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Wim Martens, Andreas Pieris

Principles of Databases

February 25, 2021

Santiago Paris
Bayreuth Edinburgh





Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Part I The Relational Model: The Classics

3 First-Order Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Relational Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5 Relational Algebra and SQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6 Equivalence of Logic and Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . 41

7 First-Order Query Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

8 Static Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

9 Homomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

10 Functional Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

11 Inclusion Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

12 Exercises for Part I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Part II Conjunctive Queries

13 Syntax and Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

14 Homomorphisms and Expressiveness . . . . . . . . . . . . . . . . . . . . . . . 89



VI Contents

15 Conjunctive Query Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

16 Containment and Equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

17 Minimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

18 Containment Under Integrity Constraints . . . . . . . . . . . . . . . . . 119

19 Exercises for Part II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Part III Fast Conjunctive Query Evaluation

20 Acyclicity of Conjunctive Queries . . . . . . . . . . . . . . . . . . . . . . . . . . 137

21 Efficient Acyclic Conjunctive Query Evaluation . . . . . . . . . . . . 143

22 Generalized Hypertreewidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

23 The Necessity of Bounded Treewidth . . . . . . . . . . . . . . . . . . . . . . 159

24 Approximations of Conjunctive Queries . . . . . . . . . . . . . . . . . . . . 167

25 Bounding the Join Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

26 The Leapfrog Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

27 Comments and Exercises for Part III . . . . . . . . . . . . . . . . . . . . . . 187

Part IV Expressive Languages

28 Adding Union . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

29 Adding Negation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

30 Aggregates and SQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

31 Inexpressibility of Recursive Queries . . . . . . . . . . . . . . . . . . . . . . . 217

32 Adding Recursion: Datalog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

33 Datalog Query Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

34 Static Analysis of Datalog Queries . . . . . . . . . . . . . . . . . . . . . . . . . 235



Contents VII

Part V Uncertainty

35 Incomplete Information and Certain Answers . . . . . . . . . . . . . . 251

36 Tractable Query Answering in Incomplete Databases . . . . . . 253

37 Probabilistic Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

38 Consistent Query Answering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

39 Ontological Query Answering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

Part VI Query Answering Paradigms

40 Bag Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

41 Incremental Maintenance of Queries . . . . . . . . . . . . . . . . . . . . . . . 285

42 Provenance Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

43 Top-k Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

44 Distributed Evaluation with One Round . . . . . . . . . . . . . . . . . . . 291

45 Enumeration and Constant Delay . . . . . . . . . . . . . . . . . . . . . . . . . . 293

Part VII Mappings and Views

46 Query Answering using Views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

47 Determinacy and Rewriting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

48 Mappings and Data Exchange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

49 Query Answering for Data Exchange . . . . . . . . . . . . . . . . . . . . . . 305

50 Ontology-Based Data Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

Part VIII Tree-Structured Data

51 Data Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319

52 Tree Pattern Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325



VIII Contents

53 Tree Pattern Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331

54 XPath . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343

55 MSO, Tree Automata, and Monadic Datalog . . . . . . . . . . . . . . 349

56 Schemas for XML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357

57 Static Analysis Under Schema Constraints . . . . . . . . . . . . . . . . . 365

58 Static Analysis on Data Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371

Part IX Graph-Structured Data

59 Data Model and Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381

60 Graph Query Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387

61 Containment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391

62 Querying Property Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397

63 RDF and SPARQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407

Part X Appendix: Theory of Computation

Big-O Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411

Turing Machines and Complexity Classes . . . . . . . . . . . . . . . . . . . . . . 413

Input Encodings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423

Tiling Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427

Regular Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429



1

Introduction

This is a release of the first two parts of the upcoming book “Principles of
Databases”, which will be about the foundational and mathematical principles
of databases in its various forms. The first two parts focus on an overview of
the relational model, and on processing some of the most commonly occurring
relational queries. Forthcoming parts will focus on additional aspects of the
relational model and will cover tree-structured and graph-structured data as
well.

The general philosophy of the book is the following:

• We planned the book such that large parts of it are suitable for teaching.
A chapter roughly corresponds to the contents of a single lecture.

• For the ease of teaching and understanding the material, we may some-
times cut corners. If we want to give the reader a relatively quick insight
of a particular result, this sometimes means that we present a weaker form
of the result than the most general result known in the literature.

We have been teaching from this book ourselves, but the present version
will undoubtedly still have errors. If you find any errors in the book, or places
that you find particularly unclear, please let us know through the repository:
https://github.com/pdm-book/community. The new versions of the book,
including corrections, will be published in this repository.

We are also open to exercise suggestions. We have generated some ini-
tial ideas for exercises, but we are aware that the exercises for the currently
released parts still needs work. We also plan to accompany each part with bib-
liographic remarks. (These are not implemented yet, even for Parts I and II.)

The finished product will consist of the following parts:

(I) The Relational Model: The Classics

(II) Conjunctive Queries

(III) Fast Conjunctive Query Evaluation

https://github.com/pdm-book/community
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• Includes material on acyclic queries, treewidth and hypertreewidth,
and worst-case optimal join algorithms.

(IV) Expressive Languages

• Includes material on adding features found in most commonly used
query languages: union, negation, aggregates, and recursion.

(V) Uncertainty

• Includes material on incomplete information, probabilistic databases,
consistent query answering, and query answering in the presence of
ontologies.

(VI) Query Answering Paradigms

• Includes material on bag semantics, incremental maintenance, prove-
nance, top-k queries, distributed evaluation, and constant delay
query evaluation.

(VII) Mappings and Views

• Includes material on determinacy, data exchange, and ontology-
based data access.

(VIII) Tree-Structured Data

• Includes material on tree pattern queries, XPath, MSO, tree au-
tomata, monadic datalog, schema languages, and their static anal-
ysis.

(IX) Graph-Structured Data

• Includes material on various types of graph queries, their evaluation
and containment, property graphs, RDF, and SPARQL.

We will continue to release parts, not necessarily in the order presented here.
Furthermore, the ordering and contents of the chapters is preliminary and
may change in future versions.
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Background

In this chapter, we introduce the mathematical concepts and terminology that
will be used throughout the book. These include:

• the relational model,

• queries and query languages, and

• computational problems central in the study of principles of databases.

Basic Notions and Notation

We begin with a brief discussion of the very basic mathematical notions and
notation that we are going to use in this book.

Sets

A set contains a finite or infinite number of elements (e.g., numbers, symbols,
other sets), without repetition or respect to order. The elements in a set S are
the members of S. We use the symbols ∈ and 6∈ to denote set membership and
nonmemberhip, respectively. For a finite set S, we write |S| for its cardinality,
that is, the number of elements in it. The set without elements is called the
empty set, written as ∅.

Given two (finite or infinite) sets S and T , we write:

• S ∪ T for their union {a | a ∈ S or a ∈ T},
• S ∩ T for their intersection {a | a ∈ S and a ∈ T}, and

• S − T for their difference {a | a ∈ S and a 6∈ T}.

We further say that

• S is equal to T , written S = T , when x ∈ S if and only if x ∈ T ,
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• S is a subset of T , written S ⊆ T , when x ∈ S implies x ∈ T , and

• S is a proper (or strict) subset of T , written S ( T , if S ⊆ T and S 6= T .

We write P(S) for the powerset of S, that is, the set consisting of all the
subsets of S. Analogously, we write Pfin(S) for the finite powerset of S, namely
the set consisting of all the finite subsets of S.

We write N for the set {0, 1, 2, . . .} of natural numbers. For i, j ∈ N, we
denote by [i, j] the set {k ∈ N | i ≤ k and k ≤ j}. We simply write [i] for [1, i].

Sequences and Tuples

A sequence of elements is a list of these elements in some order. We typically
identify a sequence by writing the list within parentheses. Recall that in a
set the order does not matter, but in a sequence it does. Hence, the sequence
(1, 2, 3) is not the same as (3, 2, 1). Similarly, repetition does not matter in a
set, but is does matter in a sequence. Thus, the sequence (1, 1, 2, 3) is different
than (1, 2, 3), while the set {1, 1, 2, 3} is the same as {1, 2, 3}. Finite sequences
are called tuples. A sequence with k ∈ N elements is a tuple of arity k, called
k-ary tuple (or simply k-tuple). Note that when k = 0 we get the empty tuple
(). We often abbreviate a k-ary tuple (a1, . . . , ak) as ā. Moreover, for a k-ary
tuple ā, we usually assume that its elements are (a1, . . . , ak).

For two sets S, T , we write S×T for the set of all pairs (a, b), where a ∈ S
and b ∈ T , called the Cartesian product or cross product of S and T . We can
also define the Cartesian product of k ≥ 1 sets S1, . . . , Sk, known as the k-fold
Cartesian product, which is the set of all tuples (a1, . . . , ak), where ai ∈ Si for
each i ∈ [k]. For the k-fold Cartesian product of a set S with itself we write

Sk = S × · · · × S︸ ︷︷ ︸
k

.

Functions

Consider two (finite or infinite) sets S and T . A function f from S to T ,
written f : S → T , is a mapping from (all or some) elements of S to elements
of T , i.e., for every a ∈ S, either f(a) ∈ T , in which case we say f is defined
on a, or f(a) is undefined, such that the following holds: for every a, b ∈ S on
which f is defined, a = b implies f(a) = f(b). We call f total if it is defined
on every element of S; otherwise, it is called partial. By default, we assume
functions to be total. When a function f is partial, we explicitly say this, and
write Dom(f) for the set of elements from S on which f is defined.

We say that a function f is

• injective (or one-to-one) if a 6= b implies f(a) 6= f(b) for every a, b ∈ S;

• surjective (or onto) if, for every b ∈ T , there is a ∈ S such that f(a) = b,

• bijective (or one-to-one correspondence) if it is injective and surjective.
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A useful notion is that of composition of functions. Given two functions
f : S → T and g : T → U , the composition of f and g, denoted g ◦ f , is the
function from S to U defined as follows: g ◦ f(a) = g(f(a)) for every a ∈ S.

Given a function f : S → T , for brevity, we will use the same letter f to
denote extensions of f on more complex objects (such as tuples of elements of
S, sets of elements of S, etc.). More precisely, if ā = (a1, . . . , ak) ∈ Sk, then
f(ā) = (f(a1), . . . , f(ak)). If R ⊆ S, then f(R) = {f(a) | a ∈ R}. Notice that
this convention also extends further, e.g., to sets of sets of tuples.

The Relational Model

To define tables in real-life databases, for example, by the create table state-
ments of SQL, one needs to specify their names and names of their attributes.
Therefore, to model databases, we need two disjoint sets

Rel of relation names and Att of attribute names.

We assume that these sets are countably infinite in order to ensure that we
never run out of ways to name new tables and their attributes. In practice, of
course, these sets are finite but extremely large: they are strings that can be
so large that one never really runs out of names. Theoretically, we model this
by assuming that these sets are countably infinite.

In create table declarations, one specifies types of attributes as well, for
example, integer, Boolean, string. In the study of the theoretical foundations
of databases, one typically does not make this distinction, and assumes that
all elements populating databases come from another countably infinite set

Const of values.

This simplifying assumption does not affect the various results on the com-
plexity of query evaluation, expressiveness of languages, equivalence of queries,
and many other subjects studied in this book. At the same time, it brings the
setting closer to that of mathematical logic, allowing us to borrow many tools
from it. It also allows us to significantly streamline notations.

The Named and Unnamed Perspective

There exist two standard perspectives from which databases can be defined,
called the named and the unnamed perspectives. While the named perspective
is closer to how databases appear in database management systems, and there-
fore more natural when giving examples, the unnamed perspective provides
a clean mathematical model that is easier to use for studying the principles
of databases. Importantly, the modeling power of those two perspectives is
exactly the same, which allows us to go back and forth between the two.
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Named Perspective. Under the named perspective, attribute names are
viewed as an explicit part of a database. More precisely, a database tuple
is a function t : U → Const, where U = {A1, . . . , Ak} is a finite subset of
Att. The sort of t is U , and its arity is the cardinality |U | of U ; we say that
t is k-ary if |U | = k. We usually do not use the function notation for tuples
in the named perspective, and denote tuples as t = (A1 : a1, . . . , Ak : ak),
meaning that t(Ai) = ai for every i ∈ [k]. Notice that, according to this
notation, the tuples (A1 : a1, A2 : a2) and (A2 : a2, A1 : a1) represent the
same function t. A relation instance in the named perspective is a finite
set S of database tuples of the same sort U , which we also call the sort of
the relation instance S and denote by sort(S). By nRI (for named rela-
tional instances) we denote the set of all such relation instances. A possibly
infinite relation instance in the named perspective is defined as the notion
of relation instance, but without forcing it to be finite. We write nRI∞ for
the set of all possibly infinite relation instances in the named perspective.

Database systems usually use a database schema that associates attribute
names to relation names. This can be formalized as follows.

Definition 2.1: Named Database Schema

A named (database) schema is a partial function

S : Rel→ Pfin(Att)

such that Dom(S) is finite. For R ∈ Dom(S), the sort of R under S
is the set S(R). The arity of R under S, denoted arS(R), is |S(R)|.

In other words, a named database schema S provides a finite set of re-
lation names, together with their (finitely many) attribute names. These
attribute names form the sort of the relation names under S, and their
number specifies the arity of the relation names under S. For arities 1, 2,
and 3, we speak of unary, binary, and ternary relation names, respectively.
We now introduce the notion of database instance of a named schema.

Definition 2.2: Database Instance (The Named Case)

A database instance D of a named schema S is a function

D : Dom(S)→ nRI

such that sort(D(R)) = S(R), for every R ∈ Dom(S).

We can also talk about possibly infinite database instances. Formally, a
possibly infinite database instance D of a named schema S is a function

D : Dom(S)→ nRI∞



2 Background 7

such that sort(D(R)) = S(R), for every R ∈ Dom(S). This means that D
is either finite as in Definition 2.2, where each relation name of Dom(S) is
mapped to a finite relation instance, or infinite in the sense that at least
one relation name of Dom(S) is mapped to an infinite relation instance.
Infinite database instances are obviously not a real-life concept, and we are
not interested in studying them per se. Having said that, they are a very
useful mathematical tool as they allow us to prove some results in a more
elegant way. In other words, infinite database instances are considered for
purely technical reasons, which will be revealed later in the book.

To avoid heavy notation, and because the name S of a schema is often not
important, we usually provide schema information without explicitly using
the symbol S. We write R[A1, . . . , Ak] instead of S(R) = {A1, . . . , Ak} for
the schema S in question. For example, we write

City[city_id, name, country]

to refer to a relation name City with attribute names city_id, name, and
country. Likewise, we write ar(R) instead of arS(R). We may even write
R[k] to indicate that the arity of R under the schema in question is k

Unnamed Perspective. Under the unnamed perspective, a database tuple
is an element of Constk for some k ∈ N. We denote such tuples using low-
ercase letters from the beginning of the alphabet, that is, as (a1, . . . , ak),
(b1, . . . , bk), etc., or even more succinctly as ā, b̄, etc. A relation instance
in the unnamed perspective is a finite set S of database tuples of the same
arity k. We say that k is the arity of S, denoted by ar(S). By uRI (for un-
named relation instances) we denote the set of all such relation instances.
A possibly infinite relation instance in the unnamed perspective is defined
as the notion of relation instance, but without forcing it to be finite. We
write uRI∞ for the set of all possibly infinite relation instances in the
unnamed perspective. The notion of unnamed database schema follows.

Definition 2.3: Unnamed Database Schema

An unnamed (database) schema is a partial function

S : Rel→ N

such that Dom(S) is finite. For a relation name R ∈ Dom(S), the
arity of R under S, denoted arS(R), is defined as S(R).

In simple words, an unnamed databases schema S provides a finite set of
relation names from Rel, together with their arity. We proceed to introduce
the notion of database instance of an unnamed database schema.
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Definition 2.4: Database Instance (The Unnamed Case)

A database instance D of an unnamed schema S is a function

D : Dom(S)→ uRI

such that ar(D(R)) = arS(R), for every R ∈ Dom(S).

Analogously, a possibly infinite database instance D of an unnamed schema
S is defined as a function of the form

D : Dom(S)→ uRI∞

such that ar(D(R)) = arS(R), for every R ∈ Dom(S). Recall that infinite
database instances are considered for purely technical reasons. As in the
named perspective, in order to avoid heavy notation, we write ar(R) in-
stead of arS(R) for the arity of R under S. We may even write R[k] to
indicate that the arity of R under the schema in question is k

For a (named or unnamed) schema S, we write Inst(S) for the set of all
database instances of S. Notice that Inst(S) does not contain infinite database
instances. We also need the crucial notion of the active domain of a (possibly
infinite) database instance, which is, roughly speaking, the set of constants
that occur in it. Under the named perspective, we say that a database tuple
t : U → Const mentions a constant a ∈ Const if there exists A ∈ U such that
t(A) = a. Under the unnamed perspective, a database tuple (a1, . . . , ak) ∈
Constk mentions a ∈ Const if there exists i ∈ [k] such that ai = a. The active
domain of a (possibly infinite) database instance D of S is defined as the set

{a ∈ Const | there exists R ∈ Dom(S) such that

D(R) contains a database tuple that mentions a}.

Henceforth, for brevity, we simply refer to the domain instead of the active
domain of D, and denote it Dom(D). We will never use the term domain, and
the notation Dom(D), to refer to the domain of the function D, i.e., Dom(S).

Simplified Terminology and Notation

We will refer to a (possibly infinite) database instance as a (possibly infinite)
database, to a relation instance as a relation, and to a database tuple as a tuple.
In both the named and the unnamed perspectives, we will write RDi instead
of D(Ri). When it is clear from the context, we shall omit the superscript D,
and simply write Ri instead of RDi . This means that we will effectively use the
same notation for relation names and for relation instances. This is a common
practice that is used to simplify notation, and it will never lead to confusion;
when the instance is important, we will make it explicit.
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Although database schemas are formally defined as partial functions, with
their domain being a finite subset of Rel, it is often convenient to tread them as
sets of relation names. Thus, we will usually tread a schema S as the finite set
Dom(S). This means that whenever we write S = {R1, . . . , Rn}, we actually
mean that Dom(S) = {R1, . . . , Rn}. In the unnamed case, we may also write

S = {R1[k1], . . . , Rn[kn]}

for the fact that Dom(S) = {R1, . . . , Rn} and S(Ri) = ki, for each i ∈ [n].
Having this notation for schemas, we can then take, e.g., the union S1 ∪S2 of
two schemas S1 and S2 (providing that Dom(S1) and Dom(S2) are disjoint).

Analogously, databases of unnamed schemas can be seen as sets, in par-
ticular, as sets of facts. For a k-ary relation name R, and a tuple ā ∈ Constk,
we call R(ā) a fact. Since a fact is always a statement about a single tuple, we
simplify the notation R((a1, . . . , ak)) to R(a1, . . . , ak). We will usually tread
a (possibly infinite) database D of an unnamed schema S as the set of facts{

R(ā) | R ∈ S and ā ∈ RD
}
.

For example, we can write D = {R1(a, b), R1(b, c), R2(a, c, d)} as a shorthand
for RD1 = {(a, b), (b, c)} and RD2 = {(a, c, d)}. Note that the active domain of
D is precisely the set of constants occurring in {R(ā) | R ∈ S and ā ∈ RD}.

Named versus Unnamed Perspective

There is clearly a close connection between the two perspectives, which is
not surprising since both are mathematical abstractions of the same concept.
A (possibly infinite) database of a named schema can be transformed into a
semantically equivalent one of an unnamed schema, and vice versa. By seman-
tically equivalent, we mean databases that are essentially the same modulo
representation details. It is instructive to properly formalize this connection,
which will be used throughout the book. We do this for databases, but the
exact same constructions work also for possibly infinite databases.

From Named to Unnamed. Consider a named schema S, and assume that
there is an ordering l on the set of relation-attribute pairs {(R,A) | R ∈
Dom(S) and A ∈ S(R)}. We define the unnamed schema S′ : Rel→ N as
follows: Dom(S′) = Dom(S), and S′(R) = arS(R) for every R ∈ Dom(S).
Moreover, for every database D of S, a semantically equivalent database
D′ : Dom(S′)→ uRI of S′ is defined as follows: for every R ∈ Dom(S′),

D′(R) = {(a1, . . . , ak) | (A1 : a1, . . . , Ak : ak) ∈ D(R)

such that (R,A1) l (R,A2) l · · ·l (R,Ak)} .

From Unnamed to Named. Consider an unnamed database schema S. We
assume that Att contains an attribute name #i for each i ≥ 1. We define
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the named schema S′ : Rel → Pfin(Att) as follows: Dom(S′) = Dom(S),
and S′(R) = {#1, . . . ,#arS(R)} for everyR ∈ Dom(S). Moreover, for every
database D of S, a semantically equivalent database D′ : Dom(S′)→ nRI
of S′ is defined as follows: for every R ∈ Dom(S′),

D′(R) = {(#1 : a1, . . . ,#k : ak) | (a1, . . . , ak) ∈ D(R)} .1

Since the above connection between the two perspectives is useful in many
places in the book, we assume from now on that, whenever a named database
schema is used, the ordering l on relation-attribute pairs is available.

The unnamed perspective is usually mathematically more elegant, while
the named perspective is closer to practice. Therefore, we often define notions
in the book using the unnamed perspective, but illustrate them with examples
using the named perspective. When we do so, we use the following convention.
When we denote a relation name as R[A,B, . . .] of a named database schema
S in an example, we assume that the ordering of attributes in S is consistent
with how we write it in the example, that is, (R,A)l (R,B), etc. This allows
us to easily switch between the named and unnamed perspective in examples,
e.g., by being able to say that the “first” attribute of R is A.

Queries and Query Languages

Queries will appear throughout the book as both semantic and syntactic ob-
jects. As a semantic object, a query q over a schema S is a function that maps
databases of S to finite sets of tuples of the same arity over Const.

Definition 2.5: Queries and Query Languages

Consider a database schema S. A query of arity k ≥ 0 (or simply a k-ary
query) over S is a function of the form

q : Inst(S)→ Pfin(Constk).

A query language is a set of queries.

An important subject, which will be considered in the book, is to classify
query languages according to their expressive power. Two query languages L1

and L2 are equally expressive if L1 = L2. Furthermore, L1 is more expressive
than L2 if L2 ⊆ L1, and L1 is strictly more expressive than L2 if L2 ( L1.

1 Notice that under the assumption that (R,#i)l(R,#i+1) for every relation name
R ∈ S and i ∈ [S(R)− 1], one can translate a database D from the unnamed
perspective to the named perspective and back, and obtain D again.
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Of course, queries as semantic objects must be given in some syntax. The
syntax of queries could be SQL, relational algebra, first-order logic, and Data-
log, to name a few. We proceed to explain some of our notational conventions
for queries. For the sake of the discussion, we focus on query languages that
are based on logic. To this end, we assume a countably infinite set

Var of variables,

disjoint from Const, Rel, and Att. If ϕ is a logical formula and x̄ = (x1, . . . , xk) ∈
Vark is a tuple of variables, we will denote queries as ϕ(x̄). We will also use a
letter such as q to refer to the entire query, that is, q = ϕ(x̄). The purpose of
x̄ is to make clear what is the output of the query; we will also write q(x̄) to
emphasise that q has the output tuple x̄. More precisely, we will always define
for a database D and tuple ā = (a1, . . . , ak) ∈ Constk whether D satisfies ϕ
using the values ā, denoted by D |= ϕ(ā). Then, with the syntactic object
q = ϕ(x̄), we associate a semantic object that produces an output, i.e., a set
of k-ary tuples over Const, for each database D, defined as:

q(D) = {ā ∈ Constk | D |= ϕ(ā)} .

This semantic object will always be a query in the sense of Definition 2.5. In
other words, we will use the letter q to refer to both

• the syntactic object denoting a query (for example, a logical formula to-
gether with an output tuple), and

• the query itself (i.e., the function that maps databases to finite sets of
tuples of the same arity over Const).

A query of arity 0 is called Boolean. In this case, there are only two possible
outputs: either the singleton set {()} containing the empty tuple, or the empty
set {}. We interpret {()} as the Boolean value true, and {} as false. For
readability, we write q(D) = true in place of q(D) = {()}, and q(D) = false

in place of q(D) = {}. When denoting Boolean queries, we will often omit the
empty tuple () from the notation, i.e., write q = ϕ instead of q = ϕ().

A useful notion that we will use throughout the book, and, in particular,
for defining the syntax of query languages that are based on logic, is that of
relational atom. When R is a k-ary relation symbol and ū ∈ (Const ∪ Var)k,
R(ū) is a relational atom. Observe that the only difference between a fact
and a relational atom is that the former mentions only constants, whereas the
latter can mention both constants and variables. As for facts, since a relational
atom is always a statement about a single tuple, we simply write R(u1, . . . , uk)
instead of R((u1, . . . , uk)). Given a set of atoms S, we write Dom(S) for the set
of constants and variables in S. For example, Dom({R(a, x, b), R(x, a, y)}) =
{a, b, x, y}. We also write RS for the set of tuples {ū | R(ū) ∈ S}.
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Key Problems: Query Evaluation and Query Analysis

Much of what we do in databases boils down to running queries on a database,
or statically analyzing queries. The latter is the basis of query optimization:
we need to be able to reason about queries, and to be able to replace a query
with a better behaved one that has the same output. We proceed to introduce
the main algorithmic problems associated with the above tasks. In their most
common form, they are parameterized by a query language L.

Query Evaluation

We start with the query evaluation problem, or simply the evaluation problem,
that has the following form:

Problem: L-Evaluation

Input: A query q from L, a database D, a tuple ā over Const

Output: true if ā ∈ q(D), and false otherwise

Note that the evaluation problem is presented as a decision problem, that
is, a problem whose output is either true or false. Although in practice the
goal is to compute the output of q on D, in the study of the principles of
databases we are mainly interested in understanding the inherent complexity
of a query language. This can be achieved by studying the complexity of the
decision version of the evaluation problem, which in turn allows us to employ
well established tools from complexity theory such as the standard complexity
classes that can be found in Appendix B.

The complexity of the problem as stated above is referred to as combined
complexity of query evaluation. The term combined reflects the fact that both
the query q and the database D are part of the input.

Very often we shall deal with a different kind of complexity of query evalu-
ation, where the query q is fixed. This is referred to as data complexity since we
measure the complexity only in terms of the size of the database D, which in
practice, almost invariably, is much bigger than the size of the query q. More
precisely, when we talk about data complexity, we are actually interested in
the complexity of the problem q-Evaluation for some query q:

Problem: q-Evaluation

Input: A database D, and a tuple ā over Const

Output: true if ā ∈ q(D), and false otherwise

Thus, when we talk about the data complexity of L-Evaluation, we actually
refer to a family of problems, one for each query q from L. Nonetheless, we
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shall apply the standard notions of complexity theory, such as membership in a
complexity class, or hardness and completeness for a class, to data complexity.
We proceed to precisely explain what we mean by that.

Definition 2.6: Data Complexity

Let L be a query language, and C a complexity class. L-Evaluation is

• in C in data complexity if, for every q from L, q-Evaluation is in C,
• C-hard in data complexity if there exists a query q from L such that
q-Evaluation is C-hard, and

• C-complete in data complexity if L-Evaluation is in C in data com-
plexity, and C-hard in data complexity.

To reiterate, as we shall use these concepts many times in this book:

Combined Complexity of query evaluation refers to the complexity of the
L-Evaluation problem when all of q, D, and ā are inputs, and

Data Complexity refers to the complexity of L-Evaluation when its input
consists only of D and ā, whereas q on the other hand is fixed. In other
words, it refers to the complexity of the family of problems {q-Evaluation |
q is a query from L} in the sense of Definition 2.6.

Query Containment and Equivalence

The basis of static analysis of queries is the containment problem. We say that
a query q is contained in a query q′, written as q ⊆ q′, if q(D) ⊆ q′(D) for
every database D; note that since queries return sets of tuples, the notion of
subset is applicable to query outputs. This is the most basic task of reasoning
about queries; note that containment is one part of equivalence. Indeed, q is
equivalent to q′, denoted q ≡ q′, if q ⊆ q′ and q′ ⊆ q. The equivalence problem
is the most basic one in query optimization, whose goal is to transform a query
q into an equivalent, and more efficient, query q′.

In relation to containment and equivalence, we consider the following de-
cision problems, again parameterized by a query language L.

Problem: L-Containment

Input: Two queries q and q′ from L
Output: true if q ⊆ q′, and false otherwise
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Problem: L-Equivalence

Input: Two queries q and q′ from L
Output: true if q ≡ q′, and false otherwise

Observe that for the previous problems, the input consists of two queries.
Typically, queries are much smaller objects than databases. Therefore, for
the containment and equivalence problems, we shall in general tolerate higher
complexity than for query evaluation; even intractable complexity will often
be reasonable, given the small size of the input.

To reason about the computational complexity of problems, such as the
ones introduced above, we need to represent their inputs as inputs to Turing
Machines, that is, as words over some finite alphabet. Details on how databases
and queries are encoded as words over a finite alphabet can be found in
Appendix C. Henceforth, for an object o, e.g., a database or a query, we write
‖o‖ for the size of its encoding, that is, the size of the word that encodes o.

Further Background Reading

Should the reader find himself/herself in a situation “that he/she does not
have the prerequisites for reading the prerequisites” [10], rather than being
discouraged he/she is advised to continue with the main material, as it is
still very likely to be understood completely or almost completely. Should the
latter happen, the prerequisites can be supplemented by information from
many standard sources, some of which are listed below.

The book [1] covers the basics of database theory, while many database
systems texts cover design, querying, and building real-life databases, for ex-
ample, [8, 23, 27]. The basic mathematical background needed is covered in a
standard undergraduate “discrete mathematics for computer science” course;
moreover, a good source for this material is the book [24]. For additional in-
formation about computability theory, we provide a primer in Appendix B.
Furthermore, we refer the reader to [13, 17, 28]; standard texts on complexity
theory are [2, 22, 32]. For the foundations of finite model theory and descrip-
tive complexity, the reader is referred to [9, 14, 20].



Part I

The Relational Model: The Classics
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First-Order Logic

Database query languages are either declarative or procedural. In a declara-
tive language, one provides a specification of what a query result should be,
typically by means of logical formulae (sometimes presented in a specialized
programming syntax). In the case of relational databases, such languages are
usually based on first-order logic, which often appears in the literature under
the name relational calculus. In a procedural language, on the other hand, one
specifies how the data is manipulated to produce the desired result. The most
commonly used one for relational databases is relational algebra. We present
these languages next, starting with first-order logic.

Syntax of First-Order Logic

Recall that a schema S can be seen as a finite set of relation names, and
each relation name of S has an arity under S. Recall also that we assume a
countably infinite set of values Const called constants, and a countably infinite
set of variables Var. Constants will be typically denoted by a, b, c, . . ., and
variables by x, y, z, . . . (possibly with subscripts and superscripts). Constants
and variables are called terms. Formulae of first-order logic are inductively
defined using terms, conjunction (∧), disjunction (∨), negation (¬), existential
quantification (∃), and universal quantification (∀).

Definition 3.1: Syntax of First-Order Logic

We define formulae of first-order logic (FO) over a schema S as follows:

• If a is a constant from Const, and x, y are variables from Var, then
x = a and x = y are atomic formulae.

• If u1, . . . , uk are terms (not necessarily distinct), and R is a k-ary
relation name from S, then R(u1, . . . , uk) is an atomic formula.
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• If ϕ1 and ϕ2 are formulae, then (ϕ1 ∧ϕ2), (ϕ1 ∨ϕ2), and (¬ϕ1) are
formulae.

• If ϕ is a formula and x ∈ Var, then (∃xϕ) and (∀xϕ) are formulae.

Formulae of the form x = a and x = y are called equational atoms. Fur-
thermore, as already mentioned in Chapter 2, formulae of the form R(ū) are
called relational atoms. Note that we allow repetition of variables in relational
atoms, for example, we may write R(x, x, y). We shall use the standard short-
hand (ϕ→ ψ) for ((¬ϕ)∨ψ) and (ϕ↔ ψ) for ((ϕ→ ψ)∧(ψ → ϕ)). To reduce
notational clutter, we will often omit the outermost brackets of formulae.

A crucial notion is that of free variables of a formula, which are essentially
the variables in a formula that are not quantified. Given an FO formula ϕ,
the set of free variables of ϕ, denoted FV(ϕ), is inductively defined as follows:

• FV(x = y) = {x, y}.
• FV(x = a) = {x}.
• FV(R(u1, . . . , uk)) = {u1, . . . , uk} ∩ Var.

• FV(ϕ1 ∨ ϕ2) = FV(ϕ1 ∧ ϕ2) = FV(ϕ1) ∪ FV(ϕ2).

• FV(¬ϕ) = FV(ϕ).

• FV(∃xϕ) = FV(∀xϕ) = FV(ϕ)− {x}.

If x ∈ FV(ϕ), we call it a free variable (of ϕ); otherwise, x is called bound.
An FO formula ϕ without free variables is called a sentence.

Example 3.2: First-Order Formulae

Consider the following (named) database schema:

Person [ pid, pname, cid ]

Profession [ pid, prname ]

City [ cid, cname, country ]

The Person relation stores internal person IDs (pid), names (pname),
and the ID of their city of birth (cid). The Profession relation contains
the professions of persons by storing their person ID (pid) and profession
name (prname). Finally, City contains a bit of geographic information by
storing IDs (cid) and names (cname) of cities, together with the country
they are located in (country). In what follows, we give some examples
of FO formulae over this schema. Consider first the FO formula:

∃y∃z∃u1∃u2

(
Person(x, y, z)∧

Profession(x, u1) ∧ Profession(x, u2) ∧ ¬(u1 = u2)
)
. (3.1)
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This formula has one free variable, that is, x. Consider now the formula

∃z
(
Person(x, y, z) ∧ ∀r∀s (¬City(z, r, s))

)
. (3.2)

The free variables of this formula are x, y. Finally, consider the formula

∃x∃z
(
Person(x, y, z)∧

(Profession(x, ‘author’) ∨ Profession(x, ‘actor’))
)
. (3.3)

This formula has one free variable, that is, y.

