
Simplifying XML Schema: Effortless Handling of
Nondeterministic Regular Expressions

Geert Jan Bex1 and Wouter Gelade1 and Wim Martens2 and Frank
Neven1

1Hasselt University
2University of Dortmund

July, 2009

W. Gelade (Hasselt University) Simplifying XML Schema July, 2009 1 / 44

XML Schema

XML Schema is ...
A language for defining the structure of XML documents.
W3C Standard
Successor of DTD

Why a schema for XML documents?
Provides semantics to the data
Very useful for optimization
Necessary for data integration
· · ·

W. Gelade (Hasselt University) Simplifying XML Schema July, 2009 2 / 44

XML Schema

XML Schema is ...
A language for defining the structure of XML documents.
W3C Standard
Successor of DTD

Why a schema for XML documents?
Provides semantics to the data
Very useful for optimization
Necessary for data integration
· · ·

W. Gelade (Hasselt University) Simplifying XML Schema July, 2009 2 / 44

XML Schema: Abstract Syntax

XSD
<xsd:element name="store" type="store"/>

<xsd:complexType name="store">
<xsd:sequence>
<xsd:element name="order" type="order" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="stock" type="stock"/>

</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="order">
<xsd:sequence>
<xsd:element name="customer" type="customer"/>
<xsd:element name="item" type="item1" minOccurs="1" maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:complexType>

root → store
store → order∗ stock
order → customer item+

1

W. Gelade (Hasselt University) Simplifying XML Schema July, 2009 3 / 44

XML Schema

XSD
root → store stock → item∗2

store → order∗ stock item1 → id price
order → customer item+

1 item2 → id qty

XML Document: Tree
store

order

customer item

id price

order

customer item

id price

item

id price

stock

item

id qty

W. Gelade (Hasselt University) Simplifying XML Schema July, 2009 4 / 44

XSD Validation

XSD
root → store stock → item∗2

store → order∗ stock item1 → id price
order → customer item+

1 item2 → id qty

XML Document: Tree
store

order

customer item

id price

order

customer item

id price

item

id price

stock

item

id qty

W. Gelade (Hasselt University) Simplifying XML Schema July, 2009 5 / 44

XSD Validation

XSD Validation
root → store stock → item∗2

store → order∗ stock item1 → id price
order → customer item+

1 item2 → id qty

XML Document: Tree
store

order

customer item

id price

order

customer item

id price

item

id price

stock

item

id qty

W. Gelade (Hasselt University) Simplifying XML Schema July, 2009 6 / 44

XSD Validation

XSD Validation
root → store stock → item∗2

store → order∗ stock item1 → id price
order → customer item+

1 item2 → id qty

XML Document: Tree
store

order

customer item1

id price

order

customer item

id price

item

id price

stock

item

id qty

W. Gelade (Hasselt University) Simplifying XML Schema July, 2009 7 / 44

XSD Validation

XSD Validation
root → store stock → item∗2

store → order∗ stock item1 → id price
order → customer item+

1 item2 → id qty

XML Document: Tree
store

order

customer item1

id price

order

customer item

id price

item

id price

stock

item

id qty

W. Gelade (Hasselt University) Simplifying XML Schema July, 2009 8 / 44

XSD Validation

XSD Validation
root → store stock → item∗2

store → order∗ stock item1 → id price
order → customer item+

1 item2 → id qty

XML Document: Tree
store

order

customer item1

id price

order

customer item1

id price

item1

id price

stock

item2

id qty

W. Gelade (Hasselt University) Simplifying XML Schema July, 2009 9 / 44

XSD Validation

XSD Validation
root → store stock → item∗2

store → order∗ stock item1 → id price
order → customer item+

1 item2 → id qty

XML Document: Tree
store

order

customer item1

id price

order

customer item1

id price

item1

id price

stock

item2

id qty

W. Gelade (Hasselt University) Simplifying XML Schema July, 2009 10 / 44

XML Schema

XML Schema is ...
a simple grammar-based formalism using regular expressions

Regular expressions are great
Easy to use
Robust class of languages: closed under union, intersection,
complement, . . .

