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Frequent sequence mining methods often make use of constraints to control which subsequences should

be mined. A variety of such subsequence constraints has been studied in the literature, including length,

gap, span, regular-expression, and hierarchy constraints. In this article, we show that many subsequence

constraints—including and beyond those considered in the literature—can be unified in a single framework.

A unified treatment allows researchers to study jointly many types of subsequence constraints (instead of

each one individually) and helps to improve usability of pattern mining systems for practitioners. In more

detail, we propose a set of simple and intuitive “pattern expressions” to describe subsequence constraints

and explore algorithms for efficiently mining frequent subsequences under such general constraints. Our

algorithms translate pattern expressions to succinct finite state transducers, which we use as computational

model, and simulate these transducers in a way suitable for frequent sequence mining. Our experimental study

on real-world datasets indicates that our algorithms—although more general—are efficient and, when used for

sequence mining with prior constraints studied in literature, competitive to (and in some cases superior to)

state-of-the-art specialized methods.
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1 INTRODUCTION
Frequent sequence mining (FSM) is a fundamental task in data mining. Frequent sequences are

useful for a wide range of applications, including market-basket analysis [43], web usage mining

and session analysis [44], natural language processing [29], information extraction [21, 37], or

computational biology [13]. In web usage mining, for example, frequent sequences describe common

behavior across users (e.g., the order in which users visit web pages). As another example, frequent

textual patterns such as “PERSON is married to PERSON ” are indicative of typed relations between

entities and useful for natural-language processing and information extraction tasks [21, 37].

In FSM, we model the available data as a collection of sequences composed of items such as

words (text processing), products (market-basket analysis), or actions and events (session analysis).
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Often items are arranged in an application-specific hierarchy; e.g., is→be→VERB (for words),

Canon 5D→DSLR camera→electronics (for products), or Rakesh Agrawal→scientist→PERSON (for

entities). The goal of FSM is to discover subsequences or generalized subsequences that occur in

sufficiently many input sequences. Since the total number of such subsequences can potentially be

very large and not all frequent subsequences may be of interest to a particular application, most

FSM methods make use of subsequence constraints to control the set of subsequences to be mined.

A large variety of subsequence constraints has been studied in prior work [9, 10, 23, 33, 39,

40, 43, 50]. Commonly proposed constraints include gap or span constraints, where items in the

subsequences need to appear “close” in the input sequence, and length constraints, where the

number of items in the subsequences is bounded. In n-gram mining [12], for example, the goal

is to mine frequent consecutive subsequences of exactly n words. Hierarchy constraints allow
controlled generalization according to the item hierarchy to find patterns which do not directly

occur in the input data. Examples include shopping patterns such as “customers frequently buy

some DSLR camera, then some tripod, then some flash” or textual patterns such as “PERSON be
born in LOCATION ”. Regular expression (RE) constraints have also been studied in the context of

FSM; here subsequences must match a given RE.

A number of specialized algorithms for various combinations of the above subsequence con-

straints have been proposed in the literature. In this work, we focus on the questions of (1) how to

model and express subsequence constraints in a suitable way and (2) how to mine efficiently all

frequent sequences that satisfy the given constraints.
1
We show thatmany subsequence constraints—

including and beyond the constraints mentioned above—can be unified in a single framework. A

unified framework offers advantages to both researchers and practitioners. In particular, it allows

researchers to study algorithms and properties of subsequence constraints in general instead of

focusing on certain special cases individually. It also helps to improve usability of pattern mining

systems for practitioners: They only need to familiarize themselves with one framework and,

perhaps more importantly, do not need to develop customized mining algorithms for a particular

subsequence constraint of interest. In fact, we propose a number of general-purpose mining algo-

rithms that operate within our framework. Our experimental study (Section 7) suggests that our

methods are often competitive (and sometimes exponentially more efficient) to state-of-the-art

specialized algorithms for the above-mentioned subsequence constraints.

In more detail, we introduce subsequence predicates to model subsequence constraints in a

general way, and we propose a simple and intuitive pattern expression language to concisely express
subsequence predicates. Our pattern expressions are based on regular expressions, but—in contrast

to prior work on RE-constrained FSM [40, 47]—target input sequences and support capture groups

and item hierarchies. Capture groups are the key ingredient for expressing most prior subsequence

constraints in a unified way; see Table 1 for examples. Direct support for item hierarchies allows

us both to express subsequence constraints concisely and to mine generalized subsequences in a

controlled way. Some example pattern expressions as well as anecdotal results are given in Table 4.

To mine frequent sequences, we propose to use finite state transducers (FST) as the underlying

computational model. To the best of our knowledge, FSTs have not been studied in the context of

FSM before. We propose the DESQ system,
2
which includes two efficient mining algorithms termed

DESQ-COUNT and DESQ-DFS. Both algorithms translate a given pattern expression to a succinct
FST (sFST), which is simulated in a way suitable for frequent sequence mining. DESQ-COUNT is

a match-and-count algorithm that aims at highly selective constraints, whereas DESQ-DFS can

handle more demanding pattern expressions and is inspired by PrefixSpan [39].

1
A preliminary version of this article appeared in [11].

2
https://www.uni-mannheim.de/dws/research/resources/desq/.
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Both algorithms heavily rely on efficient sFST simulation. We discuss various optimizations

for sFST simulation, which often improve mining performance substantially. First, we show how

sFSTs can be partially determinized and minimized. Second, we discuss methods that allow us

to early-abort sFST simulation whenever possible and without affecting correctness. Third, we

propose a pruning method that enables us to quickly prune irrelevant input sequences, i.e., input

sequences which cannot affect the mining results. Finally, we propose a two-pass approach to sFST

simulation that additionally avoids unnecessary backtracking and show that the two-pass approach

can be exponentially more efficient than the one-pass approach for certain pattern expressions.

We conducted an experimental study on multiple real-world datasets to investigate the expres-

siveness of our pattern expression language, the efficiency of our mining algorithms, and the

effectiveness of our proposed optimizations. We found that our pattern expressions are sufficiently

powerful to express many subsequence constraints that arise in sequence mining applications. Our

algorithms were generally efficient, and when used for pattern expressions that express prior subse-

quence constraints, competitive to—and sometimes more efficient than—state-of-the-art specialized

methods. Our sFST optimizations were effective and significantly improved performance of our

mining algorithms. Our results suggests that DESQ is an efficient general-purpose FSM framework

for wide range of sequence mining tasks.

The remainder of this article is organized as follows. In Section 2, we summarize basic concepts for

FSM and establish the notation used throughout this work. In Section 3, we introduce subsequence

predicates and formally define the problem of frequent sequence mining with general subsequence

constraints. In Section 4, we propose our pattern expression language and finite state transducers

as the underlying computational model. Based on these transducers, we derive algorithms for

frequent sequence mining in Section 5. In Section 6, we propose various optimizations for efficiently

simulating finite state transducers. Section 7 reports on our experimental study and its results.

Section 8 discusses additional related work, and Section 9 concludes the article.

2 PRELIMINARIES
Sequence databases. A sequence database is a set3 of sequences, denoted D =

{
T1,T2, . . . ,T |D |

}
.

Each sequence T = t1t2 . . . t |T | is an ordered list of items from a finite set Σ =
{
w1,w2, . . . ,w |Σ |

}
that we call vocabulary4. We refer toT as a sequence over Σ. We denote by ε the empty sequence, by

|T | the length of sequenceT , by Σ∗ (resp., Σ+) the set of all (resp., all non-empty) sequences that can

be constructed from items in Σ. Figure 1(a) shows an example sequence database Dex consisting of

six sequences over Σ = {A,a1,a2,B,b1,b2,b11,b12, c,d, e}.

Item hierarchy. The items in Σ are arranged in an item hierarchy, which expresses how items

can be generalized (or that they cannot be generalized). Figure 1(b) shows an example hierarchy

in which, for example, item a1 generalizes to item A. In general, we say that an item u directly
generalizes to an item v , denoted u ⇒ v , if u is a child of v in the hierarchy. We further denote by

⇒∗ the reflexive transitive closure of⇒. For the example of Figure 1(b), we have b11 ⇒ b1, b1 ⇒ B,
and b11 ⇒

∗ B. For each itemw ∈ Σ, we denote by

anc(w) = {w ′ | w ⇒∗ w ′ }

3
The restriction to sets is for expository reasons. In practice, sequence databases are more accurately abstracted as multisets,
but we chose sets to make our definitions clearer. It is not difficult to generalize our approach from sets to multisets and, in

fact, our implementation uses multisets.

4
A more general variant of this setting is often considered in literature, in which sequences are formed of itemsets rather

than individual items. In this article, we focus on the special case of sequences composed of individual items (e.g., textual

data, user sessions, event logs, protein sequences, etc.)
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T1 : ca1b12e
T2 : a1b2e
T3 : da2a1a2b11e
T4 : da1Be
T5 : ea1b2d
T6 : ca1a1a1b2e

(a) Example database Dex

A

a1 a2

B

b1 b2

b11 b12

B′ c

d

e

(b) Example hierarchy

Fig. 1. A sequence database and its vocabulary

the set of ancestors ofw (includingw) and by

desc(w) = {w ′ | w ′⇒∗ w }

the set of descendants ofw (again, includingw). In our running example, we have anc(b1) = {b1,B }
and desc(b1) = {b1,b11,b12 }.

Subsequences. Let S = s1s2 . . . s |S | and T = t1t2 . . . t |T | be two sequences over Σ. We say that S is

a generalized subsequence of T , denoted S ⊑ T , if S can be obtained by deleting and/or generalizing

items in T . More formally, S ⊑ T iff there exists integers 1 ≤ i1 < i2 < · · · < i |S | ≤ |T | such that

tik ⇒
∗ sk for 1 ≤ k ≤ |S |. Continuing our example, we have cBe ⊑ T1, ca1 ⊑ T1 and a1c @ T1.

3 FSMWITH SUBSEQUENCE CONSTRAINTS
The goal of FSM is to discover subsequences that occur in sufficiently many input sequences.

This problem can be challenging, because the total number of distinct subsequences of one input

sequence T can be exponential in the length of T . This poses two problems: (1) enumerating or

mining frequent subsequences can be expensive and (2) many of the subsequences may not be

useful to applications. To alleviate these problems, FSM methods have focused on specialized

subsequence constraints to control which subsequences should be mined and developed specialized

mining algorithms to improve efficiency. We will tackle a more general and unified problem, which

we define in this section.

Subsequence constraints. A subsequence constraint describes which subsequences of a given input

sequence should be considered for frequent sequence mining. Commonly proposed subsequence

constraints are summarized in Table 1 and include: gap constraints [33, 43], where items in the

subsequences need to appear “close” in the input sequence; length constraints [50], where the number

of items in the subsequences is bounded; hierarchy constraints [10], where items in the subsequences

generalize according to the item hierarchy; and regular expression (RE) constraints [2, 23, 40, 47],
where subsequences must match a given RE. In this article, our goal is to provide a general

framework to express subsequence constraints, including and going beyond previously proposed

constraints. Our extensions allow to mix-and-match constraints (e.g., gap-constrained subsequences

that match an RE constraint) or to incorporate context constraints (e.g, frequent relational phrases

between named entities [21]).

Consider the following (admittedly contrived) subsequence constraint. We use it as a running

example to explain the features of our framework.

Example 3.1. Consider our example database Dex of input sequences. Suppose that we are

interested in doing the following:

ACM Transactions on Database Systems, Vol. 9, No. 4, Article 39. Publication date: March 2010.
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(1) We only want to consider input sequences t1t2 · · · tn , where (i) n ≥ 3, (ii) t1 is c or d , (iii) tn is

e , and (iv) every ti with 1 < i < n can be generalized to A or B.
(2) From these input sequences, we want to extract the subsequence t2 · · · tn−1.
(3) For each such extracted subsequence, we allow the following generalizations to obtain the

subsequences we are interested in: descendants of A can be generalized arbitrarily (or not at

all), whereas descendants of B must be generalized to B.

Notice that a1B ⊑ T1 and AB ⊑ T1 satisfy this subsequence constraint, whereas a1b12 ⊑ T1 and
a1b1 ⊑ T1 do not (because they do not generalize descendants of B to B). Furthermore, a1B ⊑ T2
and AB ⊑ T2 do not satisfy the context constraint (because T2 does not start with c or d).

The subsequence constraint of Example 3.1 combines (i) a gap constraint (condition 2: subse-

quence is consecutive in input), (ii) hierarchy constraints (conditions 1.iv and 3), and (iii) a context

constraint (conditions 1.ii and 1.iii: subsequence occurs between c or d , and e). Prior methods (cf. Ta-

ble 1) cannot handle this constraint: none of the methods supports context constraints, and methods

that do support hierarchies do not support controlled (or enforced) generalizations. Note that the

particular context constraint of Example 3.1 can be implemented using suitable preprocessing; such

an approach is not possible in general though.

Subsequence predicates. We propose subsequence predicates as a general, natural model for

subsequence constraints. A subsequence predicate P is a predicate on pairs (S,T ), where T ∈ Σ+

is any input sequence and S ⊑ T is a (generalized) subsequence. Subsequence S ⊑ T satisfies

the constraint when P(S,T ) holds. Notice that P involves both the subsequence S and the input

sequence T . We denote by

GP (T ) = { S ⊑ T | P(S,T ) }

the set of P-subsequences in T . For each S ∈ GP (T ), we say that S is P-generated by T . For example,

let Pex be the subsequence predicate that expresses the subsequence constraint of Example 3.1, then

GPex (T1) = {a1B,AB} and GPex (T2) = ∅.
Subsequence predicates can encode different application needs, including but not limited to the

various subsequence constraints discussed before. Subsequence predicates can act as a filter on the

set of all subsequences of T (“only A’s and B’s” in Example 3.1), but may also consider the context

in which these subsequences occur (“between c or d and e” in Example 3.1) and whether or not gaps

are allowed (“consecutively” in Example 3.1). For example, we can construct subsequence predicates

for generating all n-grams, all adjective-noun pairs, all relational phrases between named entities,

all electronic products, or, in log mining, sequences of items that occur before and/or after an error

item. We propose a suitable way to express a wide range of subsequence predicates in Section 4.

