Evaluation and Enumeration Problems for Regular Path Queries

Wim Martens and Tina Trautner University of Bayreuth

Practice

QUERYING PATHS IN GRAPH DATABASES

Graph Database

Node- and Edge-labeled directed graph

How many paths from Bayreuth to Vienna match the regular path query (road)*?

How many paths from Bayreuth to Vienna match the regular path query (road)*?

(How many paths from Bayreuth to Vienna only use road-edges?)

[Theoreticians]:	∞
[SPARQL 2018]:	1
[SPARQL 2012]:	3
[Cypher]:	5

How many paths from Bayreuth to Vienna match the regular path query (road)* ? (How many paths from Bayreuth to Vienna only use road-edges?)

[Theoreticians]:	∞
[SPARQL 2018]:	1
[SPARQL 2012]:	3
[Cypher]:	5

all paths

How many paths from Bayreuth to Vienna match the regular path query (road)* ? (How many paths from Bayreuth to Vienna only use road-edges?)

[Theoreticians]:	∞
[SPARQL 2018]:	1
[SPARQL 2012]:	3
[Cypher]:	5

all paths is there at least one path?

How many paths from Bayreuth to Vienna match the regular path query (road)* ? (How many paths from Bayreuth to Vienna only use road-edges?)

[Theoreticians]:	∞
[SPARQL 2018]:	1
[SPARQL 2012]:	3
[Cypher]:	5

all paths is there at least one path? paths without node repetition

[Theoreticians]:	∞	all paths
[SPARQL 2018]:	1	is there at least one path?
[SPARQL 2012]:	3	paths without node repetition
[Cypher]:	5	paths without edge repetition

[Theoreticians]:	∞	all paths
[SPARQL 2018]:	1	is there at least one path?
[SPARQL 2012]:	3	paths without node repetition
[Cypher]:	5	paths without edge repetition

[Theoreticians]:	∞	all paths
[SPARQL 2018]:	1	is there at least one path?
[SPARQL 2012]:	3	paths without node repetition
[Cypher]:	5	paths without edge repetition

[Theoreticians]:	∞	all paths
[SPARQL 2018]:	1	is there at least one path?
[SPARQL 2012]:	3	paths without node repetition
[Cypher]:	5	paths without edge repetition

The Point

There are different ways of matching paths in graphs

and any of them can make sense

The Point

There are different ways of matching paths in graphs

and any of them can make sense

But which variant do you want to use in a system?

Theory

ON QUERYING PATHS IN GRAPH DATABASES

Is there a path from \bullet to \bullet that matches r?

How many paths from \bullet to \bullet match r?

Problem

Path enumeration

Enumerate the paths from \circ to \circ that match r

Arbitrary paths Boolean paths Paths without node repetitions Paths without edge repetitions

Arbitrary paths

Boolean paths

Paths without node repetitions

Paths without edge repetitions

Arbitrary paths

Paths without node repetitions

Arbitrary paths

Simple paths

	Existence	Counting	Enumeration
Arbitrary paths			
Simple paths			

in P	in FP	polynomial delay
NP-hard	#P-hard	too much delay

	Existence	Counting	Enumeration
Arbitrary paths			
Simple paths			

"user happy":	in P	in FP	polynomial delay
"user unhappy":	NP-hard	#P-hard	too much delay

	Existence	Counting	Enumeration
Arbitrary paths	J	×	J
Simple paths	×	×	×

"user happy":	in P	in FP	polynomial delay
"user unhappy":	NP-hard	#P-hard	too much delay

Is there a simple path matching a^*ba^* ?

NP-complete [Mendelzon, Wood, SICOMP 1995]

essentially because "simple path via a node" is NP-hard [Fortune et al., TCS 1980]

Is there a simple path matching $(aa)^*$?

NP-complete [Lapaugh, Papadimitriou, Networks 1984]

Is there a simple path matching a^*ba^* ?

NP-complete [Mendelzon, Wood, SICOMP 1995]

essentially because "simple path via a node" is NP-hard [Fortune et al., TCS 1980]

Is there a simple path matching $(aa)^*$?

