
Regular Expressions with Counting:
Weak versus Strong Determinism

Wouter Gelade1?, Marc Gyssens1, and Wim Martens2??

1 Hasselt University and Transnational University of Limburg
School for Information Technology
{firstname.lastname}@uhasselt.be
2 Technical University of Dortmund
{firstname.lastname}@udo.edu

Abstract. We study deterministic regular expressions extended with
the counting operator. There exist two notions of determinism, strong
and weak determinism, which almost coincide for standard regular ex-
pressions. This, however, changes dramatically in the presence of count-
ing. In particular, we show that weakly deterministic expressions with
counting are exponentially more succinct and strictly more expressive
than strongly deterministic ones, even though they still do not capture
all regular languages. In addition, we present a finite automaton model
with counters, study its properties and investigate the natural extension
of the Glushkov construction translating expressions with counting into
such counting automata. This translation yields a deterministic automa-
ton if and only if the expression is strongly deterministic. These results
then also allow to derive upper bounds for decision problems for strongly
deterministic expressions with counting.

1 Introduction

The use of regular expressions (REs) is quite widespread and includes applica-
tions in bioinformatics [17], programming languages [23], model checking [22],
XML schema languages [21], etc. In many cases, the standard operators are ex-
tended with additional ones to facilitate usability. A popular such operator is the
counting operator allowing for expressions of the form “a2,4”, defining strings
containing at least two and at most four a’s, which is used for instance in Egrep
[9] and Perl [23] patterns and in the XML schema language XML Schema [21].

In addition to expanding the vocabulary of REs, subclasses of REs have been
investigated to alleviate, e.g., the matching problem. For instance, in the context
of XML and SGML, the strict subclasses of weakly and strongly deterministic
regular expressions have been introduced. Weak determinism (also called one-
unambiguity [2]) intuitively requires that, when matching a string from left to

? Research Assistant of the Fund for Scientific Research – Flanders (Belgium).
?? Supported by the North-Rhine Westphalian Academy of Sciences, Humanities and

Arts; and the Stiftung Mercator Essen.

right against an expression, it is always clear against which position in the ex-
pression the next symbol must be matched. For example, the expression (a+b)∗a
is not weakly deterministic, but the equivalent expression b∗a(b∗a)∗ is. Strong
determinism intuitively requires additionally that it is also clear how to go from
one position to the next. For example, (a∗)∗ is weakly deterministic, but not
strongly deterministic since it is not clear over which star one should iterate
when going from one a to the next.

While weak and strong determinism coincide for standard regular expres-
sions [1]3, this situation changes completely when counting is involved. Firstly,
the algorithm for deciding whether an expression is weakly deterministic is non-
trivial [13]. For instance, (b?a2,3)2,2b is weakly deterministic, but the very similar
(b?a2,3)3,3b is not. So, the amount of non-determinism introduced depends on
the concrete values of the counters. Second, as we will show, weakly deterministic
expressions with counting are strictly more expressive than strongly determinis-
tic ones. Therefore, the aim of this paper is an in-depth study of the notions of
weak and strong determinism in the presence of counting w.r.t. expressiveness,
succinctness, and complexity. In particular, our contributions are the following:

– We give a complete overview of the expressive power of the different classes of
deterministic expressions with counting. We show that strongly deterministic
expressions with counting are equally expressive as standard deterministic
expressions. Weakly deterministic expressions with counting, on the other
hand, are more expressive than strongly deterministic ones, except for unary
languages, on which they coincide. However, not all unary regular languages
are definable by weakly deterministic expressions with counting (Section 3).

– We investigate the difference in succinctness between strongly and weakly
deterministic expressions with counting, and show that weakly deterministic
expressions can be exponentially more succinct than strongly deterministic
ones. This result prohibits an efficient algorithm translating a weakly deter-
ministic expression into an equivalent strongly deterministic one, if such an
expression exists. This contrasts with the situation of standard expressions
where such a linear time algorithm exists [1] (Section 4).

– We present an automaton model extended with counters, counter NFAs (CN-
FAs), and investigate the complexity of some related problems. For instance,
it is shown that boolean operations can be applied efficiently to CDFAs, the
deterministic counterpart of CNFAs (Section 5).

– Bruggemann-Klein [1] has shown that the Glushkov construction, translating
regular expressions into NFAs, yields a DFA if and only if the original expres-
sion is deterministic. We investigate the natural extension of the Glushkov
construction to expressions with counters, converting expressions to CNFAs.
We show that the resulting automaton is deterministic if and only if the
original expression is strongly deterministic (Section 6).

3 Brüggemann-Klein [1] did not study strong determinism explicitly, although she did
study strong unambiguity. However, she gives a procedure to transform expressions
into star normal form which rewrites weakly deterministic expressions into equiva-
lent strongly deterministic ones in linear time.

2

– Combining the results of Section 5, concerning CDFAs, with the latter result
then also allows to infer better upper bounds on the inclusion and equiva-
lence problem of strongly deterministic expressions with counting. Further,
we show that testing whether an expression with counting is strongly deter-
ministic can be done in cubic time, as is the case for weak determinism [13]
(Section 7).

The original motivation for this work comes from the XML schema language
XML Schema, which uses weakly deterministic expressions with counting. How-
ever, it is also noted by Sperberg-McQueen [20], one of its developers, that
“Given the complications which arise from [weakly deterministic expressions], it
might be desirable to also require that they be strongly deterministic as well [in
XML Schema].” The design decision for weak determinism is probably inspired
by the fact that it is the natural extension of the notion of determinism for
standard expressions, and a lack of a detailed analysis of their differences when
counting is allowed. A detailed examination of strong and weak determinism of
regular expressions with counting intends to fill this gap.

Related work: Apart from the work already mentioned, there are several
automata based models for different classes of expressions with counting with
as main application XML Schema validation, by Kilpelainen and Tuhkanen [12],
Zilio and Lugiez [4], and Sperberg-McQueen [20]. Here, Sperberg-McQueen in-
troduces the extension of the Glushkov construction which we study in Section 6.
We introduce a new automata model in Section 5 as none of these models al-
low to derive all results in Sections 5 and 6. Further, Sperberg-McQueen [20]
and Koch and Scherzinger [14] introduce a (slightly different) notion of strongly
deterministic expression with and without counting, respectively. We follow the
semantic meaning of Sperberg-McQueen’s definition, while using the technical
approach of Koch and Scherzinger. Finally, Kilpelainen [10] shows that inclusion
for weakly deterministic expressions with counting is coNP-hard; and Colazzo,
Ghelli, and Sartiani [3] have investigated the inclusion problem involving sub-
classes of deterministic expressions with counting. Seidl et al. also investigate
counting constraints in XML schema languages by adding Presburger constraints
to regular languages [18]. Concerning deterministic languages without counting,
the seminal paper is by Bruggemann-Klein and Wood [2] where, in particular,
it is shown to be decidable whether a language is definable by a deterministic
regular expression. Conversely, general regular expressions with counting have
also received quite some attention [7, 8, 11, 16].

2 Preliminaries

Let N denote the natural numbers {0, 1, 2, . . .}. For the rest of the paper, Σ
always denotes a finite alphabet. The set of regular expressions over Σ, denoted
by RE(Σ), is defined as follows: ε and every Σ-symbol is in RE(Σ); and when-
ever r and s are in RE(Σ), then so are (rs), (r + s), and (s)∗. For readability,
we usually omit parentheses in examples. The language defined by a regular ex-
pression r, denoted by L(r), is defined as usual. By RE(Σ,#) we denote RE(Σ)

3

extended with numerical occurrence constraints or counting. That is, when r is
an RE(Σ,#)-expression then so is rk,` for k ∈ N and ` ∈ N0 ∪ {∞} with k ≤ `.
Here, N0 denotes N \ {0}. Furthermore, L(rk,`) =

⋃`
i=k L(r)i. We use r? to ab-

breviate (r+ε). Notice that r∗ is simply an abbreviation for r0,∞. Therefore, we
do not consider the ∗-operator in the context of RE(Σ,#). The size of a regular
expression r in RE(Σ,#), denoted by |r|, is the number of Σ-symbols and oper-
ators occurring in r plus the sizes of the binary representations of the integers.
An RE(Σ,#) expression r is nullable if ε ∈ L(r). We say that an RE(Σ,#) r is
in normal form if for every nullable subexpression sk,l of r we have k = 0. Any
RE(Σ,#) can easily be normalized in linear time. Therefore, we assume that all
expressions used in this paper are in normal form. Sometimes we will use the
following observation, which follows directly from the definitions:

Remark 1. A subexpression rk,` is nullable if and only if k = 0.

Weak determinism. For an RE(Σ,#) r, let Char(r) be the set of Σ-symbols
occurring in r. A marked regular expression with counting over Σ is a regular
expression over Σ ×N in which every (Σ ×N)-symbol occurs at most once. We
denote the set of all these expressions by MRE(Σ,#). Formally, r ∈ MRE(Σ,#)
if r ∈ RE(Σ × N,#) and, for every subexpression s s′ or s + s′ of r, Char(s) ∩
Char(s′) = ∅. A marked string is a string over Σ×N (in which (Σ×N)-symbols
can occur more than once). When r is a marked regular expression, L(r) is
therefore a set of marked strings.

The demarking of a marked expression is obtained by deleting these integers.
Formally, the demarking of r is dm(r), where dm : MRE(Σ,#) → RE(Σ,#) is
defined as dm(ε) := ε, dm((a, i)) := a, dm(rs) := dm(r)dm(s), dm(r + s) :=
dm(r) + dm(s), and dm(rk,`) := dm(r)k,`. Any function m : RE(Σ,#) →
MRE(Σ,#) such that for every r ∈ RE(Σ,#) it holds that dm(m(r)) = r is
a valid marking function. For conciseness and readability, we will from now on
write ai instead of (a, i) in marked regular expressions. For instance, a marking
of (a+b)1,2a+bc is (a1+b1)1,2a2+b2c1. The markings and demarkings of strings
are defined analogously. For the rest of the paper, we usually leave the actual
marking function m implicit and denote by r a marking of the expression r.
Likewise w will denote a marking of a string w. We always use overlined letters
to denote marked expressions, symbols, and strings.

Definition 2. An RE(Σ,#) expression r is weakly deterministic (also called
one-unambiguous) if, for all strings u, v, w ∈ Char(r)∗ and all symbols a, b ∈
Char(r), the conditions uav, ubw ∈ L(r) and a 6= b imply that a 6= b.

A regular language is weakly deterministic with counting if it is defined by some
weakly deterministic RE(Σ,#) expression. The classes of all weakly determin-
istic languages with counting, respectively, without counting, are denoted by
DET#

W (Σ), respectively, DETW (Σ).
Intuitively, an expression is weakly deterministic if, when matching a string

against the expression from left to right, we always know against which symbol
in the expression we must match the next symbol, without looking ahead in the

4

·

·

0, 3

0, 1

a

+

0,∞

b

0,∞

c

d

1

2 3 4

Fig. 1. Parse tree of (a0,1)0,3(b0,∞ + c0,∞)d. Counter nodes are numbered from 1 to 4.

string. For instance, (a + b)∗a and (a2,3 + b)3,3b are not weakly deterministic,
while b∗a(b∗a)∗ and (a2,3 + b)2,2b are.

Strong determinism. Intuitively, an expression is weakly deterministic if, when
matching a string from left to right, we always know where we are in the expres-
sion. For a strongly deterministic expression, we will additionally require that
we always know how to go from one position to the next. Thereto, we distin-
guish between going forward in an expression and backward by iterating over a
counter. For instance, in the expression (ab)1,2 going from a to b implies going
forward, whereas going from b to a iterates backward over the counter.

Therefore, an expression such as ((a+ε)(b+ε))0,2 will not be strongly deter-
ministic, although it is weakly deterministic. Indeed, when matching ab, we can
go from a to b by either going forward or by iterating over the counter. By the
same token, also (a1,2)3,4 is not strongly deterministic, as we have a choice of
counters over which to iterate when reading multiple a’s. Conversely, (a2,2)3,4 is
strongly deterministic as it is always clear over which counter we must iterate.

For the definition of strong determinism, we follow the semantic meaning of
the definition by Sperberg-McQueen [20], while using the formal approach of
Koch and Scherzinger [14] (who called the notion strong one-unambiguity)4. We
denote the parse tree of an RE(Σ,#) expression r by pt(r). Figure 1 contains
the parse tree of the expression (a0,1)0,3(b0,∞ + c0,∞)d.

