
Enumeration on Trees with Tractable Combined
Complexity and E�cient Updates

Antoine Amarilli1, Pierre Bourhis2, Stefan Mengel3, Matthias Niewerth4

May 20th, 2019
1Télécom ParisTech

2CNRS, CRIStAL, Lille

3CNRS, CRIL, Lens

4University of Bayreuth
1/16

Dramatis Personae

Antoine Amarilli Pierre Bourhis

Stefan Mengel Matthias Niewerth
2/16

Problem statement

MSO query evaluation on trees

Data: a tree T where nodes have a color
from an alphabet

? Query Q: a formula in monadic
second-order logic (MSO)
• P (x) means “x is blue”
• x→ y means “x is the parent of y”

“Return all blue nodes
that have a pink child”
∃y P (x)∧ P (y)∧ x→ y

i Result: { (x1, . . . , xk) | (x1, . . . , xk) |= Q }

Up to |T|k many answers

3/16

MSO query evaluation on trees

Data: a tree T where nodes have a color
from an alphabet

? Query Q: a formula in monadic
second-order logic (MSO)
• P (x) means “x is blue”
• x→ y means “x is the parent of y”

“Return all blue nodes
that have a pink child”
∃y P (x)∧ P (y)∧ x→ y

i Result: { (x1, . . . , xk) | (x1, . . . , xk) |= Q }

Up to |T|k many answers

3/16

MSO query evaluation on trees

Data: a tree T where nodes have a color
from an alphabet

? Query Q: a formula in monadic
second-order logic (MSO)
• P (x) means “x is blue”
• x→ y means “x is the parent of y”

“Return all blue nodes
that have a pink child”
∃y P (x)∧ P (y)∧ x→ y

i Result: { (x1, . . . , xk) | (x1, . . . , xk) |= Q }

Up to |T|k many answers

3/16

MSO query evaluation on trees

Data: a tree T where nodes have a color
from an alphabet

? Query Q: a formula in monadic
second-order logic (MSO)
• P (x) means “x is blue”
• x→ y means “x is the parent of y”

“Return all blue nodes
that have a pink child”
∃y P (x)∧ P (y)∧ x→ y

i Result: { (x1, . . . , xk) | (x1, . . . , xk) |= Q }

Up to |T|k many answers

3/16

Enumeration algorithm

Input

Step 1:
Indexing
in O(input) Indexed

input

Step 2:
Enumeration
in O(result)

A B C

a b c
a’ b c
a b’ c
a’ b’ c

Results

State

4/16

Enumeration algorithm

Input

Step 1:
Indexing
in O(input)

Indexed
input

Step 2:
Enumeration
in O(result)

A B C

a b c
a’ b c
a b’ c
a’ b’ c

Results

State

4/16

Enumeration algorithm

Input

Step 1:
Indexing
in O(input) Indexed

input

Step 2:
Enumeration
in O(result)

A B C

a b c
a’ b c
a b’ c
a’ b’ c

Results

State

4/16

Enumeration algorithm

Input

Step 1:
Indexing
in O(input) Indexed

input

Step 2:
Enumeration
in O(result)

A B C

a b c
a’ b c
a b’ c
a’ b’ c

Results

State

4/16

Enumeration algorithm

Input

Step 1:
Indexing
in O(input) Indexed

input

Step 2:
Enumeration
in O(result)

A B C

a b c

a’ b c
a b’ c
a’ b’ c

Results

State

4/16

Enumeration algorithm

Input

Step 1:
Indexing
in O(input) Indexed

input

Step 2:
Enumeration
in O(result)

A B C

a b c

a’ b c
a b’ c
a’ b’ c

Results

State

0011

4/16

Enumeration algorithm

Input

Step 1:
Indexing
in O(input) Indexed

input

Step 2:
Enumeration
in O(result)

A B C

a b c

a’ b c
a b’ c
a’ b’ c

Results

State

0011

4/16

Enumeration algorithm

Input

Step 1:
Indexing
in O(input) Indexed

input

Step 2:
Enumeration
in O(result)

A B C

a b c

a’ b c

a b’ c
a’ b’ c

Results

State

010001

4/16

Enumeration algorithm

Input

Step 1:
Indexing
in O(input) Indexed

input

Step 2:
Enumeration
in O(result)

A B C

a b c
a’ b c

a b’ c

a’ b’ c

Results

State

01100111

4/16

Enumeration algorithm

Input

Step 1:
Indexing
in O(input) Indexed

input

Step 2:
Enumeration
in O(result)