Semantics of First-Order Logic

Given a database D of a schema S, we inductively define the notion of satisfac-
tion of a formula ϕ over S in D with respect to an assignment η for ϕ over D.
Such an assignment is a function from FV(ϕ) to Dom(D)∪Dom(ϕ) ⊆ Const,
where Dom(ϕ) is the set of constants mentioned in ϕ. For example, for the
formula R(x, y, a), η is the function {x, y} → Dom(D)∪ {a}. In the following
definition (and also later in the book), we write η[x/u], for a variable x and
term u, for the assignment that modifies η by setting η(x) = u. Furthermore,
to avoid heavy notation, we extend η to be the identity on Const.

Definition 3.3: Semantics of First-Order Logic

Given a databaseD of a schema S, a formula ϕ over S, and an assignment
η for ϕ over D, we inductively define when ϕ is satisfied in D under η,
written (D, η) |= ϕ, as follows:

• If ϕ is x = y, then (D, η) |= ϕ if η(x) = η(y).

• If ϕ is x = a, then (D, η) |= ϕ if η(x) = a.

• If ϕ is R(u1, . . . , uk), then (D, η) |= ϕ if R(η(u1), . . . , η(uk)) ∈ D.

• If ϕ = ϕ1 ∧ ϕ2, then (D, η) |= ϕ if (D, η) |= ϕ1 and (D, η) |= ϕ2.

• If ϕ = ϕ1 ∨ ϕ2, then (D, η) |= ϕ if (D, η) |= ϕ1 or (D, η) |= ϕ2.

• If ϕ = ¬ψ, then (D, η) |= ϕ if (D, η) |= ψ does not hold.

• If ϕ = ∃xψ, then (D, η) |= ϕ if (D, η[x/a]) |= ψ for some constant
a ∈ Dom(D) ∪Dom(ϕ).

• If ϕ = ∀xψ, then (D, η) |= ϕ if (D, η[x/a]) |= ψ for each constant
a ∈ Dom(D) ∪Dom(ϕ).

An assignment η for a sentence ϕ has an empty domain (since the domain
of η is FV(ϕ)), and thus it is unique. For this unique η, it is either the case
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that (D, η) |= ϕ or not. If the former is true, then we simply write D |= ϕ and
say that D satisfies ϕ.

Example 3.4: Semantics of First-Order Formulae

We provide an intuitive description of the semantic meaning of the for-
mulae given in Example 3.2:

• Formula (3.1) is satisfied by all x such that x is the ID of a person
with two different professions.

• Formula (3.2) is satisfied by all x, y such that x and y are the ID and
name of persons for which their city of birth is not in the database.

• Formula (3.3) is satisfied by all y such that y is the name of a person
who is an author or an actor.

It is crucial to say that the semantics of FO are defined in a way that is well-
suited for database applications, but slightly departs from the logic literature.
In particular, the range of quantifiers is the set of constants Dom(D)∪Dom(ϕ)
(see the last two items of Definition 3.3), whereas in the standard definition is
the set of values Const. This is why η associates elements of Dom(D)∪Dom(ϕ)
to variables, while in the standard definition one would allow η to associate
arbitrary elements of Const to variables. The set Dom(D)∪Dom(ϕ) is called
the active domain of D and ϕ. Therefore, Definition 3.3 actually defines the so-
called active domain semantics, which is standard in the database literature.
The importance of the active domain semantics is revealed below where we
use FO to define database queries.

Notational Conventions

We introduce some notational conventions concerning FO formulae that would
significantly improve readability:

• Since conjunction is associative, we will omit brackets in long conjunctions
and write, for example, x1∧x2∧x3∧x4 instead of ((x1∧x2)∧x3)∧x4. We
follow the same convention for disjunction. We also omit brackets within
sequences of quantifiers.

• We often write ∃x̄ ϕ for ∃x1∃x2 . . . ∃xm ϕ, where x̄ = (x1, . . . , xm), and
likewise for universal quantifiers ∀x̄.

• We assume that ¬ binds the strongest, followed by ∧, then ∨, and fi-
nally quantifiers. For example, by ∃x¬R(x) ∧ S(x) we mean the formula
∃x ((¬R(x)) ∧ S(x)). We will, however, add brackets to formulae when
we feel that it improves their readability. Notice that this precedence of
operators also influences the range of variables; e.g., by ∀xR(x)∧S(x) we
mean the formula ∀x (R(x) ∧ S(x)), as opposed to (∀xR(x)) ∧ S(x).
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• Finally, we write x 6= y instead of ¬(x = y), and likewise for (x = a).

Equivalences

In the way FO is defined in Definition 3.1, some constructors are redundant.
For instance, we know by De Morgan’s laws that ¬(ϕ ∨ ψ) is equivalent to
¬ϕ∧¬ψ, and ¬(ϕ∧ψ) is equivalent to ¬ϕ∨¬ψ. Furthermore, the formula ¬∀xϕ
is equivalent to ∃x¬ϕ and ¬∃xϕ is equivalent to ∀x¬ϕ. These equivalences
mean that the full set of Boolean connectives and quantifiers is not necessary
to define all of FO. For example, one can just use ∨,¬, and ∃, or ∧,¬, and ∃,
and this will capture the full expressive power of FO. This is useful for proofs
that proceed by induction on the structure of FO formulae.

For some proofs in Part I of the book it will be convenient to assume
that constants do not appear in relational atoms. We can always rewrite FO
formulae to such a form via equalities, at the expense of a linear blow-up. For
instance, we can write R(x, a, b) as ∃xa∃xb R(x, xa, xb) ∧ (xa = a) ∧ (xb = b).

First-Order Queries

Recall that a k-ary query q produces a finite set of k-ary tuples q(D) ⊆ Constk,
for every database D. FO formulae can be used to define database queries. In
order to do this, we specify together with the formula ϕ a tuple x̄ of variables
that indicates how the output of the query is formed. As a simple example,
consider an atomic formula ϕ = R(x, y) and the tuple (x, y). Then the query
ϕ(x, y) would return the entire relation R from the database. Notice that the
query is actually R(x, y)(x, y), where the first occurrence of (x, y) is part of the
relational atom R(x, y), and the second occurrence specifies how the output
of the query is formed. To consider a few other examples, if ϕ = R(x, y), then
the query ϕ(x, x, y) returns all tuples (a, a, b) such that (a, b) is in the relation
R. Finally, if ϕ = R(x, x), then the query ϕ(x) returns all tuples (a) such that
(a, a) is in the relation R. The definition of FO queries follows.

Definition 3.5: First-Order Queries

A first-order query over a schema S is an expression of the form ϕ(x̄),
where ϕ is an FO formula over S, and x̄ is a tuple of free variables of ϕ
such that each free variable of ϕ occurs in x̄ at least once.

Let ϕ(x̄) be an FO query over S. Given a database D of S, and a tuple
ā of elements from Const, we say that D satisfies the query ϕ(x̄) using the
values ā, denoted by D |= ϕ(ā), if there exists an assignment η for ϕ over D
such that η(x̄) = ā and (D, η) |= ϕ. Having this notion in place, we can now
define what is the output of an FO query on a database.
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Definition 3.6: Evaluation of First-Order Queries

Given a database D of a schema S, and an FO query q = ϕ(x1, . . . , xk)
over S, where k ≥ 0, the output of q on D is defined as the set of tuples

q(D) = {ā ∈ Constk | D |= ϕ(ā)}.

It is clear that q(D) ∈ P(Constk). However, to be able to say that q defines
a k-ary query over S in the sense of Definition 2.5, we need to ensure that
q(D) ∈ Pfin(Constk), i.e., the output of q on D is finite. This is guaranteed by
the following result, which is an immediate consequence of the active domain
semantics of FO (see Definition 3.3).

Proposition 3.7

Given a database D of a schema S, and an FO query q = ϕ(x1, . . . , xk)
over S, where k ≥ 0, it holds that

q(D) = {ā ∈ (Dom(D) ∪Dom(ϕ))k | D |= ϕ(ā)}.

Since, by definition, the set of values Dom(D) ∪ Dom(ϕ) is finite, Propo-
sition 3.7 implies that q(D) ∈ Pfin(Constk), and thus, q defines a k-ary query
over S in the sense of Definition 2.5.

Before we proceed further, let us stress that if we adopt the standard
semantics of FO from logic textbooks, which uses assignments η that associate
arbitrary elements of Const to variables, then there is no guarantee that q(D)
is finite. Consider, for example, the query q = ϕ(x) with ϕ = ¬R(x), and the
database D = {R(a), P (b)}. Under the standard FO semantics, the output of
q on D would be the set {(c) | c ∈ Const − {a}}, and thus infinite. On the
other hand, under the active domain semantics we have that q(D) = {(b)}.

Example 3.8: Evaluation of First Order Queries

A database D of the schema in Example 3.2 is depicted in Figure 3.1.
We proceed to evaluate the FO queries obtained from the FO formulae
given in Example 3.2 on D:

• Let q1 be the query ϕ1(x), where ϕ1 is the formula (3.1). Then

q1(D) = {(‘1’), (‘3’), (‘4’)}.

• Let q2 be the query ϕ2(x, y), where ϕ2 is the formula (3.2). Then

q2(D) = {(‘2’, ‘Billie’)}.

• Let q3 be the query ϕ3(y), where ϕ3 is the formula (3.3). Then
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Person

pid pname cid

1 Aretha MPH
2 Billie BLT
3 Bob DLT
4 Freddie ST

City

cid cname country

MPH Memphis United States
DLT Duluth United States
ST Stone Town Tanzania

Profession

pid prname

1 singer
1 songwriter
1 actor
2 singer
3 singer
3 songwriter
3 author
4 singer
4 songwriter

Fig. 3.1: A database of the schema in Example 3.2.

q3(D) = {(‘Aretha’), (‘Bob’)}.

Boolean First-Order queries

FO sentences, that is, FO formulae without free variables, are used to define
Boolean queries, i.e., queries that return true or false, and hence the name
Boolean FO queries. By definition, the output of a query q on a database
D corresponds to a set of tuples, and thus, Boolean FO queries will be no
exception to this. We consider such queries to be of the form q = ϕ(), where
ϕ is an FO sentence, and () denotes the empty tuple. There are two cases:

• either q(D) consists of the empty tuple, that is, q(D) = {()}, which hap-
pens precisely when D |= ϕ, or

• q(D) is the empty set, which happens precisely when D |= ¬ϕ.

By convention, we write q(D) = true if D |= ϕ, and q(D) = false otherwise.
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Relational Algebra

Queries expressed in FO are declarative and tell us what the output of a query
should be. In this chapter we present the relational algebra, abbreviated RA,
which contrasts itself with FO because it is procedural, i.e., it specifies how the
output of queries can be obtained by a sequence of operations on the data.

Relational algebra is of significant practical importance in databases, since
database systems usually use relational-algebra-like representations of queries
to do query optimization, i.e., to discover methods in which a given query can
be evaluated efficiently.

In this chapter, we present relational algebra in its most elementary form,
in both mb the unnamed and the named perspective. The following table
gives a quick overview of the operators in the named and unnamed relational
algebra.

(Unnamed) RA Named RA
Operator Name Symbol Symbol

selection σθ σθ
projection πα πα

Cartesian product ×
rename ρ

union ∪ ∪
difference − −

join onθ on

We explain these operators and their semantics next, in the definitions of the
unnamed and named RA. Since we will usually be working with the unnamed
perspective in this book, we will often abbreviate “unnamed RA” as “RA”.
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Syntax of the Unnamed Relational Algebra

Under the unnamed perspective, RA consists of five primitive operations: se-
lection, projection, Cartesian product, union, and difference. Before giving the
formal definitions of those operations, we first introduce the notion of condi-
tion over a set of integers that is needed for defining the selection operation.
A condition θ over {1, . . . , k}, for some k ≥ 0, is a Boolean combination of
statements of the form i

.
= j, i

.
= a, i 6 .= j, and i 6 .= a, where for a ∈ Const and

i, j ∈ [k]. Intuitively, a condition i
.
= j is used to indicate that in a tuple the

values of the i-th attribute and the j-th attribute must be the same, while
i 6 .= j is used to indicate that these values must be different. Moreover, a con-
dition i

.
= a is used to indicate that in a tuple the value of the i-th attribute

must be the constant a, while i 6 .= a is used to indicate that this value must be
different than a. Let us clarify that we use the symbols

.
= and 6 .=, instead of =

and 6=, to avoid writing statements such as “1 = 2”, which are likely to confuse
the reader. Notice that by using De Morgan’s laws to propagate negation, we
can define conditions as positive Boolean combinations of statements i

.
= j and

i 6 .= j, i.e., Boolean combinations using only conjunction ∧ and disjunction ∨.
For example, ¬

(
(1

.
= 2) ∨ (2 6 .= 3)

)
is equivalent to (1 6 .= 2) ∧ (2

.
= 3).

Definition 4.1: Syntax of Unnamed Relational Algebra

We inductively define RA expressions over a schema S, and their asso-
ciated arities, as follows:

Base Expressions. If R is a k-ary relation name from S, then R is an
atomic RA expression over S of arity k. If a ∈ Const, then {a} is an
RA expression over S of arity 1.

Selection. If e is an RA expression over S of arity k ≥ 0 and θ is a
condition over [k], then σθ(e) is an RA expression over S of arity k.

Projection. If e is an RA expression over S of arity k ≥ 0 and α =
(i1, . . . , im), for m ≥ 0, is a list of numbers from [k], then πα(e) is
an RA expression over S of arity m.

Cartesian Product. If e1, e2 are RA expressions over S of arity k ≥ 0
and m ≥ 0, respectively, then their Cartesian product (e1× e2) is an
RA expression over S of arity k +m.

Union. If e1, e2 are RA expressions over S of the same arity k ≥ 0, then
their union (e1 ∪ e2) is an RA expression over S of arity k.

Difference. If e1, e2 are RA expressions over S of the same arity k ≥ 0,
then their difference (e1 − e2) is an RA expression over S of arity k.

Notice that in the definition of the projection operation, we allow m to be
0, in which case the list of integers α = (i1, . . . , im) is the empty list (). This
is useful for expressing Boolean queries.
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Semantics of Unnamed Relational Algebra

We proceed to define the semantics of RA expressions. We first need to define
the operation of projection over tuples. For a tuple ā = (a1, . . . , ak) ∈ Constk,
and a list α = (i1, . . . , im) of numbers from [k], the projection πα(ā) is defined
as the tuple (ai1 , ai2 , . . . , aim).1 Here are some simple examples:

π(1,3)(a, b, c, d) = (a, c) π(1,3,3)(a, b, c, d) = (a, c, c) π()(a, b, c, d) = ().

We also need the notion of satisfaction of conditions over tuples. We in-
ductively define when a tuple ā satisfies the condition θ, denoted ā |= θ:

ā |= i
.
= j if ai = aj ā |= i

.
= a if ai = a

ā |= i 6 .= j if ai 6= aj ā |= i 6 .= a if ai 6= a

ā |= θ ∧ θ′ if ā |= θ and ā |= θ′ ā |= θ ∨ θ′ if ā |= θ or ā |= θ′

ā |= ¬θ if ā |= θ does not hold

We are now ready to define the semantics of RA expressions.

Definition 4.2: Semantics of Unnamed RA Expressions

Let D be a database of a schema S, and e an RA expression over S. We
inductively define the output e(D) of e on D as follows:

• If e = R, where R is a relation name from S, then e(D) = RD.

• If e = {a}, for a ∈ Const, then e(D) = {a}.
• If e = σθ(e1), where e1 is an RA expression of arity k ≥ 0 and θ is a

condition over [k], then e(D) = {ā | ā ∈ e1(D) and ā |= θ}.
• If e = πα(e1), where e1 is an RA expression of arity k ≥ 0 and
α = (i1, . . . , im), for m ≥ 0, is a list of numbers from [k], then e(D)
is the m-ary relation {πα(ā) | ā ∈ e1(D)}.

• If e = (e1 × e2), where e1 and e2 are RA expressions of arity k ≥ 0
and ` ≥ 0, respectively, then e(D) = e1(D)× e2(D).

• If e = (e1 ∪ e2), where e1 and e2 are RA expressions of the same
arity k ≥ 0, then e(D) = e1(D) ∪ e2(D).

• If e = (e1 − e2), where e1 and e2 are RA expressions of the same
arity k ≥ 0, then e(D) = e1(D)− e2(D).

We sometimes use derived operations, one of them of special importance:

1 The projection πα(ū), where ū is tuple from (Const∪Var)k, is defined in the same
way. For example, π(1,3)(a, x, y, d) = (a, y) and π(1,3,3)(a, x, y, d) = (a, y, y). We
are going to apply the projection operator over tuples of constants and variables
in subsequent chapters such as Chapters 10 and 11.
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Join. Given a k-ary RA expression e1, an m-ary RA expression e2, and a
condition θ over {1, . . . , k+m}, the θ-join of e1 and e2 is denoted e1 onθ e2.
Its output on a database D is defined as

(e1 onθ e2)(D) = σθ(e1(D)× e2(D)) .

We note that RA expressions readily define queries on databases. Indeed,
if e is a RA expression, then the output of e on a database D is e(D). In the
remainder of the book, we will therefore sometimes also refer to e as a query.

Example 4.3: Unnamed RA Queries

Consider again the (named) database schema:

Person [ pid, pname, cid ]

Profession [ pid, prname ]

City [ cid, cname, country ]

The RA expression

π(1)

(
σ56 .=7

(
(Person on1

.
=4 Profession) on1

.
=6 Profession

))
returns the IDs of persons with at least two professions. The expression

π(1,2)(Person)− π(1,2)

(
Person on3

.
=4 City

)
returns the ID and name of persons whose city of birth does not appear
in the database. Finally, the expression

π(2)

(
σ(5

.
=‘author’)∨(5

.
=‘actor’)(Person on1

.
=4 Profession)

)
returns the names of persons that are author or actors.

Syntax of the Named Relational Algebra

Under the named perspective, the presentation changes a bit. Before giving
the formal definition, let us first note that the notion of condition, needed for
defining the selection operation, is now over a set of attributes, and not a set
of integers as in the case of unnamed RA. More precisely, a condition θ over a
set of attributes U ⊆ Att is a Boolean combination of statements of the form
A
.
= B, A

.
= a, A 6 .= B, and A 6 .= a, where a ∈ Const and A,B ∈ U .

Definition 4.4: Syntax of Named Relational Algebra

We inductively define named RA expressions over a schema S, and their
associated sorts, as follows:
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Base Expressions. IfR ∈ S, thenR is an atomic named RA expression
over S of sort S(R). If a ∈ Const and A ∈ Att, then {(A : a)} is a
named RA expression of sort {A}.

Selection. If e is a named RA expression of sort U and θ is a condition
over U , then σθ(e) is a named RA expression of sort U .

Projection. If e is a named RA expression of sort U and α ⊆ U , then
πα(e) is a named RA expression of sort α.

Join. If e1, e2 are named RA expressions of sort U1 and U2, respectively,
then their join (e1 on e2) is a named RA expression of sort U1 ∪ U2.

Rename. If e is a named RA expression of sort U , then ρA→B(e), where
A ∈ U and B ∈ Att − U , is a named RA expression of sort (U −
{A}) ∪ {B}.

Union. If e1, e2 are named RA expressions of the same sort U , then
their union (e1 ∪ e2) is a named RA expression of sort U .

Difference. If e1, e2 are named RA expressions of the same sort U , then
their difference (e1 − e2) is a named RA expression of sort U .

Notice in the definition of the projection operation the contrast with the
unnamed perspective, where α is a list of numbers with repetitions.

Semantics of the Named Relational Algebra

The semantics of named RA expressions is defined similarly to the unnamed
case, with the main difference that e(D) is now a named relation instance.
Therefore, we only discuss rename and join, and leave the others as exercises.

Rename. If e = ρA→B(e1), where e1 is a named RA expression of sort U ,
A ∈ U , and B ∈ Att− U , then e(D) is the relation

{t | t(B) = t1(A) and t(C) = t1(C) for t1 ∈ e1(D) and C ∈ U − {A}}.

Note that renaming does not change the data at all, it only changes names
of attributes. Nonetheless, this operation is necessary under the named
perspective. For instance, consider two relations, R and S, the former with
a single attribute A and the latter with a single attribute B. Suppose we
want to find their union in relational algebra. The problem is that the
union is only defined if the sorts of R and S are the same, which is not
the case. To take their union, we can therefore rename the attribute of S
to be A, and complete the task by writing the expression

(
R∪ρB→A(S)

)
.

Join. The other new primitive operator in the named perpective is join (also
known in the literature as natural join). It is simply a join of two relations
on the condition that their common attributes are the same. Formally, if
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e = e1 on e2, where e1 and e2 are named RA expressions of sorts U1 and
U2, then e(D) is the set of tuples t such that

t(A) =


t1(A) if A ∈ U1,

t2(A) if A ∈ U2 − U1,

where t1 ∈ e1(D), t2 ∈ e2(D), and t1(A) = t2(A) for all A ∈ U1 ∩ U2. To
give an example, consider the relations R[A,B] and S[B,C]. Their join
R on S has attributes A,B,C, and consists of triples (a, b, c) such that
R(a, b) and S(b, c) are both facts in the database. Notice that, if R and S
have no common attributes, their join is their Cartesian product. For this
reason, we do not have the operator × in the named RA.

Similarly to the unnamed perspective, we can interpret named RA expres-
sions e as queries over databases D. However, since queries return tuples in
Constk according to Definition 2.5, and since e(D) is a named relation in-
stance, we still need to explain how we go from e(D) to a finite set of tuples
over Const. To this end, we will assume that l is also an order on Att.2 We
can now associate to e a query qe by defining that, on database D, the output
of qe on D is the set

qe(D) = {(a1, . . . , ak) | (A1 : a1, . . . , Ak : ak) ∈ e(D)

such that A1 lA2 l · · ·lAk} .

In the remainder of the book, we will usually not formally distinguish between
the RA expression e and the query qe. In particular, if we talk about the query
e, then we mean the query qe that we just defined.

Example 4.5: Named RA Queries

We provide named RA versions for the expressions given in Example 4.3.
The expression

π{pid}
(
σprname6 .=prname2

(
(Person on

Profession) on ρprname→prname2(Profession)
))

returns the IDs of persons with at least two professions. The expression

π{pid,pname}(Person)− π{pid,pname}
(
Person on City

)
returns the ID and name of persons whose city of birth does not appear
in the database. Finally, the expression

2 We can assume that A l (R,B) for all A,B ∈ Att and R ∈ Rel, although this is
inconsequential.
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π{pname}
(
σ(prname

.
=‘author’)∨(prname

.
=‘actor’)(Person on Profession)

)
returns the names of persons that are authors or actors.

Expressiveness of Named and Unnamed RA

We often use named RA in examples since it is closer to how we think about
real-life databases. On the other hand, many results are easier to state and
prove in unnamed RA. This comes at no cost since, as we discuss below, every
named RA query can be expressed in unnamed RA, and vice versa.

Let f be the function that converts a database D from the named to the
unnamed perspective, as presented in Chapter 2. Recall that this converts
each tuple t = (A1 : a1, . . . , Ak : ak) in D(R), for a relation name R of sort
{A1, . . . , Ak} (with (R,A1) l · · · l (R,Ak)), into a tuple t′ = (a1, . . . , ak) in
f(D)(R).

Let qn be a named RA query, qu an unnamed RA query, and S a named
database schema. We say that qn is equivalent to qu under S if, for every
database D of S, we have that qn(D) = qu(f(D)) Note that two queries can
be equivalent under one schema and non-equivalent under another one. This
is unavoidable since the order inside an unnamed tuple depends on the names
of the attributes (the order is defined by l). Thus, renaming some attributes
in the named perspective will change the order inside the unnamed tuples.

The following theorem establishes that each named RA query can be trans-
lated into an equivalent unnamed RA query. We leave the statement of the
reverse direction and its proof as an exercise.

Theorem 4.6

Consider a named database schema S, and a named RA query qn. There
exists an unnamed RA query qu that is equivalent to qn under S.

Proof. We prove this by induction on the structure of qn. Assume that qn has
sort {A1, . . . , Ak} with A1 l · · · l Ak, where l is the ordering we used in
the definition of named RA queries. We proceed to explain how to obtain an
unnamed RA query qu that is equivalent to qn, which means that the i-th
attribute in the output of qu corresponds to the Ai-attribute in the output
of qn. In the remainder of the proof, whenever we write a set of attributes
as a set {A1, . . . , Ak}, we assume that A1 l · · ·l Ak. The base cases are the
following:

• If qn = R, for a relation name R ∈ S of sort {A1, . . . , Ak}, then qu = R.

• If qn = {(A : a)}, then qu = {a}.
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For the inductive step, assume that q′n and q′′n are named RA expressions of
sort U ′ = {A′1, . . . , A′k} and U ′′ = {A′′1 , . . . , A′′` }, respectively, and assume that
they are equivalent to the unnamed RA expressions q′u and q′′u , respectively.

• Let qn = σθ(q
′
n). Then qu = σθ′(q

′
u), where θ′ is the condition that is

obtained from θ by replacing each occurrence of attribute A′i with i, for
every i ∈ [k]. For example, if θ is the condition (A′1

.
= A′3) ∧ (A′2 6

.
= b),

then θ′ is the condition (1
.
= 3) ∧ (2 6 .= b).

• Let qn = πα(q′n) and α ⊆ U ′. Then qu = πα′(q
′
u), where α′ is the list of all

i ∈ [k] with A′i ∈ α.

• Let qn = (q′n on q′′n ). Then qu = πα (q′u onθ q′′u ), where θ is the conjunction
of all conditions i = j such that A′i = A′′j , for i ∈ [k] and j ∈ [`]. To define
α, let {A1, . . . , Am} = U ′ ∪ U ′′ and let g : [m]→ [k + `] be such that

g(i) =


j if Ai = A′j ,

k + j if Ai = A′′j and A′′j ∈ U ′′ − U ′ .

We now define α = (g(1), . . . , g(m)). Therefore, θ allows us to mimic the
natural join on q′n and q′′n , while πα is used for getting rid of redundant
attributes and putting the attributes in an ordering that conforms to l.

• Let qn = ρA→B(q′n), where A = A′i for some i ∈ [k]. Let j = |{i | A′ilB}|.
Then qu = πα(q′u), where α is the list obtained from (1, . . . , k) by deleting
i and reinserting it right after j if j > 0, and at the beginning of the list
if j = 0.

• Finally, if qn = q′n∪q′′n , then qu = q′u∪q′′u , where q′u and q′′u are the unnamed
RA expressions that are obtained by the induction hypothesis for q′n and
q′′n , respectively. The case when qn = q′n − q′′n is analogous. ut
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Relational Algebra and SQL

In this chapter, we shed light on the relationship between relational algebra
and SQL, the dominant query language in the relational database world. It is
a complex language (the full descriptions takes many hundreds of pages), and
thus here we focus our attention on its core fragment.

A Core of SQL

We assume that the reader by virtue of being interested in the principles of
databases has some basic familiarity with relational databases and thus, by
necessity, with SQL. For now, we concentrate on the part of the language that
corresponds to relational algebra. Its expressions are basic queries of the form

SELECT [DISTINCT] <list of attributes>

FROM <list of relations>

WHERE <condition>

and we can form more complex queries by using expressions

Q1 UNION Q2 and Q1 EXCEPT Q2 .

If the queries Q1 and Q2 return tables over the same set of attributes, these
correspond to union and difference.

The list of relations provides relation names used in the query, and also
their aliases; we either put a name R in the list, or R AS R1, in which case R1

is used as a new name for R. This could be used to shorten the name, e.g.,

RelationWithAVeryLongName AS ShortName

or to use the same relation more than once, in which case different aliases are
needed. We shall do both in the examples very soon.
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The list of attributes containts attributes of relation names mentioned in
FROM or constants. For example, if we had R AS R1 in FROM and R has an at-
tribute A, we can have a reference to R1.A in that list. The list of attributes
specifies the attributes that will compose the output of the query. For a con-
stant, one needs to provide the name of attribute: for example, 5 AS B will
output the constant 5 as value of attribute B.

The keyword DISTINCT is to instruct the query to perform duplicate elim-
ination. In general, SQL tables and query results are allowed to contain du-
plicates. For example, in a database containing two facts, R(a, b) and R(a, c),
projecting on the first column would result in two copies of a. We shall discuss
duplicates in Chapter 40. In this Chapter, we will always assume that SQL
queries only return sets, and omit DISTINCT from queries used in examples.

As conditions in this basic fragment we shall consider:

• equalities between attributes, e.g., R.A = S.B,

• equalities between attributes and constants, e.g., Person.name = ’John’,

• complex conditions built from these basic ones by using AND, OR, and NOT.

Example 5.1: SQL Queries

Consider the FO query ϕ1(x), where ϕ1 is the FO formula (3.1). This
can be written as the SQL query

SELECT P.pid

FROM Person AS P, Profession AS Pr1, Profession AS Pr2

WHERE P.pid = Pr1.pid

AND P.pid = Pr1.pid

AND NOT (Pr1.prname = Pr2.prname)

The formula ϕ1 mentions the relation name Person once, and the rela-
tion name Profession twice, and so does the above SQL query in the
FROM clause (assigning different names to different occurrences, to avoid
ambiguity). The first two conditions in the WHERE clause capture the use
of the same variable x in three atomic subformulae of ϕ1, whereas the
last condition corresponds to the subformula ¬(u1 = u2).

Consider now the query ϕ2(x, y), where ϕ2 is the FO formula (3.2),
which asks for IDs and names of people whose cities of birth were not
recorded in the City relation. This can be expressed as the SQL query:

SELECT Person.pid, Person.pname

FROM Person

EXCEPT

SELECT Person.pid, Person.pname

FROM Person, City
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WHERE Person.cid = City.cid

The first subquery asks for all people, the second subquery for those that
have a city of birth recorded, and EXCEPT is their difference. This query
returns people as pairs, consisting of their ID and their name.

Relational Algebra to Core SQL

We now show that (named) relational algebra queries can always be written as
Core SQL queries. Let e be a named RA expression. We inductively translate
e into an equivalent SQL query Qe as follows.

Base Expressions. If e = R, and R has attributes A1, . . . , An, then Qe is

SELECT A1, . . . , An
FROM R

In fact, SQL has a shorthand * for listing all attributes of a relation name,
and the above query can be written as SELECT * FROM R.

If e = {(A : a)}, then Qe is simply

SELECT a AS A

Selection and Projection. Assume that e is translated into

SELECT A1, . . . , An
FROM R1, . . . , Rm
WHERE condition

• Then, σθ(e) is translated into

SELECT A1, . . . , An
FROM R1, . . . , Rm
WHERE condition AND Cθ

where Cθ expresses the condition θ in SQL syntax. For instance, if θ
is (A

.
= B) ∧ ¬(C

.
= 1) then Cθ is (A = B) AND NOT (C = 1).

• Furthermore, πα(e) is translated into

SELECT Ai1 , . . . , Aik
FROM R1, . . . , Rm
WHERE condition

where Ai1 , . . . , Aik are the elements from the set α.

Rename. Assume now that e is translated into
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SELECT . . . , Ri.Aj AS A, . . .
FROM R1, . . . , Rm
WHERE condition

Then, ρA→B(e) is translated into

SELECT . . . , Ri.Aj AS B, . . .
FROM R1, . . . , Rm
WHERE condition

Join, Union, and Difference. Assume now that e1 is translated into

SELECT A1, . . . , Ak, B1, . . . , Bp,
FROM R1, . . . , Rm
WHERE condition

and that e2 is translated into

SELECT A1, . . . , Ak, C1, . . . , Cs,
FROM S1, . . . , S`
WHERE condition′

where all the aliases R1, . . . , Rm, S1, . . . , S` are (renamed to be) distinct.

• The expression e1 on e2 is translated into

SELECT ne1(A1) AS A1, . . . , ne1(Ak) AS Ak,
ne1(B1) AS B1, . . . , ne1(Bp) AS Bp,
ne2(C1) AS C1, . . . , ne2(Cs) AS Cs,

FROM R1, . . . , Rm, S1, . . . , S`
WHERE condition AND condition′

AND ne1(A1) = ne2(A1) AND · · · AND ne1(Ak) = ne2(Ak)

where ne1(Ai) is the name of the attribute that was renamed as Ai
in the translation of e1. In other words, if we had R.A AS Ai in that
query, then ne1(Ai) = R.A, and the definition is similar for e2.

This can be easily illustrated via an example. Consider the relation
names R[A,B,D], S[B,C], T [A,C,D], and the two queries

SELECT A, C, D

FROM R, S AS S1

WHERE R.B = S1.B

and
SELECT A, B, D

FROM S AS S2, T
WHERE S2.C = T.C

Then, their join, having attributes A,B,C,D, is given by

SELECT R.A AS A, S2.B AS B, S1.C AS C, R.D AS D

FROM R, S AS S1, S AS S2, T

WHERE R.B = S1.B AND S2.C = T.C AND R.A = T.A AND R.D = T.D
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• If e = e1 − e2, then Qe is

(Qe1) EXCEPT (Qe2)

• Finally, if e = e1 ∪ e2, then Qe is

(Qe1) UNION (Qe2)

This completes the translation from (named) RA to Core SQL.

Core SQL to Relational Algebra

While the previous section explained how to write RA queries in SQL, this
section gives an intuition as to what happens when an SQL query is executed
on a DBMS. A declarative query is translated into a procedural query to be
executed. The real translation of SQL into RA is significantly more complex
and, of course, captures many more features of SQL (and thus, the algebra im-
plemented in DBMSs goes beyond the algebra we consider here). Nonetheless,
the translation we outline presents the key ideas of the real-life translation.

Assume that we start with the query

SELECT α1 AS B1, . . . , αn AS Bn
FROM R1 AS S1, . . . , Rm AS Sm
WHERE condition

where all relation names in FROM have been renamed so they are different, and
each αi is of the form Sj .Ap, that is, one of the attributes of the relation names
in the FROM clause. Let ρρρi be the sequence of renaming operators that rename
each attribute A of Ri to Si.A. Let ρρρout be the sequence of renaming operators
that forms the output, i.e., it renames each αi as Bi. Then, the translated
query in relational algebra follows:

ρρρout

(
π{α1,...,αn}

(
σcondition

(
ρρρ1

(
R1

)
on · · · on ρρρm

(
Rm
))))

.

Essentially the FROM defines the join, WHERE provides the condition for se-
lection, and SELECT is the final projection (hence, some clash of the naming
conventions in SQL and RA).