A bracketing of a regular expression r is a labeling of the counter nodes of
pt(r) by distinct indices. Concretely, we simply number the nodes according to
the depth-first left-to-right ordering. The bracketing r̃ of r is then obtained by
replacing each subexpression sk,` of r with index i with ([is]i)k,`. Therefore, a
bracketed regular expression is a regular expression over alphabet Σ] Γ , where
Γ := {[i,]i | i ∈ N}. For example, ([1([2a]2)0,1]1)0,3(([3b]3)0,∞ + ([4c]4)0,∞)d is a
bracketing of (a0,1)0,3(b0,∞+c0,∞)d, for which the parse tree is shown in Figure 1.
We say that a string w in Σ] Γ is correctly bracketed if w has no substring of
the form [i]i. That is, we do not allow a derivation of ε in the derivation tree.

Definition 3. A regular expression r is strongly deterministic with counting if
r is weakly deterministic and there do not exist strings u, v, w over Σ∪Γ , strings
4 The difference with Koch and Scherzinger is that we allow different derivations of ε

while they forbid this. For instance, a∗+b∗ is strongly deterministic in our definition,
but not in theirs, as ε can be matched by both a∗ and b∗.

5

α 6= β over Γ , and a symbol a ∈ Σ such that uαav and uβaw are both correctly
bracketed and in L(r̃).

A standard regular expression (without counting) is strongly deterministic if
the expression obtained by replacing each subexpression of the form r∗ with
r0,∞ is strongly deterministic with counting. The class DET#

S (Σ), respectively,
DETS(Σ), denotes all languages definable by a strongly deterministic expres-
sions with, respectively, without, counting.

3 Expressive power

Brüggemann-Klein and Wood [2] proved that for any alphabet Σ DETW (Σ)
forms a strict subclass of the regular languages, denoted REG(Σ). The complete
picture of the relative expressive power depends on the size of Σ, as shown by
the following theorem.

Theorem 4. For every alphabet Σ,

DETS(Σ) = DETW (Σ) = DET#
S (Σ) = DET#

W (Σ) (REG(Σ) (if |Σ| = 1)

DETS(Σ) = DETW (Σ) = DET#
S (Σ) (DET#

W (Σ) (REG(Σ) (if |Σ| ≥ 2)

Proof. The equality DETS(Σ) = DETW (Σ) is already implicit in the work of
Brüggemann-Klein [1]. By this result and by definition, all inclusions from left to
right already hold. It therefore suffices to show that (1) DET#

S (Σ) ⊆ DETS(Σ)
for arbitrary alphabets, (2) DET#

W (Σ) ⊆ DET#
S (Σ) for unary alphabets, (3)

DET#
S (Σ) (DET#

W (Σ) for binary alphabets, and (4) DET#
W (Σ) (REG(Σ)

for unary alphabets.
(1): We show that each strongly deterministic expression with counting can be
transformed into a strongly deterministic expression without counting. This is
quite non-trivial, but the crux is to unfold each counting operator in a smart
manner, taking special care of nullable expressions.
(2): The crux of this proof lies in Lemma 5. It is well known and easy to see that
the minimal DFA for a regular language over a unary alphabet is defined either
by a simple chain of states (sometimes also called a tail [19]), or a chain followed
by a cycle.The languages in DET#

W (Σ) can be defined in this manner. The
following lemma adds to that, that for weakly deterministic regular expressions,
only one node in this cycle can be final. The theorem then follows as any such
language can be defined by a strongly deterministic expression.

Lemma 5. Let Σ = {a}, and L ∈ REG(Σ), then L ∈ DET#
W (Σ) if and only if

L is definable by a DFA which is either a chain, or a chain followed by a cycle,
for which at most one of the cycle nodes is final.

(3 and 4): Witnesses for non-inclusion are the languages defined by (a2,3b?)∗

and (aaa)∗(a + aa), respectively. Both languages can be shown not to be in
DETW (Σ) [2]. The theorem then follows from the above results.

6

4 Succinctness

In Section 3 we learned that DET#
W (Σ) strictly contains DET#

S (Σ), prohibit-
ing a translation from weak to strong deterministic expressions with counting.
However, one could still hope for an efficient algorithm which, given a weakly
deterministic expression known to be equivalent to a strong deterministic one,
constructs this expression. However, this is not the case:

Theorem 6. For every n ∈ N, there exists an r ∈ RE(Σ,#) over alphabet
{a} which is weakly deterministic and of size O(n) such that every strongly
deterministic expression s, with L(r) = L(s), is of size at least 2n.

The above theorem holds for the family of languages defined by (a2n+1,2n+1
)1,2,

each of which is weakly deterministic and defines all strings with a’s of length
from 2n + 1 to 2n+2, except for the string a2n+1+1. These expressions, in fact,
where introduced by Kilpelainen when studying the inclusion problem for weakly
deterministic expressions with counting [10].

5 Counter automata

Let C be a set of counter variables and α : C → N be a function assigning a
value to each counter variable. We inductively define guards over C, denoted
Guard(C), as follows: for every cv ∈ C and k ∈ N, we have that true, false,
cv = k, and cv < k are in Guard(C). Moreover, when φ1, φ2 ∈ Guard(C), then
so are φ1 ∧ φ2, φ1 ∨ φ2, and ¬φ1. For φ ∈ Guard(C), we denote by α |= φ that
α models φ, i.e., that applying the value assignment α to the counter variables
results in satisfaction of φ.

An update is a set of statements of the form cv++ and reset(cv) in which
every cv ∈ C occurs at most once. By Update(C) we denote the set of all updates.

Definition 7. A non-deterministic counter automaton (CNFA) is a 6-tuple A =
(Q, q0, C, δ, F, τ) where Q is the finite set of states; q0 ∈ Q is the initial state;
C is the finite set of counter variables; δ : Q×Σ ×Guard(C)×Update(C)×Q
is the transition relation; F : Q → Guard(C) is the acceptance function; and
τ : C → N assigns a maximum value to every counter variable.

Intuitively, A can make a transition (q, a, φ, π, q′) whenever it is in state q,
reads a, and guard φ is true under the current values of the counter variables.
It then updates the counter variables according to the update π, in a way we
explain next, and moves into state q′. To explain the update mechanism formally,
we introduce the notion of configuration. Thereto, let max(A) = max{τ(c) |
c ∈ C}. A configuration is a pair (q, α) where q ∈ Q is the current state and
α : C → {1, . . . ,max(A)} is the function mapping counter variables to their
current value. Finally, an update π transforms α into π(α) by setting cv := 1,
when reset(cv) ∈ π, and cv := cv + 1 when cv++ ∈ π and α(cv) < τ(cv).
Otherwise, the value of cv remains unaltered.

7

Let α0 be the function mapping every counter variable to 1. The initial config-
uration γ0 is (q0, α0). A configuration (q, α) is final if α |= F (q). A configuration
γ′ = (q′, α′) immediately follows a configuration γ = (q, α) by reading a ∈ Σ,
denoted γ →a γ′, if there exists (q, a, φ, π, q′) ∈ δ with α |= φ and α′ = π(α).

For a string w = a1 · · · an and two configurations γ and γ′, we denote by
γ ⇒w γ′ that γ →a1 · · · →an γ′. A configuration γ is reachable if there exists a
string w such that γ0 ⇒w γ. A string w is accepted by A if γ0 ⇒w γf where γf

is a final configuration. We denote by L(A) the set of strings accepted by A.
A CNFA A is deterministic (or a CDFA) if, for every reachable configura-

tion γ = (q, α) and for every symbol a ∈ Σ, there is at most one transition
(q, a, φ, π, q′) ∈ δ such that α |= φ.

The size of a transition θ or acceptance condition F (q) is the number of
symbols which occur in it plus the size of the binary representation of each
integer occcurring in it. By the same token, the size of A, denoted by |A|, is
|Q|+

∑
q∈Q log τ(q) + |F (q)|+

∑
θ∈δ |θ|.

Theorem 8. 1. Given CNFAs A1 and A2, a CNFA A accepting the union or
intersection of A1 and A2 can be constructed in polynomial time. Moreover,
when A1 and A2 are deterministic, then so is A.

2. Given a CDFA A, a CDFA which accepts the complement of A can be con-
structed in polynomial time.

3. membership for word w and CDFA A is in time O(|w||A|).
4. membership for non-deterministic CNFA is np-complete.
5. emptiness for CDFAs and CNFAs is pspace-complete.
6. Deciding whether a CNFA A is deterministic is pspace-complete.

6 From RE(Σ,#) to CNFA

In this section, we show how an RE(Σ,#) expression r can be translated in poly-
nomial time into an equivalent CNFA Gr by applying a natural extension of the
well-known Glushkov construction. We emphasize at this point that such an ex-
tended Glushkov construction has already been given by Sperberg-McQueen [20].
Therefore, the contribution of this section lies mostly in the characterization
given below: Gr is deterministic if and only if r is strongly deterministic. More-
over, as seen in the previous section, CDFAs have desirable properties which by
this translation also apply to strongly deterministic RE(Σ,#) expressions. We
refer to Gr as the Glushkov counting automaton of r.

6.1 Notation and terminology

We first provide some notation and terminology needed in the construction be-
low. For an RE(Σ,#) expression r, the set first(r) (respectively, last(r)) consists
of all symbols which are the first (respectively, last) symbols in some word de-
fined by r. These sets are inductively defined as follows:

– first(ε) = last(ε) = ∅ and ∀a ∈ Char(r),first(a) = last(a) = {a};

8

– first(r1 + r2) = first(r1) ∪ first(r2) and last(r1 + r2) = last(r1) ∪ last(r2);
– If ε ∈ L(r1), first(r1r2) = first(r1) ∪ first(r2), else first(r1r2) = first(r1);
– If ε ∈ L(r2), last(r1r2) = last(r1) ∪ last(r2), else last(r1r2) = last(r2);
– first(rk,`) = first(r1) and last(rk,`) = last(r1).

For a regular expression r, we say that a subexpression of r of the form sk,` is an
iterator or iterated subexpression of r. Let lower(sk,`) := k, and upper(sk,`) := `.
We say that sk,` is bounded when ` ∈ N, otherwise it is unbounded. For instance,
an iterator of the form s0,∞ is a nullable, unbounded iterator.

For a marked symbol x and an iterator c we denote by iterators(x, c) the list
of all iterated subexpressions of c which contain x, except c itself. For marked
symbols x, y, we denote by iterators(x, y) all iterated subexpressions which con-
tain x but not y. Finally, let iterators(x) be the list of all iterated subexpressions
which contain x. Note that all such lists [c1, . . . , cn] contain a sequence of nested
subexpressions. Therefore, we will always assume that they are ordered such
that c1 ≺ c2 ≺ · · · ≺ cn. Here c ≺ c′ denotes that c is a subexpression of
c′. For example, if r = ((a1,2

1 b1)3,4)5,6, then iterators(a1, r) = [a1,2
1 , (a1,2

1 b1)3,4],
iterators(a1, b1) = [a1,2

1], and iterators[a1] = [a1,2
1 , (a1,2

1 b1)3,4, ((a1,2
1 b1)3,4)5,6].

6.2 Construction

We now define the set follow(r) for a marked regular expression r. As in the
standard Glushkov construction, this set lies at the basis of the transition relation
of Gr. The set follow(r) contains triples (x, y, c), where x and y are marked
symbols and c is either an iterator or null. Intuitively, the states of Gr will be a
designated start state plus a state for each symbol in Char(r). A triple (x, y, c)
then contains the information we need for Gr to make a transition from state x
to y. If c 6= null, this transition iterates over c and all iterators in iterators(x, c)
are reset by going to y. Otherwise, if c equals null, the iterators in iterators(x, y)
are reset. Formally, the set follow(r) contains for each subexpression s of r,

– all tuples (x, y, null) for x in last(s1), y in first(s2), and s = s1 s2; and
– all tuples (x, y, s) for x in last(s1), y in first(s1), and s = s1

k,`.

We introduce a counter variable cv(c) for every iterator c in r whose value will
always denote which iteration of c we are doing in the current run on the string.
We define a number of tests and update commands on these counter variables:

– value-test([c1, . . . , cn]) :=
∧

ci
(lower(ci) ≤ cv(ci)) ∧ (cv(ci) ≤ upper(ci)).

When we leave the iterators c1, . . . , cn we have to check that we have done
an admissible number of iterations for each iterator.

– upperbound-test(c) := cv(c) < upper(c) when c is a bounded iterator and
upperbound-test(c) := true otherwise. When iterating over a bounded iter-
ator, we have to check that we can still do an extra iteration.

– reset(c1, . . . , cn) := {reset(cv(c1)), . . . , reset(cv(cn))}. When leaving some it-
erators, their values must be reset. The counter variable is reset to 1, because
at the time we reenter this iterator, its first iteration is started.

9

– update(c) := {cv(c)++}. When iterating over an iterator, we start a new
iteration and increment its number of transitions.

