directed multigraphs. The reason is that on
undirected multigraphs there are languages for which we can find an arbitrary simple
path or trail in polynomial time (with Lemma 9.1.1), but it is not known if there is
an algorithm that returns a shortest such path in (deterministic) polynomial time, see
Proposition 8.4.2.

Theorem 9.2.1. The problems

173

Chapter 9 Enumeration Results

• EnumSimPaths(L) for each L œ SPtract and

• EnumTrails(L) for each L œ Ttract

are in polynomial delay, even when the paths need to be enumerated in order of increasing
length.

Proof. Bagan et al. [20] observe that their algorithm for SimPath(L) for L œ SPtract can
easily be adapted to output a shortest path for positive instances in NL.

In Corollary 3.4.15 we describe an algorithm that can output a shortest trail from s to
t matching L for L œ Ttract in NL.

We note that SPtract and Ttract are closed under derivatives, see Lemma 3.5.3. Thus we
can use these algorithms for as subprocedures in Lemmas 8.4.3 and 8.4.4.

Theorem 9.2.2. Let R be a class of STEs. If R is cuttable, then PEnumSimPaths(R)
is in FPT delay, even when the paths need to be enumerated in oder of increasing length.
If R is almost conflict-free, then PEnumTrails(R) is in FPT delay, even when the paths
need to be enumerated in order of increasing length.

Proof. We note that radix order implies order of increasing length. Thus it follows from
Theorems 9.3.2 and 9.3.7.

9.3 With Radix Order

We now turn to radix order. We first explain how to deal with downward closed languages
such as A1? · · · Ak? or T ú. To this end, we will use the algorithm of Ackerman and
Shallit [6, Theorem 1] that finds a minimal word in an NFA N in ◊(|N |

2n2) operations,
where n is the length of the shortest word in L(N). As a result, we can prove that, if
L(N) is downward closed, it is possible to output a smallest simple path in G in radix
order that matches N in polynomial time. (If L(N) is not downward closed, then the
smallest path that matches N is not necessarily simple.)

Proposition 9.3.1. Let N be an NFA such that L(N) is downward closed. Given a
directed multigraph G and two nodes s and t, a shortest simple path from s to t in G that
matches N can be found in time O(|G||N |) if such a path exists. A smallest such path in
radix order can be found in time O(|G|

2
|N |

2
|V |

2) if it exists.

Proof. Let G be a directed multigraph. Concerning a shortest path, the algorithm
from Lemma 5.3.1 can easily be adjusted to return a shortest path, for instance, using
breadth-first search for the reachability test. This does not influence the time bound.

Concerning a smallest path in radix order, we first observe that each shortest path
from s to t in G that matches N is simple—otherwise we could obtain a shorter path by
making the path simple (that is, removing edges that form a loop), and obtain a path
that still matches N because L(N) is downward closed.

We now proceed as in the proof of Lemma 8.2.2. That is, we relabel the edges in the
product G ◊ N and view it as an NFA. We use the method of Ackerman and Shallit [6,

174

9.3 With Radix Order

Theorem 1] to find a smallest word in radix order from an inital state to an accepting state,
and then output the corresponding path in G. We need O(|N ||G|) time to construct
the product and O(|N |

2
|G|

2
|p|

2) time to compute a smallest word in radix order in
G ◊ N .

Enumeration for Simple Transitive Expressions

We show that Theorem 5.2.2(a)—the FPT part—can be extended to enumeration prob-
lems. We do not need to prove any hardness results, since hardness for enumeration
problems immediately follows from the hardness of their decision version, that is, Theo-
rem 5.2.2(b). Notice that each problem in polynomial delay is also in FPT delay.

The goal of this section is to prove the following theorem.
Theorem 9.3.2. Let R be a cuttable class of STEs. Then PEnumSimPaths(R) is in
FPT delay, even when the paths need to be enumerated in radix order.

This theorem immediately implies that the enumeration versions of PSimPathLength

and PSimPathLength
Ø (from Section 5.3) are in FPT delay.

Theorem 9.3.3. PEnumSimPathLength and PEnumSimPathLengthØ are in FPT delay,
even when the paths need to be enumerated in order of increasing length.

We now turn to proving Theorem 9.3.2. In fact, the proofs of the enumeration results
are all along the same lines and use Lemma 8.5.1. Since each derivative of an STE with
cut border c is a union of STEs with cut border at most c by Lemma 9.1.3, we can
strengthen Lemma 8.5.1.

Lemma 9.1.3 implies that we can strengthen Lemma 8.5.1 in the case of STEs.
Lemma 9.3.4. Let R be a class of STEs. If there exists an algorithm A that, when
given as input a directed multigraph G, nodes s and t, and r œ R, returns in time f(n)
(with f(n) Ø n),

a simple path from s to t in G that matches L(r) if it exists and “no” otherwise,
then EnumSimPaths(R) is in delay O(|V ||r|f(n) + |r| · |V |

3) with preprocessing time
O(f(n)), where n = |G| + |r|. Furthermore, if A always returns a shortest simple path
(respectively, a smallest simple path in radix order), then the enumeration can be done in
order of increasing length (respectively, in radix order), with the same time guarantees.
Proof. Since we search for simple paths, we only need to compute derivatives for words w
of length at most |V |. Lemma 9.1.3 implies that we can compute a single such derivative
in time O(|V ||r|). According to Lemma 9.1.3, each derivative of an STE with cut border
c is a union of at most |r| many STEs with cut border at most c. Therefore, we can use
algorithm A to also solve problem (2) in Lemma 8.5.1, by running it for each STE in
the union separately. The smallest existing path in radix order can be found by taking
the smallest returned path overall, for each STE in the union. To be precise, we need
O(f(n)) time until the first output, and afterwards delay O(|V |(|r| · f(n) + |r| · |V |

2)).
Since w is a prefix of lab(p), the algorithm needs to compute w≠1L at most |V | times in
each of the |V | iterations in line 7.

175

Chapter 9 Enumeration Results

We will now show how the decision algorithm for Theorem 5.2.2(a) can be adapted to
return a smallest path in radix order. From now on, we refer to such a path as a minimal
path. We show that Algorithm 3, for computing a simple path matching a 0-bordered
STE, can be adjusted to compute a minimal path.

Lemma 9.3.5. Let G be a directed multigraph, s and t nodes, and r = A1 · · · Ak1T ú

AÕ
k2

· · · AÕ
1 a 0-bordered STE. If there exists a simple path from s to t matching r, then a

shortest such path can be computed in time 2O(|r|)
· |V |

3
|E| and a minimal such path in

time 2O(|r| log |r|)
· |V |

6
|E|

2.

Proof. Since Algorithm 3 already solves the decision version of the problem, we only need
to show that it can be adapted to compute a shortest, respectively, minimal path in the
required time. We first show that Algorithm 3 can output a shortest path. If Algorithm 3
returned “yes”, there exist nodes x, y œ V and sets X œ P̂ r1

s,x and X Õ
œ P̂ r2

y,v , and a
simple path p from x to y that matches T ú and is node-disjoint from X and X Õ except
for x and y. (See Lemma 5.3.11.) By definition of P r1

s,x, the nodes in X œ P̂ r1
s,x form a

path from u to x that matches r1 = A1 · · · Ak1 . The construction of P̂ r1
s,x in Lemma 5.3.9

allows us to order the elements in the sets such that they directly correspond to such a
path. (In fact, the construction is analogous to [97, Lemma 5.2], which also shows that a
witnessing path can be obtained.) So we can construct a path p1 from u to x that uses
only nodes in X and matches r1 and a path p2 from y to v that uses only nodes in X Õ and
matches r2 = AÕ

k2
· · · AÕ

1. This also holds for a shortest such path, see Corollary 5.3.12.
To output a minimal path, we need to make some small changes to Algorithm 3. That

is, we enumerate in line 2 all words w1 œ L(r1) and compute P̂ w1
s,x ™

k1+k2+1
rep P w1

s,x for
each such word. This way we can ensure that we really considered each word and, in
particular, each prefix of a minimal simple path that matches r.1 We proceed analogously
in line 7 for all words w2 œ L(r2).

Thus, we can use Algorithm 3 and iterate, for all words w1 and w2 and all nodes x, y
over P̂ w1

s,x ™
k+1
rep P w1

s,x in line 3 and P̂ w2
y,t ™

w2
y,t P w2

y,t in line 8. Then we find a minimal simple
path from x to y matching T ú in line 11 in time O(|G|

2
|r|

2
|V |

2) with Proposition 9.3.1.
Concerning the time bounds, Algorithm 3 without changes has a running time of

2O(|r|)
· |V |

c+3
|E|, see Lemma 5.3.14. Iterating over the words is in O(|r|

|r|) and using
Proposition 9.3.1 instead of Lemma 5.3.1 and the reachability test for T ú adds a factor
O(|G||r|

2
|V |

2). Rewriting O(|r|
|r|) into 2O(|r| log |r|) yields the result.

Finally, the following result implies Theorem 9.3.2.

Lemma 9.3.6. Let R be a class of STEs with cut border at most c. Then EnumSimPaths(R)
is in FPT delay with radix order, to be more precise, with 2O(|r| log |r|)

· |V |
c+6

|E|
2 pre-

processing time and delay 2O(|r| log |r|)
· |V |

c+7
|E|

2. If we only need order of increasing
length, the preprocessing is 2O(|r|)

· |V |
c+3

|E| and the delay is 2O(|r|)
· |V |

c+4
|E|.

1
If we start in Lemma 5.3.11 with a minimal simple path, we can replace P with a P Õ

such that P Õ

and R do not intersect. If additionally P and P Õ
match the same word, the new path must also be a

smallest one in radix order.

176

9.3 With Radix Order

Proof. By Lemma 9.3.4, we only need to show the existence of an algorithm A that finds
a minimal path within the required time bound. To this end, let r œ R and let c1 and c2
be the left and right cut border of r, respectively. Hence, r = A1 . . . Ac1rÕAÕ

c2 · · · AÕ
1. (If

ci = 0, then the respective part of r is simply missing.) We can compute, for all u, v œ V ,
all paths p1 from s to u matching A1 · · · Ac1 and all paths p2 from v to t matching
AÕ

c2 · · · AÕ
1 in time O(|V |

c).2 We then do a loop over all pairs (p1, p2) of such paths that
are node-disjoint. For each such pair, we will compute a candidate path P(p1,p2). The
overall idea of the algorithm is that it first computes all such candidate paths and then,
when it has iterated through all (p1, p2), takes the minimal one.

