
Simplifying XML Schema: Effortless Handling of
Nondeterministic Regular Expressions∗

Geert Jan Bex
Hasselt University and

Transnational University of
Limburg

geertjan.bex@uhasselt.be

Wouter Gelade
†

Hasselt University and
Transnational University of

Limburg
wouter.gelade@uhasselt.be

Wim Martens
‡

Technical University of
Dortmund

wim.martens@udo.edu

Frank Neven
Hasselt University and

Transnational University of
Limburg

frank.neven@uhasselt.be

ABSTRACT
Whether beloved or despised, XML Schema is momentarily
the only industrially accepted schema language for XML and
is unlikely to become obsolete any time soon. Nevertheless,
many nontransparent restrictions unnecessarily complicate
the design of XSDs. For instance, complex content mod-
els in XML Schema are constrained by the infamous unique
particle attribution (UPA) constraint. In formal language
theoretic terms, this constraint restricts content models to
deterministic regular expressions. As the latter constitute
a semantic notion and no simple corresponding syntactical
characterization is known, it is very difficult for non-expert
users to understand exactly when and why content models
do or do not violate UPA. In the present paper, we therefore
investigate solutions to relieve users from the burden of UPA
by automatically transforming nondeterministic expressions
into concise deterministic ones defining the same language
or constituting good approximations. The presented tech-
niques facilitate XSD construction by reducing the design
task at hand more towards the complexity of the modeling
task. In addition, our algorithms can serve as a plug-in for

∗We acknowledge the financial support of FWO-G.0821.09N
and the Future and Emerging Technologies (FET) pro-
gramme within the Seventh Framework Programme for Re-
search of the European Commission, under the FET-Open
grant agreement FOX, number FP7-ICT-233599
†Research Assistant of the Fund for Scientific Research –
Flanders (Belgium).
‡Supported by the North-Rhine Westphalian Academy of
Sciences, Humanities and Arts; and the Stiftung Mercator
Essen.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’09, June 29–July 2, 2009, Providence, Rhode Island, USA.
Copyright 2009 ACM 978-1-60558-551-2/09/06 ...$5.00.

any model management tool which supports export to XML
Schema format.

Categories and Subject Descriptors
F.4.3 [Theory of Computation]: Mathematical Logic and
Formal Languages—Formal Languages; I.7.2 [Computing
Methodologies]: Document and Text Processing—Docu-
ment Preparation

General Terms
Algorithms Languages Theory

Keywords
XML Schema, UPA, deterministic regular expressions

1. INTRODUCTION
The presence of a schema accompanying an XML repos-

itory has many advantages: (i) it strongly facilitates opti-
mization of XML processing (cf., e.g., [3, 11, 13, 15, 22,
23, 27]); (ii) it provides a road map for the user to the
underlying data; and (iii) it is inevitable when integrat-
ing (meta) data through schema matching [28] and in the
area of generic model management [4]. Despite these many
advantages, recent studies stipulate that schemas accompa-
nying collections of XML documents are sparse and erro-
neous in practice: Barbosa et al. [2, 26] have shown that
approximately half of the XML documents available on the
Web do not refer to a schema; Bex et al. [5, 25] noted that
about two-thirds of XML Schema Definitions (XSDs) gath-
ered from schema repositories and from the Web at large are
not valid with respect to the W3C XML Schema specifica-
tion [30], rendering them essentially useless for immediate
application. Although the exact causes of the absence of
schemas and the high percentage of errors in XSDs are diffi-
cult to pinpoint, the high complexity of XML Schema itself
undoubtedly plays an important role, distracting the atten-
tion from the design process itself. We therefore need easy-
to-use schema design tools reducing the design task solely to

the complexity of modeling by relieving the user from XML
Schema’s peculiarities and nontransparent restrictions.

One of these nontransparent restrictions is undoubtedly
the Unique Particle Attribution (UPA) constraint, also known
as the restriction on content models to be deterministic reg-
ular expressions (as formally defined in Section 2). The
sole motivation for this restriction is backward compatibil-
ity with SGML, a predecessor of XML, where it was intro-
duced for the reason of fast unambiguous parsing of content
models (without lookahead) [31]. Sadly this notion of un-
ambiguous parsing is a semantic rather than a syntactic one,
making it difficult for designers to interpret. Specifically, the
XML Schema specification mentions the following definition
of UPA:

A content model must be formed such that dur-
ing validation of an element information item
sequence, the particle component contained di-
rectly, indirectly or implicitly therein with which
to attempt to validate each item in the sequence
in turn can be uniquely determined without ex-
amining the content or attributes of that item,
and without any information about the items in
the remainder of the sequence.

In most books (c.f. [31]), the UPA constraint is usually ex-
plained in terms of a simple example rather than by means
of a clear syntactical definition. The latter is not surprising
as to date there is no known easy syntax for deterministic
regular expressions. That is, there are no simple rules a user
can apply to define only (and all) deterministic regular ex-
pressions. So, when after the schema design process, one or
several content models are rejected by the schema checker
on account of being nondeterministic, it is very difficult for
non-expert1 users to grasp the source of the error and almost
impossible to rewrite the content model into an admissible
one. The purpose of the present paper is to investigate meth-
ods for transforming nondeterministic expressions into con-
cise and readable deterministic ones defining either the same
language or constituting good approximations. We propose
the algorithm supac (Supportive UPA Checker) which can
be incorporated in a responsive XSD tester which in addi-
tion to rejecting XSDs violating UPA also suggests plausible
alternatives. Consequently, the task of designing an XSD is
relieved from the burden of the UPA restriction and the user
can focus on designing an accurate schema. In addition, our
algorithm can serve as a plug-in for any model management
tool which supports export to XML Schema format [4].

Deterministic regular expressions were investigated in a
seminal paper by Brüggemann-Klein and Wood [10]. They
showed that deciding whether a given regular expression is
deterministic can be done in quadratic time. In addition,
they provided an algorithm, that we call bkwdec, to decide
whether a regular language can be represented by a deter-
ministic regular expression.2 bkwdec runs in time quadratic
in the size of the minimal deterministic finite automaton
(DFA) and therefore in time exponential in the size of the
regular expression. We prove in this paper that the problem
is hard for pspace thereby eliminating much of the hope for
a theoretically tractable algorithm. We tested bkwdec on
a large and diverse set of regular expressions and observed
that it runs very fast (under 200ms for expressions with 50

1In formal language theory.
2We call such regular languages deterministic regular lan-
guages.

alphabet symbols). It turns out that, for many expressions,
the corresponding minimal DFA is quite small and far from
the theoretical worst-case exponential size increase. In ad-
dition, we observe that bkwdec is fixed-parameter tractable
in the maximal number of occurrences of the same alphabet
symbol. As this number is very small for the far major-
ity of real-world regular expressions [7], applying bkwdec in
practice should never be a problem.

Deciding existence of an equivalent deterministic regular
expression or effectively constructing one, are entirely dif-
ferent matters. Indeed, while the decision problem is in
exptime, Brüggemann-Klein and Wood [10] provide an al-
gorithm, which we will call bkw, which constructs deter-
ministic regular expressions whose size can be doubly expo-
nential in the size of the original expression. In this paper,
we measure the size of an expression as the total number of
occurrences of alphabet symbols (cf. Section 2). The first
exponential size increase stems from creating the minimal
deterministic automaton Ar equivalent to the given nonde-
terministic regular expression r. The second one stems from
translating the automaton into an expression. Although it
is unclear whether this doubly exponential size increase can
be avoided, examples are known for which a single expo-
nential blow-up is necessary [10]. We define an optimized
version of bkw, called bkw-opt, which optimizes the sec-
ond step in the algorithm and can produce exponentially
smaller expressions than bkw. Unfortunately, the obtained
expressions can still be very large. For instance, as detailed
in the experiments section, for input expressions of size 15,
bkw and bkw-opt generate equivalent deterministic expres-
sions of average size 1577 and 394, respectively. To overcome
this, we propose the algorithm grow. The idea underlying
this algorithm is that small deterministic regular expressions
correspond to small Glushkov automata [10]: indeed, ev-
ery deterministic regular expression r can be translated in a
Glushkov automaton with as many states as there are alpha-
bet symbols in r. Therefore, when the minimal automaton
Ar is not Glushkov, grow tries to extend Ar such that it be-
comes Glushkov. To translate the Glushkov automaton into
an equivalent regular expression, we use the existing algo-
rithm rewrite [7]. Our experiments show that when grow
succeeds in finding a small equivalent deterministic expres-
sion its size is always roughly that of the input expression.
In this respect, it is greatly superior to bkw and bkw-opt.
Nevertheless, its success rate is inversely proportional to the
size of the input expression (we refer to Section 6.2 for de-
tails).