We now define the Glushkov counting automaton Gr = (Q, q0, C, δ, F, τ).
The set of states Q is the set of symbols in r plus an initial state, i.e., Q :=
{q0}]

⋃
x∈Char(r) qx. Let C be the set of iterators occurring in r. We next define

the transition function. For all y ∈ first(r), (q0,dm(y), true, ∅, qy) ∈ δ.5 For every
element (x, y, c) ∈ follow(r), we define a transition (qx,dm(y), φ, π, qy) ∈ δ. If
c = null, then φ := value-test(iterators(x, y)) and π := reset(iterators(x, y)). If
c 6= null, then φ := value-test(iterators(x, c)) ∧ upperbound-test(c) and π :=
reset(iterators(x, c)) ∪ update(c). The acceptance criteria of Gr depend on the
set last(r). For any symbol x /∈ last(r), F (qx) := false. For every element x ∈
last(r), F (qx) := value-test(iterators(x)). Here, we test whether we have done
an admissible number of iterations of all iterators in which x is located. Finally,
F (q0) := true if ε ∈ L(r). Lastly, for all bounded iterators c, τ(cv(c)) = upper(c)
since c never becomes larger than upper(c), and for all unbounded iterators c,
τ(cv(c)) = lower(c) as there are no upper bound tests for cv(c).

Theorem 9. For every RE(Σ,#) expression r, L(Gr) = L(r). Moreover, Gr is
deterministic iff r is strongly deterministic.

7 Decidability and Complexity Results

Definition 3, defining strong determinism, is of a semantical nature. Therefore,
we provide Algorithm 1 for testing whether a given expression is strongly deter-
ministic, which runs in cubic time. To decide weak determinism, Kilpeläinen and
Tuhkanen [13] give a cubic algorithm for RE(Σ,#), while Brüggemann-Klein [1]
gives a quadratic algorithm for RE(Σ) by computing its Glushkov automaton
and testing whether it is deterministic6.

Theorem 10. For any r ∈ RE(Σ,#), isStrongDeterministic(r) returns true
if and only if r is strong deterministic. Moreover, it runs in time O(|r|3).

We next consider the following decision problems, for expressions of class R:
inclusion: Given two expressions r, r′ ∈ R, is L(r) ⊆ L(r′)?
equivalence: Given two expressions r, r′ ∈ R, is L(r) = L(r′)?
intersection: Given a number of expressions r1, . . . , rn ∈ R, is

⋂n
i=1 L(ri) 6= ∅?

Theorem 11. (1) inclusion and equivalence for RE(Σ,#) are expspace-
complete [16], intersection for RE(Σ,#) is pspace-complete [7]. (2) inclu-
sion and equivalence for DETW (Σ) are in ptime, intersection for DETW (Σ)
is pspace-complete [15]. (3) inclusion for DET#

W (Σ) is conp-hard [11].
5 Recall that dm(y) denotes the demarking of y.
6 There sometimes is some confusion about this result: Computing the Glushkov au-

tomaton is quadratic in the expression, while linear in the output automaton (con-
sider, e.g., (a1 + · · · + an)(a1 + · · · + an)). Only when the alphabet is fixed is the
Glushkov automaton of a deterministic expression of size linear in the expression.

10

Algorithm 1 isStrongDeterministic. Returns true if r is strong determin-
istic, false otherwise.

r ← marked version of r
2: Initialize Follow← ∅

Compute first(s), last(s), for all subexpressions s of r
4: if ∃x, y ∈ first(r) with x 6= y and dm(x) = dm(y) then return false

for each subexpression s of r, in bottom-up fashion do
6: if s = s1 s2 then

if last(s1) 6= ∅ and ∃x, y ∈ first(s1) with x 6= y and dm(x) = dm(y) then
return false

8: F ← {(x, dm(y)) | x ∈ last(s1), y ∈ first(s2)}
else if s = s1

[k,`], with ` ≥ 2 then
10: if ∃x, y ∈ first(s1) with x 6= y and dm(x) = dm(y) then return false

F ← {(x, dm(y)) | x ∈ last(s1), y ∈ first(s1)}
12: if F ∩ Follow 6= ∅ then return false

if s = s1 s2 or s = s1
k,`, with ` ≥ 2 and k < ` then

14: Follow← Follow] F
return true

By combining (1) and (2) of Theorem 11 we get the complexity of intersection

for DET#
W (Σ) and DET#

S (Σ). This is not the case for the inclusion and equiv-
alence problem, unfortunately. By using the results of the previous sections we
can, for DET#

S (Σ), give a pspace upperbound for both problems, however.

Theorem 12. (1) equivalence and inclusion for DET#
S (Σ) are in pspace.

(2) intersection for DET#
W (Σ) and DET#

S (Σ) is pspace-complete.

8 Conclusion

We investigated and compared the notions of strong and weak determinism in
the presence of counting. Weakly deterministic expressions have the advantage of
being more expressive and more succinct than strongly deterministic ones. How-
ever, strongly deterministic expressions are expressivily equivalent to standard
deterministic expressions, a class of languages much better understood than the
weakly deterministic languages with counting. Moreover, strongly deterministic
expressions are conceptually simpler (as strong determinism does not depend
on intricate interplays of the counter values) and correspond naturally to de-
terministic Glushkov automata. The latter also makes strongly deterministic
expressions easier to handle as witnessed by the pspace upperbound for inclu-
sion and equivalence, whereas for weakly deterministic expressions only a trivial
expspace upperbound is known. For these reasons, one might wonder if the
weak determinism demanded in the current standards for XML Schema should
not be replaced by strong determinism. The answer to some of the following
open questions can shed more light on this issue: (1) Is it decidable if a lan-
guage is definable by a weakly deterministic expression with counting? (2) Can

11

the Glushkov construction given in Section 6 be extended such that it trans-
lates any weakly deterministic expression with counting into a CDFA? (3) What
are the exact complexity bounds for inclusion and equivalence of strongly and
weakly deterministic expression with counting?

References

1. A. Brüggemann-Klein. Regular expressions into finite automata. Theor. Com-
put. Sci., 120(2):197–213, 1993.

2. A. Brüggemann-Klein and D. Wood. One-unambiguous regular languages. Infor-
mation and Computation, 142(2):182–206, 1998.

3. D. Colazzo, G. Ghelli, and C. Sartiani. Efficient asymmetric inclusion between
regular expression types. In ICDT, pages 174–182, 2009.

4. S. Dal-Zilio and D. Lugiez. XML schema, tree logic and sheaves automata. In
RTA, pages 246–263, 2003.

5. J. Esparza. Decidability and complexity of Petri net problems – an introduction.
In Petri Nets, pages 374–428, 1996.

6. M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. Freeman, 1979.

7. W. Gelade, W. Martens, and F. Neven. Optimizing schema languages for XML:
Numerical constraints and interleaving. In ICDT, pages 269–283, 2007.

8. W. Gelade. Succinctness of regular expressions with interleaving, intersection and
counting. In MFCS, pages 363–374, 2008.

9. A. Hume. A tale of two greps. Softw., Pract. and Exp., 18(11):1063–1072, 1988.
10. P. Kilpeläinen. Inclusion of unambiguous #res is NP-hard, May 2004. Unpublished.
11. P. Kilpeläinen and R. Tuhkanen. Regular expressions with numerical occurrence

indicators — preliminary results. In SPLST 2003, pages 163–173, 2003.
12. P. Kilpeläinen and R. Tuhkanen. Towards efficient implementation of XML schema

content models. In DOCENG 2004, pages 239–241. ACM, 2004.
13. P. Kilpeläinen and R. Tuhkanen. One-unambiguity of regular expressions with

numeric occurrence indicators. Inform. Comput., 205(6):890–916, 2007.
14. C. Koch and S. Scherzinger. Attribute grammars for scalable query processing on

XML streams. VLDB Journal, 16(3):317–342, 2007.
15. W. Martens, F. Neven, and T. Schwentick. Complexity of decision problems for

simple regular expressions. In MFCS, pages 889–900, 2004.
16. A.R. Meyer and L.J. Stockmeyer. The equivalence problem for regular expressions

with squaring requires exponential space. In FOCS, p. 125–129, 1972.
17. D.W. Mount. Bioinformatics: Sequence and Genome Analysis. Cold Spring Harbor

Laboratory Press, September 2004.
18. H. Seidl, T. Schwentick, A. Muscholl, and P. Habermehl. Counting in Trees for

Free. In ICALP, pages 1136–1149, 2004.
19. G. Pighizzini and J. Shallit. Unary language operations, state complexity and

Jacobsthal’s function. Int. J. Found. Comp. Sc., 13(1):145–159, 2002.
20. C.M. Sperberg-McQueen. Notes on finite state automata with counters.

http://www.w3.org/XML/2004/05/msm-cfa.html, 2004.
21. C.M. Sperberg-McQueen and H. Thompson. XML Schema.

http://www.w3.org/XML/Schema, 2005.
22. M.Y. Vardi. From monadic logic to PSL. In Pillars of Computer Science, pages

656–681, 2008.
23. L. Wall, T. Christiansen, and J. Orwant. Programming Perl. O’Reilly, 2000.

12

Appendix

We use · · · to mark the places where the Appendix continues the proofs from
the body of the paper.

Preliminaries for the Appendix

First, Last, and Factors. Some of the preliminaries here are already defined
in Section 6.1. We repeat them here for the convenience of the reader. For an
RE(Σ,#) expression r, the set first(r) (respectively, last(r)) consists of all sym-
bols which are the first (respectively, last) symbols in some word defined by r.
These sets are inductively defined as follows:

– first(ε) = last(ε) = ∅ and ∀a ∈ Char(r),first(a) = last(a) = {a};
– If r = r1 + r2: first(r) = first(r1) ∪ first(r2) and last(r) = last(r1) ∪ last(r2);
– If r = r1 · r2:

• If ε ∈ L(r1), first(r) = first(r1) ∪ first(r2), else first(r) = first(r1);
• If ε ∈ L(r2), last(r) = last(r1) ∪ last(r2), else last(r) = last(r2);

– If r = rk,`
1 : first(r) = first(r1) and last(r) = last(r1).

For a regular expression r, we say that a subexpression of r of the form sk,` is an
iterator of r. Let r and s be expressions such that s is a subexpression of r. Then
we say that s is a factor of r, whenever first(s) ⊆ first(r) and last(s) ⊆ last(r).
When r and s are iterators, this intuitively means that a number of iterations
of s are sufficient to satisfy r. For instance, in the expression s = (a0,3

1 b1,2
1)3,4,

b1,2
1 is a factor of s, but a0,3

1 is not.

Proofs for Section 3

Before giving the proof of Theorem 4, we introduce some lemmas and additional
terminology necessary in its proof.

Lemma 13. Let r1r2 be a factor of rk,` with r1, r2 nullable, L(r1) 6= {ε},
L(r2) 6= {ε}, and ` ≥ 2. Then rk,` is not strongly deterministic.

Proof. If rk,` is not weakly deterministic, the lemma already holds. Therefore,
assume that rk,` is weakly deterministic. Let rk,` be a marked version of rk,`.
Let s̃ := [1r̃]

k,`
1 denote the bracketed version of rk,`. Denote by r̃1 and r̃2 the

subexpressions of s̃ that correspond to r1 and r2.
Let ũ (respectively, ṽ) be a non-empty string in L(r̃1) (respectively, ṽ). These

strings exist as L(r1) and L(r2) are not equal to {ε}. Let w̃ = [1ũṽ]1. Define
x := max{0, k − 2}. Then, both [1ũ]1[1ṽ]1w̃

x
and [1ũṽ]1w̃

x+1
are in L(s̃) and

thereby show that rk,` is not strongly deterministic. �

13

We abbreviate the term deterministic finite automaton with DFA. We let δ
denote the transition function of a DFA A, i.e., δ(q1, a) = q2 means that A can
go from state q1 to state q2 while reading a. The following notions come from,
e.g., Shallit [19], but we repeat them here for completeness. (Shallit used tail to
refer to what we call a chain.)

Definition 14. We say that a DFA over Σ = {a} is a chain if its start state is
q0 and its transition function is of the form δ(q0, a) = q1, . . . , δ(qn−1, a) = qn.
A DFA is a chain followed by a cycle if its transition function is of the form
δ(q0, a) = q1, . . . , δ(qn−1, a) = qn, δ(qn, a) = qn+1, . . . , δ(qn+m−1, a) = qn+m,
δ(qn+m, a) = qn. The cycle states of the latter DFA are qn, . . . , qn+m.

We say that a unary regular language L is ultimately periodic if L is infinite and
its minimal DFA is a chain followed by a cycle, for which at most one of the
cycle states is final. We say that L over alphabet {a} is (n0, x)-periodic if

(i) L ⊆ L((ax)∗), and
(ii) for every n ∈ N such that nx ≥ n0, L contains the string anx, i.e., the

string of a’s of length nx.

