Evaluation and Enumeration Problems for Regular Path Queries

Wim Martens and Tina Trautner
University of Bayreuth

Practice

QUERYING PATHS IN GRAPH DATABASES

Graph Database

Node- and Edge-labeled directed graph

Warm Up Question

How many paths from Bayreuth to Vienna match the regular path query (road)* ?

Warm Up Question

How many paths from Bayreuth to Vienna match the regular path query (road)* ?
(How many paths from Bayreuth to Vienna only use road-edges?)

Warm Up Question

How many paths from Bayreuth to Vienna match the regular path query (road)* ?
(How many paths from Bayreuth to Vienna only use road-edges?)
[Theoreticians]: ∞
[SPARQL 2018]: 1
[SPARQL 2012]: 3
[Cypher]: 5

Warm Up Question

How many paths from Bayreuth to Vienna match the regular path query (road)* ?
(How many paths from Bayreuth to Vienna only use road-edges?)

[Theoreticians]:	∞	all paths
[SPARQL 2018]:	1	
[SPARQL 2012]:	3	
[Cypher]:	5	

Warm Up Question

How many paths from Bayreuth to Vienna match the regular path query (road)* ?
(How many paths from Bayreuth to Vienna only use road-edges?)

[Theoreticians]:	∞	all paths
[SPARQL 2018]:	1	is there at least one path?
[SPARQL 2012]:	3	
[Cypher]:	5	

Warm Up Question

How many paths from Bayreuth to Vienna match the regular path query (road)* ?
(How many paths from Bayreuth to Vienna only use road-edges?)

[Theoreticians]:	∞	all paths
[SPARQL 2018]:	1	is there at least one path?
[SPARQL 2012]:	3	paths without node repetition
[Cypher]:	5	

Warm Up Question

How many paths from Bayreuth to Vienna match the regular path query (road)* ?
(How many paths from Bayreuth to Vienna only use road-edges?)

[Theoreticians]:	∞	all paths
[SPARQL 2018]:	1	is there at least one path?
[SPARQL 2012]:	3	paths without node repetition
[Cypher]:	5	paths without edge repetition

Warm Up Question

How many paths from Bayreuth to Vienna match the regular path query (road)* ?
(How many paths from Bayreuth to Vienna only use road-edges?)

[Theoreticians]:	∞	all paths
[SPARQL 2018]:	1	is there at least one path?
[SPARQL 2012]:	3	paths without node repetition
[Cypher]:	5	paths without edge repetition

Warm Up Question

How many paths from Bayreuth to Vienna match the regular path query (road)* ?
(How many paths from Bayreuth to Vienna only use road-edges?)

[Theoreticians]:	∞	all paths
[SPARQL 2018]:	1	is there at least one path?
[SPARQL 2012]:	3	paths without node repetition
[Cypher]:	5	paths without edge repetition

Warm Up Question

How many paths from Bayreuth to Vienna match the regular path query (road)* ?
(How many paths from Bayreuth to Vienna only use road-edges?)

[Theoreticians]:	∞	all paths
[SPARQL 2018]:	1	is there at least one path?
[SPARQL 2012]:	3	paths without node repetition
[Cypher]:	5	paths without edge repetition

The Point

There are different ways of matching paths in graphs
and any of them can make sense

The Point

There are different ways of matching paths in graphs
and any of them can make sense

But which variant do you want to use in a system?

Theory

ON QUERYING PATHS IN GRAPH DATABASES

Computational Problems

Input

Regular expression \boldsymbol{r}
called regular path query (RPQ)

Computational Problems

Input

Regular expression \boldsymbol{r}
called regular path query (RPQ)

Problem

Path existence
Is there a path from \bullet to \bullet that matches \boldsymbol{r} ?

Computational Problems

Input

Regular expression \boldsymbol{r}
called regular path query (RPQ)

Problem

Path counting

How many paths from \bullet to \bullet match \boldsymbol{r} ?