The translation is then supplemented by translating UNION to RA’s union
∪ and EXCEPT to RA’s difference −.
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Other SQL Features Captured by RA

A very important feature of SQL is using subqueries. In the fragment we are
considering, they are very convenient for a declarative presentation of queries
(although from the point of view of expressiveness of the language, they can
be omitted). Consider, for example, the query that computes the difference of
two relations R and S with one attribute A. We could use EXCEPT, but using
subqueries we can also write

SELECT R.A

FROM R

WHERE R.A NOT IN (SELECT S.A FROM S)

saying that we need to return elements of R that are not present in S, or

SELECT R.A

FROM R

WHERE NOT EXISTS (SELECT S.A FROM S WHERE S.A = R.A)

which asks for elements a of R such that there is no b in S satisfying a = b.
Both queries express the difference.

Example 5.2: Subqueries in SQL

Consider the query ϕ(x, y), where ϕ is the FO formula (3.2), which asks
for IDs and names of people whose cities of birth were not recorded in
the City relation. This can also be written as the SQL query:

SELECT P.pid, P.pname

FROM Person AS P

WHERE P.cid NOT IN (SELECT City.cid FROM City)

The above two forms of subqueries, using NOT IN and NOT EXISTS, corre-
spond to adding the following two types of selection conditions to RA, which,
nevertheless, do not increase the expressiveness of RA; see Exercise 1.6:

• ā ∈ e, where ā is a tuple of terms and e is an expression, checking whether
ā belongs to the result of the evaluation of e, and

• empty(e), checking if the result of the evaluation of e is empty.

In general, subqueries can be used in other clauses, and in fact they are
very commonly used in FROM. A simple example follows.
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Example 5.3: Subqueries in FROM

Consider the query ϕ(x), where ϕ is the FO formula (3.1), which asks
for people who have two different professions. This can be written as

SELECT PProfs.id

FROM

(SELECT P.pid AS id, Pr1.prname as pf1, Pr2.prname as pf2

FROM Person AS P, Profession AS Pr1, Profession AS Pr2

WHERE P.pid = Pr1.pid AND P.pid = Pr1.pid)

AS PProfs

WHERE NOT (PProfs.pf1 = PProfs.pf2)

In Example 5.3, the join of Person and Profession occurs in the subquery
in FROM, and the condition that two professions are different is applied to the
result of the join, which is given the name of PProfs. Again such addition does
not increase expressiveness (Exercise 1.7) but makes writing queries easier.

Other SQL Features Not Captured by RA

Bag Semantics. As mentioned already, SQL’s data model is based on bags,
i.e., the same tuple may occur multiple times in a database or output of a
query. Here we tacitly assumed that all relations are sets and each SELECT

is followed by DISTINCT to ensure that duplicates are eliminated. To see
how RA operations change in the presence of duplicates, see Chapter 40.

Grouping and Aggregation. An extremely common feature of SQL queries
is the use of aggregation and grouping. Aggregation allows numerical func-
tions to be applied to entire columns, for example, to find the total salary
of all employees in a company. Grouping allows such columns to be split
according to a value of some attribute; an example of this is a query that
returns the total salary of each department in a company. These features
will be discussed in more detail in Chapter 30.

Nulls. SQL databases permit missing values in tuples. To handle this, they
allow a special element null to be placed as a value. The handling of nulls
is very different though from the handling of values from Const, and even
the notion of query output changes in this case. These issues are discussed
in detail in Chapters 35 and 36.

Types. In SQL databases, attributes must be typed, i.e., all values in a col-
umn must have the same type. There are standard types such as numbers
(integers, floats), strings of various length, fixed or varying, date, time,
and many others. With the exception of the consideration of arithmetic
operations (Chapter 30), this is a subject that we do study in this book.
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Equivalence of Logic and Algebra

In this chapter, we prove that the declarative query language based on FO,
and the procedural query language RA have the same expressive power, which
is a fundamental result of relational database theory. Recall that we focus on
the unnamed version of RA for reasons that we explained earlier.

Theorem 6.1

The languages of RA queries and of FO queries are equally expressive.

The proof of Theorem 6.1 boils down to showing that, for a schema S, the
following statements hold:

(a) For every RA expression e over S, there exists an FO query qe such that
qe(D) = e(D), for every database D of S.

(b) For every FO query q over S, there exists an RA expression eq such that
eq(D) = q(D), for every database D of S.

In the proof of the above, we need a mechanism that allows us to substitute
variables in formulae. For an FO formula ϕ and variables {x1, . . . , xn}, we
denote by ϕ[x1/y1, . . . , xn/yn] the formula obtained from ϕ by simultaneously
replacing each xi with yi. We also use the notation ∃{x1, . . . , xn}ϕ for a set
of variables {x1, . . . , xn} as an abbreviation for ∃x1 · · · ∃xnϕ. Notice that the
ordering of quantification is irrelevant for the semantics of this formula.

From RA to FO

We first show (a) by induction on the structure of e. The base cases are:

• If e = R for R ∈ Dom(S), then the FO query is ϕe(x1, . . . , xar(R)), where
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ϕe = R(x1, . . . , xar(R))

with all the variables x1, . . . , xar(R) being different.

• If e is {a} with a ∈ Const, then the FO query is ϕe(x), where

ϕe = (x = a).

We now proceed with the induction step. Assume that e and e′ are RA
expressions over S for which we have equivalent FO queries ϕe(x1, . . . , xk) and
ϕe′(y1, . . . , y`), respectively. By renaming variables, we can assume, without
loss of generality, that {x1, . . . , xk} and {y1, . . . , y`} are disjoint.

• Let θ be a condition over {1, . . . , k}. Taking x̄ = (x1, . . . , xk), we induc-
tively define the formula θ[x̄] as follows:

– if θ is i
.
= j, i

.
= a, i 6 .= j, or i 6 .= a, then θ[x̄] is xi = xj , xi = a,

xi 6= xj , or xi 6= a, respectively,

– if θ = θ1 ∧ θ2, then θ[x̄] = θ1[x̄] ∧ θ2[x̄],

– if θ = θ1 ∨ θ2, then θ[x̄] = θ1[x̄] ∨ θ2[x̄], and

– if θ = ¬θ1, then θ[x̄] = ¬θ1[x̄].

Then, the FO query equivalent to σθ(e) is ϕσθ(e)(x̄) = ϕe(x̄) ∧ θ[x̄].

• Let α = (i1, . . . , ip) be a list of numbers from {1, . . . , k}. The FO query
equivalent to πα(e) is ϕπα(e)(xi1 , . . . , xip), where ϕπα(e) is the formula

∃({x1, . . . , xn} − {xi1 , . . . , xip}) ϕe.

Notice that, if α has repetitions, then (xi1 , . . . , xip) has repeated variables.
For example, if e = R, where R is binary, and α = (1, 1), then the FO
query is ϕe(x1, x1) with ϕe = ∃x2R(x1, x2).

• The FO query equivalent to e × e′ is ϕe×e′(x1, . . . , xk, y1, . . . , y`), where
ϕe×e′ is the formula

ϕe ∧ ϕe′ .

• Let e ∪ e′ be an RA expression, which is only well-defined if k = `. The
equivalent FO query is ϕe∪e′(x1, . . . , xk), where ϕe∪e′ is

ϕe ∨ (ϕe′ [y1/x1, . . . , yk/xk]).

• Let e − e′ be an RA expression, which is only well-defined if k = `. The
equivalent FO query is ϕe−e′(x1, . . . , xk), where ϕe−e′ is

ϕe ∧ ¬(ϕe′ [y1/x1, . . . , yk/xk]).

We leave the verification of the construction, that is, the inductive proof of
the equivalence of e and ϕe(x̄), to the reader. This concludes part (a).
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From FO to RA

For proving (b), we assume that relational atoms do not mention constants,
which we observed in Chapter 3 is always possible. We also consider a slight
generalization of FO queries that will simplify the induction: ϕ(x1, . . . , xn)
is an FO query even if the free variables of ϕ are a subset of {x1, . . . , xn}.
The semantics of such a query ϕ(x1, . . . , xn) is the usual semantics of the FO
query ϕ′(x1, . . . , xn), where ϕ′ is the formula ϕ∧ (x1 = x1)∧ · · · ∧ (xn = xn).

Let q be an FO query of the form ϕ(x1, . . . , xn). We can assume, without
loss of generality, that ϕ is in prenex normal form, that is, of the form

Qk · · ·Q1 ϕqf ,

where

• each Qj is of the form ∃yj or ¬∃yj ,
• ϕqf is quantifier-free and has (free) variables y1, . . . , ym,

• {x1, . . . , xn} = {yk+1, . . . , ym}, and

• ϕqf only uses the Boolean operators ∨ and ¬.

Let Dom(ϕ) = {a1, . . . , a`}. First, we build an RA expression Adom for
the active domain, that is,

Adom =
⋃̀
i=1

{ai} ∪
⋃

R[n]∈S

(
π1(R) ∪ · · · ∪ πn(R)

)
.

In the following, we denote by Adomi, for i ∈ N, the i-fold Cartesian product

Adom× · · · ×Adom︸ ︷︷ ︸
i

.

We construct for each subformula ψ of ϕ an RA query eψ. The induction
hypothesis consists of two parts.

(1) For each subformula ψ of ϕqf , the expression eψ has arity m and is equiv-
alent to the FO query ψ(y1, . . . , ym).

(2) For all the other subformulae ψ of ϕ, it holds that ψ = Qj · · ·Q1 ϕqf , for
j ∈ [k], FV(ψ) = {yj+1, . . . , ym}, and the expression eψ, which has arity
m− j, is equivalent to the FO query Qj · · ·Q1 ϕqf(yj+1, . . . , ym).

The inductive construction defines the expression
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eψ =



π1,...,m(σi1=m+1,...,ij=m+j(Adomm ×R)) if ψ is R(yi1 , . . . , yij )

σi .=j(Adomm) if ψ is yi = yj

σi .=a(Adomm) if ψ is yi = a

eψ1
∪ eψ2

if ψ is (ψ1 ∨ ψ2)

Adomm − eψ′ if ψ is ¬ψ′, and

ψ is a subformula of ϕqf

π2,...,m−j+1(eψ′) if ψ is ∃yj ψ′ and Qj = ∃yj
Adomm−j − π2,...,m−j+1(eψ′) if ψ is ¬∃yj ψ′

We leave the proof that the inductive construction gives an expression that is
equivalent to ϕ(yk+1, . . . , ym) to the reader. To obtain an expression equivalent
to ϕ(x1, . . . , xn), observe that xi ∈ {yk+1, . . . , ym} for every i ∈ [n]. Therefore,
there exists a function f : [n]→ [m− k] such that xi = yf(i) for every i ∈ [n].
This means that the expression π(f(1),...,f(n))eϕ is equivalent to ϕ(x1, . . . , xn).
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First-Order Query Evaluation

In this chapter, we study the complexity of evaluating first-order queries, that
is, FO-Evaluation. Recall that this is the problem of checking whether ā ∈ q(D)
for an FO query q, a database D, and a tuple ā over Const.

Combined Complexity

We first concentrate on the combined complexity of the problem, that is, when
the input consists of the query q, the database D, and the tuple ā.

Theorem 7.1

FO-Evaluation is PSpace-complete.

Proof. We start with the upper bound. We prove the theorem for the case
where ā is a tuple over Dom(D) and leave the extension to arbitrary tuples
of constants as an exercise.

Consider an FO query q = ϕ(x̄), a database D, and a tuple ā over Dom(D).
We can assume, as discussed in Chapter 3, that the relational atoms in ϕ do
not contain constants. We can also assume that the tuples x̄ = (x1, . . . , xn)
and ā = (a1, . . . , am) are compatible, that is, they have the same length (i.e.,
n = m), and xi = xj implies ai = aj for every i, j ∈ [n]. Indeed, if x̄ and ā
are not compatible, which can be easily checked using logarithmic space, then
ā 6∈ q(D) holds trivially. We can also assume that ϕ uses only ¬, ∨, and ∃
(see Exercise 1.1).

By Definition 3.6, ā ∈ q(D) if and only if (D, η) |= ϕ with η being the
assignment for ϕ over D such that η(x̄) = ā. Therefore, to establish Theo-
rem 7.1, it suffices to show that the problem of checking whether (D, η) |= ϕ is
in PSpace. This is done by exploiting the recursive procedure Evaluation,
depicted in Algorithm 1. Notice that the algorithm performs simple Boolean
tests for determining its output values, like testing if R(η(x̄)) is an element of
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D in line 1 or whether η(xi) = η(xj) in line 2. It is not difficult to verify that
(D, η) |= ϕ if and only if Evaluation(ϕ,D, η) = true. It remains to argue
that Evaluation(ϕ,D, η) uses polynomial space.

Algorithm 1 Evaluation(ϕ,D, η)

Input: An FO formula ϕ, a database D, and an assignment η for ϕ over D.
Output: true if (D, η) |= ϕ, and false otherwise.

1: if ϕ is of the form R(x̄) then return R(η(x̄)) ∈ D
2: else if ϕ is of the form (xi = xj) then return η(xi) = η(xj)
3: else if ϕ is of the form (xi = a) then return η(xi) = a
4: else if ϕ is of the form ¬ϕ′ then return ¬Evaluation(ϕ′, D, η)
5: else if ϕ is of the form ϕ′ ∨ ϕ′′ then
6: return Evaluation(ϕ′, D, η) ∨ Evaluation(ϕ′′, D, η)
7: else if ϕ is of the form ∃xϕ′ then
8: return

∨
a∈Dom(D) Evaluation(ϕ′, D, η[x/a])

9: . η[x/a] extends η by setting η(x) = a.

Lemma 7.2. Evaluation(ϕ,D, η) runs in space O(‖ϕ‖2 · log ‖D‖).

Proof. Observe that the total space used by Evaluation(ϕ,D, η) is its recur-
sion depth times the space needed by each recursive call. It is clear that the
recursion depth is O(‖ϕ‖). We proceed to argue, by induction on the structure
of ϕ, that each recursive call uses O(‖ϕ‖·log ‖D‖) space, which in turn implies
that the total space used by Evaluation(ϕ,D, η) is O(‖ϕ‖2 · log ‖D‖).

• Assume first that ϕ = R(x̄). In this case, the algorithm checks whether
R(η(x̄)) ∈ D. The space needed to store η(x̄) on the work tape (adopting
the encoding discussed in Appendix C) is O(‖ϕ‖ · log ‖D‖). Furthermore,
as shown in Appendix C (see Lemma C.1), for a tuple t̄ over Dom(D), we
can check whether R(t̄) ∈ D using O(ar(R) · log ‖D‖) space if ar(R) > 0,
and O(log ‖D‖) space if ar(R) = 0. Therefore, in the worst-case where
ar(R) > 0, we can check whether R(η(x̄)) ∈ D using space

O(‖ϕ‖ · log ‖D‖) + O(ar(R) · log ‖D‖).

Since ar(R) ≤ ‖ϕ‖, the total space used is O(‖ϕ‖ · log ‖D‖).
• When ϕ = (xi = xj), the algorithm checks whether η(xi) = η(xj), which

can be done using O(‖ϕ‖·log ‖D‖) space by simply storing the tuples η(xi)
and η(xj) (adopting the encoding from Appendix C) on the work tape,
and then check that they are equal. The case ϕ = (xi = a) is analogous.

• When ϕ = ¬ϕ′, the algorithm computes the value ¬Evaluation(ϕ′, D, η),
which, by induction hypothesis, can be done using O(‖ϕ‖ · log ‖D‖) space.
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• When ϕ = ϕ′ ∨ ϕ′′, the algorithm computes Evaluation(ϕ′, D, η) ∨
Evaluation(ϕ′′, D, η), which, by induction hypothesis, can be done using
O(‖ϕ‖ · log ‖D‖) space.

• Finally, assume that ϕ = ∃xϕ′. In this case, the algorithm computes∨
a∈Dom(D) Evaluation(ϕ′, D, η[x/a]). This is done by iterating over the

constants of Dom(D) in the order provided by the encoding of D (see
Appendix C), and reusing the space used by the previous iteration. Thus,
it suffices to argue that computing the value Evaluation(ϕ′, D, η[x/a]),
for some value a ∈ Dom(D), can be done using O(‖ϕ‖·log ‖D‖) space. The
latter clearly holds by induction hypothesis, and the claim follows. ut

For the lower bound, we provide a reduction from QSAT, which we know
is PSpace-complete (see Appendix B). Consider an input to QSAT given by

ψ = ∃x̄1∀x̄2∃x̄3 . . . Qnx̄n ψ
′〈x̄1, . . . , x̄n〉,

where Qn = ∀ if n is even, and Qn = ∃ if n is odd. We assume that ψ′ is in
negation normal form, which means that negation is only applied to variables,
since QSAT remains PSpace-hard. We construct the database

D = {Zero(0),One(1)}

and the Boolean FO query

qψ = ∃x̄1∀x̄2∃x̄3 . . . Qnx̄n ψ
′′,

where ψ′′ is obtained from ψ′ by replacing each occurrence of the literal x
by One(x), and each occurrence of the literal ¬x by ¬One(x). For example,
if ψ′(x1, x2, x3) = (x1 ∧ x2) ∨ (¬x1 ∧ x3), then ψ′′ = (One(x1) ∧ One(x2)) ∨
(¬One(x1)∧One(x3)). It is not hard to verify that ψ is satisfiable if and only
if D |= qψ (we leave the proof as an exercise). ut

Note that q(D), for an FO query q = ϕ(x̄) and a database D, can also be
computed in polynomial space as follows: iterate over all tuples ā over Dom(D)
that are compatible with x̄, and output ā if and only if Evaluation(ϕ,D, η)
= true with η being the assignment for ϕ over D such that η(x̄) = ā. It is
easy to show that this procedure runs in polynomial space. This, of course,
relies on the fact that the running space of a Turing Machine with output is
defined without considering the output tape; see Appendix B for details.

Data Complexity

How can it be that databases are so successful in practice, even though Theo-
rem 7.1 proves that the most essential database problem is PSpace-complete,
a complexity class that we consider to be intractable? If we take a closer look
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at the lower bound proof of Theorem 7.1, we see that the entire difficulty of the
problem is encoded in the query. In fact, the database D = {Zero(0),One(1)}
consists of only two atoms, whereas the query q can be arbitrarily large. This is
in contrast to what we typically experience in practice, where databases are or-
ders of magnitude larger than queries, which means that databases and queries
contribute in different ways to the complexity of evaluation. This brings us to
the data complexity of FO query evaluation.

As discussed in Chapter 2, when we study the data complexity of query
evaluation, we essentially consider the query to be fixed, and only the database
and the candidate output are considered as input. Formally, we are interested
in the complexity of the problem q-Evaluation for an FO query q, which takes
as input a database D and a tuple ā over Dom(D), and asks whether ā ∈ q(D).
Recall that, by convention, we say that FO-Evaluation is in a complexity class
C in data complexity if q-Evaluation is in C for every FO query q.

Theorem 7.3

FO-Evaluation is in DLogSpace in data complexity.

Proof. Fix an FO query q = ϕ(x̄). Our goal is to show that q-Evaluation is in
DLogSpace. As in the proof of Theorem 7.1, we prove the result for the case
that ā is a tuple over Dom(D) and leave the extension to tuples over Const as
an exercise.

Consider a database D, and a tuple ā over Dom(D). As explained in
the proof of Theorem 7.1, we can assume that the relational atoms in ϕ do
not contain constants, the tuples x̄ = (x1, . . . , xn) and ā = (a1, . . . , am) are
compatible, and that ϕ uses only ¬, ∨, and ∃. To prove our claim it suffices
to show that checking whether (D, η) |= ϕ with η being the assignment for
ϕ over D such that η(x̄) = ā is in DLogSpace. This is done by exploiting
the procedure Evaluationϕ, which takes as input D and η, and is defined in
exactly the same way as the procedure Evaluation given in Algorithm 1. It
is straightforward to see that (D, η) |= ϕ if and only if Evaluationϕ(D, η)
= true. Moreover, from the complexity analysis of Evaluation performed
in the proof of Theorem 7.1, and the fact that ϕ is fixed, we conclude that
Evaluationϕ(D, η) runs in space O(log ‖D‖), and the claim follows. ut

Theorem 7.3 essentially tells us that fixing the query indeed has a big im-
pact to the complexity of evaluation, which goes from PSpace to DLogSpace.
Actually, FO-Evaluation is in AC0 in data complexity, a class that is properly
contained in DLogSpace. The class AC0 consists of those languages that are
accepted by polynomial-size circuits of constant depth and unbounded fan-in
(the number of inputs to their gates). This is the reason why FO-Evaluation
is often regarded as an “embarrassingly parallel” task.
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Static Analysis

We now study central static analysis tasks for FO queries. We focus on sat-
isfiability, containment, and equivalence, which are key ingredients for query
optimization. As we shall see, these problems are undecidable for FO queries.
This in turn implies that, given an FO query, computing an optimal equivalent
FO query is, in general, algorithmically impossible.

Satisfiability

A query q is satisfiable if there is a database D such that q(D) is non-empty.
It is clear that a query that is not satisfiable it is not a useful query since its
output on a database is always empty. In relation to satisfiability, we consider
the following problem, parameterized by a query language L.

Problem: L-Satisfiability

Input: A query q from L
Output: true if there is a database D such that q(D) 6= ∅, and false

otherwise

Notice that satisfiability is, in a sense, the most elementary static analysis
question one can ask about a query. It asks: “Does there exist a database at
all for which the query returns an answer?” Indeed, if there does not, then
optimizing the query is extremely simple: one can just always return the empty
set of answers, independently of the input database.

We are asking the satisfiability question on finite databases. Had it been
asked over possibly infinite databases, a classical result in logic from the 1930s,
known as Church’s theorem (sometimes Church-Turing theorem) would have
told us that it is undecidable. But over finite databases, the problem is still
undecidable; this was proved by Trakhtenbrot a number of years after the
Church-Turing theorem. This is what we show next.



50 8 Static Analysis

Theorem 8.1: Trakhtenbrot’s Theorem

FO-Satisfiability is undecidable.

Proof. The proof is by reduction from the halting problem for Turing Ma-
chines; details on Turing Machines can be found in Appendix B. It is well-
known that the problem of deciding whether a (deterministic) Turing Machine
M = (Q,Σ, δ, s) halts on the empty word is undecidable. Our goal is to con-
struct a Boolean FO query qM such that the following are equivalent:

1. M halts on the empty word.

2. There exists a database D such that qM (D) = true.

The Boolean FO query qM will be over the schema

{≺[2],First[1],Succ[2]} ∪ {Symbola[2] | a ∈ Σ} ∪ {Head[2],State[2]}.

The intuitive meaning of the above relation names is the following:

• ≺(·, ·) encodes a strict linear order over the underlying domain, which will
be used to simulate the time steps of the computation of M on the empty
word, and the tape cells of M .

• First(·) contains the first element from the linear order ≺.

• Succ(·, ·) encodes the successor relation over the linear order ≺.

• Symbola(t, c): at time instant t, the tape cell c contains the symbol a.

• Head(t, c): at time instant t, the head points at cell c.

• State(t, p): at time instant t, the machine M is in state p.

Having the above schema in place, we can now proceed with the definition
of the Boolean FO query qM , which is of the form

ϕ≺ ∧ ϕfirst ∧ ϕsucc ∧ ϕcomp,

where ϕ≺, ϕfirst and ϕsucc are FO sentences that are responsible for defining
the relations ≺, First and Succ, respectively, while ϕcomp is an FO sentence
responsible for mimicking the computation of M on the empty word. The
definitions of the above FO sentences follow. For the sake of readability, we
write x ≺ y instead of the formal ≺(x, y).

The Sentence ϕ≺

This sentence simply expresses that the binary relation ≺ over the underlying
domain is total, irreflexive, and transitive:
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∀x∀y
(
¬(x = y)→ (x ≺ y ∨ y ≺ x)

)
∧

∀x¬(x ≺ x) ∧
∀x∀y∀z

(
(x ≺ y ∧ y ≺ z)→ x ≺ z

)
.

Note that irreflexivity and transitivity together imply that the relation ≺ is
also asymmetric, i.e., ∀x∀y ¬(x ≺ y ∧ y ≺ x).

The Sentence ϕfirst

This sentence expresses that First(·) contains the smallest element over ≺:

∀x∀y
(
First(x) ↔ (x = y ∨ x ≺ y)

)
The Sentence ϕsucc

It simply defines the successor relation over ≺ as expected:

∀x∀y
(

Succ(x, y) ↔
(
x ≺ y ∧ ¬∃z (x ≺ z ∧ z ≺ y)

))
.

The Sentence ϕcomp

Assume that the set of states of M is Q = {p1, . . . , pk}, where p1 = s is the
start state, p2 = “yes” is the accepting state, and p3 = “no” is the rejecting
state. The key idea is to associate to each state of M a distinct element of
the underlying domain, which in turn will allow us to refer to the states of
M . Thus, ϕcomp is defined as the following FO sentence; for a subformula ψ
of ϕcomp, we write ψ〈x̄〉 to indicate that FV(ψ) consists of the variables in x̄:

∃x1 · · · ∃xk
(∧

i,j∈[k] : i<j ¬(xi = xj) ∧ ϕstart〈x1〉 ∧ ϕconsistent〈x1, . . . , xk〉 ∧

ϕδ〈x1, . . . , xk〉 ∧ ϕhalt〈x2, x3〉
)
,

where

• ϕstart defines the start configuration sc(ε),

• ϕconsistent performs several consistency checks to ensure that the compu-
tation of M on the empty word is faithfully described,

• ϕδ encodes the transition function of M , and

• ϕhalt checks whether M halts.

The definitions of the subformulae of ϕcomp follow.

The Formula ϕstart. It is defined as the conjunction of the following FO for-
mulae, expressing that the first tape cell contains the left marker
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∀x
(
First(x) → Symbol.(x, x)

)
,

the rest of tape cells contain the blank symbol

∀x∀y
(
(First(x) ∧ ¬First(y)) → Symbolt(x, y)

)
,

the head points to the first cell

∀x (First(x) → Head(x, x)),

and the machine M is in state s

∀x (First(x) → State(x, x1)).

Note that we refer to the start state s = p1 via the variable x1.

The Formula ϕconsistent. It is defined as the conjunction of the following FO
formulae, expressing that, at any time instant x, M is in exactly one state

∀x

( k∨
i=1

State(x, xi)

)
∧

∧
i,j∈[k] : i<j

¬
(
State(x, xi) ∧ State(x, xj)

) ,

each tape cell y contains exactly one symbol

∀x∀y

( ∨
a∈Σ

Symbola(x, y)

)
∧

∧
a,b∈Σ : a6=b

¬
(
Symbola(x, y) ∧ Symbolb(x, y)

) ,

and the head points at exactly one cell

∀x
(
∃yHead(x, y) ∧ ∀y∀z

((
Head(x, y) ∧Head(x, z)

)
→ y = z

))
.

The Formula ϕδ. It is defined as the conjunction of the following FO formulae:
for each pair (pi, a) ∈ (Q− {“yes”, “no”})×Σ with δ(pi, a) = (pj , b,dir),

∀x∀y
((

State(x, xi) ∧Head(x, y) ∧ Symbola(x, y) ∧ ∃t (x ≺ t)
)
→

∃z∃w
(

Succ(x, z) ∧Move(y, w) ∧Head(z, w) ∧ Symbolb(z, y) ∧ State(z, xj)∧

∀u
(
¬(y = u)→

∧
c∈Σ

(
Symbolc(x, u)→ Symbolc(z, u)

))))
,

where

Move(y, w) =


Succ(y, w) if dir =→,

Succ(w, y) if dir =←, and

y = w if dir = −.
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The Formula ϕhalt. Finally, this formula checks whether M has reached an
accepting or a rejecting configuration

∃x (State(x, x2) ∨ State(x, x3)).

Recall that, by assumption, p2 = “yes” and p3 = “no”. Thus, the states “yes”
and “no” can be accessed via the variables x2 and x3, respectively.

This completes the construction of the Boolean FO query qcomp, and thus
of qM . It is not hard to verify that M halts on the empty word if and only if
there exists a database D such that q(D) = true, and the claim follows. ut

The proof of Theorem 8.1 relies on the fact that databases are finite.
For possibly infinite databases, the proof given above does not work. Indeed,
assuming that the Turing Machine M does not halt on the empty word, we
can construct an infinite database D such that qM (D) = true (we leave
this as an exercise).1 As mentioned earlier, the Church-Turing theorem shows
undecidability of the satisfiability problem for FO queries over possibly infinite
databases (see also Exercise 1.12).

We have seen in Chapter 6 that FO and RA have the same expressive power
(Theorem 6.1). This fact and Theorem 8.1 immediately imply the following.

Corollary 8.2

RA-Satisfiability is undecidable.

Containment and Equivalence

We now focus on the problems of containment and equivalence for FO queries:
given two FO queries q and q′, is it the case that q ⊆ q′ and q ≡ q′, respectively.
By exploiting Theorem 8.1, it is easy to show the following.

Theorem 8.3

FO-Containment and FO-Equivalence are undecidable.

Proof. The proof is by an easy reduction from FO-Satisfiability. Consider an
FO query q. From the proof of Theorem 8.1, we know that FO-Satisfiability is
undecidable even for Boolean FO queries. Consider the Boolean FO query

q′ = ∃x (R(x) ∧ ¬R(x)),

which is trivially unsatisfiable. It is easy to verify that q is unsatisfiable if and
only if q ≡ q′ (or even q ⊆ q′), and the claim follows. ut
1 The output of an FO query on an infinite database D is defined in the same way

as for databases (see Definition 3.6).
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The following is an easy consequence of the fact that FO and RA have the
same expressive power, and Theorem 8.3.

Corollary 8.4

RA-Containment and RA-Equivalence are undecidable.
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Homomorphisms

Homomorphisms are a fundamental tool that plays a very prominent role in
various aspects of relational databases. We introduce them here, because we
will use them in Chapter 10 to reason about functional dependencies. In this
chapter, we define homomorphisms and provide some simple examples.

Definition of Homomorphism

Homomorphisms are structure-preserving functions between two objects of
the same type. In our setting, the objects that we are interested in are (possi-
bly infinite) databases and queries. To talk about them as one we define ho-
momorphisms among (possibly infinite) sets of relational atoms. Recall that
relational atoms are of the form R(ū), where ū is a tuple that can mix vari-
ables and constants, e.g., R(a, x, 2, b). Recall also that we write Dom(S) for
the set of constants and variables occurring in a set of relational atoms S; for
example, Dom({R(a, x, b), R(x, a, y)}) = {a, b, x, y}.

The way that the notion of homomorphism is defined between sets of atoms
is slightly different from the standard notion of mathematical homomorphism,
namely constant values of Const should be mapped to themselves. The reason
for this is that, in general, a value a ∈ Const represents an object different
from the one represented by b ∈ Const with a 6= b, and homomorphisms, as
structure preserving functions, should preserve this information as well.

Definition 9.1: Homomorphism

Let S, S′ be sets of relational atoms over the same schema. A homomor-
phism from S to S′ is a function h : Dom(S)→ Dom(S′) such that:

1. h(a) = a for every a ∈ Dom(S) ∩ Const, and

2. if R(ū) is an atom in S, then R(h(ū)) is an atom in S′.
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If h(ū) = v̄, where ū, v̄ are tuples of the same length over Dom(S) and
Dom(S′), respectively, then h is a homomorphism from (S, ū) to (S′, v̄).
We write S → S′ if there exists a homomorphism from S to S′, and
(S, ū)→ (S′, v̄) if there exists a homomorphism from (S, ū) to (S′, v̄).

Example 9.2: Homomorphism

Assume that S and S′ are sets of relational atoms over a schema with a
single binary relation name R. In this way, we can view both S and S′ as
a graph: the set of nodes is the set of constants and variables occurring
in the relational atoms, and R(u, v) means that there exists an edge from
u to v. Unless stated otherwise, the elements in S and S′ are variables.

A homomorphism always exists. Let S′ = {R(z, z)}. The function
h : Dom(S) → Dom(S′) such that h(x) = z, for each x ∈ Dom(S),
is a homomorphism from S to S′ since R(h(x), h(y)) = R(z, z) is an
atom of S′, for every x, y ∈ Dom(S).

A homomorphism does not exist. Let S = {R(a, x)} and S′ =
{R(z, z)}, where a ∈ Const. In contrast to the previous example,
there is no homomorphism h from S to S′ since, by definition, h(a)
must be equal to a, while a 6∈ Dom(S′).

A homomorphism is easy to find. Let now S′ = {R(x, y), R(y, x)}.
Assume that a homomorphism h from S to S′ exists. As usual, h−1

stands for the inverse, i.e., h−1(x) = {z ∈ Dom(S) | h(z) = x}, and
likewise for h−1(y). The sets h−1(x) and h−1(y) are disjoint since
x 6= y. If we have an edge (z, w) in S, we know that the variables z
and w cannot belong to the same set h−1(x) or h−1(y); otherwise,
either R(x, x) or R(y, y) would be an atom in S by the definition
of the homomorphism. This means that S, viewed as a graph, is
bipartite: its nodes are partitioned into two sets such that edges can
only connect vertices in different sets. In other words, the nodes of
the graph given by S can be colored with two colors x and y. Thus, in
this case, checking for the existence of a homomorphism witnessing
S → S′ is the same as checking for the existence of a 2-coloring of
S, which can be done in polynomial time (by using, for example, a
coloring version of depth-first search).

A homomorphism is hard to find. We now add z to Dom(S′), and
let S′ = {R(x, y), R(y, x), R(x, z), R(z, x), R(y, z), R(z, y)}. Then, as
before, if h : Dom(S) → Dom(S′) is a homomorphism from S to
S′, and R(z, w) is an edge in S, then h(z) 6= h(w). In other words,
the nodes of the graph given by S can be colored with three colors
x, y and z. Therefore, in this case, checking for the existence of a
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homomorphism witnessing S → S′ is the same as checking for the
existence of a 3-coloring of S, which is an NP-complete problem.

Grounding Sets of Atoms

In several chapters, it will be convenient to have a mechanism viewing sets of
atoms as databases. This is done by converting a set of atoms S into a possibly
infinite database by replacing the variables occurring in S by new constants
not already in S.1 This process is called grounding, and can be easily defined
via homomorphisms.

Definition 9.3: Grounding

Let S be a set of relational atoms over a schema S. A possibly infinite
databaseD of S is called a grounding of S if there exists a homomorphism
from S to D that is a bijection.

