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Abstract With the adoption of RDF as the data model

for Linked Data and the Semantic Web, query specifi-

cation from end-users has become more and more com-

mon in SPARQL endpoints. In this paper, we conduct

an in-depth analytical study of the queries formulated

by end-users and harvested from large and up-to-date

structured query logs from a wide variety of RDF data

sources. As opposed to previous studies, ours is the

first assessment on a voluminous query corpus, span-

ning over several years and covering many represen-

tative SPARQL endpoints. Apart from the syntactical

structure of the queries, that exhibits already interest-

ing results on this generalized corpus, we drill deeper in

the structural characteristics related to the graph and

hypergraph representation of queries.

We outline the most common shapes of queries when

visually displayed as undirected graphs, characterize

their tree width, length of their cycles, maximal de-

gree of nodes, and more. For queries that cannot be

adequately represented as graphs, we investigate their

hypergraphs and hypertree width. Moreover, we ana-

lyze the evolution of queries over time, by introduc-

ing the novel concept of a streak, i.e., a sequence of

queries that appear as subsequent modifications of a
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seed query. Our study offers several fresh insights on

the already rich query features of real SPARQL queries

formulated by real users, and brings us to draw a num-

ber of conclusions and pinpoint future directions for

SPARQL query evaluation, query optimization, tuning,

and benchmarking.

1 Introduction

As more and more data is exposed in RDF format, we

are witnessing a compelling need from end-users to for-

mulate more or less sophisticated queries on top of this

data. SPARQL endpoints are increasingly used to har-

vest query results from available RDF data repositories.

But how do these end-user queries look like? As opposed

to RDF data, which can be easily obtained under the

form of dumps (DBpedia and Wikidata dumps [45,46,

51]), query logs are often inaccessible, yet hidden trea-

sures to understand the actual usage of these data. In

this paper, we investigate a large corpus of query logs

from different SPARQL endpoints, which spans over

several years (2009–2017). In comparison to previous

studies on real SPARQL queries [3,21,36,41,42], which

typically1 investigated query logs of a single source,

we consider a multi-source query corpus that is two

orders of magnitude larger. Furthermore, our analysis

goes significantly deeper. In particular, we are the first

to do a large-scale analysis on the topology of queries,

which has seen significant theoretical interest in the

last decades (e.g., [14,18,20]) and is now being used

for state-of-the-art structural decomposition methods

1 The exception is [21], where logs from the Linked
SPARQL Queries (LSQ) dataset were studied, combining
data from four sources (from 2010 and 2014) that we also
consider.



for query optimization [1,2,26]. As a consequence, ours

is the first analytical study on real (and most recent)

SPARQL queries from a variety of domains reflecting

the recent advances in theoretical and system-oriented

studies of query evaluation.

Our paper makes the following contributions. Apart

from classical measures of syntactic properties of the in-

vestigated queries, such as their keywords, their number

of triples, and operator distributions, which we apply

to our new corpus, we also mine the usage of projec-

tion in queries and subqueries in the various datasets.

Projection indeed is the cause of increased complexity

(from Ptime to NP-Complete) of the following central

decision problem in query evaluation [13,8,30]: Given

a conjunctive query Q, a database D, and a candidate

answer a, is a an answer of Q on D?

We then proceed by considering queries under their

graph and hypergraph structures. Such structural as-

pects of queries have been investigated in the database

theory community for over two decades [18] since they

can indicate when queries can be evaluated efficiently.

Recently, several studies on new join algorithms lever-

age the hypergraph structure of queries in the con-

texts of relational and RDF query processing [1,26].

Theoretical research in this area traditionally focused

on conjunctive queries (CQs). For CQs, we know that

tree-likeness of their structure leads to polynomial-time

query evaluation [18]. For larger classes of queries, the

topology of the graph of a query is much less informa-

tive. For instance, if we additionally allow SPARQL’s

Opt operator, evaluation can be NP-complete even if

the structure is a tree [8]. For this reason, we focus

our structural study on CQ-like queries.2 We develop a

shape classifier for such queries and identify their most

occurring shapes. Interestingly enough, these queries

have quite regular shapes. The overwhelming major-

ity of the queries is acyclic (i.e., tree- or forest-shaped).

We discovered that the cyclic queries mostly consist of

a central node with simple, small attachments (which

we call flower). In terms of tree- and hypertreewidth,

we discovered that the cyclic queries have width two,

up to a few exceptions with width three.

At this point we should make a note about interpre-

tation of our results. Even though almost all CQ-like

queries have (hyper-)treewidth one, we do not want to

claim that queries of larger treewidth are not important

in practice. The overwhelming majority of the queries

we see in the logs are very small and simple, which

we believe may be typical for SPARQL endpoint logs.

For instance, the majority of the queries in our logs

2 We consider extensions with Filter, Opt, and Values, but
only in a way for which we know that tree-likeness of the query
graph ensures the existence of efficient evaluation algorithms.

only use one triple. More precisely, this holds for over

52% of the valid queries and for over 58% of the unique

valid queries. One of our data sets, Wikidata17 is not a

SPARQL endpoint log and we see throughout the paper

that it has completely different characteristics.

In order to gauge the performances of cyclic and

acyclic queries from a practical viewpoint, we have run

a comparative analysis of chain and cycle queries syn-

thetically generated with an available graph and query

workload generator [4]. This experiment showed differ-

ent behaviors of SPARQL query engines, such as Blaze-

graph and PostgreSQL with query workloads of CQs of

increasing sizes (intended as number of conjuncts). It

also lets us grasp a tangible difference between chain

and cycle queries in either query engine, this difference

being more pronounced for PostgreSQL. We may inter-

pret this result as a lack of maturity of practical query

engines for cyclic queries, thus motivating the need of

specific query optimization techniques for such queries

as in [1,26].

Finally, we deal with the problem of identifying se-

quences of similar queries in the query logs. These queries

are then classified as gradual modifications of a seed

query, possibly by the same user. We measure the length

of such streaks in three log files from DBpedia. We con-

clude our study with insights on the impact of our ana-

lytical study of large SPARQL query logs on query eval-

uation, query optimization, tuning, and benchmarking.

This paper extends its conference version [11] as fol-

lows:

(1) We augment our corpus with 169M queries from

the DBpedia17 dataset, which was not considered

before and let us almost double the size of our total

valid queries.

(2) We perform all our analyses twice: once on the set

of all valid and once on the set of all unique valid

queries. The conference version only considered the

unique valid queries. We note that the valid and

unique valid logs give different insights about the

data, which are complementary. The valid set gives

an idea about the different types of queries in the

logs and the unique valid set gives a better view

on the queries and the workload that the SPARQL

endpoint actually receives.3

(3) We extend our study to the Construct clause apart

from Select and Ask queries considered in [11]. This

means that the present study includes all types of

SPARQL queries with a well-defined semantics. We

also consider the Values keyword in the queries, be-

cause it is more frequent in our new corpus. The

3 For instance, as can be seen immediately in Figure 1, the
DBpedia endpoint receives many more large queries than the
unique valid logs lead us to suspect.



addition of Values leads to additional insights, such

as a significant increase of cyclic queries in Table 7.

(4) On top of investigating well-designedness of queries

(introduced by Perez et al. [40]), we also investi-

gate weak well-designedness, a notion introduced

by Kaminski and Kostylev [27], which is important

because it also identifies a fragment of queries us-

ing And, Opt, and Filter that can be evaluated more

efficiently than in the general case.

(5) We perform our shape analysis once for the graphs

of queries with constants and once for the graphs

without constants (i.e., only the variables). We be-

lieve that the shapes of queries with constants can

be interesting for practitioners working on query

evaluation and optimization. The shapes of queries

without constants are usually considered in theoret-

ical research on query evaluation, i.e., the treewidth

and hypertreewidth of queries is usually only con-

sidered for the graph of the queries containing only

the variables.

(6) We add more tests to the shape analysis, which give

researchers a much more precise idea of the shape of

queries. For instance, we investigate specific mea-

sures on the characteristics of the most common

shapes, such as the longest path, the size of the

maximal degree vertex, the number of high degree

vertices and for cyclic queries the cycle lengths.

(7) We extend the hypergraph analysis with an anal-

ysis of free-connex acyclicity. This measure is very

important in theory and practice, since it charac-

terizes the conjunctive queries for which efficient al-

gorithms exist for enumerating their output [6,24]

(under standard complexity theory assumptions).

(8) We analyse the number of tree pattern queries in

the query logs. Tree pattern queries or twig queries

were heavily researched in the context of XML query

languages and, due to their modal nature, can also

be used for querying graphs [15,31]. We discover

that they are quite prominent in the logs.

(9) Due to the additional queries, we obtain 404,721

property paths from unique queries (compared to

247,404 in [11]). Still, we manage to completely

classify all these property paths in 35 types of ex-

pressions. (We only needed 21 types of expressions

in [11].) Since property paths are a challenging issue

in SPARQL queries and graph database queries in

general [10], we believe this data to be very useful

for developers of graph database engines.

We conclude the paper with observations and insights

about further analyses on query logs.

Related Work. Whereas several previous studies have

focused on the analysis of real SPARQL queries, they

have mainly investigated statistical features of the queries,

such as occurrences of triple patterns, types of queries,

or query fragments [3,21,36,42]. The only early study

that investigated the relationship between structural

features of practical queries and query evaluation com-

plexity has been presented in [41]. However, they fo-

cus on a limited corpus (3M queries from DBpedia

2010) and in that sense their findings cannot be general-

ized. Our work moves onward by precisely characteriz-

ing the occurrences of conjunctive and non-conjunctive

patterns under the latest complexity results, by per-

forming an accurate shape analysis of the queries under

their (hyper)graph representation and introducing the

evolution of queries over time. USEWOD and DBpedia

datasets have also been considered in [3]. It takes into

account the log files from DBpedia and SWDF reach-

ing a total size of 3M. The work mainly investigates

the number of triples and joins in the queries. Based

on the observation of [39] that SPARQL graph pat-

terns are typically chain- or star-shaped, they also look

at their occurrences. They found very scarce chains and

high coverage of almost-star-shaped graph patterns, but

they do not characterize the latter. To the best of our

knowledge, we are the first to carry out a comprehen-

sive shape analysis on such a large and diverse corpus

of SPARQL queries.

A query analysis and clustering of DBpedia SPARQL

queries has been performed in [37] in order to build a

set of prototypical benchmarking queries. Query logs

have been inspected in a user study in [23] to under-

stand whether facts that are queried together provide

intra-fact relatedness in the Linked Open Data graph.

The objectives of both papers are different from the one

pursued in our work.

Large collections of Wikidata queries have been an-

alyzed recently in [32,9], which focused on basic char-

acteristics of queries related to their usage in the Wiki-

data query service and spanning from SPARQL fea-

ture prevalence and correlation to annotations and lan-

guage distributions. They also do a classification of the

queries in their corpus into robotic and organic, which

would not be possible in our case since our logs lacks

the information about browser- and machine-generated

traffic. However, our analysis significantly differs from

theirs since they do not study in-depth characteristics

of the queries reflecting complexity classes, involving

query shapes and property paths, along with the evo-

lution of streaks, as we do in this paper.

2 Data Sets

Our data set has a total of 350,089,005 queries, which

were obtained as follows. We obtained the 2013–2016



Table 1 Sizes of query logs in our corpus.

Source Total #Q Valid #Q Unique #Q

DBpedia9-12 28,651,075 27,622,233 13,437,966
DBpedia13 5,243,853 4,819,837 2,628,000
DBpedia14 37,219,788 33,996,486 17,217,416
DBpedia15 43,478,986 42,709,781 13,253,798
DBpedia16 15,098,176 14,687,870 4,369,755
DBpedia17 169,110,041 164,297,723 34,440,636

LGD13 1,927,695 1,531,164 357,843
LGD14 1,999,961 1,951,973 628,640

BioP13 4,627,270 4,624,449 687,773
BioP14 26,438,932 26,404,716 2,191,151

BioMed13 883,375 882,847 27,030

SWDF13 13,853,604 13,670,550 1,229,759

BritM14 1,555,940 1,545,643 135,112

Wikidata17 309 308 308

Total 350,089,005 338,745,580 90,605,187

USEWOD query logs, some additional DBpedia query

logs for 2013, 2014, 2015, 2016, and 2017 directly from

Openlink4, the 2014 British Museum query logs from

LSQ5, and we crawled the user-submitted example queries

from Wikidata6 in February 2017. These log files are

associated with 7 different data sources from various

domains: DBpedia, Semantic Web Dog Food (SWDF),

LinkedGeoData (LGD), BioPortal (BioP), OpenBioMed

(BioMed), British Museum (BritM), and Wikidata.

Table 1 gives an overview of the analyzed query

logs, along with their main characteristics. Since we

obtained logs for DBpedia from different sources, we

proceeded as follows. DBpedia9-12 contains the DBpe-

dia logs from USEWOD’13, which are query logs from

2009–2012. All other DBpedia’X sets contain the query

logs from the year ’X, be it from USEWOD or from

Openlink.7

Compared to the conference version of this article

[11], we have obtained 169,110,041 new queries from

Openlink, which is reflected in the DBpedia17 dataset.

Some of the other data sets are slightly larger than in

the conference version, due to an issue with the parser,

which we fixed. In some cases, the parser would have

an internal error and the query would not even show

up in our total count.

4 http://www.openlinksw.com
5 http://aksw.github.io/LSQ/
6 https://www.wikidata.org/wiki/Wikidata:SPARQL_query_

service/queries/examples
7 We discovered that we received three log files from USE-

WOD as well as from Openlink, in the sense that only the
hash values used for anonymisation were different. These du-
plicate log files were deleted prior to all analysis and are not
taken into account in Table 1.