Computational Problems

Input

Regular expression \boldsymbol{r}
called regular path query (RPQ)

Problem

Path enumeration

Enumerate the paths from \bullet to that match \boldsymbol{r}

Considering Different Paths

Arbitrary paths
Boolean paths
Paths without node repetitions
Paths without edge repetitions

Considering Different Paths

Arbitrary paths
Boolean paths
Paths without node repetitions
Paths without edge repetitions

Considering Different Paths

Arbitrary paths

Paths without node repetitions

Considering Different Paths

Arbitrary paths

Simple paths

Complexity of RPQ Evaluation

	Existence	Counting	Enumeration
Arbitrary paths			
Simple paths			

in P	in FP	polynomial delay
NP-hard	\#P-hard	too much delay

Complexity of RPQ Evaluation

	Existence	Counting	Enumeration
Arbitrary paths			
Simple paths			

"user happy":	in P	in FP	polynomial delay
"user unhappy":	NP-hard	\#P-hard	too much delay

Complexity of RPQ Evaluation

	Existence	Counting	Enumeration
Arbitrary paths	$\boldsymbol{\jmath}$	\mathbf{x}	\boldsymbol{V}
Simple paths	\mathbf{x}	\mathbf{x}	\mathbf{x}

"user happy":	in P	in FP	polynomial delay
"user unhappy":	NP-hard	\#P-hard	too much delay

Complexity of RPQ Evaluation

similar to
counting words in language of regular expression
\#P-complete [Kannan et al., SODA 1995]

Complexity of RPQ Evaluation

	Existence	Counting	Enumeration
Arbitrary paths	\boldsymbol{V}	\boldsymbol{X}	\boldsymbol{V}
Simple paths	\boldsymbol{X}	\boldsymbol{X}	\boldsymbol{X}

Is there a simple path matching $a^{*} b a^{*}$?
NP-complete [Mendelzon, Wood, SICOMP 1995]
essentially because „simple path via a node" is NP-hard [Fortune et al., TCS 1980]

Is there a simple path matching (aa)*?
NP-complete [Lapaugh, Papadimitriou, Networks 1984]

Complexity of RPQ Evaluation

	Existence	Counting	Enumeration
Arbitrary paths	\boldsymbol{V}	\boldsymbol{x}	\boldsymbol{V}
Simple paths	\boldsymbol{x}	\mathbf{x}	\boldsymbol{x}

Is there a simple path matching $a^{*} b a^{*}$?
NP-complete [Mendelzon, Wood, SICOMP 1995]
essentially because „simple path via a node" is NP-hard [Fortune et al., TCS 1980]

Is there a simple path matching (aa)*?
NP-complete [Lapaugh, Papadimitriou, Networks 1984]
[Bagan, Bonifati, Groz PODS 2013]
Dichotomy for which expressions the data complexity of this problem is in P or NP-complete

Theory VS Systems

Theory:

Systems:

Theory VS Systems

Theory: „Simple paths are computationally difficult, even for very small RPQs"

Systems:

Theory VS Systems

Theory: „Simple paths are computationally difficult, even for very small RPQs"

Systems: „But we use simple paths and we're fine"

What is going on with these
 simple paths?

RPQs in SPARQL Query Logs

[Bonifati, M., Timm, PVLDB 2017]

Extracted 247,404 RPQs from SPARQL query logs (2009-2017)
(from DBPedia, biological databases, British museum, Wikidata, ...)

RPQs in SPARQL Query Logs

[Bonifati, M., Timm, PVLDB 2017]

Extracted 247,404 RPQs from SPARQL query logs (2009-2017)
(from DBPedia, biological databases, British museum, Wikidata, ...)
\square Only very few different kinds of RPQs
(± 17)

RPQs in SPARQL Query Logs

Expression Type	Relative	Expression Type	Relative	
A^{*}	48.76\%	$a^{*} b$?	<0.01\%	$k \leq 6$
A	32.10\%	$a b c^{*}$	<0.01\%	
$a_{1} \cdots a_{k}$	8.66\%	$A_{1} \cdots A_{k}$	<0.01\%	Disjunction of symbols:A, A_{1}, \ldots
$a^{*} b$	7.73\%	$\left(a b^{*}\right)+c$	<0.01\%	
A^{+}	1.54\%	$a^{*}+b$	<0.01\%	
$a_{1} ? \cdots a_{k}$?	1.15\%	$a+b^{+}$	<0.01\%	Single symbols: a, b, c, a_{1}, \ldots
$a A$?	0.01\%	$a^{+}+b^{+}$	<0.01\%	
$a_{1} a_{2} ? \cdots a_{k}$?	0.01\%	$(a b)^{*}$	<0.01\%	
A ?	<0.01\%			