Finally, we focus on the case when no equivalent deter-
ministic regular expression can be constructed for a given
nondeterministic regular expression and an adequate super-
approximation is needed. We start with a fairly negative re-
sult: we show that there is no smallest super-approximation
of a regular expression r within the class of deterministic
regular expressions. That is, whenever L(r) (L(s), and
s is deterministic, then there is a deterministic expression
s′ with L(r) (L(s′) (L(s). We therefore measure the
proximity between r and s relative to the strings up to a
fixed length. Using this measure we can compare the quality
of different approximations. We consider three algorithms.
The first one is an algorithm of Ahonen [1] which essentially
repairs bkw by adding edges to the minimal DFA when-
ever it gets stuck. The second algorithm operates like the
first one but utilizes grow rather than bkw to generate the

corresponding deterministic regular expression. The third
algorithm, called shrink, merges states, thereby generaliz-
ing the language, until a regular language is obtained with a
corresponding concise deterministic regular expression. For
the latter, we again make use of grow, and of the algorithm
koa-to-kore of [6] which transforms automata to concise
regular expressions. In our experimental study, we show in
which situation which of the algorithms works best.

Conributions. The contributions of this paper can be
listed as follows:

1. We prove theoretical intractability for deciding whether
a regular expression defines a deterministic language.
A further analysis shows fixed-parameter tractability
which explains the surprisingly good performance of
bkwdec in practice.

2. In addition to revisiting known algorithms for han-
dling deterministic regular expressions like bkw and
ahonen-bkw, we propose several new ones: bkw-opt,
grow, ahonen-grow, and shrink.

3. We prove that in general there exists no best approxi-
mation of a regular expression within the class of deter-
ministic regular expressions. We then propose a prox-
imity measure to assess the quality of an approxima-
tion.

4. Based on a detailed experimental analysis, we asses
the merits of each of these algorithms in terms of the
quality and the conciseness of computed expressions.
Interestingly, crudely flavored methods like grow and
shrink outperform more sophisticated ones like bkw-opt
and ahonen-bkw on all but the smallest of expres-
sions.

5. Based on the experimental assessment, we propose the
algorithm supac (supportive UPA checker) for han-
dling deterministic regular expressions. supac is hence
a combination of the different proposed algorithms.

Outline. The outline of the paper is as follows. In Sec-
tion 2, we introduce the necessary definitions. In Section 3,
we discuss the complexity of deciding determinism of the
underlying regular language. In Section 4 and Section 5,
we discuss the construction of equivalent and super approxi-
mations of regular expressions. We present an experimental
validation of our algorithms in Section 6. We outline a sup-
portive UPA checker in Section 7. We conclude in Section 8.

Related Work. Although XML is accepted as the de
facto standard for data exchange on the Internet and XML
Schema is widely used, fairly little attention has been de-
voted to the study of deterministic regular expressions. We
already mentioned the seminal paper by Bruggemann-Klein
and Wood [10]. Computational and structural properties
were addressed by Gelade and Neven [16] and Martens, Neven,
and Schwentick [24]. In particular, it was shown that deter-
ministic regular expressions can be complemented in poly-
nomial time (although the complement is not necessarily de-
terministic [16]). Furthermore, it was shown that obtaining
a regular expression for the intersection of an arbitrary num-
ber of deterministic expressions cannot avoid a doubly expo-
nential size increase [16]. In addition, testing non-emptiness
of an arbitrary number of intersections of deterministic reg-
ular expressions is pspace-complete [24]. Bex et al. inves-
tigated algorithms for the inference of regular expressions
from a sample of strings in the context of DTDs and XML
Schemas [6, 7, 8, 9]. From this investigation resulted two

algorithms: rewrite [7] which transforms automata with
n states to equivalent expressions with n alphabet symbols
and fails when no such expression exists; and the algorithm
koa-to-kore [6, 7] which operates as rewrite with the
difference that it always returns a concise expression at the
expense of generalizing the language when no equivalent con-
cise expression exists.

Deciding determinism of expressions containing numerical
occurrences was studied by Kilpeläinen and Tuhkanen [20].
The complexity of syntactic subclasses of the determinis-
tic regular expressions with counting has also been consid-
ered [17, 18]. In the context of streaming the notion of
determinism and k-determinism was used in [21] and [12].

The presented work would clearly benefit from algorithms
for regular expression minimization. To the best of our
knowledge, no such (efficient) algorithms exist for determin-
istic regular expressions, for which minimization is in np.
Only a sound and complete rewriting system is available for
general regular expressions [29], for which minimization is
pspace-complete.

2. DEFINITIONS
In this paper, we denote by Σ an arbitrary finite alpha-

bet, and by a, b, c, . . . we denote elements from Σ. We are
interested in regular expressions r of the form

r ::= ε | ∅ | a | rr | r + r | (r)? | (r)+ | (r)∗,

where ε denotes the empty string and a ranges over symbols
in the alphabet Σ. Sometimes we also use the symbol ·
for regular expression concatenation to improve readability.
As usual, we write L(r) for the language defined by regular
expression r. We define the size of regular expression r
to be its total number alphabet symbol occurrences. For
example, both expressions aaa and a(b+c)? have size three.
We say that two regular expressions r1 and r2 are equivalent
if L(r1) = L(r2).

XML Schema does not allow the general class of regu-
lar expressions as defined above but requires regular ex-
pressions to be deterministic (also sometimes called one-
unambiguous [10]). Intuitively, a regular expression is de-
terministic if, without looking ahead in the input string, it
allows to match each symbol of that string uniquely against
a position in the expression when processing the input in
one pass from left to right. For instance, (a + b)∗a is not
deterministic as already the first symbol in the string aaa
could be matched by either the first or the second a in the
expression. Without lookahead, it is impossible to know
which one to choose. The equivalent expression b∗a(b∗a)∗,
on the other hand, is deterministic. Formally, let r̄ stand for
the regular expression obtained from r by replacing the i-th
occurrence of alphabet symbol a in r by ai, for every i and
a. For example, for r = b∗a(b∗a)∗ we have r̄ = b∗1a1(b

∗
2a2)

∗.

Definition 1. A regular expression r is deterministic if
there are no strings waiv and wajv

′ in L(r̄) such that i 6= j.

Equivalently, an expression is deterministic if the Glushkov
construction translates it into a deterministic finite automa-
ton rather than a non-deterministic one [10]. Furthermore,
not every nondeterministic regular expression is equivalent
to a deterministic one [10]. Thus, semantically, the class of
deterministic regular expressions forms a strict subclass of
the class of all regular expressions. We call a regular lan-

guage deterministic if there exists a deterministic regular
expression defining it.

Finite automata will be written as tuples A = (Q, Σ, δ, q0,
F), where Q is its set of states, Σ is the alphabet, δ ⊆
Q × Σ × Q is the transition relation (where (q1, a, q2) ∈ δ
means that A can enter state q2 when reading an a in state
q1), q0 is the initial state, and F is the set of final states. For
a transition (q1, a, q2) we refer to q1 as the source state and
q2 as the target state. A finite automaton is complete if, for
every (q, a) ∈ Q×Σ, there exists a q′ such that (q, a, q′) ∈ δ.
It is deterministic if, for every (q, a) ∈ Q × Σ, there exists
at most one q′ such that (q, a, q′) ∈ δ. We denote the class
of (non-deterministic) finite automata by NFA and the class
of deterministic finite automata by DFA.

We say that a set of states Q′ ⊆ Q is strongly connected
if, for each pair of states q1, q2 ∈ Q′, q1 is reachable from
q2. A strongly connected set is maximal if there exists no
superset that is strongly connected. In the remainder of the
paper, whenever we refer to strongly connected components
of an NFA, we always mean maximal strongly connected state
sets.

3. DECIDING DETERMINISM
The first step in creating a responsive UPA checker is test-

ing whether L(r) is deterministic. Brüggemann-Klein and
Wood obtained an exptime algorithm (in the size of the
regular expression) which we will refer to as bkwdec:

Theorem 2 ([10]). Given a regular expression r, the
algorithm bkwdec decides in time quadratic in the size of
the minimal DFA corresponding to r whether L(r) is deter-
ministic.

We show that, unless pspace = ptime, there is no hope for
a tractable algorithm. The proof of the following theorem is
given in the appendix of this paper.

Theorem 3. Given a regular expression r, the problem
of deciding whether L(r) is deterministic is pspace-hard.

It is unclear whether the problem itself is in pspace. Sim-
ply guessing a deterministic regular expression s and testing
equivalence with r does not work as the size of s can be
exponential in the size of r (see also Theorem 6).