A B C

a b c
a’ b c
a b’ c

a’ b’ c

Results

State

⊥

4/16

Known results on dynamic trees

All these results are on data complexity in T (for a �xed pattern):

Work Data Preproc. Delay Updates

[Bagan, 2006],
[Kazana and Segou�n, 2013]

trees O(T) O(1) O(T)

[Losemann and Martens, 2014] trees O(T) O(log2 T) O(log2 T)

[Niewerth, 2018] trees O(T) O(log T) O(log T)

[Niewerth and Segou�n, 2018] text O(T) O(1) O(log T)

this paper trees O(T) O(1) O(log T)

5/16

Known results on dynamic trees

All these results are on data complexity in T (for a �xed pattern):

Work Data Preproc. Delay Updates

[Bagan, 2006],
[Kazana and Segou�n, 2013]

trees O(T) O(1) O(T)

[Losemann and Martens, 2014] trees O(T) O(log2 T) O(log2 T)

[Niewerth, 2018] trees O(T) O(log T) O(log T)

[Niewerth and Segou�n, 2018] text O(T) O(1) O(log T)

this paper trees O(T) O(1) O(log T)

5/16

Known results on dynamic trees

All these results are on data complexity in T (for a �xed pattern):

Work Data Preproc. Delay Updates

[Bagan, 2006],
[Kazana and Segou�n, 2013]

trees O(T) O(1) O(T)

[Losemann and Martens, 2014] trees O(T) O(log2 T) O(log2 T)

[Niewerth, 2018] trees O(T) O(log T) O(log T)

[Niewerth and Segou�n, 2018] text O(T) O(1) O(log T)

this paper trees O(T) O(1) O(log T)

5/16

Known results on dynamic trees

All these results are on data complexity in T (for a �xed pattern):

Work Data Preproc. Delay Updates

[Bagan, 2006],
[Kazana and Segou�n, 2013]

trees O(T) O(1) O(T)

[Losemann and Martens, 2014] trees O(T) O(log2 T) O(log2 T)

[Niewerth, 2018] trees O(T) O(log T) O(log T)

[Niewerth and Segou�n, 2018] text O(T) O(1) O(log T)

this paper trees O(T) O(1) O(log T)

5/16

Known results on dynamic trees

All these results are on data complexity in T (for a �xed pattern):

Work Data Preproc. Delay Updates

[Bagan, 2006],
[Kazana and Segou�n, 2013]

trees O(T) O(1) O(T)

[Losemann and Martens, 2014] trees O(T) O(log2 T) O(log2 T)

[Niewerth, 2018] trees O(T) O(log T) O(log T)

[Niewerth and Segou�n, 2018] text O(T) O(1) O(log T)

this paper trees O(T) O(1) O(log T)

5/16

Tree Automata

• MSO query evaluation is non-elementary (if P 6= NP)

• Most queries are much simpler
• We use bottom-up (binary) tree-automata

∃y . . .

Query
Automaton

Tree

Knowlege
Compilation

Set Circuit
in DNNF

6/16

Tree Automata

• MSO query evaluation is non-elementary (if P 6= NP)

• Most queries are much simpler

• We use bottom-up (binary) tree-automata

∃y . . .

Query
Automaton

Tree

Knowlege
Compilation

Set Circuit
in DNNF

6/16

Tree Automata

• MSO query evaluation is non-elementary (if P 6= NP)

• Most queries are much simpler
• We use bottom-up (binary) tree-automata

∃y . . .

Query
Automaton

Tree

Knowlege
Compilation

Set Circuit
in DNNF

6/16

Tree Automata

• MSO query evaluation is non-elementary (if P 6= NP)

• Most queries are much simpler
• We use bottom-up (binary) tree-automata

∃y . . .

Query

Automaton

Tree

Knowlege
Compilation

Set Circuit
in DNNF

6/16

Tree Automata

• MSO query evaluation is non-elementary (if P 6= NP)

• Most queries are much simpler
• We use bottom-up (binary) tree-automata

∃y . . .

Query
Automaton

Tree

Knowlege
Compilation

Set Circuit
in DNNF

6/16

Tree Automata

• MSO query evaluation is non-elementary (if P 6= NP)

• Most queries are much simpler
• We use bottom-up (binary) tree-automata

∃y . . .

Query
Automaton

Tree

Knowlege
Compilation

Set Circuit
in DNNF

6/16

Tree Automata

• MSO query evaluation is non-elementary (if P 6= NP)

• Most queries are much simpler
• We use bottom-up (binary) tree-automata

∃y . . .