Data from [Bonifati et al., PVLDB 2017]

Simple Transitive Expressions

Atomic Expression

disjunction $\left(a_{1}+\cdots+a_{n}\right)$ of symbols
(denote this by A, A_{i}, \ldots)

Simple Transitive Expressions

Atomic Expression

disjunction $\left(a_{1}+\cdots+a_{n}\right)$ of symbols
(denote this by A, A_{i}, \ldots)

Local Expression		
$A_{1} \cdots A_{\boldsymbol{k}}$	or	$A_{1} ? \cdots A_{\boldsymbol{k}}$?
"follow a path of length $\mathrm{k}^{\prime \prime}$	"follow a path of length at most k "	

Simple Transitive Expressions

Atomic Expression

disjunction $\left(a_{1}+\cdots+a_{n}\right)$ of symbols
(denote this by A, A_{i}, \ldots)

Local Expression

$$
A_{1} \cdots A_{k} \quad \text { or } \quad A_{1} ? \cdots A_{k} \text { ? }
$$

"follow a path of length k " "follow a path of length at most k "

Simple Transitive Expression (STE)
$L_{1} A^{*} L_{2} \quad$ where L_{1}, L_{2} are local expressions

Simple Transitive Expressions

Simple Transitive Expression (STE)
$L_{1} A^{*} L_{2} \quad$ where L_{1}, L_{2} are local expressions
(we allow $A=\varnothing$)

Simple Transitive Expressions

Simple Transitive Expression (STE)
$L_{1} A^{*} L_{2} \quad$ where L_{1}, L_{2} are local expressions
(we allow $A=\varnothing$)

Simple Transitive Expressions

Simple Transitive Expression (STE)
$L_{1} A^{*} L_{2} \quad$ where L_{1}, L_{2} are local expressions
(we allow $A=\varnothing$)

Simple Transitive Expressions

Simple Transitive Expression (STE)
$L_{1} A^{*} L_{2} \quad$ where L_{1}, L_{2} are local expressions
(we allow $A=\varnothing$)

RPQs in SPARQL Query Logs

Expression Type	Relative	Expression Type	Relative
A^{*}	48.76%	$a^{*} b ?$	$<0.01 \%$
A	32.10%	$a b c^{*}$	$<0.01 \%$
$a_{1} \cdots a_{k}$	8.66%	$A_{1} \cdots A_{k}$	$<0.01 \%$
$a^{*} b$	7.73%	$\left(a b^{*}\right)+c$	$<0.01 \%$
A^{+}	1.54%	$a^{*}+b$	$<0.01 \%$
$a_{1} ? \cdots a_{k} ?$	1.15%	$a+b^{+}$	$<0.01 \%$
$a A ?$	0.01%	$a^{+}+b^{+}$	$<0.01 \%$
$a_{1} a_{2} ? \cdots a_{k} ?$	0.01%	$(a b)^{*}$	$<0.01 \%$
$A ?$	$<0.01 \%$		

$k \leq 6$ STE

Union of STEs
something else

Data from [Bonifati et al., PVLDB 2017]

RPQs in SPARQL Query Logs

Data from [Bonifati et al., PVLDB 2017]

Main Theorem Warm-Up

Simple path existence

Given graph \boldsymbol{G}, nodes \boldsymbol{s} and \boldsymbol{t}, and RPQ \boldsymbol{r}, is there a simple path from \boldsymbol{s} to \boldsymbol{t} that matches \boldsymbol{r} ?

Main Theorem Warm-Up

```
Simple path existence for R
Given graph G, nodes \boldsymbol{s}\mathrm{ and }\boldsymbol{t}\mathrm{ , and RPQ r }\in\boldsymbol{R},
    is there a simple path from }\boldsymbol{s}\mathrm{ to }\boldsymbol{t}\mathrm{ that matches }\boldsymbol{r}\mathrm{ ?
```

Example classes \boldsymbol{R} :

Main Theorem Warm-Up

Simple path existence for \boldsymbol{R}

Given graph \boldsymbol{G}, nodes \boldsymbol{s} and \boldsymbol{t}, and RPQ $\boldsymbol{r} \in \boldsymbol{R}$, is there a simple path from \boldsymbol{s} to \boldsymbol{t} that matches \boldsymbol{r} ?