For the remainder of the proof, fix such a pair (p1, p2) and let pc1 and pc2 be the
smallest paths (in radix order) obtained from p1 and p2 by considering the edge labels in
G. The subexpression rÕ of r is of the form rÕ = BÕ

preT úBÕ
su� and is 0-bordered. So we

now search for a minimal simple path matching rÕ from u to v. We first delete in G all
nodes in (V (p1) \ {u}) fi (V (p2) \ {v}). Then, we perform a case distinction on the form
of rÕ.

If rÕ = A1? · · · Ak1?T úAÕ
k2

? · · · AÕ
1?, its language L(rÕ) is downward closed, so we can

find a simple path p matching rÕ that is a minimal path using Proposition 9.3.1 and take
P(p1,p2) = pc1p pc2 .

For rÕ = Ac1+1 · · · Ak1T úAÕ
k2

· · · AÕ
c2+1, we know from Lemma 9.3.5 that we can compute

a minimal path p. We then define P(p1,p2) = pc1p pc2 .
If rÕ has another form, that is

rÕ = Ac1+1 · · · Ak1T úAÕ
k2? · · · AÕ

1? or rÕ = A1? · · · Ak1?T úAÕ
k2 · · · AÕ

c2+1 ,

we can also obtain a minimal simple path. In the first case, we again iterate over
all words w1 œ Ac1+1 · · · Ak1 , compute the minimal path in P̂ w1

u,x ™
kÕ

1+1
rep P w1

u,x, and use
Proposition 9.3.1 to find a minimal path from x to t for the downward closed part. The
other case is symmetric.

In each of the cases, the algorithm then iterates through all (p1, p2) and, for each such
pair, adds a candidate path. Finally, it outputs the smallest candidate path.

Concerning the running time, we need time O(|V |
c) to guess p1 and p2. To output a

simple path (not necessarily minimal), we need 2O(|r|)
· |V |

c+3
|E| time, see Lemma 5.3.16.

This is also the time we need to output shortest simple paths, since we can use the same
algorithm. For minimal paths in radix order, we use Proposition 9.3.1 with running
time O(|G|

2
|r|

2
|V |

2) instead of Lemma 5.3.1 with running time O(|G||r|) and instead of
the reachability test for the T ú part. Furthermore, depending on r, we might need to
enumerate all words w1 œ L(Ac1 · · · Ak1) and w2 œ L(AÕ

k2
· · · AÕ

1), and compute the rest
of the algorithm depending on these words. Thus we need 2O(|r| log |r|)

· |V |
c+6

|E|
2 time

overall in this case. The delay then follows from Lemma 9.3.4.

We now turn to trails. Since the construction from Lemma 5.5.3 implies a bijection
between paths, we can proceed similar to the decision version and reduce the problem of

2
For the purpose of the proof, it su�ces to compute the paths without the edge labels here. We can

find the labels on the edges in p1 and p2 that are smallest words in the corresponding expressions in

radix order later.

177

Chapter 9 Enumeration Results

enumerating trails to enumerating simple paths in a newly constructed graph. Thus the
FPT result from Theorem 5.2.4 also carries over to the enumeration setting.

Theorem 9.3.7. Let R be a class of STE that is almost conflict-free. Then, PEnumTrails(R)
is in FPT delay, even when the paths need to be enumerated in radix order.

More precisely, we obtain the following delays:

Lemma 9.3.8. Let R be a class of STEs with at most c conflict positions. Then,
PEnumTrails(R) is in FPT delay with radix order, to be more precise, in 2O(|r| log |r|)

·

|E|
c+11 preprocessing time and delay 2O(|r| log |r|)

· |E|
c+12. If we only need order of

increasing length, the preprocessing is 2O(|r|)
· |E|

c+6 and the delay is 2O(|r|)
· |E|

c+7.

Proof. By Corollary 5.5.4, we have a bijection between the trails matching a word w in
the directed multigraph G and the simple paths matching ‡ · w in the directed graph
H, where H is obtained from G as in Lemma 5.5.3. Here, ‡ is an arbitrary label from
�. Thus, we can use Lemma 9.3.4 on H = (VH , EH , EH) to enumerate the simple paths
in the respective order and output the corresponding trails in G. We note that, due to
Lemma 9.1.3, derivatives of STEs with at most c conflict positions again have at most c
conflict positions. The computation time and size bounds can be found in Lemma 9.1.3.

So we need an algorithm that computes simple paths on H, matching ‡ · r and
derivatives thereof in the respective order. Notice that the existence of such an algorithm
is not immediate from our results on simple paths, since R is not necessarily cuttable.
In fact, we need to relabel H and r as in (1)–(3) from the proof of Lemma 5.6.3. In
(1), we relabeled r and some edges of H. Concerning the ordering of labels, we assume
that, if a < b, then a < ã < b < b̃. Notice that every Ai, T, or AÕ

i has only a or ã but not
both, so this ordering does not a�ect the minimality of the path that we find. For every
minimal path p matching ‡ · r in H there is a set S such that a minimal path in HS

matching ‡ · r̃ will use the same nodes in the same order as p. We can compute, for each
set S, a minimal path pS in HS , compare all such paths pS , and take the minimal one.
In (2), we only get rid of ‡, so this will not change the minimality of a path. Finally, in
(3), we use the same methods as in Lemma 5.3.15, which can be used to output simple
paths in the respective order, see Lemma 9.3.6. Using the bijection between these simple
paths and the trails in G, we can enumerate the trails.

So we can indeed output trails in the radix order or in order of increasing length.
We now turn to the running time. Combining the blow-ups from the construction in
Lemma 5.5.3 and the multiple graphs HS we obtain from each di�erent choice of S, we
can find a shortest simple path that matches ‡ · r̃ in time 2O(|r|)

· |E|
c+6 and a minimal

simple path in time 2O(|r| log |r|)
· |E|

c+11. Together with Lemma 9.3.4 this enables us to
enumerate the simple paths and output the corresponding trails with delay 2O(|r|)

· |E|
c+7

for order of increasing length and delay 2O(|r|)
· |E|

c+12 for radix order.

178

Conclusions and Future Work

179

Summary and Directions for Future

Research

Throughout this thesis we studied several problems regarding regular simple path and
trail queries. For the broad community, the take-away message is the following. The
majority of RPQs that users ask in practice3 indeed belong to the tractable classes for
simple path and trail semantics, both for directed and undirected multigraphs, which is
good news. Furthermore, these paths can be enumerated in polynomial delay, that is, we
can also output all the results with reasonable delay between two answers.

Summary

We will now summarize our results in more detail and discuss open problems and directions
for future research. In Chapter 3 we have defined the class Ttract of regular languages L for
which finding trails in directed multigraphs that are labeled with L is tractable i� NL ”=
NP. We have investigated Ttract in depth in terms of closure properties, characterizations,
and the recognition problem, also touching upon the closely related class SPtract (for
which finding simple paths is tractable) when relevant.

In Chapter 4 we took a closer look at queries that are asked in practice, taking a look
at the study of query logs from Bonifati et al. [53, 55]. We define the class of simple
transitive expressions (STEs), which are a class of regular expressions powerful enough to
capture over 99.99% of the RPQs occurring in a recent practical study [53]. For this class,
we find in Chapter 5 two dichotomies on the parameterized complexity of evaluating
STEs under simple path and trail semantics, respectively.

Under simple path semantics, the central property that we require for a class of
expressions so that evaluation is in FPT is cuttability, that is, having bounded cut borders
(also see Figure 5.2). Looking at Table 4.1, we see that the cut borders for expressions
in practice are indeed very small: it is one for aúb, two for abcú, and zero in all other
cases. Under trail semantics, the central property for evaluation in FPT is almost conflict
freeness, that is, a constant number of conflict positions. Looking again at the underlying
data for Table 4.1, we discovered that all STEs had zero conflict positions. (We needed
to look deeper again, because some classes in Table 4.1 aggregate others. For instance,
“aúb” also contains expressions of the form aaú.)

Therefore, although evaluation under simple path and trail semantics of RPQs is known
to be hard in general, it seems that the RPQs that users actually ask are much less

3
We refer to [53, 55] for detailed overviews of RPQs used in query logs.

181

complex.4 In fact, since the vast majority (over 99%) of expressions in Table 4.1 has
cut borders of at most two and no conflict positions, our FPT results in Theorems 5.2.2
and 5.2.4 imply that evaluation for this majority of expressions is in FPT with small
parameter. We show in Chapter 7 that these favourable results carry over to undirected
multigraphs. Furthermore, we were able to show that some classes of STEs that are not
tractable on directed multigraphs, are tractable on undirected multigraphs under trail
semantics.

In Part II we studied the data complexity of trail and simple path evaluation of RPQs
on undirected multigraphs. Although this sounds like a single problem, it is actually a
very general class of problems, which subsumes several well-studied problems, such as
disjoint-path problems and trail or simple path problems with length constraints.

Using a wide range of methods, such as the minor theorem from Robertson and
Seymour [182], the minor theorem on group-labeled graphs [119], the extended line graph
[130], Edmond’s matching technique and extensions thereof [5, 194], and several structural
arguments, we were able to pinpoint several interesting tractable cases of the problem.

One interesting finding is that all languages in SPtract are again tractable on undirected
multigraphs, making this class quite robust.

On the intractable side, we provided a gadget G3SAT that can be used to show NP-
hardness of a wide range of trail and simple path problems (for example, UTrail((abc)ú))
and used directed two-disjoint paths techniques for languages such as (abab)ú.

