
Enumeration on Trees with Tractable Combined
Complexity and E�cient Updates

Antoine Amarilli1, Pierre Bourhis2, Stefan Mengel3, Matthias Niewerth4

May 20th, 2019
1Télécom ParisTech

2CNRS, CRIStAL, Lille

3CNRS, CRIL, Lens

4University of Bayreuth
1/16



Dramatis Personae

Antoine Amarilli Pierre Bourhis

Stefan Mengel Matthias Niewerth
2/16



Problem statement



MSO query evaluation on trees

Data: a tree T where nodes have a color
from an alphabet

? Query Q: a formula in monadic
second-order logic (MSO)
• P (x) means “x is blue”
• x→ y means “x is the parent of y”

“Return all blue nodes
that have a pink child”
∃y P (x)∧ P (y)∧ x→ y

i Result: { (x1, . . . , xk) | (x1, . . . , xk) |= Q }

Up to |T|k many answers
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Enumeration algorithm

Input

Step 1:
Indexing
in O(input) Indexed

input

Step 2:
Enumeration
in O(result)

A B C

a b c
a’ b c
a b’ c
a’ b’ c

Results

State
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Known results on dynamic trees

All these results are on data complexity in T (for a �xed pattern):

Work Data Preproc. Delay Updates

[Bagan, 2006],
[Kazana and Segou�n, 2013]

trees O(T) O(1) O(T)

[Losemann and Martens, 2014] trees O(T) O(log2 T) O(log2 T)

[Niewerth, 2018] trees O(T) O(log T) O(log T)

[Niewerth and Segou�n, 2018] text O(T) O(1) O(log T)

this paper trees O(T) O(1) O(log T)
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Tree Automata

• MSO query evaluation is non-elementary (if P 6= NP)

• Most queries are much simpler
• We use bottom-up (binary) tree-automata

∃y . . .

Query
Automaton

Tree

Knowlege
Compilation

Set Circuit
in DNNF
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Semantics of set circuits

∪

×

x:1>

×

y:3

{{x}} {{y}}{{}}

{{x}} {{x, y}}

{{x}, {x, y}}

Every gate g captures set of sets S(g)

S( x:1 ) := {{x:1}}

S( > ) := {{}}

S( ⊥ ) := ∅

S( × ) := {s1 ∪ s2 | s1 ∈ S(g1), s2 ∈ S(g2)}

S( ∪ ) := S(g1) ∪ S(g2)

Task: Enumerate the elements of the set S(g) captured by a gate g
→E.g., for S(g) = {{x}, {x, y}}, enumerate {x} and then {x, y}
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Compiling Trees in Set Circuits

• One box for each node of the tree
• In each box: one ∪-gate for each state q of the automaton

• Captures partial runs that end in q
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Enumerate Circuit Results

Preprocessing phase:
∪

×

x z

DNNF
set circuit

Normalization
(linear-time)

×

x z

Normalized
circuit

Indexing
(linear-time)

×

x z

Indexed
normalized
circuit

Enumeration phase:
×

x z

Indexed
normalized
circuit

Enumeration
(constant delay)

A B C

a b c
a b’ c

Results
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Compiling Trees in Set Circuits

• Constructions are bottom-up
• Updates can be done in O(depth(T))

• Problem: depth(T) can be linear in T
• Solution: Depict trees by forest algebra terms
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Free Forest Algebra in a Nutshell

‘ = concatenation

d = context
application

d = context
application
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Free Forest Algebra in a Nutshell

tree

d

‘

d

‘

term
d

d

‘

‘

alternative term

The leaves of the formula correspond to the nodes of the tree
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Rebalancing Forest Algebra Terms

‘
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1 2
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1 ‘

2 3
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4

‘

‘

1 2

‘

3 4

‘

1 ‘
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2 3
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d
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1 2
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1 contains the hole

‘

1 d

2 3

2 contains the hole
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Main Result

Theorem
Enumertion of MSO formulas on trees can be done in time:

Preprocessing O( |T| × |Q|4ω+1 )

Delay O( |Q|4ω × |S| )

Updates O( log(|T|)× |Q|4ω+1 )

|T| size of tree
|Q| number of states of a nondeterministic tree automaton
|S| size of result
ω exponent for Boolean matrix multiplication

14/16



Lower Bound



Lower Bound

Existencial Marked Ancestor Queries

Input: Tree t with some marked nodes
Query: Does node v have a marked ancestor?
Updates: Mark or unmark a node

Theorem: tquery ∈ Ω
(

log(n)
log(tupdate log(n))

)
Reduction to Query Enumeration with Updates
Fixed Query Q: Return all special nodes with a marked ancestor
For every marked ancestor query v:

1. Mark node v special
2. Enumerate Q and return “yes”, i� Q produces some result
3. Mark v as non-special again

Theorem: max(tdelay, tupdate) ∈ Ω
(

log(n)
log log(n)

)
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Results

Theorem
Enumertion of MSO formulas on trees can be done in time:
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• Solution: Compute reachability index with box-granularity
• Use matrix multiplication
• Circuit has bounded width (by the size of the automaton)
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