FSM and subsequence predicates. Let P be a subsequence predicate. The P-support SupP (S,D) of
sequence S ∈ Σ+ in sequence database D is the set

5
of all sequences in D that P-generate S , i.e.,

SupP (S,D) = {T ∈ D | S ∈ GP (T ) } . (1)

The P-frequency of S in D is given by

fP (S,D) = |SupP (S,D)|,

that is, the number of sequencesT in D for which S ⊑ T and P(S,T ) holds. In our example database,

we have SupPex (Aa1AB,Dex ) = {T3,T6 } and thus fPex (Aa1AB,Dex ) = 2. Given a support threshold
σ > 0, we say that a sequence S is P-frequent if fP (S,D) ≥ σ .

Problem Statement 1. Given a sequence database D , a subsequence predicate P , and a support
threshold σ > 0, find all P-frequent sequences S ∈ Σ+ along with their P-frequencies.
5
Recall our running assumption that D is a set.
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The set of all Pex-frequent sequences for σ = 2 in our example database is given by

{AAAB:2,AB:2,Aa1AB:2,a1B:2 } ,

where we also give P-frequencies.

Discussion. The above definitions are generalizations of the notions of frequency and support

used in traditional frequent sequence mining [1, 39, 51]. Efficient mining of P-frequent sequences
is challenging because the antimonotonicity property does not hold directly: We cannot generally

deduce from the knowledge that sequence S is P-frequent whether or not any of the subsequences

of S are P-frequent as well. For instance, in our running example, AAAB is frequent but AA is not.

One reason here is the context constraint: there are no sequences in the input database that satisfy

condition (1) from Example 3.1 but only have descendants of A between the first and last symbol.

Nevertheless, our mining algorithms make use of suitable adapted notions of antimonotonicity for

subsequence predicates (Lemma 5.1) and pattern expressions (Lemma 5.2).

4 PATTERN EXPRESSIONS
We propose a pattern language for expressing subsequence predicates in a simple and intuitive

way. Our language is based on regular expressions, but adds features that allow us to unify prior

subsequence constraints (see Table 1) and to express constraints that cannot be handled by prior

methods (see Table 4). We subsequently suggest a computational model based on finite state

transducers (FSTs), and describe the formal semantics of our language.

4.1 Pattern Language
Our language consists of the following set of pattern expressions, defined inductively:

(1) For each itemw ∈ Σ, the expressionsw ,w=,w
↑
, andw↑= are pattern expressions.

(2) . and .↑ are pattern expressions.

(3) If E is a pattern expression, so are (E), [E], [E]∗, [E]+, [E]?, and for all n,m ∈ N with n ≤ m,

[E]{n}, [E]{n, }, and [E]{n,m}.
(4) If E1 and E2 are pattern expressions, so are [E1E2] and [E1 |E2].

Pattern expressions are based on regular expressions but additionally include capture groups (in

parentheses
6
), hierarchies (by omitting =), and generalizations (using

↑
and

↑
=). We make use of the

usual precedence of rules for regular expressions to suppress square brackets (but not parentheses);

operators that appear earlier in the above definition have higher precedence. We refer to expressions

of form (1) or (2) as item expressions. We writeGE (T ) to refer to the set of subsequences “generated”
by expression E on input T (see Section 4.3 for a formal definition).

Captured and uncaptured expressions. Pattern expressions specify which subsequences to output

(captured) as well as the context in which these subsequences should occur (uncaptured). We make

use of parentheses to distinguish these two cases; the semantics is similar to the use of capture

groups in regular expressions. Given an expression E, only subexpressions that are enclosed in or

contain a capture group will produce non-empty output; all other subexpressions serve to describe

context information. For example, the pattern expression

Eex = [c |d]([A
↑ | B↑=]

+)e (2)

describes precisely the subsequence constraint of Example 3.1. Here, subexpressions [c |d] and e

describe context and ([A↑ | B↑=]
+) output.

6
We use round parentheses to denote capture groups because this is the standard syntax in regex engines.
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Table 1. Pattern expressions for prior subsequence constraints. To increase readability, we omit a leading and
trailing “.∗” from each pattern expression.

Subsequence constraint Examples Pattern expression

All subsequences [5, 6, 39, 43, 51] [.∗(.)]+

Bounded length [5, 6, 50] length 3–5 [.∗(.)]{3, 5}

n-grams [12, 33] 3-, 4- and 5-grams (.){3, 5}

Bounded gap [5, 6, 33, 50] each gap at most 3 (.)[.{0, 3}(.)]+

Serial episodes [32] length 3, total gap ≤ 2 (.)[.?.?(.) | .?(.).? | (.).?.?](.)

Hierarchy [10, 43] generalized 5-grams (.↑){5}

Regular expression subsequences matching [a |b] c∗d (a |b)[.∗(c)]∗.∗(d),
[2, 5, 6, 23, 40, 47] contiguous subsequences ([a |b] c∗d)

matching [a |b] c∗d

Item expressions. Item expressions are the elementary form of pattern expressions and apply to

one input item. If the item expression “matches” the input item, it can “produce” an output item;

see Table 2 for an overview. Fix somew ∈ Σ. The most basic item expression isw=: it matches only

itemw and produces either ε (if uncaptured) orw (if captured). Using our example hierarchy of

Figure 1(b), we haveGA= (A) = ∅ (note that we ignore output ε),G(A=)(A) = {A }, andG(A=)(a1) = ∅.
Sometimes we do not want to only match the specified item but also all of its descendants in the item

hierarchy (e.g., we want to match all nouns in text mining). Item expressionw serves this purpose:

it matches any item w ′ ∈ desc(w) (which includes w) and, when captured, produces the item

that has been matched. For example, we have G(A)(A) = {A }, G(A)(a1) = { a1 }, and G(A)(b1) = ∅.
Our language also provides a wild card symbol “.” to match any item. Again, the matched item is

produced when the wild card is captured. For example, G(.)(A) = {A }, and G(.)(a1) = { a1 }.
To support mining with controlled generalizations (e.g., to mine patterns such as “PERSON

lives in CITY”), we use the generalization operator ↑, which generalizes items along the hierarchy.

Item expressions that use the generalization operator must be captured. More specifically, item

expressionw↑ matches any itemw ′ ∈ desc(w) — as does expressionw —, and it produces either the

matched input item or any of its ancestors that is also a descendant ofw . For example,G(B↑)(b12) =
{b12,b1,B } and G(b↑

1
)
(b12) = {b12,b1 }. We also allow the use of a wild card with generalization

operator: expression “.↑” matches any item and produces each of its generalizations. For example,

G(.↑)(b1) = {b1,B }. Our final item expression is used to enforce a generalization: w↑= matches

any descendant ofw and producesw , independently of which descendant has been matched. For

example G
(B↑=)
(b12) = { B }.

Composite expressions. Item expressions can be arbitrarily combined using operators ? (option-

ality), ∗ (Kleene star), + (Kleene plus), {n,m} (bounded repetition), | (union), and concatenation

to match (sequences of) more than one input item. The semantics of these compositions is as in

regular expressions.

ACM Transactions on Database Systems, Vol. 9, No. 4, Article 39. Publication date: March 2010.
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4.2 Comparison to Regular Expression Constraints
The use of pattern expressions allows DESQ to express many prior subsequence constraints in a

unified way; example pattern expressions for common constraints are shown in Table 1. Pattern

expressions are based on regular expressions but—in contrast to prior work on RE constraints

(e.g., [5, 23, 40, 47])—target input sequences instead of output sequences and support hierarchies

natively.

In more detail, the use of capture groups establishes a single formalism for expressing constraints

with respect to the input (via uncaptured subexpressions; e.g., consecutive subsequences as in

n-grams or non-consecutive subsequences with bounded gap) and with respect to the output (via

captured subexpressions; e.g., subsequences with bounded length or regular expression constraints).

For example, pattern expressions use uncaptured wildcards to express gap constraints (or the

absence thereof); e.g., the pattern expressions for regular expression constraints with and without

gaps at the bottom of Table 1 differ only in the use of uncaptured wildcards.

In combination with the use of hierarchies and generalizations, pattern expressions support many

customized subsequence constraints that arise in applications succinctly, including constraints

that cannot be expressed in prior FSM frameworks. Consider, for example, the task of mining

frequent relational phrases between entities from large text corpora as in [21]; e.g., the phrase

make a deal with may be frequent between persons and/or organizations. An FSM algorithm that

does not support flexible constraints cannot solve such a task: it cannot be tailored to consider

only relational phrases, thereby producing many uninteresting (i.e., non-relational) patterns, and

it does not support context constraints, thereby producing spurious patterns (i.e., patterns that

do not connect entities). In contrast, this constraint can be expressed succinctly via the pattern

expression ENTITY (VERB
+
DET? NOUN

+
? PREP?) ENTITY (similar to expression N1 of Table 4).

Here the expression inside the capture group describes relational phrases and the uncaptured part

describes the context in which the phrase must occur (i.e., between two entities). Table 4 lists other

examples, in which pattern expressions concisely describe customized sequence mining tasks in

context of information extraction and natural language processing. For example, expression N2

describes semantically typed relational phrases as in [37], expression N3 describes copular phrases

as in [48], expressions N4 and N5 are based on the subsequence constraints used to construct the

well-known Google n-gram corpus [28]. Table 4 also includes pattern expressions (e.g., A1–A4) that

describe customer behavior mining tasks and mining of protein sequences (e.g., P1–P4) that exhibit
a given motif [47].

4.3 Computational Model
We translate patterns expressions into finite state transducers (FSTs), which are a natural computa-

tional model for pattern expressions. An FST is a type of finite state machine for string-to-string

translation [34]. FSTs are similar to finite state automata but additionally label transitions with

output strings. Conceptually, they read an input string and translate it to an output string in a

nondeterministic fashion. We will use FSTs to specify subsequence predicates P(S,T ): the predicate
holds if the FST can output subsequence S when reading input T .

Finite state transducers. More formally, we consider a restricted form of FSTs defined as follows.

An FST 𝒜 is a 5-tuple (Q , qS , QF , Σ, ∆), where

• Q is a finite set of states,

• qS ∈ Q is the initial state,

• QF ⊆ Q is the set of final states,

• Σ is an input and output alphabet, and

• ∆ ⊆ Q × (Σ ∪ { ε }) × (Σ ∪ { ε }) ×Q is a transition relation.

ACM Transactions on Database Systems, Vol. 9, No. 4, Article 39. Publication date: March 2010.
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q0

q1

q2

q3

q4

q5

q6

q7

q8

q9

q10 q11

𝒜
2(a) :=

ε

ε

c:ε

d :ε

ε

ε

ε

ε

a1:a1

a1:A

a2:a2
a2:A

A:A

b11:B

b12:B

b1:B

b2:B

B:B

ε

ε

e:ε

ε

(a) FST𝒜
2(a)

q0

q1

q2

q3

q4

q5𝒜
2(b) :=

c:ε

d :ε

A:$-A

B:B

B:B

A:$-A

A:$-A

B:B

B:BA:$-A

e:ε

e:ε

(b) Succinct FST 𝒜
2(b)

q0 q1 q2 q3𝒜
2(c) :=

c:ε

d :ε

A:$-A

B:B

A:$-A

B:B

e:ε

(c) Minimized sFST 𝒜
2(c )

Fig. 2. FST (a), sFST (b), and minimized sFST (c) for [c |d]([A↑ | B↑=]+)e .

For every transition (qf rom , in,out ,qto) ∈ ∆, we require that out ∈ anc(in)∪{ ε } and that whenever
in = ε then out = ε . Our notion of FSTs differs from traditional FSTs in that we use a common input

and output alphabet and in that we restrict output labels. The latter restriction ensures that our

FSTs output generalized subsequences of their input (Lemma 4.2). Figure 2(a) shows an example

FST 𝒜2(a) (for our running example), where qS = q0, QF = {q11 }, and each transition is marked

with in:out labels. We refer to transitions with in = ε (and thus out = ε) as ε-transitions. These
transitions are marked with ε in the figure.

Runs and outputs. Let T = t1t2 . . . tn be an input sequence. A run for T is a sequence p =
p1p2 . . .pm of transitions where, for each 1 ≤ i ≤ m, we have that pi = (qi ,wi ,w

′
i ,q
′
i ) ∈ ∆, q1 = qS ,

qi+1 = q′i , and w1w2 . . .wm = T . (Recall that wi ∈ Σ ∪ { ε }, so thatm ≥ n). Intuitively, the FST
starts in state qS and repeatedly selects transitions that are consistent with the next input item. If
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qm ∈ QF , we refer to p as an accepting run. The output O(p) of run p is the sequence S = w ′
1
. . .w ′m

of output labels, where we omit allw ′i withw
′
i = ε and set S = ε if allw ′i = ε . The set of sequences

generated by FST 𝒜 is given by

G𝒜(T ) = {O(p) , ε | p is an accepting run of 𝒜 for T } . (3)

Example 4.1. Consider the FST 𝒜2(a) of Figure 2(a). The FST corresponds to the constraint of

Example 3.1. 𝒜2(a) has two accepting runs for sequence T1 = ca1b12e , which are given by

p1 = q0
ε
−→q1

c :ε
−−→q3

ε
−→q5

ε
−→q6

a1:a1
−−−−→q8

ε
−→q10

ε
−→q5

ε
−→q7

b12:B
−−−−→q9

ε
−→q10

e :ε
−−→q11

with output O(p1) = a1B, and

p2 = q0
ε
−→q1

c :ε
−−→q3

ε
−→q5

ε
−→q6

a1:A
−−−→q8

ε
−→q10

ε
−→q5

ε
−→q7

b12:B
−−−−→q9

ε
−→q10

e :ε
−−→q11

with output O(p2) = AB. Thus, G𝒜
2(a) (T1) = { a1B,AB }, as desired. There is no accepting run for

T2, so that G𝒜
2(a) (T2) = ∅. Observe that 𝒜2(a) generates precisely the P-sequences of Example 3.1.

The following lemma states that our FSTs generate generalized subsequences of their inputs and

thus specify subsequence predicates. Note that the lemma holds for any run, accepting or not.

Lemma 4.2. Let T ∈ Σ∗ be an input sequence and 𝒜 be an FST. For any run p of 𝒜 for T , it holds
that O(p) ⊑ T .

