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Problem: Finding Patterns in Text

• We have a long text T:
Antoine Amarilli Description Name Antoine Amarilli. Handle: a3nm. Identity Born 1990-02-07.
French national. Appearance as of 2017. Auth OpenPGP. OpenId. Bitcoin. Contact Email and XMPP
a3nm@a3nm.net Affiliation Associate professor of computer science (office C201-4) in the DIG team of
Télécom ParisTech, 46 rue Barrault, F-75634 Paris Cedex 13, France. Studies PhD in computer science
awarded by Télécom ParisTech on March 14, 2016. Former student of the École normale supérieure.
More Résumé Location Other sites Blogging: a3nm.net/blog Git: a3nm.net/git ...

• We want to �nd a pattern P in the text T:
→ Example: �nd email addresses
• Write the pattern as a regular expression:

P := ␣ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣

→ How to �nd the pattern P e�ciently in the text T?
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Solution: Automata

• Convert the regular expression P to an automaton A

P := ␣ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣

1start 2 3 4

• •[a-z0-9.] [a-z0-9.]

@

• Then, evaluate the automaton on the text T
E m a i l ␣ a 3 n m @ a 3 n m . n e t ␣ A f f i l i a t i o n

• The complexity is O(|A| × |T|), i.e., linear in T and polynomial in P
→ This is very e�cient in T and reasonably e�cient in P

3/16



Solution: Automata

• Convert the regular expression P to an automaton A
P := ␣ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣

1start 2 3 4

• •[a-z0-9.] [a-z0-9.]

@

• Then, evaluate the automaton on the text T
E m a i l ␣ a 3 n m @ a 3 n m . n e t ␣ A f f i l i a t i o n

• The complexity is O(|A| × |T|), i.e., linear in T and polynomial in P
→ This is very e�cient in T and reasonably e�cient in P

3/16



Solution: Automata

• Convert the regular expression P to an automaton A
P := ␣ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣

1start 2 3 4

• •[a-z0-9.] [a-z0-9.]

@

• Then, evaluate the automaton on the text T
E m a i l ␣ a 3 n m @ a 3 n m . n e t ␣ A f f i l i a t i o n

• The complexity is O(|A| × |T|), i.e., linear in T and polynomial in P
→ This is very e�cient in T and reasonably e�cient in P

3/16



Solution: Automata

• Convert the regular expression P to an automaton A
P := ␣ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣

1start 2 3 4

• •[a-z0-9.] [a-z0-9.]

@

• Then, evaluate the automaton on the text T

E m a i l ␣ a 3 n m @ a 3 n m . n e t ␣ A f f i l i a t i o n

• The complexity is O(|A| × |T|), i.e., linear in T and polynomial in P
→ This is very e�cient in T and reasonably e�cient in P

3/16



Solution: Automata

• Convert the regular expression P to an automaton A
P := ␣ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣

1start 2 3 4

• •[a-z0-9.] [a-z0-9.]

@

• Then, evaluate the automaton on the text T
E m a i l ␣ a 3 n m @ a 3 n m . n e t ␣ A f f i l i a t i o n

• The complexity is O(|A| × |T|), i.e., linear in T and polynomial in P

→ This is very e�cient in T and reasonably e�cient in P

3/16



Solution: Automata

• Convert the regular expression P to an automaton A
P := ␣ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣

1start 2 3 4

• •[a-z0-9.] [a-z0-9.]

@

• Then, evaluate the automaton on the text T
E m a i l ␣ a 3 n m @ a 3 n m . n e t ␣ A f f i l i a t i o n

• The complexity is O(|A| × |T|), i.e., linear in T and polynomial in P
→ This is very e�cient in T and reasonably e�cient in P

3/16



Actual Problem: Extracting all Patterns

• This only tests if the pattern occurs in the text!
→ “YES”

• Goal: �nd all substrings in the text T which match the pattern P
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

E m a i l A f f i l i a t i o n

→ One match: [5, 20〉
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Formal Problem Statement

• Problem description:

• Input:
• A text T

Antoine Amarilli Description Name Antoine Amarilli. Handle: a3nm. Identity Born 1990-02-07. French
national. Appearance as of 2017. Auth OpenPGP. OpenId. Bitcoin. Contact Email and XMPP a3nm@a3nm.net
Affiliation Associate professor of computer science (office C201-4) in the DIG team of Télécom
ParisTech, 46 rue Barrault, F-75634 Paris Cedex 13, France. Studies PhD in computer science awarded by
Télécom ParisTech on March 14, 2016. Former student of the École normale supérieure. test@example.com
More Résumé Location Other sites Blogging: a3nm.net/blog Git: a3nm.net/git ...

