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XML Schema

XML Schema is ...
A language for defining the structure of XML documents.
W3C Standard
Successor of DTD

Why a schema for XML documents?
Provides semantics to the data
Very useful for optimization
Necessary for data integration
· · ·
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XML Schema: Abstract Syntax

XSD
<xsd:element name="store" type="store"/>

<xsd:complexType name="store">
<xsd:sequence>
<xsd:element name="order" type="order" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="stock" type="stock"/>

</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="order">
<xsd:sequence>
<xsd:element name="customer" type="customer"/>
<xsd:element name="item" type="item1" minOccurs="1" maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:complexType>

root → store
store → order∗ stock
order → customer item+

1
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XML Schema

XSD
root → store stock → item∗2

store → order∗ stock item1 → id price
order → customer item+

1 item2 → id qty

XML Document: Tree
store

order

customer item

id price

order
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id price
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id qty
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XSD Validation
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XML Schema

XML Schema is ...
a simple grammar-based formalism using regular expressions

Regular expressions are great
Easy to use
Robust class of languages: closed under union, intersection,
complement, . . .

Very well understood
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Deterministic Regular Expressions

UPA constraint
All content models must be deterministic regular expressions.

Definition
A regular expression r is deterministic if when matching any string
from left to right against r , we can deterministically match every
symbol against a position in r , without looking ahead in the string.

Example
(ab)∗ is deterministic.
(ab)∗a is not deterministic
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Deterministic Regular Expressions

UPA constraint
All content models must be deterministic regular expressions.

Definition
A regular expression r is deterministic if when matching any string
from left to right against r , we can deterministically match every
symbol against a position in r , without looking ahead in the string.

Example
(ab)∗ is deterministic.
(ab)∗a is not deterministic. Examples: aba and a
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Deterministic Regular Expressions

Deterministic regular expressions are ugly
Easy to use
Robust class of languages: closed under union, intersection,
complement, . . .

Very well Partially understood

W. Gelade (Hasselt University) Simplifying XML Schema July, 2009 18 / 44



UPA Constraint

W3C XML Schema Standard
A content model must be formed such that during validation of an
element information item sequence, the particle component contained
directly, indirectly or implicitly therein with which to attempt to validate
each item in the sequence in turn can be uniquely determined without
examining the content or attributes of that item, and without any
information about the items in the remainder of the sequence.
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XML Schema Validator

Scenario
User writes XML Schema Definition containing non-deterministic
expression, say (a + b)∗a, and tries to validate it.
Validator response: ERROR: non-deterministic content model
(a + b)∗a.
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Smart XML Schema Validator

Scenario
User writes XML Schema Definition containing non-deterministic
expression, say (a + b)∗a, and tries to validate it.
Smart validator response: PROBLEM: non-deterministic
content model (a + b)∗a. However, the content model
b∗a(b∗a)∗ describes the same content and is deterministic.
Would you like to use it instead?
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Too optimistic ...

Theorem: Bruggemann-Klein and Wood
Some regular languages are not definable by a deterministic regular
expression.

Scenario
User writes XML Schema Definition containing expression (ab)∗a
and tries to validate it.
Smart validator response: PROBLEM: non-deterministic
content model for (ab)∗a. Moreover, there is no deterministic
content model describing exactly this content. However, the
content model a(b?a)∗ is deterministic and describes the
same content plus some additional strings. Would you like to
use it instead?
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Goal

Overall Goal
Develop the tools for a smart schema validator.

Technical goals
Given a non-deterministic regular expression,

decide whether its language can be defined by a deterministic
expression
if possible, construct equivalent deterministic expression
otherwise, construct deterministic overapproximation

Remark
All results apply to DTDs
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Deciding Determinism

Deciding Determinism Problem
Given non-deterministic expression r , decide whether there exists a
deterministic expression s, such that L(r) = L(s).

Bruggemann-Klein and Wood 1998
Deciding Determinism can be done in time exponential in the size of r .

Theorem
Deciding Determinism is PSPACE-hard.
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Constructing Deterministic Expressions

Problem
Given a non-deterministic expression r , construct a deterministic
expression s, such that L(r) = L(s).
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Construct Deterministic Expressions: BKW

Algorithm Bruggemann-Klein and Wood
Construct minimal DFA.
Construct deterministic expression by induction on DFA.
Note: Added a few optimizations.

