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ABSTRACT
We investigate minimization of tree pattern queries that use
the child relation, descendant relation, node labels, and wild-
cards. We prove that minimization for such tree patterns
is ΣP2 -complete and thus solve a problem first attacked by
Flesca, Furfaro, and Masciari in 2003. We first provide an
example that shows that tree patterns cannot be minimized
by deleting nodes. This example shows that the M-NR
conjecture, which states that minimality of tree patterns is
equivalent to their nonredundancy, is false. We then show
how the example can be turned into a gadget that allows us
to prove ΣP2 -completeness.
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1. INTRODUCTION
Tree-structured data is among us in many forms: JSON,

XML, our filesystems, the secondary structure of RNA, and
parse trees for linguistic data, just to name a few exam-
ples. Tree pattern queries are a fundamental tool for query-
ing and selecting nodes in tree-structured data. They are
present in most query languages for tree-structured data,
most notably, XPath [33]. In fundamental research they ap-
pear in a wide range of topics. For example, they form a ba-
sis for conjunctive queries over trees [22], for models of XML
with incomplete information [5], and for the closely related
pattern-based XML queries [20]. They are used for speci-
fying guards in Active XML systems [1] and for specifying
schema mappings in XML data exchange [4]. Beyond trees,
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they are a natural language for querying graph databases
[14, 27].

Optimization of tree pattern queries is therefore a very
natural question. Not only do new results in this direction
give us new insights on query optimization in many practical
languages, they can also give us a better understanding of
the foundations of the above mentioned models which are
based on tree patterns. Tree pattern query optimization
already attracted significant attention in the form of query
containment [29, 31, 14], satisfiability [6], and minimization
[3, 13, 18, 25, 32, 36].

In this paper we study the minimization problem for tree
pattern queries that use the child relation, descendant rela-
tion, label tests, and wildcards (henceforth: tree patterns).
These tree patterns are widely studied [17, 29, 37, 18, 25, 1,
8, 4, 34] but their minimization problem remained elusive.
In particular, the complexity of minimization is unknown.

It is believed that a key in understanding tree pattern
minimization lies in understanding the relationship between
minimality (M) and nonredundancy (NR) [18, 25]. Here, a
tree pattern is minimal if it has the smallest number of nodes
among all equivalent tree patterns. It is nonredundant if
none of its leaves or branches can be deleted while remain-
ing equivalent. The question is if minimality and nonredun-
dancy are the same:

M-NR Conjecture (page 35 of [18], rephrased):
A tree pattern is minimal if and only if it is nonredun-
dant.

Clearly, every minimal tree pattern is nonredundant, so
one direction of the M-NR conjecture trivially holds. The
opposite direction is much less clear. If it would be true,
it means that, for a given tree pattern p, a minimal tree
pattern is always a substructure of p. It would also mean
that tree pattern minimization can be solved by tree pat-
tern containment. Indeed, one would be able to minimize
tree patterns p by iteratively removing leaves and testing
if the obtained tree pattern p′ is still contained in p. If
no leaf can be removed anymore, the remaining tree pat-
tern would be nonredundant and therefore minimal. Since
testing containment of tree patterns is coNP-complete [29],
this would mean that one could solve minimization with a
polynomial-time algorithm with a coNP oracle and that the
minimization problem for tree patterns is coNP-complete.

The minimization problem for tree patterns is not entirely
uncontroversial. It was claimed to be coNP-complete in
2003 [17] but the algorithm relied on the M-NR conjecture.



Kimelfeld and Sagiv [25] proved that, in contrast to claims
in [17], the M-NR conjecture is open and, as a consequence,
the algorithms from [17] were revised in [18]. The updated
work [18] proves that the M-NR conjecture holds for tree
patterns in which every wildcard node has at most one child
and presents a coNP algorithm for this case. It is needless
to say that [18, 25] contain a wealth of valuable results on
tree patterns and their minimization (many of which we use
here), but the most central questions, that is, the status of
the M-NR conjecture and the question of the complexity of
tree pattern minimization, remained open.

Our main contributions are the following:

• We prove that the M-NR conjecture is false by pro-
viding a tree pattern that is nonredundant but not
minimal.

• We prove that tree pattern minimization is ΣP2 -com-
plete. This means that, unless ΣP2 = coNP, we have
that tree pattern minimization cannot be solved by
a polynomial-time algorithm with an oracle for tree
pattern containment.

• Interestingly, our counterexample and our gadgets in
the ΣP2 -hardness proof use only two wildcard nodes
with two children, which is only barely beyond the
fragment for which the M-NR conjecture is known to
hold.

The Bigger Picture.
This paper fits naturally in a line of research that orig-

inated in the early days of database theory. Query min-
imization and optimization by removing redundant parts
goes back to the seminal work of Chandra and Merlin [11]
and has since then been successfully adopted for many types
of queries, in various data models such as relations and trees
(see, e.g., [3, 10, 11, 18, 32, 36]). In this section we highlight
a few parallels and differences between conjunctive queries
and acyclic conjunctive queries over relational data and over
tree-structured data.
Conjunctive Queries over Relations. Minimization,
containment, and evaluation of conjunctive queries over re-
lations are well known to be NP-complete [11]. For acyclic
conjunctive queries, which have been extensively studied
(see, e.g., [12, 23, 38]), the complexity of these problems
is in polynomial time. Conjunctive Queries over Trees.
Conjunctive queries over trees [22] are different from con-
junctive queries over relations in two respects. First, the
underlying model is based on trees instead of relations and
second, conjunctive queries over trees use different built-in
relations. Most notably, apart from the child relation, they
can use the descendant relation and therefore have the power
to reason about certain transitive closures. They therefore
query a more restricted data model than their counterpart
over relations but in return they have more powerful rea-
soning. The original definition of conjunctive queries over
trees allows for many built-in relations (child, descendant,
next-sibling, following-sibling, etc. [22]); we only discuss the
two most basic ones, child and descendant, in the following.