Query
Automaton

Tree

Knowlege
Compilation

Set Circuit
in DNNF

6/16

Semantics of set circuits

∪

×

x:1>

×

y:3

{{x}} {{y}}{{}}

{{x}} {{x, y}}

{{x}, {x, y}}

Every gate g captures set of sets S(g)

S(x:1) := {{x:1}}

S(>) := {{}}

S(⊥) := ∅

S(×) := {s1 ∪ s2 | s1 ∈ S(g1), s2 ∈ S(g2)}

S(∪) := S(g1) ∪ S(g2)

Task: Enumerate the elements of the set S(g) captured by a gate g
→E.g., for S(g) = {{x}, {x, y}}, enumerate {x} and then {x, y}

7/16

Semantics of set circuits

∪

×

x:1>

×

y:3

{{x}} {{y}}

{{}}

{{x}} {{x, y}}

{{x}, {x, y}}

Every gate g captures set of sets S(g)

S(x:1) := {{x:1}}

S(>) := {{}}

S(⊥) := ∅

S(×) := {s1 ∪ s2 | s1 ∈ S(g1), s2 ∈ S(g2)}

S(∪) := S(g1) ∪ S(g2)

Task: Enumerate the elements of the set S(g) captured by a gate g
→E.g., for S(g) = {{x}, {x, y}}, enumerate {x} and then {x, y}

7/16

Semantics of set circuits

∪

×

x:1>

×

y:3

{{x}} {{y}}{{}}

{{x}} {{x, y}}

{{x}, {x, y}}

Every gate g captures set of sets S(g)

S(x:1) := {{x:1}}

S(>) := {{}}

S(⊥) := ∅

S(×) := {s1 ∪ s2 | s1 ∈ S(g1), s2 ∈ S(g2)}

S(∪) := S(g1) ∪ S(g2)

Task: Enumerate the elements of the set S(g) captured by a gate g
→E.g., for S(g) = {{x}, {x, y}}, enumerate {x} and then {x, y}

7/16

Semantics of set circuits

∪

×

x:1>

×

y:3

{{x}} {{y}}{{}}

{{x}} {{x, y}}

{{x}, {x, y}}

Every gate g captures set of sets S(g)

S(x:1) := {{x:1}}

S(>) := {{}}

S(⊥) := ∅

S(×) := {s1 ∪ s2 | s1 ∈ S(g1), s2 ∈ S(g2)}

S(∪) := S(g1) ∪ S(g2)

Task: Enumerate the elements of the set S(g) captured by a gate g
→E.g., for S(g) = {{x}, {x, y}}, enumerate {x} and then {x, y}

7/16

Semantics of set circuits

∪

×

x:1>

×

y:3

{{x}} {{y}}{{}}

{{x}} {{x, y}}

{{x}, {x, y}}

Every gate g captures set of sets S(g)

S(x:1) := {{x:1}}

S(>) := {{}}

S(⊥) := ∅

S(×) := {s1 ∪ s2 | s1 ∈ S(g1), s2 ∈ S(g2)}

S(∪) := S(g1) ∪ S(g2)

Task: Enumerate the elements of the set S(g) captured by a gate g
→E.g., for S(g) = {{x}, {x, y}}, enumerate {x} and then {x, y}

7/16

Semantics of set circuits

∪

×

x:1>

×

y:3

{{x}} {{y}}{{}}

{{x}} {{x, y}}

{{x}, {x, y}} Every gate g captures set of sets S(g)

S(x:1) := {{x:1}}

S(>) := {{}}

S(⊥) := ∅

S(×) := {s1 ∪ s2 | s1 ∈ S(g1), s2 ∈ S(g2)}

S(∪) := S(g1) ∪ S(g2)

Task: Enumerate the elements of the set S(g) captured by a gate g
→E.g., for S(g) = {{x}, {x, y}}, enumerate {x} and then {x, y}

7/16

Semantics of set circuits

∪

×

x:1>

×

y:3

{{x}} {{y}}{{}}

{{x}} {{x, y}}

{{x}, {x, y}} Every gate g captures set of sets S(g)

S(x:1) := {{x:1}}

S(>) := {{}}

S(⊥) := ∅

S(×) := {s1 ∪ s2 | s1 ∈ S(g1), s2 ∈ S(g2)}

S(∪) := S(g1) ∪ S(g2)

Task: Enumerate the elements of the set S(g) captured by a gate g
→E.g., for S(g) = {{x}, {x, y}}, enumerate {x} and then {x, y}

