
XML Research for Formal Language Theorists

Wim Martens

TU Dortmund

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 1 / 65

Goal of this talk

XML Research vs Formal Languages

XML benefits from Formal Language Theory

XML schemas ≈ tree automata
XPath patterns ≈ regular expressions
Formal Language Theory has a nice algorithmic toolbox

Formal Language Theory benefits from XML

XML motivates interesting Formal Language problems

Warning

Rather informal strongly biased survey

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 2 / 65

Goal of this talk

XML Research vs Formal Languages

XML benefits from Formal Language Theory

XML schemas ≈ tree automata
XPath patterns ≈ regular expressions
Formal Language Theory has a nice algorithmic toolbox

Formal Language Theory benefits from XML

XML motivates interesting Formal Language problems

Warning

Rather informal strongly biased survey

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 2 / 65

Goal of this talk

XML Research vs Formal Languages

XML benefits from Formal Language Theory

XML schemas ≈ tree automata
XPath patterns ≈ regular expressions
Formal Language Theory has a nice algorithmic toolbox

Formal Language Theory benefits from XML

XML motivates interesting Formal Language problems

Warning

Rather informal strongly biased survey

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 2 / 65

Outline

1 Introduction to XML

2 An FLT Approach to XML Research
Document Type Definitions
XML Queries
Extended Document Type Definitions and XML Schema
Characterizations of single-type EDTDs

3 From XML to Formal Language Theory
Complexity of Regular Expressions
Constructions on Regular Expressions
Automata Minimization

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 3 / 65

Outline

1 Introduction to XML

2 An FLT Approach to XML Research
Document Type Definitions
XML Queries
Extended Document Type Definitions and XML Schema
Characterizations of single-type EDTDs

3 From XML to Formal Language Theory
Complexity of Regular Expressions
Constructions on Regular Expressions
Automata Minimization

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 4 / 65

Searching the Internet

Enough with these sissy keyword searches!

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 5 / 65

Searching the Internet

A real search

Where can I buy a flatscreen-TV, in a store at most 20km from Dresden,
that is open tomorrow until 18:00?

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 5 / 65

An Example

Internet

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 6 / 65

An Example

<time>

XML

</time>

1800

<time>
<time>

<time>

1800

</time>
</time>

</time>

XML
XML

XML
1200

1700

Internet

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 6 / 65

An Example

<time>

XML

</time>

1800

<time>
<time>

<time>

1800

</time>
</time>

</time>

XML
XML

XML
1200

1700

Internet

XML Schema

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 6 / 65

A self-describing data format

<store>

<normal>

<guitar type="electric">

<maker> Tandler </maker>

<price> 3500 </price>

</guitar>

<guitar type="electric">

<maker> Fender </maker>

<price> 1000 </price>

</guitar>

</normal>

<discount>

<guitar type="electric">

<maker> Gibson </maker>

<price> 2500 </price>

<discount> 10% </discount>

</guitar>

</discount>

</store>

element: <title>...</title>

start tag: <title>

end tag: </title>

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 7 / 65

XML as a hierarchical structure

Example

store

normal

guitar

maker

“Tandler”

price

“3500”

guitar

maker

“Fender”

price

“1000”

discount

guitar

maker

“Gibson”

price

“2500”

discount

“10%”

(type=“electric”) (type=“electric”) (type=“electric”)

Abstraction: ordered, unranked, labeled tree (with data-values)

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 8 / 65

XML schema languages

Schema

A schema defines the set of allowable labels and the way they can be
structured.

Advantages

automatic validation

automatic integration of data

automatic translation

query optimization

provides a user with a concrete semantics of the document

aids in the specification of meaningful queries over XML data

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 9 / 65

XML schema languages

In formal language theoretic terms

A schema defines a tree language.

Example

DTDs (W3C) CFGs with REs

XML Schema (W3C) 6≈ tree automata

Relax NG (Clark, Murata) ≈ tree automata

several dozen others (DSD, Schematron, . . .)

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 10 / 65

Summary slide

What to remember?