Note that in general, there is no unique grounding for a set of atoms.
Consider, for example, the set of atoms

S = {R(x, a, y), P (y, b, x, z)},

where a, b are constants and x, y, z are variables. The databases

D1 = {R(c1, a, d1), R(d1, b, c1, e1)} and D2 = {R(c2, a, d2), R(d2, b, c2, e2)}

with c1 6= c2, d1 6= d2, and e1 6= e2, are both groundings of S. On the other
hand, D1 and D2 are isomorphic databases, that is, they are the same up to
renaming of constants. This simple observation can be generalized to any set
of atoms. In particular, for a set of atoms S, it is straightforward to show that,
for every two groundingsD1 andD2 of S, there is a bijection ρ : Const→ Const
such that ρ(D1) = D2. Therefore, we can refer to:

• the grounding of S, denoted S↓, and

• the unique bijective homomorphism GS : S → S↓.

We conclude the chapter with a note on the difference between Dom(S)
and Dom(S↓), to avoid confusion later in the book. If S is a set of atoms, then
Dom(S) ⊆ Const ∪ Var, that is, it may contain both constants and variables.
On the other hand, by definition, Dom(S↓) contains only constants. Similarly,

RS is a set of tuples that may mention constants and variables, while RS
↓

is
a set of tuples that mention only constants.

1 Converting a database into a set of atoms by replacing constants with variables
is needed less often; this is discussed in Chapter 14.
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Functional Dependencies

In a relational databse system, it is possible to specify semantic properties
that should be satisfied by all databases of a certain schema, such as “ev-
ery person should have at most one social security number”. Such properties
are crucial in the development of transparent and usable database schemas for
complex applications, as well as for optimizing the evaluation of queries. How-
ever, the relational model as presented in Chapter 2 is not powerful enough
to express such semantic properties. This can be achieved by incorporating
integrity constraints, also known as dependencies.

One of the most important classes of dependencies supported by relational
systems is the class of functional dependencies, which can express that the
values of some attributes of a tuple uniquely (or functionally) determine the
values of other attributes of that tuple. For example, considering the schema

Person [ pid, name, cid ]

we can express that the id of a person uniquely determines that person via
the functional dependency

Person : {1} → {1, 2, 3},

which essentially states that whenever two tuples of the relation Person agree
on the first attribute, i.e., the id, they should also agree on all the other at-
tributes. In fact, this form of dependency, where a set of attributes determines
the entire tuple is of particular interest and is called a key dependency. We
may also say that the id attribute is a key of the Person relation.

Syntax and Semantics

We start with the syntax of functional dependencies.
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Definition 10.1: Syntax of Functional Dependencies

A functional dependency (FD) σ over a schema S is an expression

R : U → V

where R ∈ S and U, V ⊆ {1, . . . , ar(R)}. If V = {1, . . . , ar(R)}, then σ
is called a key dependency, and we simply write key(R) = U .

Intuitively, an FD R : U → V expresses that the values of the attributes
U of R functionally determine the values of the attributes V of R, while a
key dependency key(R) = U states that the values of the attributes U of R
functionally determine the values of all the attributes of R. We proceed to
formally define the semantics of FDs. Note that in the following definition, by
abuse of notation, we write U and V in the projection expressions πU (·) and
πV (·) for the lists consisting of the elements of U and V in ascending order.

Definition 10.2: Semantics of FDs

A database D of a schema S satisfies an FD σ of the form R : U → V
over S, denoted D |= σ, if for each pair of tuples ā, b̄ ∈ RD,

πU (ā) = πU (b̄) implies πV (ā) = πV (b̄).

D satisfies a set Σ of FDs, written D |= Σ, if D |= σ for each σ ∈ Σ.

Note that the notion of satisfaction for FDs can be easily transferred to
finite sets of atoms by exploiting the notion of grounding of sets of atoms. In
particular, a finite set of atoms S satisfies an FD σ, denoted S |= σ, if S↓ |= σ,
while S satisfies a set Σ of FDs, written S |= Σ, if S↓ |= Σ.

Satisfaction of Functional Dependencies

A central task is checking whether a database D satisfies a set Σ of FDs.

Problem: FD-Satisfaction

Input: A database D of a schema S, and a set Σ of FDs over S

Output: true if D |= Σ, and false otherwise

It is not difficult to show the following result:
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Theorem 10.3

FD-Satisfaction is in Ptime.

Proof. Consider a database D of a schema S, and a set Σ of FDs over S. Let
σ be an FD from Σ of the form R : U → V . To check whether D |= σ we need
to check that, for every ā, b̄ ∈ RD, πU (ā) = πU (b̄) implies πV (ā) = πV (b̄). It
is easy to verify that this can be done in time O(‖D‖2). Therefore, we can
check whether D |= Σ in time O(‖Σ‖ · ‖D‖2), and the claim follows. ut

The Chase for Functional Dependencies

Another crucial task in connection with dependencies is that of (logical) im-
plication, which allows us to discover new dependencies from existing ones. A
natural problem that arises in this context is, given a set of dependencies Σ
and a dependency σ, to determine whether Σ implies σ. This means checking
if, for every database D such that D |= Σ, it holds that D |= σ. Before formal-
izing and studying this problem, we first introduce a fundamental algorithmic
tool for reasoning about dependencies known as the chase. Actually, the chase
should be understood as a family of algorithms since, depending on the class
of dependencies in question, we may get a different variant. However, all the
chase variants have the same objective, that is, given a finite set of relational
atoms S, and a set Σ of dependencies, to transform S as dictated by Σ into
a set of relational atoms that satisfies Σ.

Consider a finite set S of relational atoms over a schema S, and an FD
σ = R : U → V over S. We say that σ is applicable to S with (ū, v̄), where
ū, v̄ ∈ RS ,1 if πU (ū) = πU (v̄) and πV (ū) 6= πV (v̄). Let πV (ū) = (u1, . . . , uk)
and πV (v̄) = (v1, . . . , vk). For technical convenience, we assume that there is
a strict total order < on the elements of the set Const ∪ Var such that a < x,
for each a ∈ Const and x ∈ Var, i.e., constants are smaller than variables
according to <. Let hū,v̄ : Dom(S)→ Dom(S) be a function such that

hū,v̄(w) =


ui if w = vi and ui < vi, for some i ∈ [k],

vi if w = ui and vi < ui, for some i ∈ [k],

w otherwise.

The result of applying σ to S with (ū, v̄) is defined as

S′ =

⊥ if there is an i ∈ [k] with ui 6= vi and ui, vi ∈ Const,

hū,v̄(S) otherwise.

1 Recall that tuples in RS can contain both constants and variables.
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Intuitively, the application of σ to S with (ū, v̄) fails, indicated by ⊥, whenever
we have two distinct constants from Const that are supposed to be equal to
satisfy σ. In case of non-failure, S′ is obtained from S by simply replacing
ui and vi by the smallest of the two, for every i ∈ [k]. Recall that, by our
assumption on <, if one of ui, vi is a variable and the other one is a constant,
then the variable is always replaced by the constant. The application of σ to

S with (ū, v̄), which results to S′, is denoted by S
σ,(ū,v̄)−−−−→ S′.

We are now ready to introduce the notion of chase sequence of a finite set
S of relational atoms under a set Σ of FDs, which formalizes the objective of
transforming S as dictated by Σ into a set of atoms that satisfies Σ.

Definition 10.4: The Chase for FDs

Consider a finite set S of relational atoms over a schema S, and a set Σ
of FDs over S.

• A finite chase sequence of S under Σ is a finite sequence s =
S0, . . . , Sn of sets of relational atoms, where S0 = S, and

– for each i ∈ [0, n − 1], there is an FD σ = R : U → V in Σ and

atoms R(ū), R(v̄) ∈ Si such that Si
σ,(ū,v̄)−−−−→ Si+1, and

– either Sn = ⊥, in which case we say that s is failing, or, for every
FD σ = R : U → V in Σ and atoms R(ū), R(v̄) ∈ Sn, σ is not
applicable to Sn with (ū, v̄), in which case s is called successful.

• An infinite chase sequence of S under Σ is an infinite sequence
S0, S1, . . . of sets of relational atoms, where S0 = S, and for each
i ≥ 0, there is an FD σ = R : U → V in Σ and atoms R(ū), R(v̄) ∈ Si
such that Si

σ,(ū,v̄)−−−−→ Si+1.

We proceed to present some fundamental properties of the chase for FDs.2

In what follows, let S be a finite set of relational atoms, and Σ a finite set
of FDs, both over the same schema S. It is not hard to see that there are no
infinite chase sequences under FDs.3 This is a consequence of the fact that
each non-failing chase application does not introduce new terms but only
equalizes them. Therefore, in the worst-case, the chase either will fail, or will
produce after finitely many steps a set of relational atoms with only one term,
which trivially satisfies every functional dependency.

Lemma 10.5. There is no infinite chase sequence of S under Σ.

2 Formal proofs are omitted since in Chapter 48 we are going to present the chase
for a more general class of dependencies than FDs, known as equality-generating
dependencies, and provide proofs there for all the desired properties.

3 As we discuss in Chapter 11, this is not the case for other types of dependencies,
in particular, inclusion dependencies.
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Although there could be several finite chase sequences of S under Σ, de-
pending on the application order of the FDs in Σ, we can show that all those
sequences either fail or end in exactly the same set of relational atoms.

Lemma 10.6. Let S0, . . . , Sn and S′0, . . . , S
′
m be two finite chase sequences of

S under Σ. Then it holds that Sn = S′m.

The above lemma allows us to refer to the result of the chase of S under
Σ, denoted by Chase(S,Σ), which is defined as Sn for some (any) finite chase
sequence S0, . . . , Sn of S under Σ. Notice that we do not need to define the
result of infinite chase sequences under FDs since, by Lemma 10.5, they do not
exist. Hence, Chase(S,Σ) is either the symbol ⊥, or a finite set of relational
atoms. It is not difficult to verify that in the latter case, Chase(S,Σ) satisfies
Σ. Actually, this follows from the definition of successful chase sequences.

Lemma 10.7. If Chase(S,Σ) 6= ⊥, then Chase(S,Σ) |= Σ.

A central notion is that of chase homomorphism, which essentially com-
putes the result of a successful finite chase sequence of S under Σ. Consider
such a chase sequence s = S0, S1, . . . , Sn of S under Σ such that

S0
σ0,(ū0,v̄0)−−−−−−→ S1

σ1,(ū1,v̄1)−−−−−−→ S2 · · ·Sn−1
σn−1,(ūn−1,v̄n−1)−−−−−−−−−−−−→ Sn.

Recall that Si = hūi−1,v̄i−1
(Si−1), for each i ∈ [n]. The chase homomorphism

of s, denoted hs, is defined as the composition of functions

hūn−1,v̄n−1
◦ hūn−2,v̄n−2

◦ · · · ◦ hū0,v̄0
.

It is clear that hs(S0) = hs(S) = Sn. Since, by Lemma 10.6, different finite
chase sequences have the same result, we get the following.

Lemma 10.8. Let s and s′ be successful finite chase sequences of S under Σ.
It holds that hs(S) = hs′(S).

Therefore, assuming that Chase(S,Σ) 6= ⊥, we can refer to the chase homo-
morphism of S under Σ, denoted hS,Σ . It should be clear that Chase(S,Σ) 6=
⊥ implies hS,Σ(S) = Chase(S,Σ).

By Lemma 10.5, Chase(S,Σ) can be computed after finitely many steps.
Furthermore, assuming that Chase(S,Σ) 6= ⊥, also the chase homomorphism
hS,Σ can be computed after finitely many steps. In fact, as the next lemma
states, this is even possible after polynomially many steps.

Lemma 10.9. Chase(S,Σ) can be computed in polynomial time. Further-
more, if Chase(S,Σ) 6= ⊥, then hS,Σ can be computed in polynomial time.

The last main property of the chase states that, if Chase(S,Σ) 6= ⊥, then
it acts as a representative of all the sets of atoms S′ that satisfy Σ and S → S′,
that is, there exists a homomorphism from S to S′.
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Lemma 10.10. Let S′ be a set of atoms over S such that (S, ū)→ (S′, v̄) and
S′ |= Σ. If Chase(S,Σ) 6= ⊥, then (Chase(S,Σ), hS,Σ(ū))→ (S′, v̄).

Note that the definition of the chase for FDs, as well as its main properties,
would be technically simpler if we focus on sets of constant-free atoms since in
this case there are no failing chase sequences. As we shall see, this suffices for
studying the implication problem for FDs. Nevertheless, we consider sets of
atoms with constants since the chase is also used in Chapter 18 for studying
a different problem for which the proper treatment of constants is vital.

Implication of Functional Dependencies

We now proceed to study the implication problem for FDs, which we define
next. Given a set Σ of FDs over a schema S and a single FD σ over S, we say
that Σ implies σ, denoted Σ |= σ, if, for every database D of S, we have that
D |= Σ implies D |= σ. The main problem of concern is the following:

Problem: FD-Implication

Input: A set Σ of FDs over a schema S, and an FD σ over S

Output: true if Σ |= σ, and false otherwise

We proceed to show the following result:

Theorem 10.11

FD-Implication is in Ptime.

To show Theorem 10.11, we first show how implication of FDs can be
characterized via the chase for FDs. This is done by showing that checking
whether a set of FDs Σ implies an FD σ boils down to checking whether the
result of the chase of the prototypical set of relational atoms Sσ that violates
σ is a set of atoms that satisfies σ. Given an FD σ of the form R : U → V ,
the set Sσ is defined as {R(x1, . . . , xar(R)), R(y1, . . . , yar(R))}, where

• x1, . . . , xar(R), y1, . . . , yar(R) are variables,

• for each i, j ∈ {1, . . . , ar(R)} with i 6= j, xi 6= xj and yi 6= yj , and

• for each i ∈ {1, . . . , ar(R)}, xi = yi if and only if i ∈ U .

We can now show the following useful characterization:
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Proposition 10.12

Consider a set Σ of FDs over as schema S, and an FD σ over S. Then:

Σ |= σ if and only if Chase(Sσ, Σ) |= σ.

Proof. (⇒) By hypothesis, for every finite set of relational atoms S, it holds
that S |= Σ implies S |= σ. Observe that Chase(Sσ, Σ) 6= ⊥ since Sσ contains
only variables. Therefore, by Lemma 10.7, we have that Chase(Sσ, Σ) |= Σ.
Since, by Lemma 10.5, Chase(Sσ, Σ) is finite, we get that Chase(Sσ, Σ) |= σ.

(⇐) Consider now a database D of S such that D |= Σ, and with σ
being of the form R : {i1, . . . , ik} → {j1, . . . , j`}, assume that there are tuples
(a1, . . . , aar(R)), (b1, . . . , bar(R)) ∈ RD such that (ai1 , . . . , aik) = (bi1 , . . . , bik).
Recall also that Sσ is of the form {R(x1, . . . , xar(R)), R(y1, . . . , yar(R))}. Let
z̄ = (xj1 , . . . , xj` , yj1 , . . . , yj`) and c̄ = (aj1 , . . . , aj` , bj1 , . . . , bj`). It is clear
that (Sσ, z̄)→ (D, c̄). Since D |= Σ and Chase(Sσ, Σ) 6= ⊥, by Lemma 10.10

(Chase(Sσ, Σ), hSσ,Σ(z̄)) → (D, c̄).

Since, by hypothesis, Chase(Sσ, Σ) |= Σ, we can conclude that

(hSσ,Σ(xj1), . . . , hSσ,Σ(xj`)) = (hSσ,Σ(yj1), . . . , hSσ,Σ(yj`)),

which in turn implies that

(aj1 , . . . , aj`) = (bj1 , . . . , bj`).

Therefore, D |= σ, and the claim follows. ut

By Proposition 10.12, we get a simple procedure for checking whether a
set Σ of FDs implies an FD σ that runs in polynomial time:

if Chase(Sσ, Σ) |= σ, then return true; otherwise, return false.

We know that the set of atoms Chase(Sσ, Σ) can be constructed in polynomial
time (Lemma 10.9), and we also know that Chase(Sσ, Σ) |= σ can be checked
in polynomial time (Theorem 10.3), and Theorem 10.11 follows.
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Inclusion Dependencies

In this chapter, we concentrate on another central class of constraints sup-
ported by relational database systems, called inclusion dependencies (also
known as referential constraints). With this type of constraints we can express
relationships among attributes of different relations, which is not possible us-
ing functional dependencies. For example, having the schema

Person [ pid, pname, cid ]

Profession [ pid, prname ]

we would like to express that the values occurring in the first attribute of
Profession are person ids. This can be done via the inclusion dependency

Profession[1] ⊆ Person[1].

This dependency simply states that the set of values occurring in the first
attribute of the relation Profession should be a subset of the set of values
appearing in the first attribute of the relation Person.

Syntax and Semantics

We start with the syntax of inclusion dependencies.

Definition 11.1: Syntax of Inclusion Dependencies

An inclusion dependency (IND) σ over a schema S is an expression

R[i1, . . . , ik] ⊆ P [j1, . . . , jk]

where k ≥ 1, R,P belong to S, and (i1, . . . , ik) and (j1, . . . , jk) are lists
of distinct integers from {1, . . . , ar(R)} and {1, . . . , ar(P )}, respectively.
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Intuitively, an IND R[i1, . . . , ik] ⊆ P [j1, . . . , jk] states that if R(ā) belongs
to a database D, then in the same database an atom P (b̄) should exist such
that the i`-th element of ā coincides with the j`-th element of b̄, for ` ∈ [k].
The formal definition of the semantic meaning of INDs follows.

Definition 11.2: Semantics of INDs

A database D of a schema S satisfies an IND σ of the form R[i1, . . . , ik] ⊆
P [j1, . . . , jk] over S, denoted D |= σ, if for every tuple ā ∈ RD, there
exists a tuple b̄ ∈ PD such that

π(i1,...,ik)(ā) = π(j1,...,jk)(b̄).

D satisfies a set Σ of INDs, denoted D |= Σ, if D |= σ for each σ ∈ Σ.

Satisfaction of Inclusion Dependencies

A central task is checking whether a database D satisfies a set Σ of INDs.

Problem: IND-Satisfaction

Input: A database D over a schema S, and a set Σ of INDs over S

Output: true if D |= Σ, and false otherwise

It is not difficult to show the following result:

Theorem 11.3

IND-Satisfaction is in Ptime.

Proof. Consider a database D of a schema S, and a set Σ of INDs over S. Let σ
be an IND from Σ of the form R[i1, . . . , ik] ⊆ P [j1, . . . , jk]. To check whether
D |= σ we need to check that, for every tuple (a1, . . . , aar(R)) ∈ RD, there
exists a tuple (b1, . . . , bar(P )) ∈ PD such that (ai1 , . . . , aik) = (bj1 , . . . , bjk). It
is not difficult to verify that this can be done in time O(‖D‖2). Therefore, we
can check whether D |= Σ in time O(‖Σ‖ · ‖D‖2), and the claim follows. ut

The Chase for Inclusion Dependencies

As for FDs, the other crucial task of interest in connection with INDs is (log-
ical) implication. Unsurprisingly, the main tool for studying the implication
problem for INDs is the chase for INDs, which we introduce next.
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Consider a finite set S of atoms over S, and an IND σ = R[i1, . . . , im] ⊆
P [j1, . . . , jm] over S. We say that σ is applicable to S with ū = (u1, . . . , uar(R))
if ū ∈ RS . Let new(σ, ū) = P (v1, . . . , var(P )), where, for each ` ∈ [ar(P )],

v` =


uik if ` = jk, for k ∈ [m],

x
σ,π(i1,...,im)(ū)

` otherwise,

with x
σ,π(i1,...,im)(ū)

` ∈ Var−Dom(S).1 The result of applying σ to S with ū is
the set of atoms S′ = S ∪{new(σ, ū)}. In simple words, S′ is obtained from S
by adding the new atom new(σ, ū), which is uniquely determined by σ and ū.

The application of σ to S with ū, which results in S′, is denoted S
σ,ū−−→ S′.

We are now ready to introduce the notion of chase sequence of a finite set
S of relational atoms under a set Σ of INDs, which formalizes the objective
of transforming S as dictated by Σ into a set of atoms that satisfies Σ.

Definition 11.4: The Chase for INDs

Consider a finite set S of relational atoms over a schema S, and a set Σ
of INDs over S.

• A finite chase sequence of S under Σ is a finite sequence s =
S0, . . . , Sn of sets of relational atoms, where S0 = S, and

1. for each i ∈ [0, n−1], there is σ = R[α] ⊆ P [β] in Σ and ū ∈ RSi

such that new(σ, ū) 6∈ Si and Si
σ,ū−−→ Si+1, and

2. for each IND σ = R[α] ⊆ P [β] in Σ and ū ∈ RSn , new(σ, ū) ∈ Sn.

The result of s is defined as the set of atoms Sn.

• An infinite chase sequence of S under Σ is an infinite sequence s =
S0, S1, . . . of sets of atoms, where S0 = S, and

1. for each i ≥ 0, there is σ = R[α] ⊆ P [β] in Σ and ū ∈ RSi such

that new(σ, ū) 6∈ Si and Si
σ,ū−−→ Si+1, and

2. for each i ≥ 0, and for each σ = R[α] ⊆ P [β] in Σ and ū ∈ RSi
such that σ is applicable to Si with ū, there exists j > i such
that new(σ, ū) ∈ Sj .

The result of s is defined as the set infinite set of atoms
⋃
i≥0 Si.

In the case of finite chase sequences, the first condition in Definition 11.4
simply says that Si+1 is obtained from Si by applying σ to Si with ū, while

1 One could adopt a simpler naming scheme for these newly introduced variables.
For example, for each ` ∈ [ar(P )]− {j1, . . . , jm}, we could simply name the new
variable xσ,ū` . For further details on this matter see the comments for Part I.
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σ has not been already applied to some Sj , for j < i, with ū. The second
condition states that no new atom, which is not already in Sn, can be derived
by applying an IND of Σ to Sn. Now, in the case of infinite chase sequences,
the first condition in Definition 11.4, as in the finite case, says that Si+1 is
obtained from Si by applying σ to Si with ū, while σ has not been already
applied before. The second condition is known as the fairness condition, and
it ensures that all the INDs that are applicable eventually will be applied.

We proceed to show some fundamental properties of the chase for INDs.2

In what follows, let S be a finite set of relational atoms, and Σ a finite set of
INDs, both over the same schema S. Recall that in the case of FDs we know
that there are no infinite chase sequences since a chase application does not
introduce new terms, but only equalizes terms. However, in the case of INDs,
a chase step may introduce new variables not occurring in the given set of
atoms, which may lead to infinite chase sequences. Indeed, this can happen
even for simple sets of atoms and INDs. For example, it is not hard to verify
that the single chase sequence of {R(a, b)} under {R[2] ⊆ R[1]} is infinite.

Although we may have infinite chase sequences, we can still establish some
favourable properties. It is clear that there are several chase sequences of S
under Σ depending on the order that we apply the INDs of Σ. However, the
adopted naming scheme of new variables ensures that, no matter when we
apply an IND σ with a tuple ū, the newly generated atom new(σ, ū) is always
the same, which in turn allows us to show that all those chase sequences
have the same result. At this point, let us stress that the result of an infinite
chase sequence s = S0, S1, . . . of S under Σ always exists.3 This can be shown
by exploiting classical results of fixpoint theory. By using Kleene’s Theorem,
we can show that

⋃
i≥0 Si coincides with the least fixpoint of a continuous

operator (which corresponds to a single chase step) on the complete lattice
(Inst(S),⊆), which we know that always exists by Knaster-Tarski’s Theorem
(we leave the proof as an exercise). We can now state the announced result.

Lemma 11.5. The following hold:

1. There exists a finite chase sequence of S under Σ if and only if there is
no infinite chase sequence of S under Σ.

2. Let S0, . . . , Sn and S′0, . . . , S
′
m be two finite chase sequences of S under

Σ. Then, it holds that Sn = S′m.

3. Let S0, S1, . . . and S′0, S
′
1, . . . be two infinite chase sequences of S under

Σ. Then, it holds that
⋃
i≥0 Si =

⋃
i≥0 S

′
i.

Lemma 11.5 allows us to refer to the unique result of the chase of S under
Σ, denoted Chase(S,Σ), which is defined as the result of some (any) finite or

2 Formal proofs are omitted since in Chapter 39 we are going to present the chase
for a more general class of dependencies than INDs, known as tuple-generating
dependencies, and provide proofs there for all the desired properties.

3 This statement trivially holds for finite chase sequences.
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infinite chase sequence of S under Σ. At this point, the reader may expect that
the next key property is that Chase(S,Σ) satisfies Σ. However, it should not
be overlooked that Chase(S,Σ) is a possibly infinite set of atoms, and thus,
we cannot directly apply the notion of satisfaction from Definition 11.2. Nev-
ertheless, Definition 11.2 can be readily applied to possibly infinite databases,
which in turn allows us to transfer the notion of satisfaction for INDs to sets
of atoms via the notion of grounding. In particular, a set of atoms S satisfies
an IND σ, denoted S |= σ, if S↓ |= σ, while S satisfies a set Σ of INDs, written
S |= Σ, if S↓ |= Σ. We can now formally state that Chase(S,Σ) satisfies Σ.
Let us clarify, though, that in the case where only infinite chase sequences
exist, this result heavily relies on the fairness condition.

Lemma 11.6. It holds that Chase(S,Σ) |= Σ.

The last crucial property states that Chase(S,Σ) acts as a representative
of all the finite or infinite sets of atoms S′ that satisfy Σ, and such that there
exists a homomorphism from S to S′, that is, S → S′.

Lemma 11.7. Let S′ be a set of atoms over S such that (S, ū)→ (S′, v̄) and
S′ |= Σ. It holds that (Chase(S,Σ), ū)→ (S′, v̄).

Implication of Inclusion Dependencies

We now proceed to study the implication problem for INDs. The notion of
implication for INDs is defined in the same way as for functional dependencies.
More precisely, given a set Σ of INDs over a schema S and a single IND σ
over S, we say that Σ implies σ, denoted Σ |= σ, if, for every database D of
S, we have that D |= Σ implies D |= σ. This leads to the following problem:

Problem: IND-Implication

Input: A set Σ of INDs over a schema S, and an IND σ over S

Output: true if Σ |= σ, and false otherwise

Although for FDs the implication problem is tractable (Theorem 10.11),
for INDs it turns out to be an intractable problem:

Theorem 11.8

IND-Implication is PSpace-complete.

We first concentrate on the upper bound. We are going to establish a result,
analogous to Proposition 10.12 for FDs, that characterizes implication of INDs
via the chase. However, since the chase for INDs may build an infinite set of
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atoms, we can only characterize implication under possibly infinite databases.
Given a set Σ of INDs over a schema S and a single IND σ over S, we say
that Σ implies without restriction σ, denoted Σ |=∞ σ, if, for every possibly
infinite database D of S, we have that D |= Σ implies D |= σ.

Given an IND σ of the form R[i1, . . . , ik] ⊆ P [j1, . . . , jk], the set Sσ is
defined as the singleton {R(x1, . . . , xar(R))}, where x1, . . . , xar(R) are distinct
variables. We can now show the following auxiliary lemma.

Lemma 11.9. Consider a set Σ of INDs over schema S, and an IND σ over
S. It holds that Σ |=∞ σ if and only if Chase(Sσ, Σ) |= σ.

Proof. (⇒) By hypothesis, for every possibly infinite set of relational atoms
S, it holds that S |= Σ implies S |= σ. By Lemma 11.6, Chase(Sσ, Σ) |= Σ,
and therefore, Chase(Sσ, Σ) |= σ.

(⇐) Consider now a possibly infinite database D of S such that D |=
Σ, and with σ being of the form R[i1, . . . , ik] ⊆ P [j1, . . . , jk], assume that
there exists a tuple (a1, . . . , aar(R)) ∈ RD. Recall also that Sσ is of the form
{R(x1, . . . , xar(R))}. Let ȳ = (xi1 , . . . , xik) and b̄ = (ai1 , . . . , aik). It is clear
that (Sσ, ȳ)→ (D, b̄). Since D |= Σ, by Lemma 11.7

(Chase(Sσ, Σ), ȳ) → (D, b̄).

Since, by hypothesis, Chase(Sσ, Σ) |= σ, we can conclude that there exists a
tuple (z1, . . . , zar(P )) ∈ PChase(Sσ,Σ) such that

(xi1 , . . . , xik) = (zj1 , . . . , zjk),

which in turn implies that there exists (c1, . . . , car(P )) ∈ PD such that

(ai1 , . . . , aik) = (cj1 , . . . , cjk).

Therefore, D |= σ, and the claim follows. ut

Lemma 11.9 alone is of little use since it characterizes implication of INDs
under possibly infinite databases, whereas we are interested only in (finite)
databases. However, we can show that implication of INDs is finitely control-
lable, which means that implication under finite databases (|=) and implication
under possibly infinite databases (|=∞) coincide.

Theorem 11.10: Finite Controllability of Implication

Consider a set Σ of INDs over as schema S, and an IND σ over S. Then:

Σ |= σ if and only if Σ |=∞ σ.

Although the above theorem is crucial for our analysis, we do not discuss
its proof here (see Exercise 1.16). An immediate consequence of Lemma 11.9
and Theorem 11.10 is the following:
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Corollary 11.11

Consider a set Σ of INDs over a schema S, and an IND σ over S. Then:

Σ |= σ if and only if Chase(Sσ, Σ) |= σ.

Due to Corollary 11.11, the reader may think that the procedure for check-
ing whether Σ |= σ, which will lead to the PSpace upper bound claimed in
Theorem 11.8, is simply to construct the set of atoms Chase(Sσ, Σ), and then
check whether it satisfies σ, which can be achieved due to Theorem 11.3. How-
ever, it should not be forgotten that Chase(Sσ, Σ) may be infinite. Therefore,
we need to rely on a finer procedure that avoids the explicit construction of
Chase(Sσ, Σ). We proceed to present a technical lemma that is the building
block of this refined procedure, but first we need some terminology.

Given an IND σ = R[i1, . . . , im] ⊆ P [j1, . . . , jm] and a tuple of variables
x̄ = (x1, . . . , xar(R)), we define the atom new?(σ, x̄) as the atom obtained
from new(σ, x̄) after replacing the newly introduced variables with the special
variable ? 6∈ {x1, . . . , xar(R)}, which should be understood as a placeholder for
new variables. Formally, new?(σ, x̄) = P (y1, . . . , yar(P )), where, for ` ∈ [ar(P )],

y` =

xik if ` = jk, for k ∈ [m],

? otherwise.

Given a set Σ of INDs, a witness of σ relative to Σ is a sequence of atoms
R1(x̄1), . . . , Rn(x̄n), for n ≥ 1, such that:

• Sσ = {R1(x̄1)},
• for each i ∈ [2, n], there is σi = Ri−1[αi−1] ⊆ Ri[αi] in Σ that is applicable

to {Ri−1(x̄i−1)} with x̄i−1 such that Ri(x̄i) = new?(σi, x̄i−1),

• Rn = P , and

• π(i1,...,im)(x̄1) = π(j1,...,jm)(x̄n).

A witness of σ relative to Σ is essentially a compact representation, which
uses only ar(R) + 1 variables, of a sequence of atoms of Chase(Sσ, Σ) that
witnesses the following: starting from Sσ = {R(x1, . . . , xar(R))}, an atom
P (y1, . . . , yar(P )) with π(i1,...,im)(x1, . . . , xar(R)) = π(j1,...,jm)(y1, . . . , yar(P ))
can be obtained via chase applications, which means that Chase(Sσ, Σ) |= σ.
It is also not difficult to see that if Chase(Sσ, Σ) |= σ, then a witness of σ rela-
tive to Σ can be extracted from Chase(Sσ, Σ). This discussion is summarized
in the following technical lemma, whose proof is left as an exercise.

Lemma 11.12. Consider a set Σ of INDs over a schema S, and an IND σ
over S. Then, Chase(Sσ, Σ) |= σ iff there is a witness of σ relative to Σ.
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By Corollary 11.11 and Lemma 11.12, we have that the problem of check-
ing whether a set Σ of INDs over a schema S implies a single IND σ over S,
boils down to checking whether a witness of σ relative to Σ exists. This is done
via the nondeterministic procedure depicted in Algorithm 2. Assume that σ
is of the form R[i1, . . . , ik] ⊆ P [j1, . . . , jk]. The algorithm first checks whether
R[i1, . . . , ik] = P [j1, . . . , jk], in which case a witness of σ relative to Σ trivially
exists, and returns true. Otherwise, it proceeds to nondeterministically con-
struct a witness of σ relative to Σ (if one exists). This is done by constructing
one atom after the other via chase steps, without having to store more than
two consecutive atoms. The algorithm starts from SO = {R(x1, . . . , Rar(R))};
SO should be understood as the “current atom”, which at the beginning is Sσ,
from which we construct the “next atom” S. in the sequence. The repeat-until
loop is responsible for constructing S. from SO. This is done by guessing an
IND σ′ ∈ Σ, and adding to S. the atom new?(σ′, ȳ) if σ′ is applicable to SO

with ȳ; note that ȳ is the single tuple occurring in SO. This is repeated until
the algorithm chooses to exit the loop by setting Check to 1, and check whether
S. consists of an atom T ′(z̄) with T ′ = P and π(i1,...,ik)(x̄) = π(j1,...,jk)(z̄), in
which case it returns true; otherwise, it returns false.

Algorithm 2 ImplicationWitness(Σ, σ)

Input: A set Σ of INDs over S and σ = R[i1, . . . , ik] ⊆ P [j1, . . . , jk] over S.
Output: true if there is a witness of σ relative Σ, and false otherwise.

1: if R = P and (i1, . . . , ik) = (j1, . . . , jk) then
2: return true

3: SO := {R(x̄)}, where x̄ = (x1, . . . , xar(R)) consists of distinct variables
4: S. := ∅
5: repeat
6: if σ′ = T [α] ⊆ T ′[β] ∈ Σ is applicable to SO with ȳ ∈ Dom(SO)ar(T ) then
7: S. := {new?(σ′, ȳ)}
8: if S. = ∅ then
9: return false

10: SO := S.
11: S. := ∅
12: Check := b, where b ∈ {0, 1}
13: until Check = 1
14: return (T ′ = P ∧ π(i1,...,ik)(x̄) = π(j1,...,jk)(z̄))

It is easy to verify that Algorithm 2 uses polynomial space. This heavily
relies on the fact that the atoms generated during its computation contain
only variables from {x1, . . . , xar(R)} and the special variable ?, which in turn
implies that SO and S. can be represented using polynomial space. It also
takes polynomial space to check if R[i1, . . . , ik] = P [j1, . . . , jk] (see line 1), to
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check if an IND is applicable to SO with ȳ (see line 6), and to check if T ′ = P
and π(i1,...,ik)(x̄) = π(j1,...,jk)(z̄) (see line 14). Therefore, IND-Implication is in
NPSpace, and thus in PSpace since NPSpace = PSpace.