We prepared the logs for analysis as follows. We

first cleaned the logs, since some contained entries that

were not queries (e.g., http requests). In the following

we only report on the actual SPARQL queries in the

logs. For each of the logs, the table summarizes the to-

tal number of queries (Total) and the number of queries

that we could parse using Apache Jena 3.7.0 (Valid).

From the latter set, we removed duplicate queries af-

ter whitespace normalization, resulting in the unique

queries that we could parse (Unique). In the remain-

der of the paper, we present results on both Valid and

Unique data sets. In [11] we reported the results for the

Unique corpus only. Adding the Valid data set is im-

portant for improving our understanding of the query

logs though: while the Unique data set gives us an idea

of the different types of queries that appear in the logs,

the Valid data set gives a better idea of the queries and

the workload that the SPARQL endpoints actually re-

ceive. In summary, our corpus of query logs contains

the latest blend of USEWOD and Openlink DBPedia

query logs (the latter providing 51M more queries in

the period 2013–2016 than the USEWOD corpus, and

169M more for 2017), plus BritM and Wikidata queries.

We are not aware of other existing studies on such a

large and up-to-date corpus. Finally, although the on-

line Wikidata example queries (Feb 13th, 2017) are a

manually curated set, there was one query that we could

not parse.8

Throughout the article, we will use the following no-

tation to discuss results on the Valid and Unique data

sets. Whenever we report a number or a percentage in

the format X (Y), the number X refers to the Valid

and the number Y to the Unique set of queries. This

notation allows the reader to stay informed about the

queries that the endpoint actually receives (Valid) and

about those without duplicates in this set (Unique).

The query logs we received are anonymized in the

sense that they do not contain IP addresses, precise

time stamps, or user agents. Time stamps are typically

either completely absent, or rounded to an hour. (In

some of the logs, all time stamps are set to 3:00.) This

means, in particular, that these logs do not allow a clas-

sification into robotic and organic queries, as was done

by Bielefeldt et al. [9] and Malyshev et al. [32].

In the total data set, 16,639,701 (2,978,945) queries,

or 4.91% (3.29%) of the logs do not have a body. All

these queries are Describe queries and almost exclu-

sively occur in DBpedia14–DBpedia17. To be more pre-

cise, 99.47% (97.22%) of the Describe queries do not

8 The query was called “Public Art in Paris” and was mal-
formed (closing braces were missing and it had a bad aggre-
gate). It was still malformed on June 29th, 2017.



have a body. We therefore conduct some of our analy-

ses only on Select, Ask, and Construct queries.

3 Preliminaries

We recall some basic definitions on RDF and SPARQL

[40,41]. We closely follow the exposition of [41].

RDF. RDF data consists of a set of triples 〈s, p, o〉
where we refer to s as subject, p as predicate, and o

as object. According to the specification, s, p, and o

can come from pairwise disjoint sets I (IRIs), B (blank

nodes), and L (literals) as follows: s ∈ I ∪ B, p ∈ I,

and o ∈ I ∪B∪L. For this paper, the precise definition

of IRIs, blank nodes, and literals is not important. The

most important thing to know is that we treat blank

nodes similar to variables, which we discuss later.

SPARQL. For our purposes, a SPARQL query Q can

be seen as a tuple of the form

(query-type, pattern P , solution-modifier).

We now explain how such queries work conceptually.

The central component is the Pattern P , which con-

tains patterns that are matched onto the RDF data.

The result of this part of the query is a multiset of

mappings that match the pattern to the data.

The solution-modifier allows aggregation, grouping,

sorting, duplicate removal, and returning only a specific

window (e.g., the first ten) of the multiset of mappings

returned by the pattern. The result is a list L of map-

pings.

The query-type determines the output of the query.
It is one of four types: Select, Ask, Construct, and De-
scribe. Select-queries return projections of mappings from

L. Ask-queries return a Boolean and answer true iff the

pattern P could be matched. Construct queries con-

struct a new set of RDF triples based on the map-

pings in L. Finally, Describe queries return a set of RDF

triples that describes the IRIs and the blank nodes in L.

The exact output of Describe queries is implementation-

dependent. Such queries are meant to help users ex-

plore the data. Compared to [41], we allow more solu-

tion modifiers and more complex patterns, as explained

next.

Patterns. Let V = {?x, ?y, ?z, ?x1, . . .} be an infinite

set of variables, disjoint from I, B, and L. As in SPARQL,

we always prefix variables by a question mark. A triple

pattern is an element of (I ∪B∪V)× (I ∪V)× (I ∪B∪
L∪V). A property path is a regular expression over the

alphabet I. A property path pattern is an element of

(I ∪B∪V)×pp×(I ∪B∪L∪V), where pp is a property

path. A SPARQL pattern is an expression generated

from the following grammar:

P ::= t | pp | Q | P1 And P2 | P Filter R
| P1 Union P2 | P1 Opt P2

| Graph iv P | Values tup T

Here, t is a triple pattern, pp is a property path pat-

tern, Q is again a SPARQL query, R is a so-called

SPARQL filter constraint, and iv ∈ I∪V. We note that

property paths (pp) and subqueries (Q) in the above

grammar are new features since SPARQL 1.1. SPARQL

filter constraints R are built-in conditions which can

have unary predicates, (in)equalities between variables,

and Boolean combinations thereof. The keyword Values
binds a tuple tup to values in a given table T . We refer

to the SPARQL 1.1 recommendation [22] and the liter-

ature [40] for the precise syntax of filter constraints and

the semantics of SPARQL queries. We write vars(P ) to

denote the set of variables occurring in P .

We illustrate by example how our definition corre-

sponds to real SPARQL queries. The following query

comes from WikiData (“Locations of archaeological sites”,

from [45]).

SELECT ?label ?coord ?subj

WHERE

{?subj wdt:P31/wdt:P279* wd:Q839954 .

?subj wdt:P625 ?coord .

?subj rdfs:label ?label filter(lang(?label)="en")}

The query uses the property path wdt:P31/wdt:P279*,

literal wd:Q839954, and triple pattern ?subj wdt:P625

?coord. It also uses a filter constraint. In SPARQL,

the And operator is denoted by a dot (and is sometimes

implicit in alternative, even more succinct syntax). The

Select query will return all bindings of ?label, ?coord,

and ?subj for which the body can be satisfied. If we

would turn it into an Ask query, i.e., replace the entire

with the keyword ASK, it would return true if and only

if the Select query would return at least one output.

The following Construct query from WikiData [45]

constructs a new RDF graph related to “asthma” ( lit-

eral wd:Q35869), by recording the respective qualifiers

and their provenance information if available as Opt
edges.

CONSTRUCT {

wd:Q35869 ?p ?o . ?o ?qualifier ?f .

?o prov:wasDerivedFrom ?u . ?u ?a ?b .}

WHERE {

wd:Q35869 ?p ?o . OPTIONAL {?o ?qualifier ?f .}

OPTIONAL {?o prov:wasDerivedFrom ?u . ?u ?a ?b .}}

Finally, we define conjunctive queries, which are a

central class of queries in database research and which

we will build on in the remainder of the paper. In the

context of SPARQL, we define them as follows.



Definition 1 A conjunctive query (CQ) is a SPARQL

pattern that only uses the triple patterns and the op-

erator And.

4 Shallow Analysis

In this section we investigate simple syntactical prop-

erties of queries.

4.1 Keywords

A basic usage analysis of SPARQL features was done

by counting the keywords in queries. The results are in

Table 2.9

The table contains four blocks: types of queries, so-

lution modifiers, SPARQL algebra operators, and ag-

gregation operators. In each of the blocks, we sorted

the operators by their number of occurrences in the

Valid data set.

The first block in Table 2 describes the type of

queries. In total, 91.96% (88.22%) of the queries are

Select queries, 4.94% (3.38%) Describe queries, 2.44%

(6.56%) are Ask queries, and 0.67% (1.84%) Construct
queries. There are, however, tremendous differences be-

tween the data sets. BioMed13 has less than 3.47% (12.83%)

Select queries and almost 94% (85%) Describe queries,

whereas LGD13 has 17% (28%) Select queries and almost

81% (71%) Construct queries.

Even within the same kind of data, we see significant

differences. DBpedia16 has 85% (62%) Select queries

(and 12.1% (34%) Describe queries), whereas DBpedia15

has 92% (81.5%) Select queries and 4% (11.5%) Ask
queries. The other DBpedia data sets have over 87.5%

Select queries. DBpedia17 has 91% (88%) Select queries,

2.1% (9.1%) Ask queries and 5.8% (1.4%) Describe queries.

The second block in Table 2 contains solution mod-

ifiers, ordered by their popularity.10 Looking into the

specific data sets, we see the following things stand out.

Almost all 89% (97%) of BritM14 queries use Distinct.
This is similar, but to a lesser extent in BioP13 (96%

(82%)) and BioP14 (92%(68%)). In DBpedia we again

see significant differences. From ’12 to ’17, we have 21%

(18%), 7% (8%), 16% (11%), 20% (38%), 6% (8%) and

26% (52%) of queries with Distinct respectively.

Limit is used most widely in SWDF13 (48 (47%)), in

LGD13 (59% (17%)) and LGD14 (54 (41%)). The most

9 We also investigated the occurrence of other operators
(Service, Bind, Assign, Data, Dataset, Sample, Group Concat),
each of which appeared in less than 1% of the queries. We
omit them from the table for succinctness.
10 The remaining solution modifier, Reduced, was only found
in 6,126 (1,149) queries.

prevalent data sets for queries with Offset are LGD14

(30% (38%)), LGD13 (52%(13%)), and DBpedia13 (10%

(12%)).

Order By is used by far the most in Wikidata (44%),

which may be due to the case that Wikidata17 is not a

query log, but a wiki page that contains cherry-picked

and user-submitted queries. These queries are intended

to showcase system’s behavior or highlight features of

the WikiData data set and should therefore produce

a nice output. The other data sets are true query logs,

which may therefore also contain the “development pro-

cess” of queries: users start by asking a query and grad-

ually refine it until they have the one they want. (We

come back to this in Section 10).

The third block has keywords associated to SPARQL

algebra operators that occur in the body. We see that

Filter, And, Union, and Opt are quite common.11 The

next commonly used operator is Graph but, looking

closer at our data, we see that 96% (78%) and 85%

(40%) of the queries using Graph originate from BioP13

and BioP14. The use of Filter ranges from 63% (58%)

for DBpedia13 to 0.7% (3%) or less for BioMed13 and

BioP13, respectively.

The fourth block has aggregation operators. We were

surprised that these operators are used so sparsely, even

though aggregates are only supported since SPARQL

1.1 (March 2013) [22]. In all data sets, each of these

operators was used in 3% or less of the Unique queries,

except for LGD14 (31% with Count), DBpedia17 (11%

with Group By) and Wikidata17 (30% with Group By).

We see a higher relative use of aggregation operators

in Wikidata17 than in the other sets, which we again

believe is due to the fact that the Wikidata17 set is not

a query log.

Overall, when we compare the Unique and Valid

logs, it is striking that the relative occurrences of the

four main SPARQL algebra operators Filter, And, Union,

and Opt all decrease when eliminating duplicate queries.

4.2 Number of Triples in Queries

In order to measure the size of the queries belonging

to the datasets under study, we have counted the total

number of triples of the kind 〈s, p, o〉 contained in Se-
lect, Ask and Construct queries. In this experiment, we

merely counted the number of triples contained in each

query without further investigating the possible rela-

tionships among them (such as join conditions, unions

etc.), which are studied in the remainder of the paper.

11 Conjunctions in SPARQL are actually denoted by “.” or
“;” for brevity, but we group them under “And” in this paper
for readability.



Table 2 Keyword count in queries

Element AbsoluteV RelativeV AbsoluteU RelativeU

Select 311,496,923 91.96% 79,929,422 88.22%
Describe 16,727,191 4.94% 3,061,636 3.38%

Ask 8,265,673 2.44% 5,943,216 6.56%
Construct 2,255,793 0.67% 1,670,913 1.84%

Distinct 96,055,447 28.36% 29,973,911 33.08%
Limit 46,442,970 13.71% 17,043,706 18.81%

Offset 8,651,005 2.55% 4,112,839 4.54%
Order By 3,481,015 1.03% 1,609,921 1.78%

Filter 148,681,968 43.89% 34,609,372 38.20%
And 129,524,653 38.24% 26,737,378 29.51%
Opt 107,447,875 31.72% 13,119,429 14.48%

Union 85,024,759 25.10% 15,761,764 17.40%
Graph 27,556,055 8.13% 1,523,675 1.68%
Values 7,595,583 2.24% 5,086,033 5.61%

Not Exists 2,527,452 0.75% 1,096,099 1.21%
Minus 2,199,152 0.65% 1,664,359 1.84%
Exists 13,965 0.00% 7,832 0.01%

Group By 9,100,381 2.69% 3,887,216 4.29%
Count 924,474 0.27% 653,756 0.72%

Having 197,463 0.06% 40,401 0.04%
Avg 7,714 0.00% 731 0.00%
Min 7,040 0.00% 3,749 0.00%
Max 6,504 0.00% 3,796 0.00%
Sum 2,768 0.00% 785 0.00%
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Fig. 1 Percentages of queries exhibiting di↵erent number of triples (in colors) for each dataset for Valid (left hand side of each
bar) and Unique queries (right hand side of each bar).

datasets exhibiting the most complex queries with ex-

tremely high numbers of triples exceeding 10.

We should note that BioMed13 has almost 94% (87%)

Describe queries. The numbers reported here only de-

pict the remaining 6% (13%).

Overall, we observe that 63.62% (58.40%) of the Se-
lect, Ask and Construct queries in our corpus use at most

one triple, 77.89% (90.16%) uses at most six triples,

and 99.44% (98.35%) at most twelve triples. The largest

queries we found came from DBpedia15 (209 and 211

triples) and BioMed13 (221 and 229 triples). In the new

query logs of DBpedia17, the largest queries contain 207

and 209 triples.