Proof. The proof is by induction. For T = ε , the assertion holds because every run for T must

consist of only ε-transitions so that G(p) = ε ⊑ T . Now suppose that the assertion holds for some

sequence T ′ ∈ Σ∗. We show that it then also holds for T = T ′w withw ∈ Σ. Let p be an arbitrary

run for T and let S be the sequence O(p). We decompose p into two sequences of transitions: a

prefix p ′ of a run for T ′ with output S ′ and a suffix pw that readsw and outputs Sw . Note that such
a decomposition is always possible. We have S = S ′Sw . Since p

′
is a run forT ′, we have that S ′ ⊑ T ′

by the induction hypothesis. Now observe that pw must contain exactly one transition with input

label w and that all other transitions must be ε-transitions, because otherwise p would not be a

run for T . Let w ′ be the output label of the transition with input label w . Then Sw = w ′. By the

definition of FSTs, we must havew ′ ∈ anc(w) ∪ { ε }, which implies thatw ′ ⊑ w . Since S ′ ⊑ T ′ and
Sw ⊑ w , we obtain S = S ′Sw ⊑ T

′w = T . □

Note that not all subsequence predicates can be expressed with FSTs. For instance, there is no

FST for predicate “all subsequences of form a∗b∗ with an equal number of a’s and b’s”, since this
predicate cannot be expressed with a finite number of states. FSTs are a suitable trade-off between

expressiveness and computational complexity, however: they can express many subsequence

constraints that occur in practice and they lend themselves to efficient mining (see Sections 5 and

7).

Translating pattern expression. We now describe how to translate a pattern expression E into an

FST𝒜(E). The FST formally defines the semantics of pattern expressions: we setGE (T )
def

= G𝒜(E)(T ).
Each item expression is translated into a two-state FST with Q = {qS ,qF }, where qS is the

initial and qF the final state. The transitions of the FST depend on the item expression and are

summarized in Table 2, column “FST”.

The translation rules for composite expressions mirror the classical Thompson construction [46]

for translating regular expressions to finite state automata.
7
For example, expression Eex of Equa-

tion (2) translates to the FST of Figure 2(a).

7
All translation rules can be implemented without introducing any ε-transitions; we follow this approach in our actual

implementation but use ε -transitions in our example FSTs for improved readability.
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Table 2. Translation rules for item expressions (wherew,w ′,w ′′ ∈ Σ)

Expr. Matches Captured Produces FST Succinct FST

w= w No ε {qS
w :ε
−−→ qF } {qS

w=:ε
−−−→ qF }

Yes w {qS
w :w
−−−→ qF } {qS

w=:w
−−−−→ qF }

w w ′ ∈ desc(w) No ε {qS
w ′:ε
−−−→ qF | w

′ ∈ desc(w)} {qS
w :ε
−−→ qF }

Yes w ′ {qS
w ′:w ′
−−−−→ qF | w

′ ∈ desc(w)} {qS
w :$

−−→ qF }

. w ∈ Σ No ε {qS
w :ε
−−→ qF | w ∈ Σ} {qS

.:ε
−−→ qF }

Yes w {qS
w :w
−−−→ qF | w ∈ Σ} {qS

.:$
−−→ qF }

w↑ w ′ ∈ desc(w) Yes anc(w ′) {qS
w ′:w ′′
−−−−→ qF | w

′ ∈ desc(w), {qS
w :$-w
−−−−→ qF }

∩ desc(w) w ′′ ∈ anc(w ′) ∩ desc(w)}

.↑ w ∈ Σ Yes anc(w) {qS
w :w ′
−−−−→ qF | w ∈ Σ, {qS

.:$-⊤
−−−→ qF }

w ′ ∈ anc(w)}

w ↑= w ′ ∈ desc(w) Yes w {qS
w ′:w
−−−−→ qF | w

′ ∈ desc(w)} {qS
w :w
−−−→ qF }

Succinct FST. The translation rules above can produce very large FSTs, especially when the

vocabulary is large. For example, if the hierarchy has n items and average depth d , the FST for “(.↑)”
has Θ(nd) transitions. To avoid this explosion of FST size, we define a variant of FSTs which has

compact representations for the types of transitions that we need for capturing item expressions.

We refer to this variant as succinct FSTs (sFSTs) and summarize their types of transitions in column

“succinct FST” of Table 2. The sFST of an item expression has exactly one transition, but input and

output labels are taken from an alphabet larger than Σ. Each transition in the sFST describes a set of

transitions in the corresponding FST in a concise way. More specifically, sFSTs use as input labels .,
w , andw= for allw ∈ Σ. Here “.” matches all input items,w matches all items in desc(w), andw=
matches only item w . They use as output labels ε , w , $, $-w , and $-⊤ for w ∈ Σ. Each transition

encodes the set of output labels in the corresponding FST: ε and w are as before, $ encodes the

matched input item, $-w the matched input item and all its ancestors that are descendants ofw ,

and $-⊤ the matched item and all its ancestors. The sFST translations for composite expressions

remain unmodified.

Figure 2(b) shows the sFST𝒜2(b) for pattern expression [c |d]([A↑ | B↑=]
+)e . Observe that the sFST

has fewer transitions than its non-succinct counterpart of Figure 2(a). Here we used translation

rules for composite expressions that do not introduce ε-transitions, which in this case further

reduces the number of transitions. We subsequently “minimize” our sFSTs, which further reduce

the number of states and transitions; see Section 6.1. For our running example, we finally obtain

the sFST 𝒜2(c) shown in Figure 2(c). The sFSTs corresponding to the pattern expressions of Table 1

are shown in Figure 16 (Appendix A).

Simulating sFSTs. Algorithm 1 shows how to “naively” simulate an sFST 𝒜 = (Q,qs ,QF , Σ,∆).
Here the transition function

δ (q,w) = { (out ,qto) | (q, in,out ,qto) ∈ ∆, in matchesw }

denotes the set of (output label, state)-pairs that can be reached from state q by consuming input

itemw (see column “Matches” in Table 2). Intuitively, we simulate the sFST by starting with the
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Algorithm 1 Naive sFST simulation

Require: sFST 𝒜 = (Q,qs ,QF , Σ,∆), T = t1 . . . t |T |
Ensure: G𝒜(T )
1: G𝒜(T ) ← ∅ // set of generated sequences
2: Step(qS , 1, ε)
3:

4: void Step(q,pos, S): // (current state, input pos., buffer)
5: if q ∈ QF and pos > |T | then
6: if S , ε then
7: G𝒜(T ) ← G𝒜(T ) ∪ { S }
8: return
9: for all (out ,qto) ∈ δ (q, tpos ) do // empty if pos > |T |
10: switch (out )
11: case ε:
12: Step(qto ,pos + 1, S)
13: casew :
14: Step(qto ,pos + 1, Sw)
15: case $:
16: Step(qto ,pos + 1, Stpos )
17: case $-x for x ∈ Σ ∪ {⊤}:
18: for allw ′ ∈ anc(tpos ) ∩ desc(x) do
19: Step(qto ,pos + 1, Sw

′)

initial state qS of the sFST (line 2) and repeatedly selecting a transition for which the input label

matches the next input item tpos (line 9). If there are multiple such transitions, we select them one

by one (via backtracking). As we move from state to state, we append items that are encoded by

the output labels (column “Produces” in Table 2) of the selected transitions to an output buffer (S ,
lines 10–19). As before, if a transition encodes more than one output item, we append them one

by one (again via backtracking, lines 18–19)
8
. To keep notation concise, we define desc(⊤) = Σ. If

we reach a final state after consuming all input items, we output the buffer, which then contains a

generated sequence (lines 5–8).

Consider the sequence T3 = da2a1a2b11e of our example database Dex and the sFST 𝒜2(c) of

Figure 2(c). In the first invocation of Step, we have q = q0, tpos = t1 = d , and S = ε . Since
δ (q0,d) = { (ε,q1) }, we proceed to line 12 and invoke Step with q = q1, tpos = t2 = a2, S = ε .
We have δ (q1,a2) = { ($-A,q2) }, so that we proceed to line 19 and invoke Step with q = q2,
tpos = t3 = a1, and S = a2. After consuming input items a1, a2, and b11 in a similar fashion, we

invoke step with q = q2, tpos = t6 = e , and S = a2a1a2B. Since δ (q2, e) = { (ε,q3) }, we proceed to

state q = q3 and pos = 6 without further modifying the buffer. Finally, since q3 ∈ QF is a final state

and we consumed the entire input, we add buffered sequence S = a2a1a2B to the set G𝒜
2(c ) (T3) in

line 7. The algorithm then backtracks and generates sequences a2a1AB, a2Aa2B, a2AAB, Aa1a2B,
Aa1AB, AAa2B, and AAAB.

Nondeterminism. Naive sFST simulation involves backtracking when multiple transitions leaving

a state match the same input item and/or when a transition has an output label of form $-w or

$-⊤. The standard way to avoid nondeterminism is to use some form of FST determinization.

8
A more efficient procedure, which reduces repeated computations, would be to append a description of all output items to

buffer S . We do not follow this procedure to allow for efficient mining; see Section 5.
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Mohri [34] showed that the classical powerset construction algorithm by Rabin and Scott [41]

for non-deterministic finite state automata (NFA) can be extended to determinize sequential FSTs.
However, this approach does not work out of the box for us, since our FSTs are not sequential. We

discuss this issue in Section 6.

5 PATTERN MINING
We now turn attention to mining P-frequent sequences from a sequence database. We assume that

the subsequence predicate P is described by a sFST 𝒜; e.g., the sFST can be obtained by translating

a pattern expression and subsequently minimizing it (cf. Section 6). We propose three methods for

mining P-frequent sequences: Naïve, DESQ-COUNT, and DESQ-DFS.

The naïve approach is to compute all P-generated sequences for each input sequence, count how

often each sequence has been obtained, and output the ones that are frequent. DESQ-COUNT im-

proves on the naïve approach by only generating sequences that do not contain globally infrequent

items. Finally, DESQ-DFS is based on depth-first projection-based methods [39, 40] and is generally

more efficient than DESQ-COUNT when the set of P-generated sequences is large.

5.1 Naïve Approach
The naïve “generate-and-count” approach is to compute G𝒜(T ) for each input sequence T ∈ D via

sFST simulation and count how often each sequence has been generated (cf. Equation (1)). The

naïve approach is generally inefficient because it considers many globally infrequent sequences.

For example, we obtain

GAex (T3) ={AAAB,AAa2B,Aa1AB,Aa1a2B,

a2AAB,a2Aa2B,a2a1AB,a2a1a2B}

for input sequence T3, but only AAAB and Aa1AB are P-frequent.

5.2 DESQ-COUNT
DESQ-COUNT reduces the number of sequences that are generated and counted by making use

of item frequencies. In more detail, denote by f (w,D) = |{T ∈ D | w ⊑ T }| the frequency of

item w . We say that item w is frequent if f (w,D) ≥ σ . Similar to many prior FSM algorithms,

DESQ-COUNT first generates an f-list F , which contains all items along with their frequencies. For

our example database, we obtain f-list

Fex = {A:6, e:6,B:6,a1:6,d :3,b2:3,b1:2, c:2,b12:1,b11:1,a2:1}. (4)

Note that the f-list is independent of the subsequence constraint and can be precomputed. In

DESQ-COUNT, we make use of the f-list to reduce the size of G𝒜(T ). Denote by

GF
𝒜(T ) = { S ∈ G𝒜(T ) | ∀w ∈ S : f (w,D) ≥ σ }

the subset of generated sequences that do not contain infrequent items. ForT3, we haveG
Fex
𝒜

2(c )
(T3) =

{AAAB,Aa1AB}, which is much smaller than the full set G𝒜
2(c ) (T3) given above. DESQ-COUNT

proceeds as the naïve approach, but replacesG𝒜(T ) byG
F
𝒜(T ) for each T ∈ D . Note that we do not

fully compute G𝒜(T ) to obtain GF
𝒜(T ); see below.

The correctness of DESQ-COUNT is established by Lemma 4.2, which states that FSTs specify

subsequence predicates, and the following observation.

Lemma 5.1. Let P be a subsequence predicate and S ∈ Σ+ be an arbitrary sequence. Then for all
itemsw ∈ S , f (w,D) ≥ fP (S,D).
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Proof. Pick anyw ∈ S and input sequenceT ∈ D such that S ∈ GP (T ). Since P is a subsequence

predicate, S ⊑ T . Sincew ∈ S , we havew ⊑ S and thus alsow ⊑ T . We obtain

fP (S,D) = |{T ∈ D | S ∈ GP (T ) }|

≤ |{T ∈ D | w ⊑ T }| = f (w,D).

□

The lemma implies that P-frequent sequences must be composed of frequent items. We thus can

safely prune all sequences that contain infrequent items from G𝒜(T ).
As mentioned above, we directly compute the reduced set GF

𝒜(T ) by adapting Algorithm 1 to

work with the f-list. In more detail, we stop exploring a path through the sFST (via Step) as soon

as an infrequent item is produced. To do so, we execute lines 14, 16 and 19 of Algorithm 1 only if

the item appended to the buffer S is frequent.

The pruning performed by DESQ-COUNT can substantially reduce the number of candidate

sequences. DESQ-COUNT is inefficient (and sometimes infeasible), however, if pruning is not

sufficiently effective and the setsGF
𝒜(T ) are very large. The DESQ-DFS algorithm, which we present

next, targets such cases.

5.3 DESQ-DFS
DESQ-DFS adapts the pattern-growth framework of PrefixSpan [39] to FSTs. Pattern growth

methods arrange the output sequences in a tree, in which each node corresponds to a sequence S
and is associated with a projected database, which consists of the set of input sequences in which S
occurs. Starting with an empty sequence and the full sequence database, the tree is built recursively

by performing a series of expansions. In each expansion, a frequent sequence S (of l items) is

expanded to generate sequences (of l + 1 items) with prefix S , their projected databases, and their

supports. In what follows, we describe how we adapt these concepts to mine P-frequent sequences.
The corresponding algorithm for sFSTs is shown as Algorithm 2 and illustrated on our running

example in Figure 3.

Projected databases. For each sequence S , we store in its projected database the state of the

simulations of 𝒜 on all input sequences that generate S as a partial output. We refer to such a state

as a snapshot for S . The snapshot concisely describes which items have been consumed, which

state the sFST simulation is in, and which output has been produced so far. In more detail, suppose

that we simulate a sFST 𝒜 on input sequence T = t1 · · · tn . Consider a partial run p = p1 · · ·pm
consisting ofm ≤ n transitions. We generated output S = O(p) and, under our running assumption

that 𝒜 does not contain ε-transitions (see Footnote 7), consumed prefix T ′ = t1 · · · tm of T at this

time. If the output item of the last transition pm is not empty (and thus agrees with the last item of

S), we say that triple T [pos@q] is a snapshot for S , where pos =m + 1 is the position of next input

item and q is the last state in p (that is, the current state of 𝒜). The projected database for S consists

of all snapshots for S and is given by

Proj𝒜(S,D) = {T [pos@q] | T ∈ D and T [pos@q] is a snapshot for S on 𝒜 }.