Very well understood

W. Gelade (Hasselt University) Simplifying XML Schema July, 2009 11 / 44

Deterministic Regular Expressions

UPA constraint
All content models must be deterministic regular expressions.

Definition
A regular expression r is deterministic if when matching any string
from left to right against r , we can deterministically match every
symbol against a position in r , without looking ahead in the string.

Example
(ab)∗ is deterministic.
(ab)∗a is not deterministic

W. Gelade (Hasselt University) Simplifying XML Schema July, 2009 12 / 44

Deterministic Regular Expressions

UPA constraint
All content models must be deterministic regular expressions.

Definition
A regular expression r is deterministic if when matching any string
from left to right against r , we can deterministically match every
symbol against a position in r , without looking ahead in the string.

Example
(ab)∗ is deterministic.
(ab)∗a is not deterministic

W. Gelade (Hasselt University) Simplifying XML Schema July, 2009 12 / 44

Deterministic Regular Expressions

UPA constraint
All content models must be deterministic regular expressions.

Definition
A regular expression r is deterministic if when matching any string
from left to right against r , we can deterministically match every
symbol against a position in r , without looking ahead in the string.

Example
(ab)∗ is deterministic. Example: abab
(ab)∗a is not deterministic

W. Gelade (Hasselt University) Simplifying XML Schema July, 2009 13 / 44

Deterministic Regular Expressions

UPA constraint
All content models must be deterministic regular expressions.

Definition
A regular expression r is deterministic if when matching any string
from left to right against r , we can deterministically match every
symbol against a position in r , without looking ahead in the string.

Example
(ab)∗ is deterministic. Example: abab
(ab)∗a is not deterministic

W. Gelade (Hasselt University) Simplifying XML Schema July, 2009 14 / 44

Deterministic Regular Expressions

UPA constraint
All content models must be deterministic regular expressions.

Definition
A regular expression r is deterministic if when matching any string
from left to right against r , we can deterministically match every
symbol against a position in r , without looking ahead in the string.

Example
(ab)∗ is deterministic. Example: abab
(ab)∗a is not deterministic

W. Gelade (Hasselt University) Simplifying XML Schema July, 2009 15 / 44

Deterministic Regular Expressions

UPA constraint
All content models must be deterministic regular expressions.

Definition
A regular expression r is deterministic if when matching any string
from left to right against r , we can deterministically match every
symbol against a position in r , without looking ahead in the string.

Example
(ab)∗ is deterministic. Example: abab
(ab)∗a is not deterministic

W. Gelade (Hasselt University) Simplifying XML Schema July, 2009 16 / 44

Deterministic Regular Expressions

UPA constraint
All content models must be deterministic regular expressions.

Definition
A regular expression r is deterministic if when matching any string
from left to right against r , we can deterministically match every
symbol against a position in r , without looking ahead in the string.

Example
(ab)∗ is deterministic.
(ab)∗a is not deterministic. Examples: aba and a

W. Gelade (Hasselt University) Simplifying XML Schema July, 2009 17 / 44

Deterministic Regular Expressions

Deterministic regular expressions are ugly
Easy to use
Robust class of languages: closed under union, intersection,
complement, . . .

Very well Partially understood

W. Gelade (Hasselt University) Simplifying XML Schema July, 2009 18 / 44

UPA Constraint

W3C XML Schema Standard
A content model must be formed such that during validation of an
element information item sequence, the particle component contained
directly, indirectly or implicitly therein with which to attempt to validate
each item in the sequence in turn can be uniquely determined without
examining the content or attributes of that item, and without any
information about the items in the remainder of the sequence.

W. Gelade (Hasselt University) Simplifying XML Schema July, 2009 19 / 44

XML Schema Validator

Scenario
User writes XML Schema Definition containing non-deterministic
expression, say (a + b)∗a, and tries to validate it.
Validator response: ERROR: non-deterministic content model
(a + b)∗a.

