
OPTIMIZING SCHEMA LANGUAGES FOR XML:
NUMERICAL CONSTRAINTS AND INTERLEAVING†

WOUTER GELADE‡¶, WIM MARTENS§ , AND FRANK NEVEN‡

Abstract. The presence of a schema offers many advantages in processing, translating, querying,
and storage of XML data. Basic decision problems like equivalence, inclusion, and non-emptiness
of intersection of schemas form the basic building blocks for schema optimization and integration,
and algorithms for static analysis of transformations. It is thereby paramount to establish the
exact complexity of these problems. Most common schema languages for XML can be adequately
modeled by some kind of grammar with regular expressions at right-hand sides. In this paper,
we observe that apart from the usual regular operators of union, concatenation and Kleene-star,
schema languages also allow numerical occurrence constraints and interleaving operators. Although
the expressiveness of these operators remain within the regular languages, their presence or absence
has significant impact on the complexity of the basic decision problems. We present a complete
overview of the complexity of the basic decision problems for DTDs, XSDs and Relax NG with
regular expressions incorporating numerical occurrence constraints and interleaving. We also discuss
chain regular expressions and the complexity of the schema simplification problem incorporating the
new operators.

Key words. XML schema languages, complexity, optimization, regular expressions

AMS subject classifications. 68P15, 68Q45, 68Q17

1. Introduction. XML is the lingua franca for data exchange on the Inter-
net [1]. Within applications or communities, XML data is usually not arbitrary but
adheres to some structure imposed by a schema. The presence of such a schema not
only provides users with a global view on the anatomy of the data, but far more im-
portantly, it enables automation and optimization of standard tasks like (i) searching,
integration, and processing of XML data (cf., e.g., [12, 23, 26, 44]); and, (ii) static
analysis of transformations (cf., e.g., [2, 17, 27, 34]). Decision problems like equiv-
alence, inclusion and non-emptiness of intersection of schemas, hereafter referred to
as the basic decision problems, constitute essential building blocks in solutions for
the just mentioned optimization and static analysis problems. Additionally, the basic
decision problems are fundamental for schema minimization (cf., e.g., [10, 30]). Be-
cause of their widespread applicability, it is therefore important to establish the exact
complexity of the basic decision problems for the various XML schema languages.

The most common schema languages for XML are DTD, XML Schema [40], and
Relax NG [9] and can be modeled by grammar formalisms [33]. In particular, DTDs
correspond to context-free grammars with regular expressions (REs) at right-hand
sides, while Relax NG is abstracted by extended DTDs (EDTDs) [35] or equivalently,
unranked tree automata [6], defining the regular unranked tree languages. While
XML Schema is usually abstracted by unranked tree automata as well, recent results
indicate that XSDs correspond to a strict subclass of the regular tree languages and
are much closer to DTDs than to tree automata [29]. In fact, they can be abstracted by
single-type EDTDs. As detailed in [28], the relationship between schema formalisms

†A preliminary version of this work was presented at the 11th International Conference on
Database Theory, Barcelona, Spain, 2007.

‡Hasselt University and Transnational University of Limburg, School for Information Technology,
firstname.lastname@uhasselt.be

§Universität Dortmund, Department of Computer Science, wim.martens@udo.edu
¶Research Assistant of the Fund for Scientific Research - Flanders (Belgium).

1



shop → regular∗ & discount-box∗

regular → cd
discount-box → cd[10,12] price
cd → artist & title & price

Fig. 1.1. A sample schema using the numerical occurrence and interleave operators. The
schema defines a shop that sells CDs and offers a special price for boxes of 10–12 CDs.

and grammars provides direct upper and lower bounds for the complexity of the basic
decision problems.

A closer inspection of the various schema specifications reveals that the above
abstractions in terms of grammars with regular expressions is too coarse. Indeed, in
addition to the conventional regular expression operators like concatenation, union,
and Kleene-star, the XML Schema and the Relax NG specification allow two other
operators as well:

(1) Both the XML Schema and the Relax NG specification allow a certain form of
unordered concatenation: the ALL and the interleave operator, respectively.
This operator is actually the resurrection of the &-operator from SGML DTDs
that was excluded from the definition of XML DTDs. Although there are
restrictions on the use of ALL and interleave, we consider the operator in
its unrestricted form. We refer by RE(&) to such regular expressions with
the interleaving operator.

(2) The XML Schema specification allows to express numerical occurrence con-
straints which define the minimal and maximal number of times a regular
construct can be repeated. We refer by RE(#) to such regular expressions
with numerical occurrence constraints.

We illustrate these additional operators in Figure 1.1. Their formal definition is
given in Section 2. Although the new operators can be expressed by the conventional
regular operators, they cannot do so succinctly [14], which has severe implications on
the complexity of the basic decision problems.

The goal of this paper is to study the complexity of the basic decision problems for
DTDs, XSDs, and Relax NG with regular expressions extended with interleaving and
numerical occurrence constraints. The latter class of regular expressions is denoted by
RE(#,&). As observed in Section 5, the complexity of inclusion and equivalence of
RE(#,&) expressions (and subclasses thereof) carries over to DTDs and single-type
EDTDs. We therefore first establish the complexity of the basic decision problems for
RE(#,&) expressions and frequently occurring subclasses. These results are summa-
rized in Table 1.1 and Table 4.1. Of independent interest, we introduce NFA(#,&)s,
an extension of NFAs with counter and split/merge states for dealing with numerical
occurrence constraints and interleaving operators. Finally, we revisit the simplifica-
tion problem introduced in [29] for schemas with RE(#,&) expressions. This problem
is defined as follows: given an extended DTD, can it be rewritten into an equivalent
DTD or a single-type EDTD?

In this paper, we do not consider deterministic or one-unambiguous regular ex-
pressions which form a strict subclass of the regular expressions [7]. The reason is
two-fold. First of all, one-unambiguity is a highly debatable constraint (cf., e.g., pg 98
of [42] and [25, 39]) which is only required for DTDs and XML Schema, not for Relax
NG. Actually, the only direct advantage of one-unambiguity is that it gives rise to
ptime algorithms for some of the basic decision problems for standard regular ex-

2



inclusion equivalence intersection

RE pspace ([41]) pspace ([41]) pspace ([24])
RE(&) expspace ([31]) expspace ([31]) PSPACE

RE(#) expspace ([32]) expspace ([32]) PSPACE

RE(#,&) EXPSPACE EXPSPACE PSPACE

NFA(#), NFA(&),
and NFA(#,&)

EXPSPACE EXPSPACE PSPACE

DTDs with RE pspace ([41]) pspace ([41]) pspace ([24])
DTDs with
RE(#), RE(&),
or RE(#,&)

EXPSPACE EXPSPACE PSPACE

single-type EDTDs
with RE

pspace ([28]) pspace ([28]) exptime ([28])

single-type EDTDs
with RE(#),
RE(&), or RE(#,&)

EXPSPACE EXPSPACE EXPTIME

EDTDs with RE exptime ([37]) exptime ([37]) exptime ([38])
EDTDs with
RE(#), RE(&),
or RE(#,&)

EXPSPACE EXPSPACE EXPTIME

Table 1.1
Overview of new and known complexity results. All results are completeness results. The new

results are printed in bold.

pressions. The latter does not hold anymore for RE(#,&) expressions rendering the
notion even less attractive. Indeed, already intersection for one-unambiguous regular
expressions is pspace-hard [28] and inclusion for one-unambiguous RE(#) expres-
sions is conp-hard [19]. A second reason is that, in contrast to conventional regular
expressions, one-unambiguity is not yet fully understood for regular expressions with
numerical occurrence constraints and interleaving operators. Some initial results are
provided by Bruggemann-Klein [5], and Kilpeläinen and Tuhkanen [22] who give algo-
rithms for deciding one-unambiguity of RE(&) and RE(#) expressions, respectively.
However, the results of Bruggemann-Klein are on the SGML interleaving operator,
which is not the same as the Relax NG interleaving operator considered here. Fur-
thermore, no study investigating the properties of these one-unambiguous languages
has been undertaken. Such a study, although definitely relevant, is outside the scope
of this paper.

Outline. In Section 2, we provide the necessary definitions. In Section 3, we
define NFA(#,&). In Section 4 and Section 5, we establish the complexity of the
basic decision problems for regular expressions and schema languages, respectively.
We discuss simplification in Section 6. We conclude in Section 7.

2. Definitions.

2.1. Regular Expressions with Counting and Interleaving. For the rest
of the paper, Σ always denotes a finite alphabet. A Σ-symbol (or simply symbol) is
an element of Σ, and a Σ-string (or simply string) is a finite sequence w = a1 · · · an

of Σ-symbols. We define the length of w, denoted by |w|, to be n. We denote
the empty string by ε. The set of positions of w is {1, . . . , n} and the symbol of w
at position i is ai. By w1 · w2 we denote the concatenation of two strings w1 and

3



w2. For readability, we usually denote the concatenation of w1 and w2 by w1w2.
The set of all strings is denoted by Σ∗. A string language is a subset of Σ∗. For
two string languages L,L′ ⊆ Σ∗, we define their concatenation L · L′ to be the set
{ww′ | w ∈ L,w′ ∈ L′}. We abbreviate L · L · · ·L (i times) by Li. By w1 & w2 we
denote the set of strings that is obtained by interleaving or shuffling w1 and w2 in
every possible way. That is, for w,w1, w2 ∈ Σ∗ and a, b ∈ Σ, w & ε = ε & w = {w},
and a ·w1 & b ·w2 = ({a} · (w1 & b ·w2))∪ ({b} · (a ·w1 & w2)). Here, · has precedence
over &. The operator & is then extended to languages in the canonical way.

The set of regular expressions over Σ, denoted by RE, is defined in the usual
way: ε, and every Σ-symbol is a regular expression; and when r and s are regular
expressions, then rs, r + s, and r∗ are also regular expressions. By RE(#,&) we
denote RE extended with two new operators: interleaving and numerical occurrence
constraints. That is, when r and s are RE(#,&) expressions then so are r&s and r[k,ℓ]

for k, ℓ ∈ N with k ≤ ℓ and ℓ > 0. By RE(#) and RE(&), we denote RE extended
only with counting and interleaving, respectively. Notice that we disallow ∅ as it does
not occur in practical schema languages.