4.3 Operator Distribution

In Table 2 we see that Filter, And, Union, Opt, and Graph
are used fairly commonly in the bodies of Select- and

Ask queries. We can notice that the numbers in Ta-

ble 2 are generally compatible with those of our previ-

ous corpus in [10]. We can notice however a remarkable

increase in the usage of Group By queries (from 0.3%
to 4.29% in the new corpus).

We then investigated how these operators occur to-

gether. In particular, we investigated for which queries

the body only uses constructs with these operators.13

The results are in Table 3, which has two kinds of

rows. Each white row has, on its left, a set S of operators

from O = {Filter, And, Opt, Graph, Union, Values} and,

13 There is one exception: For Wikidata, we removed SER-
VICE subqueries before the analysis (which appears in ap-
proximately 200 of its queries and is used to change the lan-
guage of the output).

on its right, the amount of queries in our logs for which

the body uses exactly the operators in S (and none from

O\S). The value for none is the amount of queries that

do not use any of the operators in O (including queries

that do not have a body).

Conjunctive patterns with filters are considered to

be an important fragment of SPARQL patterns, be-

cause they are believed to appear often in practice [33,

44]

Definition 2 A conjunctive query with filters (CQF) is

a SPARQL pattern that only uses triple patterns and

the operators And and Filter.

Our logs contain 50.51% (66.89%) CQF queries. Adding

Opt to the CQF fragment would increase its relative

size with 11.80% (7.20%) resulting in 62.31% (74.09%)

our queries. (Similarly for Union, Graph and Values.)
Table 3 classifies 95.07% (96.62%) of the Select, Ask and

Construct queries in our corpus. The remaining queries

either use other combinations from O 1.64% (2.79%) or

use other features than those in O in their body 2.10%

(3.61%) like Bind, Minus, subqueries, or property paths.

A recurrent combination of features than those in O
has been observed in the latest query logs (DBpedia17),

in which Union and Values appear together in 1.30%

(5.08%) of the queries, whereas they are mostly not

existing in the other datasets.

4.4 Subqueries and Projection

Only 1309040 (575666) queries in our corpus use sub-

queries. The feature was most used in WikiData (9.74%),

Fig. 1 Percentages of queries exhibiting different number of triples (in colors) for each dataset for Valid (left hand side of each
bar) and Unique queries (right hand side of each bar).

We focus on Select, Ask and Construct queries as op-

posed to [11], which analysed Select and Ask on their

corpus. We discard the Describe statements, which have

an implementation-dependent semantics. 12

The plot in Figure 1 illustrates how queries contain-

ing 0 to 11+ triples are distributed over the Select, Ask
and Construct queries in each of the data sets. A first

12 For instance, 95% (97%) of the Describe statements in our
corpus do not have a body and therefore no triples.

observation that we can draw from Figure 1 is that for

the majority of the datasets, the queries with a low

number of triples (from 0 to 2) have a noticeable share

within the total amount of queries per dataset. Whereas

these queries are almost the only queries present in

the BioP13 and BioP14 datasets, they have the least

concentration in BritM14 and Wikidata17. The latter

datasets have in fact unique characteristics, BritM14

being a collection of queries with fixed templates and



Wikidata17 being the most diverse dataset of all, gath-

ering queries of rather disparate nature that are repre-

sentatives of classes of real queries issued on Wikidata.

Finally, DBpedia9-12 until DBpedia17, along with LGD14

and BioMed13 are the datasets exhibiting the most com-

plex queries with extremely high numbers of triples ex-

ceeding 10.

We should note that BioMed13 has almost 94% (87%)

Describe queries. The numbers reported here only de-

pict the remaining 6% (13%).

Overall, we observe that 63.62% (58.40%) of the Se-
lect, Ask and Construct queries in our corpus use at most

one triple, 77.89% (90.16%) uses at most six triples,

and 99.44% (98.35%) at most twelve triples. The largest

queries we found came from DBpedia15 (209 and 211

triples) and BioMed13 (221 and 229 triples). In the new

query logs of DBpedia17, the largest queries contain 207

and 209 triples.

If we compare the Unique and Valid query logs over-

all, we see that the Valid logs usually have more large

queries than the Unique logs (sometimes quite signifi-

cantly, e.g., in DBpedia17). This means that, in partic-

ular, the DBpedia SPARQL endpoint seems to receive

significantly more large queries than what the results

on Unique queries in [11] suggest, but also that there

are many duplicates among these large queries.

4.3 Operator Distribution

In Table 2 we see that Filter, And, Union, Opt, and Graph
are used fairly commonly in the bodies of Select-, Ask-,

and Construct queries. We can notice that the num-

bers in Table 2 are generally compatible with those of

our previous corpus in [11]. We can notice however a

remarkable increase in the usage of Group By queries

(from 0.3% to 4.29% in the new corpus).

We then investigated how these operators occur to-

gether. In particular, we investigated for which queries

the body only uses constructs with these operators.13

The results are in Table 3, which has two kinds of

rows. Each white row has, on its left, a set S of operators

from O = {Filter,And,Opt,Graph,Union,Values} and,

on its right, the amount of queries in our logs for which

the body uses exactly the operators in S (and none from

O\S). The value for none is the amount of queries that

do not use any of the operators in O (including queries

that do not have a body).

Conjunctive patterns with filters are considered to

be an important fragment of SPARQL patterns, be-

13 There is one exception: For Wikidata, we removed SER-
VICE subqueries before the analysis (which appears in ap-
proximately 200 of its queries and is used to change the lan-
guage of the output).

cause they are believed to appear often in practice [39,

50]

Definition 2 A conjunctive query with filters (CQF) is

a SPARQL pattern that only uses triple patterns and

the operators And and Filter.

Our logs contain 50.51% (66.89%) CQF queries. Adding

Opt to the CQF fragment would increase its relative

size with 11.80% (7.20%) resulting in 62.31% (74.09%)

our queries. (Similarly for Union, Graph and Values.)
Table 3 classifies 95.07% (96.62%) of the Select, Ask and

Construct queries in our corpus. The remaining queries

either use other combinations from O 1.64% (2.79%) or

use other features than those in O in their body 2.10%

(3.61%) like Bind, Minus, subqueries, or property paths.

A recurrent combination of features than those in O
has been observed in the latest query logs (DBpedia17),

in which Union and Values appear together in 1.30%

(5.08%) of the queries, whereas they are mostly not

existing in the other datasets.

When we compare the Valid with the Unique data

sets, two changes stand out: Graph and the A,F,O,U
fragment become much less common when duplicates

are removed. For Graph, it seems that the BioPortal

query logs are responsible, since these logs harbor al-

most all queries that use Graph. For the A,F,O,U frag-

ment, we see that all DBpedia logs from 2013 on contain

many duplicates of A,F,O,U queries. For instance, in the

Valid DBpedia17 logs we have 25.87% A,F,O,U queries,

but in the Unique DBpedia17 logs, this fragment only

constitutes 6.06% of the queries.

4.4 Subqueries and Projection

Only 1309040 (575666) queries in our corpus use sub-

queries. The feature was most used in WikiData (9.74%),

about an order of magnitude more than in any of the

other data sets.

Projection plays a crucial role in the complexity of

query evaluation. Many papers [8,30,27,40,41] define

evaluation as the following question: Given an RDF

graph G, a SPARQL pattern P , and a mapping µ, is µ

an answer to P when evaluated on G? In other words,

the question is to verify if a candidate answer µ is in-

deed an answer to the query. If P is a CQ, this problem

is NP-complete if the queries use projection [13,8,30],

but its complexity drops to Ptime if projection is ab-



Table 3 Sets of operators used in queries: And (A), Filter (F), Graph (G), Opt (O), Union (U), and Values (V)

Operator Set AbsoluteV RelativeV AbsoluteU RelativeU

none 107,285,016 33.32% 31,785,844 36.31%
A 15,106,778 4.69% 7,769,170 8.87%
F 30,679,572 9.53% 14,822,993 16.93%

A,F 9,583,490 2.98% 4,176,586 4.77%
CQF subtotal 162,654,856 50.51% 58,554,593 66.89%

O 2,921,810 0.91% 625,663 0.71%
A,O 3,436,987 1.07% 1,807,483 2.06%
F,O 7,115,439 2.21% 2,096,526 2.39%

A,F,O 24,512,799 7.61% 1,773,624 2.03%
CQF+O +37,987,035 +11.80% +6,303,296 +7.20%

U 8,533,645 2.65% 4,627,921 5.29%
A,U 1,627,742 0.51% 1,010,579 1.15%
F,U 627,559 0.19% 254,640 0.29%

A,F,U 1,824,697 0.57% 1,057,080 1.21%
CQF+U +12,613,643 +3.92% +6,950,220 +7.94%

V 151,078 0.05% 63,912 0.07%
A,V 207,180 0.06% 164,175 0.19%
F,V 2,497,572 0.78% 2,204,598 2.52%

A,F,V 142,211 0.04% 98,560 0.11%
CQF+V +2,998,041 +0.93% +2,531,245 +2.89%

G 26,288,960 8.16% 1,380,991 1.58%
A,G 391,433 0.12% 42,315 0.05%
F,G 876 0.00% 269 0.00%

A,F,G 34,418 0.01% 9,495 0.01%
CQF+G +26,715,687 +8.30% +1,433,070 +1.64%

A,F,O,U 67,026,601 20.81% 6,170,843 7.05%

sent [40,8,30].14 Therefore, the use of projection has a

huge influence of the complexity of query evaluation.

Surprisingly, we discovered that at least 9.1% (13.13%)

of the queries use projection, which is significantly higher

than what Picalausa and Vansummeren discovered in

DBpedia logs from 2010 [41]. The 9.1% (13.13%) con-
sists of 8.33% (11.88%) Select queries plus 0.76% (1.24%)

Ask queries. Notice that the total number of Ask queries

2.44% (6.56%) is significantly higher, even though they

just return a Boolean value and one would intuitively

expect that almost all of them would use projection.

The reason is that most Ask queries do not use vari-

ables: they ask if a concrete RDF triple is present in

the data. Following the test for projection in Section

18.2.1 in the SPARQL recommendation [22], we classi-

fied these queries as not using projection.

Due to the use of the Bind operator or to the pres-

ence of subqueries, there was a number of queries (3.08%

for Valid and 5.37% for Unique queries) where we could

not determine if they use projection or not. Therefore

the number of queries with projection lies between 9.1%

14 This difference can be understood as follows: If the query
tests the presence of a k-clique, then without projection we
are given a k-tuple of nodes and need to verify if they form a
k-clique. With projection, we need to solve the NP-complete
k-clique problem.

and 12.18% for Valid queries (13.13% and 18.5% for

Unique queries, respectively).

5 Structural Analysis

SPARQL patterns of queries using only triple patterns

and the operators And, Opt, and Filter (and, in partic-

ular, not using subqueries or property paths) received

considerable attention in the literature (see, e.g., [40,

27,8,29,30]). We refer to such Select, Ask, or Filter pat-

terns as And/Opt/Filter patterns or, for succinctness,

AOF patterns. Our corpus has 200,641,891 (64,857,889)

AOF patterns, which amounts to 62.31% (74.09%) of

the Select, Ask, and Construct queries.

In Sections 6 and 7 we investigate the graph- and hy-

pergraph structure of AOF patterns. The graph struc-

ture gives us a clear view on how such queries are struc-

tured and can tell us how complex such queries are

to evaluate. For a significant portion of queries, how-

ever, the graph structure is not meaningful to capture

their complexity (cf. Example 1) and we therefore need

to turn to their hypergraph structure. Since the graph

structure may be easier to understand and is often suf-

ficient, we use the graph structure whenever we can.



We provide some background on the relationship

between the (hyper)graph structure of queries and the

complexity of their evaluation. Evaluation of CQs is

NP-complete in general [13], but becomes Ptime if

their hypertree width is bounded by a constant [20].

Here, the hypertree width measures how close the query

is to a tree (the lower the width, the closer the query

is to a tree). Several state-of-the-art join evaluation al-

gorithms (e.g., [1,26]) effectively use the hypergraph

structure of queries to improve their performance, even

in the context of RDF processing [2]. We establish in

Section 5.2 that there are significant performance dif-

ferences in today’s query engines, even when the hyper-

treewidth of queries just increases from one to two.

5.1 Graph and Hypergraph of a Query

We first make more precise what we mean by the graph

and hypergraph of a query. An (undirected) graph G is

a pair (V,E) where V is its (finite) set of nodes and

E is its set of edges, where an edge e is a set of one

or two nodes, i.e., e ⊆ V and |e| = 1 or |e| = 2. A

hypergraph H consists of a (finite) set of nodes V and a

set of hyperedges E ⊆ 2V , that is, a hyperedge is a set

of nodes.

Most SPARQL patterns do not use variables as pred-

icates, that is, they use triple patterns (s, p, o) where p

is an IRI. We also allow p ∈ vars if p is not used else-

where in the query (in this case, p serves as a wildcard,

possibly binding to a value that is returned to the out-

put). We call such patterns graph patterns. Evaluation

of graph patterns is tightly connected to finding embed-

dings of the graph representation of the query into the

data.15 We define the triple graph of graph pattern P to

be the following graph: E = {{x, y}) | (x, `, y) is a triple

pattern in P and ` ∈ I ∪ V} and V = {x | {x, y} ∈ E}.
Hypergraph representations can be considered for

all AOF patterns. The triple hypergraph of a SPARQL

pattern P is defined as E = {X | there is a triple pat-

tern t in P such that X is the set of blank nodes and

variables appearing t} and V = ∪e∈Ee.
For several types of queries, we will analyse the

structure of their triple graph. However, the usage of

some keywords of types of subqueries (notably, Filter
and Values) can put additional constraints on the query

that are not reflected in the triple (hyper)graph and

we therefore need to augment it with additional (hy-

per)edges. We will call the resulting graphs the canon-

ical (hyper)graphs of the queries. For CQs however, we

15 In particular, it consists of finding embeddings of the di-
rected and edge-labeled variant of the graph, but we omit
the edge directions and -labels for simplicity. They do not
influence the structure and cyclicity of graph patterns.

x1 x2 x3 x4
:a :b :c

x1 x3 x4 x5
x2 :a x2

x2 x1 x3

x4

x5

Fig. 2 Canonical graphs and hypergraph for queries in Ex-
ample 1.

define their canonical (hyper)graph to be equal to their

triple (hyper)graph.