Figure 3(b) shows some projected databases associated with some sequences for our running

example. For example, we obtained the partial output a1 only from input sequences T1, T4, and T6.
In each case, we consumed two items (the next item is at position 3) and ended in state q2. We refer

to the number of input sequences that can generate S as a partial output as the prefix support of S :

Presup𝒜(S,D) = {T | ∃pos,q : T [pos@q] ∈ Proj𝒜(S,D)}.
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Algorithm 2 DESQ-DFS

Require: D , sFST 𝒜 = (Q,qS ,QF , Σ,∆), σ , f-list F
Ensure: P-frequent sequences for 𝒜 in D
1: S ← ε // create root node; initially fields S .Proj = S .Sup = ∅
2: S .Proj←

{
T1[1@qS ], . . . ,T |D |[1@qS ]

}
3: Expand(S)
4:

5: void Expand(S):
6: for all T [pos@q] ∈ S .Proj do // simulate sFST for all snapshots
7: IncStep(T ,pos,q, S)
8: if |S .Sup| ≥ σ then yield (S ,|S .Sup|) // Output if P-frequent
9: for all S ′ ∈ S .Children do // expand if prefix support large enough
10: if |{T | ∃pos,q : T [pos@q] ∈ S .Proj }| ≥ σ then Expand(S ′)
11:

12: void IncStep(T ,pos,q, S): // simulate until an item is produced
13: if q ∈ QF and pos > |T | then
14: if S , ε then
15: S .Sup← S .Sup∪ {T } // initially empty
16: return
17: for all (out ,qto) ∈ δ (q, tpos ) do
18: switch (out)

19: case ε:
20: IncStep(T ,pos+1,qto , S)
21: casew :
22: if f (w,D) ≥ σ then Append(S ,w , T , pos+1, qto )
23: case $:
24: if f (tpos ,D) ≥ σ then Append(S , tpos , T , pos+1, qto )
25: case $-x ,x ∈ Σ ∪ { ⊤ }:
26: for allw ′ ∈ anc(tpos ) ∩ desc(x) do
27: if f (w ′,D) ≥ σ then Append(S ,w ′, T , pos+1, qto )
28:

29: void Append(S,w,T ,pos,q):
30: S .Children← S .Children∪ { Sw } // node Sw is created if new
31: Sw .Proj← Sw .Proj∪ {T [pos@q] } // initially empty

In our example, Presup𝒜
2(c )
(a1,Dex ) = {T1,T4,T6 }. Note that even if an input sequence has multiple

snapshots for S , it contributes only once to the prefix support.

Expansions. We now discuss Algorithm 2. We start with root node ε and all snapshots for ε
(lines 1 and 2) and then perform a series of expansions (lines 3 and 10). In each expansion, we scan

the projected database sequentially. For each snapshot T [pos@q] (lines 6–7), we resume the sFST

for T at item tpos in state q (via IncStep, lines 12–27). The transducer is stopped as soon as an

output item is produced or the entire input is consumed. In the former case, suppose we produce

item w after consuming k more input items from T and thereby reach state q′. We then add the

new snapshot T [pos+k@q′] to the projected database of child node Sw (lines 22, 24, and 27). In the

latter case, if we end up in a final state (lines 13–15), we conclude that T ∈ Sup𝒜(S,D) (see below).
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ε

E1

a1 A

a1Ba1A a1a1

E2

E3

ABAA Aa1

E4

E5

AAA AAa1
E6

AAAB

E7

E8 E9

Aa1A Aa1a1
E10

Aa1AB

E11

Expansions

P -frequent, expanded

Not P -frequent, expanded

Not P -frequent, not expanded

(a) Search space

S S .Proj |S .Presup| |S . Sup|

ε ⟨T1[1@q0],T2[1@q0],T3[1@q0],T4[1@q0],T5[1@q0],T6[1@q0]⟩ 6 0

a1 ⟨T1[3@q2],T4[3@q2],T6[3@q2]⟩ 3 0

a1A ⟨T6[4@q2]⟩ 1 0

a1B ⟨T1[3@q2],T4[3@q2]⟩ 2 2

a1a1 ⟨T6[4@q2]⟩ 1 0

(b) Some projected databases, prefix supports, and supports

Fig. 3. Illustration of DESQ-DFS for Dex , 𝒜Fex , and σ = 2

For example, both snapshots of a1B reach final state q3 by consuming all input items and without

producing further output, so that a1B.Sup = {T1,T4 }.

Pruning. The above expansion procedure allows us to prune partial sequences as soon as it

becomes clear that they cannot be expanded to a P-frequent sequence. We use two pruning

techniques. First, as in DESQ-COUNT, we consider item w only if it is frequent; otherwise, we

ignore the new snapshot. For example, when expanding a1, we do not create nodes for sequences

that contain infrequent items; e.g., a1b12 has snapshot T1[4@q2] but contains infrequent item b12
(see Equation (4)). Second, we expand only those nodes S that have a sufficiently large prefix

support—i.e., Presup𝒜(S,D) ≥ σ—and stop as soon as there is no such node anymore. For example,

we do not expand node a1a1 because it contains only one snapshot, but we require snapshots from

at least σ = 2 different input sequences.

Correctness. Note that the size of the prefix support is monotonically decreasing as we go down

the tree but always stays at least as large as the support. This property, which we establish next, is

key to the correctness of DESQ-DFS.

Lemma 5.2. For every sequence S ∈ Σ∗ and itemw ∈ Σ, we have Presup𝒜(Sw,D) ⊆ Presup𝒜(S,D).

Proof. Pick any S ∈ Σ∗, w ∈ Σ, and T = t1 · · · tn ∈ D with T ∈ Presup𝒜(Sw,D). Then there

exists a run p = p1 · · ·pm for prefix T ′ = t1 · · · tm and somem ≤ n such that O(p) = Sw . Recall

that inputs (outputs) are consumed (generated) from left to right. We conclude that there exists

somem′ < m such that run p ′ = p1 · · ·pm′ satisfies O(p
′) = S . Pick the shortest such run; then pm′
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outputs the last item of S . Since p ′ is additionally a run for t1 · · · tm′ , which is a prefix of T , we
conclude that T ∈ Presup𝒜(S,D). □

We now establish the correctness of DESQ-DFS.

Theorem 5.3. DESQ-DFS outputs each P-frequent sequence S ∈ Σ+ with frequency fP (S,D). No
other sequences are output.

Proof. Let 𝒜 = (Q,qS ,QF , Σ,∆) be a sFST and pick any sequence S ∈ Σ+. We start with

showing that Algorithm 2 correctly computes the P-support of S when expanding node S , i.e.,
S .Sup = Sup𝒜(S,D) after the expansion. First pick any T ∈ Sup(S,D) with T = t1 · · · tn . Then
there is an accepting run p = p1 · · ·pn for T . By arguments as in the proof of Lemma 5.2, there

must be a smallest run p ′ = p1 · · ·pm , m ≤ n, such that O(p ′) = S as well. Let qm (qn) be the

state reached in transition pm (pn). We conclude that snapshot T [pos@qm] ∈ Proj𝒜(S,D), where
pos =m + 1, and thus T ∈ Presup(S,D). Since by definition pm+1 · · ·pn must output ε , Algorithm 2

follows transitions pm+1 · · ·pn without stopping when resuming snapshotT [pos@qm]. By doing so,

it consumes all the remaining items tm+1 · · · tn ofT and reaches final state qn . It thus includesT into

S .Sup (lines 13–15). Now pick T < Sup𝒜(S,D). Since there is no accepting run for T , Algorithm 2

cannot reach a final state after consuming T so that it does not include T into S .Sup. Putting both

together, S .Sup = Sup𝒜(S,D) after expanding S , as desired.We conclude that Algorithm 2 computes

the correct frequency fP (S,D) = |Sup𝒜(S,D)|. Therefore, S is output only if it is P-frequent (line 8).
Note that for S = ε , we have ε .Sup = ∅ (see line 13) so that ε is not output.

Let S ∈ Σ+ be a P-frequent sequence. It remains to show that Algorithm 2 reaches and expands

node S . First observe that for any prefix S ′ of S , we have

Presup(S ′,D) ⊇ Presup(S,D) ⊇ Sup(S,D).

Here the first inclusion follows from Lemma 5.2, and the second inclusion follows from the above

arguments. Since S is P-frequent, we have |Sup(S,D)| ≥ σ , which implies |Presup(S ′,D)| ≥ σ .
Since every node on the path from ε to S corresponds to a prefix of S , Algorithm 2 does not prune

any of these nodes due to too low prefix support (line 10). To complete the proof, recall that S
cannot contain an infrequent item by Lemma 5.1. Thus none of the nodes on the path from ε to S
are pruned due to too low item frequency either (lines 22, 24, or 27). We conclude that Algorithm 2

reaches and expands node S . □

To improve efficiency, our actual implementation of Algorithm 2 does not explicitly compute

supports and prefix supports but directly counts their sizes.

6 OPTIMIZATIONS
sFST simulation forms the basis of our mining algorithms discussed above. In this section, we

discuss four optimizations for sFST simulation, which we also implemented for our experiments in

Section 7. In Section 6.1, we explain how we partially determinize sFSTs to reduce backtracking and

to reduce the number of states and transitions. In Section 6.2, we present a technique that enables

us to detect and stop early runs that provably accept without producing further output, no matter

which input items are still unread. In Section 6.3, we propose a pruning method that enables us to

prune irrelevant input sequences during mining, i.e., input sequences for which the simulation is

guaranteed to have no accepting run. Finally, in Section 6.4, we propose a two-pass approach that

prunes irrelevant input sequences and further removes unnecessary nondeterminism by avoiding

transitions leading to non-accepting runs.

All of our optimizations involve algorithms that take worst-case exponential time in the size

of the FST 𝒜 (but not in the size of the sequence database). At least for the pattern expressions
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considered in our experiments, the methods proposed here did not suffer from such exponential

blow-up and, in fact, led to greatly improved overall running times.

6.1 Determinizing and Minimizing sFSTs
The naive sFST simulation algorithm in Section 4.3 (Algorithm 1) has some obvious optimization

potentials. The first is to try to reduce nondeterminism in the sFST before simulation in order to

avoid backtracking, which can be very costly. Mohri [34] studied FST determinization and showed

that the classical powerset construction for non-deterministic finite state automata (NFA) [41] can

be extended to determinize sequential FSTs. Here, an FST is sequential if for each input there is at

most one output. Unfortunately, this algorithm cannot be used naively, because the transformations

expressed by our pattern expressions (and therefore also our sFSTs) are not sequential in general.

An orthogonal way to reduce nondeterminism is to delay some of the output. More precisely,

an FST is p-subsequential if there are at most p outputs per input. For p-sequential transducers,
it is possible to delay output until after the input has been consumed entirely, thus avoiding

nondeterminism and backtracking. However, our FSTs are often even not p-subsequential. For
example, the number of outputs for expression [.∗(.)]+ (all subsequences) is exponential in the input

size and thus not bounded by a constant p. Furthermore, delaying the output prevents us from doing

other optimizations (as in DESQ-DFS, in particular). For these reasons, avoiding nondeterminism

without limiting our pattern language is challenging.

We therefore apply a simple strategy that can remove much of the nondeterminism. A bonus is

that the technique also allows us to eliminate unnecessary sFST states and, therefore, to “minimize”

the sFST (according to a criterion that we make clear later). Observe that FSTs are isomorphic to

NFAs if we treat input and output labels as atomic labels, that is, instead of having transitions

(qf rom , in,out ,qto) ∈ ∆ we just consider the NFA with transitions (qf rom , in:out ,qto) and treat

in:out as a single symbol. Denote by N (𝒜) the NFA obtained from sFST 𝒜 in such a way. We

partially determinize and minimize 𝒜 by determinizing and minimizing N (𝒜).
In principle, we can apply any NFA minimization algorithm to minimize N (𝒜). We implemented

Brzozowski’s [15] algorithm because it is simple and was empirically shown to be very fast on NFAs

in practice, especially when the alphabet is large [4]. Figure 4 illustrates such an application of

Brzozowski’s algorithm to an sFST𝒜 for pattern expression (Ab1 |Ac). We start with𝒜 (Figure 4(a))

and construct a reverse sFST R(𝒜) (Figure 4(b)) by (i) reversing the direction of the transitions of 𝒜,

and (ii) swapping initial and final states. We then obtain the sFST D(R(𝒜)) (Figure 4(c)) by applying

the powerset construction algorithm for converting NFAs to DFAs on N (R(𝒜)). We then repeat the

process one more time (Figures 4(d) and 4(e)) to obtain the minimized sFST (Figure 4(e)).

The above minimization also helps to reduce nondeterminism in cases when a state has two

transitions with the same input and output label. Consider for example input sequence T = a1c .
When we simulate the sFST of Figure 4(a), we have δ (q0,a1) = { (a1,q1), (a1,q2) } so that sFST

simulation tries both options via backtracking. However, for the minimized sFST of Figure 4(e), we

have δ (q0,a1) = { (a1,q1) } and thus simulation avoids any backtracking.

Note that the algorithm does not always result in a minimal sFST as it is limited by treating input

and output labels as atomic labels. Instead, it computes an sFST that is isomorphic to the minimal

DFA for the language with atomic labels. The sFST in question can still have some nondeterminism

because, for instance, the two labels .:$ and b1= :b1 are different in the DFA but in the sFST they both

match the input item b1. Indeed, the sFST 𝒜5 in Figure 5 is nondeterministic even though N (𝒜5)

is deterministic. In principle, the resulting sFST can be optimized even more by concatenating

successive output labels as in classical FST minimization [35], but we do not explore this direction

further.
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q0

q1

q2

q3

q4

A:$

A:$

b1:$

c:$

(a) 𝒜

q0

q1

q2

q3

q4

A:$

A:$

b1:$

c:$

(b) R(𝒜)

q0

q1

q2

q3

A:$

A:$

b1:$

c:$

(c) D(R(𝒜))

q0

q1

q2

q3

A:$

A:$

b1:$

c:$

(d) R(D(R(𝒜)))

q0 q1 q3

A:$ b1:$

c:$

(e) D(R(D(R(𝒜))))

Fig. 4. Minimizing sFST for expression (Ab1 |Ac).

