

Enumeration on Trees with Tractable Combined Complexity and Efficient Updates

Antoine Amarilli¹, Pierre Bourhis², Stefan Mengel³, **Matthias Niewerth**⁴ May 20th, 2019

¹Télécom ParisTech

²CNRS, CRIStAL, Lille

³CNRS, CRIL, Lens

⁴University of Bayreuth

Dramatis Personae

Antoine Amarilli

Stefan Mengel

Pierre Bourhis

Matthias Niewerth

Problem statement

Query Q: a formula in monadic second-order logic (MSO)

- $\cdot P_{\odot}(x)$ means "x is blue"
- $\cdot x \rightarrow y$ means "x is the parent of y"

"Return all blue nodes that have a pink child" $\exists y P_{\odot}(x) \land P_{\odot}(y) \land x \to y$

Query Q: a formula in monadic second-order logic (MSO)

- $\cdot P_{\odot}(x)$ means "x is blue"
- $\cdot x \rightarrow y$ means "x is the parent of y"

"Return all blue nodes that have a pink child" $\exists y P_{\odot}(x) \land P_{\odot}(y) \land x \to y$

Result: {
$$(x_1, ..., x_k) | (x_1, ..., x_k) \models Q$$
 }

Query Q: a formula in monadic second-order logic (MSO)
 • P_O(x) means "x is blue"

 $\cdot x \rightarrow y$ means "x is the parent of y"

"Return all blue nodes that have a pink child" $\exists y P_{\odot}(x) \land P_{\odot}(y) \land x \to y$

(i) Result: {
$$(x_1, ..., x_k) | (x_1, ..., x_k) \models Q$$
 }

Up to $|T|^k$ many answers

Input

Work	Data	Preproc.	Delay	Updates
[Bagan, 2006],	trees	<i>O</i> (<i>T</i>)	O(1)	<i>O</i> (<i>T</i>)
[Kazana and Segoufin, 2013]				

Work	Data	Preproc.	Delay	Updates
[Bagan, 2006],	trees	<i>O</i> (<i>T</i>)	O(1)	<i>O</i> (<i>T</i>)
[Kazana and Segoufin, 2013]				
[Losemann and Martens, 2014]	trees	O(T)	$O(\log^2 T)$	$O(\log^2 T)$

Work	Data	Preproc.	Delay	Updates
[Bagan, 2006],	trees	<i>O</i> (<i>T</i>)	O(1)	<i>O</i> (<i>T</i>)
[Kazana and Segoufin, 2013]				
[Losemann and Martens, 2014]	trees	O(T)	$O(\log^2 T)$	$O(\log^2 T)$
[Niewerth, 2018]	trees	O(T)	O(log T)	O(log T)

Work	Data	Preproc.	Delay	Updates
[Bagan, 2006],	trees	O(T)	O(1)	<i>O</i> (<i>T</i>)
[Kazana and Segoufin, 2013]				
[Losemann and Martens, 2014]	trees	O(T)	$O(\log^2 T)$	$O(\log^2 T)$
[Niewerth, 2018]	trees	O(T)	O(log T)	O(log T)
[Niewerth and Segoufin, 2018]	text	O(T)	O(1)	O(log T)

Work	Data	Preproc.	Delay	Updates
[Bagan, 2006],	trees	<i>O</i> (<i>T</i>)	O(1)	O(T)
[Kazana and Segoufin, 2013]				
[Losemann and Martens, 2014]	trees	O(T)	$O(\log^2 T)$	$O(\log^2 T)$
[Niewerth, 2018]	trees	O(T)	O(log T)	O(log T)
[Niewerth and Segoufin, 2018]	text	O(T)	O(1)	O(log T)
this paper	trees	O(T)	O(1)	O(log T)

• MSO query evaluation is **non-elementary** (if $P \neq NP$)

- MSO query evaluation is **non-elementary** (if $P \neq NP$)
- Most queries are much simpler

- MSO query evaluation is **non-elementary** (if $P \neq NP$)
- Most queries are much simpler
- We use bottom-up (binary) tree-automata

- MSO query evaluation is **non-elementary** (if $P \neq NP$)
- Most queries are much simpler
- We use bottom-up (binary) tree-automata

∃y ... Query

- MSO query evaluation is **non-elementary** (if $P \neq NP$)
- Most queries are much simpler
- We use bottom-up (binary) tree-automata

- MSO query evaluation is **non-elementary** (if $P \neq NP$)
- Most queries are much simpler
- We use bottom-up (binary) tree-automata