Conjunctive queries over trees have an NP-complete eval-
uation problem [22] just like conjunctive queries over re-
lations. Their containment problem, however, is ΠP

2 -com-
plete [7] and the complexity of their minimization problem
is unknown.

Tree patterns can be seen as acyclic variants of conjunc-
tive queries over trees. Their evaluation problem is in poly-
nomial time [21] and their containment problem is coNP-
complete [29]. By proving that minimization of tree pat-
terns is ΣP2 -complete, we finish a natural step in this line of
research.

Tree Patterns as a Graph Query Language.
Due to their modal nature, tree patterns and XPath-like

languages are also suitable languages for querying graph
databases [9, 24, 27, 2, 28, 19]. In fact, the complexity of
tree pattern containment does not depend on whether they
are evaluated over trees or over graphs, see [29, Section 5.3]
and [14, Section 7]. The same is true for the minimization
problem. Therefore, the complexity results in this paper
can be extended to tree patterns over graphs as well. We
present all results in terms of trees because it makes proofs
considerably simpler.

The problems for trees can even be extended to data graphs
[27] and patterns that compare data values with constants
(such comparisons are essentially the same as the label tests
of tree patterns). However, as soon as data value compar-
isons enter the picture, such a straightforward extension to
graphs does not work anymore, see e.g. [26].

Outline.
We present the counterexample to the M-NR conjecture

in Section 3. We also show in Section 3 that minimal tree
patterns are not unique (up to adornments). In Section 4
we prove that tree pattern minimization is ΣP2 -complete. We
discuss implications on k-ary queries and further outlooks in
Section 5.

2. PRELIMINARIES
We are interested in finite, labeled, unordered trees.1 A

labeled unordered tree is a triple (V,E, lab), where V is a
finite nonempty set of nodes, E is a set of edges (u, v) ∈
V × V and lab : V → Σ is a labeling function assigning to
every node its label coming from an infinite set of labels Σ.
If (u, v) ∈ E then we say that u is the parent of v and v
is a child of u. We demand that for every node v there is
at most one (u, v) ∈ E, so in trees the parent is uniquely
determined. There is a unique node without parent, which
we denote root(t) and call the root of t. The descendant and
ancestor relations are transitive closures of the child and
parent relations, respectively. We say that a child of a node
u is a 1-descendant of u and a child of a k-descendant of u is a
(k+1)-descendant of u for any k ∈ N. We define k-ancestors
similarly. A node has depth k if it is a k-descendant of the
root. In the sequel we just use the term trees for referring
to labeled unordered trees.

For a tree t = (V,E, lab) and a node v ∈ V we denote
by tv the subtree of t rooted in node v. By t \ v we denote
the tree obtained from t by deleting the subtree rooted at v
(including node v itself).

A tree pattern is intended to describe a set of trees. It is
a special type of a tree; its set of edges is divided into two
disjoint sets: child edges and descendant edges (we draw
descendant edges using double lines). Its labeling function

1However, we don’t require trees to be unordered. Our re-
sults are the same for ordered trees. Tree patterns, however,
are inherently unordered.



provides every node with a label from Σ or a special label
∗ which we assume not to be in Σ and call wildcard. We
denote Σ∗ = Σ ∪ {∗}. The intended meaning of the wildcard
is not to specify any particular label. For a tree pattern
p = (Vp, Ep, labp) and a tree t = (V,E, lab), a function
π : Vp → V is a strong embedding2 of p in t if it fulfills all
the following conditions:

(1) if labp(v) 6= ∗ for v ∈ Vp then labp(v) = lab(π(v)),

(2) if (u, v) ∈ Ep is a child edge then π(u) is a parent of
π(v) in the tree t,

(3) if (u, v) ∈ Ep is a descendant edge then π(u) is an an-
cestor of π(v) in the tree t, and

(4) π(root(p)) = root(t).

We say that p strongly embeds in t if there exists a strong
embedding of p in t. We say that π is a weak embedding of
p in t and p weakly embeds in t if the above conditions (1)–
(3) are fulfilled, but not necessarily π(root(p)) = root(t).
Figure 1 contains examples of strong and weak embeddings.
Notice that we do not require embeddings to be injective
(Figure 1(c)).

Equivalence, Containment, and Minimality.
The (strong) language of a tree pattern p, denoted by

LS(p), is the set of trees in which p strongly embeds. A
tree pattern p1 is (strongly) contained in a tree pattern p2 if
LS(p1) ⊆ LS(p2), which we denote by p1 ⊆S p2. If p1 ⊆S p2
and p1 ⊇S p2 then we say that the tree patterns p1 and p2
are (strongly) equivalent and we write p1 ≡S p2.

We call a tree pattern p redundant if one of its nodes can
be removed without changing its language. More formally,
p is redundant if it is strongly equivalent to p \ v for a node
v of p. In this case, v is a redundant node. If p is not
redundant we say that it is nonredundant. It is known that
a pattern is redundant if and only if it has a redundant leaf
[25, Proposition 3.3].

The size of a tree pattern p, denoted size(p), is the number
of its nodes. A tree pattern p is said to be minimal if there
is no tree pattern p′ that is equivalent to p but has strictly
smaller size.