NP-complete [Lapaugh, Papadimitriou, Networks 1984]

[Bagan, Bonifati, Groz PODS 2013]

Dichotomy for which expressions

the data complexity of this problem is in P or NP-complete

Theory VS Systems

Theory:

Systems:

Theory VS Systems

Theory: "Simple paths are computationally difficult, even for very small RPQs"

Systems:

Theory VS Systems

Theory: "Simple paths are computationally difficult, even for very small RPQs"

Systems: "But we use simple paths and we're fine"

What is going on with these simple paths?

RPQs in SPARQL Query Logs

[Bonifati, M., Timm, PVLDB 2017]

Extracted 247,404 RPQs from SPARQL query logs (2009 - 2017) (from DBPedia, biological databases, British museum, Wikidata, ...)

RPQs in SPARQL Query Logs

[Bonifati, M., Timm, PVLDB 2017]

Extracted 247,404 RPQs from SPARQL query logs (2009 - 2017) (from DBPedia, biological databases, British museum, Wikidata, ...)

RPQs in SPARQL Query Logs

Expression Type	Relative	Expression Type	Relative
A^*	48.76%	$a^*b?$	<0.01%
Α	32.10%	abc^*	<0.01%
$a_1 \cdots a_k$	8.66%	$A_1 \cdots A_k$	<0.01%
a^*b	7.73%	$(ab^{*}) + c$	<0.01%
A^+	1.54%	$a^* + b$	<0.01%
$a_1?\cdots a_k?$	1.15%	$a + b^+$	<0.01%
aA?	0.01%	$a^{+} + b^{+}$	<0.01%
$a_1a_2?\cdots a_k?$	0.01%	$(ab)^*$	<0.01%
A?	<0.01%		

Disjunction of symbols: $A, A_1, ...$

Single symbols: $a, b, c, a_1, ...$

Data from [Bonifati et al., PVLDB 2017]

Atomic Expression

disjunction $(a_1 + \cdots + a_n)$ of symbols

(denote this by **A**, **A**_i,...)

Atomic Expression

disjunction $(a_1 + \cdots + a_n)$ of symbols

(denote this by *A*, *A*_{*i*},...)

Atomic Expression

disjunction $(a_1 + \cdots + a_n)$ of symbols

(denote this by *A*, *A*_{*i*},...)

Simple Transitive Expression (ST	E)
$L_1 A^* L_2$	where L_1 , L_2 are local expressions

RPQs in SPARQL Query Logs

Expression Type	Relative	Expression Type	Relative
A^*	48.76%	a*b?	<0.01%
A	32.10%	abc^*	<0.01%
$a_1 \cdots a_k$	8.66%	$A_1 \cdots A_k$	<0.01%
a^*b	7.73%	$(ab^{*}) + c$	<0.01%
A^+	1.54%	$a^* + b$	<0.01%
$a_1?\cdots a_k?$	1.15%	$a + b^+$	<0.01%
aA?	0.01%	$a^{+} + b^{+}$	<0.01%
$a_1a_2?\cdots a_k?$	0.01%	$(ab)^*$	<0.01%
A?	<0.01%		

STE Union of STEs

 $k \leq 6$

something else

Data from [Bonifati et al., PVLDB 2017]

RPQs in SPARQL Query Logs

Expression Type	Relative	Expression Type	Relative
A^*	48.76%	$a^*b?$	<0.01%
A	32.10%	abc^*	<0.01
$a_1 \cdots a_k$	8.66%	$A_1 \cdots A_{\cdot}$	
a^*b	7.73%		5
A^+	151	-vP	
$a_1?\cdots a_n$		~ <i>31</i> ~	
	24		<0.01%
a	5	(<i>ub</i>)*	<0.01%
19.7	. U		

Data from [Bonifati et al., PVLDB 2017]

Simple path existence

Given graph *G*, nodes *s* and *t*, and RPQ *r*,

is there a simple path from *s* to *t* that matches *r*?

Simple path existence for **R**

Given graph G, nodes s and t, and RPQ $r \in R$, is there a simple path from s to t that matches r?

Example classes **R**:

These are non-trivial problems!

Main Theorem

Simple path existence for **R**

Given graph G, nodes s and t, and RPQ $r \in R$, is there a simple path from s to t that matches r?

Main Theorem

Let \mathbf{R} be a class^(*) of STEs:

if **R** is *cuttable*, then simple path existence for **R** is in **FPT** otherwise, simple path existence for **R** is **W[1]-hard**.