In Part III we first extended Yen’s algorithm to various variants. While the original
algorithm enumerates simple paths from s to t and requires a shortest-path subroutine,
our new variants can also restrict the paths returned to those that match a certain regular
expression and where trails instead of simple paths are returned. We summarize these
results in Section 8.5. In Chapter 9 we then used the framework together with the results
from Parts I and II. More precisely, we were able to give enumeration algorithms that
are in polynomial or FPT delay whenever the corresponding decision problem is in P or
FPT, respectively.

Discussion and Further Work

The principled research conducted in this thesis gives us important insights into the
further development of query languages. In our view, graph database manufacturers can
have the following tradeo�s in mind concerning simple path (SPtract) and trail semantics
(Ttract) in database systems:

• SPtract (Ttract, that is, there are strictly more languages for which finding regular
paths under trail semantics is tractable than under simple path semantics. Some of
the languages in Ttract but outside SPtract are of the form (ab)ú or aúbcú, which were
found to be relevant in several application scenarios involving network problems,

4
A recent study confirmed this hypothesis on a corpus of 208M queries from Wikidata logs [55]. Here,

about 39% of the unique queries used property paths.

182

genomic datasets, and tracking provenance information of food products [175] and
appear in query logs [53, 55].

• SPtract ™ USPtract and SPtract ™ UTtract, that is, the languages in SPtract are still
tractable under simple path and trail semantics on undirected or bidirectional
graphs and multigraphs. On the other hand, Ttract ”™ UTtract, thus SPtract seems
more “robust” than Ttract.

• Both SPtract and Ttract can be syntactically characterized but, currently, the charac-
terization for SPtract (Section 7 in [20]) is simpler than the one for Ttract. This is
due to the fact that connected components for automata for languages in Ttract can
be much more complex than for automata for languages in SPtract.

• On the other hand, the single-occurrence condition, that is, each alphabet symbol
occurs at most once, is a su�cient condition for regular expressions to be in Ttract.
This condition is trivial to check and also captures languages outside SPtract such
as (ab)ú and aúbcú. Moreover, the condition seems to be useful: we analyzed the 50
million RPQs found in the logs of [54] and discovered that over 99.8% of the RPQs
are single-occurrence. But again, there are single-occurrence expressions like (abc)ú

which are NP-complete to evaluate under trail semantics on undirected graphs.

• In terms of closure properties, learnability, or complexity of testing if a given regular
language belongs to SPtract or Ttract, the classes seem to behave the same.

• The tractability for the decision version of RPQ evaluation can be lifted to the
enumeration problem, in which case the task is to output matching paths with only
a polynomial delay between answers.

Thus our results seem to imply that choosing SPtract instead of Ttract is a “safer” choice
when taking two-way RPQs (and therefore undirected graphs) into account, regardless
of the choice of semantics. On the other hand, Ttract fl UTtract contains languages like
(ab)ú which are not part of SPtract. Thus, when focusing only on trail semantics, the
class of tractable languages is slightly larger than SPtract, but we have not been able to
characterize the class Ttract fl UTtract yet. Indeed, complete dichotomy results for regular
path queries on undirected graphs and on two-way RPQs under simple path and trail
semantics remain as open problems. The most prominent problem to be solved here
is probably the question if it is decidable in polynomial time whether an undirected
graph has a simple path of length 0 modulo 3 between two given nodes. We believe that
resolving this question will be the key to also resolving the question for larger modulo
values.

We note that while we considered multigraphs in this thesis, all NP-hardness proofs
required only simple graphs. While the classes SPtract, Ttract, and USimPath are the same
if we restrict the multigraphs to simple graphs, we do not know if the same can be said
about UTrail. Thus the the question arises if the class UTtract is “the same” when we do
not consider multigraphs, but only simple graphs.

183

Another line of future research is the static analysis of regular path queries under
simple path and trail semantics. Before evaluating a query, database systems often
optimize their running time by rewriting the query into a smaller one. To this end, the
complexity of the minimization, equivalence, and containment problems of the queries
play a role. While these problems are EXPSPACE-complete for conjunctive regular path
queries [60, 96], to the best of our knowledge, no results are known for the complexity
of these problems when taking conjunctions of regular simple path and trail queries. It
would also be interesting to study the complexity of these problems when only fragments
of regular expressions are allowed [85, 94].

184

Appendix A

On the Complexity of Properly Edge

Colored Disjoint Paths

The work on Gourvès et al. [105] on edge-colored graphs contains some flawed proofs,
which we discuss here. The flawed proofs are Theorem 9 and Corollary 10. We first
repeat their statements in the notation of this thesis, sketch how their proof is flawed,
and give an idea how to fix it.

Theorem A.0.1 (Theorem 9 in [105]). Let Gc be a c-edge-colored graph with no (almost)
PEC closed trails through s or t, and a constant L > 0. Then, the problem of finding 2
vertex/edge disjoint PEC s-t paths, each having at most L edges in Gc is NP-complete in
the strong sense, even for graphs with maximum vertex degree equal to 3.

We now restate their theorem in the notion of our paper and neglect some restrictions
posed to the graph. Please note that their length L depends on the 3SAT instance, thus
it is no “constant” in the sense of this thesis.

Theorem A.0.2 (restated version of Theorem 9 in [105]). Let G be an edge-labeled,
undirected graph, s, t two nodes, and L œ N. Then, the problem of finding 2 node-/edge-
disjoint s-t-paths, labeled (ab)ú and both having at most length L, is NP-complete.

In their proof, Gourvès et al. consider clause and variable gadgets, similar to the ones
presented in Figure 6.3. (They use a slightly more elaborate clause gadget to achieve
node degree at most 3, but we will not go into details here.) Due to the length constraints,
they can force a path through the variable gadgets. Yet, they do not see that the path
through the clause gadgets still has the opportunity to skip gadgets, using the unused side
of a variable gadget. We sketch this in Figure A.1. We note that the length constraints
given in the original paper allow this skip, as the resulting path will only get shorter.

We note that Theorem A.0.2 is still correct: From Aboueliam et al. [5, Theorem 3.2] it
follows that two disjoint (ab)ú/(ab)ú-paths, one from s1 to t1 and one from s2 to t2 is
NP-complete. With length constraints, we can add new nodes s and t and (ab)ú-paths of
length LÕ = 2|E| from s to s1 and from t2 to t, and (ab)-paths of length 2 from s to s2
and from t1 to t. Then every path from s to t of length at most 3|E| + 2 is either from
s1 to t1 or from s2 to t2.

For completeness, we note that Theorem A.0.1 is also correct, which means that the
problem is still NP-hard when restricted to graphs without an cycle labeled (ab)ú through

185

Appendix A On the Complexity of Properly Edge Colored Disjoint Paths

s or t (and without an “almost (ab)ú cycle” through s or t, which means that every
cycle through s or t contains the substring aa or bb at least twice) and with node-degree
at most 3. We can prove it with slight changes to G3SAT. More precisely, we need to
change the clause gadgets similar to [105] to ensure that every node has degree at most 3.
Furthermore, we add new nodes s and t and use the path length to ensure that every path
labeled (ab)ú from s to t which uses the path from s to s1 must not use the wr-labeled
paths. This then implies that the path from s1 to t must be via t1 (not t2).

We use G3SAT with the clause gadget depicted in Figure A.2 and the words wb = a,
wm = wo = b, wr = a(ba)i. We explain i later. We then add new nodes s and t with
an edge labeled (ab)j from s to s1 and edges labeled ab from s to s2, and labeled b
from t1 to t and t2 to t. We choose i and j such that i + j > L, while the intended
path from s2 to t2 does not exceed length L. Let m be the number of clauses of
Ï and n be the number of variables. The length of an “intended” path from s1 to
t1 is 3m(2|wb| + 2|wo|) ≠ |wo| = 12m ≠ 1, therefore the length of an indented path
from s to t via s1 is 12m + j. The length of an “intended” path from s2 to t2 is
m(4|wr| + 4|wo|) + n(3|wr + 3|wo|) ≠ |wo| = m(8i + 8) + n(6i + 6) ≠ 1. We set i = 12m + 1,
L = 96m2 + 16m + 72n + 12n + 2 and j = L ≠ 12m to complete the construction.

The length constraints imply that the path from s to t that uses the path from s to s1
must not use wr-paths. By construction, this path must then enter t via the path from
t1. Thus we have a path from s1 to t1 which must not use any of the wr-paths. The
correctness then follows similar to the proof of Theorem 6.4.2.

Corollary A.0.3 (Corollary 10 in [105]). Let s and t be two vertices in a c-edge-colored
graph Gc with maximum vertex degree equal to 3 and with no (almost) PEC closed trails
through s or t. Then, it is NP-complete to decide whether there exist 2 vertex/edge
disjoint s-t paths such that exactly one of them is a PEC s-t path.

Corollary A.0.4 (restated version of Corollary 10 in [105]). Let a graph G and nodes
s, t be given. Then it is NP-complete to decide whether there exist 2 node-/edge-disjoint
s-t-paths such that one of them matches (ab)ú.

In their proof, Gourvès et al. use the same construction as in their Theorem 10, but
color the clause gadgets blue, that is, all edges in the clause gadget get the label a. Since
one path has to be PEC, that is, match (ab)ú, this again forces one of the paths to go
through each variable gadget. But, similar to before, the path using the clause gadgets
can shortcut via the unused side of variable gadgets.

We note that Corollary A.0.4 and Corollary A.0.3 are correct. Indeed, we can use the
variant of G3SAT which we used to prove Theorem A.0.1 and choose wr = aa and relabel
the path from s to s2 with aa. Then the path from s to t that matches (ab)ú must use
the (ab)ú-labeled path from s to s1 and must not use wr-paths. This implies that the
path must enter t via t1. Since the path from s1 to t1 must not use wr-paths, and the
other path from s to t must be node-/or edge-disjoint and therefore use the disjoint path
from s2 to t2, the correctness follows from Theorem 6.4.2.