Analogously, we define weak language, weak containment,
weak equivalence, weak redundancy, and weak nonredundan-
cy. The definitions are exactly the same, but use weak em-
beddings instead of strong embeddings. The notation for
weak containment and weak equivalence is p1 ⊆W p2 and
p1 ≡W p2, respectively. It is well-known that containment
of tree patterns, i.e., deciding for two given tree patterns p
and q if p ⊆S q, is coNP-complete.

Theorem 2.1 ([29]). Containment of tree patterns is
coNP-complete.

We now mention a weak version of the M-NR Conjecture
which was proved in [18]. We require the following defini-
tion.

Definition 2.2 (∗-narrow pattern). A tree pattern
is a ∗-narrow pattern if every wildcard node has at most one
child.

2A strong embedding is sometimes also called root embed-
ding.
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(c) A strong embedding of a tree pattern p in tree t. Em-
beddings are not required to be injective.

Figure 1: Examples of strong and weak embeddings.

For example, the tree patterns in Figure 1 are ∗-narrow pat-
terns.

Lemma 2.3 (Corollary 4.5 in [18]). If p is a ∗-nar-
row pattern, then p is minimal if and only if p is nonredun-
dant.

Canonical trees.
Canonical trees were introduced by Miklau and Suciu [29]

for studying the containment problem for tree patterns. We
need them in our paper to simplify proofs.

Let z ∈ Σ be a special label that does not occur in any tree
pattern that we consider in the paper. (We can assume that
such a label exists because Σ is infinite.) A canonical tree
of a tree pattern p is a tree obtained from p by application
of the two following steps:

• for every node v such that labp(v) = ∗, we relabel
lab(v) = z,

• change every descendant edge in p to a (nonempty)
sequence of edges in t in such a way that all newly
created nodes are labeled by z.

Notice that it is possible in the last step that no new nodes
are created. This happens when each descendant edge is
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Figure 2: A tree pattern p and a canonical tree t.

replaced by a single child edge. An example of a canonical
tree is given in Figure 2. We denote by Can(p) the set of all
canonical trees of p.

Given a pattern p and one of its canonical trees t, there is
a canonical injective embedding of the non-wildcard nodes
of p into t. We sometimes use this correspondence to talk
about nodes in t. That is, for a non-wildcard node u of
p, we use this injective embedding to identify the node in t
corresponding to u.

Lemma 2.4 (Proposition 3 in [29]). Let p1 and p2 be
two tree patterns. Then p1 ⊆S p2 if and only if Can(p1) ⊆
LS(p2).

A corresponding lemma for weak containment can be proved
analogously as in [29].

Homomorphisms.
Let p1 = (Vp1 , Ep1 , labp1) and p2 = (Vp2 , Ep2 , labp2) be

tree patterns. A homomorphism from p1 to p2 is a function
h : Vp1 → Vp2 that fulfills the following conditions:

(1) h(root(p1)) = root(p2),

(2) if labp1(v) 6= ∗ for v ∈ Vp1 then labp1(v) = labp2(h(v)),

(3) if (u, v) ∈ Ep1 is a child edge then (h(u), h(v)) ∈ Ep2 is
a child edge, and

(4) if (u, v) ∈ Ep1 is a descendant edge then h(u) is an
ancestor of h(v) in p2.

The existence of a homomorphism h from p1 to p2 is a suf-
ficient condition for p2 ⊆S p1 [29]. Essentially, the reason is
that, if π is a strong embedding of p2 in a tree t, then π ◦ h
is a strong embedding of p1 in t. We make use of this fact
later in the paper.

3. NONREDUNDANCY AND MINIMALITY
In this section we present a counterexample for the M-NR

conjecture. We build further on this example to show that
minimal tree patterns are not unique. We choose the exam-
ples in such a way that they help the reader to understand
the gadgets we use in Section 4.

Nonredundancy 6= Minimality.
We will show that the left tree pattern p in Figure 3 is

nonredundant and not minimal. One thing is easy to see:
the tree pattern q on the right is smaller. Seeing that the
left tree pattern p is nonredundant and equivalent to the
tree pattern q on the right requires more work.

First we show that the tree pattern p is nonredundant.
To this end, it suffices to show that none of its leaves can
be deleted while remaining equivalent [25, Proposition 3.3].

For the purpose of this proof, we order the leaves in p from
left to right, that is, the first c1-leaf is the one in depth 7,
the second c1-leaf is the leftmost leaf on depth 8, and so on.

• If the first c1-leaf is removed, then the resulting tree
pattern matches the tree t1 in Figure 4 by the strong
embedding π which we partly illustrated in that fig-
ure. However, the tree pattern p does not match. The
reason why we cannot remove the first c2-leaf of p is
analogous (replace the first c2-leaf in t1 by a c1-leaf).

• If the second c1-leaf is removed, then the resulting tree
pattern matches the tree t2 in Figure 4 using the strong
embedding π which we partly illustrated in that figure.
However, the tree pattern p does not match. The rea-
son why we cannot remove the second c2-leaf of p is
analogous (replace the first c2-leaf in t2 by a c1-leaf).

• Finally, if any of the other c1- or c2-leaves would be
removed, the tree pattern would match the tree t3
in Figure 4 in which the corresponding (circled) leaf
would be removed and this is always a tree that is not
matched by p.

Finally, we show that the tree pattern p is (strongly)
equivalent to the tree pattern q. To this end, observe that
q ⊆S p because q is more restrictive: it has the same re-
quirements as p but, in addition it says that the nodes onto
which the second c1- and c2-leaves are matched have the
same parent. It therefore only remains to show that p ⊆S q.
By Lemma 2.4, it suffices to prove that Can(p) ⊆S LS(q).

