

Enumeration on Trees with Tractable Combined Complexity and Efficient Updates

Antoine Amarilli¹, Pierre Bourhis², Stefan Mengel³, Matthias Niewerth ${ }^{4}$ May 20th, 2019
${ }^{1}$ Télécom ParisTech
${ }^{2}$ CNRS, CRIStAL, Lille
${ }^{3}$ CNRS, CRIL, Lens
${ }^{4}$ University of Bayreuth

Dramatis Personae

Antoine Amarilli

Stefan Mengel

Pierre Bourhis

Matthias Niewerth

Problem statement

MSO query evaluation on trees

©Data: a tree T where nodes have a color from an alphabet $\bigcirc \bigcirc \bigcirc$

MSO query evaluation on trees

家
Data: a tree T where nodes have a color from an alphabet $\bigcirc \bigcirc \bigcirc$

? Query Q: a formula in monadic second-order logic (MSO)

- $P_{\circ}(x)$ means " x is blue"
$\cdot x \rightarrow y$ means " x is the parent of y "
"Return all blue nodes that have a pink child"
$\exists y P_{\bigcirc}(x) \wedge P_{\circ}(y) \wedge x \rightarrow y$

MSO query evaluation on trees

目Data: a tree T where nodes have a color from an alphabet $\bigcirc \bigcirc \bigcirc$

? Query Q: a formula in monadic second-order logic (MSO)

- $P_{\circ}(x)$ means " x is blue"
$\cdot x \rightarrow y$ means " x is the parent of y "
"Return all blue nodes that have a pink child"
$\exists y P_{\bigcirc}(x) \wedge P_{\circ}(y) \wedge x \rightarrow y$

1 Result: $\left\{\left(x_{1}, \ldots, x_{k}\right) \mid\left(x_{1}, \ldots, x_{k}\right) \models Q\right\}$

MSO query evaluation on trees

目Data: a tree T where nodes have a color from an alphabet $\bigcirc \bigcirc \bigcirc$

? Query Q: a formula in monadic second-order logic (MSO)

- $P_{\bigcirc}(x)$ means " x is blue"
$\cdot x \rightarrow y$ means " x is the parent of y "
"Return all blue nodes that have a pink child"
$\exists y P_{\bigcirc}(x) \wedge P_{\circ}(y) \wedge x \rightarrow y$

1 Result: $\left\{\left(x_{1}, \ldots, x_{k}\right) \mid\left(x_{1}, \ldots, x_{k}\right) \models Q\right\}$
Up to $|T|^{k}$ many answers

Enumeration algorithm

Input

Enumeration algorithm

Enumeration algorithm

Enumeration algorithm

Enumeration algorithm

Results

Enumeration algorithm

State

Enumeration algorithm

Enumeration algorithm

Enumeration algorithm

Enumeration algorithm

Known results on dynamic trees

All these results are on data complexity in T (for a fixed pattern):

Work

Data Preproc. Delay
Updates
[Bagan, 2006], trees $O(T) \quad O(1) \quad O(T)$
[Kazana and Segoufin, 2013]

Known results on dynamic trees

All these results are on data complexity in T (for a fixed pattern):

Work

Data Preproc. Delay

Updates

[Bagan, 2006], trees $O(T) \quad O(1) \quad O(T)$
[Kazana and Segoufin, 2013]
[Losemann and Martens, 2014] trees $O(T) \quad O\left(\log ^{2} T\right) O\left(\log ^{2} T\right)$

Known results on dynamic trees

All these results are on data complexity in T (for a fixed pattern):

Work	Data	Preproc.	Delay	Updates
[Bagan, 2006],	trees	$O(T)$	$O(1)$	$O(T)$
[Kazana and Segoufin, 2013]				
[Losemann and Martens, 2014]	trees	$O(T)$	$O\left(\log ^{2} T\right)$	$O\left(\log ^{2} T\right)$
[Niewerth, 2018]	trees	$O(T)$	$O\left(\log ^{T}\right)$	$O(\log T)$

Known results on dynamic trees

All these results are on data complexity in T (for a fixed pattern):