The language defined by a regular expression r, denoted by L(r), is inductively
defined as follows: L(ε) = {ε}; L(a) = {a}; L(rs) = L(r)·L(s); L(r+s) = L(r)∪L(s);

L(r∗) = {ε} ∪
⋃∞

i=1 L(r)i, L(r[k,ℓ]) =
⋃ℓ

i=k L(r)i; and, L(r & s) = L(r) & L(s). The
size of a regular expression r over Σ, denoted by |r|, is the number of Σ-symbols and
operators occurring in r plus the sizes of the binary representations of the integers.
By r? and r+, we abbreviate the expression r + ε and rr∗, respectively. We assume
familiarity with finite automata such as nondeterministic finite automata (NFAs) and
deterministic finite automata (DFAs) [16].

2.2. Schema Languages for XML. The set of unranked Σ-trees, denoted by
TΣ, is the smallest set of strings over Σ and the parenthesis symbols “(” and “)” such
that, for a ∈ Σ and w ∈ (TΣ)∗, a(w) is in TΣ. So, a tree is either ε (empty) or is of the
form a(t1 · · · tn) where each ti is a tree. In the tree a(t1 · · · tn), the subtrees t1, . . . , tn
are attached to the root labeled a. We write a rather than a(). Notice that there
is no a priori bound on the number of children of a node in a Σ-tree; such trees are
therefore unranked. For every t ∈ TΣ, the set of nodes of t, denoted by Dom(t), is the
set defined as follows: (i) if t = ε, then Dom(t) = ∅; and (ii) if t = a(t1 · · · tn), where
each ti ∈ TΣ, then Dom(t) = {ε} ∪

⋃n
i=1{iu | u ∈ Dom(ti)}. In the sequel, whenever

we say tree, we always mean Σ-tree. A tree language is a set of trees.
We make use of the following definitions to abstract from the commonly used

schema languages:
Definition 2.1. Let R be a class of regular expressions over Σ.
1. A DTD(R) over Σ is a tuple (Σ, d, sd) where d is a function that maps Σ-

symbols to elements of R and sd ∈ Σ is the start symbol. For convenience
of notation, we denote (Σ, d, sd) by d and leave the start symbol sd implicit
whenever this cannot give rise to confusion.
A tree t satisfies d if (i) labt(ε) = sd and, (ii) for every u ∈ Dom(t) with n
children, labt(u1) · · · labt(un) ∈ L(d(labt(u))). By L(d) we denote the set of
trees satisfying d.

2. An extended DTD (EDTD(R)) over Σ is a 5-tuple D = (Σ,Σ′, d, s, µ), where
Σ′ is an alphabet of types, (Σ′, d, s) is a DTD(R) over Σ′, and µ is a mapping
from Σ′ to Σ.
A tree t then satisfies an extended DTD if t = µ(t′) for some t′ ∈ L(d). Here
we abuse notation and let µ also denote its extension to define a homomor-

4



phism on trees. Again, we denote by L(D) the set of trees satisfying D. For
ease of exposition, we always take Σ′ = {ai | 1 ≤ i ≤ ka, a ∈ Σ, i ∈ N} for
some natural numbers ka, and we set µ(ai) = a.

3. A single-type EDTD (EDTDst(R)) over Σ is an EDTD(R) D = (Σ,Σ′, d,
s, µ) with the property that for every a ∈ Σ′, in the regular expression d(a)
no two types bi and bj with i 6= j occur.

We denote by EDTD, EDTD(#), EDTD(&), and EDTD(#,&), the classes EDTD
(RE), EDTD(RE(#)), EDTD(RE(&)), and EDTD(RE(#,&)), respectively. The
same notation is used for EDTDsts and DTDs.

For clarity, we sometimes write a → r rather than d(a) = r in examples and
proofs. Following this notation, a simple example of an EDTD is the following:

shop1 → (cd1 + cd2)∗cd2(cd1 + cd2)∗ title1 → ε

cd1 → title1 price1 price1 → ε

cd2 → title1 price1 discount1 discount1 → ε

Here, cd1 defines ordinary CDs, while cd2 defines CDs on sale. The rule for shop1

specifies that there should be at least one CD on sale. Notice that the above EDTD
is not a single-type EDTD as cd1 and cd2 occur in the same rule.

As explained in [33, 29], EDTDs and single-type EDTDs correspond to Relax NG
and XML Schema, respectively.

2.3. Decision Problems. The following problems are fundamental to this pa-
per.

Definition 2.2. Let M be a class of regular expressions, string automata, or
extended DTDs. We define the following problems:

• inclusion for M: Given two elements e, e′ ∈M, is L(e) ⊆ L(e′)?
• equivalence for M: Given two elements e, e′ ∈M, is L(e) = L(e′)?
• intersection for M: Given an arbitrary number of elements e1, . . . , en ∈
M, is

⋂n

i=1 L(ei) 6= ∅?
• membership for M: Given an element e ∈ M and a string or a tree f , is

f ∈ L(e)?

We recall the known results concerning the complexity of REs and EDTDs.

Theorem 2.3.

(1) inclusion, equivalence, and intersection for REs are pspace-complete [24,
41].

(2) inclusion and equivalence for RE(&) and RE(#) are expspace-complete [31,
32].

(3) inclusion and equivalence for EDTDst are pspace-complete [28]; intersec-
tion for EDTDst is exptime-complete [28].

(4) inclusion, equivalence, and intersection for EDTDs are exptime-complete
[37, 38].

(5) membership for RE(&) is np-complete [31].
(6) membership for RE(#) is in ptime [20].

2.4. Relating decision problems for regular expressions to DTDs and
single-type EDTDs. In [28] it was shown for any subclass of the REs that the
complexity of inclusion and equivalence is the same as the complexity of the
corresponding problem for DTDs and single-type EDTDs. The same holds for inter-
section and DTDs. The proofs of these theorems carry over literally to RE(#,&).

5



We call a complexity class C closed under positive reductions if the following
holds for every O ∈ C. Let L′ be accepted by a deterministic polynomial-time Turing
machine M with oracle O (denoted L′ = L(MO)). Let M further have the property
that L(MA) ⊆ L(MB) whenever L(A) ⊆ L(B). Then L′ is also in C. For a more
precise definition of this notion we refer the reader to [15]. For our purposes, it
is sufficient that important complexity classes like ptime, np, conp, pspace, and
expspace have this property, and that every such class contains ptime.

Proposition 2.4 ([28]). Let R be a subclass of RE(#,&) and let C be a com-
plexity class closed under positive reductions. Then the following are equivalent:
(a) inclusion for R expressions is in C.
(b) inclusion for DTD(R) is in C.
(c) inclusion for EDTDst(R) is in C.
The corresponding statement holds for equivalence.

The previous proposition can be generalized to intersection of DTDs as well.
Proposition 2.5 ([28]). Let R be a subclass of RE(#,&) and let C be a complex-

ity class which is closed under positive reductions. Then the following are equivalent:
(a) intersection for R expressions is in C.
(b) intersection for DTD(R) is in C.

The above proposition does not hold for single-type EDTDs. Indeed, there is a
class of regular expressions R′ for which intersection is np-complete while inter-
section for EDTDst(R′) is exptime-complete [28].

3. Automata for Occurrence Constraints and Interleaving. We intro-
duce the automaton model NFA(#,&). In brief, an NFA(#,&) is an NFA with two
additional features: (i) split and merge transitions to handle interleaving; and, (ii)
counting states and transitions to deal with numerical occurrence constraints. The
idea of split and merge transitions stems from Jȩdrzejowicz and Szepietowski [18].
Their automata are more general as they can express shuffle-closure which is not
regular. Counting states are also used in the counter automata of Kilpeläinen and
Tuhkanen [21], and Reuter [36] although these counter automata operate quite differ-
ently from NFA(#)s. Zilio and Lugiez [11] also proposed an automaton model that
incorporates counting and interleaving by means of Presburger formulas. None of the
cited papers consider the complexity of the basic decision problems of their model.
We will use NFA(#,&)s to obtain complexity upper bounds in Sections 4 and 5.

For readability, we denote Σ∪{ε} by Σε. We then define an NFA(#,&) as follows.
Definition 3.1. An NFA(#,&) is a 5-tuple A = (Q,Σ, s, f, δ) where
• Q is a finite set of states. To every q ∈ Q, we associate a lower bound

min(q) ∈ N and an upper bound max(q) ∈ N.
• s, f ∈ Q are the start and final states, respectively.
• δ is the transition relation and is a subset of the union of the following sets:

(1) Q× Σε ×Q ordinary transition (resets the counter)
(2) Q× {store} ×Q transition that does not reset the counter
(3) Q× {split} ×Q×Q split transition
(4) Q×Q× {merge} ×Q merge transition

Let max(A) = max{max(q) | q ∈ Q} be the largest upper bound occurring in
A. A configuration γ is a pair (P, α) where P ⊆ Q is a set of states and α : Q →
{0, . . . ,max(A)} is the value function mapping states to the value of their counter.
For a state q ∈ Q, we denote by αq the value function mapping q to 1 and every
other state to 0. The initial configuration γs is ({s}, αs). The final configuration γf is

6



({f}, αf ). When α is a value function then α[q = 0] and α[q++] denote the functions
obtained from α by setting the value of q to 0 and incrementing the value of q by 1,
respectively, while leaving all other values unchanged.

We now define the transition relation between configurations. Intuitively, the
value of the state at which the automaton arrives is always incremented by one. When
exiting a state, the state’s counter is always reset to zero, except when we exit through
a counting transition, in which case the counter remains the same. In addition, exiting
a state through a non-counting transition is only allowed when the value of the counter
lies between the allowed minimum and maximum. The latter, hence, ensures that the
occurrence constraints are satisfied. Split and merge transitions start and close a
parallel composition.