We concludewith a note on complexity. Any algorithm that computes aminimal DFA from a given

NFA has an unavoidable exponential blow-up in the worst case [24, Section 2.3.6]. Brzozowski’s

minimization algorithm on an NFA also runs in (single) exponential time. First, the computation of

D(R(N (𝒜))) is in exponential time and generates an automaton exponential in |R(N (𝒜))|. However,
there is no double exponential blow-up. Since we implement the computation of D(R(D(R(N (𝒜)))))
such that only reachable states are considered, and since the final output is the minimal DFA for

N (𝒜), which is single exponential in |N (𝒜)| the total output size is indeed single exponential in

|N (𝒜)|.
It is difficult to avoid the worst-case exponential blow-up upon determinization. Typical classes

of languages for which the translation from NFA to DFA can have an exponential blow-up are

defined by (a |b)∗a(a |b)n or by (a |b)∗a(a |b)nb(a |b)∗ (with parameter n). The former class tests if the

n+ 1st symbol from the right is an a. The latter class tests if the sequence has an a somewhere, such

that n + 1 positions later, there is a b. Each such expression has an equivalent NFA with Θ(n) states,
but the minimal DFA requires 2

Θ(n)
states. However, for typical pattern expressions we have seen

in frequent sequence mining (see Table 1 and Appendix A), we did not notice a significant blow-up.

In principle, one can try to avoid such a worst-case blow-up by imposing some kind of deter-

minism constraint already on pattern expressions. But this does not solve the problem, for various

reasons. First of all, the exponential blow-up is only avoided because the expressions themselves can

become exponentially larger. Second, and more seriously, the literature on determinism in ordinary

regular expressions tells us that the determinism constraints restrict the expressiveness of regular

expressions [14, 17], to such an extent that it breaks closure properties that make regular languages

convenient to work with [30] (e.g., union, intersection, complement). Since we did not observe a

major practical disadvantage in our experiments by allowing non-determinism, we decided that

having a worst-case exponential blow-up was the lesser disadvantage.
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q0 q1

q2

q3

q4

𝒜5 :=

.:ε

c:ε

.:$

A:$-A

b1= :b1

.:ε

.:$

.:ε

Fig. 5. Example sFST 𝒜5 with a final-complete annotation (shown in gray)

6.2 Final-Complete Annotations
The simulation algorithm (Algorithm 1) generates output(s) only when the entire input sequence is

matched. We noticed that this often results in overhead of processing input items that do not affect

the final output(s) for accepting runs. To see this, consider the sFST 𝒜5 shown in Figure 5 and the

input sequence

Tex = e d a1 c b1 c d c b2.

Tex has one accepting run

q0
e :ε
−−→q0

d :ε
−−→q0

a1:ε
−−−→q0

c :ε
−−→q1

b1:b1
−−−→q3

c :ε
−−→q3

d :ε
−−→q3

c :ε
−−→q3

b2:ε
−−−→q3

with output b1. Observe that the input items in the prefix e d a1 and suffix c d c b2 ofTex do not affect

the final output produced by the accepting run. This overhead of processing prefixes and suffixes

that do not affect the final output is also incurred when we are interested in partially matching a

pattern expression, i.e., when pattern expressions are of the form .∗E.∗ or .∗E, or E.∗.
In an sFST, we want to identify which final states are such that every suffix of the input is accepted

and no more output can be produced. More formally, we call a final state q ∈ QF final-complete if
the following two conditions are satisfied:

(1) the sub-sFST with initial state q accepts every sequence S ∈ Σ∗, and
(2) no transitions that produce an output can be reached from q.

For example, sFST 𝒜5 has final-complete state q3, which we mark in gray. Final state q4 is not
final-complete since it violates both conditions. Final state q2 satisfies the first condition—i.e.,

accepts .∗—but has a reachable transition q2
.:$
−−→ q4 producing an output and therefore violating the

second condition.

We make use of the final-complete annotations during sFST simulation as follows. Whenever

we reach a final-complete state, we add the output buffered so far to G𝒜(T ), whether or not the
entire input has been consumed. In more detail, line 5 of Algorithm 1 (and line 13 of Algorithm 2)

changes to

5: if (q ∈ QF and pos > |T |) or (q is final-complete)

In our running example, we can safely abort the run for Tex after reaching final-complete state

q3, which avoids processing suffix eb1a1d . This approach short-circuits unnecessary processing

of input items that will not affect the produced output for accepting runs. This is useful for our

mining algorithms as we can safely avoid scanning to the end.

We now turn attention to how to determine the set of final-complete states. We consider each

final state in turn. Given a final state q, condition (2) is easily verified by, say, depth-first search

starting from q. Condition (1) is more challenging to verify: The problem of deciding whether the

sub-sFST starting at state q accepts all inputs is equivalent to the problem of deciding whether
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a given NFA (obtained from the FST by dropping all output labels) accepts all inputs, which is

a PSPACE-complete problem [45]. Instead, we only perform a test that is sound, but may be

incomplete. More precisely, we consider the sub-sFST that has q as its starting state, and we only

consider the transitions labeled .:ε . Notice that this sub-sFST can be seen as an NFA over the unary

alphabet { . } (by ignoring the output). We then determinize this NFA via the powerset construction

and test if the resulting DFA accepts every word over the alphabet { . }. This happens if and only

if the DFA has no reachable non-final state. This condition is easy to test since the DFA is over a

unary alphabet, i.e., its set of reachable states form a chain with a single backloop at the end. Note

that this algorithm has worst-case exponential runtime due to determinization.
9

Note that final-complete annotations described above only help to avoid processing of suffixes

that do not affect the final output of accepting runs. In Section 6.4, we show how we leverage

final-complete annotations to also avoid repeated processing of certain “unnecessary” prefixes.

6.3 Pruning Irrelevant Input Sequences
We now discuss a pruning technique, which allows us to prune input sequences that are guaranteed

to have no accepting runs. More formally, we say that an input sequence T is 𝒜-relevant for an
sFST 𝒜 if there is at least one accepting run for T . Similarly, we say the T is 𝒜-irrelevant if there is
no accepting run for T in 𝒜. For example, sequence Tex is 𝒜5-relevant, whereas T = a1 c b2 c d c b2
is 𝒜5-irrelevant.

10
sFST simulation on 𝒜-irrelevant input sequences never reaches a final state and

leads to wasted computation of partial output sequences. Thus, pruning such input sequences can

significantly improve overall efficiency of our mining algorithms.

We quickly determine whether or not an input sequence T is 𝒜-relevant via a DFA 𝒜d
that

accepts T if and only if it is 𝒜-relevant. As mentioned earlier, FSTs are similar to finite state

automata but transitions are additionally labeled with outputs. Denote by Nin(𝒜) the NFA obtained

from the canonical (non-succinct) FST for𝒜 by dropping all output labels. By construction, Nin(𝒜)
accepts an input sequence T if and only if 𝒜 has an accepting run for T . We convert Nin(𝒜) to an

equivalent DFA𝒜d def

= D(Nin(𝒜)). Given this DFA, we can determine in linear time whether or not

an input sequence is relevant. In practice, we construct 𝒜d
directly from 𝒜 instead of from Nin(𝒜)

by adapting the subset construction algorithm to sFSTs.

Figure 6 shows the DFA 𝒜d
5
corresponding to sFST 𝒜5. Observe that 𝒜d

5
will reject the input

sequence T = a1 c b2 c d c b2 (which can thus be safely pruned during mining), whereas it will

correctly accept the sequence Tex .
In our running example, the DFA only has six states. In general, the number of DFA states

can grow exponentially with the number of sFST states. Although in our experimental study the

DFA construction worked well for most pattern expressions used there, our implementation also

supports lazy DFA construction for situations where the exponential blow-up is unavoidable. Also

note that the DFA is not succinct, which imposes additional memory overhead. In particular, item

expressions that match many inputs produce many DFA transitions (e.g., . orw when desc(w) is
large). Our implementation uses a number of engineering tricks to reduce the memory footprint;

e.g., handling . specially, using bitmap indexes, or sharing data and index structures between DFA

states to the extent possible.

9
And there is little hope to do better: The problem of deciding whether an NFA over a unary alphabet accepts every word is

coNP-complete [45]. As before, we do not expect to see worst-case behavior in practice.

10
Cf. Equation (3). G𝒜(T ) = ∅ does not necessarily imply that T is 𝒜-irrelevant; this can happen when 𝒜 has an accepting

run with ε output.
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qd
0

qd
01

qd
013

qd
012

qd
012

qd
0124

qd
01234

𝒜d
5
:=

Σ \ { c }

c

Σ \ { a1,a2,A,b1 }

b1

a1
a2

A

Σ \ {b1 }

b1

Σ \ {b1 }

b1

Fig. 6. DFA 𝒜d
5
corresponding to sFST 𝒜5. Final-complete states are shown in gray.

The final-complete annotations described in the previous section also improve DFA construction

and its simulation. During DFA construction, we can ignore all outgoing transitions of final-

complete states, and mark a DFA state as final-complete if any of its corresponding sFST states

is final-complete (cf. Figure 6). Final-complete annotations in the DFA enable us to stop a DFA

simulation early: the DFA accepts an input sequence if it reaches a final state upon consuming the

entire input or if it reaches a final-complete state (even when the input is not entirely consumed).

For example, we can determine the 𝒜5-relevance of Tex as soon as we reach state qd
013

of 𝒜d
5
; we

thus do not need to process suffix c d c b2d .
We integrate pruning 𝒜-irrelevant sequences into DESQ-COUNT and DESQ-DFS by only con-

sidering 𝒜-relevant input sequences; all other input sequences are pruned upfront. The algorithms

remain unmodified otherwise. Pruning𝒜-irrelevant sequences is beneficial if the sequence database

contains many 𝒜-irrelevant sequences. In the worst case, when all input sequences are 𝒜-relevant,

nothing is pruned and DFA simulation leads to additional overhead. Moreover, even when an input

sequence is 𝒜-relevant, sFST simulation may still involve unnecessary backtracking, i.e., it may

still process non-accepting runs. In the next section, we propose a two-pass approach that prunes

𝒜-irrelevant input sequences and additionally avoids processing non-accepting runs.

6.4 Two-Pass Approach
The naive sFST simulation involves backtracking whenever multiple transitions leaving a state

match the same input item or when a transition has an output label of the form $-w or $-⊤. While

we try to avoid backtracking whenever possible, we feel that it is acceptable when each backtracking

procedure is useful for producing an output sequence. For example, recall the sFST simulation

example at the end of Section 4.3, where simulating sFST 𝒜2(c) of Figure 2(c) on sequence T3 of our
example database involved backtracking to generate all output sequences. In this example, there

was no “unnecessary” backtracking in the sense that it always led to an accepting run. But this is

not always the case. For example, simulating sFST 𝒜5 on input sequenceTex involves backtracking

from non-accepting runs. Figure 7 illustrates all runs forTex , arranged in a trie. Here, the transitions

q0
c :ε
−−→ q0 and q1

b1:b1
−−−→ q1 (marked with “x”) lead to four non-accepting runs. Such backtracking

leads to wasted computation; we therefore want to avoid it. In what follows, we propose a two-pass

approach that completely avoids transitions leading to non-accepting runs and therefore also avoids

such backtracking.

Consider an input sequenceT = t1 . . . t |T | . The key idea in the two-pass approach is to efficiently

precompute (before sFST simulation) setsQ1, . . . ,Q |T | of FST states such that, for each 1 ≤ pos ≤ |T |
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q0 q0 q0 q0 q0 q0 q0 q0 q0 q0 (Reject)

q1 q1 (Reject)

q1 q1 q1 q1 (Reject)

q1 q1 q1 q1 q1 q1 (Reject)

q3 q3 q3 q3 q3 (Accept)

e:ε d :ε a1:ε c:εx
b1:ε c:ε d :ε c:ε b2:ε

c:ε
b2:b2

c:ε

d :d c:c b2:b2

c:ε

b1:b1x c:c d :d c:c b2:b2

b1:b1
c:ε d :ε c:ε b2:ε

Fig. 7. Runs for input sequence Tex = e d a1 c b1c d c b2 on sFST 𝒜5.

and each q ∈ Qpos , the suffix tpos+1 . . . t |T | is accepted by 𝒜 if it starts in state q. We make use of

this information during simulation to only select transitions that lead to accepting runs.

More precisely, let 𝒜 be an sFST and denote by R(T ) = t |T | . . . t1 the reverse of input sequence
T . Similarly, denote by R(𝒜) the sFST obtained from 𝒜 by reversing all transitions, i.e., replacing

every transition (qf rom , in,out ,qto) by (qto , in,out ,qf rom) and swapping initial and final states. For
example, Figure 8 shows R(𝒜5). Here q2,q3,q4 are the initial states and q0 is the final state. For a
given R(𝒜) and R(T ), we have

GR(𝒜)(R(T )) = { R(S) | S ∈ G𝒜(T ) } ,

i.e., the reverse sFST will produce all outputs in reverse. Further, consider an accepting run p
for output sequence S = s1 . . . s |S | ∈ G𝒜(T ). Consider the prefix of the run that consumes input

t1, . . . , tpos ; up to this time, we generated partial output s1 . . . spos ′ , and the last transition has form

(q′, tpos ,out ,q). Now consider R(𝒜), R(T ) and the reverse run R(p). After consuming partial input

t |T | . . . tpos+1 , the reverse run has generated partial output s |S | . . . spos ′+1 and also reaches state q,
ending with a transition of form (q′′, tpos+1,out ,q).

We make use of the above observation in the two-pass approach as follows. Denote by δ ′(q,w)
the set of states in R(𝒜) than can be reached from state q by consuming itemw :

δ ′(q,w) =
{
qf rom | (qf rom , in,out ,q) ∈ ∆, in matchesw

}
, (5)

where ∆ is the set of transitions of𝒜. We make two passes over an input sequenceT . In the first pass,
we read R(T ) and incrementally compute the sets Q |T |, . . . ,Q1,Q0 where, for every |T | ≥ pos ≥ 1,

we have

Q |T | = QF

Qpos−1 =
⋃

q∈Qpos

δ ′(q, tpos ). (6)

Intuitively, for each state q ∈ Qpos , there exists a path in R(𝒜) from some state in QF to q for the

partial input t |T | . . . tpos+1. (Equivalently, there exists a path from state q to a final state in 𝒜 for

the partial input tpos+1 . . . t |T | .) Moreover, if qS < Q0, then there exists no accepting run for R(T ) in
R(𝒜) and consequently T is 𝒜-irrelevant.