Work	Data	Preproc.	Delay	Updates
[Bagan, 2006],	trees	$O(T)$	$O(1)$	$O(T)$
[Kazana and Segoufin, 2013]				
[Losemann and Martens, 2014]	trees	$O(T)$	$O\left(\log ^{2} T\right)$	$O\left(\log ^{2} T\right)$
[Niewerth, 2018]	trees	$O(T)$	$O\left(\log ^{T} T\right)$	$O(\log T)$
[Niewerth and Segoufin, 2018]	text	$O(T)$	$O(1)$	$O(\log T)$

Known results on dynamic trees

All these results are on data complexity in T (for a fixed pattern):

Work	Data	Preproc.	Delay	Updates
[Bagan, 2006],	trees	$O(T)$	$O(1)$	$O(T)$
[Kazana and Segoufin, 2013]				
[Losemann and Martens, 2014]	trees	$O(T)$	$O\left(\log ^{2} T\right)$	$O\left(\log ^{2} T\right)$
[Niewerth, 2018]	trees	$O(T)$	$O(\log T)$	$O(\log T)$
[Niewerth and Segoufin, 2018]	text	$O(T)$	$O(1)$	$O(\log T)$
this paper	trees	$O(T)$	$O(1)$	$O(\log T)$

Tree Automata

- MSO query evaluation is non-elementary (if $P \neq N P$)

Tree Automata

- MSO query evaluation is non-elementary (if $P \neq N P$)
- Most queries are much simpler

Tree Automata

- MSO query evaluation is non-elementary (if $P \neq N P$)
- Most queries are much simpler
- We use bottom-up (binary) tree-automata

Tree Automata

- MSO query evaluation is non-elementary (if $P \neq N P$)
- Most queries are much simpler
- We use bottom-up (binary) tree-automata
$\exists y \ldots$
Query

Tree Automata

- MSO query evaluation is non-elementary (if $P \neq N P$)
- Most queries are much simpler
- We use bottom-up (binary) tree-automata

Tree Automata

- MSO query evaluation is non-elementary (if $P \neq N P$)
- Most queries are much simpler
- We use bottom-up (binary) tree-automata

Tree

Tree Automata

- MSO query evaluation is non-elementary (if $P \neq N P$)
- Most queries are much simpler
- We use bottom-up (binary) tree-automata

Semantics of set circuits

Every gate g captures set of sets $S(g)$

Semantics of set circuits

Every gate g captures set of sets $S(g)$
 $$
s(x: 1)):=\{\{x: 1\}\}
$$

Semantics of set circuits

Every gate g captures set of sets $S(g)$

$$
\begin{aligned}
& s(X: 1):=\{\{x: 1\}\} \\
& s(ד):=\{\{ \}\}
\end{aligned}
$$

Semantics of set circuits

Task: Enumerate the elements of the set $S(g)$ captured by a gate g \rightarrow E.g., for $S(g)=\{\{x\},\{x, y\}\}$, enumerate $\{x\}$ and then $\{x, y\}$

Compiling Trees in Set Circuits

Compiling Trees in Set Circuits

Compiling Trees in Set Circuits

- One box for each node of the tree

Compiling Trees in Set Circuits

- One box for each node of the tree
- In each box: one \cup-gate for each state q of the automaton
- Captures partial runs that end in q

Enumerate Circuit Results

Preprocessing phase:
(2)

DNNF
set circuit

Enumerate Circuit Results

Preprocessing phase:

set circuit circuit

Enumerate Circuit Results

Preprocessing phase:

Enumerate Circuit Results

Preprocessing phase:

Enumeration phase:

Indexed
normalized
circuit

Enumerate Circuit Results

Preprocessing phase:

Enumeration phase:

circuit

Compiling Trees in Set Circuits

Compiling Trees in Set Circuits

- Constructions are bottom-up

Compiling Trees in Set Circuits

- Constructions are bottom-up
- Updates can be done in $\mathcal{O}(\operatorname{depth}(T))$

Compiling Trees in Set Circuits

- Constructions are bottom-up
- Updates can be done in $\mathcal{O}(\operatorname{depth}(T))$
- Problem: depth (T) can be linear in T