A configuration γ′ = (P ′, α′) immediately follows a configuration γ = (P, α) by
reading σ ∈ Σε, denoted γ →A,σ γ′, when one of the following conditions hold:

1. (ordinary transition) there is a q ∈ P and (q, σ, q′) ∈ δ such that min(q) ≤
α(q) ≤ max(q), P ′ = (P − {q}) ∪ {q′}, and α′ = α[q = 0][q′++]. That is, A
is in state q and moves to state q′ by reading σ (note that σ can be ε). The
latter is only allowed when the counter value of q is between the lower and
upper bound. The state q is replaced in P by q′. The counter of q is reset to
zero and the counter of q′ is incremented by one.

2. (counting transition) there is a q ∈ P and (q, store, q′) ∈ δ such that
α(q) < max(q), P ′ = (P − {q}) ∪ {q′}, and α′ = α[q′++]. That is, A is
in state q and moves to state q′ by reading ε when the counter of q has not
reached its maximal value yet. The state q is replaced in P by q′. The counter
of q is not reset but remains the same. The counter of q′ is incremented by
one.

3. (split transition) there is a q ∈ P and (q, split, q1, q2) ∈ δ such that min(q) ≤
α(q) ≤ max(q), P ′ = (P − {q}) ∪ {q1, q2}, and α′ = α[q = 0][q1

++][q2
++].

That is, A is in state q and splits into states q1 and q2 by reading ε when the
counter value of q is between the lower and upper bound. The state q in P is
replaced by (split into) q1 and q2. The counter of q is reset to zero, and the
counters of q1 and q2 are incremented by one.

4. (merge transition) there are q1, q2 ∈ P and (q1, q2,merge, q) ∈ δ such that,
for each j = 1, 2, min(qj) ≤ α(qj) ≤ max(qj), P ′ = (P − {q1, q2}) ∪ {q}, and
α′ = α[q1 = 0][q2 = 0][q++]. That is, A is in states q1 and q2 and moves
to state q by reading ε when the respective counter values of q1 and q2 are
between the lower and upper bounds. The states q1 and q2 in P are replaced
by (merged into) q, the counters of q1 and q2 are reset to zero, and the counter
of q is incremented by one.

For a string w and two configurations γ, γ′, we denote by γ ⇒A,w γ′ when there
is a sequence of configurations γ →A,σ1

· · · →A,σn
γ′ such that w = σ1 · · ·σn. The

latter sequence is called a run when γ is the initial configuration γs. A string w is
accepted by A iff γs ⇒A,w γf with γf the final configuration. We usually denote⇒A,w

simply by⇒w when A is clear from the context. We denote by L(A) the set of strings
accepted by A. The size of A, denoted by |A|, is |Q| + |δ| + Σq∈Q log(max(q)). So,
each max(q) is represented in binary.

An example of an NFA(#,&) defining dvd[10,12] & cd[10,12] is shown in Figure 3.1.

An NFA(#) is an NFA(#,&) without split and merge transitions. An NFA(&) is
an NFA(#,&) without counting transitions. An NFA is an NFA(#) without counting
transitions.

7



10,12

dvd

store

store

cd
10,12

Fig. 3.1. An NFA(#, &) for the language dvd[10,12]&cd[10,12]. For readability, we only displayed
the alphabet symbol on non-epsilon transitions and counters for states q where min(q) and max(q)
are different from one. The arrows from the initial state and to the final state are split and merge
transitions, respectively. The arrows labeled store represent counting transitions.

Clearly NFA(#,&) accept all regular languages. The next theorem shows the
complexity of translating between RE(#,&) and NFA(#,&), and NFA(#,&) and
NFA.

Theorem 3.2.

(1) Given an RE(#,&) expression r, an equivalent NFA(#,&) can be constructed in
time linear in the size of r.

(2) Given an NFA(#,&) A, an equivalent NFA can be constructed in time exponential
in the size of A.

Proof. (1) We prove the theorem by induction on the structure of RE(#,&)-
expressions. For every r we define a corresponding NFA(#,&) A(r) = (Qr,Σ, sr,
fr, δr) such that L(r) = L(A(r)).

For r of the form ε, a, r1 · r2, r1 + r2 and r∗1 these are the usual RE to NFA with
ε-transition constructions as displayed in text books such as [16].

We perform the following steps for the numerical occurrence and interleaving
operator which are graphically illustrated in Figure 3.2. The construction for the
interleaving operator comes from [18].

(i) If r = (r1)
[k,ℓ] and A(r1) = (Q1,Σ, s1, f1, δ1), then

• Qr := Qr1
⊎ {sr, fr, qr};

• min(sr) = max(sr) = min(fr) = max(fr) = 1, min(qr) = k, and max(qr) =
ℓ;

• if k 6= 0 then δr := δr1
⊎ {(sr, ε, sr1

), (fr1
, ε, qr), (qr, store, sr1

), (qr, ε, fr)};
and,

• if k = 0 then δr := δr1
⊎ {(sr, ε, sr1

), (fr1
, ε, qr), (qr, store, sr1

), (qr, ε, fr),
(sr, ε, fr)}.

(ii) If r = r1 & r2, A(r1) = (Qr1
,Σ, sr1

, fr1
, δr1

) and A(r2) = (Qr2
,Σ, sr2

, fr2
, δr2

),
then
• Qr := Qr1

⊎Qr2
⊎ {sr, fr};

• min(sr) = max(sr) = min(fr) = max(fr) = 1;
• δr := δr1

⊎ δr2
⊎ {(sr, split, sr1

, sr2
), (fr1

, fr2
,merge, fr)}.

Notice that in each step of the construction, a constant number of states are
added to the automaton. Moreover, the constructed counters are linear in the size of
r. It follows that the size of A(r) is linear in the size of r. The correctness of the
construction can easily be proved by induction on the structure of r.

We next turn to the complexity of the basic decision problems for NFA(#,&).

Theorem 3.3.

(1) equivalence and inclusion for NFA(#,&) are expspace-complete;

8



store

sr sr1
fr1

fr
qr

ε

ε ε ε
k, ℓ

if k = 0

fr2

sr fr

sr1
fr1

sr2

Fig. 3.2. From RE(#, &) to NFA(#, &).

(2) intersection for NFA(#,&) is pspace-complete; and,
(3) membership for NFA(#) is np-hard, membership for NFA(&) and NFA(#,&)

are pspace-complete.
Proof. (1) expspace-hardness follows from Theorem 3.2(1) and the expspace-

hardness of equivalence for RE(&) [31]. Membership in expspace follows from
Theorem 3.2(2) and the fact that inclusion for NFAs is in pspace [41].

(2) The lower bound follows from [24]. We show that the problem is in pspace. For
j ∈ {1, . . . , n}, let Aj = (Qj ,Σ, sj , fj , δj) be an NFA(#,&). The algorithm proceeds
by guessing a Σ-string w such that w ∈

⋂n
j=1 L(Aj). Instead of guessing w at once,

we guess it symbol by symbol and keep for each Aj one current configuration γj

on the tape. More precisely, at each time instant, the tape contains for each Aj a
configuration γj = (Pj , αj) such that γsj

⇒Aj ,wi
(Pj , αj), where wi = a1 · · · ai is

the prefix of w guessed up to now. The algorithm accepts when each γj is a final
configuration. Formally, the algorithm operates as follows.

1. Set γj = ({sj}, αsj
) for j ∈ {1, . . . , n};

2. While not every γj is a final configuration
(i) Guess an a ∈ Σ.
(ii) Non-deterministically replace each γj by a (P ′

j , α
′
j) such that

(Pj , αj)⇒Aj ,a (P ′
j , α

′
j).

As the algorithm only uses space polynomial in the size of the NFA(#,&) and
step (2,ii) can be done pspace, the overall algorithm operates in pspace.

(3) The membership problem for NFA(#,&)s is easily seen to be in pspace by
an on-the-fly implementation of the construction in Theorem 3.2(2). Indeed, as
a configuration of an NFA(#,&) A = (Q,Σ, s, f, δ) has size at most |Q| + |Q| ·
log(max(A)), we can store a configuration using only polynomial space.

We show that the membership problem for NFA(#)s is np-hard by a reduction
from a modification of integer knapsack. We define this problem as follows. Given
a set of natural numbers W = {w1, . . . , wk} and two integers m and n, all in binary
notation, the problem asks whether there exists a mapping τ : W → N such that
m ≤

∑

w∈W τ(w)× w ≤ n. The latter mapping is called a solution. This problem is
known to be np-complete [13].

We construct an NFA(#) A = (Q,Σ, s, f, δ) such that L(A) = {ε} if W,m,n has
a solution, and L(A) = ∅ otherwise.

9



...

wk, wk

w1, w1

qwk

q fs
ε

qw1

ε
ε

store

store

ε

store

m, n

ε

Fig. 3.3. np-hardness of membership for NFA(#).

The state set Q consists of the start and final states s and f , a state qwi
for each

weight wi, and a state q. Intuitively, a successful computation of A loops at least
m and at most n times through state q. In each iteration, A also visits one of the
states qwi

. Using numerical occurrence constraints, we can ensure that a computation
accepts if and only if it passes at least m and at most n times through q and a multiple
of wi times through each qwi

. Hence, an accepting computation exists if and only if
there is a mapping τ such that m ≤

∑

w∈W τ(w)× w ≤ n.

Formally, the transitions of A are the following:

• (s, ε, qwi
) for each i ∈ {1, . . . , k};

• (qwi
, store, q) for each i ∈ {1, . . . , k};

• (qwi
, ε, q) for each i ∈ {1, . . . , k};

• (q, store, s); and,
• (q, ε, f).

We set min(s) = max(s) = min(f) = max(f) = 1, min(q) = m, max(q) = n and
min(qwi

) = max(qwi
) = wi for each qwi

. The automaton is graphically illustrated in
Figure 3.3.

Finally, we show that membership for NFA(&)s is pspace-hard. Before giving
the proof, we describe some n-ary merge and split transitions which can be rewritten
in function of the regular binary split and merge transitions.