W. Gelade (Hasselt University) Simplifying XML Schema July, 2009 20 / 44

Smart XML Schema Validator

Scenario
User writes XML Schema Definition containing non-deterministic
expression, say (a + b)∗a, and tries to validate it.
Smart validator response: PROBLEM: non-deterministic
content model (a + b)∗a. However, the content model
b∗a(b∗a)∗ describes the same content and is deterministic.
Would you like to use it instead?

W. Gelade (Hasselt University) Simplifying XML Schema July, 2009 21 / 44

Too optimistic ...

Theorem: Bruggemann-Klein and Wood
Some regular languages are not definable by a deterministic regular
expression.

Scenario
User writes XML Schema Definition containing expression (ab)∗a
and tries to validate it.
Smart validator response: PROBLEM: non-deterministic
content model for (ab)∗a. Moreover, there is no deterministic
content model describing exactly this content. However, the
content model a(b?a)∗ is deterministic and describes the
same content plus some additional strings. Would you like to
use it instead?

W. Gelade (Hasselt University) Simplifying XML Schema July, 2009 22 / 44

Too optimistic ...

Theorem: Bruggemann-Klein and Wood
Some regular languages are not definable by a deterministic regular
expression.

Scenario
User writes XML Schema Definition containing expression (ab)∗a
and tries to validate it.
Smart validator response: PROBLEM: non-deterministic
content model for (ab)∗a. Moreover, there is no deterministic
content model describing exactly this content. However, the
content model a(b?a)∗ is deterministic and describes the
same content plus some additional strings. Would you like to
use it instead?

W. Gelade (Hasselt University) Simplifying XML Schema July, 2009 22 / 44

Goal

Overall Goal
Develop the tools for a smart schema validator.

Technical goals
Given a non-deterministic regular expression,

decide whether its language can be defined by a deterministic
expression
if possible, construct equivalent deterministic expression
otherwise, construct deterministic overapproximation

Remark
All results apply to DTDs

W. Gelade (Hasselt University) Simplifying XML Schema July, 2009 23 / 44

Goal

Overall Goal
Develop the tools for a smart schema validator.

Technical goals
Given a non-deterministic regular expression,

decide whether its language can be defined by a deterministic
expression
if possible, construct equivalent deterministic expression
otherwise, construct deterministic overapproximation

Remark
All results apply to DTDs

W. Gelade (Hasselt University) Simplifying XML Schema July, 2009 23 / 44

Deciding Determinism

Deciding Determinism Problem
Given non-deterministic expression r , decide whether there exists a
deterministic expression s, such that L(r) = L(s).

Bruggemann-Klein and Wood 1998
Deciding Determinism can be done in time exponential in the size of r .

Theorem
Deciding Determinism is PSPACE-hard.

W. Gelade (Hasselt University) Simplifying XML Schema July, 2009 24 / 44

Deciding Determinism

Deciding Determinism Problem
Given non-deterministic expression r , decide whether there exists a
deterministic expression s, such that L(r) = L(s).

Bruggemann-Klein and Wood 1998
Deciding Determinism can be done in time exponential in the size of r .

Theorem
Deciding Determinism is PSPACE-hard.

W. Gelade (Hasselt University) Simplifying XML Schema July, 2009 24 / 44

Deciding Determinism

Deciding Determinism Problem
Given non-deterministic expression r , decide whether there exists a
deterministic expression s, such that L(r) = L(s).

Bruggemann-Klein and Wood 1998
Deciding Determinism can be done in time exponential in the size of r .

Theorem
Deciding Determinism is PSPACE-hard.

W. Gelade (Hasselt University) Simplifying XML Schema July, 2009 24 / 44

Constructing Deterministic Expressions

Problem
Given a non-deterministic expression r , construct a deterministic
expression s, such that L(r) = L(s).

W. Gelade (Hasselt University) Simplifying XML Schema July, 2009 25 / 44

Construct Deterministic Expressions: BKW

Algorithm Bruggemann-Klein and Wood
Construct minimal DFA.
Construct deterministic expression by induction on DFA.
Note: Added a few optimizations.