Example classes \boldsymbol{R} :

for $\boldsymbol{k} \in \mathbb{N}$
denote this by $\left\{\boldsymbol{a}^{\boldsymbol{k}} \mid \boldsymbol{k} \in \mathbb{N}\right\}$

Main Theorem Warm-Up

Simple path existence for \boldsymbol{R}

Given graph \boldsymbol{G}, nodes \boldsymbol{s} and \boldsymbol{t}, and RPQ $\boldsymbol{r} \in \boldsymbol{R}$, is there a simple path from \boldsymbol{s} to \boldsymbol{t} that matches \boldsymbol{r} ?

Example classes \boldsymbol{R} :

for $\boldsymbol{k} \in \mathbb{N}$
for $\boldsymbol{k} \in \mathbb{N}$
denote this by $\left\{\boldsymbol{a}^{\boldsymbol{k}} \mid \boldsymbol{k} \in \mathbb{N}\right\}$
denote this by $\left\{\boldsymbol{a}^{\boldsymbol{k}} \boldsymbol{a}^{*} \mid \boldsymbol{k} \in \mathbb{N}\right\}$

Main Theorem Warm-Up

Simple path existence for \boldsymbol{R}

Given graph \boldsymbol{G}, nodes \boldsymbol{s} and \boldsymbol{t}, and RPQ $\boldsymbol{r} \in \boldsymbol{R}$, is there a simple path from \boldsymbol{s} to \boldsymbol{t} that matches \boldsymbol{r} ?

Example classes \boldsymbol{R} :

for $\boldsymbol{k} \in \mathbb{N}$
denote this by $\left\{\boldsymbol{a}^{\boldsymbol{k}} \mid \boldsymbol{k} \in \mathbb{N}\right\}$

These are non-trivial problems!

Main Theorem Warm-Up

Simple path existence for \boldsymbol{R}

Given graph \boldsymbol{G}, nodes \boldsymbol{s} and \boldsymbol{t}, and RPQ $\boldsymbol{r} \in \boldsymbol{R}$, is there a simple path from \boldsymbol{s} to \boldsymbol{t} that matches \boldsymbol{r} ?

Example classes \boldsymbol{R} :

Theorem [Alon, Yuster, Zwick, JACM 1995]
"Simple path existence for $\left\{\boldsymbol{a}^{\boldsymbol{k}} \mid \boldsymbol{k} \in \mathbb{N}\right\}$ is in FPT"
Color coding technique

Main Theorem Warm-Up

Simple path existence for \boldsymbol{R}

Given graph \boldsymbol{G}, nodes \boldsymbol{s} and \boldsymbol{t}, and RPQ $\boldsymbol{r} \in \boldsymbol{R}$, is there a simple path from \boldsymbol{s} to \boldsymbol{t} that matches \boldsymbol{r} ?

Example classes \boldsymbol{R} :

Theorem [Alon, Yuster, Zwick, JACM 1995]
"Simple path existence for $\left\{\boldsymbol{a}^{\boldsymbol{k}} \mid \boldsymbol{k} \in \mathbb{N}\right\}$ is in FPT"
Color coding technique
Theorem [Technique from Fomin et al., JACM 2016] communicated to us by Holger Dell
"Simple path existence for $\left\{\boldsymbol{a}^{\boldsymbol{k}} \boldsymbol{a}^{*} \mid \boldsymbol{k} \in \mathbb{N}\right\}$ is in FPT"

Main Theorem

Simple path existence for \boldsymbol{R}

Given graph \boldsymbol{G}, nodes \boldsymbol{s} and \boldsymbol{t}, and RPQ $\boldsymbol{r} \in \boldsymbol{R}$, is there a simple path from \boldsymbol{s} to \boldsymbol{t} that matches \boldsymbol{r} ?