We say that L is ultimately x-periodic if L is (n0, x)-periodic for some n0 ∈
N. Notice that these notions imply that L is infinite. Furthermore, notice the
subtle differences between ultimately periodic and ultimately x-periodic. In an
ultimately x-periodic language all strings have lengths which are multiples of x,
i.e. they have length 0 (modulo x). In an ultimately periodic language only all
sufficiently long string must have the same length y (modulo x), for a fixed y,
which, moreover, can be different from 0.

Lemma 15. Let L be a language, x ∈ N0, k ∈ N, and ` ∈ N0 ∪{∞} with k ≤ `.
If L is ultimately x-periodic, then Lk,` is also ultimately x-periodic.

Proof. Every string in Lk,` is a concatenation of (possibly empty) strings in L.
Since the length of every string in L is a multiple of x, it follows that the length
of every string in Lk,` is a multiple of x. Therefore, Lk,` ⊆ L((ax)∗).

Furthermore, take n0 ∈ N such that L is (n0, x)-periodic. Let k0 := max{k, 1}.
We will show that Lk,` is (k0(n0 +x), x)-periodic, which proves the lemma. Take
n ∈ N such that nx ≥ k0(n0 + x). Hence, (n

k0
− 1)x ≥ n0 since k0 ≥ 1 and

therefore b n
k0
cx ≥ n0. Hence, anx = abn/k0cx · · · abn/k0cxar0x, where the dots

abbreviate a k0-fold concatenation and r0 := n mod bn/k0c. Since L is (n0, x)-
periodic, abn/k0cx ∈ L and a(bn/k0c+r0)x ∈ L. Hence, anx ∈ Lk0 , which implies
that anx ∈ Lk,`. �

We state Lemma 5 equivalently as in the body of the paper, but using the
definitions above:

Proof of Lemma 5: Let Σ = {a}, and L ∈ REG(Σ), then L ∈ DET#
W (Σ) if

and only if L is either finite or ultimately periodic.

14

Proof. We only need to show that, if a language is in DET#
W (Σ), then it can be

defined with a DFA of the correct form. It is well-known that, for every unary
language, the minimal DFA is a chain followed by a cycle. We therefore only
need to argue that, in this cycle, at most one of the nodes is final.

Let Σ = {a} and let r be a weakly deterministic regular expression with
counting over {a}, such that L(r) is infinite. We can assume w.l.o.g. that r does
not contain concatenations with ε. Since r is over a unary alphabet, we can make
the following observation:

Remark 16. (1) If r has a disjunction of the form r1+r2 then either L(r1) = {ε}
or L(r2) = {ε}.

(2) There are no subexpressions of the form r1r2 in r in which |L(r1)| > 1.

Indeed, if Remark 16 does not hold, then r is not weakly deterministic.
Our first goal is to bring r into a normal form. More specifically, we want to

write r as
r = (r1(r2(· · · (rn)pn,1 · · ·)p3,1)p2,1)p1,1,

where

(a) for each i = 1, . . . , n, pi ∈ {0, 1};
(b) r has no occurrences of ε;
(c) rn is a tower of counters, that is, it only has a single occurrence of a;
(d) L(r1), . . . , L(rn−1) are singletons, and L(rn) is infinite.

Notice that, if r has the normal form and one of L(ri), with 1 ≤ i ≤ n − 1, is
not a singleton, then this would immediately violate Remark 16(2). In order to
achieve this normal form, we iteratively replace

(i) all subexpressions of the form (sk,k)`,` with sk`,k`;
(ii) all subexpressions of the form sk1,k1sk2,`2 with sk1+k2,k1+`2 ; and
(iii) all subexpressions of the form (s + ε) and (ε + s) with s0,1

(iv) all subexpressions of the form ak,ks, where s 6= ak1,`1 with ak,k(s)1,1

until no such subexpressions occur anymore. These replacements preserve the
language defined by r and preserve weak determinism. Due to Remark 16, these
replacements turn r in the normal form above adhering to the syntactic con-
straints (a)–(c). Furthermore, we know that condition (d) must hold because r
is weakly deterministic.

From now on, we therefore assume that r = (r1(r2(· · · (rn)pn,1 · · ·)p3,1)p2,1)p1,1

in which only L(rn) is infinite. Notice that we can translate the regular expres-
sion

r′ = (r1(r2(· · · (rn−1(X)pn,1)pn−1,1 · · ·)p3,1)p2,1)p1,1

over alphabet {a,X} into a DFA which is a chain and which reads the symbol
X precisely once, at the end of the chain. Therefore, it suffices to prove now that
we can translate rn into a DFA which is a chain followed by a cycle, in which at
most one of the cycle nodes is final. Indeed, if A1 and A2 are the DFAs for r′ and
rn respectively, then we can intuitively obtain the DFA A for r by concatenating

15

these two DFAs. More formally, if q1 is the unique state in A1 which has the
transition δ(q1, X) = q2 (and q2 is final in A1), and q3 is the initial state of A2,
then we can obtain A by taking the union of the states and transitions of A1 and
A2, removing state q2, and adding a transition δ(q1, a) = q3. The initial state of
A is the initial state of A1 and its final state set is the union of the final state
sets in A1 and A2. Since A1 is a chain, L(A) = L(r) is ultimately periodic if and
only if L(A2) = L(rn) is ultimately periodic.

Let sk,∞ be the smallest subexpression of rn in which the upper bound is
unbounded. (Such an expression must exist, since L(rn) is infinite.) We will first
prove that L(sk,∞) is ultimately x-periodic for some x ∈ N. Due to Lemma 15,
this also proves that L(rn) is ultimately x-periodic, which implies that there is
a DFA of the right form for L(rn) and concludes our proof.

It therefore only remains to show that L(sk,∞) is ultimately x-periodic for
some x ∈ N. To this end, there are two possibilities: either s contains a subex-
pression of the form (s′)y1,y2 with y1 < y2, or it does not. If not, then L(sk,∞)
is of the form (ax,x)k,∞ due to the replacement (i) above in our normalization.
In this case, L(sk,∞) is clearly (xk, x)-periodic.

If sk,∞ is of the form above, then it is of the form (((ax,x)y1,y2)h1
1,h1

2) · · ·)hn
1 ,hn

2)k,∞,
where y1 < y2, x can equal 1, and the hi

1, hi
2 denote a nesting of iterators. It is

immediate that L(sk,∞) ⊆ L((ax,x)∗), i.e., the length of every string in L(sk,∞)
is a multiple of x. To show that there also exists an n0 such that sk,∞ defines all
strings of length mx with m ∈ N and mx ≥ n0, let z = h1

1 · h2
1 · · ·hn

1 , or z = 1
when n = 0. Clearly, (((ax,x)y,y+1)z,z)k,∞ defines a subset of sk,∞ and, hence,
it suffices to show that (((ax,x)y,y+1)z,z)k,∞ defines all such strings of length
mx ≥ n0.

This is proven in the lemma below. The meaning of the variables x, y, z, n0

is the same in the lemma as in the above paragraph and ` denotes the number
of iterations of s, i.e., at least k. Moreover, in every such iteration, we must
do z iterations of the iterator ((ax,x)y,y+1)z,z. Here, we can each time choose
whether we do y or y + 1 iterations of (ax,x)y,y+1. For every i ∈ [1, `], denoting
the ith iteration of (((ax,x)y,y+1)z,z)k,∞, we let zi,1 (respectively, zi,2) denote the
number of times y (respectively, y +1) iterations are done. Hence, z = zi,1 + zi,2

must hold.

Lemma 17. Let x, y, z be natural numbers. Then, there exist n0 ∈ N, such
that for all m ∈ N, with mx > n0, there exists ` ∈ N, with ` ≥ k, and
z1,1, z1,2, . . . , z`,1, z`,2 ∈ N such that

– for all i = 1, . . . , `: zi,1 + zi,2 = z

– mx =
∑`

i=1 zi,1yx +
∑`

i=1 zi,2(y + 1)x

16

Proof. Let x, y, z be fixed, but arbitrary natural numbers. We have that

mx =
∑̀
i=1

zi,1yx +
∑̀
i=1

zi,2(y + 1)x

⇔ m =
∑̀
i=1

zi,1y +
∑̀
i=1

zi,2y +
∑̀
i=1

zi,2

=
∑̀
i=1

(zi,1 + zi,2)y +
∑̀
i=1

zi,2

=
∑̀
i=1

zy +
∑̀
i=1

zi,2

= `zy +
∑̀
i=1

zi,2

In the last equality, z and y are fixed but ` and the values zi,2 can be chosen
freely, as long as ` ≥ k, and zi,2 ≤ z, for all i. Our objective therefore is to
generate all possible values of m for m > n′0, for a certain n′0.

Notice that `zy+
∑`

i=1 zi,2 generates precisely the integer values in the inter-
val [`zy..`z(y +1)], since the sum

∑`
i=1 zi,2 can assume all values between 0 and

`z. Our goal now is to prove that, for ` large enough, the intervals [`zy..`z(y+1)]
and [(` + 1)zy..(` + 1)z(y + 1)] overlap. This happens when

`z(y + 1) ≥ (` + 1)zy

⇔ `(y + 1) ≥ (` + 1)y
⇔ `y + ` ≥ `y + y

⇔ ` ≥ y

Since y is fixed, we can indeed always choose ` such that ` ≥ y and ` ≥ k. �

This concludes the proof of Lemma 5. �

Proof of Theorem 4: For every alphabet Σ,

DETS(Σ) = DETW (Σ) = DET#
S (Σ) = DET#

W (Σ) (REG(Σ) (if |Σ| = 1)

DETS(Σ) = DETW (Σ) = DET#
S (Σ) (DET#

W (Σ) (REG(Σ) (if |Σ| ≥ 2)

Proof. The equality DETS(Σ) = DETW (Σ) is already implicit in the work of
Brüggemann-Klein [1].7 By this result and by definition, all inclusions from left
to right already hold. It therefore suffices to show that
7 Strong determinism was not explicitly considered in [1]. However, the paper gives

a transformation of weakly deterministic regular expressions into equivalent expres-
sions in star normal form; and every expression in star normal form is strongly
deterministic

17

(1) DET#
S (Σ) ⊆ DETS(Σ) for arbitrary alphabets,

(2) DET#
W (Σ) ⊆ DET#

S (Σ) for unary alphabets,
(3) DET#

S (Σ) (DET#
W (Σ) for binary alphabets, and

(4) DET#
W (Σ) (REG(Σ) for unary alphabets.

We now prove these four points.
(1) · · · Let r be an arbitrary strongly deterministic regular expression with
counting. We can assume w.l.o.g. that no subexpressions of the form s1,1 or ε
occur. Indeed iteratively replacing any subexpression of the form s1,1, sε or εs
by s; s + ε or ε + s by s0,1 and εk,` by ε, yields an expression which is still
strongly deterministic and which is either equal to ε or does not contain s1,1 or
ε. As in the former case we are done, we can hence assume the latter.

We recursively transform r into a strongly deterministic expression EC(r)
without counting such that L(r) = L(EC(r)), using the rules below. In these
rules, EC stands for “eliminate counter” and ECE for “eliminate counter and
epsilon”:

(a) for all a ∈ Σ, EC(a) := a
(b) EC(r1 + r2) := EC(r1) + EC(r2)
(c) EC(r1r2) := EC(r1)EC(r2)
(d) if r nullable then EC(r0,1) := EC(r)
(e) if r not nullable then EC(r0,1) := ECE(r) + ε
(f) if ` = ∞ then EC(rk,`) := ECE(r) · · ·ECE(r) · ECE(r)∗

(g) if ` ∈ N \ {1} then EC(rk,`) := ECE(r) · · ·ECE(r) ·
(
ECE(r)(ECE(r)(· · ·) +

ε) + ε
)

In the last two rules, ECE(r) · · ·ECE(r) denotes a k-fold concatenation of ECE(r),
and the recursion in

(
ECE(r)(ECE(r)(· · ·) + ε) + ε

)
contains `− k occurrences

of r.

(a’) for all a ∈ Σ, ECE(a) := a
(b’) ECE(r1 + r2) := ECE(r1) + ECE(r2)
(c’) ECE(r1r2) := EC(r1)EC(r2)
(d’) if k 6= 0, then ECE(rk,`) := EC(rk,`)
(e’) if r is nullable, then ECE(r0,1) := ECE(r)
(f’) if r is not nullable, then ECE(r0,1) := EC(r)
(g’) if k = 0 and ` = ∞, then ECE(rk,`) := ECE(r)ECE(r)∗

(h’) if k = 0 and ` ∈ N \ {1}, then ECE(rk,`) := ECE(r)
(
ECE(r)(· · ·) + ε

)
Similarly as above, the recursion

(
ECE(r)(· · ·) + ε

)
contains ` − 1 occurrences

of r. We prove that L(r) = L(EC(r)) and that EC(r) is a strongly deterministic
regular expression.