The second pass consists of a simulation of𝒜 onT that avoids runs that do not lead to acceptance.

The central idea is the following. Consider an arbitrary partial run of 𝒜 on a prefix t1 · · · tpos of
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q0 q1

q2

q3

q4

R(𝒜5) :=

.:ε

c:ε

.:$

A:$-A

b1= :b1

.:ε

.:$

.:ε

Fig. 8. Reverse sFST R(𝒜5) corresponding to sFST 𝒜5.

input T , ending in state q. Then we have

q ∈ Qpos ⇐⇒ there exists an accepting run q0q1 · · ·q |T | of 𝒜 on T with qpos = q. (7)

Therefore, when we simulate 𝒜 on T , we will only consider runs in which all states belong to one

of the sets Qpos .

Before we explain our implementation of the algorithm, we illustrate the main idea of the two-

pass approach on input sequence Tex and sFST 𝒜5. The following table illustrates the sets Qpos

computed for each tpos (ignore the last row qdpos for now). Since q0 ∈ Q0, we know that Tex is

relevant.

pos 0 1 2 3 4 5 6 7 8 9

tpos − e d a1 c b1 c d c b2

Qpos
{q0,q1,
q2,q3}

{q0,q1,
q2,q3}

{q0,q1,
q2,q3}

{q0,q1,
q2,q3}

{q1,q2,
q3}

{q2,q3} {q2,q3} {q2,q3} {q2,q3}
{q2,q3,
q4}

qdpos qd
0123

qd
0123

qd
0123

qd
0123

qd
123

qd
23

qd
23

qd
23

qd
23

qd
234

The second pass of the algorithm consists of simulating 𝒜5, while avoiding states not in the sets

Qpos for tpos . For example, if after consuming eda1, we are at state q0, the automaton 𝒜5 can go

to states q0 and q1 when reading the next (fourth) item c . But since q0 < Q4, we can safely avoid

the transition q0
c :ε
−−→ q0 and immediately move to state q1 ∈ Q4. For the next input item b1, we

can avoid transition q1
c :ε
−−→ q1 since q1 < Q5. Figure 7 illustrates various runs for Tex on 𝒜5. The

two-pass approach avoids the transitions marked with “x” as desired.

6.4.1 Implementation. We now explain how we implement the two-pass algorithm. In the first

pass, instead of computing the sets Q |T |, . . . ,Q1,Q0 directly using R(𝒜) and Equation 6, we make

use of a reverse DFA, i.e., a DFA obtained from R(𝒜). As the reverse FST, the reverse DFA processes

the input sequence in reverse order. In contrast to the reverse FST, the DFA allows us to process

each input item in constant time in this pass (since we do not need to construct output).

Figure 9 shows the reverse DFA corresponding to sFST R(𝒜5) shown in Figure 8. Each DFA state

is annotated with the set of states of the FST R(𝒜) (and thus also𝒜) to which it corresponds; in the

figure, these states are given as subscripts. For R(Tex ), the sequence of DFA states is

qd
0123

e
←− qd

0123

d
←− qd

0123

a1
←− qd

0123

c
←− qd

123

b1
←− qd

23

c
←− qd

23

d
←− qd

23

c
←− qd

23

b2
←− qd

234
.

By construction, when we simulate the DFA backwards and reach state qdpos after consuming

t |T | . . . tpos+1, the set Qpos is directly given by the set of FST states corresponding to qpos . Thus, to
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qd
234

qd
123

qd
23

qd
0123

b1

A

a2

a1

Σ \ { a1,a2,A,b1 }

Σ \ { a1,a2,A,b1 }

b1Aa2a1

Σ \ { c }

c

Σ

Fig. 9. Reverse DFA corresponding to sFST 𝒜5.

determine the sets Q |T |, . . . ,Q1,Q0, it suffices to run the reverse DFA and record its sequence of

states.

If the reverse DFA does not accept R(T ), we know that T is not relevant and we can immediately

abort. Otherwise, we proceed to the second pass, which is the simulation of 𝒜 on T , using only

states inQpos . The implementation of the second pass is then straightforward: It essentially consists

of Algorithm 1 with one change: in line 9, we additionally test whether qto ∈ Qpos+1 (stored as an

annotation of the corresponding DFA state) and ignore the transition if so.

In our actual implementation, we also leverage final-complete annotations in the two-pass

approach to avoid simulating 𝒜 on the entire input sequence. In particular, such annotations in the

reverse DFA allow us to determine suffixes in R(T ), and thereby prefixes in T , that do not affect the

output; these prefixes are ignored in the second pass. We also use final-complete annotations in 𝒜
(as described in Section 6.2) to avoid processing suffixes in T that do affect the output.

6.4.2 Worst-Case Runtime of Two-Pass Approach. To shed some light on the potential improve-

ments that the two-pass approach offers, we would like to investigate the worst-case runtime of

computing

G𝒜(T ) = {O(p) , ε | p is an accepting run of 𝒜 for T }

with the two-pass approach. Recall that this set is directly used in the DESQ-COUNT algorithm; any

improved running time here thus directly translates to an improved running time of DESQ-COUNT.

We consider data complexity throughout, i.e., we treat the FST 𝒜 and the hierarchy Σ as constants

(so that, for example, the construction of D(R(𝒜)) takes constant time).

Naive sFST simulation computes G𝒜(T ) by iterating through all (accepting) runs of 𝒜 on T , that
is, it implicitly computes

G ′𝒜(T ) = {(O(p),p) | p is is an accepting run of 𝒜 for T }.

That is, it iterates through all accepting runs and, for each such run, adds O(p) to the output if it is

not empty and not in the output already. Algorithm 1 may require exponential time in |T | between
discovering two consecutive elements in G ′𝒜(T ), i.e., between two consecutive times it reaches

line 7. We provide an example where Algorithm 1 considers exponentially many partial runs that

turn out to be useless. Assume an item hierarchy with items {a1, . . . ,an} that generalize to A and

likewise for {b1, . . . ,bn} and B. Then, if Algorithm 1 has the input sequence T = a1b1 · · ·anbnc
and an sFST for the pattern expression [.∗(A).∗]∗c | [.∗(B).∗]∗d , it will consider 2Θ(n) many partial
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runs that capture the bi , but none of them lead to acceptance since T does not end with d .11 We

will prove that the two-pass approach successfully avoids such exponential computations. More

precisely, it can enumerate the elements ofG ′𝒜(T ) in linear delay, i.e., it can compute a first element

in G ′𝒜(T ) in time O(|T |) and, from there on, we can always compute a new element G ′𝒜(T ) in time

O(|T |) or conclude that no such element exists. The total time to produce all accepting runs is thus

O(|T | |G ′𝒜(T )|), where |G
′
𝒜(T )| corresponds to the number of accepting runs.

The backward pass simply consists of running D(R(𝒜)) once over R(T ). This pass only needs to

be performed once and costs timeO(|T |). (Given a DFA state qd and an itemw , our implementation

precomputes the DFA transition function δ (qd ,w) that returns the next DFA state in constant time.)

As a result, we obtain the sequence of sets Q0 · · ·Q |T | , where qS ∈ Q0 if G
′
𝒜(T ) is non-empty.

The forward pass then simulates 𝒜 on T , taking into account the sets Qi . That is, if we are

in a state from Qi and read input item ti+1, we only consider states from Qi+1. From here on,

we essentially perform Algorithm 1, where in line 9, we additionally test if qto ∈ Qpos+1. By

performing this change only, the algorithm will implicitly enumerate G ′𝒜(T ): Every execution of

line 6 corresponds to a new accepting run. We can compute G ′𝒜(T ) by maintaining in Algorithm 1

the current partial run r of 𝒜. This partial run is easy to maintain, because it is the sequence of

states q for which Step(q,pos, S) has been invoked on the recursion stack. In line 6, the algorithm

would find a new element (O(r ), r ) ∈ G ′𝒜(T ).
From the correctness of Algorithm 1, it immediately follows that the just described algorithm

computes G ′𝒜(T ). (It computes exactly the same elements of G𝒜(T ) as before, but now we output

on line 6 each S together with the run in which S was obtained.)

We now argue that the time between two consecutive outputs is at most O(|T |), thereby estab-

lishing linear delay. Indeed, after the algorithm produced an output, it backtracks until it discovers

(1) in line 9, a next (out ,qto)-pair with qto ∈ Qpos+1, or

(2) in line 18, a next outputw ′ ∈ anc(tpos ) ∩ desc(x), or
(3) that there are no additional accepting runs.

This takes time at most O(|T |). If the algorithm finds another pair or output (conditions (1) and

(2) above), it resumes the forward recursion. Since it only calls Step using states qto ∈ Qpos+1, it

does not need to backtrack again until it produces the next output (r , S); every call to Step leads to

an accepting run. Each test in condition (1) and (2) takes O(1) time under our assumption that 𝒜
and Σ are constants (since all required sets can be precomputed in constant time). The total time

between outputs is thereforeO(|T |) since the algorithm has at most |T | calls on the recursion stack.

By a similar argument, the first output can also be produced in time O(|T |).

Theorem 6.1. Assuming that the sFST 𝒜 and the dictionary Σ have constant size, the elements of
G ′𝒜(T ) can be enumerated, without repetitions, with O(|T |) delay.

We conclude with a note explaining why the two-pass approach does not compute G𝒜(T ) in
linear delay. Assume that T = a2n (a length 2n sequence only consisting of a’s) and 𝒜 is an FST for

the pattern expression [.∗(a).∗]{n}. In this case, G𝒜(T ) = {a
n}, but the number of accepting runs

of the FST on T is in 2
Θ(n logn)

.
12

11
Similar examples can also be constructed without item hierarchies; or where the reason why exponentially many partial

runs are unsuccessful is in the middle of T instead of at the end.

12
The number of accepting runs is proportional to the number of different n-element subsets of a 2n-element set. Due to

the binomial formula, this number is 2n!/(n! · n!), which lies between n! and (2n!), both of which are in 2
Θ(n logn)

due to

Stirling’s approximation.
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6.4.3 Integration in the Mining Algorithms. We now discuss how to integrate the two-pass

approach into our mining algorithms. For both DESQ-COUNT and DESQ-DFS, we first construct

the reverse DFA for 𝒜 and proceed as follows.

For DESQ-COUNT, we simply replace sFST simulation by the two-pass approach. The second

pass is performed only if the first pass determined that the input sequence is 𝒜-relevant.

Integrating the two-pass approach in DESQ-DFS is slightly more involved since we incrementally

simulate 𝒜 on all input sequences. We proceed as follows: We perform the first pass on all input

sequences during the construction of the initial projected database for root note ε . In more detail,

we read each input sequence T and simulate the reverse DFA. If sequence T is 𝒜-relevant, we add

snapshotT [1@qS ] to the projected database of root node ε and record the sequence of (reverse) DFA
states T .qd

|T |, . . . ,T .q
d
1
,T .qd

0
for later reference. We then perform expansions similar to DESQ-DFS:

The only modification is that, in the IncStep procedure, we additionally check whetherqto ∈ T .Qpos
(Line 17 of Algorithm 2).

7 EXPERIMENTAL EVALUATION
We conducted an experimental study on three publicly available real-world datasets: a collection of

text documents (for text mining), a collection of product reviews (for customer behavior mining),

and a collection of protein sequences. Our goal was to investigate whether pattern expressions are

sufficiently powerful to express prior and new subsequence constraints, whether DESQ’s algorithms

are efficient and how they perform relative to each other and to prior algorithms, and whether the

optimizations of Section 6 are effective. A summary of our results is as follows:

(1) Many subsequence constraints can be expressed with pattern expressions.

(2) DESQ’s sFST simulation algorithms are more than one order of magnitude faster than the

(more general) methods of the state-of-the-art FST library OpenFST.

(3) DESQ-COUNT was consistently faster than Naïve.

(4) DESQ-COUNT and DESQ-DFS had similar performance in cases where the average number

of P-subsequences per input sequence was small.

(5) When many P-subsequences per input were generated, DESQ-DFS was more than an order

of magnitude faster than DESQ-COUNT and Naïve.

(6) The pruning of 𝒜-irrelevant sequences sometimes led to substantial runtime improvements.

When no or few input sequences were irrelevant, pruning led to only a small overhead in

runtime.

(7) The two-pass approach had similar or better performance than the one-pass approach for all

subsequence constraints.

(8) DESQ was competitive (up to 1.7× slower) to the state-of-the-art specialized sequence miner

prefix-growth for traditional subsequence constraints.

(9) DESQ consistently outperformed (up to 4× faster) RE-constrained FSM miner SMA. For RE

constraints on all output subsequences, DESQ was competitive (up to 2.5× slower) to the

state-of-art FSM constrained miner PPICt and for RE constraints on contiguous subsequences,

DESQ outperformed (up to 10× faster) PPICt.

Our results indicate that DESQ is a suitable general-purpose system for a wide range of subsequence

constraints.
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Table 3. Statistics of the datasets used in our experimental study

NYT AMZN PRT

Sequence # Sequences 49,593,066 21,176,522 103,120
database Avg. length 20.15 3.90 482

Max. length 15,009 44,557 600

Total items 997,559,483 82,677,131 49,729,890
Distinct items 7,155,771 9,874,211 25

Hierarchy Total items 9,792,609 10,557,785 103,120
Leaf items 7,155,769 10,528,545 103,120

Interm. items 2,636,817 29,155 0

Root items 23 85 0

Max depth 3 10 1

Avg. fan-out 3.71 482 0

Max. fan-out 2,832,744 1,940,285 0

Avg. fan-in 1.0 1 0

Max. fan-in 1 58 0

7.1 Experimental Setup
Datasets. We used three real-world datasets: The New York Times corpus (NYT)

13
for text mining,

the Amazon product review dataset (AMZN)
14

for mining product sequences, and the protein

dataset (PRT)
15
for mining protein sequences. Key statistics of these datasets are summarized in

Table 3.

The NYT dataset consists of roughly 50M sentences from 1.8M news articles published during

1987 and 2007. We treat each sentence as an input sequence and each word (token) as an item.