Example 1 Consider the following (synthetic) CQs:

ASK WHERE {?x1 :a ?x2 . ?x2 :b ?x3 . ?x3 :c ?x4}

ASK WHERE {?x1 ?x2 ?x3 . ?x3 :a ?x4 . ?x4 ?x2 ?x5}

Figure 2 (top left) depicts the canonical graph of the

first query, which is a sequence of three edges. (We an-

notated the edges with their labels in the query to im-

prove understanding.) The bottom left graph in Fig-

ure 2 shows why we do not consider canonical graphs

for queries with variables on the predicate position in

triples. The topological structure of this graph is a se-

quence of three edges, just as for the first query. This

completely ignores the join condition on ?x2. For this

query, the canonical hypergraph in Figure 2 (right) cor-

rectly captures the cyclicity of the query.

5.2 Comparative Evaluation of Chain and Cycle

Queries

We conducted a set of experiments aiming at compar-

ing the execution times of conjunctive queries whose

canonical graphs exhibit specific shapes. We have cho-

sen chain and cycle queries in this empirical study.

A chain query (of length k) is a CQ for which the

canonical graph is isomorphic to the undirected graph

with edges {x0, x1}, {x1, x2}, . . . , {xk−1, xk}. (The first

query in Example 1 is a chain query of length three.) A

cycle query (of length k) is a CQ for which the canon-

ical graph is isomorphic to {x0, x1}, . . . , {xk−1, x0}. As

an edge case, we also allow chains of length zero. Such

chains consist either of a single node or no node at all.

These shapes have been selected as representatives of

the queries with hypertreewidth 1 and 2, respectively,

and have also been used to compare the performances

of join algorithms in other studies, e.g., [26].

In order to generate query workloads containing the

aforementioned types of queries, we have used gMark [4],

a publicly available16 schema-driven generator for graph

16 https://github.com/graphMark/gmark



instances and graph queries. We tuned gMark to gener-

ate diverse query workloads, each containing 100 chain

and cycle queries, respectively.17 Each workload has

been generated by using chains and cycles of differ-

ent length varying from 3 to 8. In these experiments,

we have considered and contrasted two opposite graph

database systems, namely PostgreSQL [49], an open-

source relational DBMS, and BlazeGraph [47], a high-

performance SPARQL query engine powering the Wiki-

media’s official query service [51] and thus used for the

official Wikidata SPARQL endpoint. We have run these

experiments on 2-CPUs Intel Xeon E5-2630v2 2.6 GHz

server18 with 128GB RAM and running Ubuntu 16.04

LTS. We used PostgreSQL v.9.3 and Blazegraph v.2.1.4

for the experimental setup. We employed the Bib use

case in the gMark configuration [4] for the schema of the

generated graph (of size 100k nodes) and of the gener-

ated queries as well. We employed the query workloads

in SQL and SPARQL as generated by gMark after elim-

ination of empty unions (since gMark is geared towards

generating UCRPQs) and of the keyword Distinct in the

body of the queries. Since gMark allowed us to obtain

mixed workloads of Select/Ask queries and we wanted

to focus on one query type at a time, we manually re-

placed the Select clauses with compatible Ask clauses.

Figure 3 (top) depicts the average runtime (in ns,

logscale) of our workloads of chain (cycle, resp.) queries

with length from 3 to 8 on Blazegraph (BG) and Post-

greSQL (PG). We can observe that the overall perfor-

mance of BG is superior to that of PG. Indeed, in PG

many cycles queries are timed out (after 300s per query)

and we expect that the real overall performance of PG is

even worse 19 than the results reported in Figure 3. Fig-
ure 3 (bottom) reports the reached timeouts for work-

loads of cycle queries of various sizes when executed in

PG. It is worthwhile observing that for both systems

the difference between average runtime of chain query

workloads and cycle query workloads is non negligible,

thus confirming that we cannot ignore the graph rep-

resentation and the shape of queries. This experiment

also motivated us to dig deeper in the shape analysis of

our query logs, which we report in Section 6.

17 We recall that gMark can generate queries of four shapes:
chain, star, chain-star and cycle. We have thus cherry-
picked chain queries as representatives of queries with hy-
pertreewidth equal to 1.
18 Every CPU has 6 physical cores and, with hyperthread-
ing, 12 logical cores.
19 in the case in which we let PG run beyond the time out
and collect the new numbers.

cycle query (of length k) is a CQ for which the canon-

ical graph is isomorphic to {x0, x1}, . . . , {xk�1, x0}. As

an edge case, we also allow chains of length zero. Such

chains consist either of a single node or no node at all.

These shapes have been selected as representatives of

the queries with hypertreewidth 1 and 2, respectively,

and have also been used to compare the performances

of join algorithms in other studies, e.g., [23].

In order to generate query workloads containing the

aforementioned types of queries, we have used gMark [4],

a publicly available16 schema-driven generator for graph
instances and graph queries. We tuned gMark to gener-

ate diverse query workloads, each containing 100 chain

and cycle queries, respectively.17 Each workload has

been generated by using chains and cycles of di↵er-

ent length varying from 3 to 8. In these experiments,

we have considered and contrasted two opposite graph

database systems, namely PostgreSQL [43], an open-

source relational DBMS, and BlazeGraph [41], an high-

performance SPARQL query engine powering the Wiki-

media’s o�cial query service [45] and thus used for

Wikidata real-world queries. We have run these ex-

periments on 2-CPUs Intel Xeon E5-2630v2 2.6 GHz

server18 with 128GB RAM and running Ubuntu 16.04

LTS. We used PostgreSQL v.9.3 and Blazegraph v.2.1.4

for the experimental setup. We employed the Bib use

case in the gMark configuration [4] for the schema of the

generated graph (of size 100k nodes) and of the gener-

ated queries as well. We employed the query workloads

in SQL and SPARQL as generated by gMark after elim-

ination of empty unions (since gMark is geared towards

generating UCRPQs) and of the keyword Distinct in the

body of the queries. Since gMark allowed us to obtain
mixed workloads of Select/Ask queries and we wanted

to focus on one query type at a time, we manually re-

placed the Select clauses with compatible Ask clauses.

Figure 3 (top) depicts the average runtime (in ns,

logscale) of our workloads of chain (cycle, resp.) queries

with length from 3 to 8 on Blazegraph (BG) and Post-

greSQL (PG). We can observe that the overall perfor-

mance of BG is superior to that of PG. Indeed, in PG

many cycles queries are timed out (after 300s per query)

and we expect that the real overall performance of PG

is even worse than the results reported in Figure 3. Fig-

ure 3 (bottom) reports the reached timeouts for work-

loads of cycle queries of various sizes when executed in

PG. It is worthwhile observing that for both systems

16 https://github.com/graphMark/gmark
17 We recall that gMark can generate queries of four shapes:
chain, star, chain-star and cycle. We have thus cherry-
picked chain queries as representatives of queries with hy-
pertreewidth equal to 1.
18 Every CPU has 6 physical cores and, with hyperthread-
ing, 12 logical cores.
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the di↵erence between average runtime of chain query

workloads and cycle query workloads is non negligible,

thus confirming that we cannot ignore the graph rep-

resentation and the shape of queries. This experiment

also motivated us to dig deeper in the shape analysis of

our query logs, which we report in Section 6.

5.3 Classes of Queries for (Hyper)graphs

We now discuss the classes of queries for which we

will investigate their canonical graph- and hypergraph

structures in Section 6. To the best of our knowledge, all

the literature relating (hyper)graph structure of queries

to e�cient evaluation was done on AOF patterns. Here,

we focus on fragments of AOF patterns, plus a mild
extension, namely with additional Values-blocks. The

simplest queries we consider are the CQs, which moti-

vated the classical literature on query evaluation and

hypertree structure [11,17]. We discovered that 61.00%

(60.99%) of the AOF patterns are CQs.

Definition 3 A CQ is suitable for graph analysis if

it is a graph pattern. For a CQ that is suitable for

graph analysis, its canonical graph is defined as its triple

graph. For every other CQ, its canonical hypergraph is

defined as its triple hypergraph.

Next, we extend the above terminology for CQs

with Filter, Opt, and Values. We only want to consider

Fig. 3 Execution times (top) of diverse workload of
chain/cycle queries (of length 3,4,5,6) on Blazegraph (BG)
and Postgresql (PG). Number of timeouts per workload for
CyclePG only (bottom). CyclePG times include t/o of 300s
(per query).

5.3 Classes of Queries for (Hyper)graphs

We now discuss the classes of queries for which we

will investigate their canonical graph- and hypergraph

structures in Section 6. To the best of our knowledge, all

the literature relating (hyper)graph structure of queries

to efficient evaluation was done on AOF patterns. Here,

we focus on fragments of AOF patterns, plus a mild

extension, namely with additional Values-blocks. The

simplest queries we consider are the CQs, which moti-

vated the classical literature on query evaluation and

hypertree structure [13,20]. We discovered that 61.00%

(60.99%) of the AOF patterns are CQs.

Definition 3 A CQ is suitable for graph analysis if

it is a graph pattern. For a CQ that is suitable for

graph analysis, its canonical graph is defined as its triple

graph. For every other CQ, its canonical hypergraph is

defined as its triple hypergraph.

Next, we extend the above terminology for CQs

with Filter, Opt, and Values. We only want to consider

canonical (hyper)graphs for queries such that the re-

lationship between efficient query evaluation and their

(hyper)graph structure is still similar as for CQs. How-

ever, this requires some care, especially when consider-

ing Opt [8,40].

CQF patterns can be evaluated similarly to CQs,

but we need discuss the fragment for which we will anal-

yse the graph-shape. We say that a filter constraint R



is simple if vars(R) contains at most two variables. (An

almost identical class of queries was considered in [41].)

Definition 4 A CQF query is suitable for graph anal-

ysis if it is a graph pattern and all filter constraints are

simple. For such a CQF query, we define its canonical

graph as its triple graph, to which we add an edge {x, y}
for each filter constraint that uses the two variables x

and y. For all other CQF queries, its canonical hyper-

graph is obtained from its triple graph, to which we add

a hyperedge {x1, . . . , xk} for each filter constraint that

uses precisely the k variables x1, . . . , xk.

In our corpus, 81.07% (90.28%) of the CQF patterns

are suitable for graph analysis.

We now additionally consider Opt. Pérez et al. [40]

showed that unrestricted use of Opt in SPARQL pat-

terns makes query evaluation Pspace-complete, which

is significantly more complex than the NP-completeness

of CQs or CQF queries. They discovered that patterns

that satisfy an extra condition called well-designedness [40],

can be evaluated more efficiently. Letelier et al. show

that, in the presence of projection, evaluation of well-

designed patterns is ΣP
2 -complete [30].

Definition 5 A SPARQL pattern P using only the op-

erators And, Filter, and Opt is well-designed if for every

occurrence i of an Opt-pattern (P1 Opt P2) in P , the

variables from vars(P2)\vars(P1) occur in P only inside

i.20

In our corpus, 98.74% (98.18%) of the AOF patterns

are well-designed (but do not necessarily have simple

filters). Unfortunately, it is not yet sufficient for well-

designed patterns to have a hypergraph of constant hy-

pertreewidth for their evaluation to be tractable [8].

However, Barceló et al. show that this can be mended

by an additional restriction called bounded interface

width. We explain this notion by example and refer to

[8] for details.

Example 2 The following patterns come from [40,30]:

P1 = (((?A, name, ?N) Opt (?A, email, ?E))

Opt (?A, webPage, ?W))

and P2 = ((?A, name, ?N)

Opt ((?A, email, ?E) Opt (?A, webPage, ?W)))

Figure 4 has tree representations T1 and T2 for P1 and

P2, respectively, called pattern trees. The pattern trees

Ti are obtained from the parse trees of Pi by apply-

ing a standard encoding based on Currying [33, Section

4.1.1]. The encoding only affects the arguments of the

Opt operators in the queries. If the query also uses And,

20 Perez et al.’s definition also has a safety condition on
the filter statements of the patterns, but the omission of this
condition does not affect the results in this paper.

(?A, name, ?N)

(?A, email, ?E) (?A, webPage, ?W)

(?A, name, ?N)

(?A, email, ?E)

(?A, webPage, ?W)

T1: T2:

Fig. 4 Pattern trees that correspond to the queries in Exam-
ple 2

then it should first be brought in Opt-normal form [40]

and then turned into a pattern tree. The resulting pat-

tern trees will then have a CQ in each of its nodes.

Barceló et al. define pattern trees to be well-designed

if, for each variable, the set of nodes in which it occurs

forms a connected set. Notice that this is the case for

T1 and T2. It would be violated in T1 if the root would

not use the variable ?A. Likewise, it would be violated

in T2 if the node labeled (?A, email, ?E) would not use

the variable ?A.

The interface width of the pattern trees is the maxi-

mum number of common variables between a node and

its child. Both trees in Figure 4 (and both queries P1

and P2) therefore have interface width one. (Common

variables are bold in Figure 4.) If T1 would use variable

?W instead of ?N , then its interface width would be

two.