Main Theorem

Let \boldsymbol{R} be a class ${ }^{(*)}$ of STEs:
if \boldsymbol{R} is cuttable, then simple path existence for \boldsymbol{R} is in FPT otherwise, simple path existence for \boldsymbol{R} is W[1]-hard.
${ }^{(*)}$ satisfying a mild condition, needed for W[1] hardness

Main Theorem

Simple path existence for \boldsymbol{R}

Given graph \boldsymbol{G}, nodes \boldsymbol{s} and \boldsymbol{t}, and RPQ $\boldsymbol{r} \in \boldsymbol{R}$, is there a simple path from \boldsymbol{s} to \boldsymbol{t} that matches \boldsymbol{r} ?
parameter: size of RPQ

Main Theorem

Let \boldsymbol{R} be a class ${ }^{(*)}$ of STEs:
if \boldsymbol{R} is cuttable, then simple path existence for \boldsymbol{R} is in FPT otherwise, simple path existence for \boldsymbol{R} is W[1]-hard.
${ }^{(*)}$ satisfying a mild condition, needed for W[1] hardness

Intuition behind Cuttability

Path that matches \boldsymbol{r}

Intuition behind Cuttability

Simple Path that matches \boldsymbol{r} ?

Intuition behind Cuttability

Simple Path that matches \boldsymbol{r} ?
Does the simple path still match \boldsymbol{r} ?

- "Easy" to check for aaaaa*
- "Hard" to check for bbbba*
(check length)
(check length+label)

Intuition behind Cuttability

Simple Path that matches \boldsymbol{r} ?
Does the simple path still match \boldsymbol{r} ?

- "Easy" to check for aaaaa*
- "Hard" to check for bbbba*
(check length)
(check length+label)

Intuition behind Cuttability

Simple Path that matches \boldsymbol{r} ?
Does the simple path still match \boldsymbol{r} ?
" "Easy" to check for aaaaa*

- "Hard" to check for $\boldsymbol{b} \boldsymbol{b} \boldsymbol{b} \boldsymbol{b} \boldsymbol{a}^{*}$
(check length)
(check length+label)
cut border for $\boldsymbol{b} \boldsymbol{b} \boldsymbol{b} \boldsymbol{b} \boldsymbol{a}^{*}$

Formalizing this Idea

Formalizing this Idea

Consider STE $\quad r=A_{1} \cdots A_{\boldsymbol{k}} A^{*}$
Its cut border ℓ is the largest number such that $A \nsubseteq A_{\ell}$
(and $\ell=0$ if no such A_{ℓ} exists)

Formalizing this Idea

Consider STE $\quad r=A_{1} \cdots A_{k} A^{*}$
Its cut border ℓ is the largest number such that $A \nsubseteq A_{\ell}$ (and $\ell=0$ if no such A_{ℓ} exists)

Examples

- aaaa*
- aaba*
$=(\boldsymbol{a}+\boldsymbol{c}) \boldsymbol{a b}(\boldsymbol{a}+\boldsymbol{b})^{*}$

$$
\begin{aligned}
& \ell=0 \\
& \ell=3 \\
& \ell=3
\end{aligned}
$$

Formalizing this Idea

Consider STE $\quad r=A_{1} \cdots A_{k} A^{*}$
Its cut border ℓ is the largest number such that $A \nsubseteq A_{\ell}$ (and $\ell=0$ if no such A_{ℓ} exists)

Examples

- aaaa*
- aaba*
$=(\boldsymbol{a}+\boldsymbol{c}) \boldsymbol{a b}(\boldsymbol{a}+\boldsymbol{b})^{*}$

$$
\begin{aligned}
& \ell=0 \\
& \ell=3 \\
& \ell=3
\end{aligned}
$$

Formalizing this Idea

Consider STE $\quad r=A_{1} \cdots A_{k} A^{*}$
Its cut border ℓ is the largest number such that $A \nsubseteq A_{\ell}$ (and $\ell=0$ if no such A_{ℓ} exists)

Examples

- aaaa*
- aaba*

$$
\begin{aligned}
& \ell=0 \\
& \ell=3 \\
& \ell=3
\end{aligned}
$$

$$
\text { because }\{\boldsymbol{a}\} \nsubseteq\{\boldsymbol{b}\}
$$

${ }^{-}(\boldsymbol{a}+\boldsymbol{c}) \boldsymbol{a b}(\boldsymbol{a}+\boldsymbol{b})^{*}$
because $\{\boldsymbol{a}, \boldsymbol{b}\} \nsubseteq\{\boldsymbol{b}\}$