7/16

Compiling Trees in Set Circuits

• One box for each node of the tree
• In each box: one ∪-gate for each state q of the automaton

• Captures partial runs that end in q

8/16

Compiling Trees in Set Circuits

• One box for each node of the tree
• In each box: one ∪-gate for each state q of the automaton

• Captures partial runs that end in q

8/16

Compiling Trees in Set Circuits

• One box for each node of the tree

• In each box: one ∪-gate for each state q of the automaton
• Captures partial runs that end in q

8/16

Compiling Trees in Set Circuits

• One box for each node of the tree
• In each box: one ∪-gate for each state q of the automaton

• Captures partial runs that end in q
8/16

Enumerate Circuit Results

Preprocessing phase:
∪

×

x z

DNNF
set circuit

Normalization
(linear-time)

×

x z

Normalized
circuit

Indexing
(linear-time)

×

x z

Indexed
normalized
circuit

Enumeration phase:
×

x z

Indexed
normalized
circuit

Enumeration
(constant delay)

A B C

a b c
a b’ c

Results

9/16

Enumerate Circuit Results

Preprocessing phase:
∪

×

x z

DNNF
set circuit

Normalization
(linear-time)

×

x z

Normalized
circuit

Indexing
(linear-time)

×

x z

Indexed
normalized
circuit

Enumeration phase:
×

x z

Indexed
normalized
circuit

Enumeration
(constant delay)

A B C

a b c
a b’ c

Results

9/16

Enumerate Circuit Results

Preprocessing phase:
∪

×

x z

DNNF
set circuit

Normalization
(linear-time)

×

x z

Normalized
circuit

Indexing
(linear-time)

×

x z

Indexed
normalized
circuit

Enumeration phase:
×

x z

Indexed
normalized
circuit

Enumeration
(constant delay)

A B C

a b c
a b’ c

Results

9/16

Enumerate Circuit Results

Preprocessing phase:
∪

×

x z

DNNF
set circuit

Normalization
(linear-time)

×

x z

Normalized
circuit

Indexing
(linear-time)

×

x z

Indexed
normalized
circuit

Enumeration phase:
×

x z

Indexed
normalized
circuit

Enumeration
(constant delay)

A B C

a b c
a b’ c

Results

9/16

Enumerate Circuit Results

Preprocessing phase:
∪

×

x z

DNNF
set circuit

Normalization
(linear-time)

×

x z

Normalized
circuit

Indexing
(linear-time)

×

x z

Indexed
normalized
circuit

Enumeration phase:
×

x z

Indexed
normalized
circuit

Enumeration
(constant delay)

A B C

a b c
a b’ c

Results

9/16

Compiling Trees in Set Circuits

• Constructions are bottom-up
• Updates can be done in O(depth(T))

• Problem: depth(T) can be linear in T
• Solution: Depict trees by forest algebra terms

10/16

Compiling Trees in Set Circuits

• Constructions are bottom-up

• Updates can be done in O(depth(T))

• Problem: depth(T) can be linear in T
• Solution: Depict trees by forest algebra terms

10/16

Compiling Trees in Set Circuits

• Constructions are bottom-up
• Updates can be done in O(depth(T))

• Problem: depth(T) can be linear in T
• Solution: Depict trees by forest algebra terms

10/16

Compiling Trees in Set Circuits

• Constructions are bottom-up
• Updates can be done in O(depth(T))

• Problem: depth(T) can be linear in T

• Solution: Depict trees by forest algebra terms

10/16

Compiling Trees in Set Circuits

• Constructions are bottom-up
• Updates can be done in O(depth(T))

• Problem: depth(T) can be linear in T
• Solution: Depict trees by forest algebra terms 10/16