Let t ∈ Can(p). Let πp be a strong embedding of p in t.
Consider the nodes uA and uB in p. We make a case distinc-
tion on the number of nodes between πp(uA) and πp(uB) in t
and show in each case how to construct a strong embedding
πq from q in t.

• If πp(uA) is the parent of πp(uB), then we can define
πq(v2) := πp(u4). For all non-descendants of v2, we
define πq the same as πp.

• If πp(uA) is the 2-ancestor of πp(uB) (see Figure 5 left),
then we define πq(v1) := πp(u2), and πq(v2) := πp(u4),
and πq(vB) := πp(uB), and, since the distance between
πq(v2) and πq(vA) is four, we map vA to the parent of
πp(uB). In particular, the leftmost branch of t is not
used by πq at all.

• If πp(uA) is the 3-ancestor of πp(uB) (see Figure 5
right), then we define πq(v1) := πp(uB) and πq(v2) :=
πp(u3). In particular, the two leftmost branches of t
are not used by πq at all.

• If πp(uA) is the k-ancestor of πb(uB) for some k ≥ 4,
we proceed in the same way than in the previous case.
Here, we move πq(vA) downward on the path to πp(uB)
so that the distance between πq(v2) and πq(vA) is four.

This means that every canonical tree of p can be (strongly)
matched by q. By Lemma 2.4 this means that p and q are
strongly equivalent.

We therefore obtained that p is nonredundant but q is
equivalent and smaller, which leads to the following theorem:

Theorem 3.1. The M-NR conjecture is false.
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Minimal Patterns are not Unique up to Adornment.
Minimal tree patterns are not unique. For example, the

tree patterns in Figure 7(a) are different, minimal, and both
express that there should be at least one node between an
a-labeled node and a b-labeled node.

However, it can be argued that the difference between the
patterns in Figure 7(a) is rather artificial. In the context of
the containment problem for tree patterns, these patterns
were used to illustrate that the existence of a homomorphism
is not a necessary condition for containment [30, 29]. On the
other hand, Milo and Suciu [30] proved that, in restricted
cases, it is possible to rewrite patterns in a normal form that
alleviates this problem. Miklau and Suciu [29, Section 3.2]
extended this normal form to the full class of tree patterns.
The patterns in normal form are called adorned tree patterns.

Intuitively, adorning a tree pattern corresponds to re-
placing some paths in the pattern by annotated descendant
edges. For example, the adorned pattern equivalent to both
patterns in Figure 7(a) is in Figure 7(b). The adornment
“≥ 1” means that the pattern requires at least one node be-
tween the a-node and the b-node. More formally, Miklau and
Suciu define adorned tree patterns as follows. For a given
tree pattern, every descendant edge is initially adorned with
“≥ 0”. Then, adjacent edges sharing a ∗ node are combined
into a descendant edge with higher adornment. Only ∗ nodes
that have a unique child may be eliminated this way. (If a
∗ node has two or more children, we cannot eliminate it.)
The process can also be described as a set of rewrite rules
using an XPath-like syntax for tree patterns:

� → �≥0

�≥m ∗ / → �≥m+1

/ ∗ �≥n → �≥n+1

�≥m ∗ �≥n → �≥m+n+1

For example, these rules would rewrite a�∗�b/∗/c/∗/∗/∗�d
into a �≥1 b/ ∗ /c �≥3 d. In tree pattern syntax, they would
rewrite the patterns in Figure 7(a) to the adorned pattern
in Figure 7(b).

The question in this section is whether there exist equiva-
lent minimal tree patterns that have different adorned pat-
terns. We show that such patterns can be obtained as fol-
lows. Consider the gadget P (X,Y, Z) in Figure 8. For tree
patterns p, q, and r, denote by P (p, q, r) the tree pattern
obtained from P by instantiating the subtrees marked X,
Y , and Z by p, q, and r, respectively. Consider the tree

patterns p, q1, q2, and r from Figure 6. Then, we claim that

P (p, q1, r) and P (p, q2, r)

are equivalent and minimal, but they have different adorned
patterns. In fact, notice that adornment does not change
anything in P (p, q1, r) or P (p, q2, r). Since P (p, q1, r) is dif-
ferent from P (p, q2, r), it is immediate that their adornments
are also different. It remains to show that P (p, q1, r) and
P (p, q2, r) are equivalent and minimal, which is non-trivial.

We first show that the tree patterns are equivalent. To
this end, we first prove a lemma that already gives insight
to a central property of the gadget in Figure 8.

Lemma 3.2. Let α, β1, β2, and γ be tree patterns that do
not use labels in {a, b} and such that α ⊆S β1 ⊆S γ and
α ⊆S β2 ⊆S γ. Then P (α, β1, γ) ≡S P (α, β2, γ).

Proof sketch. The proof follows the same lines as the
proof showing that the two tree patterns in Figure 3 are
equivalent. Given a tree t and embedding π1 of P (α, β1, γ)
in t, the corresponding embedding π2 of P (α, β2, γ) in t can
be constructed using the same case distinction as for tree
patterns in Figure 3 and in an analogous manner. Proving
that P (α, β2, γ) ⊆S P (α, β1, γ) is analogous.

We are now ready to show the equivalence between the
tree patterns.

Proposition 3.3. P (p, q1, r) and P (p, q2, r) are strongly
equivalent.

Proof sketch. The inclusions q1 ⊆S r and q2 ⊆S r are
trivial: q1 and q2 restrict r by additionally requiring that
two nodes labeled g1 and g2 should have the same parent.
The inclusion p ⊆S q1 holds since q1 is a strict subpattern
of p and the inclusion p ⊆S q2 holds since there is a homo-
morphism π from q2 to p that maps the topmost d-node of
q2 to the middle d-node of p. The equivalence then follows
from Lemma 3.2.