BKW
+ : If possible always return an equivalent deterministic
expression.
- : Can create very big expressions (possibly double exponential)

W. Gelade (Hasselt University) Simplifying XML Schema July, 2009 26 / 44

Construct Deterministic Expressions: BKW

Algorithm Bruggemann-Klein and Wood
Construct minimal DFA.
Construct deterministic expression by induction on DFA.
Note: Added a few optimizations.

BKW
+ : If possible always return an equivalent deterministic
expression.
- : Can create very big expressions (possibly double exponential)

W. Gelade (Hasselt University) Simplifying XML Schema July, 2009 26 / 44

Example: (a∗b?c?d?e?f ∗g∗h∗i∗j∗k∗a∗)

(. (* (. (a))) (| (| (. (d) (. (. (. (. (. (. (? (. (| (e) (f)) (* (. (f))))))) (? (. (g) (*
(. (g))))))) (? (. (h) (* (. (h))))))) (? (. (i) (* (. (i))))))) (? (. (j) (* (. (j)))))))
(? (. (k) (* (. (k))))))) (? (. (a) (* (. (a)))))))) (| (. (j) (. (. (* (. (j)))) (? (.
(k) (* (. (k))))))) (? (. (a) (* (. (a)))))))) (| (. (b) (. (. (. (. (. (. (. (. (? (. (c)
))) (? (. (d)))) (? (. (| (e) (f)) (* (. (f))))))) (? (. (g) (* (. (g))))))) (? (. (h)
(* (. (h))))))) (? (. (i) (* (. (i))))))) (? (. (j) (* (. (j))))))) (? (. (k) (* (. (k)
)))))) (? (. (a) (* (. (a)))))))) (| (. (g) (. (. (. (. (. (* (. (g)))) (? (. (h) (* (.
(h))))))) (? (. (i) (* (. (i))))))) (? (. (j) (* (. (j))))))) (? (. (k) (* (. (k)))))))
(? (. (a) (* (. (a)))))))) (| (. (e) (. (. (. (. (. (. (* (. (f)))) (? (. (g) (* (. (g)
)))))) (? (. (h) (* (. (h))))))) (? (. (i) (* (. (i))))))) (? (. (j) (* (. (j))))))) (? (.
(k) (* (. (k))))))) (? (. (a) (* (. (a)))))))) (| (. (c) (. (. (. (. (. (. (. (? (. (d)
))) (? (. (| (e) (f)) (* (. (f))))))) (? (. (g) (* (. (g))))))) (? (. (h) (* (. (h)))))))
(? (. (i) (* (. (i))))))) (? (. (j) (* (. (j))))))) (? (. (k) (* (. (k))))))) (? (. (a) (*
(. (a)))))))) (| (. (k) (. (* (. (k)))) (? (. (a) (* (. (a)))))))) (| (. (h) (. (. (. (.
(* (. (h)))) (? (. (i) (* (. (i))))))) (? (. (j) (* (. (j))))))) (? (. (k) (* (. (k)))))))
(? (. (a) (* (. (a)))))))) (| (. (f) (. (. (. (. (. (. (* (. (f)))) (? (. (g) (* (. (g)
)))))) (? (. (h) (* (. (h))))))) (? (. (i) (* (. (i))))))) (? (. (j) (* (. (j))))))) (? (.
(k) (* (. (k))))))) (? (. (a) (* (. (a)))))))) (. (i) (. (. (. (* (. (i)))) (? (. (j) (* (.
(j))))))) (? (. (k) (* (. (k))))))) (? (. (a) (* (. (a)))))))))))))))))))

W. Gelade (Hasselt University) Simplifying XML Schema July, 2009 27 / 44

Constructing Deterministic Expressions: GROW

Goal
Find concise deterministic expressions.

Glushkov Automata

a(b∗a)∗

Glushkov

KoaToKore (Bex. et. al)

a b aa
b a

ab

b

W. Gelade (Hasselt University) Simplifying XML Schema July, 2009 28 / 44

Constructing Deterministic Expressions: GROW

Goal
Find concise deterministic expressions.