186

b

b

a

a

a

b

b

b

a

a

a

b

b

b

b

a

a

a

b

b

b

a

a

a

b

b

(ab)ia b

b

a

a

a

b

b

b

a

a

a

b

b

(ab)ia

b

b a

b

b a b

b

a
a

a
a

s t

Figure A.1: Example snippet of the reduction from 3SAT to the problem of finding
two properly edge-colored, edge-disjoint paths with length constraints in a
two-colored graph [105, Theorem 9]. For readability, we additionally labeled
blue edges with b and red edges with a. We note that, although the “variable
path” (thick edges on bottom) only uses variable gadgets, the “clause path”
does not need to use all clause gadgets (see thick path on top).

ci,1

¸1
i,1

¸1
i,2

¸1
i,3

¸2
i,1

¸2
i,2

¸2
i,3

ci,2

w r

w
r

wo

wo

wo

wr

wr

wr

wo

wo

wo

wr

wr

wr

wo

wo

wo

wr

w r

Figure A.2: Alternative clause gadget for G3SAT if we want to ensure that every node
has degree at most 3.

187

Bibliography

[1] Parosh Aziz Abdulla, Aurore Collomb-Annichini, Ahmed Bouajjani, and Bengt
Jonsson. Using forward reachability analysis for verification of lossy channel systems.
Formal Methods in System Design, 25(1):39–65, 2004.

[2] Serge Abiteboul, Peter Buneman, and Dan Suciu. Data on the Web: From Relations
to Semistructured Data and XML. Morgan Kaufmann, 1999.

[3] Serge Abiteboul, Luc Segoufin, and Victor Vianu. Static analysis of active XML
systems. ACM Transactions on Database Systems, 34(4):23:1–23:44, 2009.

[4] Abdelfattah Abouelaoualim, Kinkar Chandra Das, Wenceslas Fernandez de la Vega,
Marek Karpinski, Yannis Manoussakis, Carlos A. J. Martinhon, and Rachid Saad.
Cycles and paths in edge-colored graphs with given degrees. Journal of Graph
Theory, 64(1):63–86, 2010.

[5] Abdelfattah Abouelaoualim, Kinkar Chandra Das, Luérbio Faria, Yannis Manous-
sakis, Carlos A. J. Martinhon, and Rachid Saad. Paths and trails in edge-colored
graphs. Theoretical Computer Science (TCS), 409(3):497–510, 2008.

[6] Margareta Ackerman and Je�rey Shallit. E�cient enumeration of words in regular
languages. Theoretical Computer Science (TCS), 410(37):3461–3470, 2009.

[7] Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. Journal of the ACM,
42(4):844–856, 1995.

[8] Denise Amar and Yannis Manoussakis. Cycles and paths of many lengths in
bipartite digraphs. Journal of Combinatorial Theory, Series B, 50(2):254–264,
1990.

[9] Antoine Amarilli, Pierre Bourhis, Stefan Mengel, and Matthias Niewerth. Enu-
meration on trees with tractable combined complexity and e�cient updates. In
Symposium on Principles of Database Systems (PODS), pages 89–103. ACM, 2019.

[10] Renzo Angles, Marcelo Arenas, Pablo Barceló, Peter A. Boncz, George H. L.
Fletcher, Claudio Gutierrez, Tobias Lindaaker, Marcus Paradies, Stefan Plantikow,
Juan F. Sequeda, Oskar van Rest, and Hannes Voigt. G-CORE: A core for future
graph query languages. In ACM SIGMOD International Conference on Management
of Data (SIGMOD), pages 1421–1432, 2018.

189

Bibliography

[11] Renzo Angles, Marcelo Arenas, Pablo Barceló, Aidan Hogan, Juan L. Reutter,
and Domagoj Vrgo�. Foundations of modern query languages for graph databases.
ACM Computing Surveys, 50(5):68:1–68:40, 2017.

[12] Renzo Angles, Angela Bonifati, Stefania Dumbrava, George Fletcher, Keith W.
Hare, Jan Hidders, Victor E. Lee, Bei Li, Leonid Libkin, Wim Martens, Filip
Murlak, Josh Perryman, Ognjen Savkovic, Michael Schmidt, Juan F. Sequeda,
Slawek Staworko, and Dominik Tomaszuk. Pg-keys: Keys for property graphs.
In ACM SIGMOD International Conference on Management of Data (SIGMOD),
pages 2423–2436. ACM, 2021.

[13] Renzo Angles and Claudio Gutiérrez. Survey of graph database models. ACM
Comput. Surv., 40(1):1:1–1:39, 2008.

[14] Renzo Angles, Juan L. Reutter, and Hannes Voigt. Graph query languages. In
Encyclopedia of Big Data Technologies. Springer, 2019.

[15] Marcelo Arenas, Pablo Barceló, Leonid Libkin, and Filip Murlak. Foundations of
Data Exchange. Cambridge University Press, 2014.

[16] Marcelo Arenas, Sebastián Conca, and Jorge Pérez. Counting beyond a yottabyte,
or how SPARQL 1.1 property paths will prevent adoption of the standard. In
International Conference on World Wide Web (WWW), pages 629–638, 2012.

[17] Esther M. Arkin, Christos H. Papadimitriou, and Mihalis Yannakakis. Modularity
of cycles and paths in graphs. Journal of the ACM, 38(2):255–274, 1991.

[18] Guillaume Bagan and Angela Bonifati. Personal communication, 2019.

[19] Guillaume Bagan, Angela Bonifati, and Benoît Groz. A trichotomy for regular
simple path queries on graphs. CoRR, abs/1212.6857, 2012.

[20] Guillaume Bagan, Angela Bonifati, and Benoît Groz. A trichotomy for regular
simple path queries on graphs. Journal of Computer and System Sciences, 108:29–48,
2020.

[21] Andrey Balmin, Yannis Papakonstantinou, and Victor Vianu. Incremental validation
of XML documents. ACM Transactions on Database Systems, 29(4):710–751, 2004.

[22] Jørgen Bang-Jensen, Thomas Bellitto, and Anders Yeo. On supereulerian 2-edge-
coloured graphs. Graphs and Combinatorics, 37(6):2601–2620, 2021.

[23] Jørgen Bang-Jensen and Gregory Z. Gutin. Alternating cycles and paths in edge-
coloured multigraphs: A survey. Discrete Mathematics, 165-166:39–60, 1997.

[24] Jørgen Bang-Jensen and Gregory Z. Gutin. Alternating cycles and trails in 2-edge-
coloured complete multigraphs. Discrete Mathematics, 188(1-3):61–72, 1998.

190

Bibliography

[25] Jørgen Bang-Jensen and Gregory Z. Gutin. Digraphs - Theory, Algorithms and
Applications, Second Edition. Springer Monographs in Mathematics. Springer, 2009.

[26] Pablo Barceló. Querying graph databases. In Symposium on Principles of Database
Systems (PODS), pages 175–188, 2013.

[27] Pablo Barceló, Diego Figueira, and Miguel Romero. Boundedness of conjunctive
regular path queries. In International Colloquium on Automata, Languages, and
Programming (ICALP), volume 132 of LIPIcs, pages 104:1–104:15, 2019.

[28] Pablo Barceló, Leonid Libkin, Anthony Widjaja Lin, and Peter T. Wood. Expressive
languages for path queries over graph-structured data. ACM Transactions on
Database Systems, 37(4):31:1–31:46, 2012.

[29] Pablo Barceló, Leonid Libkin, and Juan L. Reutter. Querying graph patterns.
In Symposium on Principles of Database Systems (PODS), pages 199–210. ACM,
2011.

[30] Pablo Barceló, Leonid Libkin, and Juan L. Reutter. Querying regular graph
patterns. Journal of the ACM, 61(1):8:1–8:54, 2014.

[31] Pablo Barceló and Pablo Muñoz. Graph logics with rational relations: The role of
word combinatorics. ACM Transactions on Computational Logic, 18(2):10:1–10:41,
2017.

[32] Pablo Barceló, Jorge Pérez, and Juan L. Reutter. Relative expressiveness of nested
regular expressions. In Alberto Mendelzon International Workshop on Foundations
of Data Management (AMW), volume 866 of CEUR Workshop Proceedings, pages
180–195. CEUR-WS.org, 2012.

[33] Pablo Barceló, Miguel Romero, and Moshe Y. Vardi. Semantic acyclicity on
graph databases. In Symposium on Principles of Database Systems (PODS), pages
237–248. ACM, 2013.

[34] Christopher L. Barrett, Riko Jacob, and Madhav V. Marathe. Formal-language-
constrained path problems. SIAM Journal on Computing, 30(3):809–837, 2000.

[35] Thomas Bellitto and Benjamin Bergougnoux. On minimum connecting transition
sets in graphs. In International Workshop on Graph-Theoretic Concepts in Computer
Science (WG), volume 11159 of Lecture Notes in Computer Science, pages 40–51.
Springer, 2018.

[36] Kristóf Bérczi and Yusuke Kobayashi. The directed disjoint shortest paths problem.
In European Symposium on Algorithms (ESA), volume 87 of LIPIcs, pages 13:1–
13:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017.

[37] Christoph Berkholz, Jens Keppeler, and Nicole Schweikardt. Answering conjunctive
queries under updates. In Symposium on Principles of Database Systems (PODS),
pages 303–318. ACM, 2017.

191

Bibliography

[38] Christoph Berkholz, Jens Keppeler, and Nicole Schweikardt. Answering FO+MOD
queries under updates on bounded degree databases. ACM Transactions on Database
Systems, 43(2):7:1–7:32, 2018.

[39] Geert Jan Bex, Wim Martens, Frank Neven, and Thomas Schwentick. Expres-
siveness of XSDs: from practice to theory, there and back again. In International
Conference on World Wide Web (WWW), pages 712–721, 2005.

[40] Geert Jan Bex, Frank Neven, and Jan Van den Bussche. Dtds versus XML schema:
A practical study. In Proceedings of the Seventh International Workshop on the
Web and Databases (WebDB), pages 79–84, 2004.

[41] Geert Jan Bex, Frank Neven, Thomas Schwentick, and Stijn Vansummeren. In-
ference of concise regular expressions and dtds. ACM Transactions on Database
Systems, 35(2):11:1–11:47, 2010.

[42] Geert Jan Bex, Frank Neven, and Stijn Vansummeren. Inferring XML schema
definitions from XML data (VLDB). In International Conference on Very Large
Data Bases (VLDB), pages 998–1009, 2007.