Minimality of P (p, q1, r) and P (p, q2, r) is more technical
to prove and requires material which we develop in Section 4.
More precisely, minimality of P (p, q1, r) and P (p, q2, r) fol-
lows from Lemma 4.2. We briefly explain why. Since p and
r are ∗-narrow, their minimality is immediate because they
are nonredundant (Lemma 2.3). It remains to prove that q1
and q2 are smallest tree patterns such that p ⊆S qi ⊆S r
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(Lemma 4.3).

holds. The intuitive3 reason is that, starting with tree pat-
tern r, we can only get a smaller pattern q that still satisfies
q ⊆S r by merging f -nodes that are siblings. Furthermore,
we can only merge one pair of f -nodes, because otherwise
the pattern does not satisfy p ⊆S q any more.

4. THE COMPLEXITY OF MINIMIZATION
In this section we study the complexity of the following

problems.

Tree Pattern Minimization
Given: A tree pattern p and k ∈ N
Question: Does there exist a tree pattern q such

that size(q) ≤ k and q ≡S p?

Minimality
Given: A tree pattern p
Question: Is p minimal?

It was proved in [18, Theorem 5.9] that Tree Pattern
Minimization is coNP-hard. Minimality is known to be
NP-hard [25, Theorem 6.3]. The central theorem of this
section is:

3A more formal proof would be analogous to the proof of
Claim 4.7.

Theorem 4.1. Tree Pattern Minimization is
ΣP2 -complete.

Since testing non-redundancy of a tree pattern is NP-
complete [25, Theorem 6.3], the above theorem proves that,
under standard complexity theoretic assumptions, the prob-
lem Tree Pattern Minimization is more difficult than
testing non-redundancy.

We will now prove Theorem 4.1. The ΣP2 upper bound is
straightforward: given an instance of Tree Pattern Min-
imization consisting of tree pattern p and k ∈ N, one can
guess a tree pattern q of size at most k and test if it is
equivalent to p. Since we make polynomially many non-
deterministic guesses and since testing equivalence is coNP-
complete, this is a ΣP2 algorithm.

To show hardness, we will introduce an intermediate prob-
lem called relative minimization. We will give two reduc-
tions: the first is from relative minimization to tree pattern
minimization and the second one shows that relative mini-
mization is ΣP2 -hard.

Relative Tree Pattern Minimization
Given: Minimal tree patterns p and r such that

p ⊆S r and k ∈ N
Question: Is there a pattern q such that size(q) ≤

k and p ⊆S q ⊆S r?

We will use the gadget P (X,Y, Z) from Figure 8. Recall
that, for tree patterns p, q, and r, we denote by P (p, q, r) the
tree pattern obtained from P by instantiating the subtrees
marked X, Y , and Z by p, q, and r, respectively.

The following lemma is the technically most difficult re-
sult in the paper. It is crucial for connecting Tree Pattern
Minimization with Relative Tree Pattern Minimiza-
tion and essentially proves two things. First, if one inserts
minimal patterns p, q, r in the positions X, Y and Z, then
one may still be able to obtain a smaller pattern by chang-
ing q. Second, all patterns that are equivalent to P (p, q, r),
minimal and satisfy some side-conditions are, in a sense,
similar to P (p, q, r). Thus in order to show that P (p, q, r) is
minimal can focus only on such similar candidates for being
smaller and equivalent one. It is this second part that has a
very technical proof.

Lemma 4.2. Let p, q, and r be tree patterns that have at
least one node, do not use labels in {a, b}, and such that
p ⊆S q ⊆S r. Then P (p, q, r) is minimal if and only if

(1) p and r are minimal; and

(2) there is no tree pattern q′ such that

• p ⊆S q′ ⊆S r and

• size(q′) < size(q).

Notice that condition (2) in Lemma 4.2 is subtle. If P (p, q, r)
is minimal, then q must also be minimal. However, minimal-
ity of q does not necessarily imply that P (p, q, r) is minimal.
Indeed, if there would be a pattern q′ that is not equivalent
to q but such that size(q′) < size(q) and p ⊆S q′ ⊆S r, then
P (p, q′, r) would be equivalent to P (p, q, r) and smaller.

The proof of the lemma considers an arbitrary pattern
that is minimal and equivalent to P (p, q, r) and proves step
by step that it must be similar to P (p, q, r). In a second step,
we infer that the pattern at Y must be a smallest pattern q



such that p ⊆S q ⊆S r. A particular challenge in the proof
is the lack of methods that work for the general class of tree
patterns.

Lemma 4.3. Relative Tree Pattern Minimization is
reducible to Tree Pattern Minimization in logarithmic
space.

Proof. Consider an arbitrary instance of Relative
Tree Pattern Minimization consisting of minimal tree
patterns p and r such that p ⊆S r, and a number k ∈ N.
We can assume w.l.o.g. that p and r have at least one node.
Since we can rename labels, we can also assume that p and
r do not use the labels a or b. We will construct an instance
pm and k′ ∈ N of Tree Pattern Minimization so that pm
has an equivalent pattern of size at most k′ if and only if
there is a tree pattern q with size(q) ≤ k and p ⊆S q ⊆S r.

Tree pattern pm is P (p, p, r), where the gadget P is illus-
trated in Figure 8. We define k′ as k + 2|p|+ 2|r|+ 20.