Definition 6 A SPARQL pattern P using only the op-

erators And, Filter, and Opt is a CQOF query if it has a

well-designed pattern tree with interface width 1. It is

suitable for graph analysis if it is a graph pattern and all

its filter conditions are simple. The canonical graph and

-hypergraph of a CQOF query is defined analogously to

that of CQF queries. That is, its triple graph (resp. hy-

pergraph) is augmented with edges {x, y} for each fil-

ter constraint that uses precisely the variables x and y

(resp. hyperedges {x1, . . . , xk} for each filter constraint

that uses precisely the variables x1, . . . , xk).

We discovered that 98.72% (98.13%) of the AOF pat-

terns are CQOF queries, which is almost equal to the

number of well-designed patterns. Moreover, 85.30%

(93.87%) are CQOF patterns that are suitable for graph

analysis.

The Values keyword was used in 2.24% (5.61%) of

the queries. It is particularly often used in DBpedia17,

where it appears in 4.03% (13.37%) of the queries. The

purpose of Values blocks is to test if a variable (or a

tuple of variables) appears in a set that is given in the

query. For instance, the subquery

VALUES (?country) {"Belgium" "France" "Germany"}

restricts the variable ?country to be assigned to one

of the values "Belgium", "France", or "Germany". The



Values block is used almost exclusively for unary condi-

tions, that is, to test if the value of a single variable is

in a given set of constants. However, it can also be used

to test higher arity constraints, as in the subquery

VALUES (?x ?y) {(:a :b) (:a :c)}

which imposes a binary constraint, i.e., it binds the vari-

able pair (?x ?y) to one of the two pairs in the body

of the Values block. Concerning our shape analysis, we

distinguish between Values blocks that use constraints

of arity two or less and the others.

Definition 7 A CQOFV query is a SPARQL pattern

P using only the operators And, Filter, Opt, and Values,
such that the pattern obtained from P by removing all

Values blocks is a CQOF query. It is suitable for graph

analysis if all filters are simple and all values blocks

have arity at most two. If a CQOFV query is suitable

for graph analysis, its canonical graph is obtained from

the triple graph by augmenting it with an edge for each

binary filter constraint, and an edge for each binary Val-
ues block. For every other CQOFV queries, its canonical

hypergraph is obtained from the triple hypergraph by

augmenting it with a hyperedge {x1, . . . , xk} for each

filter- or values block that uses precisely the variables

x1, . . . , xk.

5.4 (Weak) Well-Designedness And Unions

We conclude the section with a brief note on the usage

of well-designedness with respect to the entire corpus of

queries. Kaminski and Kostylev [27] defined a weaker

version of well-designedness that has similar favorable

computational properties. We therefore also analysed

whether queries are weakly well-designed. Table 4 shows

the number of AOF queries and the percentages thereof

that are well-designed (wd) and weakly well-designed

(wwd). We also took the set of queries that only use

And, Opt, Filter, and Union (AOFU in Table 4) and in-

vestigated the percentages of queries thereof that are

unions of wd or wwd queries. In most cases where the

query is not a union of wd or wwd queries, it is because

the union is not the top-level operator.

6 Shape Classification

In this section, we analyze the shapes of the canoni-

cal graphs and the tree- and hypertree width of CQ,

CQF, CQOF, and CQOFV queries. We start with a note

on the size of these queries. Figure 5 shows the re-

spective sizes of these queries that have at least two

triples by considering both Valid and Unique queries

Table 4 Well-designedness (wd), weak well-designedness
(wwd) and unions thereof

Property AbsoluteV RelativeV AbsoluteU RelativeU

wd 198,109,323 98.74% 63,677,171 98.18%
wwd 200,064,814 99.71% 64,749,468 99.83%
AOF 200,641,891 100.00% 64,857,889 100.00%

uwd 208,672,931 74.35% 69,279,286 88.72%
uwwd 210,638,343 75.05% 70,360,134 90.10%
AOFU 280,672,732 100.00% 78,088,794 100.00%

The Values keyword was used in 2.24% (5.61%) of

the queries. It is particularly often used in DBpedia17,

where it appears in 4.03% (13.37%) of the queries. The

purpose of Values blocks is to test if a variable (or a

tuple of variables) appears in a set that is given in the

query. For instance, the subquery

VALUES (?country)

{ "Belgium" "France" "Germany" }

restricts the variable ?country to be assigned to one

of the values "Belgium", "France", or "Germany". The

Values block is used almost exclusively for unary condi-

tions, that is, to test if the value of a single variable is

in a given set of constants. However, it can also be used

to test higher arity constraints, as in the subquery

VALUES (?x ?y)

{ (:a :b) (:a :c)}

which emposes a binary constraint, i.e., it binds the

variable pair (?x ?y) to one of the two pairs in the

body of the Values block. Concerning our shape analy-

sis, we distinguish between Values blocks that use con-

straints of arity two or less and the others.

Definition 7 A CQOFV query is a SPARQL pattern

P using only the operators And, Filter, Opt, and Values,
such that the pattern obtained from P by removing all

Values blocks is a CQOF query. It is suitable for graph

analysis if all filters are simple and all values blocks

have arity at most two. If a CQOFV query is suitable

for graph analysis, its canonical graph is obtained from

the triple graph by augmenting it with an edge for each

binary filter constraint, and an edge for each binary Val-
ues block. For every other CQOFV queries, its canonical

hypergraph is obtained from the triple hypergraph by

augmenting it with a hyperedge {x1, . . . , xk} for each

filter- or values block that uses precisely the variables

x1, . . . , xk.

5.4 (Weak) Well-Designedness And Unions

We conclude the section with a brief note on the usage

of well-designedness with respect to the entire corpus of

queries. Kaminski and Kostylev [24] defined a weaker

version of well-designedness that has similar favorable

computational properties. We therefore also analysed

whether queries are weakly well-designed. Table 4 shows

the number of AOF queries and the percentages thereof

that are well-designed (wd) and weakly well-designed

(wwd). We also took the set of queries that only use

And, Opt, Filter, and Union (AOFU in Table 4) and in-

vestigated the percentages of queries thereof that are

unions of wd or wwd queries. In most cases where the

query is not a union of wd or wwd queries, it is because

the union is not the top-level operator.

Table 4 Well-designedness (wd), weak well-designedness
(wwd) and unions thereof

Property AbsoluteV RelativeV AbsoluteU RelativeU

wd 198,109,323 98.74% 63,677,171 98.18%
wwd 200,064,814 99.71% 64,749,468 99.83%
AOF 200,641,891 100.00% 64,857,889 100.00%

uwd 208,672,931 74.35% 69,279,286 88.72%
uwwd 210,638,343 75.05% 70,360,134 90.10%
AOFU 280,672,732 100.00% 78,088,794 100.00%
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Fig. 5 Size of Valid (versus Unique) CQ-like queries with at
least two triples.

6 Shape Classification

In this section, we analyze the shapes of the canoni-

cal graphs and the tree- and hypertree width of CQ,

CQF, CQOF, and CQOFV queries. We start with a note

on the size of these queries. Figure 5 shows the re-

spective sizes of these queries that have at least two

triples by considering both Valid and Unique queries

side by side. The fractions of queries with one triple are

90.65% (85.36%), 87.71% (83.22%), 81.54% (76.99%)

and 81.81%(77.81%) for CQ, CQF, CQOF and CQOFV

respectively. Unsurprisingly, small queries are more likely

to be in one of these fragments and, therefore, simple

queries are represented even more in these data sets

than in the overall data set. Nevertheless, we have CQs

and CQF queries with up to 81 triples and CQOF and

CQOFV queries with up to 211 triples.

6.1 Graph Structure

We analyse the graph structure of queries. We only con-

sider graphs for queries that were defined to be suitable

for graph analysis in Section 5.1. We consider the re-

maining 6.96 million queries in CQOF in Section 6.2.

Fig. 5 Size of Valid (versus Unique) CQ-like queries with at
least two triples.

side by side. The fractions of queries with one triple are

90.65% (85.36%), 87.71% (83.22%), 81.54% (76.99%)

and 81.81%(77.81%) for CQ, CQF, CQOF and CQOFV

respectively. Unsurprisingly, small queries are more likely

to be in one of these fragments and, therefore, simple
queries are represented even more in these data sets

than in the overall data set. Nevertheless, we have CQs

and CQF queries with up to 81 triples and CQOF and

CQOFV queries with up to 211 triples.

6.1 Graph Structure

We analyse the graph structure of queries. We only con-

sider graphs for queries that were defined to be suitable

for graph analysis in Section 5.1. We consider the re-

maining 27.27 million queries in CQOF in Section 6.2.

We first recall or define the basic shapes of the

canonical graphs that we will study in this section. The

shapes chains and cycle are already defined in Sec-

tion 5.2. A chain set is a graph in which every con-

nected component is a chain. (So, each chain is also a

chain set.)

A tree is an undirected graph such that, for every

pair of nodes x and y, there exists exactly one undi-



Table 5 Cumulative shape analysis of graph patterns in CQ, CQF, CQOF, and CQOFV, across all logs. The relative numbers
are w.r.t. the queries that are suitable for graph analysis.

VALID CQ/graph

Shape #Queries Relative %

no edge 73,147 0.06%
≤ 1 edge 107,268,916 90.71%

chain 116,816,836 98.78%
star 117,683,253 99.52%
tree 118,059,399 99.83%

flower 118,225,680 99.98%

chain set 116,835,460 98.80%
forest 118,078,726 99.85%

bouquet 118,245,059 99.99%

tw ≤ 2 118,254,672 100.00%
tw ≤ 3 118,254,676 100.00%

total 118,254,676 100.00%

CQF/graph

#Queries Relative %

73,155 0.05%
137,634,760 87.56%
151,963,617 96.68%
155,325,069 98.82%
155,716,314 99.07%
156,730,621 99.71%

151,990,203 96.70%
155,748,689 99.09%
156,763,406 99.73%

157,183,767 100.00%
157,183,771 100.00%

157,183,771 100.00%

CQOF/graph

#Queries Relative %

73,155 0.04%
139,234,499 81.35%
159,787,714 93.36%
168,220,691 98.29%
168,936,241 98.71%
170,174,607 99.43%

159,931,312 93.45%
169,089,411 98.80%
170,328,206 99.52%

171,147,726 100.00%
171,147,730 100.00%

171,147,730 100.00%

CQOFV/graph

#Queries Relative %

74,891 0.04%
141,642,411 81.49%
162,216,710 93.32%
170,671,088 98.19%
171,386,859 98.60%
172,922,659 99.48%

162,287,197 93.36%
171,466,918 98.64%
173,003,151 99.53%

173,822,690 100.00%
173,822,694 100.00%

173,822,694 100.00%

UNIQUE CQ/graph

Shape #Queries Relative %

no edge 1,279 0.00%
≤ 1 edge 31,785,575 85.41%

chain 36,839,344 98.99%
star 37,123,785 99.75%
tree 37,184,810 99.92%

flower 37,202,015 99.96%

chain set 36,851,176 99.02%
forest 37,197,115 99.95%

bouquet 37,214,357 100.00%

tw ≤ 2 37,216,150 100.00%
tw ≤ 3 37,216,153 100.00%

total 37,216,153 100.00%

CQF/graph

#Queries Relative %

1,284 0.00%
46,480,574 83.05%
54,131,560 96.72%
55,417,051 99.02%
55,487,815 99.15%
55,892,860 99.87%

54,150,770 96.76%
55,509,443 99.19%
55,914,792 99.91%

55,965,143 100.00%
55,965,146 100.00%

55,965,146 100.00%

CQOF/graph

#Queries Relative %

1,284 0.00%
46,772,128 76.82%
56,042,768 92.05%
60,203,786 98.89%
60,311,400 99.06%
60,735,713 99.76%

56,096,837 92.14%
60,370,204 99.16%
60,794,835 99.86%

60,881,508 100.00%
60,881,511 100.00%

60,881,511 100.00%

CQOFV/graph

#Queries Relative %

1,661 0.00%
48,866,909 77.37%
58,142,029 92.06%
62,306,677 98.65%
62,414,439 98.82%
63,010,697 99.77%

58,196,121 92.15%
62,473,266 98.92%
63,069,846 99.86%

63,156,533 100.00%
63,156,536 100.00%

63,156,536 100.00%

Fig. 6 An example of a flower query found in our DBpedia
query logs (we added arrows to indicate the edge directions
in the query; labels are omitted).

rected path from x to y. (Hence, every chain is also

a tree.) A forest is a graph in which every connected

component is a tree.

A star is a tree for which there exists at most one

node with more than two neighbors, that is, there is

at most one node u such that there exist u1, u2, and

u3, all pairwise different and different from u, for which

{u, ui} ∈ E for each i = 1, 2, 3.

Inspired by the results obtained with gMark on syn-

thetic queries, we proceeded with the analysis of the

query logs by looking at the encountered query shapes.

Here, we consider queries as edge-labeled graphs, as de-

fined in Section 5. In the next subsection we also inves-

tigate the hypergraph structure.

We investigate CQs, CQF queries, CQOF queries,

and CQOFV queries. The last three fragments are inter-

esting in that they bring under scrutiny more queries

than the plain CQ set of query logs (by an increase

of roughly 33% (50%), 44% (64%), and 47% (70%) re-

spectively). We first wanted to identify classical query

shapes, such as all variants of tree-like shapes (single

edges, chains, sets of chains, stars, trees, and forests).

The results are summarized in Table 5. From the anal-

ysis, we can draw the following observations. While

tree-shaped queries even in their simple forms (chain

of length 1 or single edges) are very frequent, the only

observed exception occurs with star queries, which have



Table 6 Cumulative shape analysis of graph patterns in CQ, CQF, CQOF, and CQOFV, after removal of IRIs, across all logs.
The relative numbers are w.r.t. the queries that are suitable for graph analysis.