A PSpace lower bound for IND-Implication can be shown via a reduction
from the following PSpace-hard problem: given 2-TM M that runs in linear
space, and a word w over the alphabet of M , decide whether M accepts input
w. The formal proof is left as Exercise 1.18.
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Exercises for Part I

Exercise 1.1. Let q be an FO query. Prove that one can compute in polyno-
mial time an FO query q′ that uses only ¬, ∨, and ∃ such that q ≡ q′.

Exercise 1.2. We say that a query q from a database schema S to a relation
schema S′ is C-generic, for some C ⊆ Const, if for every database D of S,
and for every bijection ρ : Const→ Const that is the identity on C, q(ρ(D)) =
ρ(q(D)). Show that an FO query ϕ(x̄) over a schema S is Dom(ϕ)-generic.

Exercise 1.3. The semantics of the rename and join operations in the named
RA has been defined in Chapter 4. Provide formal definitions for the semantics
of the other operations, i.e., selection, projection, union, and difference.

Exercise 1.4. Find an example of a named RA query qn and an unnamed
RA query qu and two schemas S1 and S2 such that qn and qu are equivalent
under S1 but not under S2.

Exercise 1.5. State and prove the converse of Theorem 4.6.

Exercise 1.6. Prove that allowing conditions of the form ā ∈ e and empty(e)
in selection conditions of RA does not increase its expressiveness. In partic-
ular, show that selections with these new conditions can be expressed using
standard operations of RA.

Exercise 1.7. Prove that adding nested subqueries in the FROM clause does
not increase expressiveness. In particular, extend the translation from basic
SQL to RA that handles nested subqueries in FROM.

Exercise 1.8. The proofs of Theorems 7.1 and 7.3 only consider the special
case of FO-Evaluation where the input tuple ā is over Dom(D). In this case,
the complexity analysis is easier, because the size of ā is subsumed by the size
of the database. How can the proof be extended to FO-Evaluation in general,
i.e., allowing arbitrary tuples ā over Const?

Hint: If ā contains a value not in the active domain, what should FO-
Evaluation return?
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Exercise 1.9. For showing that FO-Evaluation is PSpace-hard, we provided
a reduction from QSAT. In particular, for an input to QSAT given by ψ, we
constructed a database D and an FO query qψ (see the proof of Theorem 7.1).
Show that ψ is satisfiable if and only if D |= qψ.

Exercise 1.10. For an integer k > 0, we write FOk for the class of FO queries
that can mention at most k variables. The evaluation problem for the class
of FOk queries, for some fixed k > 0, is defined as expected: given an FOk

query q, a database D, and a tuple ā, decide whether ā ∈ q(D). Show that
the evaluation problem for FOk queries, for a fixed k > 0, is in Ptime.

Exercise 1.11. Let qM be the Boolean FO query constructed in the proof of
Theorem 8.1. Prove that if the Turing machine M on the empty word does
not halt, then there exists an infinite database D such that q(D) = true.

Exercise 1.12. Let FO-Unrestricted-Satisfiability be the unrestricted version
of FO-Satisfiability where we consider possibly infinite databases. In other
words, FO-Unrestricted-Satisfiability is defined as follows: given an FO query
q, is there a possibly infinite database D such that q(D) 6= ∅? Show that FO-
Unrestricted-Satisfiability is undecidable by adapting the proof of Theorem 8.1.

Exercise 1.13. Prove that FO-Containment remains undecidable even if the
left hand-side query is a Boolean query q = ∃x̄ ϕ, where ϕ is a conjunction of
relational atoms or the negation of relational atoms.

Exercise 1.14. The algorithms underlying Theorems 10.3 and 11.3 for check-
ing whether a database satisfies a set of FDs and INDs, respectively, were
designed with simplicity instead of efficiency in mind. Provide more efficient
algorithms for the problems FD-Satisfaction and IND-Satisfaction.

Exercise 1.15. Prove that the result of an infinite chase sequence of a finite
set of relational atoms under a set of INDs always exists.

Exercise 1.16. Prove Theorem 11.10. The non-trivial task is to show that
if Σ |=∞ σ does not hold, then also Σ |= σ does not hold. One can exploit
Lemma 11.9, which states that if Σ |=∞ σ does not hold, then Chase(Sσ, Σ)
does not satisfy σ. If Chase(Sσ, Σ) is finite, then we have that Σ |= σ does not
hold. The main task is, when Chase(Sσ, Σ) is infinite, to convert Chase(Sσ, Σ)
into a finite set S such that S |= Σ, but S does not satisfy σ.

Exercise 1.17. Prove Lemma 11.12.

Exercise 1.18. Prove that IND-Implication is PSpace-hard. To this end, pro-
vide a reduction from the following PSpace-hard problem: given 2-TM M
that runs in linear space, and a word w over the alphabet of M , decide whether
M accepts input w.



Part II

Conjunctive Queries





13

Syntax and Semantics

Conjunctive queries are of special importance to databases. They express re-
lational joins, which correspond to the operation that is most commonly per-
formed by relational database engines. This is because data is typically spread
over multiple relations, and thus, to answer queries, one needs to join such re-
lations. Actually, conjunctive queries have the power of select-project-join RA
queries, which means that they correspond to a very common type of queries
written in Core SQL. The goal of this chapter is to introduce the syntax and
semantics of conjunctive queries.

Syntax of Conjunctive Queries

We start with the syntax of conjunctive queries.

Definition 13.1: Syntax of Conjunctive Queries

A conjunctive query (CQ) over a schema S is an FO query ϕ(x̄) over S
with ϕ being a formula of the form

∃ȳ
(
R1(ū1) ∧ · · · ∧Rn(ūn)

)
for n ≥ 1, where Ri(ūi) is a relational atom, and ūi a tuple of constants
and variables mentioned in x̄ and ȳ, for every i ∈ [n].

It is very common to represent CQs via a rule-like syntax, which is remi-
niscent of the syntax of logic programming rules. In particular, the CQ ϕ(x̄)
given in Definition 13.1 can be written as the rule

Answer(x̄) :– R1(ū1), . . . , Rn(ūn) ,

where Answer is a relation name not in S, and its arity (under the singleton
schema {Answer}) is equal to the arity of q. The relational atom Answer(x̄)
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that appears on the left of the :– symbol is called the head of the rule, while
the expression R1(ū1), . . . , Rn(ūn) that appears on the right of the :– symbol
is called the body of the rule. In general, throughout the book, we use the rule-
like syntax for CQs. Nevertheless, for convenience, we will freely interpret a
CQ as a first-order query or as a rule.

Example 13.2: Conjunctive Queries

Consider again the relational schema from Example 3.2:

Person [ pid, pname, cid ]

Profession [ pid, prname ]

City [ cid, cname, country ]

The following CQ can be used to retrieve the list of names of computer
scientists that were born in the city of Athens in Greece:

∃x∃z
(
Person(x, y, z) ∧ Profession(x, ‘computer scientist’) ∧

City(z, ‘Athens’, ‘Greece’)
)
.

In rule-like representation, this query is expressed as follows:

Answer(y) :– Person(x, y, z),Profession(x, ‘computer scientist’),

City(z, ‘Athens’, ‘Greece’).

A CQ q is Boolean if it has no output variables, i.e., x̄ is the empty tuple.
When we write a Boolean CQ as a rule, we simply write Answer as the head,
instead of Answer(). For example, the following Boolean CQ checks whether
there exists a computer scientist that was born in the city of Athens in Greece:

Answer :– Person(x, y, z),Profession(x, ‘computer scientist’),

City(z, ‘Athens’, ‘Greece’).

Semantics of Conjunctive Queries

Since CQs are FO queries, the definition of their output on a database can be
inherited from Definition 3.6. More precisely, given a database D of a schema
S, and a k-ary CQ q = ϕ(x̄) over S, where k ≥ 0, the output of q on D is

q(D) = {ā ∈ Dom(D)k | D |= ϕ(ā)} .

Notice that CQs only use constants inside relational atoms and, in particular,
do not use equational atoms. For this reason, the output of CQs only consists
of tuples of constants from Dom(D).
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Interestingly, there is a more intuitive (and equivalent) way of defining the
semantics of CQs when they are viewed as rules. The body of a CQ q of the
form Answer(x̄) :– body can be seen as a pattern that must be matched with
the database D via an assignment η that maps the variables in q to Dom(D).
For each such assignment η, if η applied to this pattern produces only facts
of D, it means that the pattern matches with D via η, and the tuple η(x̄) is
an output of q on D. We proceed to formalize this informal description.

Consider a database D and a CQ q of the form

Answer(x̄) :– R1(ū1), . . . , Rn(ūn) .

An assignment for q over D is a function η from the set of variables in q to
Dom(D). We say that η is consistent with D if

{R1(η(ū1)), . . . , Rn(η(ūn))} ⊆ D ,

where, for i ∈ [n], the fact Ri(η(ūi)) is obtained from replacing each variable x
in ūi with η(x), and leaving the constants in ūi untouched. The consistency of
η with D essentially means that the body of q matches with D via η. Having
this notion in place, we can define what is the output of a CQ on a database.

Definition 13.3: Evaluation of CQs

Given a database D of a schema S, and a CQ q(x̄) over S, the output of
q on D is defined as the set of tuples

q(D) = {η(x̄) | η is an assignment for q over D consistent with D} .

It is an easy exercise to show that the semantics of CQs inherited from
the semantics of FO queries in Definition 3.6, and the semantics of CQs given
in Definition 13.3, are equivalent, i.e., for a CQ q = ϕ(x̄) and a database D,

{ā ∈ Dom(D)k | D |= ϕ(ā)} =

{η(x̄) | η is an assignment for q over D consistent with D} .

Example 13.4: Evaluation of CQs

Let S be the schema from Example 3.2, which has been also used in
Example 13.2. Let D be the database of S shown in Figure 3.1; we recall
the relations Person and Profession in Figure 13.1. The following CQ q
can be used to retrieve the ids and names of actors:

Answer(x, y) :– Person(x, y, z),Profession(x, ‘actor’).

Observe that the assignment η for q over D such that

η(x) = ‘1’ η(y) = ‘Aretha’ η(z) = ‘MPH’
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Person

pid pname cid

1 Aretha MPH
2 Billie BLT
3 Bob DLT
4 Freddie ST

Profession

pid prname

1 singer
1 songwriter
1 actor
2 singer
3 singer
3 songwriter
3 author
4 singer
4 songwriter

Fig. 13.1: The relations Person and Profession for Example 13.4.

is consistent with D. Indeed, when applied to the body of q it produces
the facts Person(‘1’, ‘Aretha’, ‘MPH’) and Profession(‘1’, ‘actor’), both
of which are facts of D. On the other hand, the assignment η′ such that

η′(x) = ‘2’ η′(y) = ‘Billie’ η′(z) = ‘BLT’

is not consistent with D. When applied to the body of q, it generates
the fact Profession(‘2’, ‘actor’) that is not in D. It is straightforward to
verify that η is the only assignment for q over D that is consistent with
D, which in turn implies that the output of q on D is

q(D) = {(‘1’, ‘Aretha’)}.

If q is a Boolean CQ, then q(D) = true if and only if there is an assignment
for q over D that is consistent with D. In other words, q(D) = true if and
only if the body of the CQ matches with D via at least one assignment for q
over D. For instance, if in Example 13.4 we consider also the Boolean CQ q′

Answer :– Person(x, y, z),Profession(x, ‘actor’),

which is the Boolean version of q in Example 13.4, then q′(D) = true since
the assignment η is consistent with D. On the other hand, given the CQ q′′

Answer :– Person(x, y, z),Profession(x, ‘nurse’),

q′′(D) = false since there is no assignment η such that Person(η(x), η(y), η(z))
and Profession(η(x), ‘nurse’) are both facts of D.

Conjunctive Queries as a Fragment of FO

When CQs are seen as FO queries they use only relational atoms, conjunction
(∧), and existential quantification (∃). Thus, every CQ can be expressed using
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formulae from the fragment of FO that corresponds to the closure of relational
atoms under ∃ and ∧; we refer to this fragment of FO as FOrel[∧,∃]. Actually,
the converse is also true. Consider a query ϕ(x̄) with ϕ being an FOrel[∧,∃]
formula. It is easy to show that ϕ(x̄) is equivalent to a CQ. We first rename
variables in order ro ensure that bound variables do not repeat (which leads to
an equivalent query), and then push the existential quantifiers outside. This
conversion can be easily illustrated via a simple example.

Example 13.5: From FOrel[∧,∃] Queries to CQs

Consider the FOrel[∧,∃] query ϕ(x) with

ϕ = (∃y R(x, a, y)) ∧ (∃y S(y, x, b)).

We first rename the second occurrence of y, and get the query ϕ′(x) with

ϕ′ = (∃y R(x, a, y)) ∧ (∃z S(z, x, b)).

We then push all the quantifiers outside, and get the CQ ϕ′′(x) with

ϕ′′ = ∃y∃z
(
R(x, a, y) ∧ S(z, x, b)

)
.

From the above discussion, we immediately get that:

Theorem 13.6

The languages of CQs and of FOrel[∧,∃] queries are equally expressive.

Notice that FOrel[∧,∃] is not the same as FO[∧,∃], that is, the fragment
of FO that allows only for conjunction (∧) and existential quantification (∃).
Fragments defined by listing a set of features of FO are assumed to be the
closure of all atomic formulae (including equational atoms) under those fea-
tures. Therefore, the fragment FO[∧,∃] allows also for equational atoms, which
means that the query ϕ(x, y) with ϕ = (x = y) is an FO[∧,∃] query. As we
shall see in the next chapter, though, ϕ(x, y) is not equivalent to a CQ.

Conjunctive Queries as a Fragment of RA

The class of CQs has the same expressive power as the fragment of RA that al-
lows for selection, where conditions in selections are conjunctions of equalities,
projection, and Cartesian product. This is usually called the select-project-join
(SPJ) fragment of RA; henceforth, we simply refer to SPJ queries. Recall that
the join operation is actually a selection from the Cartesian product on a con-
dition that is a conjunction of equalities. We proceed to show that:
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Theorem 13.7

The languages of CQs and of SPJ queries are equally expressive.

Proof. We first show how to translate a CQ q of the form

Answer(x̄) :– R1(ū1), . . . , Rn(ūn)

into an SPJ query. In fact, q can be expressed as the query

πα
(
σθ(q)

(
σθ(ū1)(R1)× σθ(ū2)(R2)× · · · × σθ(ūn)(Rn)

))
,

where conditions in selections, as well as the list of positions in the projections
are defined as follows:

• For each i ∈ [n], θ(ūi) is a conjunction of statements j
.
= a and j

.
= k,

where a ∈ Const and j, k ∈ [ar(Ri)], such that j
.
= a is a conjunct of θ(ūi)

if and only if the j-th component of ūi is the constant a, and j
.
= k is a

conjunct of θ(ūi) if and only if the j-th and the k-th components of ūi are
the same variable. If no constant occurs in ūi, and ūi consists of distinct
variables, then the selection is omitted; we have Ri instead of σθ(ūi)(Ri).

• The condition θ(q) is a conjunction of statements of the form j
.
= k, where

j, k ∈ [ar(R1) + · · ·+ ar(Rn)], such that j
.
= k is a conjunct of θ(q) if and

only if the following hold:

(i) if j = ar(R1) + · · · + ar(R`) + `′, for some ` ∈ [0, n − 1] and `′ ∈
[ar(R`+1)], then k > ar(R1) + · · ·+ ar(R`+1), and

(ii) the j-th and the k-th components of ū1ū2 . . . ūn are the same variable.

Item (i) states that j and k should be positions from different ūi tuples.

• Finally, α is a list of positions among ū1ū2 . . . ūn that form the output
tuple of variables x̄.

The correctness of the above translation is left as an exercise. Note that instead
of using the condition θ(q), one can replace the Cartesian products by θ-joins
(recall that the θ-join of relations R and S is defined as R onθ S = σθ(R×S)).
Here is a simple example that illustrates the above translation.

Example 13.8: From CQs to SPJ Queries

Consider the CQ q defined as

Answer(x, x, y) :– R1(x, z, z, a, x︸ ︷︷ ︸
ū1

), R2(a, y, z, a, b︸ ︷︷ ︸
ū2

), R3(x, y, z︸ ︷︷ ︸
ū3

) .

It is easy to verify that
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θ(ū1) = (4
.
= a) ∧ (1

.
= 5) ∧ (2

.
= 3)

θ(ū2) = (1
.
= a) ∧ (4

.
= a) ∧ (5

.
= b) ,

while the selection operation σθ(ū3) is omitted since neither a constant
nor a repetition of variables occurs in ū3.

The condition θ(q) essentially has to specify that in

ū1ū2ū3 = (x, z, z, a, x, a, y, z, a, b, x, y, z)

the variable x in ū1 and the variable x in ū3 are the same, the variable
z in ū1 and the variable z in both ū2 and ū3 are the same, and that the
variable y in ū2 and the variable y in ū3 are the same. This results in

θ(q) = (1
.
= 11) ∧ (5

.
= 11) ∧ (2

.
= 8) ∧ (2

.
= 13) ∧

(3
.
= 8) ∧ (3

.
= 13) ∧ (8

.
= 13) ∧ (7

.
= 12).

Finally, α corresponds to variable x repeated twice and variable y, i.e.,
α = (1, 1, 7). Summing up, the CQ q is expressed as

π(1,1,7)

(
σ(1

.
=11)∧(2

.
=8)∧(2

.
=13)∧(7

.
=12)

(
σ(4

.
=a)∧(1

.
=5)∧(2

.
=3)(R1) ×

σ(1
.
=a)∧(4

.
=a)∧(5

.
=b)(R2)×R3

))
.

For the sake of readability, we have eliminated (5
.
= 11) from θ(q) since

it can be derived from (1
.
= 11) in θ(q) and (1

.
= 5) in θ(ū1), and likewise

for conditions (3
.
= 8), (3

.
= 13) and (8

.
= 13) in θ(q).

We now proceed with the other direction, and show that every SPJ query
e can be expressed as a CQ qe. The proof is by induction on the structure of
e. We can assume that in e all selections are either of the form σi .=a or σi .=j
(because more complex selections can be obtained by applying a sequence of
simple selections). We also assume that all projections are of the form πı̄ that
exclude the i-th component; for instance, π2̄(R) applied to a ternary relation R
will transform each tuple (a, b, c) into (a, c) by excluding the second component
(again, more complex projections are simply sequences of these simple ones).

• If e = R, where R is a k-ary relation, then qe is the CQ ϕ(x̄) = R(x̄),
where x̄ is a k-ary tuple of pairwise distinct and fresh variables.

• If e is of arity k with qe = ϕ(x1, . . . , xk), where the xi’s are not necessarily
distinct, then

– qσi .=a(e) is the CQ obtained from qe by replacing each occurrence of
the variable xi by the constant a,

– qσi .=j(e) is the CQ obtained from qe by replacing each occurrence of

the variable xj with the variable xi, and
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– qπı̄(e) is the CQ ϕ(x1, . . . , xi−1, xi+1, . . . , xk) if xi occurs among the
xj ’s with j 6= i, and ∃xi ϕ(x1, . . . , xk) otherwise.

• If e1 is k-ary with qe1 = ϕ1(x1, . . . , xk) and ϕ1 = ∃z̄ ψ1, and e2 is m-
ary with qe2 = ϕ2(y1, . . . , ym) and ϕ2 = ∃w̄ ψ2, then q(e1×e2) is the CQ
ϕ(x1, . . . , xk, y1, . . . , ym) with ϕ = ∃z̄∃w̄ ψ1 ∧ ψ2; we assume that ψ1 and
ψ2 do not share variables.

This completes the construction of the CQ qe. The correctness of the above
translation is left as an exercise to the reader.

We conclude by explaining further the difference between the two cases of
handling projection. Consider the unary relations U , V and an RA expression
e = π1̄(σ1

.
=2(U × V )). First, notice that U × V is translated as ϕ(x, y) =

U(x)∧ V (y), since the expression U has to be translated as a relational atom
of the form U(z) where the variable z is fresh, and likewise for the expression
V ; thus, the occurrences of U and V in e have to be translated considering
distinct variables, in this case x and y. Then σ1

.
=2(U × V ) is translated as

ϕ(x, x) = U(x) ∧ V (x), since y is replaced with x. Finally, π1̄(σ1
.
=2(U × V ))

is obtained by eliminating the first occurrence of x as an output variable: the
CQ defining e is ψ(x) = U(x) ∧ V (x). On the other hand, the correct way to
define e′ = π2̄(U × V ) as a CQ is to existentially quantify over y in ϕ(x, y)
that defines U × V , that is, the CQ ψ′(x) with ψ = ∃y (U(x) ∧ V (y)). ut
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Homomorphisms and Expressiveness

As already discussed in Chapter 9, homomorphisms are a fundamental tool
that plays a key role in various aspects of relational databases. In this chapter,
we discuss how homomorphisms emerge in the context of CQs. In particular,
we show that they provide an alternative way to describe the evaluation of
CQs, and also use them as a tool to understand the expressiveness of CQs.

CQ Evaluation and Homomorphisms

We can recast the semantics of CQs using the notion of homomorphism. The
key observation is that the body of a CQ, written as a rule, can be viewed as
a set of atoms. More precisely, given a CQ q of the form

Answer(x̄) :– R1(ū1), . . . , Rn(ūn)

we define the set of relational atoms

Sq = {R1(ū1), . . . , Rn(ūn)}.

Thus, we can naturally talk about homomorphisms from CQs to databases.

Definition 14.1: Homomorphisms from CQs to Databases

Consider a CQ q(x̄) over a schema S, and a database D of S. We say that
there is a homomorphism from q to D, written as q → D, if Sq → D.
We also say that there is a homomorphism from (q, x̄) to (D, ā), written
as (q, x̄)→ (D, ā), if (Sq, x̄)→ (D, ā).

To define the output of a CQ q(x̄) on a database D (see Definition 13.3),
we used the notion of assignment for q over D, which is a function from the
set of variables in q to Dom(D). The output of q on D consists of all the tuples
η(x̄), where η is an assignment for q over D that is consistent with D, i.e.,



90 14 Homomorphisms and Expressiveness

{R1(η(ū1)), . . . , Rn(η(ūn))} ⊆ D.

Since, for i ∈ [n], Ri(η(ūi)) is the fact obtained after replacing each variable x
in ūi with η(x), and leaving the constants in ūi untouched, such an assignment
η corresponds to a function h : Dom(Sq)→ Dom(D), which is the identity on
the constants occurring in q, such that R(h(ūi)) = R(η(ūi)). But, of course,
this is the same as saying that h is a homomorphism from q to D. Therefore,
q(D) is the set of all tuples h(x̄), where h is a homomorphism from q to D,
i.e., the set of all tuples ā over Dom(D) with (q, x̄)→ (D, ā). This leads to an
alternative characterization of CQ evaluation in terms of homomorphisms.

Theorem 14.2

Given a database D of a schema S, and a CQ q(x̄) of arity k ≥ 0 over S,

q(D) = {ā ∈ Dom(D)k | (q, x̄)→ (D, ā)}.

Here is a simple example that illustrates the above characterization.

Example 14.3: CQ Evaluation via Homomorphisms

Let D and q be the database and the CQ, respectively, that have been
considered in Example 13.4. We know that q(D) = {(‘1’, ‘Aretha’)}. By
the characterization given in Theorem 14.2, we conclude that

(
q, (x, y)

)
→(

D, (‘1’, ‘Aretha’)
)
. To verify that this is the case, recall that we need to

check whether
(
Sq, (x, y)

)
→
(
D, (‘1’, ‘Aretha’)

)
, where

Sq = {Person(x, y, z),Profession(x, ‘actor’)}.

Consider the function h : Dom(Sq)→ Dom(D) such that

h(x) = ‘1’ h(y) = ‘Aretha’ h(z) = ‘MPH’ h(‘actor’) = ‘actor’.

It is clear that the following facts belong to D:

Person(h(x), h(y), h(z)) = Person(‘1’, ‘Aretha’, ‘MPH’)

Profession(h(x), h(‘actor’)) = Profession(‘1’, ‘actor’)

Moreover, h
(
(x, y)

)
= (‘1’, ‘Aretha’). Thus, h is a homomorphism from(

Sq, (x, y)
)

to
(
D, (‘11’, ‘Aretha’)

)
, witnessing that(

Sq, (x, y)
)
→
(
D, (‘1’, ‘Aretha’)

)
.
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Preservation Results for CQs

Some particularly useful properties of CQs are their preservation under vari-
ous operations, such as application of homomorphisms, or taking direct prod-
ucts. These properties will provide a precise explanation of the expressiveness
of CQs as a subclass of FO queries.

Preservation under Homomorphisms

By saying that a query q is preserved under homomorphisms, we essentially
mean the following: if a tuple ā belongs to the output of q on a database D, and
(D, ā)→ (D′, b̄), then b̄ should belong to the output of q on D′. Although we
can naturally talk about homomorphisms among databases (since databases
are sets of relational atoms), there is a caveat that is related to the fact that
homomorphisms are the identity on constant values. Since Dom(D) ⊆ Const
for every database D, it follows that D → D′ if and only if D ⊆ D′. Thus,
the notion of homomorphism among databases is actually subset inclusion.
However, the intention underlying the notion of homomorphism is to preserve
the structure, possibly by leaving some constants unchanged.

To overcome this mismatch, we need a mechanism that allows us to convert
a database into a set of relational atoms by replacing constant values with
variables.1 To this end, for a finite set of constants C ⊆ Const, we define an
injective function VC : Const→ Const∪Var that is the identity on C. We then
write (D, ā)→C (D′, b̄) if (VC(D),VC(ā))→ (D′, b̄). Note that in VC(D) and
VC(ā) all constants, except for those in C, have been replaced by variables,
so the definition of homomorphism no longer trivializes to being a subset.

Example 14.4: Homomorphisms Among Databases

Consider the databases

D1 = {R(a, b), R(b, a)} D2 = {R(c, c)}.

If C1 = ∅, then we have that VC1(a) and VC1(b) are distinct elements of
Var, let say VC1(a) = x and VC1(b) = y. Hence,

VC1(D1) = {R(x, y), R(y, x)} VC1((a, b)) = (x, y),

from which we conclude that (D1, (a, b))→C1
(D2, (c, c)) since(

VC1
(D1),VC1

((a, b))
)
→
(
D2, (c, c)

)
.

On the other hand, if C2 = {a, b}, then

VC2(D1) = {R(a, b), R(b, a)} VC2((a, b)) = (a, b).

1 This is essentially the opposite of grounding a set of atoms discussed in Chapter 9.
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Therefore, it does not hold that (D1, (a, b))→C2
(D2, (c, c)), since it does

not hold that
(
VC2

(D1),VC2
((a, b))

)
→
(
D2, (c, c)

)
.

We can now define the notion of preservation under homomorphisms.

Definition 14.5: Preservation under Homomorphisms

Consider a k-ary FO query q = ϕ(x̄) over a schema S. We say that q is
preserved under homomorphisms if, for every two databases D and D′

of S, and tuples ā ∈ Dom(D)k and b̄ ∈ Dom(D′)k, it holds that

(D, ā)→Dom(ϕ) (D′, b̄) and ā ∈ q(D) implies b̄ ∈ q(D′).

We then show the following for CQs.

Proposition 14.6

Every CQ is preserved under homomorphisms.

Proof. Consider a k-ary CQ q(x̄) over a schema S, and let C be the set of
constants in q. Assume that (D, ā) →C (D′, b̄) for some databases D,D′ of
S, and tuples ā ∈ Dom(D)k and b̄ ∈ Dom(D′)k. Assume also that ā ∈ q(D).
Let h be a homomorphism witnessing (VC(D),VC(ā))→ (D′, b̄). By Theorem
14.2, (q, x̄)→ (D, ā) via some h′. It holds that hq = VC◦h′ is a homomorphism
witnessing (q, x̄)→ (VC(D),VC(ā)) since hq is the identity on C; indeed, for
a ∈ C, VC(h′(a)) = a by definition. Observe that h ◦ hq is a homomorphism
from (q, x̄) to (D′, b̄), and thus, by Theorem 14.2, b̄ ∈ q(D′), as needed. ut

Another key property is that of monotonicity. A query q over a schema S
is monotone if, for every two databases D and D′ of S, we have that

D ⊆ D′ implies q(D) ⊆ q(D′).

We show that homomorphism preservation implies monotonicity of CQs.

Corollary 14.7

Every CQ is monotone.

Proof. Let q be a CQ over S, and C be the set of constants occurring in q.
Consider the databases D,D′ of S such that D ⊆ D′, and assume that ā ∈
q(D). It is clear that V−1

C is a homomorphism from (VC(D),VC(ā)) to (D′, ā)
and thus, (D, ā)→C (D′, ā). By Proposition 14.6, we get that ā ∈ q(D′). ut
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Preservation under Direct Products

The second preservation result stated here concerns direct products. We first
recall what a direct product of graphs is. Given two graphs G1 = (V1, E1) and
G2 = (V2, E2), their direct product G1⊗G2 has V1×V2 as the set of vertices,
i.e., each vertex is a pair (v1, v2) with v1 ∈ V1 and v2 ∈ V2. In G1 ⊗G2 there
is an edge between (v1, v2) and (v′1, v

′
2) if there is an edge from v1 to v′1 in E1

and from v2 to v′2 in E2. Note that the notion of direct product is different
from that of Cartesian product. Indeed, the Cartesian product of two binary
relations is a 4-ary relation, while their direct product is still binary.

The definition of direct products for databases is essentially the same,
modulo one small technical detail. Elements of databases come from Const.
For two constants a1 and a2, the pair (a1, a2) is not an element of Const, but
we can think of it as such. Indeed, since Const is countably infinite, there is a
pairing function, i.e., a bijection τ : Const×Const→ Const. A typical example,
assuming that Const is enumerated as c0, c1, c2, . . . , is to define τ(cn, cm) = ck
for k = (n+m)(n+m+ 1)/2 +m. Given a pairing function, we can think of
(a1, a2) as being in Const, represented by τ(a1, a2), and then simply extend
the previous definition to arbitrary databases as follows. Given two databases
D and D′ of a schema S, their direct product D⊗D′ is a database of S that,
for each n-ary relation name R in S, contains the following facts:

R
(
τ(a1, a

′
1), . . . , τ(an, a

′
n)
)

where R(a1, . . . , an) ∈ D and R(a′1, . . . , a
′
n) ∈ D′ .

Technically speaking, this definition depends on the choice of a pairing func-
tion, but this choice is irrelevant for FO queries (see Exercise 2.4).

We proceed to define the notion of preservation under direct products. We
do this for Boolean queries without constants, as this suffices to understand
the limitations of CQs. Exercises 2.5 and 2.6 explain how these results can be
extended to queries with constants and free variables, respectively.

Definition 14.8: Preservation under Direct Products

A Boolean FO query q over a schema S is preserved under direct products
if, for every two databases D and D′ of S, it holds that

D |= q and D′ |= q implies D ⊗D′ |= q.

We then show the following for CQs.

Proposition 14.9

Every Boolean CQ is preserved under direct products.

Proof. As stated earlier, for technical clarity, we only consider CQs that do
not mention constants, but the result holds even for CQs with constants (see
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Exercise 2.5). Let q be a Boolean CQ without constants over a schema S, and
let D,D′ be databases of S such that D |= q and D′ |= q. By Theorem 14.2,
there are homomorphisms h, g witnessing q → D and q → D′, respectively.
Define now f(x) = τ

(
h(x), g(x)

)
. Assume that R(u1, . . . , un) is an atom in q.

Then R(h(u1), . . . , h(un)) ∈ D and R(g(u1), . . . , g(un)) ∈ D′. Hence,

R
(
f(u1), . . . , f(un)

)
= R

(
τ(h(u1), g(u1)), . . . , τ(h(un), g(un))

)
belongs to D⊗D′, proving that f is a homomorphism from q to D⊗D′. Thus,
by Theorem 14.2, D ⊗D′ |= q, as needed. ut

Expressiveness of CQs

The above preservation results allow us to delineate the expressiveness bound-
aries of CQs. By Theorem 13.7, CQs and SPJ queries, that is, RA queries that
do not have inequality in selections, union (and disjunction in selection con-
ditions), and difference, are equally expressive. We prove that none of these
is expressible as a CQ. Also notice that in the definition of CQs we disallow
explicit equality: CQs correspond to FOrel[∧,∃] queries, i.e., FO queries based
on the fragment of FO that is the closure of relational atoms under ∃ and ∧.
Implicit equality is, of course, allowed by reusing variables. We show that by
adding explicit equality one obtains queries that cannot be expressed as CQs.

CQs cannot express inequality. This is because CQs with inequalities are
not preserved under homomorphisms. Consider, for example, the FO query

q1 = ∃x∃y
(
R(x, y) ∧ x 6= y

)
.

For D = {R(a, b)} and D′ = {R(c, c)}, we have that D →∅ D′. However,
D |= q1 while D′ 6|= q1. As a second example, consider the FO query

q2 = ∃x (U(x) ∧ x 6= a),

where a is a constant. Given D = {U(b)} and D′ = {U(a)}, we have that
D →{a} D′. However, D |= q2 while D′ 6|= q2.

CQs cannot express negative relational atoms. The reason is because
such queries are not monotone. Consider, for example, the FO query

q = ¬P (a),

where a is a constant. If we take D = ∅ and D′ = {P (a)}, then D ⊆ D′

but D |= q while D′ 6|= q.
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CQs cannot express difference. This is because difference is not mono-
tone. Consider, for example, the FO query

q = ∃x(P (x) ∧ ¬Q(x)).

For D = {P (a)} ⊆ D′ = {P (a), Q(a)}, we have that D |= q while D′ 6|= q.