Glushkov Automata

a(b∗a)∗

Glushkov

KoaToKore (Bex. et. al)

a b aa
b a

ab

b

W. Gelade (Hasselt University) Simplifying XML Schema July, 2009 28 / 44

Constructing Deterministic Expressions: GROW

Input Expression
a(a + b)∗a

Minimal DFA

a b
a

b

a

ba

KoaToKore: Fail

Expansion 1

a b b
a

b

a

a b

b

a

KoaToKore: Fail

Expansion 2

a b aa
b a

b a

b

KoaToKore: a(b∗a)∗

W. Gelade (Hasselt University) Simplifying XML Schema July, 2009 29 / 44

Constructing Deterministic Expressions: GROW

Input Expression
a(a + b)∗a

Minimal DFA

a b
a

b

a

ba

KoaToKore: Fail

Expansion 1

a b b
a

b

a

a b

b

a

KoaToKore: Fail

Expansion 2

a b aa
b a

b a

b

KoaToKore: a(b∗a)∗

W. Gelade (Hasselt University) Simplifying XML Schema July, 2009 29 / 44

Constructing Deterministic Expressions: GROW

Input Expression
a(a + b)∗a

Minimal DFA

a b
a

b

a

ba

KoaToKore: Fail

Expansion 1

a b b
a

b

a

a b

b

a

KoaToKore: Fail

Expansion 2

a b aa
b a

b a

b

KoaToKore: a(b∗a)∗

W. Gelade (Hasselt University) Simplifying XML Schema July, 2009 29 / 44

Constructing Deterministic Expressions: GROW

Input Expression
a(a + b)∗a

Minimal DFA

a b
a

b

a

ba

KoaToKore: Fail

Expansion 1

a b b
a

b

a

a b

b

a

KoaToKore: Fail

Expansion 2

a b aa
b a

b a

b

KoaToKore: a(b∗a)∗

W. Gelade (Hasselt University) Simplifying XML Schema July, 2009 29 / 44

Constructing Deterministic Expressions: GROW

Algorithm
Enumerate all (non-isomorphic) deterministic automata equivalent
to r , up to a given size.
Check whether one of these automata is a Glushkov automaton;
and construct equivalent expression.

GROW
+ : Returns concise, readable expressions.
- : Not always returns an expression

W. Gelade (Hasselt University) Simplifying XML Schema July, 2009 30 / 44

Constructing Deterministic Expressions: GROW

Algorithm
Enumerate all (non-isomorphic) deterministic automata equivalent
to r , up to a given size.
Check whether one of these automata is a Glushkov automaton;
and construct equivalent expression.

GROW
+ : Returns concise, readable expressions.
- : Not always returns an expression

W. Gelade (Hasselt University) Simplifying XML Schema July, 2009 30 / 44

Approximating Deterministic Expressions

Problem
Given a non-deterministic expression r , construct a deterministic
expression s, such that L(r) ⊂ L(s).

Optimal Approximations
An approximation s is optimal if there does not exist a
deterministic expression s′ such that L(r) ⊂ L(s′) ⊂ L(s).

Theorem
Let r be an expression such that no equivalent deterministic
expression exists. Then, there does not exist an optimal deterministic
approximation of r .

W. Gelade (Hasselt University) Simplifying XML Schema July, 2009 31 / 44

Approximating Deterministic Expressions

Problem
Given a non-deterministic expression r , construct a deterministic
expression s, such that L(r) ⊂ L(s).

Optimal Approximations
An approximation s is optimal if there does not exist a
deterministic expression s′ such that L(r) ⊂ L(s′) ⊂ L(s).

Theorem
Let r be an expression such that no equivalent deterministic
expression exists. Then, there does not exist an optimal deterministic
approximation of r .

W. Gelade (Hasselt University) Simplifying XML Schema July, 2009 31 / 44

Approximating Deterministic Expressions

Problem
Given a non-deterministic expression r , construct a deterministic
expression s, such that L(r) ⊂ L(s).

Optimal Approximations
An approximation s is optimal if there does not exist a
deterministic expression s′ such that L(r) ⊂ L(s′) ⊂ L(s).