Next, we address the problem from the viewpoint of pa-
rameterized complexity [14], where an additional parameter
k is extracted from the input r. Then, we say that a prob-
lem is fixed parameter tractable if there exists a computable
function f and a polynomial g such that the problem can
be solved in time f(k) · g(|r|). Intuitively, this implies that,
if k is small and f is reasonable, the problem is efficiently
solvable. We now say that an expression r is a k-occurrence
regular expression (k-ORE) if every alphabet symbol occurs
at most k times in r. For example, ab(a∗ + c) is a 2-ORE
because a occurs twice.

Proposition 4. Let r be a k-ORE. The problem of de-
ciding whether L(r) is deterministic is fixed parameter tractable

with parameter k. Specifically, its complexity is O(2k2

|r|2).

Proof. Let r be a k-ORE. By applying a Glushkov con-
struction (see, e.g., [10]), followed by a subset construction,
it is easy to see that the resulting DFA has at most 2k · |Σ|
states. By Theorem 2, the result follows.

Algorithm 1 Algorithm grow, with pool size P and ex-
pansion size E.

Input: P , E ∈ N, minimal DFA A = (Q, Σ, δ, q0, F) with
L(A) deterministic,

Output: Det. reg. exp. s with L(s) = L(A), if successful
for i = 0 to E do

2: Generate at most P non-isomorphic DFAs B s.t.
L(B) = L(A) and B has |Q|+ i states

4: for each such B do
if rewrite (B) succeeds then

6: return rewrite (B)

if i > E then fail

This result is not only of theoretical interest. It has already
often been observed that the vast majority of regular ex-
pressions occurring in practice are k-OREs, for k = 1, 2, 3
(see, e.g., [25]). Hence, this result implies that in practice
the problem can be solved in polynomial time.

Corollary 5. For any fixed k, the problem of deciding
whether the language defined by a k-ORE is deterministic is
in ptime.

4. CONSTRUCTING DETERMINISTIC EX-
PRESSIONS

Next, we focus on constructing equivalent deterministic
regular expressions. Unfortunately, the following result by
Brüggemann-Klein and Wood already rules out a truly effi-
cient conversion algorithm:

Theorem 6 ([10]). For any n ∈ N, there exists a reg-
ular expression rn of size O(n) such that any deterministic
regular expression defining L(rn) is of size at least 2n.

4.1 Growing automata
We first present grow as Algorithm 1, which is designed

to produce concise deterministic expressions. The idea un-
derlying this algorithm is that the Glushkov construction
[10] transforms small deterministic regular expressions to
small deterministic automata with as many states as there
are alphabet symbols in the expression. The minimization
algorithm eliminates some of these states, complicating the
inverse Glushkov-rewriting from DFA to deterministic regu-
lar expression. By expanding the minimal automaton, grow
tries to recuperate the eliminated states. The algorithm
rewrite of [7] succeeds when the modified automaton can
be obtained from a deterministic regular expression by the
Glushkov construction and assembles this expression upon
success. As their are many DFAs equivalent to the given au-
tomaton A, we only enumerate non-isomorphic expansions
of A up to a given number of extra states E. Thereto, we im-
plemented an algorithm which given A and E enumerates all
such non-isomorphic DFAs equivalent to A in time linear in
the output size. However, as the algorithm is a bit technical,
the description will be given in the full version of this paper.
Nonetheless, the number of generated non-isomorphic DFAs
can explode quickly. Therefore, the algorithm is also given
a given pool size P which restricts the number of DFAs of
each size which are generated.

Nonwithstanding the harsh brute force flavor of grow, we
show in our experimental study that the algorithm can be
quite effective.

Algorithm 2 The bkw-Algorithm.

Input: Minimal DFA A = (Q, Σ, δ, q0, F)
Output: Det. reg. exp. s with L(s) = L(A)

if A has only one state q and no transitions then
2: if q is final then return ε

else return ∅
4: else if A has precisely one orbit then

S ← A-consistent symbols
6: if S = ∅ then fail

else return bkw(AS) ·
`

S

a∈S
a · bkw(A

w(a)
S)

´∗

8: else
if A has the orbit property then

10: for all a s.t. Orbit(q0) has outgoing a-transition do
qa ← unique target state of these a-transitions

12: Aq0 ← orbit automaton of q0

if Aq0 contains a final state then
14: return bkw(Aq0) ·

`
S

a∈Σ(a · bkw(Aqa))
´

?
else

16: return bkw(Aq0) ·
S

a∈Σ(a · bkw(Aqa))

else fail

4.2 Optimizing the BKW-Algorithm
Next, we discuss Brüggemann-Klein and Woods bkw al-

gorithm and then present a few optimizations to generate
smaller expressions.

First, we need some terminology. Given a DFA A, a sym-
bol a is A-consistent if there is a unique state w(a) in A such
that all final states of A have an a-transition to w(a). We
call w(a) the witness state for a. A set S is A-consistent if
each element in S is A-consistent. The S-cut of A, denoted
by AS , is the automaton obtained from A by removing, for
each a ∈ S, all a-transitions that leave a final state of A.
Given a state q of A, Aq is the automaton obtained from A
by setting its initial state to q and restricting its state set
to the states reachable from q. For a state q, the orbit of
q, denoted Orbit(q), is the strongly connected component of
A that contains q. We call q a gate of Orbit(q) if q is final,
or q is the source of a transition that has a target outside
Orbit(q).

We say that A has the orbit property if, for every pair of
gates q1, q2 in the same orbit the following properties hold:

1. q1 is final if and only if q2 is final; and,

2. for all states q outside the orbit of q1 and q2, there is
a transition (q1, a, q) iff there is a transition (q2, a, q).

Given a state q of A, the orbit automaton of q, denoted
by Aq, is obtained from A by restricting its state set to
Orbit(q), setting its initial state to q and by making the
gates of Orbit(q) its final states.

The bkw-Algorithm is then given as Algorithm 2. For a
regular expression r, the algorithm is called with the min-
imal complete DFA A accepting L(r) and then recursively
constructs an equivalent deterministic expression when one
exists and fails otherwise. Algorithm 2 can fail in two places:
(1) in line 6, when the set of A-consistent symbols is empty
and (2) in line 17, if A does not have the orbit property.
Notice that, if A has the orbit property, the unique state
qa on line 11 can always be found. The correctness proof
is non-trivial and can be found in [10]. bkw runs in time
doubly exponential in the size of the nondeterministic regu-
lar expression. The first exponential arises from converting

1start

2

3

4 5

a

b, c

d

e

f

g

(a) DFA A.

O1start

O2

O3

O5

(a, 2)

(b, 3), (c, 3)

(g, 5)

(g, 5)

(b) summ(A)

Figure 1: A DFA and its summary automaton.

to a DFA, the second one from branching in the lines 7, 14,
and 16. The generated expressions can therefore be quite
large. As Algorithm 2 was not designed with conciseness
of regular expressions in mind, we therefore propose three
optimizations resulting in smaller expressions.

To this end, let first(A) denote the set {a | ∃w ∈ Σ∗, aw ∈
L(A)}, i.e., the set of possible first symbols in a string in
L(A). We adapt the lines 7, 14, and 16 in Algorithm 2 in
the way described below and refer to the modified algorithm
as bkw-opt.

line 7 Now, A consists of one orbit and S is the set of

A-consistent symbols:

• If L(AS) = L(A
w(a)
S) for all a ∈ S, ε ∈ L(AS), and

first(AS) ∩ S = ∅, then return ((S + ε) · bkw(AS))∗.

• Otherwise, partition S into equivalence classes S1, . . . ,
Sn where for a, b ∈ S, a is equivalent to b iff w(a) =
w(b). Furthermore, let, for each i ∈ {1, . . . , n}, ai be
an arbitrary but fixed element from Si. Then, return

bkw(AS) ·
`

S

1≤i≤n
Si · bkw(A

w(ai)
Si

)
´∗

.

line 14 and 16 If A consists of more than one orbit, we can

view A as an acyclic DFA when considering every orbit as an
atomic subautomaton. We therefore define the acyclic DFA
summary automaton summ(A) of A where every state cor-
responds to a unique orbit. As these automata are usually
quite small, we subsequently apply grow to obtain a concise
regular expression over an alphabet consisting of Σ-symbols
and orbit identifiers. We then replace each orbit identifier
by its corresponding, recursively obtained deterministic ex-
pression.

Before defining summary automata formally, we present
an example. Figure 1(a) illustrates a DFA A with three or-
bits: {1}, {2, 3, 4}, and {5}. Orbit {2, 3, 4} has two possible
entry points: states 2 (with an a-transition) and 3 (with the
b- and c-transitions). For each such entry point we have a
state in the summary automaton. Figure 1(b) presents the
summary automaton summ(A).