Definition

A class \boldsymbol{R} of STEs is cuttable, if there is a constant c such that all its expressions have cut border $\leq c$

Formalizing this Idea

Definition

A class \boldsymbol{R} of STEs is cuttable, if
there is a constant c such that all its expressions have cut border $\leq c$
parameter: size of RPQ

Main Theorem

Let \boldsymbol{R} be a class ${ }^{(*)}$ of STEs:
if \boldsymbol{R} is cuttable, then simple path existence for \boldsymbol{R} is in FPT otherwise, simple path existence for \boldsymbol{R} is W[1]-hard.

For the FPT upper bound, the complexity in the parameter is single exponential

Upper Bound Idea

Upper Bound Idea

Theorem [Alon, Yuster, Zwick, JACM 1995]
 Finding simple paths of length exactly k is in FPT

Color coding technique

Theorem [Fomin et al., JACM 2016]

Finding simple cycles of length at least \mathbf{k} is in FPT
Representative sets technique

> Theorem [Technique from Fomin et al., JACM 2016] communicated to us by Holger Dell

Finding simple paths of length at least k is in FPT
Representative sets technique

Upper Bound Idea

Find a simple path matching $\boldsymbol{A}_{\mathbf{1}} \cdots \boldsymbol{A}_{\boldsymbol{k}} \boldsymbol{A}^{*}$

Upper Bound Idea

Find a simple path matching $\boldsymbol{A}_{\mathbf{1}} \cdots \boldsymbol{A}_{\boldsymbol{k}} \boldsymbol{A}^{*}$

$$
\boldsymbol{s} \overline{A_{1} \cdots A_{c}}
$$

Brute force

Upper Bound Idea

Find a simple path matching $\boldsymbol{A}_{\mathbf{1}} \cdots \boldsymbol{A}_{\boldsymbol{k}} \boldsymbol{A}^{*}$

$$
\boldsymbol{s} \overline{A_{1} \cdots A_{c}}
$$

Brute force

Simple Path matching $A_{c+1} \cdots \boldsymbol{A}_{\boldsymbol{k}} A^{*}$
and avoiding the brute force part

Upper Bound Idea

Find a simple path matching $\boldsymbol{A}_{\mathbf{1}} \cdots \boldsymbol{A}_{\boldsymbol{k}} \boldsymbol{A}^{*}$

Brute force

Simple Path matching $\boldsymbol{A}_{\boldsymbol{c}+\boldsymbol{1}} \cdots \boldsymbol{A}_{\boldsymbol{k}} A^{*}$ and avoiding the brute force part

Upper Bound Idea

Find a simple path matching $\boldsymbol{A}_{\mathbf{1}} \cdots \boldsymbol{A}_{\boldsymbol{k}} \boldsymbol{A}^{*}$

Upper Bound Idea

Find a simple path matching $\boldsymbol{A}_{\mathbf{1}} \cdots \boldsymbol{A}_{\boldsymbol{k}} \boldsymbol{A}^{*}$

Since $A \subseteq A_{i}$

Lower Bound Idea

Parameterized Two Disjoint Paths

Lower Bound Idea

Parameterized Two Disjoint Paths

Given graph \boldsymbol{G},
nodes $\quad s_{1}$ and t_{1} and s_{2} and t_{2} and a parameter \mathbf{k}

Are there node-disjoint paths
from s_{1} to t_{1} from s_{2} to t_{2}

Lower Bound Idea

Parameterized Two Disjoint Paths

Given graph \boldsymbol{G},
nodes $\quad s_{1}$ and t_{1} and s_{2} and t_{2} and a parameter \mathbf{k}

Are there node-disjoint paths
from s_{1} to \boldsymbol{t}_{1} of length at most \mathbf{k} from s_{2} to t_{2}