CQs cannot express union. This is because such queries are not preserved
under direct products. Consider, for example, the FO query

q = ∃x (R(x) ∨ S(x)).

Let D = {R(a)} and D′ = {S(a)}. Then, D |= q and D′ |= q, but D⊗D′
is empty, and thus, D ⊗D′ 6|= q.

CQs cannot express explicit equality. This is because such queries are
not preserved under direct products. Consider, for example, the FO query

q = ∃x∃y (x = y).

Let D = {R(a)} and D′ = {S(a)}. Observe that D |= q and D′ |= q, but
D ⊗D′ 6|= q since D ⊗D′ is empty.





15

Conjunctive Query Evaluation

In this chapter, we study the complexity of evaluating conjunctive queries,
that is, CQ-Evaluation. Recall that this is the problem of checking whether
ā ∈ q(D) for a CQ query q, a database D, and a tuple ā over Dom(D). Recall
that for FO queries the same problem is PSpace-complete (Theorem 7.1). As
we show next, the complexity for CQs lies in NP.

Theorem 15.1

CQ-Evaluation is NP-complete.

Proof. We start with the upper bound. Consider a CQ q(x̄), a database D, and
a tuple ā ∈ Dom(D). By Theorem 14.2, ā ∈ q(D) if and only if (q, x̄)→ (D, ā).
Therefore, we need to show that checking whether there exists a homomor-
phism from (q, x̄) to (D, ā) is in NP. This is done by guessing a function
h : Dom(Sq)→ Dom(D), and then verifying that h is a homomorphism from
(Sq, x̄) to (D, ā), i.e., h is the identity on Dom(Sq) ∩ Const, and R(ū) ∈ Sq
implies R(h(ū)) ∈ D. Since both steps are feasible in polynomial time, we
conclude that checking whether (q, x̄)→ (D, ā) is in NP, as needed.

For the lower bound, we provide a reduction from a graph-theoretic prob-
lem, called Clique, which is NP-complete. Recall that a clique in an undirected
graph G = (V,E) is a complete subgraph G′ = (V ′, E′) of G, i.e., every two
distinct nodes of V ′ are connected via an edge of E′. We say that such a clique
is of size k ≥ 1 if V ′ consists of k nodes. The problem Clique follows:

Problem: Clique

Input: An undirected graph G, and an integer k ≥ 1

Output: true if G has a clique of size k, and false otherwise

Consider an input to Clique given by G = (V,E) and k ≥ 1. The goal is to
construct in polynomial time a database D and a Boolean CQ q such that G
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has a clique of size k if and only if D |= q. We construct the database

D = {Node(v) | v ∈ V } ∪ {Edge(v, u) | (v, u) ∈ E and v 6= u},

which essentially stores the graph G, but without loops of the form (v, v) that
may occur in E. We can eliminate loops, which is crucial for the correctness
of the CQ that we construct next, since they do not affect the existence of a
clique of size k in G, i.e., G has a clique of size k if and only if G′ obtained
from G after eliminating the loops has a clique of size k. We also construct

q = ∃x1 · · · ∃xk
( k∧
i=1

Node(xi) ∧
∧

i,j∈[k] : i 6=j

Edge(xi, xj)

)
,

which asks whether G has a clique of size k. It is clear that D and q can be
constructed in polynomial time from G and k. Moreover, it is easy to see that
G has a clique of size k if and only if D |= q, and the claim follows. ut

The data complexity of CQ-Evaluation is immediately inherited from FO-
Evaluation (see Theorem 7.3) since CQs are FO queries. Recall that, by con-
vention, CQ-Evaluation is in a complexity class C in data complexity if, for
every CQ query q, the problem q-Evaluation, which takes as input a database
D and a tuple ā over Dom(D), and asks whether ā ∈ q(D), is in C.

Corollary 15.2

CQ-Evaluation is in DLogSpace in data complexity.

Actually, as discussed in Chapter 7, FO-Evaluation, and thus CQ-Evaluation,
is in AC0 in data complexity, a class that is properly contained in DLogSpace.
Recall that AC0 consists of those languages that are accepted by polynomial-
size circuits of constant depth and unbounded fan-in.

Parameterized Complexity

As discussed in Chapter 2, queries are typically much smaller than databases
in practice. This motivated the notion of data complexity, where the cost
of evaluation is measured only in terms of the size of the database, while the
query is considered to be fixed. However, an algorithm that runs, for example,
in time O(‖D‖‖q‖), although is tractable in terms of data complexity since ‖q‖
is a constant, it cannot be considered to be really practical when the database
D is very large, even if the query q is small. This suggests that we need to
rely on a finer notion of complexity than data complexity for classifying query
evaluation algorithms as practical or impractical.

This finer notion of complexity is parameterized complexity, which is rele-
vant whenever we need to classify the complexity of a problem depending on



15 Conjunctive Query Evaluation 99

some central parameters. In the context of query evaluation, it is sensible to
consider the size of the database and the size of the query as separate param-
eters when designing evaluation algorithms, and target algorithms that take
less time on the former parameter. For example, a query evaluation algorithm
that runs in time O(‖D‖ ·‖q‖2) is expected to perform better in practice than
an algorithm that runs in time O(‖D‖2 · ‖q‖). Moreover, if the difference be-
tween ‖D‖ and ‖q‖ is significant, as it usually happens in real-life, then even
an algorithm that runs in time O(‖D‖ · 2‖q‖) could perform better in practice
than an algorithm that runs in time O(‖D‖2 · ‖q‖).

Background on Parameterized Complexity

Before studying the parameterized complexity of CQ-Evaluation when consid-
ering the size of the database and the size of the query as separate parameters,
we first need to introduce some fundamental notions of parameterized com-
plexity. We start with the notion of parameterized problem (or language).

Definition 15.3: Parameterized Problem

Consider a finite alphabet Σ. A parameterization of Σ∗ is a polynomial
time computable function κ : Σ∗ → N. A parameterized problem (over
Σ) is a pair (L, κ), where L ⊆ Σ∗, and κ is a parameterization of Σ∗.

A typical example of such a problem is the parameterized version of Clique.

Example 15.4: Parameterized Clique

Recall that Clique is the set of pairs (G, k), where G is an undirected
graph that contains a clique of size k ≥ 1. Assume that graph-integer
pairs are encoded as words over some finite alphabet Σ. Let κ : Σ∗ → N
be the parameterization of Σ∗ defined by

κ(w) =

k if w is the encoding of a graph-integer pair (G, k),

1 otherwise,

for w ∈ Σ∗. We denote the parameterized problem (Clique, κ) as p-Clique.

The input to a parameterized problem (L, κ) over the alphabet Σ is a word
w ∈ Σ∗, and the numbers κ(w) are the corresponding parameters. Similarly to
(non-parameterized) problems that are represented in the form input-output,
we will represent parameterized problems in the form input-parameter-output.
For example, p-Clique is represented as follows:
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Problem: p-Clique

Input: An undirected graph G, and an integer k ≥ 1

Parameter: k

Output: true if G has a clique of size k, and false otherwise

Analogously, we can talk about the parameterized version of CQ-Evaluation,
where the parameter is the size of the query:

Problem: p-CQ-Evaluation

Input: A CQ q(x̄), a database D, and a tuple ā over Dom(D)

Parameter: ‖q‖
Output: true if ā ∈ q(D), and false otherwise

Recall that the motivation underlying parameterized complexity is to have
a finer notion of complexity that allows us to classify algorithms as practical or
impractical. But when an algorithm in the realm of parameterized complexity
is considered to be practical? This brings us to fixed-parameter tractability.

Definition 15.5: Fixed-Parameter Tractability

Consider a finite alphabet Σ, and a parametarization κ : Σ∗ → N of Σ∗.
An algorithm A with input alphabet Σ is an fpt-algorithm with respect
to κ if there exists a computable function f : N→ R+

0 , and a polynomial
p(·) such that, for every w ∈ Σ∗, A on input w runs in time

O
(
p(|w|) · f(κ(w))

)
.

A parameterized problem (L, κ) is fixed-parameter tractable if there is an
fpt-algorithm with respect to κ that decides L. We write FPT for the
class of all fixed-parameter tractable problems.

In simple words, (L, κ) is fixed-parameter tractable if there is an algorithm
that decides whether w ∈ L in time arbitrarily large in the parameter κ(w),
but polynomial in the size of the input w. This reflects the assumption that
κ(w) is much smaller than |w|, and thus, an algorithm that runs, e.g., in time
O(|w| · 2κ(w)) is preferable than one that runs in time O(|w|κ(w)).

Whenever we deal with an intractable problem, e.g., the problem of con-
cern of this chapter, i.e., CQ-Evaluation, it would be ideal to be able to show
that its parameterized version is in FPT. The reader may be tempted to think
that p-CQ-Evaluation is in FPT, and that this can be easily shown by exploit-
ing the algorithm for proving that CQ-Evaluation is in NP. It turns out that
this is not true. Consider a CQ q(x̄), a databaseD, and a tuple ā over Dom(D).
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To check if ā ∈ q(D), we can iterate over all functions h : Dom(Sq)→ Dom(D)
until we find one that is a homomorphism from (Sq, x̄) to (D, ā), in which case
we return true; otherwise, we return false. Since there are |Dom(D)||Dom(Sq)|

such functions, we conclude that this algorithm runs in time

O
(
‖D‖‖q‖ · r(‖D‖+ ‖q‖)

)
for some polynomial r(·); note that the size of ā is not included in the bound
since it is polynomially bounded by ‖D‖ and ‖q‖. Therefore, we cannot con-
clude that p-CQ-Evaluation is in FPT since the expression that describes the
running time of the above algorithm is not of the form O(p(‖D‖) · f(‖q‖)),
for some polynomial p(·) and computable function f : N → R+

0 , as required
by fixed-parameter tractability in Definition 15.5.

It is widely believed that there is no fpt-algorithm that decides the param-
eterized version of CQ-Evaluation. But then the natural question that comes
up is the following: how can we prove that a parameterized problem is not in
FPT? Several complexity classes have been defined in the context of param-
eterized complexity in order to prove that a parameterized problem is not in
FPT. Such classes are widely believed to properly contain FPT. This means
that if a parameterized problem is complete for one of those classes, then this
is a strong indication that the problem in question is not in FPT. Notice here
the analogy with classes such as NP and PSpace: it is not known whether
these classes properly contain Ptime, but if a problem is complete for any
of them, then this is considered as a strong evidence that the problem is not
tractable. We proceed to define one of such classes, namely W[1], which will
allow us to pinpoint the exact complexity of p-CQ-Evaluation.

To define the class W[1], we need to introduce some auxiliary terminology.
Consider a schema S. Let X be a relation name of arity m ≥ 0 that does not
belong to S, and ϕ an FO sentence over S∪{X}. For a database D of S, and
a relation S ⊆ Dom(D)m, we write D |= ϕ(S) to indicate that D′ |= ϕ, where
D′ = D ∪ {X(ā) | ā ∈ S}. We further define the problem p-WDϕ as follows:

Problem: p-WDϕ

Input: A database D of the schema S, and k ∈ N
Parameter: k

Output: true if there exists S ⊆ Dom(D)m such that |S| = k and

D |= ϕ(S), and false otherwise

Notice that the sentence ϕ is fixed in the definition of p-WDϕ. Therefore,
a different FO sentence ψ of the form described above gives rise to a different
parameterized problem, dubbed p-WDψ. The last notion that we need before
introducing the class W[1] is that of FPT-reduction.

An FPT-reduction from a parameterized problem (L1, κ1) over Σ1 to a
parameterized problem (L2, κ2) over Σ2 is a function Φ : Σ∗1 → Σ∗2 such that
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the following holds: there are computable functions f, g : N → R+
0 , and a

polynomial p(·), such that, for every word w ∈ Σ∗1 :

1. w ∈ L1 if and only if Φ(w) ∈ L2,

2. Φ(w) can be computed in time p(|w|) · f(κ1(w)), and

3. κ2(Φ(w)) ≤ g(κ1(w)).

The first and the second conditions are natural. The third condition is needed
to ensure the crucial property that FPT is closed under FPT-reductions: if
there exists an FPT-reduction from (L1, κ1) to (L2, κ2), and (L2, κ2) ∈ FPT,
then (L1, κ1) ∈ FPT; the proof is left as an exercise.

We now have all the ingredients needed for introducing the class W[1].
Recall that universal FO sentences are FO sentences of the form ∀x1 · · · ∀xn ψ,
where ψ is quantifier free and FV(ψ) = {x1, . . . , xn}.

Definition 15.6: The Class W[1]

A parameterized problem (L, κ) is in W[1] if there exists a schema S, a
relation name X not in S, and a universal FO sentence ϕ over S∪ {X},
such that there exists an FPT-reduction from (L, κ) to p-WDϕ.

To give some intuition about the definition of W[1], we show that p-Clique
is in W[1]. We first define a universal FO sentence ϕ, and then show that there
exists an FPT-reduction from p-Clique to p-WDϕ. Assume that S consists of
the relation names Node[1] and Edge[2]. Let also Elem[1] be a relation name
not in S. We define the universal FO sentence ϕ over S ∪ {Elem}

∀x∀y
(
(Elem(x) ∧ Elem(y) ∧ x 6= y)→ Edge(x, y)

)
.

We proceed to show that there is an FPT-reduction from p-Clique to p-WDϕ.
Consider an input to p-Clique given by G = (V,E) and k ≥ 1. Let

D = {Node(v) | v ∈ V } ∪ {Edge(v, u) | (v, u) ∈ E and v 6= u}.

The sentence ϕ checks whether the nodes in the relation Elem form a clique.
Thus, G has a clique of size k if and only if there exists S ⊆ Dom(D) such
that |S| = k and D |= ϕ(S). It is also clear that (D, k) can be computed in
polynomial time. Therefore, the above reduction from p-Clique to p-WDϕ is
an FPT-reduction, which in turn implies that p-Clique ∈W[1].

Before we proceed with the parameterized complexity of CQ-Evaluation,
let us comment on the nomenclature of W[1]. The class W[1] is the first level
of a hierarchy of complexity classes W[t], for each t ≥ 1; hence the number 1.
More specifically, the class W[t] is defined in the same way as the class W[1],
but allowing the FO sentence ϕ in p-WDϕ to be of the form ∀x̄1∃x̄2 · · ·Qx̄t ψ,
where ψ is quantifier free, Q = ∃ if t is even, and Q = ∀ if t is odd. The W-
hierarchy is defined as the union of all the classes W[t], that is,

⋃
t≥1 W[t].
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Parameterized Complexity of CQ-Evaluation

We know that p-Clique is W[1]-complete, which means that p-Clique ∈W[1]
(this has been shown above), and every parameterized problem in W[1] can be
reduced via an FPT-reduction to p-Clique. We also known that FPT ⊆W[1],
and it is widely believed that this inclusion is strict (the status of the question
whether FPT 6= W[1] is comparable to that of Ptime 6= NP). Thus, it is
unlikely that p-Clique ∈ FPT (as FPT is closed under FPT-reductions). We
use this result to prove that the same holds for p-CQ-Evaluation, thus providing
strong evidence that this problem is not fixed-parameter tractable.

Theorem 15.7

p-CQ-Evaluation is W[1]-complete.

Proof. For the lower bound, we show that there exists an FPT-reduction from
p-Clique to p-CQ-Evaluation. We use the same reduction as for the lower bound
in Theorem 15.1, which we recall here for the sake of readability. Consider an
input to p-Clique given by G = (V,E) and k ≥ 1. The database is

D = {Node(v) | v ∈ V } ∪ {Edge(v, u) | (v, u) ∈ E and v 6= u},

and the Boolean CQ is

q = ∃x1 · · · ∃xk
( k∧
i=1

Node(xi) ∧
∧

i,j∈[k] : i 6=j

Edge(xi, xj)

)
.

As discussed in the proof of Theorem 15.1, G has a clique of size k if and only
if D |= q, and D and q can be constructed in polynomial time from G and k.
To conclude that this is an FPT-reduction, it remains to show that the third
condition in the definition of FPT-reductions holds, i.e., ‖q‖ ≤ g(k) for some
computable function g : N → R+

0 . It is easy to verify that ‖q‖ ≤ c · log k · k2

for some constant c ∈ R+, and thus, p-CQ-Evaluation is W[1]-hard.
We now focus on the upper bound. For technical clarity, we consider only

constant-free Boolean CQs over a schema consisting of a single binary relation
name Edge. We leave the prove for the general case, where no restrictions are
imposed to the query and its schema, as an exercise.

We first define a universal FO sentence ϕ, and then show that there exists
an FPT-reduction from p-CQ-Evaluation to p-WDϕ. Consider the schema

S = {Const[1], Var[1], Edge1[2], Edge2[2]}.

Consider also the relation name Hom[2] that does not belong to S. We define
the universal FO sentence ϕ over S ∪ {Hom} as follows:
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∀x∀y∀z
(
(Hom(x, y) ∧Hom(x, z))→ y = z

)
∧

∀x∀y (Hom(x, y)→
(
Var(x) ∧ Const(y))

)
∧

∀x1∀y1∀x2∀y2

(
(Edge1(x1, y1) ∧Hom(x1, x2) ∧Hom(y1, y2))→ Edge2(x2, y2)

)
.

We show that there is an FPT-reduction from p-CQ-Evaluation to p-WDϕ.
Consider an input to p-CQ-Evaluation given by a constant-free Boolean CQ
q over the schema {Edge[2]}, and a database D of {Edge[2]}. Assuming that
{x1, . . . , xn} are the variables occurring in q, we define the database D′ as

D ∪ {Const(a) | a ∈ Dom(D)} ∪ {Var(ax1), . . . ,Var(axn)}
∪ {Edge1(axi , axj ) | Edge(xi, xj) is an atom occuring in q}

∪ {Edge2(a, b) | Edge(a, b) ∈ D}.

Roughly, the relation Const stores the constants occurring in D, the relation
Var stores the variables occurring in q, the relation Edge1 stores the atoms of
q, and the relation Edge2 stores the facts of D. We further define n = k, that
is, k is the number of variables occurring in q.

With the definitions of D′ and k in place, we can now explain the meaning
of the FO sentence ϕ. The first conjunct ∀x∀y∀z ((Hom(x, y)∧Hom(x, z))→
y = z) states that Hom represents a function, as only one value can be as-
sociated to x. The second conjunct states that Hom maps variables of q to
constants of D. Finally, the third conjunct states that Hom represents a homo-
morphism from q to D. Notice, however, that ϕ does not impose the restriction
that every variable occurring q has to be mapped to a constant of D, as this
requires a non-universal FO sentence of the form

∀x (Var(x)→ ∃y (Const(y) ∧Hom(x, y))).

Instead, the parameter k = n is used to force Hom to map every variable in
q to a constant of D, as n is the number of variables occurring in q.

Summing up, q(D) = true if and only if there is S ⊆ Dom(D′)2 with |S| =
k and D′ |= ϕ(S). It is also clear that D′ and k can be constructed from D and
q in polynomial time, and k ≤ ‖q‖. Thus, we have provided an FPT-reduction
from p-CQ-Evaluation to p-WDϕ, which shows that p-CQ-Evaluation ∈ W[1]
(for constant-free Boolean CQs over a single binary relation). ut
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Containment and Equivalence

We have seen in Chapter 8 that the satisfiability problem for FO and RA is
undecidable. In terms of query optimization, satisfiability is arguably the most
elementary task one can think of, since it simply asks whether a query has a
non-empty output on at least one database. Indeed, if a query is not satisfiable,
then we do not even need to access the database in order to compute its
output, which is trivially empty. Furthermore, for FO and RA, undecidability
of other static analysis tasks such as containment and equivalence immediately
follow from the undecidability of satisfiability.

On the other hand, the satisfiability problem for CQs is trivial. Indeed,
given a CQ q, there is always a database on which q has a non-empty output,
that is, the grounding S↓q of Sq (see Definition 9.3). This means that static
analysis for CQs is drastically different than for FO and RA, which in turn
indicates that we need to revisit the problems of containment and equivalence
in the case of CQs. This is the goal of this chapter.

Optimizing A Simple Query

We start by first illustrating the role of containment and equivalence for CQs
in query optimization by means of a simple example.

Example 16.1: A CQ with Redundancy

Consider again the relational schema

Person [ pid, pname, cid ]

Profession [ pid, prname ]

City [ cid, cname, country ]

from Chapter 3, and the CQ
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q = Answer(y) :– Person(x, y, z),Profession(x, ‘actor’),Profession(x,w)

over this schema. The query q asks for names of persons who are actors
and who have some profession. It is clear that q contains some redun-
dancy since, if a person is an actor, then this person also has a profession
(namely, being an actor). In fact, the CQ

q′ = Answer(y) :– Person(x, y, z),Profession(x, ‘actor’)

asks the same query, but in smarter way in the sense that it mentions
fewer relational atoms in its body. We make two observations:

(a) The query q′ is a part of q, that is, all atoms in the body of q′ belong
also to the body of q.

(b) In order to test if q and q′ are equivalent, we only need to test if
q′ ⊆ q. The other inclusion immediately follows from (a).

The above example suggests that the following simple strategy may be
useful for optimizing a CQ q. We write (q − R(ū)) for the CQ obtained by
deleting from the body of q the relational atom R(ū).

Algorithm 3 Optimize-By-Containment(q)

Input: A CQ q(x̄)
Output: A CQ q∗(x̄) that is equivalent to q(x̄), and may mention fewer atoms

1: while there exists an atom R(ū) in the body of q such that (q −R(ū)) ⊆ q do
2: q := (q −R(ū))

3: return q(x̄)

The approach in Algorithm 3 captures a very natural idea for optimizing
CQs: keep removing atoms from the body of the CQ as long as the resulting CQ
is equivalent to the original one. In order to carry out this strategy (and nu-
merous other, more intricate, optimization strategies), it is crucial that we are
able to effectively test containment, and thus equivalence, between CQs. We
therefore study in this chapter the closely related problems CQ-Containment
and CQ-Equivalence. We will retake Algorithm 3 in Chapter 17.

Containment

We first concentrate on CQ-Containment. We start by illustrating the notion
of containment for CQs via a simple example.
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Example 16.2: CQ Containment

Consider the CQ

q1 = Answer(y1) :– Person(x1, y1, z1),Profession(x1, ‘actor’),

City(z1, ‘Los Angeles’, ‘United States’)

asking for names of actors who live in Los Angeles, and the CQ

q2 = Answer(y2) :– Person(x2, y2, z2),Profession(x2, w2)

asking for persons who have a profession. It is easy to verify that q1 ⊆ q2

since q1 imposes the extra conditions that the returned persons are actors
who live in Los Angeles.

We proceed to show that checking for containment in the case of CQs is
decidable, but an intractable problem.

Theorem 16.3

CQ-Containment is NP-complete.

The proof of Theorem 16.3 relies on a useful characterization of contain-
ment of CQs in terms of homomorphisms, which we present below. Given two
CQs q(x̄) and q′(x̄′), we write (q′, x̄′)→ (q, x̄) for the fact that there exists a
homomorphism from (Sq′ , x̄

′) to (Sq, x̄); we also write q → q′ to indicate that
Sq → Sq′ . Recall that Sq and Sq′ are the sets of atoms occurring in the body
of q and q′, respectively, when seen as rules.

We also remind the reader that for a set of atoms S, we write S↓ for the
grounding of S, which makes it possible to view S as a database. Formally,
such a grounding is given by a bijective mapping GS : S → S↓ that replaces
variables in S by new constants; in particular, GS(S) = S↓.

Theorem 16.4: Homomorphism Theorem

Let q(x̄) and q′(x̄′) be CQs. Then:

q ⊆ q′ if and only if (q′, x̄′)→ (q, x̄).

Proof. (⇒) Assume that q ⊆ q′. Since GSq is a homomorphism, Theorem 14.2
we obtain GSq (x̄) ∈ q(GSq (Sq)). Since q ⊆ q′, we have GSq (x̄) ∈ q′(GSq (Sq)).
Applying Theorem 14.2 again, we conclude that there exists a homomorphism
h from (Sq′ , x̄

′) to (GSq (Sq),GSq (x̄)). Since GSq is bijective, G−1
Sq
◦ h is a ho-

momorphism from (Sq′ , x̄
′) to (Sq, x̄), as required.
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(⇐) Conversely, assume that (q′, x̄′) → (q, x̄), and let h be a homomor-
phism from (Sq′ , x̄

′) to (Sq, x̄). Given a database D, assume that ā ∈ q(D). By
Theorem 14.2, there exists a homomorphism g from (Sq, x̄) to (D, ā). Since
homomorphisms compose, g ◦ h is a homomorphism from (Sq′ , x̄

′) to (D, ā)
and, thus, ā ∈ q′(D) by Theorem 14.2. Therefore, we have that q(D) ⊆ q′(D),
from which we conclude that q ⊆ q′. ut

The next example shows the usefulness of the Homomorphism Theorem.

Example 16.5: Homomorphism Theorem

Consider again the CQs q1 and q2 from Example 16.2, and recall that
q1 ⊆ q2. This is confirmed by the Homomorphism Theorem since

(q2, y2) → (q1, y1).

This is the case since the function h : Dom(Sq2)→ Dom(Sq1) defined as

h(x2) = x1 h(y2) = y1 h(z2) = z1 h(w2) = ‘actor’

is a homomorphism from (Sq2 , y2) to (Sq1 , y1).

An easy consequence of the Homomorphism Theorem is that the problem
CQ-Containment can be reduced to CQ-Evaluation.

Corollary 16.6

Let q(x̄) and q′(x̄′) be CQs. Then:

q ⊆ q′ if and only if GSq (x̄) ∈ q′(GSq (Sq)).

Proof. By Theorem 16.4, we conclude that

q ⊆ q′ if and only if (Sq′ , x̄
′)→ (Sq, x̄).

We can also show that

(Sq′ , x̄
′)→ (Sq, x̄) if and only if (Sq′ , x̄

′) → (GSq (Sq),GSq (x̄)).

Indeed, if (Sq′ , x̄
′)→ (Sq, x̄) is witnessed via h, then we have that GSq ◦h is a

homomorphism from (Sq′ , x̄
′) to (GSq (Sq),GSq (x̄)). Conversely, assuming that

(Sq′ , x̄
′) → (GSq (Sq),GSq (x̄)) is witnessed via g, G−1

Sq
◦ g is a homomorphism

from (Sq′ , x̄
′) to (Sq, x̄). By Theorem 14.2, we get that

(Sq′ , x̄
′)→ (GSq (Sq),GSq (x̄)) if and only if GSq (x̄) ∈ q′(GSq (Sq)).

Consequently, we get that q ⊆ q′ if and only if GSq (x̄) ∈ q′(GSq (Sq)). ut
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By exploiting the Homomorphism Theorem, we can further show that the
problem CQ-Evaluation can be reduced to CQ-Containment, i.e., the opposite
of what Corollary 16.6 shows. In the proof of Corollary 16.6, we essentially
convert the CQ q into a database via the bijective homomorphism GSq . Now we
are going to do the opposite, i.e., convert a database into a CQ. As discussed in
Chapter 14, we can convert a database D into a set of relational atoms via the
injective function VC : Const→ Const∪Var, where C is a finite set of constants.
Recall that VC(D) is the set of relational atoms obtained from D by replacing
constants, except for those in C, with variables. The following corollary, which
establishes that CQ-Evaluation can be reduced to CQ-Containment, is stated
for Boolean CQs, as this suffices for the purpose of pinpointing the complexity
of CQ-Containment, but it can be easily generalized to arbitrary CQs.

Corollary 16.7

Let q be a Boolean CQ, D a database, and qD the Boolean CQ such that
SqD = VC(D), where C = Dom(Sq) ∩ Const. Then:

D |= q if and only if qD ⊆ q.

Proof. By Theorem 14.2, we conclude that

D |= q if and only if q → D.

It is easy to show that

q → D if and only if q → qD.

Indeed, if q → D is witnessed via h, then we get that VC◦h is a homomorphism
from q to qD. Conversely, assuming that q → qD is witnessed via g, V−1

C ◦ g is
a homomorphism from q to D. By Theorem 16.4, we conclude that

q → qD if and only if qD ⊆ q.

From the above equivalences, we get that D |= q if and only if qD ⊆ q. ut

By Theorem 15.1, CQ-Evaluation is in NP, and thus, Corollary 16.6 implies
that also CQ-Containment is in NP. Moreover, since CQ-Evaluation is NP-hard
even for Boolean CQs (this is because the CQ that the reduction from Clique to
CQ-Evaluation builds in the proof of Theorem 15.1 is Boolean), Corollary 16.7
implies that CQ-Containment is NP-hard. Therefore, CQ-Containment is NP-
complete, which establishes Theorem 16.3.

Equivalence

We now focus on the equivalence problem: given two CQs q, q′, check whether
q ≡ q′, i.e., whether q(D) = q′(D) for every database D. We show that:
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Theorem 16.8

CQ-Equivalence is NP-complete.

Proof. Concerning the upper bound, it suffices to observe that

q ≡ q′ if and only if q ⊆ q′ and q′ ⊆ q,

which implies that CQ-Equivalence is in NP since, by Theorem 16.3, the prob-
lem of deciding whether q ⊆ q′ and q′ ⊆ q is in NP.

Concerning the lower bound, we provide a reduction from CQ-Containment.
In fact, CQ-Containment is NP-hard even if we consider Boolean CQs (this is
a consequence of the proof of Theorem 16.3). Consider two Boolean CQs

q = Answer :– R1(ū1), . . . , Rn(ūn) q′ = Answer :– R′1(ū′1), . . . , R′m(ū′m),

We assume that q, q′ do not share variables since we can always rename vari-
ables without affecting the semantics of a query. Let q∩ be the Boolean CQ

Answer :– R1(ū1), . . . , Rn(ūn), R′1(ū′1), . . . , R′m(ū′m),

which essentially computes the intersection of q and q′. In other words, for
every database D, q(D) ∩ q′(D) = q∩(D). It is straightforward to see that

q ⊆ q′ if and only if q ≡ q∩,

which in turn implies that CQ-Equivalence is NP-hard, as needed. ut
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Minimization

Query optimization is the task of transforming a query into an equivalent one
that is easier to evaluate. Since joins are expensive operations, we typically
consider an equivalent version of a CQ q with fewer atoms in its body, and
thus, with fewer joins to perform. Ideally, we would like to compute a CQ q′

that is equivalent to q, and is also minimal, i.e., it has the minimum number
of atoms. This brings us to the notion of minimization of CQs.

Definition 17.1: Minimization of CQs

Consider a CQ q over a schema S. A CQ q′ over S is a minimization of
q if the following hold:

1. q ≡ q′, and

2. for every CQ q′′ over S, q′ ≡ q′′ implies |Sq′ | ≤ |Sq′′ |.

In other words, q′ is a minimization of q if it is equivalent to q and has the
smallest number of atoms among all the CQs that are equivalent to q. It is
straightforward to see that every CQ q over a schema S has a minimization,
which is actually a query from the finite set (up to variable renaming)

Mq = {q′ | q′ is a CQ over S and |Sq′ | ≤ |Sq|}

that collects all the CQs over S (up to variable renaming) with at most |Sq|
atoms. Hence, to compute a minimization of q, we could, e.g., iterate over
all CQs of Mq in increasing order with respect to the number of body atoms,
until we find one that is equivalent to q. But now the following questions arise:

1. Is there a smarter procedure for computing a minimization of q instead of
naively iterating over the exponentially many CQs of Mq? In particular,
does the strategy of removing atoms from q as long as the resulting query
is equivalent to q (see Algorithm 3) lead to a minimization of q?
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2. Which minimization of q should be computed? Is there one that stands
out as the best?

The above questions have neat answers, which we discuss in detail in the
rest of the chapter. In a nutshell, one can indeed find minimizations of a CQ
q by removing atoms from its body. Moreover, although q may have several
minimizations, they are all the same (up to variable renaming). This implies
that no matter in which order we remove atoms from the body of q, we will
always compute the same minimization of q (up to variable renaming).

Minimization via Atom Removals

Consider a CQ q of the form Answer(x̄) :– R1(ū1), . . . , Rn(ūn). The CQ q′

obtained from q by removing the atom Ri(ūi), for some i ∈ [n], is

Answer(x̄′) :– R1(ū1), . . . , Ri−1(ūi−1), Ri+1(ūi+1), . . . , Rn(ūn),

where x̄′ is obtained from x̄ by removing every variable that is only mentioned
in the atom Ri(ūi). For example, if we remove the atom R(x) from the CQ
Answer(x, y) :– R(x), S(y), then we obtain the CQ Answer(y) :– S(y) as the
variable x is only mentioned in R(x). On the other hand, if we remove the
atom R(x) from the CQ Answer(x, y) :– R(x), T (x, y), then we obtain the CQ
Answer(x, y) :– T (x, y) since x occurs also in T (x, y).

The building block of minimization via atom removals is as follows: given
a CQ q(x̄), construct a CQ q′(x̄) by removing an atom R(ū) from the body of
q such that (q, x̄)→ (q′, x̄). Notice that the output tuple x̄ remains the same,
which means that the atom R(ū) either it does not contain a variable of x̄, or
it contains only variables of x̄ that occur also in atoms of Sq−{R(ū)}. In this
way, we actually construct a CQ that is equivalent to q. Indeed, since (q, x̄)→
(q′, x̄), we get that q′ ⊆ q (by Theorem 16.4). Moreover, (q′, x̄)→ (q, x̄) holds
trivially due to the identity homomorphism from Sq′ to Sq, and thus, q ⊆ q′

(again by Theorem 16.4). We then iteratively remove atoms as above until we
reach a CQ q′′(x̄) that is minimal, i.e., any CQ q′′′(x̄) that can be obtained by
removing an atom from the body of q′′ is such that (q′′, x̄)→ (q′′′, x̄) does not
hold. The CQ q′′ is typically called a core of q. The formal definition follows.

Definition 17.2: Core of a CQ

Consider a CQ q(x̄). A CQ q′(x̄) is a core of q if the following hold:

1. Sq′ ⊆ Sq,
2. (q, x̄)→ (q′, x̄), and

3. for every CQ q′′(x̄) with Sq′′ ( Sq′ , (q′, x̄)→ (q′′, x̄) does not hold.

The first condition in Definition 17.2 expresses that either q = q′, or q′ is
obtained by removing atoms from q but without altering the output tuple x̄,
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the second condition ensures that q ≡ q′, and the third condition states that
q′ is minimal. Here is an example that illustrates the notion of core of a CQ.