Theorem
Let r be an expression such that no equivalent deterministic
expression exists. Then, there does not exist an optimal deterministic
approximation of r .

W. Gelade (Hasselt University) Simplifying XML Schema July, 2009 31 / 44

Approximating Deterministic Expressions

Theorem
Let r be an expression such that no equivalent deterministic
expression exists. Then, there does not exist an optimal deterministic
approximation of r .

Proof
Suppose s is optimal approximation of r .
Take w in L(s), not in L(r)
L(s) \ {w} also definable by deterministic expression s′, but better
approximation than s.

W. Gelade (Hasselt University) Simplifying XML Schema July, 2009 32 / 44

Approximating Deterministic Expressions: Ahonen

Algorithm by Ahonen: Ahonen-BKW
1 Given non-deterministic expression r , construct its minimal DFA.
2 “Simulate” BKW algorithm. Stuck⇒ merge states and add

transitions.
3 Construct deterministic expression using BKW algorithm

Ahonen-GROW
Alternative: apply GROW instead of BKW in step 3.

W. Gelade (Hasselt University) Simplifying XML Schema July, 2009 33 / 44

Approximating Deterministic Expressions: Ahonen

Algorithm by Ahonen: Ahonen-BKW
1 Given non-deterministic expression r , construct its minimal DFA.
2 “Simulate” BKW algorithm. Stuck⇒ merge states and add

transitions.
3 Construct deterministic expression using BKW algorithm

Ahonen-GROW
Alternative: apply GROW instead of BKW in step 3.

W. Gelade (Hasselt University) Simplifying XML Schema July, 2009 33 / 44

Approximating Deterministic Expressions: Ahonen

Ahonen-BKW
+ : Always returns an expression.
- : Big expressions.

Ahonen-GROW
+ : Small expressions.
- : Not always returns an expression

W. Gelade (Hasselt University) Simplifying XML Schema July, 2009 34 / 44

Approximating Deterministic Expressions: SHRINK

Goal
Algorithm that always returns small, readable expression.

KoaToKore (Bex. et. al)
When automaton is Glushkov automaton, returns corresponding
expression (of equal size)
Can also return overapproximation (of equal size)

W. Gelade (Hasselt University) Simplifying XML Schema July, 2009 35 / 44

Approximating Deterministic Expressions: SHRINK

Goal
Algorithm that always returns small, readable expression.

KoaToKore (Bex. et. al)
When automaton is Glushkov automaton, returns corresponding
expression (of equal size)
Can also return overapproximation (of equal size)

W. Gelade (Hasselt University) Simplifying XML Schema July, 2009 35 / 44

Approximating Deterministic Expressions: SHRINK

Input Expression
a+(ba)∗b?

Minimal DFA

a b aa
b a

a

b

KoaToKore: Fail

Merged States

a b
a

b

a

a

KoaToKore: (ab?)+

W. Gelade (Hasselt University) Simplifying XML Schema July, 2009 36 / 44

Approximating Deterministic Expressions: SHRINK

Input Expression
a+(ba)∗b?

Minimal DFA

a b aa
b a

a

b

KoaToKore: Fail

Merged States

a b
a

b

a

a

KoaToKore: (ab?)+

W. Gelade (Hasselt University) Simplifying XML Schema July, 2009 36 / 44

Approximating Deterministic Expressions: SHRINK

Input Expression
a+(ba)∗b?

Minimal DFA

a b aa
b a

a

b

KoaToKore: Fail

Merged States

a b
a

b

a

a

KoaToKore: (ab?)+

W. Gelade (Hasselt University) Simplifying XML Schema July, 2009 36 / 44

Approximating Deterministic Expressions: SHRINK

Input Expression
a+(ba)∗b?