Free Forest Algebra in a Nutshell

‘ = concatenation

d = context
application

d = context
application

11/16

Free Forest Algebra in a Nutshell

‘ = concatenation

d = context
application

d = context
application

11/16

Free Forest Algebra in a Nutshell

‘ = concatenation

d = context
application

d = context
application

11/16

Free Forest Algebra in a Nutshell

tree

d

‘

d

‘

term
d

d

‘

‘

alternative term

The leaves of the formula correspond to the nodes of the tree

12/16

Free Forest Algebra in a Nutshell

tree
d

‘

d

‘

term

d

d

‘

‘

alternative term

The leaves of the formula correspond to the nodes of the tree

12/16

Free Forest Algebra in a Nutshell

tree
d

‘

d

‘

term

d

d

‘

‘

alternative term

The leaves of the formula correspond to the nodes of the tree

12/16

Free Forest Algebra in a Nutshell

tree
d

‘

d

‘

term

d

d

‘

‘

alternative term

The leaves of the formula correspond to the nodes of the tree

12/16

Free Forest Algebra in a Nutshell

tree
d

‘

d

‘

term

d

d

‘

‘

alternative term

The leaves of the formula correspond to the nodes of the tree

12/16

Free Forest Algebra in a Nutshell

tree
d

‘

d

‘

term
d

d

‘

‘

alternative term

The leaves of the formula correspond to the nodes of the tree

12/16

Free Forest Algebra in a Nutshell

tree
d

‘

d

‘

term
d

d

‘

‘

alternative term

The leaves of the formula correspond to the nodes of the tree

12/16

Free Forest Algebra in a Nutshell

tree
d

‘

d

‘

term
d

d

‘

‘

alternative term

The leaves of the formula correspond to the nodes of the tree

12/16

Free Forest Algebra in a Nutshell

tree
d

‘

d

‘

term
d

d

‘

‘

alternative term

The leaves of the formula correspond to the nodes of the tree

12/16

Rebalancing Forest Algebra Terms

‘

‘

1 2

3

‘

1 ‘

2 3
‘

‘

1 ‘

2 3

4

‘

‘

1 2

‘

3 4

‘

1 ‘

‘

2 3

4

‘

d

1 3

2

d

‘

1 2

3

1 contains the hole

‘

1 d

2 3

2 contains the hole

13/16

Rebalancing Forest Algebra Terms

‘

‘

1 2

3

‘

1 ‘

2 3

‘

‘

1 ‘

2 3

4

‘

‘

1 2

‘

3 4

‘

1 ‘

‘

2 3

4

‘

d

1 3

2

d

‘

1 2

3

1 contains the hole

‘

1 d

2 3

2 contains the hole

13/16

Rebalancing Forest Algebra Terms

‘

‘

1 2

3

‘

1 ‘

2 3

‘

‘

1 ‘

2 3

4

‘

‘

1 2

‘

3 4

‘

1 ‘

‘

2 3

4

‘

d

1 3

2

d

‘

1 2

3

1 contains the hole

‘

1 d

2 3

2 contains the hole

13/16

Rebalancing Forest Algebra Terms

d

d

1 2

3

d

1 d

2 3

d

d

1 d

2 3

4

d

d

1 2

d

3 4

d

1 d

d

2 3

4

‘

d

1 3

2

d

‘

1 2

3

1 contains the hole

‘

1 d

2 3

2 contains the hole

13/16

Rebalancing Forest Algebra Terms

d

d

1 2

3

d

1 d

2 3
‘

‘

1 ‘

2 3

4

‘

‘

1 2

‘

3 4

‘

1 ‘

‘

2 3

4

‘

d

1 3

2

d

‘

1 2

3

1 contains the hole

‘

1 d

2 3

2 contains the hole

13/16

Rebalancing Forest Algebra Terms

d

d

1 2

3

d

1 d

2 3
d

d

1 d

2 3

4

d

d

1 2

d

3 4

d

1 d

d

2 3

4

‘

d

1 3

2

d

‘

1 2

3

1 contains the hole

‘

1 d

2 3

2 contains the hole

13/16

Rebalancing Forest Algebra Terms

d

d

1 2

3

d

1 d

2 3
d

d

1 d

2 3

4

d

d

1 2

d

3 4

d

1 d

d

2 3

4

‘

d

1 3

2

d

‘

1 2

3

1 contains the hole

‘

1 d

2 3

2 contains the hole

13/16

Rebalancing Forest Algebra Terms

d

d

1 2

3

d

1 d

2 3
d

d

1 d

2 3

4

d

d

1 2

d

3 4

d

1 d

d

2 3

4

‘

d

1 3

2

d

‘

1 2

3

1 contains the hole

‘

1 d

2 3

2 contains the hole

13/16

Rebalancing Forest Algebra Terms

d

d

1 2

3

d

1 d

2 3
d

d

1 d

2 3

4

d

d

1 2

d

3 4

d

1 d

d

2 3

4

‘

d

1 3

2

d

‘

1 2

3

1 contains the hole

‘

1 d

2 3

2 contains the hole
13/16

Main Result

Theorem
Enumertion of MSO formulas on trees can be done in time:

Preprocessing O(|T| × |Q|4ω+1)

Delay O(|Q|4ω × |S|)