[43] Ivona Bezáková, Radu Curticapean, Holger Dell, and Fedor V. Fomin. Finding
detours is fixed-parameter tractable. SIAM Journal on Discrete Mathematics,
33(4):2326–2345, 2019.

[44] Ramesh Bhandari. Optimal physical diversity algorithms and survivable networks.
In IEEE Symposium on Computers and Communications (ISCC), pages 433–441.
IEEE Computer Society, 1997.

[45] Meghyn Bienvenu, Magdalena Ortiz, and Mantas Simkus. Regular path queries
in lightweight description logics: Complexity and algorithms. Journal of Artificial
Intelligence Research, 53:315–374, 2015.

[46] Meghyn Bienvenu and Michaël Thomazo. On the complexity of evaluating regular
path queries over linear existential rules. In International Conference on Web
Reasoning and Rule Systems (RR), volume 9898 of Lecture Notes in Computer
Science, pages 1–17. Springer, 2016.

[47] Andreas Björklund and Thore Husfeldt. Shortest two disjoint paths in polynomial
time. SIAM Journal on Computing, 48(6):1698–1710, 2019.

[48] Andreas Björklund, Thore Husfeldt, and Sanjeev Khanna. Approximating longest
directed paths and cycles. In International Colloquium on Automata, Languages
and Programming (ICALP), pages 222–233, 2004.

[49] Henrik Björklund, Wouter Gelade, and Wim Martens. Incremental xpath evaluation.
ACM Transactions on Database Systems, 35(4):29:1–29:43, 2010.

192

Bibliography

[50] Henrik Björklund, Wim Martens, and Thomas Schwentick. Validity of tree pattern
queries with respect to schema information. In Mathematical Foundations of
Computer Science (MFCS), volume 8087 of Lecture Notes in Computer Science,
pages 171–182. Springer, 2013.

[51] Henrik Björklund, Wim Martens, and Thomas Timm. E�cient incremental evalua-
tion of succinct regular expressions. In International Conference on Information
and Knowledge Management (CIKM), pages 1541–1550. ACM, 2015.

[52] Angela Bonifati, Stefania Dumbrava, George Fletcher, Jan Hidders, Matthias Hofer,
Wim Martens, Filip Murlak, Joshua Shinavier, Slawek Staworko, and Dominik
Tomaszuk. Threshold queries in theory and in the wild. CoRR, abs/2106.15703,
2021.

[53] Angela Bonifati, Wim Martens, and Thomas Timm. An analytical study of large
SPARQL query logs. Proceedings of the VLDB Endowment (PVLDB), 11(2):149–
161, 2017.

[54] Angela Bonifati, Wim Martens, and Thomas Timm. DARQL: deep analysis of
SPARQL queries. In Companion Proceedings of the The Web Conference (WWW)
(Companion Volume), pages 187–190. ACM, 2018.

[55] Angela Bonifati, Wim Martens, and Thomas Timm. Navigating the maze of
wikidata query logs. In The Web Conference (WWW), pages 127–138. ACM, 2019.

[56] Sarra Bouhenni, Saïd Yahiaoui, Nadia Nouali-Taboudjemat, and Hamamache
Kheddouci. A survey on distributed graph pattern matching in massive graphs.
ACM Computing Surveys, 54(2):36:1–36:35, 2021.

[57] Joel Brynielsson, Johanna Högberg, Lisa Kaati, Christian Mårtenson, and Pontus
Svenson. Detecting social positions using simulation. In International Conference
on Advances in Social Networks Analysis and Mining (ASONAM), pages 48–55.
IEEE Computer Society, 2010.

[58] Janusz A. Brzozowski. Derivatives of regular expressions. Journal of the ACM,
11(4):481–494, October 1964.

[59] Leizhen Cai and Junjie Ye. Two edge-disjoint paths with length constraints.
Theoretical Computer Science (TCS), 795:275–284, 2019.

[60] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y. Vardi.
Containment of conjunctive regular path queries with inverse. In International
Conference on Principles of Knowledge Representation and Reasoning (KR), pages
176–185. Morgan Kaufmann, 2000.

[61] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y. Vardi.
View-based query processing for regular path queries with inverse. In Symposium
on Principles of Database Systems (PODS), pages 58–66. ACM, 2000.

193

Bibliography

[62] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y. Vardi.
Rewriting of regular expressions and regular path queries. Journal of Computer
and System Sciences, 64(3):443–465, 2002.

[63] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y. Vardi.
Reasoning on regular path queries. SIGMOD Record, 32(4):83–92, 2003.

[64] Katrin Casel and Markus L. Schmid. Fine-grained complexity of regular path
queries. In International Conference on Database Theory (ICDT), volume 186 of
LIPIcs, pages 19:1–19:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

[65] Ashok K. Chandra and Philip M. Merlin. Optimal implementation of conjunctive
queries in relational data bases. In ACM Symposium on Theory of Computing
(STOC), pages 77–90. ACM, 1977.

[66] Yijia Chen and Jörg Flum. On parameterized path and chordless path problems.
In IEEE Conference on Computational Complexity (CCC), pages 250–263, 2007.

[67] W. S. Chou, Y. Manoussakis, O. Megalakaki, M. Spyratos, and Zs. Tuza. Paths
through fixed vertices in edge-colored graphs. Mathématiques et Sciences humaines,
127:49–58, 1994.

[68] Rina S. Cohen and Janusz A. Brzozowski. Dot-depth of star-free events. Journal
of Computer and System Sciences, 5(1):1–16, 1971.

[69] Mariano P. Consens and Alberto O. Mendelzon. GraphLog: a visual formalism
for real life recursion. In Symposium on Principles of Database Systems (PODS),
pages 404–416, 1990.

[70] Donatello Conte, Pasquale Foggia, Carlo Sansone, and Mario Vento. Thirty years of
graph matching in pattern recognition. International Journal of Pattern Recognition
and Artificial Intelligence (IJPRAI), 18(3):265–298, 2004.

[71] Alejandro Contreras-Balbuena, Hortensia Galeana-Sánchez, and Ilan A. Goldfeder.
A new su�cient condition for the existence of alternating hamiltonian cycles in
2-edge-colored multigraphs. Discrete Applied Mathematics, 229:55–63, 2017.

[72] Alejandro Contreras-Balbuena, Hortensia Galeana-Sánchez, and Ilan A. Goldfeder.
Alternating hamiltonian cycles in 2-edge-colored multigraphs. Discrete Mathematics
& Theoretical Computer Science, 21(1), 2019.

[73] Stephen A. Cook. The complexity of theorem-proving procedures. In ACM
Symposium on Theory of Computing (STOC), pages 151–158. ACM, 1971.

[74] Isabel F. Cruz, Alberto O. Mendelzon, and Peter T. Wood. A graphical query
language supporting recursion. In ACM SIGMOD International Conference on
Management of Data (SIGMOD), pages 323–330, 1987.

194

Bibliography

[75] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Daniel Marx,
Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms.
Springer, 2015.

[76] Richard Cyganiak, David Wood, and Markus Lanthaler. Rdf 1.1 concepts and
abstract syntax. https://www.w3.org/TR/rdf11-concepts/, 2014. World Wide
Web Consortium.

[77] Wojciech Czerwinski, Wim Martens, Matthias Niewerth, and Pawel Parys. Mini-
mization of tree patterns. Journal of the ACM, 65(4):26:1–26:46, 2018.

[78] Wojciech Czerwinski, Wim Martens, Pawel Parys, and Marcin Przybylko. The
(almost) complete guide to tree pattern containment. In Symposium on Principles
of Database Systems (PODS), pages 117–130. ACM, 2015.

[79] Andreas Darmann and Janosch Döcker. On simplified NP-complete variants of
monotone 3-Sat. Discrete Applied Mathematics, 292:45–58, 03 2021.

[80] Samir Datta, Raghav Kulkarni, Anish Mukherjee, Thomas Schwentick, and Thomas
Zeume. Reachability is in dynfo. Journal of the ACM, 65(5):33:1–33:24, 2018.

[81] Dbpedia. wiki.dbpedia.org.

[82] Holger Dell. Personal communication, 2017.

[83] Xiaotie Deng and Christos H. Papadimitriou. On path lengths modulo three.
Journal of Graph Theory, 15(3):267–282, 1991.

[84] Alin Deutsch, Nadime Francis, Alastair Green, Keith Hare, Bei Li, Leonid Libkin,
Tobias Lindaaker, Victor Marsault, Wim Martens, Jan Michels, Filip Murlak,
Stefan Plantikow, Petra Selmer, Hannes Voigt, Oskar van Rest, Domagoj Vrgo�,
Mingxi Wu, and Fred Zemke. Graph pattern matching in GQL and SQL/PGQ,
2021.

[85] Alin Deutsch and Val Tannen. Optimization properties for classes of conjunctive
regular path queries. In International Workshop on Database Programming Lan-
guages DBPL, volume 2397 of Lecture Notes in Computer Science, pages 21–39.
Springer, 2001.

[86] Rodney G. Downey and Michael R. Fellows. Fixed-parameter tractability and
completeness I: basic results. SIAM Journal on Computing, 24(4):873–921, 1995.

[87] Rodney G. Downey and Michael R. Fellows. Fixed-parameter tractability and
completeness II: on completeness for W[1]. Theoretical Computer Science (TCS),
141(1):109–131, 1995.

[88] Zdenek Dvorák. Two-factors in orientated graphs with forbidden transitions.
Discrete Mathematics, 309(1):104–112, 2009.

195

https://www.w3.org/TR/rdf11-concepts/
wiki.dbpedia.org

Bibliography

[89] Tali Eilam-Tzore�. The disjoint shortest paths problem. Discrete Applied Mathe-
matics, 85(2):113–138, 1998.

[90] Shimon Even, Alon Itai, and Adi Shamir. On the complexity of timetable and
multicommodity flow problems. SIAM Journal on Computing, 5(4):691–703, 1976.

[91] Wenfei Fan, Jianzhong Li, Shuai Ma, Nan Tang, and Yinghui Wu. Adding regular
expressions to graph reachability and pattern queries. Frontiers of Computer
Science, 6(3):313–338, 2012.