To show L(r) = L(EC(r)), we prove by simultaneous induction on the ap-
plication of the rules (a)–(g) and (a’)–(h’) that L(EC(r)) = L(r), for any strong
deterministic expression r and that L(ECE(r)) = L(r) \ {ε}, for all expressions
r to which ECE(r) can be applied. The latter is important as ECE(r) does not
equal L(r) \ {ε} for all r. For instance, ECE(a0,1b0,1) = (a + ε)(b + ε), and

18

L(a0,1b0,1) = L((a + ε)(b + ε)). However, as EC is always applied to a strongly
deterministic expression, we will see that ECE will never be applied to such a
subexpression.

The base cases (a) EC(a) := a and (a’) ECE(a) := a are clear. For the induc-
tion, the cases (b)–(e) are trivial. Correctness for cases (f) and (g) is immediate
from Remark 1. Case (b’) is also trivial.

The first non-trivial case is (c’). If ε /∈ L(r1r2) then (c’) is clearly correct.
Towards a contradiction, suppose that ε ∈ L(r1r2). This implies that r1 and
r2 are nullable. Notice that we only apply rule (c’) when rewriting r if either
(i) r1r2 is a factor of some s0,1 with s not nullable (case (e)), or (ii) r1r2 is a
factor of a subexpression of the form sk,` with ` > 2 (cases (f,g)). Here, r1r2

must always be a factor as whenever ECE is applied to a subexpression, this
subexpression is a factor; and the factor relation is clearly transitive. The reason
that there must always be such a superexpression to which case (e), (f), or (g) is
applied is that the recursive process starts by applying EC. Therefore, we must
have applied (e), (f), or (g) to some superexpression of which r1r2 is a factor
before applying ECE to r1r2.

In case (i), r1 and r2 nullable implies that r must be nullable (because r1r2 is
a factor), which contradicts the precondition of rule (e). In case (ii), Lemma 13
claims that sk,` and therefore r is not strongly deterministic, which is also a
contradiction.

By Remark 1, (d’) is also correct. Cases (e’)–(h’) are also trivial. This con-
cludes the proof that L(EC(r)) = L(r).

We next prove that EC(r) and ECE(r) are strongly deterministic regular
expression, whenever r is strongly deterministic. We prove this by induction on
the reversed order of application of the rewrite rules. The induction base rules
(a) and (a’), and rules (b)–(e) and (b’)–(f’) are immediate. For instance, for rule
(b) we know by induction that EC(r1) and EC(r2) are strongly deterministic.
As L(r1) = L(EC(r1)), L(r2) = L(EC(r2)), and r1 +r2 is strongly deterministic,
it follows that also EC(r1) + EC(r2) is strongly deterministic.

Cases (f), (g), (g’), and (h’) are more involved, though very similar. There-
fore, we only investigate case (f). Let EC(rk,∞) denote a marked version of
EC(rk,∞) and let EC(rk,∞) = ECE(r)1 · · ·ECE(r)kECE(r)

∗
k+1. Further, let rk,∞

be a marking of rk,∞ and let f : Char(EC(rk,∞)) → Char(rk,∞) be the natu-
ral mapping associating each symbol in EC(rk,∞) to its corresponding symbol
in Char(rk,∞). For instance, when r = (aba)1,∞, then EC(r) = (aba)(aba)∗,
r = (a1b1a2)1,∞, EC(r) = (a1b1a2)(a3b2a4)∗, and f(a1) = a1, f(b1) = b1,
f(a2) = a2, f(a3) = a1, f(b2) = b1, and f(a4) = a2. By abuse of notation, we
also let f denote its natural extension mapping strings to strings.

Now, assume, towards a contradiction, that EC(rk,∞) is not strongly deter-
ministic, and assume first that this is due to the fact that EC(rk,∞) is not weakly
deterministic. Hence, there exist marked strings u, v, w and marked symbols x
and y such that uxv and uyw in L(EC(rk,∞)) with x 6= y and dm(x) = dm(y).
We distinguish two cases. First, assume f(x) 6= f(y). Then, as both f(u)f(x)f(v)
and f(u)f(x)f(w) are in L(rk,∞) we immediately obtain a contradiction with

19

the weak, and thus strong, determinism of rk,∞. Second, assume f(x) = f(y).
Then, x and y cannot occur in the same ECE(r)i, for any i ∈ [1, k + 1]. Indeed,
otherwise ECE(r) would not be weakly deterministic, contradicting the induc-
tion hypothesis. Hence, assume x ∈ Char(ECE(r)i) and y ∈ Char(ECE(r)j),
with 1 ≤ i < j ≤ k + 1. But then, consider the strings w1 = dm(uxv) and
w2 = dm(uyw) and notice that dm(ux) = dm(uy). Let [m be the opening bracket
corresponding to the iterator rk,∞ in the bracketed version of rk,∞. Then, we can
construct two well-bracketed words defined by the bracketing of rk,∞ by adding
brackets to w1 and w2 such that (i) in the prefix dm(ux) of w1, i [m-brackets
occur (indicating i iterations of the top iterator) and (ii) in the prefix dm(uy)
of w2, j [m-brackets occur. But, as dm(ux) = dm(uy) this implies that rk,∞ is
not strongly deterministic, a contradiction.

Hence, if EC(rk,∞) is not strongly deterministic, this is due to the second
reason in Definition 3. It is easily seen that, as this reason concerns the iterators,
and all subexpressions are strongly deterministic due to the induction hypoth-
esis, it must be the case that ECE(r)∗ is not strongly deterministic. However,
arguing as above, concerning brackets instead of marked symbols, it then fol-
lows that rk,∞ is also not strongly deterministic. This hence leads to the desired
contradiction, and shows that EC(r) is indeed strongly deterministic.

(2) · · · This follows from Lemma 5. Indeed, any finite language can clearly be
defined by a strongly deterministic expression, while an infinite but ultimately
periodic language can be defined by a strongly deterministic expression of the
form an1(an2(· · · ank−1(ank)∗ · · ·+ε)+ε), where ani denotes the ni-fold concate-
nation of a.

(3) · · · A witness for non-inclusion is r = (a2,3b?)∗. As r is weakly deterministic,
L(r) ∈ DET#

W (Σ). By applying the algorithm of Brüggemann-Klein and Wood
on r for testing whether a regular language L(r) is in DETW (Σ) [2], it can be
seen that L(r) /∈ DETW (Σ). By (1), we therefore have that L(r) /∈ DET#

S (Σ).

(4) · · · A witness for non-inclusion is r = (aaa)∗(a + aa). We can again easily
see that L(r) /∈ DETW (Σ) by applying the algorithm of Brüggemann-Klein and
Wood [2] to L(r). As r is over a unary alphabet, from the results above it follows
that L((aaa)∗(a + aa)) /∈ DET#

W (Σ), and hence DET#
W (Σ) (REG(Σ). �

Proofs for Section 4

Lemma 18. Let r be a strongly deterministic regular expression over alphabet
{a} with only one occurrence of a. Then L(r) can be defined by one of the
following expressions:

(1) (ak,k)x,y

(2) (ak,k)x,y + ε

where k ∈ N \ {0}, x ∈ N, and y ∈ (N \ {0}) ∪ {∞}.

20

Proof. First, suppose that L(r) does not contain ε. Since r has one occurrence
of a, r is a nesting of iterators. However, since r is strongly deterministic, r can
not have subexpressions of the form (s)x,y with L(s) > 1 and (x, y) 6= (1, 1). It
follows immediately that r is of the form ((· · · (ak1,k1)k2,k2 · · ·)kn,kn)x,y. Setting
k := k1 × · · · × kn proves this case.

Second, suppose that L(r) contains ε. If r is of the form s + ε and L(s)
does not contain ε then we are already done due to the case above. So, the
only remaining case is that r is a nesting of iterators. We can assume w.l.o.g.
that r does not have subexpressions of the form s1,1. Again, since r is strongly
deterministic, it cannot have subexpressions of the form (s)x,y with (x, y) 6= (0, 1)
and |L(s)−{ε}| > 1. Hence, by replacing subexpressions of the form (sk,k)`,` by
sk`,k` and (s0,1)0,1 by s0,1, r can either be rewritten to (ak,k)x,y or ((ak,k)x,y)0,1.
In the first case, the lemma is immediate and, in the second case, we can rewrite
r as ((ak)x,y) + ε. �

Proof of Theorem 6: For every n ∈ N, there exists an r ∈ RE(Σ,#) which
is weakly deterministic and of size O(n) such that every strongly deterministic
expression s, with L(r) = L(s), is of size at least 2n.

Proof. Let r be the weakly deterministic expression (aN+1,2N)1,2 for N = 2n.
Clearly, the size of r is O(n). Note that r defines all strings of length at least
N + 1 and at most 4N , except a2N+1.

We prove that every strongly deterministic expression for L(r) is of size at
least 2n. Thereto, let s be a strongly deterministic regular expression for L(r)
with a minimal number of occurrences of the symbol a and, among those minimal
expressions, one of minimal size.

We first argue that s is in a similar but more restricted normal form as the
one we have in the proof of Lemma 5. If s is minimal and strongly deterministic,
then

(a) if s has a disjunction of the form s1 + s2 then either L(s1) = {ε} or L(s2) =
{ε};

(b) there are no subexpressions of the form s1s2 in s in which |L(s1)| > 1 or
ε ∈ L(s1);

(c) there are no subexpressions of the form s1,1
1 , (s0,1

1)0,1, aak,`, ak,`a, ak1,`1ak2,`2 ,
or (ak,k)`,`;

(d) there are no subexpressions of the form (s1)k,` with (k, `) 6= (0, 1) and
|L(s1)− {ε}| > 1;

The reasons are as follows:

– (a),(b): otherwise, s is not weakly deterministic;
– (c): otherwise, s is not minimal; and
– (d): otherwise, by (c), ` ≥ 2, which implies that s is not strongly determin-

istic.

Due to (a), we can assume w.l.o.g. that s does not have any disjunctions. Indeed,
when L(s2) = {ε}, we can replace every subexpression s1 + s2 or s2 + s1 with

21

(s1)0,1 since the latter expression has the same or a smaller size as the former
ones. From (a)–(d), and the fact that ε /∈ L(s), it then follows that s is of the
form

s = s1(s2(· · · (sm)0,1 · · ·)0,1)0,1

where each si (i = 1, . . . ,m− 1) is of the form ak,k. Notice that sm can still be
non-trivial according to (a)–(d), such as (a7,7)8,9 or a7,7((a2,2)0,1)2,2. We now
argue that sm is either of the form s′m or s′′ms′m, where s′m and s′′m have only one
occurrence of the symbol a. We already observed above that sm does not have
any disjunctions. So, the only remaining operators are counting and conjunction.

Suppose, towards a contradiction, that sm has at least two conjunctions (and,
therefore, at least three occurrences of a). Because of (b) and (c), sm cannot be
of the form p1p2p3, since then |L(p1p2)| = 1 and p1p2 can be rewritten. Hence,
sm is of the form p1p2, where either p1 or p2 is an iterator which contains a
conjunction. If p1 contains a conjunction we know due to (b) that |L(p1)| = 1
and then p1 can be rewritten. If p2 is an iterator that contains a conjunction
then p2 is of the form p0,1

3 due to (d) and since |L(sm)| = ∞. Due to (c), p3

cannot be of the form p0,1
4 . Due to (d), p3 cannot be of the form pk,`

4 with
(k, `) 6= (0, 1). Hence, p3 = p4p5. But this means that sm = p1(p4p5)0,1 which
violates the definition of sm, being the innermost expression in the normal form
for s above (i.e., sm should have been p4p5). This shows that sm has at most
one conjunction.

It now follows analogously as in the reasoning for p3 above that sm is either
of the form s′m or s′′ms′m, where s′m and s′′m have only one occurrence of the
symbol a.

We will now argue that, for each string of the form aN+1, . . . , a2N its last
position is matched onto a different symbol in s. Formally, let uN+1, . . . , u2N

be the unique strings in L(s) such that |ui| = i, for every i ∈ [N + 1, 2N]. We
claim that the last symbol in each ui is different. This implies that s contains
at least N occurrences of a, making the size of s at least N = 2n, as desired.
Thereto, let w1 and w2 be two different strings in {uN+1, . . . , u2N}. W.l.o.g.,
assume w1 to be the shorter string. Towards a contradiction, assume that w1

and w2 end with the same symbol x. Let s = s1(s2(· · · (sm)0,1 · · ·)0,1)0,1. Due to
the structure of s and since both w1 and w2 are in L(s), this implies that x cannot
occur in s1, . . . , sm−1 and that x must be the rightmost symbol in s. As sm is
either of the form sm

′ or sm
′′sm

′ this implies x occurs in sm
′. Again due to the

structure of s and sm, this means that s′m must always define a language of the
form {w | vw ∈ L(r)}, where v is a prefix of dm(w1). Considering the language
defined by s, L(s′m) hence contains the strings ai, . . . , ai+k, ai+k+2, . . . , ai+k+2N

for some i ≥ 1 and k ≥ 0. However, as s′m only contains a single occurrence of
the symbol a, Lemma 18 says that it cannot define such a language. This is a
contradiction.