Updates O(log(|T|)× |Q|4ω+1)

|T| size of tree
|Q| number of states of a nondeterministic tree automaton
|S| size of result
ω exponent for Boolean matrix multiplication

14/16

Lower Bound

Lower Bound

Existencial Marked Ancestor Queries

Input: Tree t with some marked nodes
Query: Does node v have a marked ancestor?
Updates: Mark or unmark a node

Theorem: tquery ∈ Ω
(

log(n)
log(tupdate log(n))

)
Reduction to Query Enumeration with Updates
Fixed Query Q: Return all special nodes with a marked ancestor
For every marked ancestor query v:

1. Mark node v special
2. Enumerate Q and return “yes”, i� Q produces some result
3. Mark v as non-special again

Theorem: max(tdelay, tupdate) ∈ Ω
(

log(n)
log log(n)

)

15/16

Lower Bound

Existencial Marked Ancestor Queries

Input: Tree t with some marked nodes
Query: Does node v have a marked ancestor?
Updates: Mark or unmark a node

Theorem: tquery ∈ Ω
(

log(n)
log(tupdate log(n))

)

Reduction to Query Enumeration with Updates
Fixed Query Q: Return all special nodes with a marked ancestor
For every marked ancestor query v:

1. Mark node v special
2. Enumerate Q and return “yes”, i� Q produces some result
3. Mark v as non-special again

Theorem: max(tdelay, tupdate) ∈ Ω
(

log(n)
log log(n)

)

15/16

Lower Bound

Existencial Marked Ancestor Queries

Input: Tree t with some marked nodes
Query: Does node v have a marked ancestor?
Updates: Mark or unmark a node

Theorem: tquery ∈ Ω
(

log(n)
log(tupdate log(n))

)
Reduction to Query Enumeration with Updates
Fixed Query Q: Return all special nodes with a marked ancestor
For every marked ancestor query v:

1. Mark node v special
2. Enumerate Q and return “yes”, i� Q produces some result
3. Mark v as non-special again

Theorem: max(tdelay, tupdate) ∈ Ω
(

log(n)
log log(n)

)

15/16

Lower Bound

Existencial Marked Ancestor Queries

Input: Tree t with some marked nodes
Query: Does node v have a marked ancestor?
Updates: Mark or unmark a node

Theorem: tquery ∈ Ω
(

log(n)
log(tupdate log(n))

)
Reduction to Query Enumeration with Updates
Fixed Query Q: Return all special nodes with a marked ancestor
For every marked ancestor query v:

1. Mark node v special
2. Enumerate Q and return “yes”, i� Q produces some result
3. Mark v as non-special again

Theorem: max(tdelay, tupdate) ∈ Ω
(

log(n)
log log(n)

)
15/16

Results

Theorem
Enumertion of MSO formulas on trees can be done in time:

Preprocessing O(|T| × |Q|4ω+1)

Delay O(|Q|4ω × |S|)

Updates O(log(|T|)× |Q|4ω+1)

|T| size of tree
|Q| number of states of a nondeterministic tree automaton
|S| size of result
ω exponent for Boolean matrix multiplication

Theorem

max(tdelay, tupdate) ∈ Ω
(

log(n)
log log(n)

)

Thank You

16/16

Results

Theorem
Enumertion of MSO formulas on trees can be done in time:

Preprocessing O(|T| × |Q|4ω+1)

Delay O(|Q|4ω × |S|)

Updates O(log(|T|)× |Q|4ω+1)

|T| size of tree
|Q| number of states of a nondeterministic tree automaton
|S| size of result
ω exponent for Boolean matrix multiplication

Theorem

max(tdelay, tupdate) ∈ Ω
(

log(n)
log log(n)

) Thank You
16/16

References i

Bagan, G. (2006).
MSO queries on tree decomposable structures are computable
with linear delay.
In CSL.
Kazana, W. and Segou�n, L. (2013).
Enumeration of monadic second-order queries on trees.
TOCL, 14(4).
Losemann, K. and Martens, W. (2014).
MSO queries on trees: Enumerating answers under updates.
In CSL-LICS.

https://hal.archives-ouvertes.fr/docs/00/90/70/85/PDF/cdlin-survey.pdf

References ii

Niewerth, M. (2018).
Mso queries on trees: Enumerating answers under updates using
forest algebras.
In LICS.
Niewerth, M. and Segou�n, L. (2018).
Enumeration of MSO queries on strings with constant delay and
logarithmic updates.
In PODS.