We now prove that the reduction is correct. We need
to prove two implications. For the first, assume that p, r,
and k have a solution q w.r.t. Relative Tree Pattern
Minimization. In this case we know from Lemma 3.2 that
pm = P (p, p, r) ≡S P (p, q, r). Furthermore, the size of
P (p, q, r) is size(q) + 2|p|+ 2|r|+ 20 ≤ k′.

We prove the other implication. We assume that pm =
P (p, p, r) has an equivalent pattern of size at most k′ and we
want to prove that there exists a pattern q of size at most
k such that p ⊆S q ⊆S r. Let q be a smallest pattern such
that p ⊆S q ⊆S r (more precisely, there exists no pattern q′

such that size(q′) < size(q) and p ⊆S q′ ⊆S r).
By Lemma 3.2, we have that P (p, q, r) ≡S pm. Tree pat-

terns p and r are minimal and q is a smallest pattern in
the set {q′ | p ⊆S q′ ⊆S r}. Therefore, by Lemma 4.2,
pattern P (p, q, r) is minimal. Therefore its size is at most
k′ = k + 2|p| + 2|r| + 20. This implies that |q| ≤ k and
concludes the proof.

To prove Theorem 4.1 it therefore only remains to prove
that Relative Tree Pattern Minimization is ΣP2 -com-
plete, which we do next. We will reduce from the following
problem, which is a mild variation of the canonical satisfia-
bility problem of quantified ∃∀-formulas (∃∀-QBF).

∃-validity
Given: A set of pairs of conjunctive clauses

{(c11, c21), . . . , (c1m, c
2
m)} over variables

x1, . . . , xn
Question: Is there a (i1, . . . , im) ∈ {1, 2}m such

that ci11 ∨ · · ·∨ cimm is true for every val-
uation of x1, . . . , xn?

Due to the similarity between ∃-validity and ∃∀-QBF, it
is not surprising that ∃-validity is ΣP2 -complete.

Lemma 4.4. ∃-validity is ΣP2 -complete.

Proof. Membership in ΣP2 is obvious. For the other di-
rection let

Ψ = ∃x1, . . . , xn∀y1, . . . , y` Φ(x1, . . . , xn, y1, . . . , y`)

be a QBF formula such that Φ = c1∨· · ·∨cm is quantifier-free
and in disjunctive normal form. We compute the ∃-validity
instance

{(ci, ci) | i ∈ [1,m]} ∪ {(xi,¬xi) | i ∈ [1, n]} .

For the correctness of the reduction, we first observe, that
the formula Ψ is equivalent to

Ψ′ = ∃x1, . . . , xn∀z1, . . . , zn, y1, . . . , y`
Φ(z1, . . . , zn, y1, . . . , y`) ∨ z1 6= x1 ∨ · · · ∨ zn 6= xn .

Now it is easy to see the correctness, as the pairs

(c1, c1), . . . , (cm, cm)

enforce that each original clause has to be satisfied (there
is no choice) and the pairs (x1,¬x1), . . . , (xn,¬xn) allow an
existential choice for the values of the x-variables as demon-
strated in Ψ′, i.e., if some x-variable xi should be true, we
choose ¬xi from the pair (xi,¬xi) and vice versa.

We now use ∃-validity to prove that Relative Tree
Pattern Minimization is ΣP2 -complete, which is our final
step in proving Theorem 4.1.

Lemma 4.5. Relative Tree Pattern Minimization is
ΣP2 -complete.

Proof. The upper bound follows from the straightfor-
ward algorithm: guess q and check whether p ⊆S q ⊆S r.
Clearly, guessing q can be done by a polynomial number of
guesses and the containment tests can be done in coNP by
Theorem 2.1.

For the lower bound, we reduce from ∃-validity. We
build on Miklau and Suciu’s proof that containment of tree
patterns is coNP-hard ([29, Proofs of Lemma 3 and Theorem
4]) and extend their idea. Let I = {(c11, c21), . . . , (c1m, c

2
m)} be

an instance of ∃-validity. We compute the patterns p and r
as given in Figure 9. We let k = |r|−m. Notice that the pat-
tern p only depends on the number of clauses and variables
of I (it uses m in the picture of p and n in the subpatterns C
and D) and not on the clauses themselves. Furthermore, p
does not contain any wildcards and only contains descendant
edges in its subquery D. Pattern r does contain wildcards
in the subpatterns Cji , but these wildcards have only one
child. Therefore, p and r are ∗-narrow patterns.

The idea of p and r is that each subpattern of r that
is rooted at a b-labeled node represents a pair of clauses
and the subpattern Cji represents the clause cji for each i ∈
{1, . . . ,m} and j ∈ {1, 2}. The subpattern Cji has a root

labeled g. For each positive literal xi of cji , the g-labeled
node has an xi-labeled child that itself has an xi-labeled
child, connected by a child edge. For each negative literal
¬xi of cji , the g-labeled node has an xi-labeled child, that
has a wildcard node as child which has an xi-labeled child
connected by a descendant edge.

Since the only descendant edges of p occur in the subpat-
tern D, the canonical trees of p only differ from p in the
subtree corresponding to D.

We will show that I is a true instance of ∃-validity if and
only if p, r, and k are a true instance of Relative Tree
Pattern Minimization. To this end, we first present two
claims and prove correctness of the reduction based on these
claims.

The first claim states that p, r, and k are an instance of
Relative Tree Pattern Minimization.

Claim 4.6. The tree patterns p and r are minimal.

We prove the claim. Since p and r both are ∗-narrow, it
suffices to show that both patterns are nonredundant, ac-
cording to Lemma 2.3. It is easy (but tedious) to verify that
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Figure 9: Patterns used in the proof of Theorem 4.1

removing any leaf from any canonical tree of p results in a
tree that is not in L(p). By Lemma 2.4, this means that
none of the patterns obtained from p by removing a leaf is
equivalent to p. This means that p is nonredundant and
therefore also minimal. The proof for r is analogous. This
concludes the proof of Claim 4.6.