It follows that the size of s is at least 2n. �

22

Proofs for Section 5

Proof of Theorem 8:

1. Given CNFAs A1 and A2, a CNFA A accepting the union or intersection of
A1 and A2 can be constructed in polynomial time. Moreover, when A1 and
A2 are deterministic, then so is A.

2. Given a CDFA A, a CDFA which accepts the complement of A can be con-
structed in polynomial time.

3. membership for word w and CDFA A is in time O(|w||A|).
4. membership for non-deterministic CNFA is np-complete.
5. emptiness for CDFAs and CNFAs is pspace-complete.
6. Deciding whether a CNFA A is deterministic is pspace-complete.

We first note that a CNFA A = (Q, q0, C, δ, F, τ) can easily be completed.
For q ∈ Q, a ∈ Σ define Formulas(q, a) = {φ | (q, a, φ, π, q′) ∈ δ}. We say that
A is complete if, for any value function α, it holds that α |=

∨
φ∈Formulas(q,a) φ.

That is, for any configuration (q, α) and symbol a, there is always a transition
which can be followed by reading a.

Define the completion Ac of A as Ac = (Qc, q0, C, δc, F c, τ c with Qc = Q ∪
{qs}, δc is δ extended with (qs, a, true, ∅, qs) and, for all q ∈ Q, a ∈ Sigma, with
the tuples (q, a, φc

a,q, φ, qs), where φc
a,q = ¬

∨
φ∈Formulas(q,a) φ. Finally, F c is F

extended with F c(qs) = false. Note also that Ac is deterministic if and only if A
is deterministic. Hence, from now on we can assume that all CNFAs and CDFAs
under consideration are complete.

Proof. (1) Given two complete CNFAs A1, A2, where Ai = (Qi, qi, Ci, δi, Fi, τi),
their union can be defined as A = (Q1×Q2, (q1, q2), C1]C2, δ, F, τ1 ∪ τ2). Here,

– δ = {((s1, s2), a, φ1 ∧ φ2, π1 ∪ π2, (s′1, s
′
2)) | (si, a, φi, πi, s

′
i) ∈ δi for i = 1, 2}

– F (s1, s2) = F1(s1) ∨ F2(s2).

For the intersection of A1 and A2, the definition is completely analogue, only
the acceptance condition differs: F (s1, s2) = F (s1) ∧ F (s2). It is easily verified
that if A1 and A2 are both deterministic, then A is also deterministic.
(2) Given a complete CDFA A = (Q, q, C, δ, F, τ), the CDFA A′ = (Q, q, C, δ, F ′, τ),
where F ′(q) = ¬F (q), for all q ∈ Q, defines the complement of A.
(3) Since A is a CDFA, from every reachable configuration only one transition
can be followed when reading a symbol. Hence, we can match the string w from
left to right, maintaining at any time the current configuration of A. Hence, we
need to make |w| + 1 transitions, while every transition can be made in time
O(|A|). Therefore, testing membership can be done in time O(|w||A|).
(4) Obviously, we can decide in non-deterministic polynomial time whether a
string w is accepted by a CNFA A. It suffices to guess a sequence of |w| transi-
tions, and check whether this sequence forms a valid run of A on w.

23

To show that it is np-hard, we do a reduction from bin packing [6]. This
is the problem, given a set of weights W = {n1, . . . , nk}, a packet size p, and
the maximum number of packets m; decide whether there is a partitioning of
W = S1]S2] · · ·]Sm such that for each i ∈ [1,m], we have that

∑
n∈Si

n ≤ p.
The latter problem is NP-complete, even when all integers are given in unary.

We will construct a string w and a CNFA A such that w ∈ L(A) if and
only if there exists a proper partitioning for W = {n1, . . . , nk}, p, and m. Let
Σ = {#, 1}, and w = #1n1##1n2

· · ·#1nk#. Further, A will have an initial
state q0 and for every j ∈ [1,m] a state qj and countervariable cvj . When reading
the string w the automaton will non-deterministically guess for each ni to which
of the m sets ni is assigned (by going to its corresponding state) and maintaining
the running sum of the different sets in the countervariables. (As the initial value
of the countervariables is 1, we actually store the running sum plus 1) In the
end it can then easily be verified whether the chosen partitioning satisfies the
desired properties.

Formally, A = (Q, q0, {cv1, . . . , cvm}, δ, F, τ) can be defined as follows:

– Q = {q0, . . . , qm};
– For all i ∈ [1,m], (q0,#, true, ∅, qi), (qi, 1, true, {cvi++}, qi), (qi,#, true, ∅, q0) ∈

δ
– F (q0) =

∧
i∈[1,m] cvi ≤ p + 1, and for q 6= q0, F (q) = false; and

– for all i ∈ [1,m], τ(cvi) = p + 2.

(5) We show that emptiness is in pspace for CNFAs, and pspace-hard for
CDFAs. The theorem then follows.

The algorithm for the upperbound guesses a string w which is accepted by
A. Instead of guessing w at once, we guess it symbol by symbol and store one
configuration γ, such that A can be in γ after reading the already guessed string
w. When γ is an accepting configuration, we have guessed a string which is
accepted by A, and have thus shown that L(A) is non-empty. Since any con-
figuration can be stored in space polynomial in A (due to the maximum values
τ on the countervariables), and pspace is closed under complement, the result
follows.

We show that the emptiness problem for deterministic CNFAs is pspace-
hard by a reduction from reachability of 1-safe petri nets.

A net is a triple N = (S, T, E), where S and T are finite sets of places and
transitions, and E ⊆ (S × T) ∪ (T × S) → {0, 1}. The preset of a transition
t is denoted by •t, and defined by •t = {s | E(s, t) = 1}. A marking is a
mapping M : S → N. A Petri net is a pair N = (N,M0), where N is a net
and M0 is the initial marking. A transition t is enabled at a marking M if
M(s) > 0 for every s ∈ •t. If t is enabled at M , then it can fire, and its
firing leads to the successor marking M ′ which is defined for every place s by
M ′(s) = M(s) + E(t, s) − E(s, t). The expression M →t M ′ denotes that M
enables transition t, and that the marking reached by the firing of t is M ′. Given
a (firing) sequence σ = t1 · · · tn, M ⇒σ M ′ denotes that there exist markings
M1,M2, . . . ,Mn−1 such that M →t1 M1 · · ·Mn−1 →tn M ′. A Petri net is 1-safe
if M(s) ≤ 1 for every place s and every reachable marking M .

24

reachability for 1-safe petri nets is the problem, given a 1-safe petri net
(N,M0) and a marking M , is M reachable from M0. That is, does there exist a
sequence σ such that M0 ⇒σ M . The latter problem is pspace-complete [5].

We construct a CDFA A such that L(A) = ∅ if and only if M is not reachable
from M0. That is, A will accept all strings at1 · · · tk such that M0 ⇒t1···tk

M . To
achieve this, A will simulate the working of the Petri net on the firing sequence
given by the string. Therefore, we maintain a countervariable for every place
s, which will have value 1 when M ′(s) = 0 and 2 when M ′(s) = 1, where M ′

is the current marking. With every transition of the Petri net, we associate a
transition in A. Here, the guard φ is used to check whether the preconditions for
the firing of this transition are satisfied, and the updates are used to update the
values of the countervariables according to the transition. The string is accepted
if after executing this firing sequence, the countervariables correspond to the
given marking M .

Formally, let N = (S, T, E). Then, the CDFA A = ({q0, q1}, q0, S, δ, F, τ) is
defined as follows:

– (q0, a, true, π, q1) ∈ δ, where π = {s++ | M0(s) = 1};
– For every t ∈ T : (q1, t, φ, π, q1) ∈ δ, where φ =

∧
s∈•t s = 2 and π =

{reset(s) | E(s, t) > E(t, s)} ∪ {s++ | E(t, s) > E(s, t)};
– F (q0) = false, and F (q1) =

∧
M(s)=0 s = 1 ∧

∧
M(s)=1 s = 2; and

– For every s ∈ S, τ(s) = 2.

(6) To show that it is in pspace, we guess a string w character by character
and only store the current configuration. If at any time it is possible to follow
more than one transition at once, A is non-deterministic. Since pspace is closed
under complement, the result follows.

To show that the problem is pspace-hard, we do a reduction from one run
of 1-safe petri nets. This is the problem, given a 1-safe petri net N = (N,M0),
is there exactly one run on N . The latter problem is pspace-complete [5].

We construct a CNFA A which is deterministic if and only if one run is
true for N . To do this, we set the alphabet of A to {a, t} and A will accept
strings of the form at∗, and simulates the working of N . The set of states
Q = {q0, qc, t1, . . . , tn}, when T = {t1, . . . , tn}. Furthermore, there is one coun-
tervariable for every place: C = S.

The automaton now works as follows. From its initial state q0 it goes to its
central state qc and sets the values of the countervariables to the initial marking
M0. From qc, there is a transition to every state ti. This transition can be
followed by reading a t if and only if the values of the countervariables satisfy
the necessary conditions to fire the transition ti. Then, from the states ti, there
is a transition back to qc, which can be followed by reading a t and is used
to update the countervariables according to the firing of ti. As in the previous
proof, the countervariable for place s will have value 1 when M ′(s) = 0 and 2
when M ′(s) = 1, where M ′ is the current marking.

More formally, A = ({q0, qc} ∪ T, q0, S, δ, F, τ) is constructed as follows:

– (q0, a, true, π, qc) ∈ δ, where π = {s++ | M0(s) = 1};

25

– For all ti ∈ T , (qc, t, φ, ∅, ti) ∈ δ, where φ =
∧

s∈•ti
s = 2;

– For all ti ∈ T , (ti, t, true, π, qc) ∈ δ, where π = {reset(s) | E(s, ti) >
E(ti, s)} ∪ {s++ | E(ti, s) > E(s, ti)};

– For all s ∈ S, τ(s) = 2; and
– F (q) = true, for all q ∈ Q. �

Proofs for Section 6

To state Lemma 19, from which Theorem 9 will follow, we first introduce some
notation. The goal will be to associate transition sequences of Gr with correctly
bracketed words in r̃, the bracketing of r. A transition sequence σ = t1 · · · tn
of Gr is simply a sequence of transitions of Gr. It is accepting if there exists a
sequence of configurations γ0γ1 · · · γn such that γ0 is the inital configuration, γn

is a final configuration, and, for every i = 1, . . . , n − 1, γi−1 →ai γi by using
transition ti = (qi−1, ai, φi, πi, qi). Here, for each i, γi = (qi, αi).

Recall that the bracketing r̃ of an expression r is obtained by associating
indices to iterators in r and by replacing each iterator c := sk,` of r with index
i with ([is]i)k,`. In the following, we use ind(c) to denote the index i associated
to iterator c. As every triple (x, y, c) in follow(r) corresponds to exactly one
transition t in Gr, we also say that t is generated by (x, y, c).

We now want to translate transition sequences into correctly bracketed words.
Thereto, we first associate a bracketed word wordGr (t) to each transition t of
Gr. We distinguish a few cases:

(i) If t = (q0, a, φ, π, qy), with iterators(y) = [c1, . . . , cn], then wordGr (t) =
[ind(cn)· · · [ind(c1)y.

(ii) If t = (qx, a, φ, π, qy) and is generated by (x, y, c) ∈ follow(r), with c 6= null.
Let iterators(x, c) = [c1, . . . , cn] and iterators(y, c) = [d1, . . . , dm]. Then,
wordGr (t) =]ind(c1) · · ·]ind(cn)[ind(dm)· · · [ind(d1)y.

(iii) If t = (qx, a, φ, π, qy) and is generated by (x, y, null) ∈ follow(r). Let
iterators(x, y) = [c1, . . . , cn] and let iterators(y, x) = [d1, . . . , dm]. Then,
wordGr (t) =]ind(c1) · · ·]ind(cn)[ind(dm)· · · [ind(d1)y.

Finally, to a marked symbol x with iterators(x) = [c1, . . . , cn], we associate
wordGr (x) =]ind(c1) · · ·]ind(cn). Now, for a transition sequence σ = t1, . . . , tn,
where tn = (qx, a, φ, π, qy), we set brack-seqGr

(σ) = wordGr (t1) · · ·wordGr (tn)
wordGr (y). Notice that brack-seqGr

(σ) is a bracketed word over a marked al-
phabet. We sometimes also say that σ encodes brack-seqGr

(σ). We usually omit
the subscript Gr from word and brack-seq when it is clear from the context.