Compiling Trees in Set Circuits

- Constructions are bottom-up
- Updates can be done in $\mathcal{O}(\operatorname{depth}(T))$
- Problem: depth (T) can be linear in T
- Solution: Depict trees by forest algebra terms

Free Forest Algebra in a Nutshell

concatenation

Free Forest Algebra in a Nutshell

Free Forest Algebra in a Nutshell

Free Forest Algebra in a Nutshell

tree

term

Free Forest Algebra in a Nutshell

Free Forest Algebra in a Nutshell

term

Free Forest Algebra in a Nutshell

term

Free Forest Algebra in a Nutshell

The leaves of the formula correspond to the nodes of the tree

Rebalancing Forest Algebra Terms

1 contains the hole

Rebalancing Forest Algebra Terms

Main Result

Theorem

Enumertion of MSO formulas on trees can be done in time:

Preprocessing $O\left(|T| \times \mid Q Q^{4 \omega+1}\right)$
Delay $\quad O\left(|Q|^{4 \omega} \times|S|\right)$
Updates $\quad O\left(\log (|T|) \times|Q|^{4 \omega+1}\right)$
$|T|$ size of tree
|Q| number of states of a nondeterministic tree automaton
$|S|$ size of result
ω exponent for Boolean matrix multiplication

Lower Bound

Lower Bound

Existencial Marked Ancestor Queries

Input: Tree t with some marked nodes
Query: Does node v have a marked ancestor?
Updates: Mark or unmark a node

Lower Bound

Existencial Marked Ancestor Queries

Input: Tree t with some marked nodes
Query: Does node v have a marked ancestor?
Updates: Mark or unmark a node
Theorem: $t_{\text {query }} \in \Omega\left(\frac{\log (n)}{\log \left(t_{\text {update }} \log (n)\right)}\right)$

Lower Bound

Existencial Marked Ancestor Queries

Input: Tree t with some marked nodes
Query: Does node v have a marked ancestor?
Updates: Mark or unmark a node
Theorem: $t_{\text {query }} \in \Omega\left(\frac{\log (n)}{\log \left(t_{\text {update }} \log (n)\right)}\right)$
Reduction to Query Enumeration with Updates
Fixed Query Q: Return all special nodes with a marked ancestor For every marked ancestor query v :

1. Mark node v special
2. Enumerate Q and return "yes", iff Q produces some result
3. Mark v as non-special again

Lower Bound

Existencial Marked Ancestor Queries

Input: Tree t with some marked nodes
Query: Does node v have a marked ancestor?
Updates: Mark or unmark a node
Theorem: $t_{\text {query }} \in \Omega\left(\frac{\log (n)}{\log \left(t_{\text {update }} \log (n)\right)}\right)$
Reduction to Query Enumeration with Updates
Fixed Query Q: Return all special nodes with a marked ancestor For every marked ancestor query v :

1. Mark node v special
2. Enumerate Q and return "yes", iff Q produces some result
3. Mark vas non-special again

Theorem: $\max \left(t_{\text {delay }}, t_{\text {update }}\right) \in \Omega\left(\frac{\log (n)}{\log \log (n)}\right)$

Results

Theorem

Enumertion of MSO formulas on trees can be done in time:

Preprocessing $O\left(|T| \times|Q|^{4 \omega+1}\right)$
Delay $\quad O\left(|Q|^{4 \omega} \times|S|\right)$
Updates $\quad O\left(\log (|T|) \times|Q|^{4 \omega+1}\right)$
$|T|$ size of tree
|Q| number of states of a nondeterministic tree automaton
|S| size of result
ω exponent for Boolean matrix multiplication
Theorem
$\max \left(t_{\text {delay }}, t_{\text {update }}\right) \in \Omega\left(\frac{\log (n)}{\log \log (n)}\right)$

Results

Theorem

Enumertion of MSO formulas on trees can be done in time:
Preprocessing $O\left(|T| \times|Q|^{4 \omega+1}\right)$
Delay $\quad O\left(|Q|^{4 \omega} \times|S|\right)$
Updates $\quad O\left(\log (|T|) \times|Q|^{4 \omega+1}\right)$
$|T|$ size of tree
|Q| number of states of a nondeterministic tree automaton
|S| size of result
ω exponent for Boolean matrix multiplication
Theorem
$\max \left(t_{\text {delay }}, t_{\text {update }}\right) \in \Omega\left(\frac{\log (n)}{\log \log (n)}\right)$