The second claim limits the form of solutions q to the
instance. We say that a tree pattern q is in normal form
if it can be obtained from pattern r by the following algo-
rithm: Select in each subpattern rooted at a b-labeled node
at most one subpattern rooted at a d-labeled node. In each
selected subpattern, merge the two nodes labeled e — the
other nodes remain unchanged. Furthermore, we allow to
replace descendant edges by child edges.4

4The important operation, however, is the merging of nodes,
since this operation changes the size of a pattern. The only
reason why we also allow replacement of descendant edges
by child edges is because we cannot avoid it in Claim 4.7.

Claim 4.7. Let q be a smallest pattern in the set {q′ |
p ⊆S q′ ⊆S r}. Then q is in normal form.

We sketch a proof of the claim. Consider a fixed pattern
q among the smallest (possibly non-equivalent) patterns in
the set

{q′ | p ⊆S q′ ⊆S r} .

Let tq be the (unique) smallest canonical tree of q and π
be an embedding of r into tq. We note that tq contains no
information about which edges of q are descendant edges.

We first show that π is surjective. Indeed, if this is not
the case, then we can construct a tree pattern q′ such that
p ⊆S q′ ⊆S r and size(q′) < size(q) as follows. We remove a
node of tq not used by π, relabel every z-node as wildcard
node, and change every edge (π(u), π(v)) of tq for which
(u, v) is a descendant edge in r into a descendant edge. We
have that p ⊆S q ⊆S q′, as the construction only removes
restrictions. Furthermore, we also have that q′ ⊆S r since



there are no nodes u, v and w in r such that all of the
following hold:

• v is a descendant of u;

• (u,w) is a descendant edge;

• v and w have the same label or one of the nodes is a
wildcard; and

• v and w are in different subtrees, i.e., v is not a de-
scendant of w or vice versa.

The existence of q′ therefore contradicts the definition of q,
which means that π is surjective.

The claim now follows from the three observations below:

(1) For each child edge (u, v) of r, the edge (π(u), π(v))
corresponds to a child edge of q, because otherwise we
would have p 6⊆S q. We note that it might be possi-
ble that, for some descendant edge (u, v) of r, the edge
(π(u), π(v)) corresponds to a child edge of q.

(2) If for two nodes v and w of r we have that π(v) = π(w),
then both nodes have label e and are siblings. All other
possibilities can be excluded by considering the relative
depth of nodes in the pattern and ancestor-descendant
relationships.

(3) Furthermore, in any b-subpattern, there is at most one
pair of e-labeled siblings such that π(v) = π(w), since
otherwise we would have that p 6⊆S q.

Indeed, from (1) and (2) we can conclude that q can be
obtained from r by merging e-labeled siblings and possibly
replacing some descendant edges by child edges. From (3) we
can conclude that in each b-subpattern it suffices to merge
one pair of e-labeled siblings, which concludes the proof of
Claim 4.7.

We now proceed with the proof of Lemma 4.5. We say
that a pattern q is a solution to I if it is has size k, satisfies
p ⊆S q ⊆S r, and is in normal form, i.e., in every subpattern
rooted at a b-labeled node, two e-labeled siblings are merged.

Let q be a tree pattern of size k in normal form. We
denote by vji for i ∈ {1, . . . ,m} and j ∈ {1, 2} the d-labeled

node of q that is ancestor of the Cji subpattern. We define
a function fq : {1, . . . ,m} → {1, 2} as follows:

fq(i) =

{
1 if v1i has exactly one child

2 if v2i has exactly one child

Notice that fq is well-defined if q has size k and is in normal
form.

Let t be a canonical tree of pattern p and let d(xi) denote
the distance between the two xi-labeled nodes in the subtree
of t corresponding to the D-subpattern of p. With t we
associate a valuation σt of the variables x1, . . . , xn as follows:

σt(xi) =

{
true if d(xi) = 1

false if d(xi) > 1

We can show the following points, which prove the equiv-
alence between tree pattern minimization and ∃-validity.

(a) If q is a solution to I, then σt satisfies

c
fq(1)
1 ∨ · · · ∨ cf

q(m)
m

for every canonical tree t of r. This shows universality
of the formula because there exists a canonical tree t
of p such that σt = ρ for each possible valuation ρ of
variables.

For the other direction, let ι : {0, . . . ,m} → {1, 2} be a
choice of clauses. We can show the following.

(b) If the formula c
ι(1)
1 ∨· · ·∨cι(m)

m is universally true, then
the normal form pattern q of size k such that

fq(j) = ι(j) for all j ∈ {1, . . . ,m}

satisfies r ⊆S q ⊆S p.

Statements (a) and (b) show that the reduction to tree
pattern minimization is correct. Notice that the patterns p
and q and the number k can be computed using logarithmic
space.

We omit the proofs of statements (a) and (b). This con-
cludes the proof of Lemma 4.5.

The techniques we used for proving that Tree Pattern
Minimization is ΣP2 -complete can also be used to prove that
Minimality is ΠP

2 -complete. The proof for minimality uses
the same ideas as the proof for minimization. However it
is not immediate, as Minimality can be seen as a variant
of Tree Pattern Minimization for fixed k = size(p) − 1,
and thus these two problems are a bit different. The basic
observation idea is that we can compute a tree pattern q
such that p ⊆S q ⊆S r and

size(q) = k + 1 = |r| −m+ 1 .

Therefore, P (p, q, r) is minimal if and only if the underlying
∃-validity instance is a false instance.