Lower Bound Idea

```
Parameterized Two Disjoint Paths
Given graph G,
    nodes }\mp@subsup{s}{1}{}\mathrm{ and t}\mp@subsup{t}{1}{}\mathrm{ and }\mp@subsup{s}{2}{}\mathrm{ and }\mp@subsup{t}{2}{
    and a parameter k
Are there node-disjoint paths
    from }\mp@subsup{\boldsymbol{s}}{\mathbf{1}}{}\mathrm{ to }\mp@subsup{\boldsymbol{t}}{\mathbf{1}}{}\mathrm{ of length at most k
    from }\mp@subsup{s}{2}{}\mathrm{ to t}\mp@subsup{t}{2}{
```


Theorem (Main Technical Result)

Parameterized Two Disjoint Paths is W[1]-hard

Building on proofs from [Slivkins, SIDMA 10; Grohe\&Grüber ICALP 07]

Lower Bound Idea

Theorem (Main Technical Result)
 Parameterized Two Disjoint Paths is W[1]-hard

Lemma

Let \boldsymbol{R} be a class ${ }^{(*)}$ of STEs:
if \boldsymbol{R} is not cuttable, then simple path existence for \boldsymbol{R} is $\mathbf{W}[\mathbf{1}]$-hard.

Lower Bound Idea

Theorem (Main Technical Result)

Parameterized Two Disjoint Paths is W[1]-hard

Lemma

Let \boldsymbol{R} be a class ${ }^{(*)}$ of STEs:
if \boldsymbol{R} is not cuttable, then simple path existence for \boldsymbol{R} is W[1]-hard.

Lower Bound Idea

Theorem (Main Technical Result)

Parameterized Two Disjoint Paths is W[1]-hard

Warning: drastic oversimplification

Lemma

Let \boldsymbol{R} be a class ${ }^{(*)}$ of STEs:
if \boldsymbol{R} is not cuttable, then simple path existence for \boldsymbol{R} is $\mathbf{W}[\mathbf{1}]$-hard.

Extensions

Extensions

Main Theorem

Let \boldsymbol{R} be a class ${ }^{(*)}$ of STEs:
if \boldsymbol{R} is cuttable, then simple path existence for \boldsymbol{R} is in FPT otherwise, simple path existence for \boldsymbol{R} is W[1]-hard.

The main result extends to:

- Enumeration problems

FPT time becomes FPT delay
using [Yen 1971]

- Edge-disjoint paths

But the dichotomy slightly changes
[ArXiv 2017]

Taking a Step Back

WHAT DID WE LEARN HERE?

So what does all this mean?

Expression Type	Relative	Expression Type	Relative
A^{*}	48.76%	$a^{*} b ?$	$<0.01 \%$
A	32.10%	$a b c^{*}$	$<0.01 \%$
$a_{1} \cdots a_{k}$	8.66%	$A_{1} \cdots A_{k}$	$<0.01 \%$
$a^{*} b$	7.73%	$\left(a b^{*}\right)+c$	$<0.01 \%$
A^{+}	1.54%	$a^{*}+b$	$<0.01 \%$
$a_{1} ? \cdots a_{k} ?$	1.15%	$a+b^{+}$	$<0.01 \%$
$a A ?$	0.01%	$a^{+}+b^{+}$	$<0.01 \%$
$a_{1} a_{2} ? \cdots a_{k} ?$	0.01%	$(a b)^{*}$	$<0.01 \%$
$A ?$	$<0.01 \%$		

$$
\mathrm{k} \leq 6
$$

Cuttable STEs
($\ell \leq 2$) Thus in FPT

Union of STEs

something else

- These expressions have cut border $\leq \mathbf{2}$
- The FPT algorithms have parameter $\boldsymbol{k} \leq \mathbf{6}$
- But even naive algorithms are expected to work reasonably well (brute-force checks for paths of lengh 2 and simple paths of length 6)

Take Home Messages

- Looking in query logs can pay off and inspire new research questions!
-99.99\% of RPQs found in a practical study are Simple Transitive Expressions (STEs)
- Dichotomy for simple path evaluation of STEs
- Another one for no-repeated-edge semantics is similar
- If "cut borders are bounded", evaluation of STEs is FPT
- Cut borders in the real data are at most 2
- "FPT parameters" in the real data are 6 (for exact length) and 2 (for minimum length)

Thank you!