VALID CQ/graph

Shape #Queries Relative %

no edge 106,952,766 90.44%
≤ 1 edge 116,643,820 98.64%

chain 117,774,655 99.59%
star 117,876,831 99.68%
tree 118,235,060 99.98%

flower 118,243,330 99.99%

chain set 117,785,058 99.60%
forest 118,245,559 99.99%

bouquet 118,253,840 100.00%

tw ≤ 2 118,254,674 100.00%
tw ≤ 3 118,254,676 100.00%

total 118,254,676 100.00%

CQF/graph

#Queries Relative %

136,357,792 86.75%
150,954,951 96.04%
155,832,073 99.14%
156,787,151 99.75%
157,146,906 99.98%
157,162,189 99.99%

155,852,116 99.15%
157,167,354 99.99%
157,182,660 100.00%

157,183,769 100.00%
157,183,771 100.00%

157,183,771 100.00%

CQOF/graph

#Queries Relative %

144,549,634 84.46%
160,737,562 93.92%
167,819,465 98.06%
170,062,935 99.37%
170,423,705 99.58%
170,439,245 99.59%

167,851,157 98.07%
170,732,618 99.76%
170,748,181 99.77%

171,147,728 100.00%
171,147,730 100.00%

171,147,730 100.00%

CQOFV/graph

#Queries Relative %

144,643,932 83.21%
163,386,730 94.00%
170,472,931 98.07%
172,737,353 99.38%
173,098,147 99.58%
173,114,179 99.59%

170,504,640 98.09%
173,407,077 99.76%
173,423,132 99.77%

173,822,692 100.00%
173,822,694 100.00%

173,822,694 100.00%

UNIQUE CQ/graph

Shape #Queries Relative %

no edge 32,886,654 88.37%
≤ 1 edge 36,511,703 98.11%

chain 37,150,107 99.82%
star 37,164,017 99.86%
tree 37,210,340 99.98%

flower 37,213,881 99.99%

chain set 37,151,726 99.83%
forest 37,212,024 99.99%

bouquet 37,215,574 100.00%

tw ≤ 2 37,216,152 100.00%
tw ≤ 3 37,216,153 100.00%

total 37,216,153 100.00%

CQF/graph

#Queries Relative %

47,048,004 84.07%
52,939,383 94.59%
55,596,772 99.34%
55,898,107 99.88%
55,944,891 99.96%
55,954,879 99.98%

55,605,967 99.36%
55,954,365 99.98%
55,964,373 100.00%

55,965,145 100.00%
55,965,146 100.00%

55,965,146 100.00%

CQOF/graph

#Queries Relative %

49,453,297 81.23%
56,293,258 92.46%
60,134,203 98.77%
60,743,607 99.77%
60,791,019 99.85%
60,801,134 99.87%

60,148,326 98.80%
60,834,660 99.92%
60,844,795 99.94%

60,881,510 100.00%
60,881,511 100.00%

60,881,511 100.00%

CQOFV/graph

#Queries Relative %

49,490,285 78.36%
58,562,031 92.73%
62,405,465 98.81%
63,018,260 99.78%
63,065,687 99.86%
63,076,131 99.87%

62,419,603 98.83%
63,109,343 99.93%
63,119,807 99.94%

63,156,535 100.00%
63,156,536 100.00%

63,156,536 100.00%

very low occurrence with respect to the other tree-like

shapes.

Since simple queries are overrepresented in query

logs (already over 87.76% (83.23%) of CQF patterns

uses only one triple, for example), it is no surprise that

the overwhelming majority of the queries is acyclic, i.e.,

a forest. However, we also wanted to get a better under-

standing of the more complex queries in the logs, so we

also investigated the cyclic queries. Our goal is to ob-

tain a cumulative shape analysis where simpler shapes

are subsumed by more sophisticated query shapes, with

the latter reaching almost 100% coverage of the query

logs.

A first observation was that plain cycles are not very

common. By visually inspecting the remaining cyclic

queries, we observed that many of them could be seen as

a node with simple attachments, which we call flower.

Definition 8 A petal is a graph consisting of a source

node s, target node t, and a set of at least two node-

disjoint paths from s to t. (For instance, a cycle is a

petal that uses two paths.) A flower is a graph consist-

ing of a node x with three types of attachments: chains

(the stamens), trees that are not chains (the stems),

and petals. As an edge case, we also consider the empty

graph to be a flower.

An example of a real flower query posed by users in one

of our DBpedia logs is illustrated in Figure 6. It consists

of a central node with four petals (one of which using

three paths), ten stamens and zero stems attached.

We also considered sets of flowers, which we called

bouquets, to further increase the ratio of queries that

could be classified from the original logs. The number

of flowers and bouquets in the query logs only over-

come those of trees and forests by roughly 0.01%–0.09%

(0.03–0.10%) for all the four fragments. Furthermore,

for all fragments, the majority of the cyclic queries is

captured by bouquets.

In the above analysis, we have analyzed the shapes

of queries when the latter are represented as graphs as

defined in Section 5, i.e., the nodes can be either vari-

ables or constants. Constants are in fact helpful for us

to obtain a rough idea of the shape of patterns that

users try to find in graphs, but research on query opti-

mization often focuses on the shape of patterns without



constants. (The reason is that constants can typically

be matched to only one node in the graph and therefore

do not highly contribute to the complexity of evalua-

tion.) For that reason, we have rerun the above analy-

sis on queries excluding constants in order to identify

the differences in the obtained shape classification. The

most significant observation here is that many shapes

disintegrate to a set of variables (i.e., no more edges

are present in their graph). More precisely, for the four

fragments CQ, CQF, CQOF, and CQOFV, we have that

respectively 90.44% (88.37%), 86.75% (84.07%), 84.46

(81.23%), and 83.21% (78.36%) of the queries that are

suitable for graph analysis have no more edges when

considering the restriction of their canonical graphs to

variables only. This is a huge change, since such shapes

only constituted 0.00%–0.06% of the shapes of queries

with constants in Table 5.

As a final remark, we can notice that the shift from

shapes with constants to shapes with only variables is

significantly affecting the “no edge” fragment and has

less impact on the other shapes. For the “no edge” frag-

ment, many queries boil down to a set of isolated nodes

or to a singleton when constants are removed. We could

not observe in both Tables huge differences between the

Valid and Unique query logs, that rather resemble each

other in terms of relative percentages of shapes.

6.2 Tree- and Hypertreewidth

It is well-known that the tree- or hypertreewidth of

queries are important indicators to gauge the complex-

ity of their evaluation. We therefore investigated the

tree- and hypertreewidth of CQ, CQF CQOF, and CQOFV

queries. We do not formally define tree- or hypertreewidth

in this paper but instead refer to an excellent introduc-

tion [19]. In the terminology of Gottlob et al., we in-

vestigate the treewidth of the graphs of the queries and

the generalized hypertree width of the canonical hyper-

graphs of queries.

Treewidth. All shapes we discussed in Section 6.1 have

treewidth at most two. Forests (and all subclasses thereof)

have treewidth one, whereas flowers and bouquets have

treewidth two. We investigated the remaining queries

using the tool21 JDrasil [7] and discovered that three

queries had treewidth three (one such query is in Fig-

ure 7) and all others had treewidth two, see Table 5.

This new tool let us compute the treewidth of the queries

in our corpus, whereas in the conference version of the

paper we used detkdecomp, which outputs the general-

ized hypertreewidth. The latter can be lower than the

21 Available on https://maxbannach.github.io/Jdrasil/

treewidth, thus the results reported here exhibit more

precision. From the treewidth perspective, it is inter-

esting to note that many queries of treewidth two are

also flowers or bouquets (Definition 8), which are a very

restricted fragment.

Hypertree Width. We recall that we only considered the

graph of queries for which variables in the predicate po-

sition are not re-used elsewhere (if they occur at all). In

CQOFV, 58,782,592 (17,333,741) queries used a variable

in a predicate condition or a filter or values condition of

arity more than two, and we therefore considered their

hypergraph structure, without constants, to assess the

cyclicity of these queries. We determined their gener-

alized hypertree width with the tool detkdecomp from

the Hypertree Decompositions home page [17]. Further-

more, we measure the cyclicity of the hypergraphs with-

out constants, as it is usually done in the literature.

Our results are summarized in Table 7, which con-

tains the hypertreewidth of queries from CQ, CQF,

CQOF, and CQOFV that were not yet analysed in Sec-

tion 6.1. Concerning CQs, all the remaining queries had

hypertree width one, except for 68 (56) queries with

hypertree width two and eight queries with hypertree

width three. In the largest fragment, CQOFV, we have

542,409 (242,941) such queries with hypertreewidth two

and nine with hypertreewidth three. So, especially in

the fragment CQOFV, we see a significant portion of the

queries that exhibits cyclicity, i.e., 8.03% of the unique

queries. This means that considering Values constructs

indeed can have an impact on the cyclicity of queries.

We also looked at the number of nodes in the hy-

pertree decompositions that the tool gave us, since this

number can be a guide for how well caching can be

exploited for query evaluation [26] (the higher the num-

ber, the better caching can be exploited). For the queries

with hypertree width one, the number of nodes in the

decompositions corresponds to their number of edges,

which can already be seen in Figure 5. (Nevertheless, we

found several hundred queries in CQOFV queries with

100 or more nodes in their hypertree decompositions,

the vast majority occurring in the DBpedia logs.) Fi-

nally, out of the queries with hypertreewidth two, 598

(465) had decompositions of size more than 10, going

up to a maximum of 16. The CQOFV queries of hyper-

treewidth three all had decompositions of size smaller

than 10, except for one query in DBpedia17 which had

a decomposition of size 33.

7 Analysis of the Shapes

In this section, we provide a deeper characterization of

the query shapes found in our large corpus, by present-



Table 7 Hypertreewith (htw) of the queries that were not analysed in Section 6.1, i.e., queries that use filter- or values
conditions of arity three or more; or that re-use some variable in the predicate position elsewhere

CQ CQF

AbsoluteV RelativeV AbsoluteU RelativeU AbsoluteV RelativeV AbsoluteU RelativeU

htw = 1 4,137,042 100.00% 2,338,797 100.00% 5,162,377 95.42% 2,557,651 99.17%
htw = 2 68 0.00% 56 0.00% 248,050 4.58% 21,410 0.83%
htw = 3 8 0.00% 8 0.00% 8 0.00% 8 0.00%

Total new 4,137,118 100.00% 2,338,861 100.00% 5,410,435 100.00% 2,579,069 100.00%

CQOF CQOFV

AbsoluteV RelativeV AbsoluteU RelativeU AbsoluteV RelativeV AbsoluteU RelativeU

htw = 1 26,680,385 99.07% 2,743,833 99.22% 26,725,649 98.01% 2,780,838 91.97%
htw = 2 249,126 0.93% 21,678 0.78% 542,409 1.99% 242,941 8.03%
htw = 3 8 0.00% 8 0.00% 9 0.00% 9 0.00%

Total new 26,929,519 100.00% 2,765,519 100.00% 27,268,067 100.00% 3,023,788 100.00%

Table 8 Analysis of longest paths in chain, star, and tree queries (Valid and Unique queries)

longest path length #V chain Relative % #V star Relative % #V tree Relative %

1 142,644,649 87.34%
2 16,185,787 9.91% 7,884,906 92.42%
3 3,880,284 2.38% 376,217 4.41% 59,537 8.00%
4 601,580 0.37% 264,287 3.10% 284,953 38.29%
5 1,970 0.00% 6,408 0.08% 14,167 1.90%
6 2,132 0.00% 136 0.00% 385,110 51.75%
7 1,011 0.00% 10 0.00% 436 0.06%
8 1,015 0.00% 8 0.00% 2 0.00%
9 4 0.00% 7 0.00% 0 0.00%

10–23 8 0.00% 11 0.00% 2 0.00%

total 163,318,440 100.00% 8,531,990 100.00% 744,207 100.00%

longest path length #U chain Relative % #U star Relative % #U tree Relative %

1 49,039,098 84.01%
2 6,853,199 11.74% 3,833,545 91.21%
3 2,400,853 4.11% 212,739 5.06% 17,213 15.56%
4 76,828 0.13% 155,883 3.71% 31,779 28.73%
5 1,333 0.00% 901 0.02% 12,752 11.53%
6 1,468 0.00% 50 0.00% 48,792 44.11%
7 1,009 0.00% 8 0.00% 79 0.07%
8 1,011 0.00% 8 0.00% 2 0.00%
9 3 0.00% 6 0.00% 0 0.00%

10–23 7 0.00% 7 0.00% 2 0.00%

total 58,374,809 100.00% 4,203,147 100.00% 110,619 100.00%

?subject nationality?subject birthPlace ?subject genre

?object genre?object birthPlace ?object nationality

Fig. 7 The DBpedia query exhibiting tree width equal to 3

ing various measures of these shapes. We first focus on

chain, tree, and star-shaped queries, which are the most

recurrent shapes in our logs and we identify some mea-

Fig. 8 A tree-shaped query with longest path of length 7 (in
bold) and maximal degree of nodes equal to 4 (for the grey
node).

sures for the ensemble of these shapes or separately for

each class. At the end of the Section, we also provide

more insights about the cyclic queries found in our logs.