References i

固 Bagan, G. (2006).
MSO queries on tree decomposable structures are computable with linear delay.
In CSL.
Kazana, W. and Segoufin, L. (2013).
Enumeration of monadic second-order queries on trees. TOCL, 14(4).
Rosemann, K. and Martens, W. (2014).
MSO queries on trees: Enumerating answers under updates.
In CSL-LICS.

References ii

围 Niewerth, M. (2018).
Mso queries on trees: Enumerating answers under updates using forest algebras.
In LICS.
niew Niewth, M. and Segoufin, L. (2018).
Enumeration of MSO queries on strings with constant delay and logarithmic updates.
In PODS.

Normalization: handling \emptyset

Normalization: handling \emptyset

Normalization: handling \emptyset

Normalization: handling \emptyset

Normalization: handling \emptyset

- Problem: if $S(g)=\emptyset$ we waste time

Normalization: handling \emptyset

- Problem: if $S(g)=\emptyset$ we waste time
- Solution: in preprocessing
- compute bottom-up if $S(g)=\emptyset$

Normalization: handling \emptyset

- Problem: if $S(g)=\emptyset$ we waste time
- Solution: in preprocessing
- compute bottom-up if $S(g)=\emptyset$
- then get rid of the gate

Normalization: handling empty sets

Normalization: handling empty sets

Normalization: handling empty sets

Normalization: handling empty sets

Normalization: handling empty sets

Normalization: handling empty sets

- Problem: if $S(g)$ contains $\}$ we waste time in chains of \times-gates

Normalization: handling empty sets

- Problem: if $S(g)$ contains $\}$ we waste time in chains of \times-gates
- Solution:

Normalization: handling empty sets

- Problem: if $S(g)$ contains $\}$ we waste time in chains of \times-gates
- Solution:
- remove inputs with $S(g)=\{\{ \}\}$ for \times-gates

Normalization: handling empty sets

- Problem: if $S(g)$ contains $\}$ we waste time in chains of \times-gates
- Solution:
- remove inputs with $S(g)=\{\{ \}\}$ for \times-gates

Normalization: handling empty sets

- Problem: if $S(g)$ contains $\}$ we waste time in chains of \times-gates
- Solution:
- remove inputs with $S(g)=\{\{ \}\}$ for \times-gates
- collapse \times-chains with fan-in 1

Normalization: handling empty sets

- Problem: if $S(g)$ contains $\}$ we waste time in chains of \times-gates
- Solution:
- remove inputs with $S(g)=\{\{ \}\}$ for \times-gates
- collapse \times-chains with fan-in 1

Normalization: handling empty sets

- Problem: if $S(g)$ contains $\}$ we waste time in chains of \times-gates
- Solution:
- remove inputs with $S(g)=\{\{ \}\}$ for \times-gates
- collapse \times-chains with fan-in 1
\rightarrow Now, traversing a \times-gate ensures that we make progress: it splits the sets non-trivially

Indexing: handling U-hierarchies

Indexing: handling U-hierarchies

- Problem: we waste time in \cup-hierarchies to find a reachable exit (non- \cup gate)
- Solution: compute reachability index

Indexing: handling U-hierarchies

- Problem: we waste time in \cup-hierarchies to find a reachable exit (non- \cup gate)
- Solution: compute reachability index

Indexing: handling U-hierarchies

- Problem: we waste time in \cup-hierarchies to find a reachable exit (non- \cup gate)
- Solution: compute reachability index
- Problem: must be done in linear time

Indexing: handling U-hierarchies

- Problem: we waste time in \cup-hierarchies to find a reachable exit (non- \cup gate)
- Solution: compute reachability index
- Problem: must be done in linear time
- Solution: Compute reachability index with box-granularity
- Use matrix multiplication
- Circuit has bounded width (by the size of the automaton)