Formally, let A = (Q, Σ, δ, q0, F). Then we define summ(A)
as a DFA (Qs, Σs, δs, qs

0, F
s), where Σs ⊆ Σ × Q. In par-

ticular, for each transition (q1, a, q2) ∈ δ where Orbit(q1) 6=
Orbit(q2), we have (a, q2) ∈ Σs. The state set Qs is de-
fined as {Oq | there is a transition (p, a, q) ∈ δ for p out-
side Orbit(q)}. Furthermore, we define qs

0 := Oq0 , F s :=
{Op ∈ Qs | Orbit(p)∩F 6= ∅}, and (Oq1 , (a, q2), Oq2) ∈ δs iff
Orbit(q1) 6= Orbit(q2) and there exists a q′1 ∈ Orbit(q1) such
that (q′1, a, q2) ∈ δ. Notice that, if A is a DFA fulfilling the
orbit property, all outgoing transitions of each orbit go to
the same witness state. Therefore, summ(A) is also a DFA.

start

· · ·

· · ·

a1

a
2

a
3

a4

a5

a
6

a
n
−
5

an
−
4

an
−
3

a
n
−
2

a
n
−
1

an

Figure 2: Class of DFAs for which our optimization
improves exponentially over the bkw algorithm.

To find a small regular expression for the multiple orbits
case, we make use of the deterministic expressions rq for the
orbit automata Aq that we computed deeper in the recur-
sion. We run grow on summ(A) to find a small determinis-
tic expression for L(summ(A)). If we find one, we obtain the
deterministic expression for L(A) by replacing each symbol
(a, q) by a · rq.

Notice that this optimization potentially generates expo-
nentially smaller regular expressions than the bkw algo-
rithm. Consider the family of DFAs of Figure 2. The sum-
mary DFAs for these automata are equal to the DFAs them-
selves. While the bkw algorithm would essentially unfold
this DFA and return a regular expression of size at least 2n,
grow would return the expression (a1a3+a2a4) · · · (an−3an−1

+ an−2an), which is linear in n.
It is shown in [19] that there are acyclic DFAs whose small-

est equivalent regular expression of superpolynomial size:
Ω(nlog n) for n the size of the DFA. As acyclic DFAs define
finite languages and finite languages are deterministic, the
result transfers to deterministic regular expressions. There-
fore, when grow does not find a small solution we just apply
one non-optimized step of the bkw algorithm (i.e., return
line 14/16 of Algorithm 2). However, in our experiments we
noticed that this almost never happened (less than 1% of
the total calls to grow did not return an expression).

5. APPROXIMATING DETERMINISTIC
REGULAR EXPRESSIONS

When the regular language under consideration is not de-
terministic, we can make it deterministic at the expense of
generalizing the language. First, we show that there is no
best approximation.

5.1 Optimal Approximations
An expression s is a deterministic super-approximation of

an expression r when L(r) ⊆ L(s) and s is deterministic.
In the sequel we will just say approximation rather than
super-approximation. Then, we say that s is an optimal
deterministic approximation of r, if L(r) ⊆ L(s), and there
does not exist a deterministic regular expression s′ such that
L(r) ⊆ L(s′) (L(s). That is, an approximation is optimal
if there does not exist another one which is strictly better.
Unfortunately, we can show that no such optimal approxi-
mation exists:

Theorem 7. Let r be a regular expression, such that L(r)
is not deterministic. Then, there does not exist an optimal
deterministic approximation of r.

Proof. We show in Lemma 9 (shown in the Appendix)
that for every deterministic language L and string w ∈ L,
the language L \ {w} is also deterministic. Now, suppose,

towards a contradiction, that an optimal deterministic ap-
proximation s exists. Then, since L(r) is not determinis-
tic, L(r) (L(s) and thus there exists some string w with
w ∈ L(s) but w /∈ L(r). But then, for the language Lw =
L(s) \ {w}, we have that L(r) ⊆ Lw and, by Lemma 9, Lw

is also deterministic. This gives us the desired contradic-
tion.

As finite languages are always deterministic, Theorem 7 im-
plies that every approximation defines infinitely more strings
than the original expression. Furthermore, one can prove
analogously (using Lemma 10) that an optimal under-ap-
proximation of a non-deterministic regular expression r also
does not exist. That is, a deterministic regular expression s
such that L(s) ⊆ L(r) for which there is no deterministic s′

with L(s) (L(s′) ⊆ L(r).

5.2 Quality of the approximation
Motivated by the above discussion, we will compare sizes

of regular languages by only comparing strings up to a pre-
defined length.

Thereto, for an expression r and a natural number ℓ, let
Lℓ(r) be the subset of strings in L(r) with length exactly ℓ.
For regular expressions r and s with L(r) ⊆ L(s), define the
proximity between r and s, as

proximity(r, s) :=
1

k

k
X

ℓ=1

|Lℓ(r)|+ 1

|Lℓ(s)|+ 1

for k = max{2|r| + 1, 2|s| + 1}. The proximity is always a
value between 0 and 1. When the proximity is close to 1,
the size of the sets Lℓ(s) \ Lℓ(r) is small, and the quality of
approximation is excellent.

Although the above measure provides us with a tool to
compare proximity of regular languages, we cannot simply
search for a deterministic expression which performs best
under this measure. Indeed, there always is a deterministic
expression s for which proximity(r, s) equals one. For in-
stance, the language which contains every string of length
larger than k and only those strings of smaller length which
are in L(r) is a deterministic language and can therefore be
represented by a deterministic expression s. Clearly, such
an expression will never be an acceptable approximation.
Furthermore, its size grows (in general) exponentially in |r|.

In conclusion, a valid approximation s for an expression
r, is a deterministic expression constituting a good tradeoff
between (1) a large value for proximity(r, s) and (2) a small
size |s|. The heuristics in the following section will try to
construct approximations which fit these requirements.

5.3 Ahonen’s Algorithm
In the previous section, we have seen that the bkw-algorithm

will translate a DFA into a deterministic expression, and
will fail if no such equivalent deterministic expression exists.
Ahonen’s algorithm [1] is a first method that constructs a
deterministic regular expression at the expense of general-
izing the target language. It essentially runs the bkwdec-
algorithm, the decision variant of bkw which does not pro-
duce an output expression (cf. Theorem 2), until it fails, and
subsequently repairs the DFA by adding transitions or mak-
ing states final, in such a manner that bkwdec can continue.
In the end, a DFA is produced defining a deterministic lan-
guage. The corresponding deterministic regular expression
is then obtained by running bkw. Ahonen’s algorithm for

Algorithm 3 An adaptation of Ahonen’s repair algorithm:
the ahonen algorithm.

Input: DFA A = (Q, Σ, δ, q0, F)
Output: DFA B such that L(A) ⊆ L(B)

S ← A-consistent symbols
2: if A has only one state q then

if q is final then return ε
4: else return ∅

else if A has precisely one orbit then
6: if S = ∅ then

Choose an a s.t. (q, a, q1) ∈ δ for q final
8: for all p ∈ F do

add (p, a, q1) to δ
10: if (p, a, q2) ∈ δ for q2 6= q1 then

Merge(q1,q2)

12: S ← {a}

ForceOrbitProperty (AS)
14: for each orbit O of AS do

Choose an arbitrary q ∈ O
16: ahonen ((AS)q)

obtaining a DFA defining a deterministic language is pre-
sented in Algorithm 3.3 By ahonen-bkw we then denote
the application of bkw on the result of ahonen.

ahonen proceeds by merging states. We explain in more
detail how we can merge two states in a DFA A = (Q, Σ, δ, q0,
F). For an example, see Figure 3(c) and 3(d), where states 2
and 4 are merged into a new state {2, 4}. For ease of exposi-
tion, we assume that states in Q are sets. Initially, all sets in
Q are singletons (e.g., {2}, {4}) and by merging such states
we obtain non-singletons (e.g., {2, 4}). Let q1 and q2 be the
two states to be merged into a new state qM := q1 ∪ q2. We
denote by Qnew the state set of A after this merge opera-
tion (analogously for δnew,q0new , and Fnew). We assume that
q1, q2 ∈ Q and qM /∈ Q. Then, Qnew := (Q ∪ qM) \ {q1, q2}.
Furthermore, qM ∈ Fnew iff q1 ∈ F or q2 ∈ F . Analogously,
q0new is the unique set p ∈ Qnew such that q0 ∈ p. The tran-
sitions will be adapted as follows: for all states q1, q2 ∈ Qnew

we have (q1, a, q2) ∈ δnew iff there exist q′1, q
′
2 ∈ Q such that

(q′1, a, q′2) ∈ δ. As long as the obtained automaton is not de-
terministic, we choose non-deterministic transitions (p, a, q1)
and (p, a, q2) and continue merging states until it is deter-
ministic again. We denote this recursive merging procedure
in Algorithms 3 and 4 by Merge.

ahonen repairs the automaton A in two possible instances
where bkwdec gets stuck. If A has one orbit but no A-
consistent symbols, ahonen simply chooses a symbol a and
adds transitions to force A-consistency. If A has more than
one orbit, but does not fulfill the orbit property, then ahonen
calls ForceOrbitProperty to add final states and transi-
tions until A fulfills it.