1. (q1, q2,merge-split, q′1, q
′
2): States q1 and q2 are read, and immediately split

into states q′1 and q′2.
2. (q1, q2, q3,merge-split, q′1, q

′
2, q

′
3): States q1, q2 and q3 are read, and immedi-

ately split into states q′1, q
′
2 and q′3.

3. (q1, split, q′1, . . . , q
′
n): State q1 is read, and is immediately split into states

q′1, . . . , q
′
n.

4. (q1, . . . , qn,merge, q′1): States q1, . . . , qn are read, and are merged into state
q′1.

Transitions of type 1 (resp. 2) can be rewritten using 2 (resp. 4) regular transi-
tions, and 1 (resp. 3) new auxiliary states. Transitions of type 3 and 4 can be rewritten
using (n − 1) regular transitions and (n − 1) new auxiliary states. For example, the
transition (q1, q2,merge-split, q′1, q

′
2) is equal to the transitions (q1, q2,merge, qh), and

(qh, split, q′1, q
′
2), where qh is a new auxiliary state.

To show that membership for NFA(&)s is pspace-hard, we reduce from corri-
dor tiling. A tiling instance is a tuple T = (X,H, V, b, t, n) where X is a finite set
of tiles, H,V ⊆ X ×X are the horizontal and vertical constraints, n is an integer in
unary notation, and b, t are n-tuples of tiles (b and t stand for bottom row and top
row, respectively).

A correct corridor tiling for T is a mapping λ : {1, . . . ,m} × {1, . . . , n} → X for

10



some m ∈ N such that the following constraints are satisfied:

• the bottom row is b: b = (λ(1, 1), . . . , λ(1, n));
• the top row is t: t = (λ(m, 1), . . . , λ(m,n));
• all vertical constraints are satisfied: ∀i < m, ∀j ≤ n, (λ(i, j), λ(i+1, j)) ∈ V ;

and,
• all horizontal constraints are satisfied: ∀i ≤ m, ∀j < n, (λ(i, j), λ(i, j + 1)) ∈

H.

The corridor tiling problem asks, given a tiling instance, whether there exists a
correct corridor tiling. The latter problem is pspace-complete [43].

Given a tiling instance T = (X,H, V, b, t, n), we construct an NFA(&) A over the
empty alphabet (Σ = ∅) which accepts ε iff there exists a correct corridor tiling for
T .

The automaton constructs the tiling row by row. Therefore, A must at any time
reflect the current row in its state set. (recall that an NFA(&) can be in more than
one state at once) To do this, A contains for every tile x, a set of states x1, . . . , xn,
where n is the length of each row. If A is in state xi, this means that the ith tile of
the current row is x. For example, if b = x1x3x1, and t = x2x2x1, then the initial
state set is {x1

1, x
2
3, x

3
1}, and A can accept when the state set is {x1

2, x
2
2, x

3
1}.

It remains to define how A can transform the current row (“state set”), into a
state set which describes a valid row on top of the current row. This transformation
proceeds on a tile by tile basis and begins with the first tile, say xi, in the current
row which is represented by x1

i in the state set. Now, for every tile xj , for which
(xi, xj) ∈ V , we allow x1

i to be replaced by x1
j , since xj can be the first tile of the

row on top of the current row. For the second tile of the next row, we have to replace
the second tile of the current row, say xk, by a new tile, say xℓ, such that the vertical
constraints between xk and xℓ are satisfied and such that the horizontal constraints
between xℓ and the tile we just placed at the first position of the first row, xj , are
satisfied as well.

The automaton proceeds in this manner for the remainder of the row. For this,
the automaton needs to know at any time at which position a tile must be updated.
Therefore, an extra set of states p1, . . . , pn is created, where the state pi says that the
tile at position i has to be updated. So, the state set always consists of one state pi,
and a number of states which represent the current and next row. Here, the states
up to position i already represent the tiles of the next row, the states from position i
still represent the current row, and i is the next position to be updated.

We can now formally construct an NFA(&) A = (Q,Σ, s, f, δ) which accepts ε
iff there exists a correct corridor tiling for a tiling instance T = (X,H, V, b, t, n) as
follows:

• Q = {xj | x ∈ X, 1 ≤ j ≤ n} ∪ {pi | 1 ≤ i ≤ n} ∪ {s, f}
• Σ = ∅
• δ is the union of the following transitions

– (s, split, p1, b
1

1, . . . , b
n

n): From the initial state the automaton immedi-
ately goes to the states which represent the bottom row.

– (p1, t
1
1, . . . , t

n

n,merge, f): When the state set represents a full row (the
automaton is in state p1), and the current row is the accepting row, all
states are merged to the accepting state.

– ∀xi, xj ∈ X, (xj , xi) ∈ V : (p1, x
1
j ,merge-split, p2, x

1
i ): When the first

tile has to be updated, the automaton only has to check the vertical
constraints with the first tile of the previous row.

11



– ∀xi, xj , xk ∈ X,m ∈ N, 2 ≤ m ≤ n, (xk, xi) ∈ V, (xj , xi) ∈ H:
(pm, xm

k , xm−1
j ,merge-split, p(m mod n)+1, x

m
i , xm−1

j ): When a tile at the
mth (m 6= 1) position has to be updated, the automaton has to check
the vertical constraint with the mth tile at the previous row, and the
horizontal constraint with the (m− 1)th tile of the new row.

Clearly, if there exists a correct corridor tiling for T , there exists a run of A
accepting ε. Conversely, the construction of our automaton, in which the updates
are always determined by the position pi, and the horizontal and vertical constraints,
assures that when there is an accepting run of A on ε, this run simulates a correct
corridor tiling for T .

4. Complexity of Regular Expressions. Before we turn to schemas, we first
deal with the complexity of regular expressions and frequently used subclasses as these
are directly related to the complexities of DTDs and single-type EDTDs.

Mayer and Stockmeyer [31] and Meyer and Stockmeyer [32] already established
the expspace-completeness of inclusion and equivalence for RE(&) and RE(#),
respectively. From Theorem 3.2(1) and Theorem 3.3(1) it then directly follows that
allowing both operators does not increase the complexity. It further follows from
Theorem 3.2(1) and Theorem 3.3(2) that intersection for RE(#,&) is in pspace.
We stress that the latter results could also have been obtained without making use
of NFA(#,&)s but by translating RE(#,&)s directly to NFAs. However, in the case
of intersection such a construction should be done in an on-the-fly fashion to not
go beyond pspace. Although such an approach certainly is possible, we prefer the
shorter and more elegant construction using NFA(#,&)s.

Theorem 4.1.
1. equivalence and inclusion for RE(#,&) are in expspace; and
2. intersection for RE(#,&) is pspace-complete.

Proof. (1) Follows directly from Theorem 3.2(1) and Theorem 3.3(1).

(2) The upper bound follows directly from Theorem 3.2(1) and Theorem 3.3(2). The
lower bound is already known for ordinary regular expressions.

Bex et al. [4] established that the far majority of regular expressions occurring in
practical DTDs and XSDs are of a very restricted form as defined next. The class of
chain regular expressions (CHAREs) are those REs consisting of a sequence of factors
f1 · · · fn where every factor is an expression of the form (a1+ · · ·+an), (a1+ · · ·+an)?,
(a1 + · · ·+an)+, or, (a1 + · · ·+an)∗, where n ≥ 1 and every ai is an alphabet symbol.
For instance, the expression a(b + c)∗d+(e + f)? is a CHARE, while (ab + c)∗ and
(a∗ + b?)∗ are not.1

We introduce some additional notation to define subclasses and extensions of
CHAREs. By CHARE(#) we denote the class of CHAREs where also factors of the
form (a1+ · · ·+an)[k,ℓ] are allowed. For the following fragments, we list the admissible
types of factors. Here, a, a?, a∗ denote the factors (a1 + · · ·+an), (a1 + · · ·+an)?, and
(a1 + · · ·+ an)∗, respectively, with n = 1, while a# denotes a[k,ℓ], and a#>0 denotes
a[k,ℓ] with k > 0.

Table 4.1 lists the new and the relevant known results. We first show that adding
numerical occurrence constraints to CHAREs increases the complexity of inclusion
by one exponential. We reduce from exp-corridor tiling.

Theorem 4.2. inclusion for CHARE(#) is expspace-complete.
Proof. The expspace upper bound already follows from Theorem 4.1(1).

1We disregard here the additional restriction used in [3] that every symbol can occur only once.

12



inclusion equivalence intersection

CHARE pspace [28] in pspace [41] pspace [28]
CHARE(#) EXPSPACE in EXPSPACE PSPACE

CHARE(a, a?) conp [28] in ptime [28] np [28]
CHARE(a, a∗) conp [28] in ptime [28] np [28]
CHARE(a, a?, a#) coNP in PTIME NP

CHARE(a, a#>0) in PTIME in PTIME in PTIME

Table 4.1
Overview of new and known complexity results concerning Chain Regular Expressions. All

results are completeness results, unless otherwise mentioned. The new results are printed in bold.

The proof for the expspace lower bound is similar to the proof for pspace-
hardness of inclusion for CHAREs in [28]. The main difference is that the numerical
occurrence operator allows to compare tiles over a distance exponential in the size of
the tiling instance.

The proof is a reduction from exp-corridor tiling. A tiling instance is a tuple
T = (X,H, V, x⊥, x⊤, n) where X is a finite set of tiles, H,V ⊆ X × X are the
horizontal and vertical constraints, x⊥, x⊤ ∈ X, and n is a natural number in unary
notation. A correct exponential corridor tiling for T is a mapping λ : {1, . . . ,m} ×
{1, . . . , 2n} → X for some m ∈ N such that the following constraints are satisfied:

• the first tile of the first row is x⊥: λ(1, 1) = x⊥;
• the first tile of the m-th row is x⊤: λ(m, 1) = x⊤;
• all vertical constraints are satisfied: ∀i < m, ∀j ≤ 2n, (λ(i, j), λ(i+1, j)) ∈ V ;

and,
• all horizontal constraints are satisfied: ∀i ≤ m, ∀j < 2n, (λ(i, j), λ(i, j +1)) ∈

H.
The exp-corridor tiling problem asks, given a tiling instance, whether there ex-
ists a correct exponential corridor tiling. The latter problem is easily shown to be
expspace-complete [43].