Table 9 Maximal degree of nodes in star and tree queries (Valid and Unique)

max degree #V star Relative % #U star Relative % #V tree Relative % #U tree Relative %

3 5,791,971 67.89% 3,173,041 75.49% 401,873 54.00% 73,125 66.11%
4 1,183,578 13.87% 406,272 9.67% 26,154 3.51% 2,640 2.39%
5 350,676 4.11% 191,479 4.56% 279,092 37.50% 30,844 27.88%
6 710,511 8.33% 228,573 5.44% 31,258 4.20% 3,305 2.99%
7 223,651 2.62% 68,179 1.62% 5,367 0.72% 589 0.53%
8 78,890 0.92% 55,056 1.31% 375 0.05% 51 0.05%
9 38,711 0.45% 25,152 0.60% 47 0.01% 36 0.03%

10–19 147,266 1.73% 53,067 1.26% 39 0.01% 27 0.02%
20–29 2,758 0.03% 2,077 0.05% 2 0.00% 2 0.00%
30–39 230 0.00% 192 0.00%
40–49 64 0.00% 51 0.00%
50–59 6 0.00% 6 0.00%
60–63 3,678 0.04% 2 0.00%

total 8,531,990 100.00% 4,203,147 100.00% 744,207 100.00% 110,619 100.00%

Table 10 Number of high-degree nodes (#HD) in tree
shaped queries (Valid and Unique)

#HD #V tree Relative % #U tree Relative %

2 59,537 8.00% 17,213 15.56%
3 281,184 37.78% 31,197 28.20%
4 14,348 1.93% 12,877 11.64%
5 365,318 49.09% 47,920 43.32%
6 23,811 3.20% 1,405 1.27%
7 7 0.00% 5 0.00%
9 1 0.00% 1 0.00%

11 1 0.00% 1 0.00%

total 744,207 100.00% 110,619 100.00%

Table 11 Average degree of inner nodes (AvgDeg) in tree
shaped queries (Valid and Unique)

AvgDeg #V tree Relative % #U tree Relative %

2–2.9 400,426 53.81% 61,955 56.01%
3–3.9 308,649 41.47% 44,358 40.10%
4–4.9 34,514 4.64% 4,027 3.64%
5–5.9 346 0.05% 160 0.14%
6–6.9 103 0.01% 52 0.05%
7–7.9 157 0.02% 58 0.05%
8–8.9 12 0.00% 9 0.01%

total 744,207 100.00% 110,619 100.00%

An immediate measure of the span of a query shape

is the size of the longest (undirected) path in the query.

Such a measure is readily applicable to chains, stars and

tree-shaped queries. The size of the longest path for a

tree-shaped query is the length of the longest path from

one leaf to another leaf. For instance, if we consider

the tree-shaped query in Figure 8, we observe that its

longest path has length 7 (highlighted in bold). The

same applies to star-shaped queries where the longest

path is the path from one vertex to another traversing

the central node of the star, whereas the longest path

in a chain is the length of the chain itself.

Table 12 Maximal cycle length in cyclic queries

MaxCyc # Valid # Unique

3 1,455,724 328,118
4 51,308 23,946
5 25,062 5,865
6 3,243 79
7 7 7
8 1 1

10 1 1

total 1,535,346 358,017

Table 13 Minimal cycle length in cyclic queries

MinCyc # Valid # Unique

3 1,456,037 328,347
4 51,023 23,739
5 25,048 5,853
6 3,230 70
7 7 7

10 1 1

total 1,535,346 358,017

Table 8 reports the lengths of the longest paths in

chain, tree, and star-shaped queries in our logs. We can

notice that the longest paths in chain and star queries

are majorly small (significant percentages go up to size

of the longest path equal to 3 for chain queries and to 4

for star queries, respectively), whereas trees are some-

how different. Their non-zero percentages characterize

lengths of longest paths up to 6 for tree-shaped queries.

In all shapes, we could find some examples of queries

with quite long paths (from length 10 to 23) and these

are comparably higher in chains and stars than in tree-

shaped queries.

We then proceeded with the analysis of the shapes

by focusing on the nodes with the maximal degree of

nodes in star- and tree-shaped queries. In our example

of a tree-shaped query in Figure 8, we can easily see that



Table 14 Free-connex acyclicity (FCA) and htw of all the CQs in our logs.

CQ CQF

AbsoluteV RelativeV AbsoluteU RelativeU AbsoluteV RelativeV AbsoluteU RelativeU

FCA 117,669,790 96.14% 36,786,611 93.00% 152,870,355 93.98% 53,393,254 91.19%
htw ≤ 1 118,245,559 96.61% 37,212,024 94.08% 157,167,354 96.63% 55,954,365 95.56%
htw ≤ 2 122,391,781 100.00% 39,555,004 100,00% 162,654,843 100.00% 58,554,583 100.00%
htw ≤ 3 122,391,794 100.00% 39,555,014 100.00% 162,654,856 100.00% 58,554,593 100.00%

Total 122,391,794 100.00% 39,555,014 100.00% 162,654,856 100.00% 58,554,593 100.00%

CQOF CQOFV

AbsoluteV RelativeV AbsoluteU RelativeU AbsoluteV RelativeV AbsoluteU RelativeU

FCA 160,545,014 80.02% 55,059,069 84.89% 163,203,235 58.15% 57,331,127 73.42%
htw ≤ 1 170,732,618 85,09% 55,954,365 86.27% 173,407,077 61.78% 63,109,343 80.82%
htw ≤ 2 200,641,878 100.00% 64,857,879 100.00% 280,672,718 100.00% 78,088,783 100.00%
htw ≤ 3 200,641,891 100.00% 64,857,889 100.00% 280,672,732 100.00% 78,088,794 100.00%

Total 200,641,891 100.00% 64,857,889 100.00% 280,672,732 100.00% 78,088,794 100.00%

the maximal degree of nodes is equal to 4. Obviously,

this measure is not informative for chain queries, which

are completely characterized by their length (and whose

vertices have a maximal degree of two). Table 9 shows

the results for stars and tree-shaped queries. The higher

percentages of star queries have maximal degree of their

vertices equal to 3, whereas for tree-shaped queries, the

majority has maximal degree equal to 3 or 5. The high-

est values of maximal degrees can be observed in stars

more than in tree-shaped queries.

We then focused on tree-shaped queries and com-

puted the number of nodes we found with high degrees.

This measure is only applicable to tree-shaped queries

and neither to stars (that always have one node with

highest degree) nor to chains. The results are shown in

Table 10, where we can notice 49.09% (43.32%) of the
tree-shaped queries have 5 high-degree vertices. We also

found one query with 11 high-degree vertices.

We did not dig further into the actual values of the

degrees for these high-degree nodes, even though a com-

bined view of Table 8 and Table 9 provides a quick grasp

on that.

Further investigating the tree shapes, we computed

in Table 11 the average degrees of inner nodes in these

shapes (again not applicable to chains and stars). We

can observe that the majority of inner nodes degrees

stay in between 2 and 4 on average.

Finally, we looked at the class of cyclic queries and

measured the maximal and minimal cycle lengths of

the cycles. The cycle computation considered again the

queries as undirected graphs and aimed at constructing

the cycle basis for such graphs. A cycle basis is formed

from any spanning tree or spanning forest of the given

graph, by selecting the cycles obtained by combining

a path in the tree with a single edge outside the tree.

In order to keep the computation of cycle basis poly-

nomial, we set up an empirical bound (equal to 8) to

the number of cycles that form the cycle basis. We thus

counted the minimal and maximal cycle length of the

discovered cycle basis of each query. Tables 12 and 13

report the results of this analysis for CQOFV queries.

We also computed the property of free-connex acyclic-

ity for CQ, CQF, CQOF and CQOFV. A conjunctive

query is free-connex acyclic if it is acyclic and the set

of its free variables 22 is a connex subset of the join tree

of the query [6]. The join tree of a query corresponds

to the tree-structure of the acyclic hypergraph underly-

ing the query. Free-connex acyclicity is interesting be-

cause it characterizes the conjunctive queries for which

certain kinds of efficient algorithms exist for enumer-

ating their output [6,24] (under standard complexity-

theoretical assumptions). Table 14 shows the results by

comparing the number of all conjunctive queries (in-

cluding those that are not suitable for graph analysis

and thus are not considered in Table 5) and the number

of free-connex acyclic queries found in our logs. We can

notice that the latter are abundant in all the fragments

CQ, CQF, CQOF and CQOFV. For a cross comparison,

we also show the hypertreewidth of all the conjunctive

queries in our logs (and not only those reported in Ta-

ble 5). We can observe that all the CQs in our logs have

htw less or equal to 3.

8 Tree Pattern Queries

Tree pattern queries (e.g., [35,28,16,15]) are a well-

studied query formalism on trees which is inspired on

22 The free or distinguished variables of a query considered
as a first-order propositional formula are the set of variables
used as output in the formula.



XPath but which can just as well be used for query-

ing graph-structured data [31,15].We next define a tree-

pattern-like fragment of our queries and investigate how

common it appears in the logs.

Property paths have the power to do forward and

backward navigation through edges. For instance, if a

is an IRI, then the property path ˆa allows to follow an

a-edge in the graph in backward direction. In the fol-

lowing definition, we only allow forward navigation. A

directed tree is a connected, directed graph such that

there is a unique node without incoming edges (the

root) and, for all edges (u, v) and (u′, v), we have that

u = u′ (every node has at most one parent).

Definition 9 A conjunctive regular path query (CRPQ)

is a SPARQL pattern that only uses triple patterns, the

operator And, and property paths.

The directed canonical graph of a CRPQ P is the di-

rected graph obtained from the edges E ∪ Ep, where

E = {(x, y) | (x, `, y) is a triple pattern in P and

` ∈ I ∪ V} and Ep = {(x, y) | (x, pp, y) is a property

path pattern in P}.

Definition 10 A CRPQ P is a tree pattern query if

– its directed canonical graph is a directed tree and

– every property path is a concatenation of IRIs and

property paths of the form a∗, where a is an IRI.

Our analysis shows that 99.77% (99.91%) of the CR-

PQs have a canonical graph that is an undirected tree.

Out of these, 87.92% (84.96%) are tree pattern queries.

This is a fairly significant number, considering that we

require the shape to be a directed tree. If we addition-

ally allow the Filter operator (in a similar way as in

Section 6), these percentages remain roughly the same.

9 Property Paths

We found 1,412,762 (329,984) queries using property

paths in our corpus. From these queries, we extracted

1,528,701 (404,721) property paths in total, which is

about 67% more than the 247,404 unique property paths

considered in [11]. Although property paths are there-

fore rare in relation to the entire corpus, this is not so

for every data set: 92 queries (29.87%) in Wikidata17

have property paths.23

A large fraction of these property paths are ex-

tremely simple. For instance, 65,693 (63,428) property

23 Even though our set of Wikidata queries is very small,
Malyshev et al. [32] recently found a similar percentage of
property path usage in Wikidata logs consisting of ∼ 480M
valid queries.

paths are !a (“follow an edge not labeled a”) and 80,421

(58,156) are ˆa (“follow an a-edge in reverse direction”).

In total, 65,751 (63,478) queries use the different-from

operator “!” and 394,726 (144,569) use the reverse nav-

igation operator “ˆ”.

In Table 15, we present an overview of all the prop-

erty paths we found in the corpus. For readability, we

don’t explicitly denote the concatenation operator “/”,

so we write ab instead of a/b. In our classification, we

treat ˆa and !a the same as a literal. For instance, we

classify ab, (ˆa)b, and (!a)b all as a1 · · · ak with k = 2.

We use capital letters to denote subexpressions that

can match a set of different IRIs. For example, (a|b)
can match a and b, i.e., a set of two symbols. In the

column Set Sizes, we wrote these sizes of sets we found.

If the expression uses the !-operator, it can actually be

matched by an infinite number of IRIs and can be seen

as a wildcard test. (Some users even write the expres-

sion (!a|!b) to obtain a wildcard that can match any

IRI.) If we found expressions that use the !-operator,

we annotate this with (wc) in the Set Sizes column.

Furthermore, each row represents the expression type

listed on the left plus its symmetric form. For instance,

when we write a∗b, we count the expressions of the form

a∗b and ba∗. The variant listed in the table is the one

that occurred most often in the data. That is, a∗b oc-

curred more often than ba∗.

In the new corpus, we could enumerate a total of

111 different property paths, regrouped into 35 classes.

This corresponds to an increase of roughly one third in

the number of different property paths and classes (re-

spectively equal to 87 and 22 in the conference version

of this paper [11].) The occurrences of classes already

found in [11] is roughly preserved in the new corpus if

we focus on Unique queries. However, the new analysis

presented here includes the percentages of occurrences

in the logs of Valid queries, which is interesting by it-

self. For instance, the transitive closure of a single label

a+ is quite prominent in the Valid queries (more than

40% compared to 2% in the logs of Unique queries in

the previous corpus).

Bagan et al. [5] proved a dichotomy on the data

complexity of evaluating property paths under a simple

path semantics, i.e., expressions can only be matched

on paths in the RDF graph in which nodes appear only

once. They showed that, although evaluating property

paths under this semantics is NP-complete in general,

it is possible in Ptime if the expressions belong to a

class called Ctract. Remarkably, we only found eight ex-

pressions in our corpus which are not in Ctract, namely

(ab)∗ (once) and ab(ab)∗ (seven times). The complex-

ity of enumerating answers to property paths of the

form as in Table 15 is studied in [34]. More precisely,



Table 15 Structure of property paths in our corpus. Capital letters denote unions of symbols or wildcards.