Minimal DFA

a b aa
b a

a

b

KoaToKore: Fail

Merged States

a b
a

b

a

a

KoaToKore: (ab?)+

W. Gelade (Hasselt University) Simplifying XML Schema July, 2009 36 / 44

Approximating Deterministic Expressions: SHRINK

Algorithm
Shrink minimal DFA by merging states (trying to add as little as
possible)
Each DFA: check whether DFA is glushkov, or let koaToKore
overapproximate (by adding transitions)

W. Gelade (Hasselt University) Simplifying XML Schema July, 2009 37 / 44

Experiments: Setup

Expressions
Randomly generated.
2100 non-deterministic expressions.
Number of alphabet symbols ranging from 5 to 50.

Repeatability and Workability
We participated in the ACM SIGMOD 2009 Repeatability and
Workability Evaluation. The reviewers were able to repeat all the
experiments presented in our paper, yielding results that match the
ones published in our paper, except from insignificant and to be
expected variation due to randomness and-or hardware-software
differences. The detailed reports will shortly be made publicly available
by ACM SIGMOD.

W. Gelade (Hasselt University) Simplifying XML Schema July, 2009 38 / 44

Experiments: Setup

Expressions
Randomly generated.
2100 non-deterministic expressions.
Number of alphabet symbols ranging from 5 to 50.

Repeatability and Workability
We participated in the ACM SIGMOD 2009 Repeatability and
Workability Evaluation. The reviewers were able to repeat all the
experiments presented in our paper, yielding results that match the
ones published in our paper, except from insignificant and to be
expected variation due to randomness and-or hardware-software
differences. The detailed reports will shortly be made publicly available
by ACM SIGMOD.

W. Gelade (Hasselt University) Simplifying XML Schema July, 2009 38 / 44

Experiments: Deciding Determinism

Deciding Determinism
Very efficient (up to 50 milliseconds for largest ones)
Minimal DFAs are small!

W. Gelade (Hasselt University) Simplifying XML Schema July, 2009 39 / 44

Experiments: Constructing Deterministic Expressions

Size of output expressions (and success rate)
input size BKW GROW
5 7 3 (89%)
10 95 6 (66%)
15 394 9 (43%)
20 / 12 (31%)
25-30 / 13 (21%)
35-50 / 23 (7%)

Running times
GROW and BKW: Less than a second for small expressions.
GROW: up to 20 seconds for biggest

W. Gelade (Hasselt University) Simplifying XML Schema July, 2009 40 / 44

Experiments: Approximating Deterministic
Expressions

Measure of Quality
Ratio of number of strings defined by original expression over number
by det. approximation: Close to 1 is good

Quality of Approximations
input size Ahonen-BKW Ahonen-GROW SHRINK
5 0.73 (100%) 0.71 (75%) 0.75 (100%)
10 0.81 (100%) 0.79 (56%) 0.78 (100%)
15 0.84 (100%) 0.88 (40%) 0.79 (100%)
20 / 0.89 (18%) 0.76 (100%)
25-30 / 0.89 (8%) 0.71 (100%)
35-50 / 0.75 (4%) 0.68 (100%)

W. Gelade (Hasselt University) Simplifying XML Schema July, 2009 41 / 44

Experiments: Approximating Deterministic
Expressions

Expression sizes (and success rate)
input size Ahonen-BKW Ahonen-GROW SHRINK
5 8 (100%) 3 (75%) 3 (100%)
10 28 (100%) 6 (56%) 6 (100%)
15 73 (100%) 8 (40%) 8 (100%)
20 / 11 (18%) 10 (100%)
25-30 / 11 (8%) 13 (100%)
35-50 / 14 (4%) 18 (100%)

W. Gelade (Hasselt University) Simplifying XML Schema July, 2009 42 / 44

SUPAC

Supportive UPA Checker
Input regular expression

1 If r is deterministic, return r
2 Else If L(r) is deterministic

1 If GROW(r) succeeds, return GROW(r)
2 Else return best from BKW(r) and SHRINK(r)

3 Else return best from Ahonen-GROW(r) and SHRINK(r)

W. Gelade (Hasselt University) Simplifying XML Schema July, 2009 43 / 44

Future and Current Work

Future and Current Work
Minimization of deterministic expressions
Experiments using real-world expressions
Take into account counting operator

W. Gelade (Hasselt University) Simplifying XML Schema July, 2009 44 / 44