We proceed with the reduction from exp-corridor tiling. Thereto, let T =
(X,H, V, x⊥, x⊤, n) be a tiling instance. Without loss of generality, we assume that
n ≥ 2. We construct two CHARE(#) expressions r1 and r2 such that

L(r1) ⊆ L(r2) if and only if

there exists no correct exponential corridor tiling for T.

As expspace is closed under complement, the expspace-hardness of inclusion for
CHARE(#) follows.

Set Σ = X ⊎ {$,△}. For ease of exposition, we denote X ∪ {△} by X△ and
X ∪ {△, $} by X△,$. We encode candidates for a correct tiling by a string in which
the rows are separated by the symbol △, that is, by strings of the form

△R0△R1△· · ·△Rm△, (†)

in which each Ri represents a row, that is, belongs to X2n

. Moreover, R0 is the
bottom row and Rm is the top row. The following regular expressions detect strings
of this form which do not encode a correct tiling for T :

• X∗
△△X [0,2n−1]△X∗

△. This expression detects rows that are too short, that
is, contain less than 2n symbols.

13



• X∗
△△X [2n+1,2n+1]X∗△X∗

△. This expression detects rows that are too long,
that is, contain more than 2n symbols.

• X∗
△x1x2X

∗
△, for every x1, x2 ∈ X, (x1, x2) 6∈ H. These expressions detect all

violations of horizontal constraints.
• X∗

△x1X
[2n,2n]
△ x2X

∗
△, for every x1, x2 ∈ X, (x1, x2) 6∈ V . These expressions

detect all violations of vertical constraints.
Let e1, . . . , ek be an enumeration of the above expressions. Notice that k = O(|X|2).

It is straightforward that a string w in (†) does not match
⋃k

i=1 ei if and only if w
encodes a correct tiling.

Let e = e1 · · · ek. Because of leading and trailing X∗
△ expressions, L(e) ⊆ L(ei),

for every i ∈ {1, . . . , k}. We are now ready to define r1 and r2:

r1 =

k times e
︷ ︸︸ ︷

$e$e$ · · · $e$△x⊥X [2n−1,2n−1]△X∗
△△x⊤X [2n−1,2n−1]△

k times e
︷ ︸︸ ︷

$e$e$ · · · $e$

r2 = $X∗
△,$$e1$e2$ · · · $ek$X∗

△,$$

Notice that both r1 and r2 are in CHARE(#) and can be constructed in polynomial
time. It remains to show that L(r1) ⊆ L(r2) if and only if there is no correct tiling
for T .

We first show the implication from left to right. Thereto, let L(r1) ⊆ L(r2).
Let uwu′ be an arbitrary string in L(r1) such that u, u′ ∈ L($e$e$ · · · $e$) and w ∈
△x⊥X [2n−1,2n−1]△X∗

△△x⊤X [2n−1,2n−1]△. By assumption, uwu′ ∈ L(r2).
Notice that uwu′ contains 2k+2 times the symbol “$”. Moreover, the first and the

last “$” of uwu′ is always matched onto the first and last “$” of r2. This means that k+
1 consecutive $-symbols of the remaining 2k $-symbols in uwu′ must be matched onto
the $-symbols in $e1$e2$ · · · $ek$. Hence, w is matched onto some ei. So, w does not
encode a correct tiling. As the subexpression△x⊥X [2n−1,2n−1]△X∗

△△x⊤X [2n−1,2n−1]

△ of r1 defines all candidate tilings, the system T has no solution.
To show the implication from right to left, assume that there is a string uwu′ ∈

L(r1) that is not in r2, where u, u′ ∈ L($e$e$ · · · $e$). Then w 6∈
⋃k

i=1 L(ei) and,
hence, w encodes a correct tiling.

Adding numerical occurrence constraints to the fragment CHARE(a, a?) keeps
equivalence in ptime, intersection in np and inclusion in conp.

Theorem 4.3.
(1) equivalence for CHARE(a, a?, a#) is in ptime.
(2) inclusion for CHARE(a, a?, a#) is conp-complete.2

(3) intersection for CHARE(a, a?, a#) is np-complete.
Proof. (1) It is shown in [28] that two CHARE(a, a?) expressions are equivalent

if and only if they have the same sequence normal form (which is defined below). As
a[k,ℓ] is equivalent to ak(a?)ℓ−k, it follows that two CHARE(a, a?, a#) expressions are
equivalent if and only if they have the same sequence normal form. It remains to argue
that the sequence normal form of CHARE(a, a?, a#) expressions can be computed in
polynomial time. To this end, let r = f1 · · · fn be a CHARE(a, a?, a#) expression
with factors f1, . . . , fn. The sequence normal form is then obtained in the following
way. First, we replace every factor of the form

• a by a[1, 1];
• a? by a[0, 1]; and,
• a[k,ℓ] by a[k, ℓ],

2In the previous version of this article presented at ICDT’07 the complexity was wrongly at-
tributed to lie between pspace and expspace.

14



where a is an alphabet symbol. We call a the base symbol of the factor a[i, j]. Then,
we replace successive subexpressions a[i1, j1] and a[i2, j2] carrying the same base sym-
bol a by a[i1 + i2, j1 + j2] until no further replacements can be made anymore. For
instance, the sequence normal form of aa?a[2,5]a?bb?b?b[1,7] is a[3, 8]b[2, 10]. Obviously,
the above algorithm to compute the sequence normal form of CHARE(a, a?, a#) ex-
pressions can be implemented in polynomial time. It can then be tested in linear time
whether two sequence normal forms are the same.

(2) conp-hardness is immediate since inclusion is already conp-complete for CHARE
(a, a?) expressions [28].

We show that the problem remains in conp. To this end, we represent strings w
by their sequence normal form as discussed above, where we take each string w as the
regular expression defining w. We call such strings compressed. Let r1 and r2 be two
CHARE(a, a?, a#)s. We can assume that they are in sequence normal form.

To show that L(r1) 6⊆ L(r2), we guess a compressed string w of polynomial size
for which w ∈ L(r1), but w /∈ L(r2). We guess w ∈ L(r1) in the following manner.
We iterate from left to right over the factors of r1. For each factor a[k, ℓ] we guess
an h such that k ≤ h ≤ ℓ, and add ah to the compressed string w. This algorithm
gives a compressed string of polynomial size which is defined by r1. Furthermore,
this algorithm is capable of guessing every possible string defined by r1. It is however
possible that in the compressed string there are two consecutive elements ai, aj with
the same base symbol a. If this is the case we merge these elements to ai+j which
gives a proper compressed string.

The following lemma shows that testing w /∈ L(r2) can be done in ptime.
Lemma 4.4. Given a compressed string w and an expression r in sequence normal

form, deciding whether w ∈ L(r) is in ptime.
Proof. Let w = ap1

1 · · · a
pn
n , and r = b1[k1, ℓ1] · · · bm[km, ℓm]. Denote bi[ki, ℓi] by

fi. For every position i of w (0 < i ≤ n), we define Ci as a set of factors b[k, ℓ] of r.
Formally, fj ∈ Ci when ap1

1 · · · a
pi−1

i−1 ∈ L(f1 · · · fj−1) and ai = bj . We compute the Ci

as follows.
• C1 is the set of all bj [kj , ℓj ] such that a1 = bj , and ∀h < j, kh = 0. These are

all the factors of r which can match the first symbol of w.
• Then, for all i ∈ {2, . . . , n}, we compute Ci from Ci−1. In particular, fh =

bh[kh, ℓh] ∈ Ci when there is a fj = bj [kj , ℓj ] ∈ Ci−1 such that a
pi−1

i−1 ∈
fj · · · fh−1 and ai = bh. That is, the following conditions should hold:

– j < h: fh occurs after fj in r.
– bh = ai: fh can match the first symbol of api

i .
– ∀e ∈ {j, . . . , h− 1}, if be 6= ai−1 then ke = 0: in between factors fj and

fh it is possible to match only symbols ai−1.
– Let min =

∑

e∈{j,...,h−1},be=ai−1
ke and max =

∑

e∈{j,...,h−1},be=ai−1
ℓe.

Then min ≤ pi−1 ≤ max. That is, pi−1 symbols ai−1 should be matched
from fj to fh−1.

Then, w ∈ L(r) iff there is an fj ∈ Cn such that apn
n ∈ L(fj · · · fn). As the latter

test and the computation of C1, . . . , Cn can be done in ptime the lemma follows.

(3) np-hardness is immediate since intersection is already np-complete for CHARE
(a, a?) expressions [28].

We show that the problem remains in np. As in the proof of Theorem 4.3(2)
we represent a string w as a compressed string. Let r1, . . . , rn be CHARE(a, a?, a#)
expressions.

15



Lemma 4.5. If
⋂n

i=1 L(ri) 6= ∅, then there exists a string w = ap1

1 · · · a
pm
m ∈

⋂n
i=1 L(ri) such that m ≤ min{|ri| | i ∈ {1, . . . , n}} and, for each i ∈ {1, . . . , n}, ji is

not larger than the largest integer occurring in r1, . . . , rn.
Proof. Suppose that there exists a string w = ap1

1 · · · a
pm
m ∈

⋂n

i=1 L(ri), with
ai 6= ai+1 for every i ∈ {1, . . . ,m − 1}. Since w is matched by every expression
r1, . . . , rn, and since a factor of a CHARE(a, a?, a#) expression can never match a
strict superstring of api

i for i ∈ {1, . . . , n}, we have that m ≤ min{|ri| | i ∈ {1, . . . , n}}.
Furthermore, since w is matched by every expression r1, . . . , rn, no ji can be

larger than the largest integer occurring in r1, . . . , rn.
The np algorithm then consists of guessing a compressed string w of polynomial

size and verifying whether w ∈
⋂n

i=1 L(ri). If we represent r1, . . . , rn by their sequence
normal form, this verification step can be done in polynomial time by Lemma 4.4.