We generated an item hierarchy using annotations from the Stanford CoreNLP tools
16
. The NYT

hierarchy consists of named entities, which generalize to their type (PERSON, ORGANIZATION,

and LOCATION) and then to ENTITY, and of words, which generalize to their lemma and then to

their part-of-speech tag. For example, “Maradona”⇒PERSON⇒ENTITY and “is”⇒“be”⇒VERB.

The AMZN dataset consists more than 82M product reviews from over 21M users. We extracted

sequences of products (ordered by review timestamps) for each user. We used the Amazon product

hierarchy as our item hierarchy. For example, “Canon 5D” ⇒“Digital Cameras”⇒“Camera &

Photo”⇒ “Electronics”.

The PRT dataset consists of over 100,000 amino acid sequences where each sequence is composed

from 25 amino acid codes (items). The hierarchy is flat, i.e., there are no generalizations.

Pattern expressions.We created a set of pattern expressions, which express tasks in information

extraction (IE), natural language processing (NLP), customer behavior mining, and protein sequence

mining. Our pattern expressions are shown in Table 4 and fall into four categories. The first

category (N1–N5) expresses relevant patterns useful for IE and NLP applications and were inspired

by [21, 37, 48] and Google’s n-grams
17
; these expressions were used on the NYT dataset. The

second category (A1–A4) expresses patterns relevant to market-basket analysis and apply to AMZN.

13
https://catalog.ldc.upenn.edu/LDC2008T19

14
snap.stanford.edu/data/web-Amazon.html

15
http://www-kdd.isti.cnr.it/SMA/

16
http://nlp.stanford.edu/software/corenlp.shtml

17
https://books.google.com/ngrams/
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Expressions from the third category (P1–P4) are used to mine protein sequences that match a

protein motif (described by regular expressions) from the PRT dataset; the regular expression

constraints were taken from the PROSITE database
18
. The dataset and expressions P1 and P3 were

used by Trasarti et al. [47] to evaluate the SMA algorithm for RE-constrained FSM. The PRT

dataset was also used by Aoga et al. [5, 6] to evaluate the PPIC algorithms for FSM constraints.

The fourth category (T1–T3) models traditional subsequence constraints commonly studied in the

literature [10, 33, 39, 40, 43, 50, 51]. Note that these expressions are parameterized (see Section 7.6).

We used the NYT with these expressions.

Implementation and setup.We implemented DESQ in Java (JDK 1.8).
19
We used ANTLR4

20

to generate a parser for pattern expressions. The sFST is constructed from the resulting parse

tree and subsequently minimized (as described in Section 6.1). For all pattern expressions E in

Table 4, we construct an sFST for .∗E.∗, i.e., we allow partial matching as discussed in Section 6.2.

We preprocessed the datasets to compute the f-list and assign integer identifiers to each item. Item

identifiers were assigned in descending order of item frequency, thus a more frequent item received

a smaller item identifier. In our implementations, we encoded the sequence database compactly as

arrays of item identifiers and use variable-length byte encoding to compress projected databases.

Unless specified otherwise, DESQ-COUNT and DESQ-DFS refer to the basic one-pass approach of

Sections 5.2 and 5.3, respectively.

To evaluate sFSTs, we compared it against the state-of-the-art FST library OpenFST 1.6.3
21
. To

measure the overhead of DESQ for common subsequence constraints, we compared it with various

state-of-the-art methods. For length and gap constraints, we used (1) the Scala implementation of

PPICt [5, 6] available from the authors
22
, (2) the C++ implementation of cSPADE [50] from the

author, (3) our implementation of SPADE in Java that additionally handles hierarchy constraints,

and (4) our implementation of prefix-growth [40] in Java. For RE constraints, we used PPICt,

prefix-growth, and a C++ executable of SMA [47] obtained from the authors.

Experiments on the NYT and AMZN datasets were performed on a machine with two Intel(R)

Xeon(R) CPU E5-2640 v2 processors and 128GB of RAM running CentOS Linux 7.1. Experiments on

the PRT dataset were performed on a machine equipped with Intel Core i7-7560U and 16GB RAM

running Windows 10. We used a different setup for the PRT dataset, as the SMA implementation is

provided as a Windows binary only. All experiments were run single-threaded and with the same

JVM memory budget (120GB for NYT and AMZN, 10GB for PRT).

Methodology. For each experiment, we report the performance in terms of the total wall-clock

time between launching the mining task and receiving the final result (excluding I/O to and from

disk). All measurements were averaged over three independent runs. Unless stated otherwise, all

methods produced the same results.

7.2 Comparison of sFST simulation and OpenFST
We first evaluated the effectiveness of our FST optimizations. We compared sFST simulation using

Algorithm 1 with uncompressed FST simulation using a state-of-the-art FST library OpenFST on

pattern expressions N1–N5. The results are shown in Figure 10 in which we report the average

simulation time per input sequence to generate all P-subsequences (excluding time to construct the

FST) from a random sample of 10,000 input sequences from the NYT dataset.

18
http://prosite.expasy.org/

19
The source code is publicly available at https://www.uni-mannheim.de/dws/research/resources/desq.

20
http://www.antlr.org/

21
http://www.openfst.org

22
https://sites.uclouvain.be/cp4dm/spm/ppict/
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Fig. 10. Average simulation time per input sequence from a random sample of 10,000 input sequences.

Pat. Expr. (σ ) µNaive µCount 𝒜-rel. inputs η Pruning η Two-pass

N1(100) 1.04 1.04 1.9% 2.7% 0.3%

N2(1000) 9.37 6.61 1.8% 3.2% 0.7%

N3(100) 2.02 1.71 0.9% 1.3% 0.2%

N4(1000) 133.48 105.08 89.6% 97.9% 48.5%

N5(1000) 130.76 93.09 97.2% 99.9% 73.1%

A1(500) 10,790.01 4,394.37 9.8% 98% 95.9%

A2(100) 180.48 38.54 8.9% 49.4% 12.3%

A3(100) 43,533.84 25,716.88 0.6% 84.4% 83.7%

A4(100) 10,824.27 3,787.64 0.9% 59.8% 55.2%

Table 5. sFST simulation statistics.

We observed that sFST simulation was 10–40× faster than uncompressed FST simulation using

OpenFST. This is because pattern expressions often translate to excessively large FSTs, which are

inefficient to simulate (see Table 2 and the discussion on sFSTs in Section 4.3). Moreover, OpenFST

cannot directly handle hierarchies so that uncompressed FSTs get large. Finally, as discussed in

Section 6.1, many of our pattern expressions cannot be determinized, which curtails the classical

FST optimizations supported by OpenFST.

Overall, we conclude that our FST optimizations were effective.

7.3 Comparison of Naïve, DESQ-COUNT, and DESQ-DFS
In our next set of experiments, we evaluated the performance of Naïve, DESQ-COUNT and DESQ-

DFS on pattern expressionsN1–N5 andA1–A4. The results are shown in Figures 11(a) and 11(b) using

log-scale for NYT and AMZN datasets, respectively. For each pattern expression, we empirically

chose the minimum support threshold σ .
We first discuss the results on NYT shown in Figure 11(a). For pattern expressions N1–N3, Naïve,

DESQ-COUNT and DESQ-DFS had similar performance and finished in under a couple of minutes.

For N4 and N5, however, runtimes were higher and DESQ-DFS was significantly faster than Naïve

(more than 16×) and DESQ-COUNT (up to 13×).
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Fig. 11. Performance of DESQ mining algorithms on (a) NYT and (b) AMZN datasets.

To gain insight into these results, we computed the average number µNaïve and µCount of P-
generated sequences per input sequence for Naïve (average of |GP (T )|) and DESQ-COUNT (of

|GF
P (T )|), respectively.

23
These numbers are shown in Table 5 (second and third columns) for each

pattern expression. From these statistics, we observed that µCount is always less than or equal to

µNaïve as asserted by Lemma 5.1, and thus DESQ-COUNT can significantly reduce the number

of candidate sequences that are generated and counted. In what follows, we discuss how these

statistics relate to different runtimes of DESQ’s mining algorithms.

We observed that for small values of µ, Naïve, DESQ-COUNT and DESQ-DFS had similar

performance, whereas for larger values of µ, DESQ-DFS was much more efficient. When µ is small,

the simple counting method of Naïve and DESQ-COUNT is expected to work well because few

sequences are generated and the advanced pruning methods of DESQ-DFS are not needed. When µ
is large, however, both Naïve and DESQ-COUNT can enumerate many sequences that turn out to

23
We only considered𝒜-relevant input sequences.
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be infrequent, which is expensive. DESQ-DFS prunes many of these sequences early on and is thus

more efficient.

On the AMZN dataset (expressions A1–A4; Figure 11(b)), DESQ-DFS consistently outperformed

Naïve and DESQ-COUNT. ForA1 andA3, the large number of candidate P-sequences (cf. Table 5) led
to a memory overflow for both Naïve and DESQ-COUNT. On the other hand, DESQ-DFS finished

in few hundred seconds, benefiting from its advanced pruning techniques. For A2, DESQ-COUNT

and DESQ-DFS had similar performance (with DESQ-DFS being faster), whereas for A4, DESQ-DFS

was more than an order of magnitude faster than DESQ-COUNT. This behavior is explained by the

observation that µ was large for all pattern expressions.

We conclude that DESQ-DFS consistently worked well in our experiments. Although DESQ-

COUNT was slightly faster in some simpler cases, its performance substantially fell behind DESQ-

DFS for more difficult ones. Thus we consider it generally safer to use DESQ-DFS in practice.

7.4 Effectiveness of Optimizations
We now study the effectiveness of pruning 𝒜-irrelevant inputs (Section 6.3) and of the two-pass

approach (Section 6.4) when integrated with DESQ-DFS. We refer to these methods as DESQ-DFS-

PRUNE and DESQ-DFS-2PASS, respectively.

The results are shown in Figures 12(a) and 12(b) for NYT and AMZN datasets respectively. For

ease of comparison, we normalize runtime DESQ-DFS time to 100% and show relative times for

DESQ-DFS-PRUNE and DESQ-DFS-2PASS. The absolute (total) runtime of each method is shown

on top of each bar. For each experiment, we split the total mining time into:

(i) Automata construction, which is the time required for parsing the pattern expression and

constructing the resulting sFST.With pruning and the two-pass, the time required to construct

the DFA and reverse-DFA, respectively, is also included.

(ii) Process input sequences, which is the time to read input sequences (frommemory) and construct

the initial projected database. With pruning, this additionally includes time to check each

input sequence against the DFA for relevance. For the two-pass approach, it additionally

includes the time for the first pass (in which we compute the reachable states in the reverse

DFA).

(iii) Mining, which is the remaining time required produce the final output (mainly exploration

of the search space via expansions).

Overall, we observed that both techniques significantly improved the performance of DESQ-

DFS. In particular, the performance improvements stem from mining, which was up to 40× faster

with DESQ-DFS-PRUNE and up to 60× faster with DESQ-DFS-2PASS. Both methods, however,

incurred a small overhead in automata construction and processing input sequences. For automata

construction, DESQ-DFS-PRUNE and DESQ-DFS-2PASS additionally require to construct a DFA

and reverse DFA, respectively. This overhead was negligible (up to 2s) for all pattern expressions.

The time to process input sequences increased by up to 1.3× with DESQ-DFS-PRUNE. This is

expected as it additionally simulates the DFA for checking relevance. This increase in runtime is

even more pronounced in DESQ-DFS-2PASS as it additionally computes and stores the reachable

states in the reverse DFA. However, this overhead of processing input sequences is amortized by

the mining time thus making our optimizations effective. As seen in the Figures 12(a) and 12(b),

the effectiveness of these techniques vary depending on the pattern expression.

To gain further insights, we computed for each expression the percentage of 𝒜-relevant inputs

and the fractionη of sFST transitions taken byDESQ-DFS-PRUNE andDESQ-DFS-2PASSw.r.t.DESQ-

DFS without these optimization. These numbers are shown in Table 5; columns 4–6. We will refer

to these numbers in what follows.
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Fig. 12. Effectiveness of pruning irrelevant inputs and the two-pass approach on the (a) NYT and (b) AMZN
datasets. The number on top of each bar denotes the absolute runtime of the corresponding method.

Effectiveness of pruning 𝒜-irrelevant inputs. We first discuss the effectiveness of DESQ-DFS-

PRUNE. On the NYT dataset (Figure 12(a)), we observed an overall speedup of up to 4.5× for

expressions N1, N2, and N3, for which only a small fraction (< 2%, cf. Table 5) of input sequences

were 𝒜-relevant. Thus the overhead of additionally constructing and simulating the DFA pays off
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during mining since pruning is very effective. For expressions N4 and N5, however, a large fraction

(90% and 97% resp.,) of input sequences were 𝒜-relevant and thus DESQ-DFS-PRUNE did not offer

benefits. On the AMZN dataset, expressions A1–A4, DESQ-DFS-PRUNE consistently performed

well as most of the input sequences turn out be𝒜-irrelevant. Overall, pruning of𝒜-irrelevant input

sequences can lead to substantial runtime improvements. When no or few input sequences were

irrelevant, pruning led to only a small overhead in runtime.

Effectiveness of the two-pass approach. We now turn attention to DESQ-DFS-2PASS. On NYT

dataset, for pattern expressions N1, N2, and N3, DESQ-DFS-2PASS was up to 4× faster than DESQ-

DFS. But it was however slightly slower (by up to 1.2×) than DESQ-DFS-PRUNE. Although, when

compared to DESQ-DFS-PRUNE, DESQ-DFS-2PASS computes a much smaller fraction of transitions

as a result of avoiding unnecessary backtracking (cf. ηPruning and ηTwo-pass in Table 5), it offers limited

additional benefit in comparison to DESQ-DFS-PRUNE because only a small fraction of total input

sequences turn out be 𝒜-relevant. On the other hand, for expression N4, where a large fraction of

input sequences were 𝒜-relevant, DESQ-DFS-2PASS offered a speed-up of up to 2× during mining,

which stems from avoiding unnecessary backtracking. This is also supported by the statistics in

Table 5 which shows that DESQ-DFS-2PASS computes less than 50% of transitions compared to

97% computed by DESQ-DFS-PRUNE. Pattern expression N5 is a notable case since the expression

is composed of only wild cards, which results in a DFA that accepts every sequence of length at

least 3 and thus more than 99% of the input sequences turn out to be 𝒜-relevant. Compared to

DESQ-DFS-PRUNE, which did not offer any significant benefits, DESQ-DFS-2PASS resulted in a

10% speedup as it was able to avoid 30% of the transitions. Although expression N5 is composed of

only wild cards, DESQ-DFS-2PASS benefits from leveraging final-complete annotations to avoid

processing both prefixes and suffixes that produce only infrequent items. On AMZN, for expressions

A1–A4, DESQ-DFS-2PASS consistently outperformed both DESQ-DFS and DESQ-DFS-PRUNE as

most of the input sequences were 𝒜-irrelevant and also because it computes much smaller fraction

of transitions.