Theorem 4.8. Minimality is ΠP
2 -complete.

Proof Sketch. Membership in ΠP
2 is immediate: the

algorithm has to check whether each smaller pattern is non-
equivalent. The non-equivalence test can be done in NP
since equivalence of tree patterns is coNP-complete [29].

For ΠP
2 -hardness, we use essentially the same (combined)

reduction as in the proofs of Lemma 4.5 and 4.3. Let I be
an instance of ∃-validity and let p and r be the patterns
computed in the reduction from ∃-validity to Relative
Tree Pattern Minimization in the proof of Lemma 4.5.

We compute a pattern q from p by merging the e-nodes
above the subpatterns C1

1 to C1
m−1 with their siblings.

It is easy to see that p ⊆S q ⊆S r. The second inclusion
holds again, because we restrict the trees by merging nodes.
The first inclusion holds, because there exists a homomor-
phism from q to p which embeds the lowest b-subpattern of q
on the b-subpattern containing D. The two c-labeled nodes
from the q-pattern can be embedded on the upper and lower
c-labeled nodes inside the b-subpattern of p.

Finally, we ask whether the pattern P (p, q, r) is minimal.
If the answer is yes, then I has no solution because we al-
ready know that a solution to I implies the existence of a
pattern q′ with p ⊆S q′ ⊆S r and

size(q′) = size(r)−m < size(q) = size(r)−m+ 1 .

By Lemma 3.2, we know that P (p, q′, r) ≡S P (p, q, r).
Furthermore, P (p, q′, r) is smaller than P (p, q, r).

On the other hand, if there exists a pattern Pmin with
Pmin ≡S P (p, q, r) and size(Pmin) < size(P (p, q, r)), then,



by Lemma 4.2, we know that there exists a pattern q′ with
size(q′) < size(q) and p ⊆S q′ ⊆ r. As

size(q′) < size(q) = size(r)−m+ 1 ,

and therefore size(q) ≤ size(r) − m, we know from the re-
duction in Lemma 4.5, that I has a solution.

5. DISCUSSION AND OUTLOOK

Boolean versus k-ary Queries.
We proved that minimization for Boolean tree patterns is

ΣP2 -complete. This result can also be extended to k-ary tree
patterns (as considered in [29, 25]). However, the technique
to transfer this result is not the usual one from [25, Section
5] because, as the authors say, it is not clear if the reduc-
tion presented there preserves minimality. We can transfer
the complexity directly, however. For k-ary queries, the ΣP2
upper bound follows by applying the naive algorithm and
the lower bound follows from attaching all k output nodes
to the root of our gadgets.

Lessons for Minimization.
This work gives new insights on how minimal tree pat-

terns may need to be obtained and is the first to give a tight
complexity bound for doing so. Even though our main result
is a hardness result, we believe that the new insights can be
used to develop better tree pattern optimization algorithms.
For example, we know that minimization of ∗-narrow tree
patterns can always be done by (iteratively) removing leaves
[18]. It was long believed that all tree patterns can be mini-
mized in such a way (see, e.g., [17, 18]) but from this paper
we now know that this is not the case. In particular, we now
know that it may also be necessary to merge nodes.

This is a fact that we can use for developing better heuris-
tics for greedy tree pattern minimization. That is, for a
given tree pattern, we can approximate a minimal equivalent
pattern by iteratively removing a leaf or merging two nodes
and testing if the resulting tree pattern is still equivalent;
until no such operation can be done anymore. Notice that
this is a polynomial-time algorithm with a subroutine for
equivalence tests (which can in general be coNP-complete).

It is important to note that the presented approach is still
a heuristic and does not always produce a minimal pattern.
For instance, if ΠP

2 6= coNP, then we know that minimal
patterns cannot always be obtained from a given pattern by
removing leaves and merging nodes. Indeed, assume that
this would be true. Then consider a non-minimal pattern p1
and an equivalent pattern p2 obtained from p1 by deleting
a node or merging two nodes. By the above assumption, we
should also be able to go from p2 to a minimal pattern of p2
(and thus also of p1) by deleting and merging nodes. How-
ever, this would mean that the above greedy algorithm can
be used to decide Tree Pattern Minimization in coNP.

We also believe that the above argument can be strength-
ened so that the ΠP

2 6= coNP condition is not needed. This
proof would be based on the concrete patterns we construct
in the proof of Lemma 4.5. Essentially, the argument boils
down to showing that there are patterns q′′ with p ⊆S q′′ ⊆S
r from which no smallest pattern in {q′ | p ⊆S q′ ⊆S r} can
be reached by merging nodes. This means that, for the pat-
tern P (p, q′′, r), it would be necessary to split a node in order
to reach a pattern of the form P (p, q′, r) where q′ is one of

the smallest patterns in {q′ | p ⊆S q′ ⊆S r}. So, a rewriting
sequence from a given pattern to an equivalent minimal one
may have to perform steps that make patterns larger.

It is an interesting question which (non-trivial) set of op-
erations would be sufficient to guarantee that a minimal pat-
tern can always be obtained by applying a sequence of such
operations to the input pattern. This line of thinking leads
to questions about query rewriting and axiomatizations for
tree pattern equivalence. Ten Cate and Marx [35] stud-
ied such axiomatizations for XPath 2.0 (which contains tree
patterns as a sublanguage) and present a sound and com-
plete set of axioms for query equivalence, that is, a set of
axioms for rewriting patterns into equivalent ones. Fazz-
inga, Flesca, and Furfaro [15, 16] considered this question
for tree patterns and provide a set of axioms complete up to
homomorphism containment.
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