BKW
+ : If possible always return an equivalent deterministic
expression.
- : Can create very big expressions (possibly double exponential)
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Example: (a∗b?c?d?e?f ∗g∗h∗i∗j∗k∗a∗)

(. (* (. (a) )) (| (| (. (d) (. (. (. (. (. (. (? (. (| (e) (f)) (* (. (f) )))))) (? (. (g) (*
(. (g) )))))) (? (. (h) (* (. (h) )))))) (? (. (i) (* (. (i) )))))) (? (. (j) (* (. (j) ))))))
(? (. (k) (* (. (k) )))))) (? (. (a) (* (. (a) ))))))) (| (. (j) (. (. (* (. (j) ))) (? (.
(k) (* (. (k) )))))) (? (. (a) (* (. (a) ))))))) (| (. (b) (. (. (. (. (. (. (. (. (? (. (c)
))) (? (. (d) ))) (? (. (| (e) (f)) (* (. (f) )))))) (? (. (g) (* (. (g) )))))) (? (. (h)
(* (. (h) )))))) (? (. (i) (* (. (i) )))))) (? (. (j) (* (. (j) )))))) (? (. (k) (* (. (k)
)))))) (? (. (a) (* (. (a) ))))))) (| (. (g) (. (. (. (. (. (* (. (g) ))) (? (. (h) (* (.
(h) )))))) (? (. (i) (* (. (i) )))))) (? (. (j) (* (. (j) )))))) (? (. (k) (* (. (k) ))))))
(? (. (a) (* (. (a) ))))))) (| (. (e) (. (. (. (. (. (. (* (. (f) ))) (? (. (g) (* (. (g)
)))))) (? (. (h) (* (. (h) )))))) (? (. (i) (* (. (i) )))))) (? (. (j) (* (. (j) )))))) (? (.
(k) (* (. (k) )))))) (? (. (a) (* (. (a) ))))))) (| (. (c) (. (. (. (. (. (. (. (? (. (d)
))) (? (. (| (e) (f)) (* (. (f) )))))) (? (. (g) (* (. (g) )))))) (? (. (h) (* (. (h) ))))))
(? (. (i) (* (. (i) )))))) (? (. (j) (* (. (j) )))))) (? (. (k) (* (. (k) )))))) (? (. (a) (*
(. (a) ))))))) (| (. (k) (. (* (. (k) ))) (? (. (a) (* (. (a) ))))))) (| (. (h) (. (. (. (.
(* (. (h) ))) (? (. (i) (* (. (i) )))))) (? (. (j) (* (. (j) )))))) (? (. (k) (* (. (k) ))))))
(? (. (a) (* (. (a) ))))))) (| (. (f) (. (. (. (. (. (. (* (. (f) ))) (? (. (g) (* (. (g)
)))))) (? (. (h) (* (. (h) )))))) (? (. (i) (* (. (i) )))))) (? (. (j) (* (. (j) )))))) (? (.
(k) (* (. (k) )))))) (? (. (a) (* (. (a) ))))))) (. (i) (. (. (. (* (. (i) ))) (? (. (j) (* (.
(j) )))))) (? (. (k) (* (. (k) )))))) (? (. (a) (* (. (a) ))))))))))))))))))
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Constructing Deterministic Expressions: GROW

Goal
Find concise deterministic expressions.

Glushkov Automata

a(b∗a)∗

Glushkov

KoaToKore (Bex. et. al)

a b aa
b a

ab

b
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Constructing Deterministic Expressions: GROW

Input Expression
a(a + b)∗a

Minimal DFA

a b
a

b

a

ba

KoaToKore: Fail

Expansion 1

a b b
a

b

a

a b

b

a

KoaToKore: Fail

Expansion 2

a b aa
b a

b a

b

KoaToKore: a(b∗a)∗
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Constructing Deterministic Expressions: GROW

Algorithm
Enumerate all (non-isomorphic) deterministic automata equivalent
to r , up to a given size.
Check whether one of these automata is a Glushkov automaton;
and construct equivalent expression.

GROW
+ : Returns concise, readable expressions.
- : Not always returns an expression
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Approximating Deterministic Expressions

Problem
Given a non-deterministic expression r , construct a deterministic
expression s, such that L(r) ⊂ L(s).

Optimal Approximations
An approximation s is optimal if there does not exist a
deterministic expression s′ such that L(r) ⊂ L(s′) ⊂ L(s).