(*) satisfying a mild condition, needed for W[1] hardness

Main Theorem

Simple path existence for **R**

Given graph G, nodes s and t, and RPQ $r \in R$, is there a simple path from s to t that matches r?

parameter: size of RPQ

Main Theorem

Let **R** be a class^(*) of STEs: if **R** is *cuttable*, then simple path existence for **R** is in **FPT** otherwise, simple path existence for **R** is **W[1]-hard**.

> (*) satisfying a mild condition, needed for W[1] hardness

Path that matches r

WIM MARTENS AND TINA TRAUTNER

Simple Path that matches r ?

Simple Path that matches r ?

Does the simple path still match r?

- "Easy" to check for *aaaaa**
- "Hard" to check for bbbba*

(check length)
(check length+label)

Simple Path that matches r ?

Does the simple path still match r?

- "Easy" to check for *aaaaa**
- "Hard" to check for bbbba*

(check length)
(check length+label)

WIM MARTENS AND TINA TRAUTNER

Consider STE $r = A_1 \cdots A_k A^*$

Its **cut border** ℓ is the largest number such that $A \not\subseteq A_{\ell}$ (and $\ell = 0$ if no such A_{ℓ} exists)

Consider STE $r = A_1 \cdots A_k A^*$

Its **cut border** ℓ is the largest number such that $A \not\subseteq A_{\ell}$ (and $\ell = 0$ if no such A_{ℓ} exists)

Examples

 $aaaa^*$ $\ell = 0$ because $\{a\} \subseteq \{a\}$ $aaba^*$ $\ell = 3$ because $\{a\} \nsubseteq \{b\}$ $(a + c)ab(a + b)^*$ $\ell = 3$ because $\{a, b\} \nsubseteq \{b\}$

Consider STE $r = A_1 \cdots A_k A^*$

Its **cut border** ℓ is the largest number such that $A \not\subseteq A_{\ell}$ (and $\ell = 0$ if no such A_{ℓ} exists)

Examples

 $aaaa^*$ $\ell = 0$ because $\{a\} \subseteq \{a\}$ $aaba^*$ $\ell = 3$ because $\{a\} \nsubseteq \{b\}$ $(a + c)ab(a + b)^*$ $\ell = 3$ because $\{a, b\} \nsubseteq \{b\}$

Consider STE $r = A_1 \cdots A_k A^*$

Its **cut border** ℓ is the largest number such that $A \not\subseteq A_{\ell}$ (and $\ell = 0$ if no such A_{ℓ} exists)

 $aaaa^*$ $\ell = 0$ because $\{a\} \subseteq \{a\}$ $aaba^*$ $\ell = 3$ because $\{a\} \nsubseteq \{b\}$ $(a + c)ab(a + b)^*$ $\ell = 3$ because $\{a, b\} \nsubseteq \{b\}$

Definition

A class R of STEs is *cuttable*, if there is a constant c such that all its expressions have cut border $\leq c$

Definition

A class **R** of STEs is *cuttable*, if

there is a constant c such that all its expressions have cut border $\leq c$

parameter: size of RPQ

Main Theorem

Let \mathbf{R} be a class^(*) of STEs:

if **R** is *cuttable*, then simple path existence for **R** is in **FPT** otherwise, simple path existence for **R** is **W[1]-hard**.

For the **FPT** upper bound, the complexity in the parameter is single exponential

WIM MARTENS AND TINA TRAUTNER

Theorem [Alon, Yuster, Zwick, JACM 1995]

Finding **simple paths** of length **exactly k** is in FPT

Color coding technique

Theorem [Fomin et al., JACM 2016]

Finding simple cycles of length at least k is in FPT

Representative sets technique

Theorem [Technique from Fomin et al., JACM 2016] communicated to us by Holger Dell