Finally, we exhibit a tractable subclass with numerical occurrence constraints:
Theorem 4.6. inclusion, equivalence, and intersection for CHARE(a,

a#>0) are in ptime.
Proof. The upper bound for equivalence is immediate from Theorem 4.3(2).
For inclusion, let r1 and r2 be two CHARE(a, a#>0)s in sequence normal form.

(as defined in the proof of Theorem 4.3) Let r1 = a1[k1, ℓ1] · · · an[kn, ℓn] and r2 =
a′
1[k

′
1, ℓ

′
1] · · · a

′
n′ [k′

n′ , ℓ′n′ ]. Notice that every number ki and k′
j is greater than zero. We

claim that L(r1) ⊆ L(r2) if and only if n = n′ and for every i ∈ {1, . . . , n}, ai = a′
i,

ki ≥ k′
i, and ℓi ≤ ℓ′i.

Indeed, if n 6= n′, or if there exists an i such that ai 6= a′
i or ki < k′

i, then
ak1

1 · · · a
kn
n ∈ L(r1) − L(r2). If there exists an i such that ℓi > ℓ′i, then aℓ1

1 · · · a
ℓn
n ∈

L(r1)− L(r2). Conversely, it is immediate that every string in L(r1) is also in L(r2).
It is straightforward to test these conditions in linear time.

For intersection, let, for every i ∈ {1, . . . , n}, ri = ai,1[ki,1, ℓi,1] · · · ai,mi
[ki,mi

,
ℓi,mi

] be a CHARE(a, a#>0) in sequence normal form. Notice that every number ki,j

is greater than zero. We claim that
⋂n

i=1 L(ri) 6= ∅ if and only if
(i) m1 = m2 = · · · = mn;
(ii) for every i, j ∈ {1, . . . , n} and x ∈ {1, . . . ,m1}, ai,x = aj,x; and,
(iii) for every x ∈ {1, . . . ,m1}, max{ki,x | 1 ≤ i ≤ n} ≤ min{ℓi,x | 1 ≤ i ≤ n}.

Indeed, if the above conditions hold, we have that aK1

1,1 · · · a
Km1

1,m1
is in

⋂n

i=1 L(ri),
where Kx = max{ki,x | 1 ≤ i ≤ n} for every x ∈ {1, . . . ,m1}. If mi 6= mj for some
i, j ∈ {1, . . . , n}, then the intersection between ri and rj is empty. So assume that
condition (i) holds. If ai,x 6= aj,x for some i, j ∈ {1, . . . , n} and x ∈ {1, . . . ,m1}, then
we also have that the intersection between ri and rj is empty. Finally, if condition
(iii) does not hold, take i, j, and x such that ki,x = max{ki,x | 1 ≤ i ≤ n} and
ℓj,x = min{ℓi,x | 1 ≤ i ≤ n}. Then the intersection between ri and rj is empty.

Finally, testing conditions (i)–(iii) can be done in linear time.

5. Complexity of Schemas.

5.1. DTDs and Single-Type EDTDs. By Proposition 2.4 the results on the
equivalence and inclusion problem of the previous section carry over to DTDs and
single-type EDTDs. For the intersection problem, the results only carry over to
DTDs (Proposition 2.5). The only remaining problem is intersection for single-type
EDTDs with counting and interleaving. However, intersection for EDTDst(RE) is
exptime-hard and in the next section we will see that even for EDTD(#,&) in-
tersection remains in exptime. It immediately follows that intersection for

16



EDTDst(#), EDTDst(&), and EDTDst(#,&) is also exptime-complete.

5.2. Extended DTDs. We next consider the complexity of the basic decision
problems for EDTDs with numerical occurrence constraints and interleaving. As the
basic decision problems are exptime-complete for EDTD(RE), the straightforward
approach of translating every RE(#,&) expression into an NFA and then applying
the standard algorithms gives rise to a double exponential time complexity. By using
NFA(#,&), we can do better: expspace for inclusion and equivalence, and, more
surprisingly, exptime for intersection.

Theorem 5.1.

(1) equivalence and inclusion for EDTD(#,&) are in expspace;
(2) equivalence and inclusion for EDTD(#) and EDTD(&) are expspace-hard;

and,
(3) intersection for EDTD(#,&) is exptime-complete.

Proof. (1) We show that inclusion is in expspace. The upper bound for equiv-
alence then immediately follows.

First, we introduce some notation. For an EDTD D = (Σ,Σ′, d, s, µ), we will
denote elements of Σ′, i.e., types, by τ . We denote by (D, τ) the EDTD D with
start symbol τ . We define the depth of a tree t, denoted by depth(t), as follows: if
t = ε, then depth(t) = 0; and if t = σ(t1 · · · tn), then depth(t) = max{depth(ti) | i ∈
{1, . . . , n}}+ 1.

Suppose that we have two EDTDs D1 = (Σ,Σ′
1, d1, s1, µ1) and D2 = (Σ,Σ′

2,
d2, s2, µ2). We provide an expspace algorithm that decides whether L(D1) 6⊆ L(D2).
As expspace is closed under complement, the theorem follows. The algorithm com-
putes a set E of pairs (C1, C2) ∈ 2Σ′

1 × 2Σ′

2 where (C1, C2) ∈ E iff there exists a tree
t such that Cj = {τ ∈ Σ′

j | t ∈ L((Dj , τ))} for each j = 1, 2. That is, every Cj is the
set of types that can be assigned by Dj to the root of t. Or when viewing Dj as a
tree automaton, Cj is the set of states that can be assigned to the root in a run on
t. Therefore, we say that t is a witness for (C1, C2). Notice that t ∈ L(D1) (resp.,
t ∈ L(D2)) if s1 ∈ C1 (resp. s2 ∈ C2). Hence, L(D1) 6⊆ L(D2) iff there exists a pair
(C1, C2) ∈ E with s1 ∈ C1 and s2 6∈ C2.

We compute the set E in a bottom-up manner as follows:

1. Initially, set E1 := {(C1, C2) | ∃a ∈ Σ, τ1 ∈ Σ′
1, τ2 ∈ Σ′

2 such that µ1(τ1) =
µ2(τ2) = a, and for i = 1, 2, Ci = {τ ∈ Σ′

i | ε ∈ di(τ) ∧ µi(τ) = a}}.
2. For every k > 1, Ek is the union of Ek−1 and the pairs (C1, C2) for which

there are a ∈ Σ, n ∈ N and a string (C1,1, C2,1) · · · (C1,n, C2,n) in E∗
k−1 such

that

Cj = {τ ∈ Σ′
j | µj(τ) = a,∃bj,1 ∈ Cj,1, . . . , bj,n ∈ Cj,n

with bj,1 · · · bj,n ∈ dj(τ)}, for each j = 1, 2.

Let E := Eℓ for ℓ = 2|Σ
′

1
| · 2|Σ

′

2
|. The algorithm then accepts when there is a pair

(C1, C2) ∈ E with s1 ∈ C1 and s2 6∈ C2 and rejects otherwise.

We argue that the algorithm is correct. As Ek ⊆ Ek+1, for every k, it follows that
Eℓ = Eℓ+1. Hence, the algorithm computes the largest set of pairs. The following
lemma then shows that the algorithm decides whether L(D1) 6⊆ L(D2). The lemma
can be proved by induction on k.

Lemma 5.2. For every k ≥ 1, (C1, C2) ∈ Ek if and only if there exists a witness
tree for (C1, C2) of depth at most k.

17



It remains to show that the algorithm can be carried out using exponential space.
Step (1) reduces to a linear number of tests ε ∈ L(r), for some RE(#,&) expressions
r which is in ptime by [20]. Step (3) can be carried out in exponential time, since
the size of E is exponential in the input. For step (2), it suffices to argue that, when
Ek−1 is known, it is decidable in expspace whether a pair (C1, C2) is in Ek. As there
are only an exponential number of such possible pairs, the result follows. To this end,
we need to verify that there exists a string W = (C1,1, C2,1) · · · (C1,n, C2,n) in E∗

k−1

such that for each j = 1, 2,
(A) for every τ ∈ Cj , there exist bj,1 ∈ Cj,1, . . . , bj,n ∈ Cj,n with bj,1 · · · bj,n ∈ dj(τ);

and,
(B) for every τ ∈ Σ′

j \ Cj , there do not exist bj,1 ∈ Cj,1, . . . , bj,n ∈ Cj,nwith
bj,1 · · · bj,n ∈ dj(τ).

Assume that Σ′
1 ∩Σ′

2 = ∅. Let, for each j = 1, 2 and τ ∈ Σ′
j , N(τ) be the NFA(#,&)

accepting dj(τ). Intuitively, we guess the string W one symbol at a time and compute
the set of reachable configurations Γτ for each N(τ).

Initially, Γτ is the singleton set containing the initial configuration of N(τ). Sup-
pose that we have guessed a prefix (C1,1, C2,1) · · · (C1,m−1, C2,m−1) of W and that we
guess a new symbol (C1,m, C2,m). Then, we compute the set Γ′

τ = {γ′ | ∃b ∈ Cj,m,
γ ∈ Γτ such that γ ⇒N(τ),b γ′} and set Γτ to Γ′

τ . Each set Γ′
τ can be computed in

exponential space from Γτ . We accept (C1, C2) when for every τ ∈ Σ′
j , τ ∈ Cj iff Γτ

contains an accepting configuration.

(2) It is shown by Mayer and Stockmeyer [31] and Meyer and Stockmeyer [32] that
equivalence and inclusion are expspace-hard for RE(&)s and RE(#), respec-
tively. Hence, equivalence and inclusion are also expspace-hard for EDTD(&)
and EDTD(#).