Example 17.3: Core of a CQ

Consider the Boolean CQ q1 defined as

Answer :– R(x, y), R(x, z).

The function h defined as h(x) = x, h(y) = y and h(z) = y is a ho-
momorphism from {R(x, y), R(x, z)} to {R(x, y)}. Therefore, q1 → q′1,
where q′1 is the Boolean CQ defined as

Answer :– R(x, y).

Since, by definition, a CQ must have at least one atom in its body, we
conclude that q′1 is a core of q1. Observe that the Boolean CQ q′′1

Answer :– R(x, z)

is also a core of q1 due to the homomorphism h′ defined as h(x) = x,
h(y) = z and h(z) = z. Therefore, a CQ may have several cores that are
syntactically different, depending on the order that atoms are removed.

Consider now the Boolean CQ q2 defined as

Answer :– R(x, y), R(y, z).

Observe that there is neither a homomorphism from {R(x, y), R(y, z)}
to {R(x, y)}, nor a homomorphism from {R(x, y), R(y, z)} to {R(y, z)}.
This means that there is no way to remove an atom from q2 and get an
equivalent CQ. Therefore, we conclude that q2 is its own core.

Finally, consider the CQ q3 defined as

Answer(x, y, z) :– R(x, y), R(x, z),

which is actually q1 with all the variables in the output tuple. By remov-
ing the atom R(x, z) from q3, we obtain the CQ q′3

Answer(x, y) :– R(x, y).

In this case, there is no homomorphism from (Sq3 , (x, y, z)) to (Sq′3 , (x, y))
since there is no way to map the ternary tuple (x, y, z) to the binary tuple
(x, y). Hence, q′3 is not equivalent to q3. The case where we remove the
atom R(x, y) from q3 is analogous. Therefore, q3 is its own core.

We proceed to show that the notion of core captures our original intention,
that is, the construction of a minimization of a CQ.
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Proposition 17.4

Every CQ q has at least one core, and every core of q is a minimization
of q.

Proof. We first show that a CQ q(x̄) has a core. If q is a core of itself, then the
claim follows. Assume now that this is not the case. This means that condition
(3) in the definition of core (Definition 17.2) is violated, which in turn implies
that there is a CQ q′(x̄) with Sq′ ( Sq such that (q, x̄)→ (q′, x̄). If q′ is a core
of itself, then it is clear that q′ is a core of q, and the claim follows. Otherwise,
we iteratively apply the above argument until we reach a core of q.

We now proceed to show that a core of q(x̄) is a minimization of it. We
first show a useful technical lemma:

Lemma 17.5. Consider a CQ q1(ȳ1), and assume that there is a CQ q2(ȳ2)
such that q1 ≡ q2 and |Sq2 | < |Sq1 |. Then, there is a CQ q3(ȳ1) such that

(q1, ȳ1)→ (q3, ȳ1) and Sq3 ( Sq1 .

Proof. By Theorem 16.4, we conclude that

(q1, ȳ1)→ (q2, ȳ2) and (q2, ȳ2)→ (q1, ȳ1).

Assume that these statements are witnessed via the homomorphisms h1 and
h2, respectively. Let q3(ȳ3) be the CQ such that

Sq3 = h2(Sq2) and ȳ3 = h2(ȳ2).

It is clear that ȳ3 = ȳ1 and Sq3 ⊆ Sq1 . Furthermore, since |Sq3 | ≤ |Sq2 | and
|Sq2 | < |Sq1 |, we conclude that |Sq3 | < |Sq1 |, and thus, Sq3 ( Sq1 . It remains
to show that (q1, ȳ1)→ (q3, ȳ1). Since homomorphisms compose, the latter is
witnessed via the homomorphism h2 ◦ h1. ut

Consider now a CQ q′(x̄) that is a core of q(x̄). Towards a contradiction,
assume that q′ is not a minimization of q. This implies that there exists a
CQ q′′ such that q′ ≡ q′′ and |Sq′′ | < |Sq′ |. By Lemma 17.5, we conclude
that there exists a CQ q′′′(x̄) such that (q′, x̄)→ (q′′′, x̄) and Sq′′′ ( Sq′ . This
contradicts our hypothesis that q′ is a core of q, and the claim follows. ut

By Proposition 17.4, to compute a minimization of a CQ q, we simply need
to compute a core of it. This can be done via the simple iterative procedure
ComputeCore, given in Algorithm 4. Notice that this algorithm is a more
detailed reformulation of Algorithm 3. It is straightforward to show that, for
a CQ q, ComputeCore(q) terminates after finitely many steps. It is also not
difficult to show that the procedure ComputeCore is correct.

Lemma 17.6. Given a CQ q, ComputeCore(q) is a core of q.
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Algorithm 4 ComputeCore(q)

Input: A CQ q(x̄)
Output: A query q∗(x̄) that is a core of q(x̄)

1: S := Sq
2: while there exists R(ū) ∈ S such that each variable in x̄
3: occurs in Dom(S − {R(ū)}) and (S, x̄)→ (S − {R(ū)}, x̄) do
4: S := S − {R(ū)}
5: return q∗(x̄) :– R1(ū1), . . . , Rn(ūn), where S = {R1(ū1), . . . , Rn(ūn)}

Proof. At each iteration of the while-loop, the CQ q′(x̄) with Sq′ = S (which
is indeed a CQ since, by construction, every variable in x̄ occurs in Sq′) is
such that Sq′ ⊆ Sq and (q, x̄)→ (q′, x̄). Therefore, the CQ q∗(x̄) returned by
the algorithm is such that Sq∗ ⊆ Sq and (q, x̄) → (q∗, x̄). Furthermore, by
construction, for every CQ q′′(x̄) with Sq′′ ( Sq∗ , (q∗, x̄) → (q′′, x̄) does not
hold. Therefore, q∗ satisfies all the three conditions given in the definition of
core (Definition 17.2), and thus, it is a core of q, as needed. ut

Note that ComputeCore is a nondeterministic algorithm. Observe that
there may be several atoms R(ȳ) ∈ S satisfying the condition of the while loop
(in particular, the condition (S, x̄)→ (S − {R(ȳ)}, x̄)), but we do not specify
how such an atom is selected. In fact, the atom R(ȳ) of S that is eventually
removed from S at step 4 is chosen nondeterministically. Therefore, the final
result computed by the algorithm depends on how the atoms to be removed
from S are chosen, and thus, different executions of ComputeCore(q) may
compute cores of q that are syntactically different. This fact should not be
surprising as it has been already illustrated in Example 17.3 (see the queries
q′1 and q′′1 that are cores of q1). This leads to the second main question raised
above: is there a core of q that stands out as the best?

Uniqueness of Minimizations

It turns out that such a concept as the best core does not exist since a CQ has
a unique core (up to variable renaming). This is a consequence of the fact that
every CQ has a unique minimization (up to variable renaming). We proceed
to show the latter statement.

We say that two CQs q(x̄), q′(x̄′) are isomorphic if one can be turned into
the other via renaming of variables, i.e., if there is a bijection ρ : Dom(Sq)→
Dom(Sq′) that is a homomorphism from (Sq, x̄) to (Sq′ , x̄

′), and its inverse
ρ−1 is a homomorphism from (Sq′ , x̄

′) to (Sq, x̄). (Recall from Chapter 9 that
homomorphisms between sets of atoms are always the identity on constants.)
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Proposition 17.7

Consider a CQ q(x̄), and let q′(x̄′) and q′′(x̄′′) be minimizations of q.
Then q′ and q′′ are isomorphic.

Proof. We need to show that there is a bijection ρ : Dom(Sq′) → Dom(Sq′′)
that is a homomorphism from (Sq′ , x̄

′) to (Sq′′ , x̄
′′), and its inverse ρ−1 is a

homomorphism from (Sq′′ , x̄
′′) to (Sq′ , x̄

′). Since both q′ and q′′ are minimiza-
tions of q, we get that q ≡ q′ and q ≡ q′′, and thus, q′ ≡ q′′. By Theorem 16.4,

(q′, x̄′)→ (q′′, x̄′′) and (q′′, x̄′′)→ (q′, x̄′).

Assume that these statements are witnessed via the homomorphisms h and
g, respectively. We proceed to show a useful statement concerning h and g:

Lemma 17.8. The functions h and g are bijections.

Proof. We concentrate on h, and show that is both surjective and injective;
the proof for g is analogous. We give a proof by contradiction:

• Assume first that h is not surjective. This implies that there is a variable
z ∈ Dom(Sq′′) such that there is no variable y ∈ Dom(Sq′) with h(y) = z.
Let R(ū) ∈ Sq′′ be an atom that mentions z. We have that R(ū) 6∈ h(Sq′).
We define q′′′(x̄′′) as the CQ with Sq′′′ = h(Sq′). It is clear that (q′, x̄′)→
(q′′′, x̄′′) via h, and (q′′′, x̄′′)→ (q′, x̄′) via g. Therefore, by Theorem 16.4,
q′ ≡ q′′′. Since q′ ≡ q′′, we conclude that q′′ ≡ q′′′. Observe also that
Sq′′′ ( Sq′′ , which implies that |Sq′′′ | < |Sq′′ |. But this contradicts the
fact that q′′ is a minimization of q, and thus, h is surjective.

• Assume now that h is not injective. This implies that there are two dis-
tinct variables y, z ∈ Dom(Sq′) such that h(y) = h(z). Hence, g(h(y)) =
g(h(z)), which implies that g ◦h is a homomorphism from (q′, x̄′)→ (q′, x̄′)
that is not surjective. Therefore, there exists a variable u ∈ Dom(Sq′) such
that there is no variable v ∈ Dom(Sq′) with g(h(v)) = u. Let R(ū) ∈ Sq′
be an atom that mentions u. We have that R(ū) 6∈ g(h(Sq′)). We define
q′′′(x̄′) as the CQ with Sq′′′ = g(h(Sq′)). It is clear that (q′, x̄′)→ (q′′′, x̄′)
via g ◦ h. Observe also that Sq′′′ ( Sq′ . Hence, (q′′′, x̄′) → (q′, x̄′) via the
identity homomorphism, which means that q′ ≡ q′′′ due to Theorem 16.4,
and |Sq′′′ | < |Sq′ |. But this contradicts the fact that q′ is a minimization
of q, which in turn implies that h is injective.

Since h is both surjective and injective, the claim follows. ut
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We are now ready to define the bijection ρ : Dom(Sq′) → Dom(Sq′′). Let
f = g◦h. It is clear that f is a homomorphism from (Sq′ , x̄

′) to (Sq′ , x̄
′). Since,

by Lemma 17.8, both h and g are bijections, we can further conclude that f
is a bijection. This implies that there exists k ≥ 0 such that the function

fk = f ◦ · · · ◦ f︸ ︷︷ ︸
k

is the identity homomorphism from (Sq′ , x̄
′) to (Sq′ , x̄

′). Let ρ = h ◦ fk−1.
Since both h and fk−1 are bijections, we get that also ρ is a bijection. It is
also clear that ρ is a homomorphism from (Sq′ , x̄

′) to (Sq′′ , x̄
′′). Notice also

that g ◦ ρ = fk is the identity, which means that g is the inverse of ρ. Thus,
the inverse of ρ is a homomorphism from (Sq′′ , x̄

′′) to (Sq′ , x̄
′). Therefore, ρ

witnesses the fact that q′ and q′′ are isomorphic, and the claim follows. ut

From Proposition 17.4, which tells us that a core of CQ q is a minimization,
and Proposition 17.7, we immediately get the following corollary:

Corollary 17.9

Consider a CQ q, and let q′ and q′′ be cores of q. It holds that q′ and q′′

are isomorphic.

Recall that different executions of the nondeterministic procedure Com-
puteCore on some input CQ q, may compute cores of q that are syntactically
different. However, Corollary 17.9 tells us that those cores differ only on the
names of their variables. In other words, cores of q computed by different exe-
cutions of ComputeCore(q) are actually the same up to variable renaming.
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Containment Under Integrity Constraints

As discussed in Chapters 10 and 11, relational systems support the specifi-
cation of semantic properties that should be satisfied by all databases of a
certain schema. This is achieved via integrity constraints, also called depen-
dencies. The question that arises is how static analysis, and in particular the
notion of containment of CQs, studied in Chapter 17, is affected in the pres-
ence of constraints. In this chapter, we study this question concentrating on
functional dependencies (FDs) and inclusion dependencies (INDs).

Functional Dependencies

We start with FDs, and illustrate via an example how containment of CQs is
affected if we focus on databases that satisfy a given set of FDs.

Example 18.1: Containment of CQs Under FDs

Consider the CQs q1 and q2 defined as

Answer(x1, y1) :– R(x1, y1), R(y1, z1), R(x1, z1)

Answer(x2, y2) :– R(x2, y2), R(y2, y2),

respectively. It is easy to verify that (q2, (x2, y2))→ (q1, (x1, y1)) does not
hold, and thus, we have that q1 6⊆ q2 by the Homomorphism Theorem.
For example, if we consider the database

D = {R(1, 2), R(2, 3), R(1, 3)},

then q1(D) = {(1, 2)} and q2(D) = ∅, so that q1(D) 6⊆ q2(D). Suppose
now that q1, q2 will be evaluated only over databases that satisfy the FD

σ = R : {1} → {2}.
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In particular, q1 and q2 will not be evaluated over the database D since
it does not satisfy σ. We can show that, for every database D′,

D′ |= σ implies q1(D′) ⊆ q2(D′).

To see this, consider an arbitrary database D′ that satisfies σ, and as-
sume that (a, b) ∈ q1(D′). By Theorem 14.2, we have that

(q1, (x1, y1)) → (D′, (a, b))

via a homomorphism h1. Since D′ |= σ and

{R(h1(x1), h1(y1)), R(h1(x1), h1(z1))} ⊆ D′,

it holds that h1(y1) = h1(z1). Since R(h1(y1), h1(z1)) ∈ D′, we get that

(q2, (x2, y2)) → (D′, (a, b))

via h2 such that h2(x2) = h1(x1) and h2(y2) = h1(y1) = h1(z1).

Our goal is to revisit the problem of containment for CQs in the presence
of FDs. More precisely, given two CQs q and q′, and a set Σ of FDs, we say
that q is contained in q′ under Σ, denoted by q ⊆Σ q′, if for every database D
that satisfies Σ, it holds that q(D) ⊆ q′(D). The problem of interest follows:

Problem: CQ-Containment-FD

Input: Two CQs q and q′, and a set Σ of FDs

Output: true if q ⊆Σ q′, and false otherwise

We proceed to show the following result:

Theorem 18.2

CQ-Containment-FD is NP-complete.

It is clear that the NP-hardness is inherited from CQ containment without
constraints (see Theorem 16.3). Recall that, by the Homomorphism Theorem,
checking whether a CQ q(x̄) is contained in a CQ q′(x̄′) in the absence of
constraints boils down to checking whether (q′, x̄′) → (q, x̄). Even though
this is not enough in the presence of FDs, we can adopt a similar approach
providing that we first transform, by identifying terms as dictated by the FDs,
the set of atoms Sq in q into a new set of atoms S that satisfies the FDs, and
the tuple of variables x̄ into a new tuple ū, which may contain also constants,
and then check whether (Sq′ , x̄

′)→ (S, ū). This simple idea has been already
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illustrated by Example 18.1. Unsurprisingly, the transformation of Sq and x̄
into S and ū, respectively, can be done by exploiting the chase for FDs, which
has been introduced in Chapter 10. For brevity, we simply write Chase(q,Σ)
instead of Chase(Sq, Σ), and hq,Σ instead of hSq,Σ . We now show the following
result by providing a proof similar to that of the Homomorphism Theorem:

Theorem 18.3

Let q(x̄) and q′(x̄′) be CQs over a schema S, and Σ a set of FDs over S.
The following are equivalent:

1. q ⊆Σ q′.

2. Chase(q,Σ) 6= ⊥ implies (Sq′ , x̄
′)→ (Chase(q,Σ), hq,Σ(x̄)).

Proof. For brevity, let S = Chase(q,Σ) and ū = hq,Σ(x̄).
We first show that (1) implies (2). By hypothesis, q ⊆Σ q′. It is clear that,

if S 6= ⊥, then GS(ū) ∈ q(GS(S)). Since, by Lemma 10.7, S |= Σ, which means
that GS(S) |= Σ, we have that GS(ū) ∈ q′(GS(S)). By Theorem 14.2, there
exists a homomorphism h from (Sq′ , x̄

′) to (GS(S),GS(ū)). Clearly, G−1
S ◦h is

a homomorphism from (Sq′ , x̄
′) to (S, ū), as needed.

For showing that (2) implies (1) we proceed by case analysis:

• Assume first that S = ⊥. This implies that, for every database D of S such
that D |= Σ, there is no homomorphism from q to D; otherwise, there
is a successful finite chase sequence of q under Σ, which contradicts the
fact that S = ⊥. Therefore, for every database D of S such that D |= Σ,
q(D) = ∅, which in turn implies that q ⊆Σ q′.

• Assume now that S 6= ⊥. By hypothesis, we get that (Sq′ , x̄
′)→ (S, ū) via

a homomorphism h. Let D be an arbitrary database of S such that D |= Σ,
and assume that ā ∈ q(D). By Theorem 14.2, (q, x̄) → (D, ā). Since
D |= Σ, Lemma 10.10 implies that (S, ū) → (D, ā) via a homomorphism
g. Since homomorphisms compose, g ◦ h is a homomorphism from (q′, x̄′)
to (D, ā). By Theorem 14.2, ā ∈ q′(D), which implies that q ⊆Σ q′.

Since in both cases we get that q ⊆Σ q′, the claim follows. ut

The following is an easy consequence of Theorem 18.3 and Theorem 14.2.

Corollary 18.4

Let q(x̄) and q′(x̄′) be CQs over a schema S, and Σ a set of FDs over S.
With S = Chase(q,Σ), the following are equivalent:

1. q ⊆Σ q′.
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2. S 6= ⊥ implies GS(hq,Σ(x̄)) ∈ q′(GS(S)).

By Lemma 10.9, Chase(q,Σ) can be computed in polynomial time. More-
over, if Chase(q,Σ) 6= ⊥, then the chase homomorphism hq,Σ can be also com-
puted in polynomial time. Since CQ-Evaluation is in NP (see Theorem 15.1),
we conclude that CQ-Containment-FD is also in NP, and Theorem 18.2 follows.

Inclusion Dependencies

We now focus on INDs. We first illustrate via an example how containment
of CQs is affected if we focus on databases that satisfy a set of INDs.

Example 18.5: Containment of CQs Under INDs

Consider the CQs q1 and q2 defined as

Answer(x1, y1) :– R(x1, y1), R(y1, z1), P (z1, y1)

Answer(x2, y2) :– R(x2, y2), R(y2, z2), S(x2, y2, z2),

respectively. It is clear that (q2, (x2, y2)) → (q1, (x1, y1)) does not hold,
and thus, we have that q1 6⊆ q2 by the Homomorphism Theorem. Suppose
now that q1 and q2 will be evaluated only over databases that satisfy

σ1 = R[1, 2] ⊆ S[1, 2] and σ2 = S[2, 3] ⊆ R[1, 2].

We can show that, for every database D,

D |= {σ1, σ2} implies q1(D) ⊆ q2(D).

Consider an arbitrary database D that satisfies {σ1, σ2}, and assume
that (a, b) ∈ q1(D), or, equivalently, (q1, (x1, y1)) → (D, (a, b)) via a
homomorphism h1. This implies that R(h1(x1), h1(y1)) ∈ D. Since D |=
σ1, we get that D contains an atom of the form S(h1(x1), h(y1), c). But
since D |= σ2, we also get that D contains the atom R(h1(y1), c). Hence,

{R(h1(x1), h1(y1)), R(h1(y1), c), S(h1(x1), h1(y1), c)} ⊆ D.

This implies that (q′1, (x1, y1)) → (D, (a, b)), where q′1 is obtained from
q1 by adding certain atoms according to σ1 and σ2, i.e., q′1 is defined as

Answer(x1, y1) :– R(x1, y1), R(y1, z1), P (z1, y1), S(x1, y1, w1), R(y1, w1),

where w1 is a new variable not in q1. Now observe that (q2, (x2, y2)) →
(q′1, (x1, y1)), which implies that (q2, (x2, y2)) → (D, (a, b)). By the Ho-
momorphism Theorem, (a, b) ∈ q2(D), and thus, q1(D) ⊆ q2(D).
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Our goal is to revisit the problem of CQ containment in the presence of
INDs. Given two CQs q and q′, and a set Σ of INDs, q is contained in q′ under
Σ, denoted q ⊆Σ q′, if for every database D that satisfies Σ, q(D) ⊆ q′(D).
The problem of interest is defined as expected:

Problem: CQ-Containment-IND

Input: Two CQs q and q′, and a set Σ of INDs

Output: true if q ⊆Σ q′, and false otherwise

Although the complexity of CQ containment in the presence of FDs re-
mains NP-complete (Theorem 18.2), this is not true for INDs:

Theorem 18.6

CQ-Containment-IND is PSpace-complete.

We first focus on the upper bound. Recall again that, by the Homomor-
phism Theorem, checking whether a CQ q(x̄) is contained in a CQ q′(x̄′) in
the absence of constraints boils down to checking whether (q′, x̄′) → (q, x̄).
Although this is not enough in the presence of INDs, we can adopt a similar
approach providing that we first transform, by adding atoms as dictated by
the INDs, the set of atoms Sq occurring in q into a new set of atoms S that
satisfies the INDs, and then check whether (Sq′ , x̄

′)→ (S, x̄). This simple idea
has been already illustrated by Example 18.5. As expected, the transforma-
tion of Sq into S can be achieved by exploiting the chase for INDs, which has
been already introduced in Chapter 11.

We are going to establish a statement analogous to Theorem 18.3. However,
since the chase for INDs may build an infinite set of atoms, we can only
characterize CQ containment under possibly infinite databases. Notice that
here we refer to the output of a CQ over a possibly infinite database. Although
this is defined in the same way as for databases (Definition 13.3), we proceed
to give the formal definition for the sake of completeness.

Consider a possibly infinite database D and a CQ q of the form

Answer(x̄) :– R1(ū1), . . . , Rn(ūn) .

An assignment for q over D is a function η from the set of variables in q to
Dom(D). We say that η is consistent with D if

{R1(η(ū1)), . . . , Rn(η(ūn))} ⊆ D ,

where, for i ∈ [n], Ri(η(ūi)) is the fact obtained after replacing each variable
x in ūi with η(x), and leave the constants in ūi untouched. Having this notion,
we can define what is the output of a CQ on a possibly infinite database.
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Definition 18.7: Evaluation on Possibly Infinite Databases

Given a possibly infinite database D of a schema S, and a CQ q(x̄) over
S, the output of q on D is defined as the set of tuples

q(D) = {η(x̄) | η is an assignment for q over D consistent with D} .

We can naturally talk about homomorphisms from CQs to possibly infi-
nite databases. Actually, Definition 14.1 merely extends to possibly infinite
databases, which allows us to state a result analogous to Theorem 14.2:

Theorem 18.8

Given a possibly infinite database D of a schema S, and a CQ q(x̄) of
arity k ≥ 0 over S, it holds that

q(D) = {ā ∈ Dom(D)k | (q, x̄)→ (D, ā)}.

Consider two CQs q and q′, and a set Σ of INDs. We say that q is contained
without restriction in q′ under Σ, denoted q ⊆∞Σ q′, if for every possibly infinite
database D that satisfies Σ, q(D) ⊆ q′(D). For brevity, we write Chase(q,Σ)
instead of Chase(Sq, Σ). The next result is shown as Theorem 18.3.

Theorem 18.9

Let q(x̄), q′(x̄′) be CQs over schema S, and Σ a set of INDs over S. Then:

q ⊆∞Σ q′ if and only if (Sq′ , x̄
′)→ (Chase(q,Σ), x̄).

The above statement alone is of little use since we are interested in finite
databases. However, combined with the following result, known as the finite
controllability of CQ containment under INDs, we get the desired characteri-
zation of CQ containment under finite databases via the chase.

Theorem 18.10: Finite Controllability of Containment

Let q and q′ be CQs over a schema S, and Σ a set of INDs over S. Then:

q ⊆Σ q′ if and only if q ⊆∞Σ q′.

The above theorem is a deep result that is extremely useful for our analysis,
but whose proof is out of the scope of this book. An easy consequence of
Theorems 18.9 and 18.10, combined with Theorem 18.8, is the following:
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Corollary 18.11

Let q(x̄) and q′(x̄′) be CQs over a schema S, and Σ a set of INDs over
S. With S = Chase(q,Σ), the following holds:

q ⊆Σ q′ if and only if GS(x̄) ∈ q′(GS(S)).

Due to Corollary 18.11, the reader may be tempted to think that the
procedure for checking whether q ⊆Σ q′, which in turn will lead to the PSpace
upper bound claimed in Theorem 18.6, is to check whether GS(x̄) belongs to
the evaluation of q′ over S↓, where S = Chase(q,Σ). However, it should not be
forgotten that Chase(q,Σ) may be infinite. Hence, we need a finer procedure
that avoids the explicit construction of Chase(q,Σ). We present a lemma that
is the building block of this procedure, but first we need some terminology.

For an IND σ = R[i1, . . . , im] ⊆ P [j1, . . . , jm], a tuple ū = (u1, . . . , uar(R)),
and a set of variables V , newV (σ, ū) is the atom obtained from new(σ, ū) after
replacing each newly introduced variable with a distinct variable from V .
Formally, newV (σ, ū) = P (v1, . . . , var(P )), where, for each ` ∈ [ar(P )],

v` =

uik if ` = jk, for k ∈ [m],

x ∈ V otherwise,

such that, for each i, j ∈ [ar(P )]− {j1, . . . , jm}, i 6= j implies vi 6= vj .
1 Given

two CQs q(x̄), q′(x̄′) over a schema S, and a set Σ of INDs over S, a witness
of q′ relative to q and Σ is a triple (V,S, Q), where V is a sequence of (not
necessarily disjoint) sets of variables V1, . . . , Vn, for n ≥ 0, S is a sequence of
disjoint sets of relational atoms S0, . . . , Sn, and Q ⊆

⋃
i∈[0,n] Si, such that:

• |
⋃
i∈[n] Vi| ≤ 3 · |Sq′ | ·maxR∈S{ar(R)},

• for each i ∈ [n], Vi ∩ (Dom(Si−1) ∪Dom(S)) = ∅,
• for each i ∈ [0, n], |Si| ≤ |Sq′ |,
• S0 ⊆ Sq,
• for each i ∈ [n] and P (v̄) ∈ Si, there exists σ = R[α] ⊆ P [β] in Σ that is

applicable on Si−1 with some ū ∈ RSi−1 such that P (v̄) = newVi(σ, ū),

• for each i ∈ [n] and x ∈ Dom(Si)−Dom(Si−1), there is only one occurrence
of x in Si, i.e., it is mentioned only once by exactly one atom of Si,

• |Q| ≤ |Sq′ |, and

• GQ(x̄) ∈ q′(GQ(Q)).

1 We assume some fixed mechanism that chooses the variable v` from the set V
whenever ` ∈ [ar(P )]− {j1, . . . , jm}.



126 18 Containment Under Integrity Constraints

Let S = Chase(q,Σ). Notice that GS(x̄) ∈ q′(GS(S)) holds due to the
existence of a set A ⊆ Chase(q,Σ) such that (Sq′ , x̄

′)→ (A, x̄). It is also not
difficult to see that the construction of A can be witnessed via a sequence
A0, A1, . . . , An of disjoint subsets of Chase(q,Σ), where each such set consists
of at most |Sq′ | atoms, A0 ⊆ Sq′ , An = A, and for each i ∈ [n], the atoms of
Ai are obtained from the atoms of Ai−1 via chase applications using INDs of
Σ. A witness of q′ relative to q and Σ should be understood as a compact rep-
resentation, which uses only polynomially many variables, of such a sequence
A0, A1, . . . , An of disjoint subsets of Chase(q,Σ). Therefore, the existence of
a witness of q′ relative to q essentially implies that GS(x̄) ∈ q′(GS(S)). Fur-
thermore, if GS(x̄) ∈ q′(GS(S)), then a witness of q′ relative to q and Σ can
be extracted from Chase(q,Σ). The above informal discussion is summarized
in the following technical lemma, whose proof is left as an exercise.

Algorithm 5 ContainmentWitness(q, q′, Σ)

Input: Two CQs q(x̄) and q′(x̄′) over S, and a set Σ of INDs over S.
Output: true if there is a witness for q′ relative to q and Σ, and false otherwise.

1: SO := A, where A ⊆ Sq with |A| ≤ |Sq′ |
2: S. := ∅
3: Q := A, where A ⊆ SO

4: V := {y1, . . . , ym} ⊂ Var−Dom(Sq) for some m ∈ [3 · |Sq′ | ·maxR∈S{ar(R)}]
5: repeat
6: repeat
7: if σ = R[α] ⊆ P [β] ∈ Σ is applicable on SO with ū ∈ Dom(SO)ar(R) then
8: N := newV (σ, ū)
9: V := V −Dom({N})

10: S. := S. ∪ {N}
11: if |S.| < |Sq′ | then
12: Next := b, where b ∈ {0, 1}
13: else
14: Next := 1
15: until Next = 1
16: if S. = ∅ then
17: return false

18: V := V ∪ ((Dom(SO) ∩ Var)− (Dom(S.) ∪Dom(Q)))
19: SO := S.
20: S. := ∅
21: Q := Q ∪A, where A ⊆ SO

22: if |Q| < |Sq′ | then
23: Evaluate := b, where b ∈ {0, 1}
24: else
25: Evaluate := 1
26: until Evaluate = 1
27: return GQ(x̄) ∈ q′(GQ(Q))
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Lemma 18.12. Let q(x̄) and q′(x̄′) be CQs over a schema S, and Σ a set of
INDs over S. With S = Chase(q,Σ), it holds that GS(x̄) ∈ q′(GS(S)) if and
only if there exists a witness of q′ relative to q and Σ.

By Corollary 18.11 and Lemma 18.12, we conclude that the problem of
checking whether a CQ q(x̄) is contained in a CQ q′(x̄′) under a set Σ of INDs
boils down to checking whether a witness of q′ relative to q andΣ exists. This is
done via the nondeterministic procedure shown in Algorithm 5. It essentially
constructs the sequence of sets of variables V1, . . . , Vn, and the sequence of
sets of atoms S0, . . . , Sn, required by a witness for q′ relative to q and Σ, one
after the other (if they exist), without storing more than two consecutive sets
of a sequence during its computation. It also constructs on the fly the set of
atoms Q. This is done by storing some of the atoms of a set Si (possibly none)
into Q before discarding it. Finally, the algorithm checks whether GQ(x̄) ∈
q′(GQ(Q)), in which case it returns true; otherwise, it returns false. We
proceed to give a bit more detailed description of Algorithm 5:

Initialization. The algorithm starts by guessing a subset of Sq with at most
|Sq′ | atoms, which is stored in SO (see line 1); SO should be seen as the
“current set” from which we construct the “next set” S. in the sequence.
It also guesses a subset of SO that is stored in Q (see line 3); this step is
part of the “on the fly” construction of the set Q. It also collects 3 · |Sq′ | ·
maxR∈S{ar(R)} variables not occurring in Sq in the set V (see line 4).

Inner repeat-until loop. The inner repeat-until loop (see lines 6 - 15) is
responsible for constructing the set S. from SO. This is done by guessing
an IND σ ∈ Σ and a tuple ū over Dom(SO), and adding to S. the atom
newV (σ, ū) if σ is applicable on the current set SO with ū. It also removes
from V the variables that has been used in newV (σ, ū) since they should
not be reused in any other atom of S. that will be generated by a sub-
sequent iteration. This is repeated until S. contains exactly |Sq′ | atoms,
which means that its construction has been completed, or the algorithm
nondeterministically chooses that its construction has been completed,
even if it contains less than |Sq′ | atoms, by setting Next to 1. Once S.
is in place, the algorithm updates V by adding to it the variables that
occur in the current set SO, but have not been propagated to S. and do
not occur in Q (see line 18). This essentially gives rise to the next set of
variables in the sequence of sets of variable under construction. Then SO

is not needed further, and we can reuse the space that it occupies. The
set S. becomes the current set SO (see line 19), while S. becomes empty
(see line 20). Then the algorithm guesses a subset of SO that is stored in
Q (see line 21); this step is part of the “on the fly” construction of Q.

Outer repeat-until loop. The above is repeated untilQ contains more than
|Sq′ | atoms (in the worst-case, 2 · |Sq′ | atoms), which means that its
construction has been completed, or the algorithm nondeterministically
chooses that its construction has been completed, even if it contains less
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than |Sq′ | atoms, by setting Evaluate to 1. The algorithm returns true if
GS′(x̄) ∈ q′(GS′(S

′)); otherwise, it returns false.

It is not difficult to verify that Algorithm 5 uses polynomial space, which
is actually the space needed to represent the sets SO, S., Q and V , as well
as the space needed to check whether an IND is applicable on SO with some
tuple ū ∈ Dom(SO)ar(R) (see line 7), and the space needed to check whether
GQ(x̄) ∈ q′(GQ(Q)) (see line 27). This shows that CQ-Containment-IND is in
NPSpace, and thus in PSpace since NPSpace = PSpace.

The PSpace-hardness of CQ-Containment-IND is shown via a reduction
from IND-Implication, which is PSpace-hard (see Theorem 11.8). Recall that
the IND-Implication problem takes as input a set Σ of INDs over a schema
S, and an IND σ over S, and asks whether Σ |= σ, i.e., whether for every
database over S, D |= Σ implies D |= σ. We are going to construct two CQs
q and q′ such that Σ |= σ if and only if q ⊆Σ q′.

Assume that σ = R[i1, . . . , ik] ⊆ P [j1, . . . , jk]. The CQ q is defined as

Answer(xi1 , . . . , xik) :– R(x1, . . . , xar(R)),

while the CQ q′ is defined as

Answer(xi1 , . . . , xik) :– R(x1, . . . , xar(R)), P (xf(1), . . . , xf(ar(R))),

where, for each m ∈ [ar(P )],

f(m) =

 i` if m = j`, where ` ∈ [k],

ar(R) +m otherwise.