- MSO query evaluation is **non-elementary** (if $P \neq NP$)
- Most queries are much simpler
- We use bottom-up (binary) tree-automata

$$\mathsf{S}(\mathbf{X}:\mathbf{1}) := \{\{\mathsf{X}:\mathbf{1}\}\}$$

$$S(\begin{array}{c} X:1 \\ S(\begin{array}{c} T \\ T \end{array}) := \{\{X:1\}\}$$

$$S(\bigcirc X:1) := \{ \{ X:1 \} \}$$
$$S(\bigcirc \top) := \{ \{ \} \}$$
$$S(\bigcirc \bot) := \emptyset$$

Every gate
$$g$$
 captures set of sets $S(g)$

$$\begin{cases} \{x\}\} \\ (X,y)\} \\ (X$$

 $\{\{x\}, \{x, y\}\}$ Every gate q captures set of sets S(q) $S((X:1)) := \{\{X:1\}\}$ $\{\{x\}\}$ $\{\{x, y\}\}$ **)**) := {{}} S(S(**)**) := Ø $S((\times)) := \{s_1 \cup s_2 \mid s_1 \in S(g_1), s_2 \in S(g_2)\}$ X:1 $) := S(g_1) \cup S(g_2)$ S($\{ \{ \} \}$ {{**x**}} $\{\{v\}\}$

Task: Enumerate the elements of the set S(g) captured by a gate $g \rightarrow$ E.g., for $S(g) = \{\{x\}, \{x, y\}\}$, enumerate $\{x\}$ and then $\{x, y\}$

• One **box** for each node of the tree

- One **box** for each node of the tree
- In each box: one \cup -gate for each state q of the automaton
 - Captures partial runs that end in ${\it q}$

Preprocessing phase:

Enumeration phase:

Indexed

normalized

circuit

• Constructions are **bottom-up**

- Constructions are **bottom-up**
- Updates can be done in $\mathcal{O}(depth(T))$

- Constructions are **bottom-up**
- Updates can be done in $\mathcal{O}(depth(T))$
- Problem: depth(T) can be linear in T

- Constructions are **bottom-up**
- Updates can be done in $\mathcal{O}(depth(T))$
- Problem: depth(T) can be linear in T
- Solution: Depict trees by forest algebra terms

Free Forest Algebra in a Nutshell

Free Forest Algebra in a Nutshell

Free Forest Algebra in a Nutshell

The leaves of the formula correspond to the nodes of the tree

1 contains the hole

Theorem

Enumertion of MSO formulas on trees can be done in time:

 $\begin{array}{ll} \textit{Preprocessing} & \textit{O}(~|T| \times |Q|^{4\omega+1}~) \\ \textit{Delay} & \textit{O}(~|Q|^{4\omega} \times |S|~) \\ \textit{Updates} & \textit{O}(~\log(|T|) \times |Q|^{4\omega+1}~) \end{array}$

- |T| size of tree
- |**Q**| **number** of **states** of a nondeterministic tree automaton
- |S| size of result
- ω exponent for Boolean matrix multiplication

Existencial Marked Ancestor Queries

- Input: Tree *t* with some marked nodes
- **Query**: Does node *v* have a marked ancestor?

Updates: Mark or unmark a node

Existencial Marked Ancestor Queries

- **Input**: Tree *t* with some marked nodes
- **Query**: Does node *v* have a marked ancestor?

Updates: Mark or unmark a node

Theorem: $t_{query} \in \Omega\left(\frac{\log(n)}{\log(t_{update}\log(n))}\right)$

Existencial Marked Ancestor Queries

- **Input**: Tree *t* with some marked nodes
- **Query**: Does node *v* have a marked ancestor?

Updates: Mark or unmark a node

Theorem: $t_{query} \in \Omega\left(\frac{\log(n)}{\log(t_{update}\log(n))}\right)$

Reduction to Query Enumeration with Updates

Fixed Query Q: Return all **special nodes** with a marked ancestor For every marked ancestor query **v**:

- 1. Mark node **v** special
- 2. Enumerate **Q** and return "yes", iff **Q** produces some result
- 3. Mark **v** as non-special again

Existencial Marked Ancestor Queries

- **Input**: Tree *t* with some marked nodes
- **Query**: Does node *v* have a marked ancestor?