Finding simple paths of length at least k is in FPT

Representative sets technique

Find a simple path matching $A_1 \cdots A_k A^*$

WIM MARTENS AND TINA TRAUTNER

t

Find a simple path matching $A_1 \cdots A_k A^*$

$$s - A_1 \cdots A_c$$

Brute force

WIM MARTENS AND TINA TRAUTNER

t

Find a simple path matching $A_1 \cdots A_k A^*$

$$s - A_1 \cdots A_c$$

Brute force Simple Path matching $A_{c+1} \cdots A_k A^*$

and avoiding the brute force part

WIM MARTENS AND TINA TRAUTNER

t

Find a simple path matching $A_1 \cdots A_k A^*$

and avoiding the brute force part

WIM MARTENS AND TINA TRAUTNER

Upper Bound Idea

Find a simple path matching $A_1 \cdots A_k A^*$

Upper Bound Idea

Find a simple path matching $A_1 \cdots A_k A^*$

A* $s A_1 \cdots A_c A_{c+1} \cdots A_k$ t

Since $A \subseteq A_i$

Parameterized Two Disjoint Paths

Parameterized Two Disjoint Paths

```
Given graph G,
nodes s_1 and t_1 and s_2 and t_2
and a parameter k
```

```
Are there node-disjoint paths
```

```
from s_1 to t_1
from s_2 to t_2
```

*s*₂

Parameterized Two Disjoint Paths

Given graph G, nodes s_1 and t_1 and s_2 and t_2 and a parameter **k**

Are there node-disjoint paths from s_1 to t_1 of length at most k

from s_2 to t_2

Parameterized Two Disjoint Paths

```
Given graph G,
nodes s_1 and t_1 and s_2 and t_2
and a parameter k
```

Are there node-disjoint paths from s_1 to t_1 of length at most k from s_2 to t_2

Theorem (Main Technical Result)

Parameterized Two Disjoint Paths is W[1]-hard

Building on proofs from [Slivkins, SIDMA 10; Grohe&Grüber ICALP 07]

Theorem (Main Technical Result)

Parameterized Two Disjoint Paths is W[1]-hard

Lemma

Let \mathbf{R} be a class^(*) of STEs:

if **R** is **not cuttable**, then simple path existence for **R** is **W[1]-hard**.

Theorem (Main Technical Result)

Parameterized Two Disjoint Paths is W[1]-hard

Lemma

Let \mathbf{R} be a class^(*) of STEs:

if **R** is **not cuttable**, then simple path existence for **R** is **W[1]-hard**.

Theorem (Main Technical Result)

Parameterized Two Disjoint Paths is W[1]-hard

Warning: drastic oversimplification

Lemma

Let \boldsymbol{R} be a class^(*) of STEs:

if **R** is **not cuttable**, then simple path existence for **R** is **W[1]-hard**.

Extensions

Extensions

Main Theorem

Let **R** be a class^(*) of STEs: if **R** is *cuttable*, then simple path existence for **R** is in **FPT** otherwise, simple path existence for **R** is **W[1]-hard**.

The main result extends to:

Enumeration problems
 FPT time becomes FPT delay

using [Yen 1971]

 Edge-disjoint paths But the dichotomy slightly changes

[ArXiv 2017]

Taking a Step Back

WHAT DID WE LEARN HERE?

So what does all this mean?

Expression Type	Relative	Expression Type	Relative	
A^*	48.76%	$a^*b?$	<0.01%	$k \leq 6$
A	32.10%	abc*	<0.01%	
$a_1 \cdots a_k$	8.66%	$A_1 \cdots A_k$	<0.01%	Cuttable STEs
a^*b	7.73%	$(ab^{*}) + c$	<0.01%	$(\ell \leq 2)$ Thus in FPT
A^+	1.54%	$a^* + b$	<0.01%	Thus in FPT
$a_1?\cdots a_k?$	1.15%	$a + b^+$	<0.01%	Union of STEs
aA?	0.01%	$a^{+} + b^{+}$	<0.01%	Officit of STES
$a_1a_2?\cdots a_k?$	0.01%	$(ab)^*$	<0.01%	something else
A?	<0.01%			

- These expressions have **cut border** ≤ **2**
- The FPT algorithms have parameter $k \leq 6$
- But even naive algorithms are expected to work reasonably well (brute-force checks for paths of lengh 2 and simple paths of length 6)

Take Home Messages

Looking in query logs can pay off and inspire new research questions!

 99.99% of RPQs found in a practical study are Simple Transitive Expressions (STEs)

Dichotomy for simple path evaluation of STEs

- Another one for no-repeated-edge semantics is similar
- If "cut borders are bounded", evaluation of STEs is FPT
 - Cut borders in the real data are at most 2
 - "FPT parameters" in the real data are 6 (for exact length) and 2 (for minimum length)

Thank you!