Theorem
Let r be an expression such that no equivalent deterministic
expression exists. Then, there does not exist an optimal deterministic
approximation of r .
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Approximating Deterministic Expressions

Theorem
Let r be an expression such that no equivalent deterministic
expression exists. Then, there does not exist an optimal deterministic
approximation of r .

Proof
Suppose s is optimal approximation of r .
Take w in L(s), not in L(r)
L(s) \ {w} also definable by deterministic expression s′, but better
approximation than s.
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Approximating Deterministic Expressions: Ahonen

Algorithm by Ahonen: Ahonen-BKW
1 Given non-deterministic expression r , construct its minimal DFA.
2 “Simulate” BKW algorithm. Stuck⇒ merge states and add

transitions.
3 Construct deterministic expression using BKW algorithm

Ahonen-GROW
Alternative: apply GROW instead of BKW in step 3.
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Approximating Deterministic Expressions: Ahonen

Ahonen-BKW
+ : Always returns an expression.
- : Big expressions.

Ahonen-GROW
+ : Small expressions.
- : Not always returns an expression
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Approximating Deterministic Expressions: SHRINK

Goal
Algorithm that always returns small, readable expression.

KoaToKore (Bex. et. al)
When automaton is Glushkov automaton, returns corresponding
expression (of equal size)
Can also return overapproximation (of equal size)
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Approximating Deterministic Expressions: SHRINK

Input Expression
a+(ba)∗b?

Minimal DFA

a b aa
b a

a

b

KoaToKore: Fail

Merged States

a b
a

b

a

a

KoaToKore: (ab?)+
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Approximating Deterministic Expressions: SHRINK

Algorithm
Shrink minimal DFA by merging states (trying to add as little as
possible)
Each DFA: check whether DFA is glushkov, or let koaToKore
overapproximate (by adding transitions)
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Experiments: Setup

Expressions
Randomly generated.
2100 non-deterministic expressions.
Number of alphabet symbols ranging from 5 to 50.

Repeatability and Workability
We participated in the ACM SIGMOD 2009 Repeatability and
Workability Evaluation. The reviewers were able to repeat all the
experiments presented in our paper, yielding results that match the
ones published in our paper, except from insignificant and to be
expected variation due to randomness and-or hardware-software
differences. The detailed reports will shortly be made publicly available
by ACM SIGMOD.
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Experiments: Deciding Determinism

Deciding Determinism
Very efficient (up to 50 milliseconds for largest ones)
Minimal DFAs are small!
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Experiments: Constructing Deterministic Expressions

Size of output expressions (and success rate)
input size BKW GROW
5 7 3 (89%)
10 95 6 (66%)
15 394 9 (43%)
20 / 12 (31%)
25-30 / 13 (21%)
35-50 / 23 (7%)

Running times
GROW and BKW: Less than a second for small expressions.
GROW: up to 20 seconds for biggest
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Experiments: Approximating Deterministic
Expressions

Measure of Quality
Ratio of number of strings defined by original expression over number
by det. approximation: Close to 1 is good

Quality of Approximations
input size Ahonen-BKW Ahonen-GROW SHRINK
5 0.73 (100%) 0.71 (75%) 0.75 (100%)
10 0.81 (100%) 0.79 (56%) 0.78 (100%)
15 0.84 (100%) 0.88 (40%) 0.79 (100%)
20 / 0.89 (18%) 0.76 (100%)
25-30 / 0.89 (8%) 0.71 (100%)
35-50 / 0.75 (4%) 0.68 (100%)
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Experiments: Approximating Deterministic
Expressions

Expression sizes (and success rate)
input size Ahonen-BKW Ahonen-GROW SHRINK
5 8 (100%) 3 (75%) 3 (100%)
10 28 (100%) 6 (56%) 6 (100%)
15 73 (100%) 8 (40%) 8 (100%)
20 / 11 (18%) 10 (100%)
25-30 / 11 (8%) 13 (100%)
35-50 / 14 (4%) 18 (100%)
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SUPAC

Supportive UPA Checker
Input regular expression

1 If r is deterministic, return r
2 Else If L(r) is deterministic

1 If GROW(r ) succeeds, return GROW(r )
2 Else return best from BKW(r ) and SHRINK(r )

3 Else return best from Ahonen-GROW(r ) and SHRINK(r )
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Future and Current Work

Future and Current Work
Minimization of deterministic expressions
Experiments using real-world expressions
Take into account counting operator
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