Normalization: handling ∅

×

×

x ⊥

y

{{x}} ∅

{{y}}∅

∅

• Problem: if S(g) = ∅ we waste time

• Solution: in preprocessing
• compute bottom-up if S(g) = ∅
• then get rid of the gate

Normalization: handling ∅

×

×

x ⊥

y
{{x}} ∅

{{y}}∅

∅

• Problem: if S(g) = ∅ we waste time

• Solution: in preprocessing
• compute bottom-up if S(g) = ∅
• then get rid of the gate

Normalization: handling ∅

×

×

x ⊥

y
{{x}} ∅

{{y}}∅

∅

• Problem: if S(g) = ∅ we waste time

• Solution: in preprocessing
• compute bottom-up if S(g) = ∅
• then get rid of the gate

Normalization: handling ∅

×

×

x ⊥

y
{{x}} ∅

{{y}}∅

∅

• Problem: if S(g) = ∅ we waste time

• Solution: in preprocessing
• compute bottom-up if S(g) = ∅
• then get rid of the gate

Normalization: handling ∅

×

×

x ⊥

y
{{x}} ∅

{{y}}∅

∅

• Problem: if S(g) = ∅ we waste time

• Solution: in preprocessing
• compute bottom-up if S(g) = ∅
• then get rid of the gate

Normalization: handling ∅

×

×

x ⊥

y
{{x}} ∅

{{y}}∅

∅

• Problem: if S(g) = ∅ we waste time

• Solution: in preprocessing
• compute bottom-up if S(g) = ∅

• then get rid of the gate

Normalization: handling ∅

×

×

x ⊥

y
{{x}} ∅

{{y}}∅

∅

• Problem: if S(g) = ∅ we waste time

• Solution: in preprocessing
• compute bottom-up if S(g) = ∅
• then get rid of the gate

Normalization: handling empty sets

×

×

×

x

×

×

×

{{}}

{{}}

{{}} {{x}}

{{x}}

{{x}}

{{x}}

• Problem: if S(g) contains {} we waste time
in chains of ×-gates

• Solution:
• remove inputs with S(g) = {{}} for ×-gates
• collapse ×-chains with fan-in 1

→ Now, traversing a ×-gate ensures that we make progress:
it splits the sets non-trivially

Normalization: handling empty sets

×

×

×

x

×

×

×

{{}}

{{}}

{{}} {{x}}

{{x}}

{{x}}

{{x}}

• Problem: if S(g) contains {} we waste time
in chains of ×-gates

• Solution:
• remove inputs with S(g) = {{}} for ×-gates
• collapse ×-chains with fan-in 1

→ Now, traversing a ×-gate ensures that we make progress:
it splits the sets non-trivially

Normalization: handling empty sets

×

×

×

x

×

×

×

{{}}

{{}}

{{}} {{x}}

{{x}}

{{x}}

{{x}}

• Problem: if S(g) contains {} we waste time
in chains of ×-gates

• Solution:
• remove inputs with S(g) = {{}} for ×-gates
• collapse ×-chains with fan-in 1

→ Now, traversing a ×-gate ensures that we make progress:
it splits the sets non-trivially

Normalization: handling empty sets

×

×

×

x

×

×

×

{{}}

{{}}

{{}} {{x}}

{{x}}

{{x}}

{{x}}

• Problem: if S(g) contains {} we waste time
in chains of ×-gates

• Solution:
• remove inputs with S(g) = {{}} for ×-gates
• collapse ×-chains with fan-in 1

→ Now, traversing a ×-gate ensures that we make progress:
it splits the sets non-trivially

Normalization: handling empty sets

×

×

×

x

×

×

×

{{}}

{{}}

{{}} {{x}}

{{x}}

{{x}}

{{x}}

• Problem: if S(g) contains {} we waste time
in chains of ×-gates

• Solution:
• remove inputs with S(g) = {{}} for ×-gates
• collapse ×-chains with fan-in 1

→ Now, traversing a ×-gate ensures that we make progress:
it splits the sets non-trivially

Normalization: handling empty sets

×

×

×

x

×

×

×

{{}}

{{}}

{{}} {{x}}

{{x}}

{{x}}

{{x}}

• Problem: if S(g) contains {} we waste time
in chains of ×-gates

• Solution:
• remove inputs with S(g) = {{}} for ×-gates
• collapse ×-chains with fan-in 1

→ Now, traversing a ×-gate ensures that we make progress:
it splits the sets non-trivially

Normalization: handling empty sets

×

×

×

x

×

×

×

{{}}

{{}}

{{}} {{x}}

{{x}}

{{x}}

{{x}}

• Problem: if S(g) contains {} we waste time
in chains of ×-gates

• Solution:

• remove inputs with S(g) = {{}} for ×-gates
• collapse ×-chains with fan-in 1

→ Now, traversing a ×-gate ensures that we make progress:
it splits the sets non-trivially

Normalization: handling empty sets

×

×

×

x

×

×

×

{{}}

{{}}

{{}} {{x}}

{{x}}

{{x}}

{{x}}

• Problem: if S(g) contains {} we waste time
in chains of ×-gates

• Solution:
• remove inputs with S(g) = {{}} for ×-gates

• collapse ×-chains with fan-in 1

→ Now, traversing a ×-gate ensures that we make progress:
it splits the sets non-trivially

Normalization: handling empty sets

×

×

×

x

×

×

×

{{}}

{{}}

{{}} {{x}}

{{x}}

{{x}}

{{x}}

• Problem: if S(g) contains {} we waste time
in chains of ×-gates

• Solution:
• remove inputs with S(g) = {{}} for ×-gates

• collapse ×-chains with fan-in 1

→ Now, traversing a ×-gate ensures that we make progress:
it splits the sets non-trivially

Normalization: handling empty sets

×

×

×

x

×

×

×

{{}}

{{}}

{{}}

{{x}}

{{x}}

{{x}}

{{x}}

• Problem: if S(g) contains {} we waste time
in chains of ×-gates

• Solution:
• remove inputs with S(g) = {{}} for ×-gates
• collapse ×-chains with fan-in 1

→ Now, traversing a ×-gate ensures that we make progress:
it splits the sets non-trivially

Normalization: handling empty sets

×

×

×

x

×

×

×

{{}}

{{}}

{{}}

{{x}}

{{x}}

{{x}}

{{x}}

• Problem: if S(g) contains {} we waste time
in chains of ×-gates

• Solution:
• remove inputs with S(g) = {{}} for ×-gates
• collapse ×-chains with fan-in 1

→ Now, traversing a ×-gate ensures that we make progress:
it splits the sets non-trivially

Normalization: handling empty sets

×

×

×

x

×

×

×

{{}}

{{}}

{{}}

{{x}}

{{x}}

{{x}}

{{x}}

• Problem: if S(g) contains {} we waste time
in chains of ×-gates

• Solution:
• remove inputs with S(g) = {{}} for ×-gates
• collapse ×-chains with fan-in 1

→ Now, traversing a ×-gate ensures that we make progress:
it splits the sets non-trivially

Indexing: handling ∪-hierarchies

∪

g1 ∪

∪

g2 g3

g4

∪ • Problem: we waste time in ∪-hierarchies
to �nd a reachable exit (non-∪ gate)

• Solution: compute reachability index
• Problem: must be done in linear time

• Solution: Compute reachability index with box-granularity
• Use matrix multiplication
• Circuit has bounded width (by the size of the automaton)

Indexing: handling ∪-hierarchies

∪

g1 ∪

∪

g2 g3

g4

∪ • Problem: we waste time in ∪-hierarchies
to �nd a reachable exit (non-∪ gate)

• Solution: compute reachability index

• Problem: must be done in linear time

• Solution: Compute reachability index with box-granularity
• Use matrix multiplication
• Circuit has bounded width (by the size of the automaton)

Indexing: handling ∪-hierarchies

∪

g1 ∪

∪

g2 g3

g4

∪ • Problem: we waste time in ∪-hierarchies
to �nd a reachable exit (non-∪ gate)

• Solution: compute reachability index

• Problem: must be done in linear time

• Solution: Compute reachability index with box-granularity
• Use matrix multiplication
• Circuit has bounded width (by the size of the automaton)

Indexing: handling ∪-hierarchies

∪

g1 ∪

∪

g2 g3

g4

∪ • Problem: we waste time in ∪-hierarchies
to �nd a reachable exit (non-∪ gate)

• Solution: compute reachability index
• Problem: must be done in linear time

• Solution: Compute reachability index with box-granularity
• Use matrix multiplication
• Circuit has bounded width (by the size of the automaton)

Indexing: handling ∪-hierarchies

∪

g1 ∪

∪

g2 g3

g4

∪ • Problem: we waste time in ∪-hierarchies
to �nd a reachable exit (non-∪ gate)

• Solution: compute reachability index
• Problem: must be done in linear time

• Solution: Compute reachability index with box-granularity
• Use matrix multiplication
• Circuit has bounded width (by the size of the automaton)

	Problem statement
	Lower Bound
	Appendix