Expression Type AbsoluteV RelativeV AbsoluteU RelativeU Set Sizes Values for k

a+ 618,459 40.46% 5,968 1.47%
A∗ 361,402 23.64% 89,379 22.08% ≤ 4 (wc)
a∗ 160,628 10.51% 68,681 16.97%
a∗b 23,523 1.54% 20,566 5.08%
a∗b∗ 14,674 0.96% 997 0.25%
A∗B? 7,252 0.47% 1,326 0.33% ≤ 5
abc∗ 70 0.00% 54 0.01%

(ab∗)|c 45 0.00% 15 0.00%
a∗b? 45 0.00% 15 0.00%
A+ 19 0.00% 18 0.00% ≤ 7 (wc)

ab(ab)∗ 7 0.00% 7 0.00%
a+|b+ 3 0.00% 3 0.00%
Ab∗ 2 0.00% 1 0.00% ≤ 1 (wc)
aB∗ 2 0.00% 2 0.00% ≤ 2 (wc)
a|b∗ 2 0.00% 2 0.00%
a|b+ 2 0.00% 2 0.00%
A+B? 1 0.00% 1 0.00% ≤ 5
A∗B 1 0.00% 1 0.00% ≤ 5
A∗bc 1 0.00% 1 0.00% = 5
a?b∗ 1 0.00% 1 0.00%
(ab)∗ 1 0.00% 1 0.00%

A 139,662 9.14% 129,515 32.00% ≤ 6 (wc)
a1 · · · ak 109,166 7.14% 25,431 6.28% ≤ 6

â 80,421 5.26% 58,156 14.37%
a? 9,864 0.65% 3,347 0.83%

a1? · · · ak? 2,704 0.18% 971 0.24% ≤ 5
a1? · · · ak−1?ak 664 0.04% 197 0.05% ≤ 3

aB? 40 0.00% 34 0.01% ≤ 2
ab?c?d 12 0.00% 10 0.00%
Ab 8 0.00% 6 0.00% ≤ 2
AB 7 0.00% 4 0.00% ≤ 2

a|ba|c|d 6 0.00% 2 0.00%
A? 4 0.00% 4 0.00% ≤ 2 (wc)

abc?d? 2 0.00% 2 0.00%
AAAAAA 1 0.00% 1 0.00% = 2

Total 1,528,701 100% 404,721 100%

the paper investigates enumeration problems for simple

transitive expressions, which capture 99.03% (99.74%)

of the expressions in Table 15.

10 Evolution of Queries over Time

In a typical usage scenario of a SPARQL endpoint, a

user queries the data and gradually refines her query

until the desired result is obtained. In this section, we

analyse to which extent such behavior occurs. The re-

sults are very preliminary but show that, in certain con-

texts, it can be interesting to investigate optimization

techniques for sequences of similar queries.

We consider a query log to be an ordered list of

queries q1, . . . , qn. We introduce the notion of a streak,

which intuitively captures a sequence of similar queries

within close distance of each other. To this end we as-

sume the existence of a similarity test between two

queries. We then say that queries qi and qj with i < j

match if (1) qi and qj are similar and (2) no query qi′

with i < i′ < j is similar to qi. A streak (with window

size w) is a sequence of queries qi1 , . . . , qik such that,

for each ` = 1, . . . , k − 1, we have that i`+1 − i` ≤ w

and qi`+1
matches qi` .

In theory, it is possible for a query to belong to

multiple streaks. E.g., it is possible that q1 and q2 do

not match, but query q3 is sufficiently similar to both.

In this case, q3 belongs to both streaks q1, q3 and q2, q3.

In the present study, we used Levenshtein distance

as a similarity test. More precisely, we said that two

queries are similar if their Levenshtein distance, after

removal of namespace prefixes, is at most 25%.24 We

removed namespace prefixes prior to measuring their

Levenshtein distance, because they introduce superfi-

cial similarity. As such, we require queries to be at least

24 We normalized the measure by dividing the Levenshtein
distance by the length of the longer string.



Table 16 Length of streaks in three single-day logs

Streak length #DBP’14 #DBP’15 #DBP’16

1–10 42,272 167,292 199,375
11–20 3,732 24,001 37,402
21–30 2,425 4,813 17,749
31–40 884 667 5,849
41–50 283 162 1,998
51–60 88 40 711
61–70 27 8 322
71–80 15 4 129
81–90 5 1 47

91–100 5 0 27
>100 4 0 24

75% identical starting from the first occurrence of the

keywords Select, Ask, Construct, or Describe. We took a

window size of 30.

Streak Length. Since the discovery of streaks was ex-

tremely resource-consuming, we only analysed streaks

in three randomly selected log files from DBpedia14,

DBpedia15, and DBpedia16. The sizes of these log files,

each reflecting a single day of queries to the endpoint,

were 273MiB, 803MiB, and 1004MiB respectively.

For the ordering of the queries, we simply considered

the ordering in the log files, since the logs are sorted

over time.

The results on streak length are in Table 16. Using

window size 30, the longest streak we found had length

169 and was in the 2016 log file. When we increased

the window size, we noticed that it was still possible to

obtain longer streaks. We believe that a more refined

analysis on the encountered streaks can be carried out

when tuning the window size and deriving more com-

plex metrics on the similarity of the queries within each

streak. These issues are, however, subject of further re-

search, which we plan to pursue in future work.

Evolution of Size and Structure. In addition to the length

of streaks, we also investigated how the number of triples

and structure of queries in streaks change over time. To

this end, we needed to parse the queries in streaks. The

three log files contain a combined amount of 510,361

streaks. Out of these streaks, 321,042 have at least two

queries and 234,627 additionally have at least one query

that parses. Remarkably, in the latter set, only 1,402

streaks have an erroneous query. Here, 1,202 have an

erroneous query followed by a correct one, and 789 have

a correct query followed by an erroneous one.

We then investigated the number of triples of queries

in streaks. We have 355,466 streaks which have at least

one parsable query that contains at least one triple.25

25 For 88,201 streaks, all queries had an empty body. An-
other 31 streaks had a non-empty body, containing no triples.

Table 17 Largest query occurring in streaks

Max Max
#Triples #Streaks #Triples #Streaks

1 130,706 13–20 9,509
2 41,811 21–30 544
3 34,081 31–40 233
4 9,990 41–50 86
5 3,325 51–60 44
6 1,733 61–70 32
7 8,465 71–80 17
8 10,604 81–90 11
9 7,837 91–100 3

10 1,080 101–110 9
11 51,521 > 110 7
12 43,819

Table 18 Structures of queries appearing in the same streak
(chn = chain, bt = ’branching tree’, i.e., tree that is not a
chain, cyc = cyclic)

Shapes #Streaks

containing chn 148,632
consisting only of chn 147,106

containing bt 39,839
consisting only of bt 39,810

containing cyc 526
consisting only of cyc 493

containing bt and cyc 12
consisting only of bt or cyc 40,315

containing bt and chn 2
consisting only of bt or chn 186,918

containing chn and cyc 21
consisting only of chn or cyc 147,620

consisting only of chn, bt, or cyc 187,444

Table 17 contains, for each of the 355,466 streaks, what

is the maximal number of triples in any of its queries.

We noticed that this number is quite stable: we only

have 3,915 streaks in which this number changes during

the streak.

Table 18 contains results on the shapes of queries in

streaks. We considered chain queries, trees that branch

(and therefore are no chains), and cyclic queries, that is,

queries that contain a cycle. Table 18 contains, for each

subset S of these three shapes, the number of streaks

that contain only shapes from S and the number of

streaks that consist only of shapes from S.

Interestingly, we found a correlation between streak

length and query shape and size. For instance, out of the

526 streaks that contain a cyclic query, 472 (89.73%)

only consist of a single query. This strongly contrasts

the entire log, where only 189,319 streaks (37.10%) con-

sist of a single query. Similarly, we have 1,378 streaks

that contain a query of at least 16 triples, but 1,332 of

these streaks (96.66%) only have a single query. This

suggests that highly complex queries are less likely to



occur in longer streaks. We stress again that the data

sets used for this study only consisted of DPpedia query

logs for three days, which is a very small sample. We

leave the evaluation on the total corpus for future work.

11 Conclusions and Discussion

We have conducted an extensive analytical study on a

large corpus of real SPARQL query logs. Our corpus is

inherently heterogeneous and consists of a majority of

DBpedia query logs along with query logs on biological

datasets (namely BioPortal and BioMed datasets), ge-

ological datasets (LGD), bibliographic data (SWDF),

and query logs from a museum’s SPARQL endpoint

(British Museum). We have completed this corpus with

the example queries from Wikidata (Feb. 2017), which

are cherry picked from real SPARQL queries on this

data source. Compared to the conference version of

this paper, we have augmented the corpus with 169M

queries from DBpedia, which let us almost double the

size of the corpus and also corroborate or deflect some

of the insights gained before on the old logs. Further-

more, novel non-trivial analyses have been run as also

recapitulated in this concluding section.

A Note on Query Logs and Interpretation of Results.

When one wants to draw conclusions from our anal-

yses, one always needs to keep in mind what kind of

data we analysed, in order to put the conclusions in

the right perspective. In this paper, we mainly anal-

ysed query logs from SPARQL endpoints. We believe

that this means that simple queries may be overrepre-

sented. For instance, some users may decide to down-

load a local copy of the database to their own server

and process the complex queries locally, e.g., to avoid

time-out issues with the public SPARQL endpoint.

Another point to keep in mind is that we believe

that it is difficult to conclude from such a log analysis

that certain types of queries are not interesting. Again,

this is due to the open-world nature of the logs. There

can be very interesting types of queries, that some users

are highly interested in, but that are absent from the

logs.

What one can discover in our analysis is classes of

queries, or aspects (such as sequences of queries) that

are interesting for future research. After all, the queries

we studied here are indeed precisely the ones that have

been submitted to SPARQL endpoints, which makes

them interesting.

Considerations About the Datasets. The majority of the

datasets exhibit similar characteristics, such as for in-

stance the simplicity of queries amounting to 1 or 2

triples. The only exception occurs with British Museum

and Wikidata datasets (Figure 1), where the former is

a set of queries generated from fixed templates and the

latter is a query wiki rather than a query log. Clearly,

the DBpedia datasets are the most voluminous and re-

cent in our corpus, thus making their results quite sig-

nificant. For instance, despite the fact that single triple

queries are numerous in these datasets, more complex

queries (with 11 triples or more) have lots of occur-

rences (up to 21% of the total number of queries for

DBpedia13). Strikingly, the largest queries of all belong

to DBpedia (especially the last logs newly analyzed in

this paper), which is one of the outcome of the new

comparison between Valid and Unique queries, as car-

ried out in this paper and could not be observed before

in [11], which only focused on Unique queries.

We observed that most of the analyzed queries across

all datasets are Select/Ask/Construct, which range be-

tween 94% and 100% for all datasets except DBpedia16,

BioMed, and SWDF, which have 88% or less. There-

fore, we focused on such queries in the remainder of

the paper since these queries turn out to be the queries

that users most often formulate in SPARQL query end-

points. We have further examined the occurrences of op-

erator distributions and the number of projections and

subqueries. This analysis lets us address a specific frag-

ment, namely the And/Opt/Filter patterns (AOF pat-

terns). For such patterns, we derived the graph- and

hypergraph structures and analyzed the impact of the

structure on query evaluation.

Benefits of Shape Analysis. We synthetically reproduced

the observed real chain and cycle query logs with a

synthetic generator by building diverse workloads of

Ask queries and measured their average runtime in two

systems, Blazegraph, used by the Wikimedia founda-

tion, and PostgreSQL. In both systems, the difference

between average performances of such different query

shapes are perceivable. We decided to dig deeper in

the shape analysis in order to classify these queries un-

der general query shapes as canonical graphs and char-

acterize their tree-likeness as hypergraphs. We believe

that this shape analysis can serve the need of fostering

the discussion on the design of new query languages

for graph data [10,44], as pursued for instance by the

LDBC Graph Query Language Task Force [43]. It can

also inspire the conception of novel query optimization

techniques suited for these query shapes, along with

tuning and benchmarking methods. For instance, we

are not aware of existing benchmarks targeting flowers



and flower sets. The analysis on property paths showed

that these are not yet widely used in the entire corpus,

even though they are numerous in the Wikidata corpus.

A recent discussion (July 6th, 2017) in a Neo4J working

group [48] concerned the support of full-fledged regu-

lar path queries in OpenCypher. This discussion, and

other discussions on standard graph query languages

[43,10,44] could benefit from our analysis, devoted to

find which property paths are actually used most often

when ordinary users have the power of regular expres-

sions. On both shape analysis and property path analy-

sis, the addition of the new DBpedia17 logs provided us

with both (1) confirmation of the trends observed be-

fore on a restricted corpus [11]; (2) new insights due to

the injection of new logs. Concerning the shape anal-

ysis, we introduced a new class (no edge) leading to

classify queries consisting of isolated nodes, such class

being inflated when constants are disregarded in the

analysis. Furthermore, the shapes of Valid queries stud-

ied for the first time in this paper are comparably more

complex than the shapes of Unique queries. Precisely,

we have observed that Valid queries exhibit on aver-

age longer paths and higher degree nodes compared to

their Unique counterparts. For the property paths, we

could confirm the presence of classes observed before

with most occurrences but also introduce entirely new

classes due to the presence of more diversified DBpedia

query logs.

Benefits of Streak Analysis. Finally, we performed a

study on the way users specify their queries in SPARQL

query logs, by identifying streaks of similar queries.

This analysis is for instance crucial to understand query

specification from real users and thus usability of data-

bases, which is a hot research topic in our community

[25,38].

Extensibility. Our analysis has been carried out with

scripts in different languages, amounting to a total of

roughly 9, 000 source lines of code (SLOC). We plan

to make these scripts open-source and extensible to

the new query logs that will be produced by users on

SPARQL endpoints in the near future.

Future Work. A preliminary investigation on our data

set showed that a shape analysis that incorporates prop-

erty paths (and therefore considering extensions of CR-

PQs instead of CQs) may reveal interesting results. For

instance, we found a 7-clique query (6-clique without

constants) similar to the one in Figure 9. We also found

this particular query interesting because we believe that

its semantics is probably different from what the user

intended. We believe that the user wanted to search for

Henry VIII

?Spouse1

?Spouse2

?Spouse3

?Spouse4

?Spouse5

?Spouse6

Fig. 9 The Henry VIII query, a 7-clique containing one con-
stant and six variables. All edges between Henry VIII and the
variables are labeled “dbpedia-owl:spouse” and all edges be-
tween variables are labeled with the property path “!dbpedia-
owl:sameAs”.

(possibly all permutations of) six different spouses of

Henry VIII. However, “!dbpedia-owl:sameAs” tests if

there exists an edge between two nodes that is not clas-

sified as dbpedia-owl:sameAs. We embarked on a study

for Wikidata query logs in [12].
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