• A pattern P given as a regular expression

P := ␣ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣

• Output: the list of substrings of T that match P:
[186, 200〉, [483, 500〉, . . .

• Goal: be very e�cient in T and reasonably e�cient in P
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• A sequential document spanner P given as a regular expression

P := ␣ x`[a-z0-9.]∗ @ [a-z0-9.]∗a x ␣

• Output: the list of tuples of substrings of T that match P:
[186, 200〉, [483, 500〉, . . .

• Goal: be very e�cient in T and reasonably e�cient in P
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Measuring the Complexity

• Naive algorithm: Run the automaton A on each substring of T

[〉

l

[〉

o

[〉

l

[〉

→ Complexity is O(|T|2 × |A| × |T|)
→ Can be optimized to O(|T|2 × |A|)

• Problem: We may need to output Ω(|T|2) matching substrings:
• Consider the text T:

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

• Consider the pattern P := a∗

• The number of matches is Ω(|T|2)

→ We need a di�erent way to measure complexity
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Enumeration Algorithms

Idea: In real life, we do not want to compute all the matches
we just need to be able to enumerate matches quickly

→ Formalization: enumeration algorithms
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Formalizing Enumeration Algorithms

Antoine Amarilli Description Name Antoine
Amarilli. Handle: a3nm. Identity Born
1990-02-07. French national. Appearance as
of 2017. Auth OpenPGP. OpenId. Bitcoin.
Contact Email and XMPP a3nm@a3nm.net
Affiliation Associate professor ...

Text T

␣ [a-z0-9.]∗@
[a-z0-9.]∗ ␣
Pattern P

Phase 1:
Preprocessing

Index structure

Phase 2:
Enumeration

{
[42, 57〉,[1337, 1351〉

}

Results
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Two performance criteria:
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... as a function of the text and pattern
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Complexity of Enumeration Algorithms

• Recall the inputs to our problem:
• A text T

Antoine Amarilli Description Name Antoine Amarilli. Handle: a3nm. Identity Born 1990-02-07.
French national. Appearance as of 2017. Auth OpenPGP. OpenId. Bitcoin. Contact Email and XMPP
a3nm@a3nm.net Affiliation Associate professor of computer science (office C201-4) in the DIG team of
Télécom ParisTech, 46 rue Barrault, F-75634 Paris Cedex 13, France. Studies PhD in computer science
awarded by Télécom ParisTech on March 14, 2016. Former student of the École normale supérieure.
More Résumé Location Other sites Blogging: a3nm.net/blog Git: a3nm.net/git ...

• A pattern P given as a regular expression

P := ␣ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣

• What is the delay of the naive algorithm?
→ it is the maximal time to �nd the next matching substring
→ i.e. O(|T|2 × |A|), e.g., if only the beginning and end match

→ Can we do better?
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Results for Enumerating Pattern Matches

• Existing work has shown the best possible bounds:

Theorem [Florenzano et al., 2018]
We can enumerate all matches of a pattern P on a text T with:

• Preprocessing linear in T

and exponential in P

• Delay constant (independent from T)

and exponential in P

→ Problem: Only e�cient for deterministic automata!

• Our contribution is:
Theorem
We can enumerate all matches of a pattern P on a text T with:

• Preprocessing in O(|T| × Poly(P))

• Delay polynomial in P and independent from T

10/16



Results for Enumerating Pattern Matches

• Existing work has shown the best possible bounds:
Theorem [Florenzano et al., 2018]
We can enumerate all matches of a pattern P on a text T with:

• Preprocessing linear in T

and exponential in P

• Delay constant (independent from T)

and exponential in P

→ Problem: Only e�cient for deterministic automata!