Example 8. We illustrate the algorithm on the regular
expression (aba + a)+b. The minimal DFA A is depicted
in Figure 3(a). As there are no A-consistent symbols, we
have that S = ∅. As there are three orbits ((1), (2, 3, 4), and
(5)), the algorithm immediately calls ForceOrbitProperty on
A, where 4 is made final and transition (3, b, 5) is added

3The algorithm we present slightly differs from Ahonen’s
original algorithm as the original algorithm is slightly incor-
rect. We briefly discuss this in the Appendix.

Algorithm 4 The ForceOrbitProperty procedure.

Input: DFA A
Output: DFA B such that L(A) ⊆ L(B)

for each orbit O of A do
18: Let g1, . . . , gk be the gates of K

if there exists a gate gi ∈ F then
20: F ← F ∪ {g1, . . . , gk}

for each ordered pair of gates (gi, gj) do
22: while there is an a s.t. (gi, a, q) ∈ δ

for q outside Orbit(gi) and (gj , a, q) /∈ δ do
24: Add (gj , a, q) to δ

while (gj , a, q′) ∈ δ for q′ 6= q do
26: Merge(q,q′)

(Figure 3(b)). In the next recursive level, we call ahonen
for every orbit of A. We only consider the non-trivial orbit
{2, 3, 4} here, with its orbit automaton A2 in Figure 3(c).
As there are no A2-consistent symbols and A2 has only one
orbit, we recursively merge states 2 and 4. (Line 7 gives us
a choice of which transition to take, but any choice would
lead us to the merging of 2 and 4.) After the merge, a is
A2-consistent. We therefore call ForceOrbitproperty on the
{a}-cut of A2 as in Figure 3(e). Here, we discover that there
are only two trivial orbits left, and the algorithm ends.

It remains to return from the recursion and construct the
resulting DFA of the algorithm. Plugging the DFA from
Figure 3(d) into the DFA from Figure 3(b) results in Fig-
ure 3(f). Notice that this automaton is non-deterministic.
Therefore, we have to merge states 3 and 5 in order to re-
store determinism. The final DFA obtained by the algorithm
is in Figure 3(g). Notice that this is a non-minimal DFA
defining the language a(a + b)∗.

Several additional remarks should be made about the orig-
inal paper [1]: (i) it does not prove that the input DFA for
Algorithm 3 is transformed into an automaton that can al-
ways be converted into a deterministic regular expression;
(ii) it does not formally explain how states of the automa-
ton should be merged; we have chosen the most reasonable
definition; and (iii) it does not explain how the output DFA
should be reconstructed when going back up in the recur-
sion. Therefore, we had to make some assumptions. For
example, we assume that, when re-combining orbits into a
large automaton, we have a transition (q1, a, q2) if and only
if there were subsets q′1 ⊆ q1 and q′2 ⊆ q2 such that the
original automaton had a transition (q′1, a, q′2). (See, for ex-
ample, the transition ({2, 4}, b, {5}) in Figure 3(f), which is
there because the original automaton in Figure 3(b) had a
transition ({4}, b, {5}).)

With respect to remark (i), we noticed in our experiments
that Ahonen’s algorithm sometimes indeed outputs a DFA
that cannot be converted into an equivalent deterministic
expression. If this happens, we reiterate Ahonen’s algorithm
to the thus far constructed DFA until the resulting DFA
defines a deterministic language.

5.4 Ahonen’s Algorithm followed by Grow
Ahonen’s algorithm ahonen-bkw relies on bkw to con-

struct the corresponding deterministic expression. However,
as we know, bkw generates very large expressions. We there-
fore consider the algorithm ahonen-grow which runs grow
on the DFA resulting from ahonen.

1start 2 3 4 5
a

a

b a

a

b

(a) Minimal DFA A for (aba + a)+b.

1start 2 3 4 5
a

a

b a

ba

b

(b) Extra final state and transition.

2start 3 4

a

b a

a

(c) Orbit automaton A2.

2,4start 3

a

b

a

(d) Merge 2,4.

2,4start 3
b

(e) {a}-cut.

1start 2,4 3

5

a

a

b

a

b b

(f) Reconstruct.

1start 2,4 3,5
a

a

b

a

b

(g) Merge 3,5.

Figure 3: Example run of the adapted Ahonen’s al-
gorithm.

5.5 Shrink
As a final approach, we present shrink. The latter al-

gorithm operates on state-labeled finite automata instead
of standard DFAs as we explain next. A state-labeled fi-
nite automaton A = (Q, Σ, δ, q0, F) is simply a finite au-
tomaton, which has the additional property that for each
state q all transitions to q carry the same label. That is,
there may not exist states q1, q2, and symbols a, b, with
(q1, a, q), (q2, b, q) ∈ δ, but a 6= b. If A is state-labeled we
can associate a function lab : Q → Σ with A, such that
lab(q) = a iff a is the label of q, i.e., if there exists a q′

such that (q′, a, q) ∈ δ. For instance, the automaton in Fig-
ure 3(a) is state-labeled and has lab(2) = a, lab(3) = b,
lab(4) = a, and lab(5) = b; lab(1) is undefined as 1 does not
have incoming transitions.

We note that from any finite automaton, we can easily
construct an equivalent state-labeled automaton by dupli-
cating states which have more than one symbol on their
incoming transitions. In particular, from a minimal DFA,
one can thus construct a minimal state-labeled DFA.

The philosophy behind shrink rather opposes the one be-
hind grow: it tries to reduce the number of states of the
input automaton by merging pairs of states with the same
label, until every state has a different label.The result of
shrink is an array containing deterministic expressions for
which the language proximity to the target language is max-
imal among the deterministic expressions of the same size.

shrink is presented in Algorithm 5. The call to Merge(B,
q1, q2) is similar to the one we explained in Section 5.3 and

Algorithm 5 The shrink algorithm with pool size P .

Input: Minimal state-labeled DFA A, P ∈ N

Output: Array of det. reg. exp. s with L(A) ⊆ L(s)
Pool ← {A}

2: BestArray ← empty array of |A| − |Σ| elements
while Pool is not empty do

4: j ← 1
for each B ∈ Pool do

6: for each pair of states q1, q2 of B
with lab(q1) = lab(q2) do

8: Bj ← Merge(B,q1,q2)
j ← j + 1

10: Pool ← Rank(P ,{B1, . . . , Bj−1})
for each Bk ∈ Pool do

12: rk,1 ← koa-to-kore(Bk)
rk,2 ← grow(Bk)

14: for each ℓ, |Σ| ≤ ℓ ≤ |A| do
BestArray[ℓ] ← the deterministic regexp r of size ℓ

16: from BestArray[ℓ] and all rk,x with
maximal value proximity(A, r)

18: return BestArray

operates on the DFA B. It makes q1 initial (resp., final) if
q2 was initial (resp., final). If this operation does not result
in a DFA, we continue recursively. Rank(P ,{B1, . . . , Bj})
is a ranking procedure that selects the P “best” automata
from the set {B1, . . . , Bj}. Thereto, we say that an automa-
ton Bi is better than Bj when L(Bi) is deterministic but
L(Bj) is nondeterministic. Otherwise, if L(Bi) and L(Bj)
are either both deterministic or both nondeterministic, Bi

is better than Bj iff proximity(Bi, A) > proximity(Bj , A).
That is, we favour automata which define deterministic lan-
guages (as we are looking for deterministic languages), and
when no distinction is made in this manner, we favour those
automata which form the best approximation of the original
language.

koa-to-kore is an algorithm of [6] which transforms a
state-labeled automaton A into a (possibly nondeterminis-
tic) expression r such that L(A) ⊆ L(r). Further r contains
one symbol for every labeled state in A. As we are only in-
terested in deterministic expressions, we discard the result
of koa-to-kore when it is nondeterministic. However, if
every state of A is labeled with a different symbol, then the
resulting expression also contains every symbol only once,
and hence is deterministic. As shrink will always generate
automata which have this property, shrink is thus guaran-
teed to always output at least one deterministic approxima-
tion.

Notice that shrink always terminates: the automata in
Pool become smaller in each iteration and when they have
|Σ| states left, no more merges can be performed.