Overall, we found that the effectiveness of our optimizations depend on the pattern expression

and the data. We generally consider using DESQ-DFS-2PASS to be the best overall option: its

performance was either similar or better than DESQ-DFS in all our experiments. This is supported

by the theoretical evidence: a guarantee such as the one of Theorem 6.1 cannot be given for

DESQ-DFS and DESQ-DFS-PRUNE.

7.5 Impact of Minimum Support Threshold
We also investigated to what extent the performance and effectiveness of pruning 𝒜-irrelevant

inputs and the two-pass approach is affected by the minimum support threshold (σ ). We use pattern

expression N4 on the NYT dataset as it is relatively complex (i.e., high number of𝒜-relevant inputs

and high µ-value) and varied σ from 100, 000 down to 10. The results are shown in Figure 13.

We observed that for high values of σ (e.g., σ = 100,000), DESQ-DFS-PRUNE had a similar

performance as DESQ-DFS. This is because at very high support thresholds, few items (0.02%) are
frequent and DESQ-DFS avoids transitions that output infrequent items (see Lemma 5.1). Therefore,

the benefit of pruning decreases with increasing minimum support threshold. We observed a similar

behavior for the two-pass approach. In particular, for σ = 100,000, DESQ-DFS-2PASS was 1.5×
faster than DESQ-DFS; for σ = 10, it was 2× faster.

7.6 Performance With Traditional Subsequence Constraints
Next, we investigated the overhead of DESQ compared to specialized miners cSPADE [50] and

prefix-growth [40] (based on PrefixSpan [39]) for traditional subsequence constraints. We also

ACM Transactions on Database Systems, Vol. 9, No. 4, Article 39. Publication date: March 2010.



39:36 Kaustubh Beedkar, Rainer Gemulla, and Wim Martens

100,000 10,000 1000 100 10

T
ot

al
 t

im
e 

[s
ec

on
ds

]

0
20

00
60

00
10

00
0

σ

DESQ−DFS
DESQ−DFS−PRUNE
DESQ−DFS−2PASS

Fig. 13. Impact of minimum support threshold σ on optimizations for pattern expression N4

100,0,3 100,0,5 100,1,5 100,2,5 10K,0,5(+H)

T
ot

al
 t

im
e 

[s
ec

on
ds

]

1
10

10
0

10
00

10
00

00

σ, γ, λ

O
ut

 o
f m

em
or

y 
(a

ft
er

 1
h)

O
ut

 o
f m

em
or

y 
(a

ft
er

 1
h)

O
ut

 o
f m

em
or

y 
(a

ft
er

 1
h)

O
ut

 o
f m

em
or

y 
(a

ft
er

 1
h)

D
oe

s 
no

t 
su

pp
or

t 
hi

er
ar

ch
ie

s

PPICt
cSPADE+H

prefix−growth+H
DESQ−DFS−2PASS

>12Hr >12Hr >12Hr >12Hr >12Hr

Fig. 14. Performance for traditional subsequence constraints

compared against the CP-based FSM miner PPICt. In particular, we considered length and gap

constraints as well as item hierarchies. We map these constraints to pattern expressions and obtain

T1–T3 of Table 4. The expressions are parameterized by maximum-length parameter λ and/or

maximum-gap parameter γ . We used the NYT dataset and ran FSM for different configurations of

increasing difficulty w.r.t. output size. The results are shown in Fig. 14 using log-scale.

For length and gap constraints (first four groups), PPICt terminated with an out-of-memory

exception. PPICt does not support hierarchies, so we exclude it from the final experiment (fifth

group). We observed that for all configurations, cSPADE was significantly slower than both prefix-

growth and DESQ-DFS-2PASS. This is because cSPADE follows a candidate-generation-and-test

approach and suffered from an excessive number of generated candidates [39]. To keep our study

manageable, we stopped cSAPDE after 12 hours. Compared to prefix-growth, DESQ-DFS-2PASS

was up to 1.5× slower for n-grams (first two groups). For skip grams (third and fourth group),

DESQ-DFS-2PASS was up to 1.7× slower than prefix-growth. The overhead was slightly more

pronounced because pattern expressions for gap constraints have uncaptured wildcards (cf. T2 in
Table 4), which results in non-determinism and increases the amount of (acceptable) backtracking
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Fig. 15. Performance for RE-constrained FSM

during sFST simulation. For generalized n-grams (last group), where we additionally considered

item hierarchies, DESQ-DFS-2PASS was again up to 1.7× slower than prefix-growth as the amount

of backtracking performed by DESQ increased with the depth of hierarchy (cf. line 26 of Algorithm 2

and the discussion in Section 4.3).

Overall, our experiments indicate that DESQ is competitive with prefix-growth. Although prefix-

growth was indeed faster for FSM with traditional subsequence constraints, the overhead of DESQ

was acceptable.

7.7 Performance With RE Constraints
In our final set of experiments, we evaluated the efficiency of DESQ for mining frequent subse-

quences (all or contiguous) that match a given regular expression. Our pattern expressions allow

us to express REs with their equivalent pattern expressions (cf. Table 1 and expressions P1–P4 of
Table 4). We compared DESQ’s performance against state-of-the-art RE-constrained FSM methods,

namely SMA [47], prefix-growth [40], and CP-based PPICt [5, 6]. We used DESQ-DFS-2PASS on

the PRT dataset for which we obtained suitable RE constraints from the PROSITE database
24
; the

runtimes are shown in log-scale in Fig. 15.

We observed that DESQ-DFS-2PASS was up to 2–4× faster than SMA, up to 3–6× faster than

prefix-growth, and up to 2–2.5× slower than PPICt for P1 and P2, respectively. We do not give SMA

results for P3 and P4 because the implementation produced incorrect results (acknowledged in

private communication by the original authors). We did not investigate this further as the SMA

source is not available. Both DESQ-DFS-2PASS and prefix-growth finished in few seconds on P3
and P4, and were up to 10× faster than PPICt with DESQ-DFS-2PASS being slightly faster.

Our results indicate that DESQ is a suitable method for RE-constrained FSM as well.

8 RELATEDWORK
We now relate ideas put forward in this article to existing prior work, which can be coarsely

categorized into:

Sequential pattern mining. The problem of mining frequent sequential patterns was intro-

duced by Agrawal and Srikant [1]. Their Apriori algorithm follows a candidate-generation-and-test

approach to identify sequential patterns that are frequent in the database. The subsequent GSP

24
http://prosite.expasy.org/
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algorithm [43] exploits the antimonotonicity property of sequential patterns to efficiently generate

and prune candidate sequences. SPADE by Zaki [51] also generates and prunes candidates, but it

operates on an inverted index structure representation of the database. Pei et al. [39] proposed the

PrefixSpan algorithm, which is based on a more efficient pattern-growth approach that recursively

grows frequent prefixes using database projections. DESQ-DFS can be seen as a generalization of

PrefixSpan to support arbitrary pattern expressions. SPAM [8], which is similar to SPADE, uses an

internal bitmap structure for database representation and employs a pattern-growth approach to

mine frequent sequential patterns. A comprehensive discussion of these methods is given in [31].

Subsequence constraints. There are many extensions to the basic sequential pattern mining

framework for supporting subsequence constraints. GSP [43] and LASH [10], for example, allow

gap constraints and incorporate item hierarchies. cSPADE [50] handles length, gap and item con-

straints. Wu et al. [49] consider subsequences with periodic wild card gaps, i.e., subsequences

where consecutive items are separated by the same gap in the input. Garofalakis et al. [23] in-

troduced regular expression (RE) constraints that subsequences need to satisfy. The proposed

SPIRIT algorithms translate a given RE into a deterministic finite state automata and adapts GSP-

like candidate-generation-and-test approach to mine frequent sequential patterns. Along these

lines, Albert-Lorincz and Boulicaut [2] proposed RE-Hackle algorithm, which represents RE via

a tree structure. Pei et al. [40] advocate the prefix-growth method—which we also compare to in

our experimental study—to handle RE as well as length and gap constraints. RE constraints have

also been studied by Trasarti et al. [47]. They proposed the SMA algorithm, which uses Petri nets

to match an RE. In contrast to DESQ, the above methods are less general because they consider

regular expressions on the output sequence only and do not support capture groups. Some of the

above constraints (e.g., gap constraints), however, target the input sequence, whereas others (e.g.,

length constraints, RE constraints) target subsequences. Our pattern expressions unify both targets

and allows us to express all of the above subsequence constraints (e.g., see Table 1).

More recently, constraint programming (CP) methods have been applied to support various

subsequence constraints in sequential pattern mining. In particular, Negrevergne and Guns [38]

modeled sequence mining with length, gap, item, and RE-constraints as a constraint satisfaction

problem, which can be solved using CP. Their approach is not limited to frequent sequence

mining, but also supports other constraints on the multiset of mined patterns (e.g., maximality

and closedness). Such pattern-set constraints are currently not supported by DESQ. Kemmar et al.

[25, 26] proposed prefix-based projection techniques to efficiently handle constraints in CP-based

approaches. Aoga et al. [5, 6] proposed the PPIC and PPICt algorithms, which outperformed

other CP-based algorithms in their experimental study. Like DESQ, their approach allows to mix

traditional constraints like length, item, and gap/span with RE constraints on the output sequences.

DESQ additionally supports hierarchy constraints and context constraints (via REs with capture

groups), which allows DESQ to express many customized subsequence constraints that arise in

FSM applications (e.g., see Table 4).

Finally, this article is an extended version of [11], which originally proposed the DESQ system.

Here we (1) provide a more accessible and more detailed exposition, (2) include various proofs of

correctness, (3) propose multiple optimizations to extend DESQ, and (4) performed an extended

experimental study. Our optimizations include methods to partially determinize and minimize sFSTs,

to use early-abort during sFST simulation whenever possible and without affecting correctness,

for pruning irrelevant input sequences, and for avoiding unnecessary backtracking via the two-

pass approach. Our experimental study suggests that our optimizations can substantially improve

performance when compared to the basic DESQ system.
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Pattern matching. Systems and languages for pattern matching over sequences have been

extensively studied in literature and are related to our work. For example, SystemT’s AQL lan-

guage [22, 27] provides an SQL-like syntax to specify and extract pattern matches from text

documents. Languages based on cascaded grammars such as CPSL [7] are also used in many

information extraction engines. Christ [16] proposed a Corpus Query Language (CQL) based on

regular expressions for searching pattern matches in text corpora. Pattern matching is also cru-

cial for complex event processing tasks [18, 19], which aim to detect pattern matches in (live

or archived) event sequences. In contrast to these systems, we propose a language and system

for frequent sequence mining. This means that we are not interested in finding all matches of a
specified pattern expression as in pattern matching, but are instead looking for frequent sequential

patterns themselves. Our pattern expressions are in some sense simpler than most pattern matching

languages, yet expressive enough to specify many subsequence constraints that arise in sequence

mining applications. Nevertheless, pattern matching languages can conceivably be used to specify

subsequence predicates and mine P-frequent sequences using Naïve, i.e., by first enumerating all

matches and subsequently counting frequencies. Our experiments indicate that this approach is

infeasible for many subsequence constraints. Instead, it is beneficial to integrate pattern matching

and mining, e.g., along the lines of DESQ-COUNT and DESQ-DFS. An interesting direction for

future work is to investigate to what extent such integration is possible for more powerful pattern

languages.

Finite state transducers. Finite state transducers (FST, [34, 36]) have been applied in areas

such as speech recognition, machine translation, information extraction, and data mining. In DESQ,

we make use of FSTs as a computational model for pattern matching and mining. In contrast to

existing work on FSTs, our FSTs are often neither sequential nor p-subsequential [35] so that many

existing optimization methods do not apply (e.g., minimization and determinization). We provide

methods to extend, compress, and optimize our special FSTs in order to effectively handle pattern

mining tasks and large hierarchies. Although traditional FST libraries such as OpenFST [3] can

also be used within DESQ, our succinct FSTs support more efficient matching and mining (see

Sections 4.3 and 7.2).

9 CONCLUSIONS
In this article, we introduced subsequence predicates as a general model for unifying and extending

subsequence constraints for frequent sequence mining. We proposed pattern expressions as a

simple, intuitive way to express subsequence constraints, suggested succinct finite state transducers

as an underlying computation model, and proposed the DESQ-COUNT and DESQ-DFS algorithms

for efficient mining. We discussed various optimizations that improve simulation efficiency of our

succinct finite state transducers. Our experiments indicate that DESQ is an efficient, general-purpose

FSM framework for various subsequence constraints that arise in applications.

There are a number of directions for extending DESQ, both in terms of efficiency and scalabilty as

well as in terms of functionality. In particular, DESQ’s mining algorithms are sequential and cannot

deal with massive amounts of data. Parallel and distributed mining algorithms that support flexible

constraints are important future work. A first step was recently taken by Renz-Wieland et al. [42],

who proposed distributed mining algorithms based on DESQ for platforms such as MapReduce

and Spark. Another recent vein of work [20] investigates static FST analysis problems that ask if a

given task can be distributed or not.

In this article, we focused solely on sequences of items, although some datasets are more naturally

modeled as sequences of itemsets. Extending the pattern expression language as well as the mining

algorithms to support itemsets is an interesting direction for future work. DESQ also limits its

notion of interestingness to subsequence constraints and frequency; it neither supports set-based
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constraints such as maximality and closedness, nor other notions of interestingness (such as

utility), nor mining of partial orders. Adapting these notions in the context of flexible subsequence

constraints is non-trivial, but forms an important next step towards general-purpose sequential

pattern mining systems.
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A EXAMPLE sFSTS FOR PRIOR SUBSEQUENCE CONSTRAINTS
Figure 16 below gives sFSTs corresponding the pattern expressions of Table 1.
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Fig. 16. sFSTs for example pattern expressions of Table 1.
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