• Our contribution is:
Theorem
We can enumerate all matches of a pattern P on a text T with:

• Preprocessing in O(|T| × Poly(P))

• Delay polynomial in P and independent from T

10/16



Results for Enumerating Pattern Matches

• Existing work has shown the best possible bounds in T:
Theorem [Florenzano et al., 2018]
We can enumerate all matches of a pattern P on a text T with:

• Preprocessing linear in T and exponential in P
• Delay constant (independent from T) and exponential in P

→ Problem: Only e�cient for deterministic automata!

• Our contribution is:
Theorem
We can enumerate all matches of a pattern P on a text T with:

• Preprocessing in O(|T| × Poly(P))

• Delay polynomial in P and independent from T

10/16



Results for Enumerating Pattern Matches

• Existing work has shown the best possible bounds in T:
Theorem [Florenzano et al., 2018]
We can enumerate all matches of a pattern P on a text T with:

• Preprocessing linear in T and exponential in P
• Delay constant (independent from T) and exponential in P

→ Problem: Only e�cient for deterministic automata!

• Our contribution is:

Theorem
We can enumerate all matches of a pattern P on a text T with:

• Preprocessing in O(|T| × Poly(P))

• Delay polynomial in P and independent from T

10/16



Results for Enumerating Pattern Matches

• Existing work has shown the best possible bounds in T:
Theorem [Florenzano et al., 2018]
We can enumerate all matches of a pattern P on a text T with:

• Preprocessing linear in T and exponential in P
• Delay constant (independent from T) and exponential in P

→ Problem: Only e�cient for deterministic automata!

• Our contribution is:
Theorem
We can enumerate all matches of a pattern P on a text T with:

• Preprocessing in O(|T| × Poly(P))

• Delay polynomial in P and independent from T

10/16



Automaton Formalism

• We use automata that read letters and capture variables

→ Example: P := •∗ α a∗ β •∗

1 2 3

•

α

a

β

•

• Semantics of the automaton A:
• Reads letters from the text
• Guesses variables at positions in the text
→ Output: tuples 〈α : i, β : j〉 such that

A has an accepting run reading α at position i and β at j

• Assumption: There is no run for which A reads
the same capture variable twice at the same position

• Challenge: Because of nondeterminism we can have
many di�erent runs of A producing the same tuple!
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Proof idea: Product DAG

Compute a product DAG of the text T and of the automaton A

Example: Text T := aaaba and P := •∗ α a∗ β •∗,

match 〈α : 0, β : 3〉

1

2

3

•

α

a

β

•

a a a b a

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3 3

α

β

α

β

α

β

α

β

α

β

α

β

→ Each path in the product DAG corresponds to a match

→ Challenge: Enumerate paths but avoid duplicate matches
and do not waste time to ensure constant delay
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Proof ingredients

Several ingredients to do this e�cient

• Prune non-accepting paths
• Use shortcuts (pointers) to skip long paths
• Flashlight search

13/16



Proof ingredient: jump pointers to save time

• Issue: When we can’t assign variables, we do not make progress

· · ·

· · ·

· · ·

· · ·
α α α α α

• Idea: Directly jump to the reachable states
at the next position where we can assign a variable

• Challenge: Preprocessing in linear time in T and polynomial in A:
→ Compute for each state the next position where we can reach

some state that can assign a variable
→ Compute at each position i the transitive closure to all positions j

such that j is the next position of some state at i (there are ≤ |A|)
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Proof ingredient: �ashlight search

• Issue: Finding which variable sets we can assign at position i?
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• Idea: Explore a decision tree on the variables (built on the �y)
• At each decision tree node, �nd the reachable states which
have all required variables (1) and no forbidden variables (0)
→ Assumption: we don’t see the same variable twice on a path
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Main Result and Future Work

Theorem
Given a sequential document spanner P and text T, we can
enumerate with:

Preprocessing O(|P|ω+1 × |T|)
Delay O(|V3| × |P|2)

V : Set of Variables
ω : Exponent for Boolean matrix multiplication

Extensions and future work:

• Extending the results from text to trees

}
PODS 2019

• Supporting updates on the input data
• Enumerating results in a relevant order?
• Testing how well our methods perform in practice

} Rémi Dupré

Thanks for your attention!
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