6. EXPERIMENTS
In this section we validate our approach by means of an

experimental analysis. All experiments were performed us-
ing a prototype implementation written in Java executed
on a Pentium M 2 GHz with 1GB RAM. As the XML
Schema specification forbids ambiguous content models, it is
not possible to extract real-world expressions violating UPA
from the Web. We therefore test our algorithms on a siz-
able and diverse set of generated regular expressions. To

this end, we apply the synthetic regular expression gener-
ator used in [6] to generate 2100 nondeterministic regular
expressions. From this set, 1200 define deterministic lan-
guages while the others do not. We utilize three parameters
to obtain a versatile sample. The first parameter is the size
of the expressions (number of occurrences of alphabet sym-
bols) and ranges from 5 to 50. The second parameter is
the average number of occurrences of alphabet symbols in
the expression, denoted by κ. That is, when the size of r
is n, then κ(r) = n/|Σ(r)|, where Σ(r) is the set of differ-
ent alphabet symbols occurring in r. For instance, when
r = a(a + b)+acab, then κ(r) = 7/3 = 2.3. In our sample, κ
ranges from 1 to 5. At first glance, the maximum value of 5
for κ might seem small. However, the latter value must not
be confused with the maximum number of occurrences of a
single alphabet symbol, which in our sample ranges from 1
to 10. Finally, the third parameter measures how much the
language of a generated expression overlaps with Σ∗, which
is measured by proximity(r, Σ∗). The expressions are gener-
ated in such a way that the parameter covers the complete
spectrum uniformly from 0 to 1.

6.1 Deciding determinism
As a sanity check, we first ran the algorithm bkwdec on the

real world deterministic expressions obtained in the study [5]
(which are all deterministic). On average they were decided
to define a deterministic regular language within 35 millisec-
onds. This outcome is not very surprising as κ for each of
these expressions is close to 1 (cfr. Proposition 4). We then
ran the algorithm bkwdec on each of the 2100 expressions
and were surprised that on average no more than 50 millisec-
onds were needed, even for the largest expressions of size
50. Upon examining these expressions more closely, we dis-
covered that all of them have small corresponding minimal
DFAs: on average 25 states or less. Apparently random reg-
ular expressions suffer much less from the theoretical worst
case exponential size increase when translated into DFAs.

6.1.1 Discussion
Although the problem of deciding determinism is theoret-

ically intractable (Theorem 3), in practice, there does not
seem to be a problem so we can safely use bkwdec as a basic
building block of Algorithm 6.

6.2 Constructing deterministic regular expres-
sions

In this section, we compare the deterministic regular ex-
pressions generated by the three algorithms: bkw, bkw-opt,
and grow. We point out that the comparison with bkw is
not a fair one, as the latter was not defined with efficiency
in mind.

Table 1 depicts the average sizes of the expressions gen-
erated by the three methods (again size refers to number
of symbol occurrences), with the average running times in
brackets. Input size refers to the size of the input regular
expressions. Here, the pool-size and depth of grow are 100
and 5, respectively. We note that for every expression in-
dividually the output of bkw is always larger than that of
bkw-opt and that grow, when it succeeds, always gives the
smallest expression. Due to the exponential nature of the
bkw algorithm, both bkw and bkw-opt can not be used
for input expressions of size larger than 20.4 For smaller

4For expressions of size 20, bkw already returned expres-

input size bkw bkw-opt grow
5 9 (< 0.1) 7 (< 0.1) 3 (< 0.1)
10 216 (< 0.1) 95 (0.1) 6 (0.2)
15 1577 (0.2) 394 (0.6) 9 (0.6)
20 / / 12 (1.5)
25-30 / / 13 (4.0)
35-50 / / 23 (19.6)

Table 1: Average output sizes and running times (in
brackets, in seconds) of bkw, bkw-opt and grow on
expressions of different input size.

size (d:5,p:20) (5,100) (10,20) (10,100)
5 89 (< 0.1) 89 (< 0.1) 89 (< 0.1) 89 (< 0.1)
10 66 (< 0.1) 68 (0.2) 68 (0.1) 70 (0.5)
15 43 (0.1) 46 (0.6) 44 (0.3) 47 (1.6)
20 31 (0.3) 33 (1.5) 31 (0.8) 33 (3.8)
25-30 21 (0.8) 21 (4.0) 21 (1.8) 21 (9.1)
35-50 7 (3.9) 8 (19.6) 7 (8.3) 8 (43.7)

Table 2: Success rates (%) and average running
times (in brackets, in seconds) of grow for different
values of the depth (d) and pool-size (p) parameters.

input expressions, bkw-opt is better than bkw, but still
returns expressions which are in general too large to be eas-
ily interpreted. In strong contrast, when it succeeds, grow
produces very concise expressions, roughly the size of the
input expression.

It remains to discuss the effectiveness of grow. In Table 2,
we give the success rates and the average running times for
various sizes of input expressions and for several values for
pool-size and depth. It is readily seen that the success rate
of grow is inversely proportional to the input size, starting
at 90% for input size 5, but deteriorating to 20% for input
size 25. Further, Table 2 also shows that increasing the pool-
size or depth only has a minor impact on the success rate of
grow, but a bigger influence on its running time.

6.2.1 Discussion
grow is the preferred method to run in a first try. When

it gives a result it is always a concise one. Its success rate
is inversely proportional to the size of the input expressions
and quite reasonable for expressions up to size 20. Should
grow fail, it is not a real option to try bkw-opt as on ex-
pressions of that size it never produces a reasonable result.
In that case, the best option is to look for a concise approx-
imation (as implemented in Algorithm 6).

6.3 Approximating deterministic regular ex-
pressions

We now compare the algorithms ahonen-bkw, shrink,
and ahonen-grow. Note that ahonen-bkw and ahonen-
grow return a single approximation, whereas shrink re-
turns a set of expressions (with a tradeoff between size and
proximity). To simplify the discussion, we take from the
output of shrink the expression with the best proximity,
disregarding the size of the expressions. This is justified as
all expressions returned by shrink are concise by definition.
In a practical scenario, however, the choice in tradeoff be-
tween proximity and conciseness can be left to the user.

sions of size 560.000.

input size ahonen-bkw ahonen-grow shrink
5 0.73 (100%) 0.71 (75%) 0.75 (100%)
10 0.81 (100%) 0.79 (56%) 0.78 (100%)
15 0.84 (100%) 0.88 (40%) 0.79 (100%)
20 / 0.89 (18%) 0.76 (100%)
25-30 / 0.89 (8%) 0.71 (100%)
35-50 / 0.75 (4%) 0.68 (100%)

Table 3: Quality of approximations of ahonen-bkw,
ahonen-grow, and shrink (closer to one is better).
Success rates in brackets.

input size ahonen-bkw ahonen-grow shrink
5 8 (100%) 3 (75%) 3 (100%)
10 28 (100%) 6 (56%) 6 (100%)
15 73 (100%) 8 (40%) 8 (100%)
20 / 11 (18%) 10 (100%)
25-30 / 11 (8%) 13 (100%)
35-50 / 14 (4%) 18 (100%)

Table 4: Average output sizes of ahonen-bkw,
ahonen-grow, and shrink. Success rates in brack-
ets.

Table 3 then shows the average proximity(r, s) where r is
the input expression and s is the expression produced by the
algorithm. As the ahonen-grow algorithm is not guaran-
teed to produce an expression, the success rates are given
in brackets. In contrast, ahonen-bkw and shrink always
return a deterministic expression. Further, as ahonen-bkw
uses bkw as a subroutine its use is restricted to input ex-
pressions of size 15.

We make several observations concerning Table 3. First,
we see that the succes rate of ahonen-grow is inversely
proportional to the size of the input expression. This is to
be expected, as grow is not very successful on large input
expressions or automata. But, as ahonen-bkw is also not
suited for larger input expressions, only shrink produces
results in this segment.

Concerning the quality of the approximations, we only
compare ahonen-bkw with shrink because ahonen-grow,
when it succeeds, returns an expression equivalent to ahonen-
bkw which consequently possesses the same proximity. In
Table 3, we observe that ahonen-bkw returns on average
slightly better approximations than shrink. Also in abso-
lute values, ahonen-bkw returns in roughly 2/3th of the
cases the best approximation w.r.t. proximity, and shrink
in the other 1/3th. We further observe that the quality of
the approximations of shrink only slightly decreases but
overall remains fairly good, with 0.68 for expressions of size
50.

Table 4 shows the average output sizes of the different al-
gorithms. Here, we see the advantage of ahonen-grow over
ahonen-bkw. When ahonen-grow returns an expression
it is much more concise than (though equivalent to) the out-
put of ahonen-bkw. Furthermore, it has a small chance on
success for those sizes of expressions on which ahonen-bkw
is not feasible anymore. Also shrink can be seen to always
return very concise expressions.

Finally, we consider running times. On the input sizes
for which ahonen-bkw is applicable, it runs in less than
a second. ahonen-grow was executed with pool-size 100
and depth 5 for the grow subroutine, and took less than a

Algorithm 6 Supportive UPA Checker supac.