(3) The lower bound follows from [38]. We argue that the problem is in exptime.
Thereto, let, for each i ∈ {1, . . . , n}, Di = (Σ,Σ′

i, di, si, µi) be an EDTD(#,&). We
assume w.l.o.g. that the sets Σ′

i are pairwise disjoint. We also assume that the start
type si never appears at the right-hand side of a rule. Finally, we assume that no
derivation tree consists of only the root. For each type τ ∈ Σ′

i, let N(τ) denote an
NFA(#,&) for di(τ). According to Theorem 3.2, N(τ) can be computed from di(τ) in
polynomial time. We provide an alternating polynomial space algorithm that guesses
a tree t and accepts if t ∈ L(D1) ∩ · · · ∩ L(Dn). As apspace = exptime [8], this
shows the theorem.

We guess t node by node in a top-down manner. For every guessed node v, the
following information is written on the tape of the TM: for every i ∈ {1, . . . , n}, the
triple ci = (τ i

v, τ i
p, γ

i) where τ i
v is the type assigned to v by grammar Di, τ i

p is the

type of the parent assigned by Di, and γi is the current configuration N(τ i
p) is in

after reading the string formed by the left siblings of v. In the following, we say that
τ ∈ Σ′

i is an a-type when µi(τ) = a.
The algorithm proceeds as follows:
1. As for each grammar the types of the roots are given, we start by guessing the

first child of the root. That is, we guess an a ∈ Σ, and for each i ∈ {1, . . . , n},
we guess an a-type τ i and write the triple ci = (τ i, si, γ

i
s) on the tape where

γi
s is the start configuration of N(si).

2. For i ∈ {1, . . . , n}, let ci = (τ i, τ i
p, γ

i) be the triples on the tape. The algo-
rithm now universally splits into two parallel branches as follows:
(a) Downward extension: When for every i, ε ∈ di(τ

i) then the current
node can be a leaf node and the branch accepts. Otherwise, guess an

18



a ∈ Σ and for each i, guess an a-type θi. Replace every ci by the triple
(θi, τ i, γi

s) and proceed to step (2). Here, γi
s is the start configuration of

N(τ i).
(b) Extension to the right: For every i ∈ {1, . . . , n}, compute a config-

uration γ′i for which γi ⇒N(τ i
p),τ i γ′i. When every γ′i is a final config-

uration, then we do not need to extend to the right anymore and the
algorithm accepts. Otherwise, guess an a ∈ Σ and for each i, guess an
a-type θi. Replace every ci by the triple (θi, τ i, γ′i) and proceed to step
(2).

We argue that the algorithm is correct. If the algorithm accepts, we have guessed
a tree t and, for every i ∈ {1, . . . , n}, a tree t′i with µi(t

′
i) = t and t′i ∈ L(di).

Therefore, t ∈
⋂n

i=1 L(Di). For the other direction, suppose that there exists a tree
t ∈

⋂n
i=1 L(Di) and t is minimal in the sense that no subtree t0 of t is in

⋂n
i=1 L(Di).

Then, there is a run of the above algorithm that guesses t and guesses trees t′i with
µi(t

′
i) = t. The tree t must be minimal since the algorithm stops extending the tree

as soon as possible.
The algorithm obviously uses only polynomial space.

6. Simplification. The simplification problem is defined as follows: Given an
EDTD, check whether it has an equivalent EDTD of a restricted type, i.e., an equiv-
alent DTD or single-type EDTD. In [29], this problem was shown to be exptime-
complete for EDTDs with standard regular expressions. We revisit this problem in
the context of RE(#,&).

We need a bit of terminology. Let t be a tree and v be a node. By anc-strt(v)
we denote the string formed by the labels on the path from the root to v, i.e.,
labt(ε)labt(i1)labt(i1i2) · · · labt(i1i2 · · · ik) where v = i1i2 · · · ik.

We say that a tree language L is closed under ancestor-guarded subtree exchange
if the following holds. Whenever for two trees t1, t2 ∈ L with nodes u1 ∈ Dom(t1)
and u2 ∈ Dom(t2), anc-strt1(u1) = anc-strt2(u2) implies t1[u1 ← subtreet2(u2)] ∈ L.
Here, t1[u1 ← subtreet2(u2)] denotes the tree obtained from t1 by replacing its subtree
rooted at u1 by the subtree rooted at u2 in t2.

We recall the following theorem from [29]:
Theorem 6.1 (Theorem 7.1 in [29]). Let L be a tree language defined by an

EDTD. Then the following conditions are equivalent.
(a) L is definable by a single-type EDTD.
(b) L is closed under ancestor-guarded subtree exchange.
We are now ready for the following theorem.

Theorem 6.2. Given an EDTD(#,&), deciding whether it is equivalent to an
EDTDst(#,&) or DTD(#,&) is expspace-complete.

Proof. We first show that the problem is hard for expspace. We use a reduction
from equivalence of RE(#), which is expspace-complete [32].

Let r1, r2 be RE(#) expressions over Σ and let b and s be two symbols not
occurring in Σ. By definition L(rj) 6= ∅, for j = 1, 2. Define D = (Σ ∪ {b, s},Σ ∪
{s, b1, b2}, d, s, µ) as the EDTD with the following rules:

s → b1b2

b1 → r1

b2 → r2,

where for every τ ∈ Σ ∪ {s}, µ(τ) = τ , and µ(b1) = µ(b2) = b. We claim that
D is equivalent to a single-type DTD or a DTD iff L(r1) = L(r2). Clearly, if r1 is

19



equivalent to r2, then D is equivalent to the DTD (and therefore also to a single-type
EDTD)

s → bb
b → r1.

Conversely, suppose that there exists an EDTDst which defines the language L(D).
Towards a contradiction, assume that r1 is not equivalent to r2. So, there exists a
string w1 such that w1 ∈ L(r1) and w1 /∈ L(r2), or w1 /∈ L(r1) and w1 ∈ L(r2). We
only consider the first case, the second is identical. Now, let w2 be a string in L(r2)
and consider the tree t = s(b(w1)b(w2)). Clearly, t is in L(D). However, the tree
t′ = s(b(w2)b(w1)) obtained from t by switching its left and right subtree is not in
L(D). According to Theorem 6.1, every tree language defined by a single-type EDTD
is closed under such an exchange of subtrees. So, this means that L(D) cannot be
defined by an EDTDst, which leads to the desired contradiction.

We now proceed with the upper bounds. The following algorithms are along the
same lines as the EXPTIME algorithms in [29] for the simplification problem without
numerical occurrence or interleaving operators. We first give an expspace algorithm
which decides whether an EDTD is equivalent to a EDTDst. Let D = (Σ,Σ′, d, s, µ)
be an EDTD. Intuitively, we compute a EDTDst D0 = (Σ,Σ′

0, d0, s, µ0) which is
the closure of D under the single-type property. The EDTDst D0 has the following
properties:
(a) Σ′

0 is in general exponentially larger than Σ′;
(b) the RE(#,&) expressions in the definition of d0 are only polynomially larger than

the RE(#,&) expressions in the definition of d;
(c) L(D) ⊆ L(D0); and,
(d) L(D0) = L(D) ⇔ D is equivalent to a EDTDst.
Hence, we have that D is equivalent to a EDTDst if and only if L(D0) ⊆ L(D).

We first show how D0 can be constructed. We can assume w.l.o.g. that, for each
type ai ∈ Σ′, there exists a tree t′ ∈ L(d) such that ai is a label in t′. Indeed, every
useless type can be removed from D in a simple preprocessing step. Then, for a string
w ∈ Σ∗ and a ∈ Σ let types(wa) be the set of all types ai ∈ Σ′, for which there is a
tree t and a tree t′ ∈ L(d) with µ(t′) = t, and a node v in t such that anc-strt(v) = wa
and the type of v in t′ is ai. We show how to compute types(wa) in exponential time.
To this end, we enumerate all sets types(w). Let s = c1. Initially, set W := {c},
Types(c) := {c1} and R := {{c1}}. Repeat the following until W becomes empty:
(1) Remove a string wa from W .
(2) For every b ∈ Σ, let Types(wab) contain all bi for which there exists an aj in

Types(wa) and a string in d(aj) containing bi. If Types(wab) is not empty and
not already in R, then add it to R and add wab to W .

Since we add every set only once to R, the algorithm runs in time exponential in
the size of D. Moreover, we have that Types(w) = types(w) for every w, and that
R = Σ′

0.
For each a ∈ Σ, let types(D, a) be the set of all nonempty sets types(wa), with w ∈

Σ∗. Clearly, each types(D, a) is finite. We next define D0 = (Σ,Σ′
0, d0, s, µ0). Its set

of types is Σ′
0 :=

⋃

a∈Σ types(D, a). Note that s ∈ Σ′
0. For every τ ∈ types(D, a), set

µ0(τ) = a. In d0, the right-hand side of the rule for each types(wa) is the disjunction
of all d(ai) for ai ∈ types(wa), with each bj in d(ai) replaced by types(wab).

We show that properties (a)–(d) hold. Since Σ′
0 ⊆ 2Σ′

, we immediately have
that (a) holds. The RE(#,&) expressions that we constructed in D0 are unions of a

20



linear number of RE(#,&) expressions in D, but have types in 2Σ′

rather than in Σ′.
Hence, the size of the RE(#,&) expressions in D0 is at most quadratic in the size of
D. Finally, we note that it has been shown in Theorem 7.1 in [29] that (c) and (d)
also hold.

It remains to argue that it can be decided in expspace that L(D0) ⊆ L(D).
A direct application of the expspace algorithm in Theorem 5.1(1) leads to a 2ex-
pspace algorithm to test whether L(D0) ⊆ L(D), due to the computation of C1.
Indeed, the algorithm remembers, given the EDTDs D0 = (Σ,Σ′

0, d0, s0, µ0) and
D = (Σ,Σ′, d, s, µ), all possible pairs (C1, C2) such that there exists a tree t with
C1 = {τ ∈ Σ′

0 | t ∈ L((D0, τ))} and C2 = {τ ∈ Σ′ | t ∈ L((D, τ))}. It then accepts
if there exists such a pair (C1, C2) with s0 ∈ C1 and s 6∈ C2. However, when we
use non-determinism, notice that it is not necessary to compute the entire set C1.
Indeed, as we only test whether there exist elements in C1 in the entire course of
the algorithm, we can adapt the algorithm to compute pairs (c1, C2), where c1 is an
element of C1, rather than the entire set. Since nexpspace = expspace, we can use
this adaption to test whether L(D0) ⊆ L(D) in expspace.