[92] Trevor I. Fenner, Oded Lachish, and Alexandru Popa. Min-sum 2-paths problems.
Theory of Computing Systems, 58(1):94–110, 2016.

[93] Diego Figueira. Containment of UC2RPQ: the hard and easy cases. In International
Conference on Database Theory (ICDT), volume 155 of LIPIcs, pages 9:1–9:18.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

[94] Diego Figueira, Adwait Godbole, Shankara Narayanan Krishna, Wim Martens,
Matthias Niewerth, and Tina Trautner. Containment of simple conjunctive regular
path queries. In International Conference on Principles of Knowledge Representation
and Reasoning (KR), pages 371–380, 2020.

[95] Sergio Flesca, Filippo Furfaro, and Elio Masciari. On the minimization of XPath
queries. Journal of the ACM, 55(1):2:1–2:46, 2008.

[96] Daniela Florescu, Alon Y. Levy, and Dan Suciu. Query containment for conjunctive
queries with regular expressions. In Symposium on Principles of Database Systems
(PODS), pages 139–148. ACM Press, 1998.

[97] Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh. E�cient
computation of representative families with applications in parameterized and exact
algorithms. Journal of the ACM, 63(4):29:1–29:60, 2016.

[98] Steven Fortune, John Hopcroft, and James Wyllie. The directed subgraph homeo-
morphism problem. Theoretical Computer Science (TCS), 10(2):111–121, 1980.

[99] Nadime Francis, Alastair Green, Paolo Guagliardo, Leonid Libkin, Tobias Lindaaker,
Victor Marsault, Stefan Plantikow, Mats Rydberg, Petra Selmer, and Andrés Taylor.
Cypher: An evolving query language for property graphs. In ACM SIGMOD
International Conference on Management of Data (SIGMOD), pages 1433–1445.
ACM, 2018.

[100] Nadime Francis, Luc Segoufin, and Cristina Sirangelo. Datalog rewritings of regular
path queries using views. In International Conference on Database Theory (ICDT),
pages 107–118. OpenProceedings.org, 2014.

[101] Dominik D. Freydenberger and Nicole Schweikardt. Expressiveness and static
analysis of extended conjunctive regular path queries. Journal of Computer and
System Sciences, 79(6):892–909, 2013.

196

Bibliography

[102] Brian Gallagher. Matching structure and semantics: A survey on graph-based
pattern matching. In AAAI Fall Symposium: Capturing and Using Patterns for
Evidence Detection, volume FS-06-02 of AAAI Technical Report, pages 45–53. AAAI
Press, 2006.

[103] Wouter Gelade, Marc Gyssens, and Wim Martens. Regular expressions with
counting: Weak versus strong determinism. SIAM Journal on Computing, 41(1):160–
190, 2012.

[104] Konstantin Golenberg, Benny Kimelfeld, and Yehoshua Sagiv. Optimizing and
parallelizing ranked enumeration. Proceedings of the VLDB Endowment (PVLDB),
4(11):1028–1039, 2011.

[105] Laurent Gourvès, Adria Ramos de Lyra, Carlos A. J. Martinhon, and Jérôme
Monnot. On paths, trails and closed trails in edge-colored graphs. Discrete
Mathematics & Theoretical Computer Science, 14(2):57–74, 2012.

[106] Laurent Gourvès, Adria Lyra, Carlos A. J. Martinhon, and Jérôme Monnot. Com-
plexity of trails, paths and circuits in arc-colored digraphs. Discrete Applied
Mathematics, 161(6):819–828, 2013.

[107] Laurent Gourvès, Adria Lyra, Carlos A. J. Martinhon, Jérôme Monnot, and Fábio
Protti. On s-t paths and trails in edge-colored graphs. Electronic Notes in Discrete
Mathematics, 35:221–226, 2009.

[108] GQL standard website. https://www.gqlstandards.org/. 2021.

[109] GQL influence graph. https://www.gqlstandards.org/existing-languages.
2021.

[110] Martin Grohe and Magdalena Grüber. Parameterized approximability of the
disjoint cycle problem. In International Colloquium on Automata, Languages and
Programming (ICALP), pages 363–374, 2007.

[111] Martin Grohe, Ken-ichi Kawarabayashi, Dániel Marx, and Paul Wollan. Finding
topological subgraphs is fixed-parameter tractable. In ACM Symposium on Theory
of Computing (STOC), pages 479–488. ACM, 2011.

[112] Claudio Gutiérrez, Jan Hidders, and Peter T. Wood. Graph data models. In
Encyclopedia of Big Data Technologies. Springer, 2019.

[113] Gregory Z. Gutin, Mark Jones, Bin Sheng, Magnus Wahlström, and Anders Yeo.
Chinese postman problem on edge-colored multigraphs. Discrete Applied Mathe-
matics, 217:196–202, 2017.

[114] Gregory Z. Gutin and Eun Jung Kim. Properly coloured cycles and paths: Results
and open problems. In Graph Theory, Computational Intelligence and Thought,
volume 5420 of Lecture Notes in Computer Science, pages 200–208. Springer, 2009.

197

https://www.gqlstandards.org/
https://www.gqlstandards.org/existing-languages

Bibliography

[115] Leonard H. Haines. On free monoids partially ordered by embedding. Journal of
Combinatorial Theory, 6(1):94–98, 1969.

[116] Steve Harris and Andy Seaborne. SPARQL 1.1 query language. https://www.w3.
org/TR/sparql11-query/, 2013. World Wide Web Consortium.

[117] Monika Rauch Henzinger, Thomas A. Henzinger, and Peter W. Kopke. Computing
simulations on finite and infinite graphs. In IEEE Symposium on Foundations of
Computer Science (FOCS), pages 453–462. IEEE Computer Society, 1995.

[118] John E. Hopcroft and Robert Endre Tarjan. E�cient algorithms for graph manipu-
lation [H] (algorithm 447). Communications of the ACM, 16(6):372–378, 1973.

[119] Tony Huynh. The linkage problem for group-labelled graphs. IEEE Expert / IEEE
Intelligent Systems - EXPERT, 01 2009.

[120] Muhammad Idris, Martín Ugarte, and Stijn Vansummeren. The dynamic yan-
nakakis algorithm: Compact and e�cient query processing under updates. In ACM
SIGMOD International Conference on Management of Data (SIGMOD), pages
1259–1274. ACM, 2017.

[121] Muhammad Idris, Martín Ugarte, Stijn Vansummeren, Hannes Voigt, and Wolfgang
Lehner. General dynamic yannakakis: conjunctive queries with theta joins under
updates. The VLDB Journal, 29(2-3):619–653, 2020.

[122] Neil Immerman. Nondeterministic space is closed under complementation. SIAM
Journal on Computing, 17(5):935–938, 1988.

[123] Aubin Jarry and Stéphane Pérennes. Disjoint paths in symmetric digraphs. Discrete
Applied Mathematics, 157(1):90–97, 2009.

[124] Pierre Jullien. Contribution à l’étude des types d’ordres dispersés. PhD thesis,
Universite de Marseille, 1969.

[125] Oren Kalinsky, Yoav Etsion, and Benny Kimelfeld. Flexible caching in trie joins.
In International Conference on Extending Database Technology (EDBT), pages
282–293, 2017.

[126] Mamadou Moustapha Kanté, Christian Laforest, and Benjamin Momège. Trees
in graphs with conflict edges or forbidden transitions. In Theory and Applications
of Models of Computation (TAMC), volume 7876 of Lecture Notes in Computer
Science, pages 343–354. Springer, 2013.

[127] Mamadou Moustapha Kanté, Fatima Zahra Moataz, Benjamin Momège, and Nicolas
Nisse. Finding paths in grids with forbidden transitions. In International Workshop
on Graph-Theoretic Concepts in Computer Science (WG), volume 9224 of Lecture
Notes in Computer Science, pages 154–168. Springer, 2015.

198

https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/sparql11-query/

Bibliography

[128] Richard M. Karp. On the computational complexity of combinatorial problems.
Networks, 5(4):45–68, 1975.

[129] Naoki Katoh, Toshihide Ibaraki, and Hisashi Mine. An e�cient algorithm for K
shortest simple paths. Networks, 12(4):411–427, 1982.

[130] Ken-ichi Kawarabayashi and Yusuke Kobayashi. Edge-disjoint odd cycles in 4-
edge-connected graphs. Journal of Combinatorial Theory, Series B, 119:12–27,
2016.

[131] Ken-ichi Kawarabayashi, Yusuke Kobayashi, and Bruce A. Reed. The disjoint
paths problem in quadratic time. Journal of Combinatorial Theory, Series B,
102(2):424–435, 2012.

[132] Ken-ichi Kawarabayashi, Bruce A. Reed, and Paul Wollan. The graph minor
algorithm with parity conditions. In IEEE Symposium on Foundations of Computer
Science (FOCS), pages 27–36. IEEE Computer Society, 2011.

[133] Ken-ichi Kawarabayashi, Robin Thomas, and Paul Wollan. A new proof of the flat
wall theorem. Journal of Combinatorial Theory, Series B, 129:204–238, 2018.

[134] Ken-ichi Kawarabayashi and Paul Wollan. A shorter proof of the graph minor algo-
rithm: the unique linkage theorem. In ACM Symposium on Theory of Computing
(STOC), pages 687–694. ACM, 2010.

[135] Yasushi Kawase, Yusuke Kobayashi, and Yutaro Yamaguchi. Finding a path with
two labels forbidden in group-labeled graphs. Journal of Combinatorial Theory,
Series B, 143:65–122, 2020.

[136] Jens Keppeler. Answering Conjunctive Queries and FO+MOD Queries under
Updates. PhD thesis, Humboldt University of Berlin, Germany, 2020.

[137] Benny Kimelfeld and Yehoshua Sagiv. Revisiting redundancy and minimization in
an XPath fragment. In International Conference on Extending Database Technology
(EDBT), volume 261 of ACM International Conference Proceeding Series, pages
61–72. ACM, 2008.

[138] Benny Kimelfeld and Yehoshua Sagiv. Extracting minimum-weight tree patterns
from a schema with neighborhood constraints. In International Conference on
Database Theory (ICDT), pages 249–260, 2013.