Input: regular expression r
Output: deterministic reg. exp. s with L(r) ⊆ L(s)

if r is deterministic then return r;
2: else if L(r) is deterministic then

if grow(r) succeeds then return grow(r)
4: else return best from bkw-opt(r) and shrink(r)

else return best from ahonen-grow(r) and shrink(r)

input output

c∗cac + b c+ac + b
(a?bc + d)+d ((a?(bc)+)∗d+)+

((cba + c)∗b)? ((c+ba?)∗b?)?
(c+cb + a + c)∗ (a+ + c+b?)∗

Table 5: Sample output of supac.

second for the small input sizes (5 to 15) and up to a half
a minute for the largest (50). Finally, shrink was executed
with pool-size 10, for input expressions of size 5 to 20, and
pool-size 5 for bigger expressions, and took up to a few sec-
onds for small input expressions, and a minute on average
for the largest ones.

6.3.1 Discussion
As running times do not pose any restriction on the appli-

cability of the proposed methods, the best option is to always
try ahonen-grow and shrink, and ahonen-bkw only for
very small input expressions (up to size 5) and subsequently
pick the best expression.

7. SUPAC: SUPPORTIVE UPA CHECKER
Based on the observations made in Section 6, we define

our supportive UPA checker supac as in Algorithm 6. We
stress that the notion of ‘best’ expression can depend on
both the conciseness and the proximity of the resulting reg-
ular expressions and is essentially left as a choice for the
user. Note that, when grow does not succeed, there is only
a choice between a probably lengthy equivalent expressions
generated by bkw-opt or a concise approximation generated
by shrink. In line 5, we could also make the distinction be-
tween expressions r of small size (≈ 5) and larger size (> 5).
For small expressions, we then could also try ahonen-bkw.

As an illustration, Table 5 lists a few small input ex-
pressions with the corresponding expression constructed by
supac. The first two expressions define deterministic lan-
guages, while the last two do not.

8. CONCLUSION
It is worth mentioning that none of the authors believe

that the UPA constraint is a sensible one. Only a very lim-
ited and in practice negligible efficiency in parsing is gained
at the expense of introducing a difficult notion which on top
breaks the robustness of the larger class of regular expres-
sions. Nevertheless, UPA is enforced by the XML Schema
specification constituting a permanent burden for the de-
signer. Therefore, the present paper proposes the algorithm
supac as a supportive UPA checker for handling nondeter-
ministic regular expressions.

There are two immediate ways to improve supac, but each
of them requires an in depth study of its own. First, one can

try to minimize obtained regular expressions. However, in
strong contrast to their automaton counterparts, very little
work has been done on minimizing of expression let alone
deterministic ones. A possible starting point is a paper by
Salomaa [29] which presents a sound and complete rewrite
system for regular expressions. Some of these rules con-
serve determinism, but not all of them. Minimizing deter-
ministic regular expressions is easily seen to be in np, but
it is not clear whether it is also hard. A second possibil-
ity for improvement is to apply combinatorial optimization
techniques to replace the brute force flavored subroutines in
grow and shrink. An immediate difficulty, however, is how
to choose between the different possibilities for local changes
applied to the automata. It is unclear how to score such lo-
cal changes and assess their ability to generate a concise
deterministic regular expression. In fact, one of the results
of this paper, is that sophisticated methods like bkw (and
its optimized version bkw-opt) and its variant with repair
rules ahonen-bkw do not produce reasonable results.

In this paper we ignored numerical occurrence indicators
as in c[1,2](a[4,5] + b)∗. Denote by RE# the set of regular
expressions with numerical occurrence indicators. Kilpeläi-
nen and Tuhkanen [20] introduce an algorithm which de-
cides whether RE#-expressions are deterministic, but it is
not known how to decide whether a regular language can
be represented by a deterministic RE#. Obtaining such a
result would be a major step forward.

9. REFERENCES
[1] H. Ahonen. Disambiguation of SGML content models.

In Workshop on Principles of Document Processing
(PODP), p. 27–37, 1996.

[2] D. Barbosa, L. Mignet, and P. Veltri. Studying the
XML Web: gathering statistics from an XML sample.
World Wide Web, 8(4):413–438, 2005.

[3] M. Benedikt, W. Fan, F. Geerts. XPath satisfiability
in the presence of DTDs. Journal of the ACM, 55(2),
2007.

[4] P. A. Bernstein. Applying Model Management to
Classical Meta Data Problems. In Conference on
Innovative Data Systems Research (CIDR), 2003.

[5] G.J.Bex, F.Neven, J.Van den Bussche. DTDs versus
XML Schema: a practical study. Workshop on the
Web and Databases (WebDB), p. 79-84, 2004.

[6] G.J. Bex, W. Gelade, F. Neven, and S. Vansummeren.
Learning deterministic regular expressions for the
inference of schemas from XML data. In World Wide
Web Conference (WWW), p. 825–834, 2008.

[7] G.J. Bex, F. Neven, T. Schwentick, and K. Tuyls.
Inference of concise DTDs from XML data. In Very
Large Data Bases (VLDB), p. 115–126, 2006.

[8] G.J. Bex, F. Neven, and S. Vansummeren. Inferring
XML schema definitions from XML data. In Very
Large Data Bases (VLDB), p. 998–1009, 2007.

[9] G.J. Bex, F. Neven, and S. Vansummeren.
SchemaScope: a system for inferring and cleaning
XML schemas. In ACM SIGMOD International
Conference on Management of Data (SIGMOD),
p. 1259–1262, 2008.

[10] A. Brüggemann-Klein and D. Wood. One-unambigu-
ous regular languages. Information and Computation,
142:182–206, 1998.

[11] D. Che, K. Aberer, and M. T. Özsu. Query
optimization in XML structured-document databases.
VLDB Journal, 15(3):263–289, 2006.

[12] C. Chitic and D. Rosu. On validation of XML streams
using finite state machines. In Workshop on the Web
and Databases (WebDB), p. 85–90, 2004.

[13] J. Freire, F. Du, S. Amer-Yahia. ShreX: Managing
XML Documents in Relational Databases. In Very
Large Data Bases (VLDB), p. 1297–1300, 2004.

[14] J. Flum and M. Grohe. Parametrized Complexity
Theory. Springer, 2006.

[15] J. Freire, J.R. Haritsa, M. Ramanath, P. Roy, and
J. Siméon. StatiX:making XML count. ACM SIGMOD
International Conference on Management of Data
(SIGMOD), p. 181–191, 2002.

[16] W. Gelade and F. Neven. Succinctness of the
complement and intersection of regular expressions. In
Symposium on Theoretical Aspects of Computer
Science (STACS), p. 325–336, 2008.

[17] G. Ghelli, D. Colazzo, C. Sartiani. Efficient inclusion
for a class of xml types with interleaving and
counting. In Database Programming Languages
(DBPL), p. 231–245, 2007.

[18] G. Ghelli, D. Colazzo, and C. Sartiani. Linear time
membership in a class of regular expressions with
interleaving and counting. In Conference on
Information and Knowledge Management (CIKM),
p. 389–398, 2008.

[19] H. Gruber and J. Johannsen. Optimal lower bounds
on regular expression size using communication
complexity. In Foundations of Software Science and
Computation Structures, p. 273–286, 2008.

[20] P. Kilpeläinen and R. Tuhkanen. One-unambiguity of
regular expressions with numeric occurrence
indicators. Information and Computation,
205(6):890–916, 2007.

[21] C. Koch and S. Scherzinger. Attribute grammars for
scalable query processing on XML streams. VLDB
Journal, 16(3):317–342, 2007.

[22] C. Koch, S. Scherzinger, N. Schweikardt, and
B. Stegmaier. Schema-based scheduling of event
processors and buffer minimization for queries on
structured data streams. In Very Large Data Bases
(VLDB), p. 228–239, 2004.

[23] Ioana Manolescu, Daniela Florescu, and Donald
Kossmann. Answering XML Queries on Heterogeneous
Data Sources. In Very Large Data Bases (VLDB),
p. 241–250, 2001.

[24] W. Martens, F. Neven, and T. Schwentick.
Complexity of decision problems for simple regular
expressions. In Mathematical Foundations of
Computer Science (MFCS), p. 889–900, 2004.

[25] W. Martens, F. Neven, T. Schwentick, and G.J. Bex.
Expressiveness and complexity of XML Schema. ACM
Transactions on Database Systems, 31(3):770–813,
2006.

[26] L. Mignet, D. Barbosa, and P. Veltri. The XML web:
a first study. In World Wide Web Conference
(WWW), p. 500–510, Budapest, Hungary, 2003.

[27] F. Neven and T. Schwentick. On the complexity of
XPath containment in the presence of disjunction,

DTDs, and variables. Logical Methods in Computer
Science, 2(3), 2006.