Finally, we give the algorithm which decides whether an EDTD D = (Σ,Σ′,
d, s, µ) is equivalent to a DTD. We compute a DTD (Σ, d0, sd) which is equivalent to
D iff L(D) is definable by a DTD. Thereto, let for each ai ∈ Σ′, ra,i be the expression
obtained from d(ai) by replacing each symbol bj in d(ai) by b. For every a ∈ Σ, define
d0(a) =

⋃

ai∈Σ′ ra,i. Again, it is shown in [29] that L(D) = L(d0) iff L(D) is definable
by a DTD. By Theorem 5.1(1) and since d0 is of size polynomial in the size of D, this
can be tested in expspace.

7. Conclusion. The present work gives an overview of the complexity of the ba-
sic decision problems for abstractions of several schema languages including numer-
ical occurrence constraints and interleaving. W.r.t. intersection the complexity
remains the same, while for inclusion and equivalence the complexity increases
by one exponential for DTDs and single-type EDTDs, and goes from exptime to ex-
pspace for EDTDs. The results w.r.t. CHAREs also follow this pattern. We further
showed that the complexity of simplification increases to expspace.

We emphasize that this is a theoretical study delineating the worst case complex-
ity boundaries for the basic decision problems. Although these complexities must be
studied, we note that the regular expressions used in the hardness proofs do not cor-
respond at all to those employed in practice. Further, w.r.t. XSDs, our abstraction
is not fully adequate as we do not consider the one-unambiguity (or unique parti-
cle attribution) constraint. However, it is doubtful that this constraint is the right
one to get tractable complexities for the basic decision problems. Indeed, already in-
tersection for unambiguous regular expressions is pspace-hard [28] and inclusion for
one-unambiguous RE(#) expressions is conp-hard [19]. It would therefore be desirable
to find robust subclasses for which the basic decision problems are in ptime.

REFERENCES

[1] S. Abiteboul, P. Buneman, and D. Suciu, Data on the Web : From Relations to Semistruc-
tured Data and XML, Morgan Kaufmann, 1999.

[2] M. Benedikt, W. Fan, and F. Geerts, Xpath satisfiability in the presence of DTDs, J. ACM,
55 (2008).

[3] G.J. Bex, F. Neven, T. Schwentick, and K. Tuyls, Inference of concise DTDs from XML
data, in International Conference on Very Large Data Bases (VLDB), 2006, pp. 115–126.

21



[4] G.J. Bex, F. Neven, and J. Van den Bussche, DTDs versus XML schema: A practical study,
in The World Wide Web and Databases (WebDB), 2004, pp. 79–84.

[5] A. Brüggemann-Klein, Unambiguity of extended regular expressions in SGML document
grammars, in Algorithms, First Annual European Symposium (ESA), 1993, pp. 73–84.

[6] A. Brüggemann-Klein, M. Murata, and D. Wood, Regular tree and regular hedge languages
over unranked alphabets: Version 1, april 3, 2001, Tech. Report HKUST-TCSC-2001-0,
The Hongkong University of Science and Technology, 2001.

[7] A. Brüggemann-Klein and D. Wood, One-unambiguous regular languages, Inform. and Com-
put., 142 (1998), pp. 182–206.

[8] A. K. Chandra, D. Kozen, and L. J. Stockmeyer, Alternation., J. ACM, 28 (1981), pp. 114–
133.

[9] J. Clark and M. Murata, RELAX NG Specification, OASIS, December 2001.
[10] J. Cristau, C. Löding, and W. Thomas, Deterministic automata on unranked trees., in Fun-

damentals of Computation Theory (FCT), M. Liskiewicz and R. Reischuk, eds., vol. 3623
of Lecture Notes in Computer Science, Springer, 2005, pp. 68–79.

[11] S. Dal-Zilio and D. Lugiez, XML schema, tree logic and sheaves automata., in Rewriting
Techniques and Applications (RTA), Robert Nieuwenhuis, ed., vol. 2706 of Lecture Notes
in Computer Science, Springer, 2003, pp. 246–263.

[12] A. Deutsch, M. F. Fernandez, and D. Suciu, Storing Semistructured Data with STORED.,
in ACM SIGMOD International Conference on Management of Data, 1999, pp. 431–442.

[13] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of
NP-Completeness, Freeman, 1979.

[14] W. Gelade, Succinctness of regular expressions with interleaving, intersection and counting,
in Mathematical Foundations of Computer Science (MFCS), 2008, pp. 363–374.

[15] L. Hemaspaandra and M. Ogihara, Complexity Theory Companion, Springer, 2002.
[16] J.E. Hopcroft, R. Motwani, and J.D. Ullman and, Introduction to Automata Theory,

Languages, and Computation, Addison-Wesley, third ed., 2007.
[17] H. Hosoya and B. C. Pierce, Xduce: A statically typed XML processing language., ACM

Transactions on Internet Technologies, 3 (2003), pp. 117–148.
[18] J. Jȩdrzejowicz and A. Szepietowski, Shuffle languages are in P, Theoret. Comput. Sci.,

250 (2001), pp. 31–53.
[19] P. Kilpeläinen, Inclusion of unambiguous #REs is NP-hard. Unpublished note, University

of Kuopio, Finland, May 2004.
[20] P. Kilpeläinen and R. Tuhkanen, Regular expressions with numerical occurrence indicators

— preliminary results., in Symposium on Programming Languages and Software Tools
(SPLST), 2003, pp. 163–173.

[21] , Towards efficient implementation of XML schema content models., in DOCENG 2004,
ACM, 2004, pp. 239–241.

[22] , One-unambiguity of regular expressions with numeric occurrence indicators., Inform.
and Comput., 205 (2007), pp. 890–916.

[23] C. Koch, S. Scherzinger, N. Schweikardt, and B. Stegmaier, Schema-based scheduling
of event processors and buffer minimization for queries on structured data streams, in
International Conference on Very Large Data Bases (VLDB), 2004, pp. 228–239.

[24] D. Kozen, Lower bounds for natural proof systems, in Foundations of Computer Science
(FOCS), IEEE, 1977, pp. 254–266.

[25] M. Mani, Keeping chess alive — Do we need 1-unambiguous content models?, in Extreme
Markup Languages, Montreal, Canada, 2001.

[26] I. Manolescu, D. Florescu, and D. Kossmann, Answering XML Queries on Heteroge-
neous Data Sources, in International Conference on Very Large Data Bases (VLDB), 2001,
pp. 241–250.

[27] W. Martens and F. Neven, Frontiers of tractability for typechecking simple XML transfor-
mations., J. Comput. System Sci., 73 (2007), pp. 362–390.

[28] W. Martens, F. Neven, and T. Schwentick, Complexity of decision problems for simple
regular expressions., in Mathematical Foundations of Computer Science (MFCS), Jiŕı Fiala,
Václav Koubek, and Jan Kratochv́ıl, eds., vol. 3153 of Lecture Notes in Computer Science,
Springer, 2004, pp. 889–900.

[29] W. Martens, F. Neven, T. Schwentick, and G. J. Bex, Expressiveness and complexity of
XML schema., ACM Transactions on Database Systems, 31 (2006), pp. 770–813.

[30] W. Martens and J. Niehren, On the minimization of XML schemas and tree automata for
unranked trees., J. Comput. System Sci., 73 (2007), pp. 550–583.

[31] A. J. Mayer and L. J. Stockmeyer, Word problems — this time with interleaving, Inform.
and Comput., 115 (1994), pp. 293–311.

22



[32] A. R. Meyer and L. J. Stockmeyer, The equivalence problem for regular expressions with
squaring requires exponential space, in Foundations of Computer Science (FOCS), IEEE,
1972, pp. 125–129.

[33] M. Murata, D. Lee, M. Mani, and K. Kawaguchi, Taxonomy of XML schema languages
using formal language theory, ACM Transactions on Internet Techologies, 5 (2005), pp. 1–
45.

[34] F. Neven and T. Schwentick, On the complexity of XPath containment in the presence of
disjunction, DTDs, and variables., Log. Methods Comput. Sci., 2 (2006).

[35] Y. Papakonstantinou and V. Vianu, DTD inference for views of XML data, in ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (PODS), New
York, 2000, ACM Press, pp. 35–46.

[36] F. Reuter, An enhanced W3C XML Schema-based language binding for object oriented pro-
gramming languages. Manuscript, 2006.

[37] H. Seidl, Deciding equivalence of finite tree automata, SIAM J. Comput., 19 (1990), pp. 424–
437.

[38] , Haskell overloading is DEXPTIME-complete, Inf. Process. Lett., 52 (1994), pp. 57–60.
[39] C.M. Sperberg-McQueen, XML Schema 1.0: A language for document grammars, in XML

2003, 2003.
[40] C.M. Sperberg-McQueen and H. Thompson, XML Schema.

http://www.w3.org/XML/Schema, 2005.
[41] L.J. Stockmeyer and A.R. Meyer, Word problems requiring exponential time: Preliminary

report, in ACM Symposium on Theory of Computing (STOC), ACM Press, 1973, pp. 1–9.
[42] E. van der Vlist, XML Schema, O’Reilly, 2002.
[43] P. van Emde Boas, The convenience of tilings, in Complexity, Logic and Recursion Theory,

vol. 187 of Lect. Notes Pure Appl. Math., 1997, pp. 331–363.
[44] G. Wang, M. Liu, J. X. Yu, B. Sun, G. Yu, J. Lv, and H. Lu, Effective schema-based XML

query optimization techniques, in International Database Engineering and Applications
Symposium (IDEAS), 2003, pp. 230–235.

23