[139] Yusuke Kobayashi and Christian Sommer. On shortest disjoint paths in planar
graphs. Discrete Optimization, 7(4):234–245, 2010.

[140] Andrea S. LaPaugh and Christos H. Papadimitriou. The even-path problem for
graphs and digraphs. Networks, 14(4):507–513, 1984.

[141] Andrea S. Lapaugh and Ronald L. Rivest. The subgraph homeomorphism problem.
Journal of Computer and System Sciences, 20(2):133 – 149, 1980.

199

Bibliography

[142] Eugene L. Lawler. A procedure for computing the k best solutions to discrete opti-
mization problems and its application to the shortest path problem. Management
Science, 18(7):401–405, 1972.

[143] Ruonan Li, Hajo Broersma, Chuandong Xu, and Shenggui Zhang. Cycle extension
in edge-colored complete graphs. Discrete Mathematics, 340(6):1235–1241, 2017.

[144] Ruonan Li, Hajo Broersma, and Shenggui Zhang. Properly edge-colored theta
graphs in edge-colored complete graphs. Graphs and Combinatorics, 35(1):261–286,
2019.

[145] Leonid Libkin, Wim Martens, and Domagoj Vrgo�. Querying graphs with data.
Journal of the ACM, 63(2):14:1–14:53, 2016.

[146] Katja Losemann and Wim Martens. The complexity of regular expressions and
property paths in SPARQL. ACM Transactions on Database Systems, 38(4):24:1–
24:39, 2013.

[147] Katja Losemann and Wim Martens. MSO queries on trees: enumerating answers
under updates. In Joint Meeting of the Annual Conference on Computer Science
Logic (CSL) and the Symposium on Logic in Computer Science (LICS) (CSL-LICS),
pages 67:1–67:10. ACM, 2014.

[148] Erkki Mäkinen. On lexicographic enumeration of regular and context-free languages.
Acta Cybernetica, 13(1):55–62, 1997.

[149] Yannis Manoussakis. Alternating paths in edge-colored complete graphs. Discrete
Applied Mathematics, 56(2-3):297–309, 1995.

[150] Wim Martens, Frank Neven, Matthias Niewerth, and Thomas Schwentick. Bonxai:
Combining the simplicity of DTD with the expressiveness of XML schema. ACM
Transactions on Database Systems, 42(3):15:1–15:42, 2017.

[151] Wim Martens, Frank Neven, and Thomas Schwentick. Complexity of decision
problems for simple regular expressions. In Mathematical Foundations of Computer
Science (MFCS), pages 889–900, 2004.

[152] Wim Martens, Frank Neven, and Thomas Schwentick. Complexity of decision
problems for XML schemas and chain regular expressions. SIAM Journal on
Computing, 39(4):1486–1530, 2009.

[153] Wim Martens, Matthias Niewerth, and Tina Popp. A trichotomy for regular trail
queries. CoRR, abs/1903.00226, 2021.

[154] Wim Martens, Matthias Niewerth, and Tina Trautner. A trichotomy for regular trail
queries. In International Symposium on Theoretical Aspects of Computer Science
(STACS), volume 154 of LIPIcs, pages 7:1–7:16. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2020.

200

Bibliography

[155] Wim Martens and Tina Popp. The complexity of regular trail and simple path
queries on undirected graphs. In Symposium on Principles of Database Systems
(PODS), pages 165–174. ACM, 2022.

[156] Wim Martens and Tina Trautner. Evaluation and enumeration problems for regular
path queries. In International Conference on Database Theory (ICDT), volume 98
of LIPIcs, pages 19:1–19:21. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2018.

[157] Wim Martens and Tina Trautner. Bridging theory and practice with query log
analysis. SIGMOD Record, 48(1):6–13, 2019.

[158] Wim Martens and Tina Trautner. Dichotomies for evaluating simple regular path
queries. ACM Transactions on Database Systems, 44(4):16:1–16:46, 2019.

[159] Robert McNaughton and Seymour Papert. Counter-free automata. MIT Press,
1971.

[160] Alberto O. Mendelzon and Peter T. Wood. Finding regular simple paths in graph
databases. SIAM Journal on Computing, 24(6):1235–1258, 12 1995.

[161] Karl Menger. Zur allgemeinen kurventheorie. Fundamenta Mathematicae, 10(1):96–
115, 1927.

[162] Gerome Miklau and Dan Suciu. Containment and equivalence for a fragment of
XPath. Journal of the ACM, 51(1):2–45, 2004.

[163] B. Monien. How to find long paths e�ciently. In Analysis and Design of Algorithms
for Combinatorial Problems, volume 109 of North-Holland Mathematics Studies,
pages 239–254. North-Holland, 1985.

[164] Harold Marston Morse. Recurrent geodesics on a surface of negative curvature.
Transactions of the American Mathematical Society, 22(1):84–100, Jan 1921.

[165] Katta G. Murty. An algorithm for ranking all the assignments in order of increasing
cost. Operations Research, 16(3):682–687, 1968.

[166] Zhivko Prodanov Nedev and Peter T. Wood. A polynomial-time algorithm for
finding regular simple paths in outerplanar graphs. Journal of Algorithms, 35(2):235–
259, 2000.

[167] Neo4j. neo4j.com.

[168] Neo4j. The neo4j developer manual v3.2. https://neo4j.com/docs/
developer-manual/3.2/, 2017.

[169] Matthias Niewerth. MSO queries on trees: Enumerating answers under updates
using forest algebras. In Symposium on Logic in Computer Science (LICS), pages
769–778. ACM, 2018.

201

neo4j.com
https://neo4j.com/docs/developer-manual/3.2/
https://neo4j.com/docs/developer-manual/3.2/

Bibliography

[170] Matthias Niewerth and Luc Segoufin. Enumeration of MSO queries on strings with
constant delay and logarithmic updates. In Symposium on Principles of Database
Systems (PODS), pages 179–191. ACM, 2018.

[171] Tatsuo Ohtsuki. The two disjoint path problem and wire routing design. In Graph
Theory and Algorithms, volume 108 of Lecture Notes in Computer Science, pages
207–216. Springer, 1980.

[172] Cypher query language reference, version 9, mar. 2018. https://github.com/
opencypher/openCypher/blob/master/docs/openCypher9.pdf.

[173] Oracle spatial and graph. www.oracle.com/technetwork/database/options/
spatialandgraph/.

[174] Yehoshua Perl and Yossi Shiloach. Finding two disjoint paths between two pairs of
vertices in a graph. Journal of the ACM, 25(1):1–9, 1978.

[175] Neo4J Petra Selmer. Personal communication.

[176] Property graph query language. https://pgql-lang.org/spec/1.4/, 2021.
PGQL 1.4 Specification.

[177] Jean-Eric Pin. Syntactic semigroups. In Handbook of Formal Languages (1), pages
679–746. Springer, 1997.

[178] Jean-Éric Pin. The dot-depth hierarchy, 45 years later. In The Role of Theory in
Computer Science, pages 177–202. World Scientific, 2017.

[179] Thomas Place and Luc Segoufin. Decidable characterization of FO2(<, +1) and
locality of da. CoRR, abs/1606.03217, 2016.

[180] Juan L. Reutter, Miguel Romero, and Moshe Y. Vardi. Regular queries on graph
databases. In International Conference on Database Theory (ICDT), pages 177–194.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2015.

[181] Juan L. Reutter, Miguel Romero, and Moshe Y. Vardi. Regular queries on graph
databases. Theory of Computing Systems, 61(1):31–83, 2017.

[182] Neil Robertson and Paul D. Seymour. Graph minors .xiii. the disjoint paths problem.
Journal of Combinatorial Theory, Series B, 63(1):65–110, 1995.

[183] Miguel Romero, Pablo Barceló, and Moshe Y. Vardi. The homomorphism problem
for regular graph patterns. In Symposium on Logic in Computer Science (LICS),
pages 1–12. IEEE Computer Society, 2017.

[184] Sherif Sakr, Angela Bonifati, Hannes Voigt, Alexandru Iosup, Khaled Ammar,
Renzo Angles, Walid G. Aref, Marcelo Arenas, Maciej Besta, Peter A. Boncz,
Khuzaima Daudjee, Emanuele Della Valle, Stefania Dumbrava, Olaf Hartig, Bern-
hard Haslhofer, Tim Hegeman, Jan Hidders, Katja Hose, Adriana Iamnitchi, Vasiliki

202

https://github.com/opencypher/openCypher/blob/master/docs/openCypher9.pdf
https://github.com/opencypher/openCypher/blob/master/docs/openCypher9.pdf
www.oracle.com/technetwork/database/options/spatialandgraph/
www.oracle.com/technetwork/database/options/spatialandgraph/
https://pgql-lang.org/spec/1.4/

Bibliography

Kalavri, Hugo Kapp, Wim Martens, M. Tamer Özsu, Eric Peukert, Stefan Plan-
tikow, Mohamed Ragab, Matei Ripeanu, Semih Salihoglu, Christian Schulz, Petra
Selmer, Juan F. Sequeda, Joshua Shinavier, Gábor Szárnyas, Riccardo Tommasini,
Antonino Tumeo, Alexandru Uta, Ana Lucia Varbanescu, Hsiang-Yun Wu, Nikolay
Yakovets, Da Yan, and Eiko Yoneki. The future is big graphs: a community view
on graph processing systems. Communications of the ACM, 64(9):62–71, 2021.

[185] Marcel Paul Schützenberger. On finite monoids having only trivial subgroups.
Information and Control, 8(2):190–194, 1965.

[186] Paul D. Seymour. Disjoint paths in graphs. Discrete Mathematics, 29(3):293–309,
1980.

[187] Yossi Shiloach. A polynomial solution to the undirected two paths problem. Journal
of the ACM, 27(3):445–456, 1980.

[188] Aleksandrs Slivkins. Parameterized tractability of edge-disjoint paths on directed
acyclic graphs. SIAM Journal on Discrete Mathematics, 24(1):146–157, 2010.

[189] Slawek Staworko and Piotr Wieczorek. Characterizing XML twig queries with
examples. In International Conference on Database Theory (ICDT), volume 31 of
LIPIcs, pages 144–160. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2015.