For a bracketed word w̃, let strip(w) denote the word obtained from w̃,
by removing all brackets. Then, for a transition sequence σ, define run(σ) =
strip(brack-seq(σ)).

Lemma 19. Let r be a marked regular expression with counting and Gr the
corresponding counting Glushkov automaton for r.

26

(1) For every string w̃, we have that w̃ is a correctly bracketed word in L(r̃) if
and only if there exists an accepting transition sequence σ of Gr such that
w̃ = brack-seq(σ).

(2) L(r) = {run(σ) | σ is an accepting transition sequence of Gr}.

Proof. We first prove (1) by induction on the structure of r. First, notice that
brack-seq(σ) is a correctly bracketed word, for every accepting transition se-
quence σ on Gr. Hence, we can restrict attention to correctly bracketed words
below.

For the induction below, we first fix a bracketing r̃ of r and we assume that
all expressions s̃, s̃1, s̃2 are correctly bracketed subexpressions of r̃.

– s = x. Then, also s̃ = x, and L(s̃) = x. It is easily seen that the only
accepting transition sequence σ of Gs consists of one transition t, with
brack-seq(σ) = x.

– s = s1 + s2. Clearly, the set of all correctly bracketed words in L(s̃) is the
union of all correctly bracketed words in L(s̃1) and L(s̃2). Further, observe
that Gs is constructed from Gs1 and Gs2 by identifying their initial states and
taking the disjoint union otherwise. As the initial states only have outgoing,
and no incoming, transitions, the set of accepting transition sequences of Gs

is exactly the union of the accepting transition sequences of Gs1 and Gs2 .
Hence, the lemma follows from the induction hypothesis.

– s = s1 · s2. Let w̃ be a correctly bracketed word. We distinguish a few cases.
First, assume w̃ ∈ Char(s̃1)∗, i.e., w̃ contains only symbols of s̃1. Then,
if ε /∈ L(s2), w̃ /∈ L(s̃), and, by construction of Gs, there is no accepting
transition sequence σ on Gs such that brack-seq(σ) = w̃. This is due to the
fact that, with ε /∈ L(s2), for all x ∈ Char(s2), we have that x /∈ last(s) and
hence F (qx) = false. Hence, assume ε ∈ L(s2). Then, w̃ ∈ L(s̃) if and only if
w̃ ∈ L(s̃1) if and only if, by the induction hypothesis, there is an accepting
transition sequence σ on Gs1 , with brack-seq(σ) = w̃. By construction of
Gs, and the fact that ε ∈ L(s2), brack-seq(σ) = w̃ if and only if σ is also an
accepting transition sequence on Gs. This settles the case w̃ ∈ Char(s̃1)∗.
The case w̃ ∈ Char(s̃2)∗ can be handled analogously.
Finally, consider the case that w̃ contains symbols from both s̃1 and s̃2. If w̃ is
not of the form w̃ = w̃1w̃2, with w1 ∈ Char(s̃1)∗ and w2 ∈ Char(s̃2)∗, then we
immediately have that w̃ /∈ L(s̃) nor can there be a transition sequence σ on
Gs encoding w̃. Hence, assume w̃ is of this form. Then, w̃ ∈ L(s̃) if and only
if w̃i ∈ L(s̃i), for i = 1, 2 if and only if, by the induction hypothesis, there ex-
ist accepting transition sequences σ1 (resp. σ2) on Gs1 (resp. Gs2) encoding
w̃1 (resp. w̃2). Let σ1 = t1, . . . , tn and σ2 = tn+1, . . . , tm, with qx the target
state of tn, and qy the target state of tn+1. Further, let t = (qx, a, φ, π, qy)
be the unique transition of Gs generated by the tuple (x, y, null) ∈ follow(s).
We claim that σ = t1, . . . , tn, t, tn+2, . . . , tm is an accepting transition se-
quence on Gs with brack-seq(σ) = brack-seq(σ1)brack-seq(σ2), and hence
brack-seq(σ) = w̃. To see that σ is an accepting transition sequence on Gs

note that the guard F (qx) (in Gs1) is equal to φ, the guard of t. Hence, the

27

fact that σ1 is an accepting transition sequence on Gs1 ensures that t can be
followed in Gs. Further, note that after following transition t, all counters are
reset, as they were after following tn+1 in Gs2 . This ensures that σ1 and σ2

can indeed be composed to the accepting transition sequence σ in this man-
ner. Further, to see that brack-seqGs

(σ) = brack-seqGs1
(σ1)brack-seqGs2

(σ2)
it suffices to observe that wordGs1

(qx)wordGs2
(tn+1) = wordGs

(t), by defini-
tion. Hence, σ is an accepting transition sequence on Gs, with brack-seqGs

(σ) =
w̃, as desired. Conversely, we need to show that any such transition sequence
σ can be decomposed in accepting transition sequences σ1 and σ2 satisfying
the same conditions. This can be done using the same reasoning as above.

– s = s1
[k,`]. Let s̃ = ([j s̃1]j)k,` and w̃ be a correctly bracketed word.

First, assume w̃ ∈ L(s̃), we show that there is an accepting transition se-
quence σ on Gs encoding w̃. As w̃ is correctly bracketed, we can write
w̃ = [jw̃1]j [jw̃2]j · · · [jw̃n]j , with n ∈ [k, `], and w̃i ∈ L(s̃1), w̃i 6= ε, for
all i ∈ [1, n]. Then, by the induction hypothesis, there exist valid tran-
sition sequences σ1, . . . , σn on Gs1 encoding wi, for each i ∈ [1, n]. For
all i ∈ [1, n], let σi = ti1, . . . , t

i
mi

, for some mi, the target state of ti1
be qyi

and the target state of timi
be qxi . For all i ∈ [1, n − 1], let ti

be the unique transition generated by (xi, yi+1, s) ∈ follow(s), and define
σ = t11 · · · t1m1

t1t22 · · · t2m2
t2t32 · · · tn−1tn2 · · · tnmn

. It now suffices to show that σ

is an accepting transition sequence on Gs and brack-seq(σ) = w̃. The reasons
are analogous to the ones for the constructed transition sequence σ in the
previous case (s = s1 · s2). To see that σ is an accepting transition sequence,
note that we simply execute the different transition sequences σ1 to σn one
after another, separated by iterations over the topmost iterator s, by means
of the transitions t1 to tn. As these transitions reset all counter variables
(except cv(s)) the counter variables on each of these separate runs always
have the same values as they had in the runs on Gs1 . Therefore, it suffices to
argue that the transitions ti can safely be followed in the run σ, and that we
finally arrive in an accepting configuration. This is both due to the fact that
we do n such iterations, with n ∈ [k, `], and each iteration increments cv(s)
by exactly 1. To see that brack-seqGs

(σ) = w̃ note that, by induction, w̃ =
[jbrack-seqGs1

(σ1)]j [jbrack-seqGs1
(σ2)]j · · · [jbrack-seqGs1

(σn)]j . Therefore,
it suffices to observe that wordGs

(t11) = [jwordGs1
(t11), wordGs(t

n
mn

) = wordGs1
(tnmn

)]j ,
for all i ∈ [1, n−1], wordGs

(ti) = wordGs1
(xi)]j [jwordGs1

(ti+1
1), and wordGs(t) =

wordGs1
(t), for all other transitions t occurring in σ.

Conversely, assume that there exists an accepting transition sequence σ on
Gs encoding w̃. We must show w̃ ∈ L(s̃). This can be done using arguments
analogous to the ones above. It suffices to note that σ contains n transitions t1

to tn, for some n ∈ [k, `], generated by a tuple of the form (x, y, s) ∈ follow(s).
This allows to decompose σ into n accepting transition sequences σ1 to σn

and apply the induction hypothesis to obtain the desired result.

28

To prove the second point, i.e. L(s) = {run(σ) | σ is an accepting transition
sequence on Gs}, it suffices to observe that

L(s) = {strip(w̃) | w̃ ∈ L(s̃) and w̃ correctly bracketed}
= {strip(brack-seq(σ)) | σ is an accepting transition sequence on Gs}
= {run(σ) | σ is an accepting transition sequence on Gs}

Here, the first equality follows immediately from Lemma 20 below, the second
equality from the first point of this lemma, and the third is immediate from the
definitions. �

The following lemma is immediate from the definitions. Notice that it is impor-
tant in this lemma that, for subexpressions sk,` with s nullable, we have k = 0,
as required by the normal form for RE(Σ,#).

Lemma 20. Let r ∈ RE(Σ,#), and r̃ be the bracketing of r. Then,

L(r) = {strip(w̃) | w̃ ∈ L(r̃) and w̃ is correctly bracketed}.

We are now ready to prove Theorem 9.

Proof of Theorem 9: For every RE(Σ,#) expression r, L(Gr) = L(r). More-
over, Gr is deterministic if and only if r is strongly deterministic.

Proof. Let r ∈ RE(Σ,#), r a marking of r, and Gr its corresponding counting
Glushkov automaton.

We first show that L(r) = L(Gr). Thereto, observe that (1) L(r) = {dm(w) |
w ∈ L(r)}, by definition of r, and (2) L(Gr) = {dm(run(σ)) | σ is an accepting
transition sequence on Gr} by definition of Gr and the run predicate. As, by
Lemma 19, L(r) = {run(σ) | σ is an accepting transition sequence on Gr}, we
hence obtain L(r) = L(Gr).

We next turn to the second statement: r is strongly deterministic if and only
if Gr is deterministic. For the right to left direction, suppose r is not strongly
deterministic, we show that then Gr is not deterministic. Here, r can be not
strongly deterministic for two reasons: either it is not weakly deterministic, or
it is but violates the second criterion in Definition 3.

First, suppose r is not weakly deterministic, and hence there exists words
u, v, w and symbols x, y, with x 6= y but dm(x) = dm(y) such that uxv ∈ L(r),
and uyw ∈ L(r). Then, by Lemma 19 there exist accepting transition sequences
σ1 = t1, . . . , tn and σ2 = t′1, . . . , t

′
m such that run(σ1) = uxv and run(σ2) = uyw.

Let |u| = i. Then, ti+1 6= t′i+1, as ti+1 is a transition to qx, and t′i+1 to qy, with
qx 6= qy. Let j ∈ [1, i + 1] be the smallest number such that tj 6= t′j , which
must exist as ti+1 6= t′i+1. Let u = dm(ux). Then, after reading the prefix of u
of length j − 1, we have that Gr can be in some configuration γ and can both
follow transition tj and t′j while reading the jth symbol of u. Hence, Gr is not
deterministic.

29

Second, suppose r is weakly deterministic, but there exist words ũ, ṽ, w̃ over
Σ∪Γ , words α 6= β over Γ , and symbol a ∈ Σ such that ũαaṽ and ũβaw̃ are cor-
rectly bracketed and in L(r̃). Consequently, there exist words ũ, ṽ, and w̃ and x
such that ũαxṽ and ũβxw̃ are correctly bracketed and in L(r̃). Here, both words
must use the same marked symbol x for a as r is weakly deterministic. Then, by
Lemma 19 there exist transition sequences σ1 = t1, . . . , tn, σ2 = t1, . . . , t

′
n such

that brack-seq(σ1) = ũαxṽ and brack-seq(σ2) = ũβxw̃. W.l.o.g. we can assume
that α and β are chosen to be maximal (i.e. ũ is either empty or ends with a
marked symbol). But then, let i = |strip(ũ)| and observe that word(ti+1) = αx
and word(t′i+1) = βx, and thus as word(ti+1) 6= word(t′i+1) also ti+1 6= t′i+1.
By reasoning exactly as in the previous case, it then follows that Gr is not
deterministic.

Before proving the converse direction, we first make two observations. First,
for any two transitions t and t′, with t 6= t′ who share the same source state qx,
we have that word(t) 6= word(t′). Indeed, observe that if the target state of t is
qy, and the target of t′ is qy′ , that then word(t) = αy and word(t′) = βy′, with
α, β words over Γ . Hence, if y 6= y′, we immediately have word(t) 6= word(t′).
Otherwise, when y = y′, we know that t is computed based on either (1)
(x, y, null) ∈ follow(r) and t′ on (x, y, c) ∈ follow(r) or (2) (x, y, c) ∈ follow(r)
and t′ on (x, y, c′) ∈ follow(r). In both cases it is easily seen that α 6= β. The
second observation we make is that Gr is reduced, i.e., for every reachable con-
figuration γ, there is some string which brings γ to an accepting configuration.
The latter is due to the upper bound tests present in Gr.