[28] Erhard Rahm and Philip A. Bernstein. A survey of
approaches to automatic schema matching. VLDB
Journal, 10(4):334–350, 2001.

[29] A.Salomaa. Two complete axiom systems for the
algebra of regular events. Journal of the
ACM,13:158–169, 1966.

[30] H.S. Thompson, D. Beech, M. Maloney, and
N. Mendelsohn. XML Schema part 1: Structures.
World Wide Web Consortium (W3C), May 2001.

[31] E. van der Vlist. XML Schema. O’Reilly, 2002.

[32] P. van Emde Boas. The convenience of tilings. In
Complexity, Logic and Recursion Theory, p. 331–363.

APPENDIX

A. MISSING PROOFS
Proof of Theorem 3: Given a regular expression r, the
problem of deciding whether L(r) is deterministic is pspace-
hard.

Proof. A tiling instance is a tuple T = (X, H, V, b, t, n)
where X is a finite set of tiles, H, V ⊆ X ×X are the hori-
zontal and vertical constraints, and b, t are n-tuples of tiles
(b and t stand for bottom row and top row, respectively).

A correct corridor tiling for T is a mapping λ : {1, . . . , m}×
{1, . . . , n} → X for some m ∈ N such that the following con-
straints are satisfied:

• the bottom row is b: b = (λ(1, 1), . . . , λ(1, n));

• the top row is t: t = (λ(m, 1), . . . , λ(m, n));

• all vertical constraints are satisfied: ∀1 ≤ i < m, ∀1 ≤
j ≤ n, (λ(i, j), λ(i + 1, j)) ∈ V ; and,

• all horizontal constraints are satisfied: ∀1 ≤ i ≤ m,
∀1 ≤ j < n, (λ(i, j), λ(i, j + 1)) ∈ H.

The corridor tiling problem asks, given a tiling instance,
whether there exists a correct corridor tiling. The latter
problem is pspace-complete [32].

We reduce from corridor tiling. However, we restrict
ourselves to those tiling instances for which there exists at
most one correct corridor tiling. Notice that we can as-
sume this without loss of generality: From the master reduc-
tion from Turing Machine acceptance to corridor tiling
in [32], it follows that the number of correct tilings of the
constructed tiling system is precisely the number of accept-
ing runs of the Turing Machine on its input word. As the
acceptance problem for polynomial space bounded Turing
Machines is already pspace-complete for deterministic ma-
chines, we can assume w.l.o.g. that the input instance of
corridor tiling has at most one correct corridor tiling.

Now, let T be a tiling instance for which there exists at
most one correct tiling. We construct a regular expression
r, such that L(r) is deterministic iff there does not exist a
corridor tiling for T . Before giving the actual definition of
r, we give the language it will define and show this is indeed
deterministic iff corridor tiling for T is false. We encode
corridor tilings by a string in which the different rows are
separated by the symbol $, that is, by strings of the form

$R1$R2$ · · · Rm

in which each Ri represents a row and is therefore in Xn.
Moreover, R1 is the bottom row and Rn is the top row.

start
w1

Σ$

#

Σ#

Σa,#

a

#

Σ#

#

Σa,#

a

#
Σ

Figure 4: DFA for L(r) in the proof of Theorem 3.

Then, let Σ = X ⊎ {a, $, #} and for a symbol b ∈ Σ,
denote by Σb = Σ \ {b}. Then, L(r) = Σ∗ \ {w1#w2 |
w1 encodes a valid tiling for T and w2 ∈ Σ∗

#Σa,#Σ#}. First,
if there does not exist a valid tiling for T , then L(r) = Σ∗

and thus L(r) is deterministic. Conversely, if there does exist
a valid corridor tiling for T , then by our assumption, there
exists exactly one. A DFA for L(r) is graphically illustrated
in Figure 4. Notice that this DFA is the minimal DFA iff
w1 exists. By applying the algorithm of Brüggemann-Klein
and Wood (Algorithm 2), it is easily seen that L(r) is not
deterministic. Indeed, Algorithm 2 gets immediately stuck
in line 17, where it sees that the gates in the orbit consist-
ing of the three rightmost states in Figure 4 are not all final
states. Hence, this minimal DFA does not satisfy the orbit
property.

Our regular expression r now consists of the disjunction
of the following regular expressions:5

• Σ∗#Σ∗#Σ∗ +Σ∗
#: This expression detects strings that

don’t have exactly one occurrence of #.
• Σ∗#Σ?: This expression detects strings that have # as

last or second to last symbol.
• Σ∗

#Σ∗aΣ: This expression detects strings that have a
as second to last symbol.
• Σ∗aΣ∗#Σ∗: This expression detects strings that have

an a before the #-sign.
• Σ$Σ

∗ +Σ∗Σ$#Σ∗: This expression detects strings that
don’t have a $-sign as the first or last element of their
encoding.

• Σ∗$Σ
[0,n−1]

$ $Σ∗#Σ∗ + Σ∗$Σ
[n+1,n+1]

$ Σ∗
$$Σ∗#Σ∗: This

expression detects all string in which a row in the tiling
encoding is too short or too long.
• Σ∗x1x2Σ

∗#Σ∗, for every x1, x2 ∈ X, (x1, x2) /∈ H:
These expressions detect all violations of horizontal con-
straints in the tiling encoding.
• Σ∗x1Σ

nx2Σ
∗#Σ∗, for every x1, x2 ∈ X, (x1, x2) /∈ V :

These expressions detect all violations of vertical con-
straints in the tiling encoding.
• Σi+1Σbi

Σ∗#Σ∗ for every 1 ≤ i < n: These expressions

detect all tilings which do not have b as the bottom row
in the tiling encoding.
• Σ∗Σti

Σn−i#Σ∗ for every 1 ≤ i < n: These expressions

detect all tilings which do not have t as the top row in
the tiling encoding.

Finally, it is easily verified that L(r) is defined correctly.

Lemma 9. For every deterministic language L and string
w ∈ L, the language L \ {w} is also deterministic.

5Notice that r itself doesn’t have to be deterministic.

Proof. By |u| we denote the length of string u. We de-

fine the prefix-language L≤|w| = {u ∈ L | |u| < |w|} ∪
{u ∈ Σ∗ | |u| = |w|, ∃v.uv ∈ L}. As L≤k is a finite
language, one can easily construct a deterministic regular
expression for it consisting of nested disjunctions. For in-
stance, the set L≤|w| = {aab, ab, baa, bba} can be defined by
aa(b + ε) + b(aa + ba). Denote the resulting expression by
r. Further, we note that deterministic regular languages are
closed under derivatives [10]. Specifically, for a string u, the
u-derivative of a regular expression s is a regular expression
s′ that defines the set {v | uv ∈ L(s)}. For every string

u ∈ L≤|w| with |u| = |w| and u 6= w, let ru be a determin-
istic expression defining the u-derivative of L. Notice that
the u-derivative can be ε. Now for u = w, let rw define
the w-derivative of L minus ε. It is shown in [10] (Theo-
rem D.4) that, for every deterministic regular language L′,
L′−{ε} is also deterministic. Hence, rw can also be written
as a deterministic regular expression. Now, the expression
defining L \ {w} is obtained by adding, for each u ∈ L≤|w|

with |u| = |w|, ru after the last symbol of u in r.

Lemma 10. For every deterministic language L and string
w /∈ L, the language L ∪ {w} is also deterministic.

Proof. Analogous to the proof of Lemma 9

Algorithm 7 The original ForceOrbitProperty.

ForceOrbitProperty(A = (Q, Σ, δ, q0, F))
2: for each orbit C of A do

Let g1, . . . , gk be the gates of K
4: if there exists a gate gi ∈ F then

F ← F ∪ {g1, . . . , gk}

6: for each ordered pair of gates (gi, gj) do
if there is an a s.t. (gi, a, q) ∈ δ

8: for q outside Orbit(gi) and (gj , a, q) /∈ δ then
if (qj , a, q′) ∈ δ for q′ 6= q then

10: Add (gj , a, q) to δ
Merge q and q′

B. AHONEN’S ORIGINAL ALGORITHM
Ahonen’s original algorithm [1] is essentially the same

as the one we already presented, with a slightly different
ForceOrbitProperty (see Algorithm 7). We did not suc-
ceed in recovering the actual implementation of Ahonen. As
the algorithm presented by Ahonen is incorrect, we had to
mend it in order to make a fair comparison. In particular,
we observed the following: (a) The if-test on l.9 should not
be there. Otherwise, the output will certainly not always be
an automaton that fulfills the orbit property. (b) The if-test
on l.8 should, in our opinion, be some kind of for-loop. Cur-
rently, the algorithm does not necessarily choose the same a
for each pair of gates (gi, gj). We do believe, however, that
these differences are merely typos and that Ahonen actually
intended to present this new version.