Updates: Mark or unmark a node

Theorem: $t_{query} \in \Omega\left(\frac{\log(n)}{\log(t_{update}\log(n))}\right)$

Reduction to Query Enumeration with Updates

Fixed Query Q: Return all **special nodes** with a marked ancestor For every marked ancestor query **v**:

- 1. Mark node **v** special
- 2. Enumerate **Q** and return "yes", iff **Q** produces some result
- 3. Mark **v** as non-special again

Theorem: $\max(t_{delay}, t_{update}) \in \Omega\left(\frac{\log(n)}{\log\log(n)}\right)$

Results

Theorem

Enumertion of MSO formulas on trees can be done in time:

Preprocessing	$O(T imes Q ^{4\omega+1})$
Delay	$O(Q ^{4\omega} imes S)$
Updates	$O(\log(T) \times Q ^{4\omega+1})$

T size of tree

|**Q**| **number** of **states** of a nondeterministic tree automaton

- |S| size of result
- ω exponent for Boolean matrix multiplication

Theorem

 $\max(t_{delay}, t_{update}) \in \Omega\left(\frac{\log(n)}{\log\log(n)}\right)$

Results

Theorem

Enumertion of MSO formulas on trees can be done in time:

Preprocessing	$O(~ T imes Q ^{4\omega+1}~)$
Delay	O($ Q ^{4\omega} imes S $)
Updates	$O(\log(T) \times Q ^{4\omega+1})$

|T| size of tree

|**Q**| **number** of **states** of a nondeterministic tree automaton

- |S| size of result
- ω exponent for Boolean matrix multiplication

Theorem

 $\max(t_{delay}, t_{update}) \in \Omega\left(\frac{\log(n)}{\log\log(n)}\right)$

Thank You

Bagan, G. (2006).

MSO queries on tree decomposable structures are computable with linear delay.

In CSL.

- Kazana, W. and Segoufin, L. (2013).
 Enumeration of monadic second-order queries on trees.
 TOCL, 14(4).
 - Losemann, K. and Martens, W. (2014).
 MSO queries on trees: Enumerating answers under updates. In CSL-LICS.

Niewerth, M. (2018).

Mso queries on trees: Enumerating answers under updates using forest algebras.

In LICS.

Niewerth, M. and Segoufin, L. (2018). Enumeration of MSO queries on strings with constant delay and logarithmic updates. In *PODS*.

• **Problem:** if $S(g) = \emptyset$ we waste time

- **Problem:** if $S(g) = \emptyset$ we waste time
- Solution: in preprocessing
 - compute **bottom-up** if $S(g) = \emptyset$

- **Problem:** if $S(g) = \emptyset$ we waste time
- Solution: in preprocessing
 - compute **bottom-up** if $S(g) = \emptyset$
 - \cdot then get rid of the gate

• **Problem:** if *S*(*g*) contains {} we waste time in chains of ×-gates

- **Problem:** if *S*(*g*) contains {} we waste time in chains of ×-gates
- Solution:

- **Problem:** if *S*(*g*) contains {} we waste time in chains of ×-gates
- Solution:
 - remove inputs with $S(g) = \{\{\}\}$ for x-gates

- **Problem:** if *S*(*g*) contains {} we waste time in chains of ×-gates
- Solution:
 - remove inputs with $S(g) = \{\{\}\}$ for x-gates

- **Problem:** if *S*(*g*) contains {} we waste time in chains of ×-gates
- Solution:
 - remove inputs with $S(g) = \{\{\}\}$ for x-gates
 - collapse ×-chains with fan-in 1

- **Problem:** if *S*(*g*) contains {} we waste time in chains of ×-gates
- Solution:
 - remove inputs with $S(g) = \{\{\}\}$ for x-gates
 - collapse ×-chains with fan-in 1

- **Problem:** if *S*(*g*) contains {} we waste time in chains of ×-gates
- Solution:
 - remove inputs with $S(g) = \{\{\}\}$ for x-gates
 - collapse ×-chains with fan-in 1

→ Now, traversing a ×-gate ensures that we make progress: it splits the sets non-trivially

• **Problem:** we waste time in ∪-hierarchies to find a **reachable exit** (non-∪ gate)

- **Problem:** we waste time in ∪-hierarchies to find a **reachable exit** (non-∪ gate)
- Solution: compute reachability index

- **Problem:** we waste time in ∪-hierarchies to find a **reachable exit** (non-∪ gate)
- Solution: compute reachability index

- **Problem:** we waste time in ∪-hierarchies to find a **reachable exit** (non-∪ gate)
- Solution: compute reachability index
- Problem: must be done in linear time

- **Problem:** we waste time in ∪-hierarchies to find a **reachable exit** (non-∪ gate)
- Solution: compute reachability index
- Problem: must be done in linear time

- Solution: Compute reachability index with box-granularity
- Use matrix multiplication
- Circuit has **bounded width** (by the size of the automaton)