Now, assume that Gr is not deterministic. We show that r is not strongly
deterministic. As Gr is reduced and not deterministic there exist words u, v,
w and symbol a such that uav, uaw ∈ L(Gr) witnessed by accepting transition
sequences σ1 = t1, . . . , tn and σ2 = t′1, . . . , t

′
m (for uav and uaw, respectively),

such that ti = t′i, for all i ∈ [1, |u|], but t|u|+1 6= t′|u|+1. Let qx be the target
of transition t|u|+1 and qy the target of transition t′|u|+1, and x and y their
associated marked symbols. Note that dm(x) = dm(y) = a. We now distinguish
two cases.

First, assume x 6= y. By Lemma 19, both run(σ1) ∈ L(r) and run(σ2) ∈ L(r).
Writing run(σ1) = uxv and run(σ2) = uyw (such that |u| = |u|, |v| = |v| and
|w| = |w|) we then obtain the strings u, v, w and symbols x, y sufficient to show
that r is not weakly deterministic, and hence also not strongly deterministic.

Second, assume x = y. We then consider brack-seq(σ1) and brack-seq(σ2)
which, by Lemma 19, are both correctly bracketed words in L(r̃). Further, note
that t|u|+1 and t′|u|+1 share the same source state, and hence, by the first ob-
servation above, word(t|u|+1) = αx 6= word(t′|u|+1) = βy. In particular, as
x = y, it holds that α 6= β. But then, writing brack-seq(σ1) = ũαxṽ, and
brack-seq(σ2) = ũαyw̃, we can see that dm(ũ), dm(ṽ), dm(w̃), α, β, and a,
violate the condition in Definition 3 and hence show that r is not strongly de-
terministic. �

30

Proofs for Section 7

In the following, for two symbols x, y of a marked expression r, we denote by
lca(x, y) the smallest subexpression of r containing both x and y. Further, we
write s � r when s is a subexpression of r and s ≺ r when s � r and s 6= r.

Proof of Theorem 10: For every r ∈ RE(Σ,#), isStrongDeterministic(r)
returns true if and only if r is strongly deterministic. Moreover, it runs in time
O(|r|3).

Proof. Let r ∈ RE(Σ,#), r a marking of r, and Gr the corresponding Glushkov
counting automaton. By Theorem 9 it suffices to show that isStrongDeterministic(r)
returns true if and only if Gr is deterministic. Thereto, we first extract from Al-
gorithm 1 the reasons for isStrongDeterministic(r) to return false. This is the
case if and only if there exist marked symbols x, y, y′, with dm(y) = dm(y′) such
that either

1. y, y′ ∈ first(s) and y 6= y′ (Line 4)
2. (x, y, c) ∈ follow(s), (x, y′, c) ∈ follow(s), y 6= y′ and upper(c) ≥ 2 (Line 10)
3. (x, y, c) ∈ follow(s), (x, y′, c′) ∈ follow(s), c ≺ c′, and upper(c) ≥ 2, upper(c′) ≥

2, and upper(c) > lower(c) (Line 12)
4. (x, y, null) ∈ follow(s), (x, y′, c′) ∈ follow(s), lca(x, y) ≺ c′ and upper(c′) ≥ 2

(Line 12)
5. (x, y, c) ∈ follow(s), (x, y′,null) ∈ follow(s), c ≺ lca(x, y′), upper(c) ≥ 2, and

upper(c) > lower(c) (Line 12)
6. (x, y, null) ∈ follow(s), (x, y′,null) ∈ follow(s), y 6= y′ and lca(x, y) =

lca(x, y′) (Line 7)
7. (x, y, null) ∈ follow(s), (x, y′,null) ∈ follow(s), and lca(x, y) ≺ lca(x, y′)

(Line 12)

We now show that Gs is not deterministic if and only if one of the above
seven conditions holds. We first verify the right to left direction by investigating
the different cases.

Suppose case 1 holds, i.e., y, y′ ∈ first(s) and y 6= y′. Then, there is a transi-
tion from q0 to qy and one from q0 to qy′ , with qy 6= qy′ . These transitions can
both be followed when the first symbol in a string is dm(y). Hence, Gs is not
deterministic.

In each of the six remaining there are always two distinct tuples in follow(s)
which generate distinct transitions with as source state qx and target states qy

and qy′ , and dm(y) = dm(y′). Therefore, it suffices, in each of the cases, to
construct a reachable configuration γ = (qx, α) from which both transitions can
be followed by reading dm(y). The reachability of this configuration γ will always
follow from Lemma 21, but its precise form depends on the particular case we
are in. In each of the following cases, let iterators(x) = [c1, . . . , cn] and, when
applicable, set c = ci and c′ = cj . When both c and c′ occur, we always have
c ≺ c′, and hence i < j.

31

Case 2: Set γ = (qx, α) with α(cv(cm)) = lower(cm), for all m ∈ [1, i − 1],
and α(cv(cm)) = 1, for all m ∈ [i,m]. We need to show that the transitions
generated by (x, y, c) and (x, y′, c) can both be followed from γ. This is due to
the fact that α |= value-test[c1,...,ci−1] and α |= upperbound-test[ci]. The latter
because upper(ci) ≥ 2 > α(cv(ci)).

Case 3: Set γ = (qx, α) with α(cv(cm)) = lower(cm), for all m ∈ [1, j − 1],
and α(cv(cm)) = 1, for all m ∈ [j, n]. To see that the transition generated
by (x, y, c) can be followed, note that again α |= value-test[c1,...,ci−1] and α |=
upperbound-test[ci]. The latter due to the fact that upper(c) > lower(c) =
α(cv(ci)). On the other hand, also α |= value-test[c1,...,cj−1] and α |= upperbound-test[cj]

as upper(c′) ≥ 2 > α(cv(cj)). Hence, Gs can also follow the transition generated
by (x, y′, c′).

Case 4: Set γ = (qx, α) with α(cv(cm)) = lower(cm), for all m ∈ [1, j − 1],
and α(cv(cm)) = 1, for all m ∈ [j, n]. Arguing as above, and using the facts
that (1) upper(c′) ≥ 2 and (2) iterators(x, y) = [c1, . . . , ci′], for some i′ < j (as
lca(x, y) ≺ c′); we can deduce that Gs can again follow both transitions.

Cases 5, 6, and 7: In each of these cases we can set γ = (qx, α) with
α(cv(cm)) = lower(cm), for all m ∈ [1, n]. Arguing as before it can be seen
that in each case both transitions can be followed from this configuration.

We next turn to the left to right direction. Assume Gs is not deterministic
and let γ be a reachable configuration such that two distinct transitions t1, t2
can be followed by reading a symbol a. We argue that in this case the conditions
for one of the seven cases above must be fulfilled. First, if γ = (q0, α) then
t1 and t2 must be the initial transitions of a run, as there are no transitions
returning to q0. As, furthermore, q0 has exactly one transition to each state qx,
when x ∈ first(s), we can see that the conditions in case 1 hold.

Therefore, assume γ = (qx, α), with x ∈ Char(r). We will investigate the tu-
ples in follow(s) which generated t1 and t2 and show that they fall into one of the
six remaining cases mentioned above, hence forcing isStrongDeterministic(s)
to return false. There are indeed six possibilities, ignoring symmetries, which we
immediately classify to the case they will belong to:

2. t1 is generated by (x, y, c) and t2 by (x, y′, c),
3. t1 is generated by (x, y, c) and t2 by (x, y′, c′) with c ≺ c′.
4. t1 is generated by (x, y, null) and t2 by (x, y′, c′) with lca(x, y) ≺ c′.
5. t1 is generated by (x, y, c) and t2 by (x, y′,null) and c ≺ lca(x, y).
6. t1 is generated by (x, y, null) and t2 by (x, y′,null) with lca(x, y) = lca(x, y′).
7. t1 is generated by (x, y, null) and t2 by (x, y′,null) with lca(x, y) ≺ lca(x, y′).

Note that all subexpressions under consideration (i.e. lca(x, y), lca(x, y′), c,
and c′) contain x, and that lca(x, y) and lca(x, y′) are always subexpressions
whose topmost operator is a concatenation. These are the reasons why all these
expressions are in a subexpression relation, and why we never have, for instance,
lca(x, y) = c.

However, these six cases only give us the different possibilities of how the
transitions t1 and t2 can be generated by tuples in follow(s). We still need to

32

argue that the additional conditions imposed by the cases mentioned above ap-
ply. Thereto, we first note that for all iterators c and c′ under consideration,
upper(c) ≥ 2 and upper(c′) ≥ 2 must surely hold. Indeed, suppose for instance
upper(c) = 1. Then, for any transition t generated by (x, y, c) the guard φ
contains the condition upperbound-testc := cv(c) < 1, which can never be true.
Hence, such a transition t can never be followed and is not relevant. This already
shows that possibilities 4 and 7 above, indeed imply cases 4 and 7, respectively.
For the additional cases, we argue on a case by case basis.

Cases 2 and 6: We additionally need to show y 6= y′, which is immediate
from the fact that t1 6= t2. Indeed, assuming y = y′, implies that t1 and t2 are
generated by the same tuple in follow(s) and are hence equal.

Cases 3 and 5: We need to show upper(c) > lower(c). In both cases, the
guard of transition t1 contains the condition cv(c) < upper(c) as upperbound
test, whereas the guard of transition t2 contains the condition cv(c) ≥ lower(c).
These can only simultaneously be true when upper(c) > lower(c).

This settles the correctness of the algorithm. We conclude by arguing that
the algorithm runs in time O(|r|3). Computing the first and last sets for each
s � r can easily be done in time O(|r|3) as can the test on Line 4. Further, the
for loop iterates over a linear number of nodes in the parse tree of r. To do each
iteration of the loop in quadratic time, one needs to implement the set Follow as
a two-dimensional boolean table. In each iteration we then need to do at most a
quadratic number of (constant time) lookups and writes to the table. Altogether
this yields a quadratic algorithm.

In the proof below, we use base(sk,`) to denote s.

Lemma 21. Let x ∈ Char(r), and iterators(x) = [c1, . . . , cn]. Let γ = (qx, α), be
a configuration such that α(cv(ci)) ∈ [1, upper(ci)], for i ∈ [1, n], and α(cv(c)) =
1, for all other countervariables c. Then, γ is reachable in Gr.

Proof. This lemma can easily be proved by induction on the structure of r. How-
ever, as this a bit tedious, we only provide some intuition by constructing, given
such a configuration γ, a string w which brings Gs from its initial configuration
to γ.

We construct w by concatenating several substrings. Thereto, for every i ∈
[1, n], let vi be a non-empty string in L(base(ci)). Concatenating such a string
vi with itself allows to iterate ci. We further define, for every i ∈ [1, n], a marked
string wi which, intuitively, connects the different iterators. Thereto, let wn

be a minimal (w.r.t. length) string such that wn ∈ (Char(s) \ Char(cn))∗ and
such that there exist u ∈ Char(cn)∗ and v ∈ Char(s)∗ such that wnuxv ∈ L(s).
Similarly, for any i ∈ [1, n−1], let wi be a minimal (w.r.t. length) string such that
wi ∈ (Char(ci+1)\Char(ci))∗ and there exist u ∈ Char(ci)∗ and v ∈ Char(ci+1)∗

such that wnuxv ∈ L(ci+1). Finally, let w0 be a string such that there exists a u
such that w0xu ∈ L(base(c1)). We require these strings w1 to wn to be minimal
to be sure that they do not allow to iterate over their corresponding counter.

Then, the desired string w is

dm(wn)(vn)α(cv(cn))dm(wn−1)(vn−1)α(cv(cn−1)) · · ·dm(w0)dm(x) .

33

Proof of Theorem 12:

1. equivalence and inclusion for DET#
S (Σ) are in pspace.

2. intersection for DET#
W (Σ) and DET#

S (Σ) is pspace-complete.

Proof. (1): We show that inclusion for DET#
S (Σ) is in pspace. Given two

strongly deterministic RE(Σ,#) expressions r1, r2, we construct two CDFAs
A1, A2 for r1 and r2 using the construction of section 6, which by Theorem 9 are
indeed deterministic. Then, we construct the CDFAs A′

2, A such that A′
2 accepts

the complement of A2, and A is the intersection of A1 and A′
2. This can all be

done in polynomial time and preserves determinism according to Theorem 8.
Finally, L(r1) ⊆ L(r2) if and only if L(A) 6= ∅, which can be decided in pspace
by Theorem 8(1).

(2): The result for DET#
W (Σ) is immediate from Theorem 11(1) and (2). This

result also carries over to DET#
S (Σ). For the upper bound this is trivial, whereas

the lower bound follows from the fact that standard weakly deterministic regular
expressions can be transformed in linear time into equivalent strongly determin-
istic expressions [1]. �

34