The function f ensures that the variable at position j` in the P -atom of q′ is
xi` , i.e., the same as the one at position i` in the R-atom of q′, while all the
variables in the P -atom occurring at a position not in {j1, . . . , jk} are new
variables occurring only once in the P -atom, and not occurring in the R-atom.
It is an easy exercise to show that indeed Σ |= σ if and only if q ⊆Σ q′.
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Exercises for Part II

Exercise 2.1. Let q be the CQ given in Example 13.8. Express q as an RA
query using θ-joins instead of Cartesian product.

Exercise 2.2. Prove the correctness of the translation of a CQ into an SPJ
query, and the translation of an SPJ query into a CQ, given in the proof of
Theorem 13.7, which establishes that the languages of CQs and of SPJ queries
are equally expressive.

Exercise 2.3. For a CQ q, let eq be the equivalent SPJ query obtained by
applying the translation in the proof of Theorem 13.7. What is the size of eq
with respect to the size of q? Conversely, assuming that qe is the CQ obtained
after translating an SPJ query e into a CQ according to the translation in the
proof of Theorem 13.7, what is the size of qe with respect to the size of e?

Exercise 2.4. Prove that the choice of a pairing function in the definition of
direct product does not matter. More precisely, let ⊗τ be the direct product
defined using a pairing function τ . Then, for every Boolean FO query q, every
two databases D and D′, and every two pairing functions τ and τ ′, show that
D ⊗τ D′ |= q if and only if D ⊗τ ′ D′ |= q.

Exercise 2.5. The goal of this exercise is to extend the notion of preservation
under direct products to queries with constants. To this end, we first refine
the definition of a pairing function. Let C ⊆ Const be a finite set of constants,
and τC a pairing function such that τC(a, a) = a for each a ∈ C. First, prove
that such a pairing function exists. Then, prove that for any two databases D
and D′ of the same schema S, and for a Boolean CQ q over S that mentions
only constants from C, if D |= q and D′ |= q, then D ⊗ D′ |= q, where the
definition of ⊗ uses the pairing function τC .

Exercise 2.6. The goal is to extend further the notion of preservation under
direct products to queries with constants that are not Boolean. For a finite set
of constants C ⊆ Const, let τC be a pairing function defined as in Exercise 2.5.
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Then, given two tuples ā = (a1, . . . , an) and b̄ = (b1, . . . , bn), define the n-ary
tuple ā ⊗ b̄ as

(
τC(a1, b1), . . . , τC(an, bn)

)
. Consider now an n-ary CQ q(x̄)

that mentions only constants from C. Show that if ā ∈ q(D) and b̄ ∈ q(D′),
then ā⊗ b̄ ∈ q(D ⊗D′), where ⊗ is defined with the pairing function τC .

Exercise 2.7. Use Exercise 2.5 to prove that the Boolean query q = ∃x (x =
a), where a is a constant, cannot be expressed as a CQ.

Exercise 2.8. Use Exercise 2.6 to prove that the query q = ϕ(x, y), where ϕ
is the equational atom (x = y), cannot be expressed as a CQ.

Exercise 2.9. Consider a parameterized problem (L1, κ1) over Σ1, and a pa-
rameterized problem (L2, κ2) over Σ2. Show that if there is an FPT-reduction
from (L1, κ1) to (L2, κ2), and (L2, κ2) ∈ FPT, then (L1, κ1) ∈ FPT.

Exercise 2.10. Recall that in the proof of the fact that p-CQ-Evaluation is in
W[1] (see Theorem 15.7), for technical clarity, we consider only constant-free
Boolean CQs over a schema consisting of a single binary relation name. Prove
that p-CQ-Evaluation is in W[1] even for arbitrary CQs.

Exercise 2.11. Show Corollary 16.7 for arbitrary (non-Boolean) CQs.

Exercise 2.12. Show that the binary relation ≡ over CQs is an equivalence
relation, i.e., is reflexive, symmetric, and transitive. Show also that the binary
relation ⊆ over CQs is reflexive and transitive, but not necessarily symmetric.

Exercise 2.13. Answer the following questions about CQs and their cores.

(i) Consider the Boolean CQ q1 over the schema {E[2]} defined as

Answer :– E(x1, y1), E(y1, z1), E(z1, w1), E(w1, x1), E(x2, y2), E(y2, x2).

Assume that E is used to represent the edge relation of a graph G. What
q1 checks for G? Compute the core of q1.

(ii) Consider the Boolean CQ q2 over the schema {R[1], S[1]} defined as

Answer :– R(x), S(x), R(y), S(y).

Compute the core of q2.

(iii) Consider the CQ q3 over the schema {R[1], S[1]} defined as

Answer(x, y) :– R(x), S(x), R(y), S(y).

Prove that q3 is a core of itself.

Exercise 2.14. Let q(x̄) be a CQ, and q′(x̄) a core of q(x̄). Prove that there
is a homomorphism from (q, x̄) to (q′, x̄) that is the identity on Dom(Sq′).
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Exercise 2.15. Recall that ComputeCore (see Algorithm 4) is nondeter-
ministic. Devise a deterministic algorithm that computes the core of a CQ,
and show that it runs in exponential time in the size of the input query.

Exercise 2.16. Let D be a database, and T = {ā1, . . . , ān} a set of m-ary
tuples over Dom(D), for m > 0. Show that there exists a CQ q(x̄) such that
q(D) = T if and only if the following hold:

1.
∏
i∈[n] āi appears in

∏
i∈[n]D, and

2. there is no tuple b̄ ∈ Dom(D)m − T such that
∏
i∈[n](D, āi)→ (D, b̄).

Exercise 2.17. Prove that the following problem is coNExpTime-complete:
given a database D, and a set T = {ā1, . . . , ān} of m-ary tuples over Dom(D),
for m > 0, check whether there exists a CQ q such that q(D) = T .

Exercise 2.18. Prove that FO-Containment remains undecidable even if one
of the two input queries is a CQ.

Exercise 2.19. Prove Lemma 18.12.

Exercise 2.20. Prove that the reduction at the end of Chapter 18 from
IND-Implication to CQ-Containment-IND, which establishes that the latter is
PSpace-hard, is correct.





References

1. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley,
1995.

2. S. Arora and B. Barak. Computational Complexity - A Modern Approach. Cam-
bridge University Press, 2009.

3. D. A. M. Barrington, N. Immerman, and H. Straubing. On uniformity within
NC1. J. Comput. Syst. Sci., 41(3):274–306, 1990.

4. D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Y. Vardi. Containment of
conjunctive regular path queries with inverse. In KR 2000, Principles of Knowl-
edge Representation and Reasoning Proceedings of the Seventh International
Conference, Breckenridge, Colorado, USA, April 11-15, 2000., pages 176–185,
2000.

5. H. B. Enderton. A mathematical introduction to logic. Academic Press, 1972.

6. R. Fagin. Probabilities on finite models. J. Symb. Log., 41(1):50–58, 1976.

7. H. Gaifman. On local and non-local properties. In Proceedings Herbrand Sym-
posium Logic Colloquium, North Holland, 1982, pages 105–135, 1982.

8. H. Garcia-Molina, J. D. Ullman, and J. Widom. Database Systems - the Com-
plete Book. Pearson Education, 2009.
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Part X

Appendix: Theory of Computation





A

Big-O Notation

We write R+
0 for the set of non-negative real numbers, and R+ for the set of

positive real numbers. We typically measure the performance of an algorithm,
that is, the number of basic operations it performs, as a function of its input
length. In other words, the performance of an algorithm can be captured by
a function f : N → R+

0 such that f(n) is the maximum number of basic
operations that the algorithm performs on inputs of length n. However, since
f may heavily depend on the details of the definition of basic operations, we
usually concentrate on the overall and asymptotic behaviour of the algorithm.
This is achieved via the well-known notion of big-O notation.

The big-O notation is typically defined for single variable functions such as
f above. However, in the database setting, where the input to key problems
usually consists of several different components, we generally have to deal
with multiple variable functions. For example, the performance of a query
evaluation algorithm, where the input consists of two distinct components,
the database and the query, can be captured by a function f : N2 → R+

0 such
that f(n,m) is the maximum number of basic operations that the algorithm
performs on databases of size n and queries of size m. The notion of big-O
notation for multiple variable functions follows:

Definition 1.1: Big-O Notation

Let f, g : N` → R+
0 , where ` ≥ 1. We say that

f(x1, . . . , x`) is in O(g(x1, . . . , x`))

if there exist k ∈ R+ and n0 ∈ N such that, for every (x1, . . . , x`) with
xi ≥ n0 for some i ∈ [`], f(x1, . . . , x`) ≤ k · g(x1, . . . , x`).

Notice that when ` = 1, i.e., f, g are single variables function, Definition 1.1
coincides with the standard big-O notation for single variable functions.





B

Turing Machines and Complexity Classes

Many results in this book will provide bounds on computational resources
(time and space), or key database problems such as query evaluation. These
are often formulated in terms of membership in, or completeness for, complex-
ity classes. Those, in turn, are defined using the basic model of computation,
that is, Turing Machines. We now briefly recall basic concepts related to Tur-
ing Machines and complexity classes. For more details, the reader can consult
standard textbooks on computability theory and computational complexity.

Turing Machines

Turing Machines can work in two modes: either as acceptors, for deciding
whether an input string belongs to a given language (in which case we speak
of decision problems), or as computational devices that compute the value of a
function applied to its input. When a Turing Machine works as an acceptor, it
typically contains a read-write tape, a model of computation that is convenient
for defining time complexity classes, or a read-only input tape and a read-write
working tape, a model that is convenient for defining space complexity classes.
When a Turing Machine works as a computational device, it typically contains
a read-only tape where the input is placed, a read-write working tape, and a
write-only tape where the output computed by the Turing Machine is placed.

Turing Machines as Acceptors

We start with the definition of deterministic Turing Machines.

Definition 2.1: Deterministic Turing Machine

A (deterministic) Turing Machine (TM) is defined as a tuple

M = (Q,Σ, δ, s) ,
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where

• Q is a finite set of states, including the accepting state “yes”, and
the rejecting state “no”,

• Σ is a finite set of input symbols, called the alphabet of M , including
the symbols t (the blank symbol) and . (the left marker),

• δ : (Q− {“yes”, “no”})×Σ → Q×Σ × {→,←,−} is the transition
function of M , and

• s ∈ Q is the start state of M .

Accepting and rejecting states are needed for decision problems: they de-
termine whether the input belongs to the language or not. Notice that, accord-
ing to δ, the accepting and rejecting states do not have outgoing transitions.

A configuration of a TM M = (Q,Σ, δ, s) is a tuple

c = (q, u, v) ,

where q ∈ Q, and u, v are words in Σ∗ with u being always non-empty. If M
is in configuration c, then the tape has content uv and the head is reading
the last symbol of u. We use left markers, which means that u always starts
with .. Moreover, the transition function δ is restricted in such a way that .
occurs exactly once in uv, and always as the first symbol of u.

Assume now that M is in a configuration c = (q, ua, v), where q ∈ Q −
{“yes”, “no”}, a ∈ Σ and u, v ∈ Σ∗, and assume that δ(q, a) = (q′, b,dir),
where dir ∈ {→,←,−}. Then, in one step, M enters the configuration c′ =
(q′, u′, v′), where u′, v′ is obtained from ua, v by replacing a with b and moving
the head one step in the direction dir. By moving the head in the direction
“−” we mean that the head stays in its place. Furthermore, the head cannot
move left of the . symbol (the transition function δ is restricted in such a way
that this cannot happen: if δ(q, .) = (q′, a,dir), then a = . and dir 6=←). For
example, if c = (q, .01, 100) and δ(q, 1) = (q′, 0,←), then c′ = (q′, .0, 0100).
In this case, we write c→M c′, and we also write c→m

M c′ if c′ can be reached
from c in m steps, and c →∗M c′ if c →m

M c′ for some m ≥ 0 (we assume that
c→0

M c). Finally, if v = ε and dir =→, then we insert an additional t-symbol
in our configuration, that is u′ = ubt and v′ = ε.

A TM M receives an input word w = a1 · · · an, where n ≥ 0 and ai ∈
Σ − {t, .} for each i ∈ [n]. The start configuration of M on input w is
sc(w) = (s, ., w). We call a configuration c accepting if its state is “yes”, and
rejecting if its state is “no”. The TM M accepts (respectively, rejects) input
w if sc(w)→∗M c for some accepting (respectively, rejecting) configuration c.

Nondeterministic Turing Machines as Acceptors

We also use nondeterministic Turing Machines as acceptors, which are defined
similarly to deterministic ones, but with the key difference that the a state-
symbol pair has more than one outgoing transitions.
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Definition 2.2: Nondeterministic Turing Machine

A nondeterministic Turing Machine (NTM) is defined as a tuple

M = (Q,Σ, δ, s) ,

where

• Q is a finite set of states, including the accepting state “yes”, and
the rejecting state “no”,

• Σ is a finite set of input symbols, called the alphabet of M , including
the symbols t (the blank symbol) and . (the left marker),

• δ : (Q−{“yes”, “no”})×Σ → P(Q×Σ×{→,←,−}) is the transition
function of M , and

• s ∈ Q is the start state of M .

Observe that for a given configuration c = (q, ua, v), where q ∈ Q −
{“yes”, “no”}, a ∈ Σ and u ∈ Σ∗, several alternatives (q′, b,dir) can belong to
δ(q, a), each one of which generates a successor configuration c′ as in the case
of (deterministic) TMs. If c′ is a possible successor configuration of c, then
we write c →M c′. Moreover, we write c →m

M c′ if there exists a sequence of
configurations c1, . . ., cm−1 such that c →M c1, c1 →M c2, . . ., cm−1 →M c′.
In this case, notice that it is possible that c→m

M c′ and c→n
M c′ with m 6= n.

Moreover, we write c →∗M c′ if there exists m ≥ 0 such that c →m
M c′ (again,

we assume that c→0
M c).

Given an input word w for a NTM M , the start configuration sc(w) of
M , and accepting and rejecting configurations of M , are defined as in the
deterministic case. Moreover, M accepts input w if there exists an accepting
configuration c such that sc(w) →∗M c, and M rejects w otherwise (i.e., M
rejects w if there is no accepting configuration c such that sc(w)→∗M c).

2-Tape Turing Machines as Acceptors

We now define Turing Machines that, apart from a read-write working tape,
they also have a read-only input tape.



416 B Turing Machines and Complexity Classes

Definition 2.3: 2-Tape Deterministic Turing Machine

A 2-tape (deterministic) Turing Machine (2-TM) is defined as a tuple

M = (Q,Σ, δ, s) ,

where

• Q is a finite set of states, including the accepting state “yes”, and
the rejecting state “no”,

• Σ is a finite set of input symbols, called the alphabet of M , including
the symbols t (the blank symbol) and . (the left marker),

• δ : (Q−{“yes”, “no”})×Σ×Σ → Q×{→,←,−}×Σ×{→,←,−}
is the transition function of M , and

• s ∈ Q is the start state of M .

A configuration of a 2-TM is a tuple

c = (q, u1, v1, u2, v2) ,

where q ∈ Q and, for every i ∈ {1, 2}, we have that ui, vi ∈ Σ∗ and ui is not
empty. If M is in configuration c, then the input tape has content u1v1 and
the head of this tape is reading the last symbol of u1, while the working tape
has content u2v2 and the head of this tape is reading the last symbol of u2.
We use left markers, which means that ui always starts with .. Besides, the
transition function δ is restricted in such a way that . occurs exactly once in
uivi, and always as the first symbol of ui.

Assume that M is in a configuration c = (q, u1a1, v1, u2a2, v2), where
q ∈ Q − {“yes”, “no”}, a1, a2 ∈ Σ and u1, v1, u2, v2 ∈ Σ∗, and assume that
δ(q, a1, a2) = (q′,dir1, b,dir2), where diri is a direction, i.e., one of {→,←,−}.
Then in one step M enters configuration c′ = (q′, u′1, v

′
1, u
′
2, v
′
2), where u′1, v

′
1 is

obtained from u1a1, v1 by moving the head one step in the direction dir1, and
u′2, v

′
2 is obtained from u2a2, v2 by replacing a2 with b and moving the head

one step in the direction dir2. Recall that by moving the head in the direction
“−” we mean that the head stays in its place. Furthermore, the head cannot
move left of the . symbol (again, the transition function δ is restricted in such
a way that this cannot happen). For example, if c = (q, .01, 100, ., ε) and
δ(q, 1, .) = (q′,←, .,→), then c′ = (q′, .0, 1100, ., ε). In this case, we write
c →M c′. We also write c →m

M c′ if c′ can be reached from c in m steps, and
c→∗M c′ if c→m

M c′ for some m ≥ 0 (we assume that c→0
M c).

A 2-TM M receives an input word w = a1 · · · an, where n ≥ 0 and ai ∈
Σ−{t, .} for each i ∈ [n]. The start configuration of M on input w is sc(w) =
(s, ., w, .,t). We call a configuration c accepting if its state is “yes”, and
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rejecting if its state is “no”. The TM M accepts (respectively, rejects) input
w if sc(w)→∗M c for some accepting (respectively, rejecting) configuration c.

2-Tape Nondeterministic Turing Machines as Acceptors

As for TMs, we also have the nondeterministic version of 2-TMs.

Definition 2.4: 2-Tape Nondeterministic Turing Machine

A 2-Tape Nondeterministic Turing Machine (2-NTM) is a tuple

M = (Q,Σ, δ, s) ,

where

• Q is a finite set of states, including the accepting state “yes”, and
the rejecting state “no”,

• Σ is a finite set of input symbols, called the alphabet of M , including
the symbols t (the blank symbol) and . (the left marker),

• δ : (Q−{“yes”, “no”})×Σ×Σ → P(Q×{→,←,−}×Σ×{→,←,−})
is the transition function of M , and

• s ∈ Q is the start state of M .

It is clear that, for a configuration c = (q, u1, a1v1, u2, a2v2), where q ∈ Q−
{“yes”, “no”}, a1, a2 ∈ Σ and v1, v2 ∈ Σ∗, several alternatives (q′,dir1, b,dir2)
can belong to δ(q, a1, a2), each one of which generates a successor configuration
c′ as in the case of 2-TMs. If c′ is a possible successor configuration of c, then
we write c →M c′. Moreover, we write c →m

M c′ if there exists a sequence of
configurations c1, . . ., cm−1 such that c →M c1, c1 →M c2, . . ., cm−1 →M c′.
In this case, notice that it is possible that c→m

M c′ and c→n
M c′ with m 6= n.

Moreover, we write c →∗M c′ if there exists m ≥ 0 such that c →m
M c′ (again,

we assume that c→0
M c).

Given an input word w for a 2-NTM M , the start configuration sc(w) of
M , and accepting and rejecting configurations of M , are defined as in the
deterministic case. Moreover, M accepts input w if there exists an accepting
configuration c such that sc(w) →∗M c, and M rejects w otherwise (i.e., M
rejects w if there is no accepting configuration c such that sc(w)→∗M c).

Turing Machines as Computational Devices

If a 2-TM acts not as a language acceptor but rather as a device for computing
a function f , then a write-only output tape is added and the states “yes” and
“no” are replaced with a halting state “halt”; once the computation enters
the halting state, the output tape contains the value f(w) for the input w.
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Definition 2.5: Turing Machine with Output

A Turing Machine with output (TMO) is a tuple

M = (Q,Σ, δ, s) ,

where

• Q is a finite set of states, including the halting state “halt”,

• Σ is a finite set of input symbols, called the alphabet of M , including
the symbols t (the blank symbol) and . (the left marker),

• δ : (Q−{“halt”})×Σ×Σ → Q×{→,←,−}×Σ×{→,←,−}×Σ
is the transition function of M , and

• s ∈ Q is the start state of M .

If δ(q, a1, a2) = (q′,dir1, b,dir2, c), then q′,dir1, b,dir2 are used exactly as
in the case of a 2-TM accepting a language. Moreover, if c 6= t, then c is
written on the output tape and the head of this tape is moved one position to
the right; otherwise, no changes are made on this tape. The start configuration
of a TMO M on input w is sc(w) = (s, ., w, ., ε, ., ε). The output of M on
input w is the word u such that sc(w)→∗M (“halt”, u1, v1, u2, v2, .u, ε).

Complexity Classes

We proceed to introduce some central complexity classes that are used in this
book. Recall that R+

0 is the set of non-negative real numbers. Given a function
f : N→ R+

0 , a TM (respectively, NTM) M is said to run in time f(n) if, for
every input w and configuration c, sc(w) →m

M c implies m ≤ f(|w|).1 We
further say that M decides a language L if M accepts every word in L and
rejects every word not in L. Notice that this implies that M ’s computation is
finite on every input. We define the classes of decision problems

TIME(f(n)) = {L | there exists a TM that decides L

and runs in time f(n)}.

and

NTIME(f(n)) = {L | there exists a NTM that decides L

and runs in time f(n)}.

The following time complexity classes are used in this book:

1 The running time of a TMO is defined in the same way.
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Definition 2.6: Time Complexity Classes

Ptime =
⋃
k∈N TIME(nk) NP =

⋃
k∈N NTIME(nk)

ExpTime =
⋃
k∈N TIME(2n

k

) NExpTime =
⋃
k∈N NTIME(2n

k

)

2ExpTime =
⋃
k∈N TIME(22n

k

)

Given a function f : N→ R+
0 , a 2-TM (respectively, 2-NTM) M is said to

run in space f(n) if, for every input w and configuration c = (q, u1, v1, u2, v2),
sc(w) →∗M c implies |u2v2| ≤ f(|w|).2 We say that M decides a language L
if M accepts every word in L and rejects every word not in L. We define the
classes of decision problems

SPACE(f(n)) = {L | there exists a 2-TM that decides L

and runs in space f(n)}.

and

NSPACE(f(n)) = {L | there exists a 2-NTM that decides L

and runs in space f(n)}.

The following space complexity classes are used in this book:

Definition 2.7: Space Complexity Classes

DLogSpace = SPACE(log n) NLogSpace = NSPACE(log n)
PSpace =

⋃
k∈N SPACE(nk) NPSpace =

⋃
k∈N NSPACE(nk)

ExpSpace =
⋃
k∈N SPACE(2n

k

) NExpSpace =
⋃
k∈N NSPACE(2n

k

)

At this point, let us stress that we can always assume that the computation
of a space-bounded 2-TM M is finite on every input word. Intuitively, since the
space that M uses is bounded, the number of different configurations in which
M can be is also bounded. Therefore, by maintaining a counter that “counts”
the steps of M , we can guarantee that M will never fall in an unnecessarily
long computation, which in turn allows us to assume that the computation of
M is finite. Further details on this assumption can be found in any standard
textbook on computational complexity.

For a complexity class C, the class coC is defined as the set of complements
of the problems in C, that is, coC = {Σ∗ − L | L ∈ C}. It is known that

DLogSpace ⊆ NLogSpace ⊆ Ptime ⊆ NP ⊆ PSpace = NPSpace

⊆ ExpTime ⊆ NExpTime ⊆ ExpSpace = NExpSpace ⊆ 2ExpTime

2 The running space of a TMO is defined without considering the output tape.
More precisely, for every input w and configuration c = (q, u1, v1, u2, v2, u3, v3),
sc(w)→∗M c implies |u2v2| ≤ f(|w|).
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Ptime ( ExpTime ( 2ExpTime

NP ( NExpTime

and that

NLogSpace = coNLogSpace ( PSpace ( ExpSpace

However, it is still not known whether Ptime (and in fact DLogSpace) is
properly contained in NP, whether Ptime is properly contained in PSpace,
and whether NP equals coNP.

Key concepts related to complexity classes are reductions between prob-
lems, and hardness and completeness of problems. For precise definitions the
reader can consult any complexity theory textbook. A reduction between lan-
guages L and L′ over an alphabet Σ is a function f : Σ∗ → Σ∗ such that
w ∈ L if and only if f(w) ∈ L′, for every w ∈ Σ∗. Let C be one of the complex-
ity classes introduced above such that NP ⊆ C or coNP ⊆ C. A problem, i.e.,
a language L, is hard for C, or C-hard, if every problem L′ ∈ C is reducible to L
via a reduction that is computable in polynomial time. If L is also in C, then it
is complete for C, or C-complete. For the complexity classes NLogSpace and
Ptime, the notions of hardness and completeness are defined in the same way,
but with the crucial difference that we rely on reductions that are computable
in deterministic logarithmic space. This is because a reduction is meaningful
only within a class that is computationally stronger than the reduction.3

We say that a decision problem is tractable if it is in Ptime. As such, prob-
lems that are hard for ExpTime are provably intractable. We call problems
that are hard for NP or coNP presumably intractable (if we cannot make a
stronger case and prove that they are not in Ptime).

The most fundamental problem that is presumably intractable is the satis-
fiability problem of Boolean formulae. A Boolean formula is defined as follows:

• a variable x ∈ Var is a Boolean formula, and

• if ϕ1 and ϕ1 are Boolean formulae, then (ϕ1 ∧ ϕ2), (ϕ2 ∨ ϕ2), and (¬ϕ1)
are Boolean formulae.

To define the semantics of such Boolean formulae, we need the notion of
truth assignment. A truth assignment for a set of variables V is a function
f : V → {true, false}. Consider a Boolean formula ϕ, and a truth assignment
f for the set of variables in ϕ. We define when f satisfies ϕ, written f |= ϕ:

• If ϕ is a variable x, then f |= ϕ if f(x) = true.

• If ϕ = (ϕ1 ∧ ϕ2), then f |= ϕ if f |= ϕ1 and f |= ϕ2.

3 We could also define hardness for DLogSpace by using reductions that can be
computed via a computation even more restrictive than deterministic logarithmic
space, but this is not needed for the purposes of this book.
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• If ϕ = (ϕ1 ∨ ϕ2), then f |= ϕ if f |= ϕ1 or f |= ϕ2.

• If ϕ = (¬ψ), then f |= ϕ if f |= ψ does not hold.

We say that ϕ is satisfiable if there exists a truth assignment f for the set of
variables in ϕ such that f |= ϕ. The Boolean satisfiability problem or SAT,
which is known to be an NP-complete problem, is defined as follows.

Problem: SAT

Input: A Boolean formula ϕ

Output: true if ϕ is satisfiable, and false otherwise

It is actually the first problem that was proven to be NP-complete, a result
known as Cook-Levin Theorem that goes back to the 1970s.

A generalization of SAT is the satisfiability problem of quantified Boolean
formulae. For a Boolean formula ϕ and a tuple of variables x̄, we denote by
ϕ〈x̄〉 the fact that ϕ uses precisely the variables in x̄. A quantified Boolean
formula ψ is an expression of the form

Q1x̄1Q2x̄2 · · ·Qnx̄n ϕ〈x̄1, . . . , x̄n〉 ,

where, for each i ∈ [n], Qi is either ∃ or ∀, and, for each i ∈ [n − 1], Qi = ∃
implies Qi+1 = ∀ and Qi = ∀ implies Qi+1 = ∃. Assuming that Q1 = ∃, we
say that ψ is satisfiable if there exists a truth assignment for x̄1 such that for
every truth assignment for x̄2 there exists a truth assignment for x̄3, and so on
up to x̄n, such that the overall truth assignment satisfies ψ. Analogously, we
can define when ψ is satisfiable in the case Q1 = ∀. The quantified satisfiability
problem or QSAT, also known under the name quantified Boolean formula or
QBF, which is the canonical PSpace-complete problem, is defined as follows:

Problem: QSAT

Input: A quantified Boolean formula ψ

Output: true if ψ is satisfiable, and false otherwise

Notice that SAT is the special case of QSAT where ψ is of the form ∃x̄ ϕ〈x̄〉.
Two special cases of QSAT will be particularly important for this book, namely
the ones with exactly one quantifier alternation:

Problem: ∃∀QSAT

Input: A quantified Boolean formula ψ = ∃x̄1∀x̄2 ϕ〈x̄1, x̄2〉
Output: true if ψ is satisfiable, and false otherwise
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Problem: ∀∃QSAT

Input: A quantified Boolean formula ψ = ∀x̄1∃x̄2 ϕ〈x̄1, x̄2〉
Output: true if ψ is satisfiable, and false otherwise

We define Σp
2 as the class of decision problems reducible to ∃∀QBF in polyno-

mial time. Similarly, Πp
2 is the class of decision problems reducible to ∀∃QBF

in polynomial time. Recall that QSAT is PSpace-complete. We know that

Ptime

NP
⊆

coNP

⊆ NP ∪ coNP

⊆

⊆

Σp
2

⊆

Πp
2

⊆
PSpace

⊆

⊆

We finally remark that the smallest complexity class we consider here is
DLogSpace. In database theory, and especially in its logical counterpart,
that is, finite model theory, it is very common to consider parallel complexity
classes, of which the smallest one is AC0. These are circuit complexity classes,
and the machinery needed to define them is not TMs but rather circuits,
parameterized by their fan-in (the number of inputs to their gates), their size,
and their depth. Due to the notational overhead this incurs, we shall not be
using circuit-based classes in this book. The interested reader can consult
books on finite model theory and descriptive complexity to understand the
differences between DLogSpace and classes such as AC0.



C

Input Encodings

To reason about the computational complexity of problems, we need to rep-
resent their inputs (such as databases, queries, and constraints) as inputs to
Turing Machines, that is, as words over some finite alphabet.

Encoding of Queries and Constraints

Queries and constraints will most commonly be coming from a query language
and a class of constraints, respectively, defined by a formal syntax. We thus
associate a query and a set of constraints with its parse tree, which, of course,
can be easily encoded as a word over a finite alphabet.

Encoding of Databases

For databases, the idea is that each value in the active domain can be encoded
as a number in binary, and then use further separator symbols that allows us
to faithfully encode the facts occurring in the database.

We assume a strict total order <Rel on the elements of Rel, and a strict total
order <Const on the elements of Const. Consider a schema S = {R1, . . . , Rn}
with Ri <Rel Ri+1 for each i ∈ [n−1], and a database D of S with Dom(D) =
{a1, . . . , ak} and ai <Const ai+1 for each i ∈ [k − 1]. We proceed to explain
how D is encoded as a word over the alphabet

Σ = {0, 1,4,#, $,�}.

We first explain how constants, tuples, and relations are encoded:

• The constant ai ∈ Dom(D), for i ∈ [k], is encoded as the number i in
binary, and we write enc(ai) for the obtained word over {0, 1}.

• A tuple t̄ = (a1, . . . , a`) over Dom(D), for ` ≥ 0, is encoded as the word

enc(t̄) =

�enc(a1)� · · ·�enc(a`)� if ` > 0,

�� if ` = 0.
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• A relation RDi = {t̄1, . . . , t̄m}, for i ∈ [n] and m ≥ 0, is encoded as

enc(RDi ) =

$enc(t̄1)$ · · · $enc(t̄m)$ if m > 0,

$$ if m = 0.

We can now encode the database D as a word over Σ as follows:

enc(D) = 4enc(a1)4· · ·4enc(ak)4#enc(RD1 )# · · ·#enc(RDn )# .

The key property of the above encoding is that, for a database D of a
schema S, and a tuple t̄, given as their encodings enc(D) and enc(t̄), respec-
tively, we can check via a deterministic computation, which uses logarithmic
space in the size fo enc(D), whether t̄ ∈ RD for some R ∈ S. In what follows,
we write enc(i) for the binary representation of an integer i > 0.

Lemma C.1. Let S be the schema {R1, . . . , Rn} with R1 <Rel · · · <Rel Rn.
Consider a database D of S, a tuple t̄, and an integer i ∈ [n], and let w be the
word .enc(D)[enc(t̄)[enc(i) over Σ ∪ {.,t, [}. There exists a 2-TM M with
alphabet Σ such that the following hold:

1. M accepts w if and only if t̄ ∈ RDi , and

2. M runs in space O(ar(Ri)·log |enc(D)|) if ar(Ri) > 0, and O(log |enc(D)|)
if ar(Ri) = 0.

Proof. We first give a high-level description of the 2-TM M ; for brevity, we
write it for the symbol read by the head of the input tape:

1. Let ctr = 0 – this is a counter maintained on the work tape in binary.

2. While ctr 6= i do the following:

a) If it = #, then ctr := ctr + 1.

b) Move the head of the input tape to the right so that it reads the first
$ symbol of enc(RDi ).

3. Move the head of the input tape to the right so that it reads the first
� symbol of enc(ū), where ū is the first tuple of RDi (i.e., enc(RDi ) =
$enc(ū)$ · · · $), or the second $ symbol of enc(RDi ) in case RDi is empty
(which means that enc(RDi ) = $$).

4. Erase the content of the work tape by replacing every symbol different
than t with t (since ctr is not needed further), and move its head after
the left marker ..

5. Repeat the following steps until it = # (which means that the relation
RDi has been fully explored):

a) While it 6= $ do the following:
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(i) Copy it to the work tape.

(ii) Move the head of both tapes to the right.

b) Assuming that .ut is the content of the work tape, if u = enc(t̄), then
halt and accept; otherwise:

(i) Move the head of the input tape to the right so that it reads the
first � symbol of the encoding of the next tuple of RDi , or the
symbol # if the last tuple of RDi has just been explored. In other
words, the head of the input tape reads the symbol to the right
of the last $ symbol read during the while loop of step (a).

(ii) Erase the content of the work tape by replacing every symbol
different than t with t (since the copied tuple is not needed
further), and move its head after the left marker ..

6. Halt and reject.

It is easy to verify that M accepts w if and only if enc(RDi ) is of the form
$ · · · $enc(t̄)$ · · · $, or, equivalently, t̄ ∈ RDi . It remains to argue that M runs in
the claimed space. At each step of the computation of M , the work tape holds
either ctr , or the word enc(t̄) for some t̄ ∈ RDi . The value of ctr (represented
in binary) can be maintained using O(|enc(i)|) bits. The encoding of a tuple
of RDi takes space O(ar(Ri) · log |Dom(D)|). Therefore, the space used is

O (log |enc(i)| + ar(Ri) · log |Dom(D)|) .

Since |enc(i)| ≤ |enc(D)| and |Dom(D)| ≤ |enc(D)|, we can conclude that the
above 2-TM on input w runs in space O(ar(Ri) · log |enc(D)|) if ar(Ri) > 0,
and O(log |enc(D)|) if ar(Ri) = 0, and the claim follows. ut

Note that the encoding described above is not the only way of encoding a
database as a word over a finite alphabet. We could employ any other encoding
as long as it enjoys the property established in Lemma C.1, without affecting
the complexity results presented in this book.