[190] Howard Straubing. A generalization of the schützenberger product of finite monoids.
Theoretical Computer Science (TCS), 13:137–150, 1981.

[191] Dimitri Surinx, George H. L. Fletcher, Marc Gyssens, Dirk Leinders, Jan Van den
Bussche, Dirk Van Gucht, Stijn Vansummeren, and Yuqing Wu. Relative expressive
power of navigational querying on graphs using transitive closure. Logic Journal of
the IGPL, 23(5):759–788, 2015.

[192] J. W. Suurballe. Disjoint paths in a network. Networks, 4(2):125–145, 1974.

[193] J. W. Suurballe and Robert Endre Tarjan. A quick method for finding shortest
pairs of disjoint paths. Networks, 14(2):325–336, 1984.

[194] Stefan Szeider. Finding paths in graphs avoiding forbidden transitions. Discrete
Applied Mathematics, 126(2-3):261–273, 2003.

[195] Róbert Szelepcsényi. The method of forced enumeration for nondeterministic
automata. Acta Informatica, 26(3):279–284, 1988.

[196] TigerGraph Team. GSQL language reference. https://docs-legacy.tigergraph.
com/v/3.3/dev/gsql-ref, 2021.

[197] Denis Thérien. Classification of finite monoids: The language approach. Theoretical
Computer Science (TCS), 14:195–208, 1981.

203

https://docs-legacy.tigergraph.com/v/3.3/dev/gsql-ref
https://docs-legacy.tigergraph.com/v/3.3/dev/gsql-ref

Bibliography

[198] Denis Thérien and Thomas Wilke. Over words, two variables are as powerful as
one quantifier alternation. In ACM Symposium on Theory of Computing (STOC),
pages 234–240. ACM, 1998.

[199] Carsten Thomassen. 2-linked graphs. European Journal of Combinatorics, 1(4):371–
378, 1980.

[200] Axel Thue. Über unendliche Zeichenreihen. Skrifter udg. af Videnskabs-Selskabet i
Christiania : 1. Math.-Naturv. Klasse. Dybwad [in Komm.], 1906.

[201] Tigergraph. www.tigergraph.com.

[202] Julian R. Ullmann. An algorithm for subgraph isomorphism. Journal of the ACM,
23(1):31–42, 1976.

[203] Xin Wang, Yang Wang, Yang Xu, Ji Zhang, and Xueyan Zhong. Extending
graph pattern matching with regular expressions. In International Conference on
Database and Expert Systems - Part II (DEXA (2)), volume 12392 of Lecture Notes
in Computer Science, pages 111–129. Springer, 2020.

[204] Wikidata. wikidata.org.

[205] Peter T. Wood. Query languages for graph databases. SIGMOD Record, 41(1):50–60,
2012.

[206] Wanhong Xu and Z. Meral Özsoyoglu. Rewriting XPath queries using materialized
views. In International Conference on Very Large Data Bases (VLDB), pages
121–132. ACM, 2005.

[207] Bing Yang and S. Q. Zheng. Finding min-sum disjoint shortest paths from a single
source to all pairs of destinations. In International conference on Theory and
Applications of Models of Computation (TAMC), volume 3959 of Lecture Notes in
Computer Science, pages 206–216. Springer, 2006.

[208] Mihalis Yannakakis. Graph-theoretic methods in database theory. In Symposium
on Principles of Database Systems (PODS), pages 230–242, 1990.

[209] Jin Y. Yen. Finding the k shortest loopless paths in a network. Management
Science, 17(11):712–716, 1971.

[210] Jin Y. Yen. Finding the lengths of all shortest paths in n-node nonnegative-distance
complete networks using �n3 additions and n3 comparisons. Journal of the ACM,
19(3):423–424, 1972.

[211] Anders Yeo. A note on alternating cycles in edge-coloured graphs. Journal of
Combinatorial Theory, Series B, 69(2):222–225, 1997.

204

www.tigergraph.com
wikidata.org

Index of Notations

Bpre: bounded expression, prefix of
STE, 59

BpreT úBsu�: STE, 59
Bsu�: bounded expression, su�x of

STE, 59
E(p): set of edges of a path p, 159
G ◊ A: product of G and A, 17
G3SAT: a special undirected graph, 112
Ga: G restricted to a-edges, 99
Gcol: a special directed graph, 78
Ga

col: a special directed graph, 79
Gnode: a special directed graph, 82
Lrev: reversal of L, 15
Lq: set of words accepted from q, 16
V (p): set of nodes of a path p, 17
|·| : length of a word w, 15

size of a graph G, 16
size of a regular expression r, 15
size of a set A, 15
size of NFA, 16

”(q, w) : states reachable from state q
by reading w, 16

p[e1, e2]: subpath of a path p, 17
p[i, j]: subpath of a path p, 159
q1 q2 : q2 is reachable from q1, 16
w[i, j]: substring of a word w, 15
wrev: reversal of w, 15

w≠1L: derivative, 15
[n]: set of integers {1, . . . , n}, 15

DC: class of downward closed languages,
18

DFA: deterministic finite automaton, 16

FO[<]: class of aperiodic languages, 20

lab(·): label of an edge e, 16
labels of a path p, 17

NFA: nondeterministic finite automaton,
16

Node(e): the nodes of edges e, 16

PEC: properly edge-colored, 103

RPQ: regular path query, 15

SPtract: tractable class for SimPath, 19
STEs: Simple Transitive Expressions,

59

Ttract: tractable class for Trail, 27

USPtract: tractable class for USimPath,
104

UTtract: tractable class for UTrail, 104

205

Index

automata
Lq, 16
components, 16
CNFA, 28
components

memoryless, 27
consistent jump property, 29
detainment automata, 29
DFA, 16
minimal DFA, 16
NFA, 16

complexity classes
FPT, 61

FPT delay, 159
fpt-reduction, 62

polynomial delay, 159
W[1], 62

enumeration
complexity

FPT delay, 159
polynomial delay, 159

enumeration algorithm, 159
enumeration problem, 159
parameterized enumeration

algorithm, 159
radix order, 159

graphs
G3SAT, 112
Ga, 99
Ga

col, 79
Gnode, 82
(simple) graph, 16
Gcol, 78

2-connected, 124
2-connected component, 124

large component, 129
small component, 129

directed, 16
induced subgraph, 99
line graph, 87
multigraph, 16
split graph, 86
two-colored graph, 77

languages
aperiodic, 20
derivative, w≠1L, 15
downward closed, 18
FO[<], 20
reversal, Lrev, 15
SPtract, 19
Ttract, 27

path
a-path, 17
concatenation, 17
E(p), 159
length, 17
matches L, 17
matches r, 17
simple cycle, 99
simple path, 17
subpath p[e1, e2], 17
subpath p[i, j], 159
trail, 17
V(p), 17

problems
TwoEdgeDisjointPaths, 49
Pedge, 47

207

INDEX

kDisjointPaths

edge-disjoint L1/L2 trails, 103
node-disjoint L1/L2 simple

paths, 103
Mod-k-Path, 100
SimPath, 18
Trail, 18
USimPath, 100
UTrail, 100
kDisjointPaths, 100
enumeration

EnumUSimPaths, 160
EnumUTrails, 160
PEnumSimPaths, 160
PEnumTrails, 160
PEnumUSimPaths, 160
PEnumUTrails, 160
EnumSimPaths, 160
EnumTrails, 160

parameterized, 61
PTrailLength

Ø, 89
PSimPathLength

Ø, 68
PClique, 78

PSimPathLength, 68
PTrailLength, 89
PSimPath, 62
PTrail, 62
UPDisjointTrails(=, ú), 150
UPDisjointTrails(Æ, ú), 150
UPDisjointSimPaths(=, ú), 154
UPDisjointSimPaths(Æ, ú), 154
PUSimPath, 145
PUTrail, 145

STEs, 59
BpreT úBsu�, 59
c-bordered, 64
(left/right) cut border, 65
almost conflict-free, 65
bounded expression, 59
can be conflict-sampled, 66
can be sampled, 64, 65
conflict position, 65
conflict-free, 65
cuttable, 65
left cut border, 64
right cut border, 64

208

	Acknowledgements
	Introduction
	Graph Databases and Regular Path Queries
	Structure of this Thesis
	Connection to Published Works
	Contributions by Other Authors
	Related Work

	Preliminaries
	Regular Expressions and RPQs
	Automata
	Graph Databases and Paths
	Main Problems
	Fundamental Subclasses of Regular Languages

	Evaluation on Directed Multigraphs
	A Trichotomy for Regular Trail Queries
	The Tractable Class Ttract
	A Syntactic Characterization of Ttract
	Comparison of Ttract to Other Classes
	The Trichotomy
	Recognition and Closure Properties of Ttract

	Regular Path Queries in Practice
	SPARQL Logs
	Simple Transitive Expressions

	Fine-grained Dichotomy for STEs
	Parameterized Complexity
	Dichotomies for STEs
	Main Upper Bound for PSimPath
	Main Lower Bound for PSimPath
	Connection Between Simple Paths and Trails
	Bounds for PTrail

	Evaluation on Undirected Multigraphs
	Towards a Dichotomy for Regular Simple Path and Trail Queries
	Definitions and Main Problems
	Context
	First Observations
	The Gadget G3SAT for Lower Bounds
	Generalizing Two Disjoint Paths
	Word Iterations
	Simple Chain Regular Expressions
	Parity Languages

	Towards Fine-grained Dichotomies for STEs
	Tractable Fragments are Preserved for Undirected Multigraphs
	Extension of the Tractable Fragment

	Enumeration
	Enumeration Framework
	Preliminaries Enumeration
	Enumeration of Arbitrary Paths and Shortest Paths
	Enumerating Simple Paths: Yen's algorithm
	New Variants of Yen's algorithm
	The Framework

	Enumeration Results
	With Arbitrary Order
	With Order of Increasing Length
	With Radix Order

	Conclusions and Future Work
	On the Complexity of Properly Edge Colored Disjoint Paths
	Bibliography
	Index of Notations
	Index