XML is an international standard for data exchange

XML documents or XML data are simply ordered unranked labeled
trees with data values

a schema defines a tree language (no data values — in this talk)

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 11 / 65

Outline

1 Introduction to XML

2 An FLT Approach to XML Research
Document Type Definitions
XML Queries
Extended Document Type Definitions and XML Schema
Characterizations of single-type EDTDs

3 From XML to Formal Language Theory
Complexity of Regular Expressions
Constructions on Regular Expressions
Automata Minimization

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 12 / 65

Outline

1 Introduction to XML

2 An FLT Approach to XML Research
Document Type Definitions
XML Queries
Extended Document Type Definitions and XML Schema
Characterizations of single-type EDTDs

3 From XML to Formal Language Theory
Complexity of Regular Expressions
Constructions on Regular Expressions
Automata Minimization

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 13 / 65

Document Type Definitions (DTDs)

Example
<!DOCTYPE store [

<!ELEMENT store (normal,discount)>

<!ELEMENT normal (guitar*)>

<!ELEMENT discount (guitar+)>

<!ELEMENT guitar (maker,price,discount?)>

<!ELEMENT maker (#PCDATA)>

<!ELEMENT price (#PCDATA)>

<!ELEMENT discount (#PCDATA)>

]>

Corresponding grammar (start symbol store)

store → normal discount
normal → guitar∗

discount → guitar+

guitar → maker price discount?
maker → DATA
price → DATA
discount → DATA

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 14 / 65

Document Type Definitions (DTDs)

XML Document

store

normal

guitar

maker

“Tandler”

price

“3500”

guitar

maker

“Fender”

price

“1000”

discount

guitar

maker

“Gibson”

price

“2500”

discount

“10%”

Corresponding grammar (start symbol store)

store → normal discount
normal → guitar∗

discount → guitar+

guitar → maker price discount?
maker → DATA
price → DATA
discount → DATA

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 15 / 65

Extended Context-free grammars as a formal abstraction

Definition

A DTD is a triple (Σ,d ,sd) where

Σ is a finite alphabet

sd ∈ Σ is the start symbol

d : Σ→ RE(Σ) maps every Σ-symbol to a regular expression over Σ

Definition

A tree t satisfies d (is valid) iff

the root of t is labeled sd

for every node v labeled a the string formed by the children of v
belongs to d(a).

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 16 / 65

Optimization questions: from FLT to XML

Schema containment (⊆)

Given: Schemas d1, d2

Question: Is L(d1)⊆ L(d2)?

DTD containment reduces to containment of regular expressions

d1 ⊆ d2 iff d1(a)⊆ d2(a), ∀a ∈ Σ

(when d1 and d2 are reduced).

Theorem (Meyer, Stockmeyer, 1973)

Containment of regular expressions is PSPACE-complete.

Corollary

DTD containment is PSPACE-complete.

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 17 / 65

Optimization questions: from FLT to XML

Schema containment (⊆)

Given: Schemas d1, d2

Question: Is L(d1)⊆ L(d2)?

DTD containment reduces to containment of regular expressions

d1 ⊆ d2 iff d1(a)⊆ d2(a), ∀a ∈ Σ

(when d1 and d2 are reduced).

Theorem (Meyer, Stockmeyer, 1973)

Containment of regular expressions is PSPACE-complete.

Corollary

DTD containment is PSPACE-complete.

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 17 / 65

Optimization questions: from FLT to XML

Schema containment (⊆)

Given: Schemas d1, d2

Question: Is L(d1)⊆ L(d2)?

DTD containment reduces to containment of regular expressions

d1 ⊆ d2 iff d1(a)⊆ d2(a), ∀a ∈ Σ

(when d1 and d2 are reduced).

Theorem (Meyer, Stockmeyer, 1973)

Containment of regular expressions is PSPACE-complete.

Corollary

DTD containment is PSPACE-complete.

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 17 / 65

Optimization questions: from FLT to XML

Schema containment (⊆)

Given: Schemas d1, d2

Question: Is L(d1)⊆ L(d2)?

DTD containment reduces to containment of regular expressions

d1 ⊆ d2 iff d1(a)⊆ d2(a), ∀a ∈ Σ

(when d1 and d2 are reduced).

Theorem (Meyer, Stockmeyer, 1973)

Containment of regular expressions is PSPACE-complete.

Corollary

DTD containment is PSPACE-complete.

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 17 / 65

Outline

1 Introduction to XML

2 An FLT Approach to XML Research
Document Type Definitions
XML Queries
Extended Document Type Definitions and XML Schema
Characterizations of single-type EDTDs

3 From XML to Formal Language Theory
Complexity of Regular Expressions
Constructions on Regular Expressions
Automata Minimization

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 18 / 65

Queries for XML
Conjunctive Queries over Trees

XPath

Tree: Pattern:

a

b

e

d

c

d

a

b

d

c

d

Pattern Matching

Tree matches Pattern if there is a homomorphism h : Pattern → Tree

Homomorphism doesn’t have to be injective

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 19 / 65

Queries for XML
Conjunctive Queries over Trees

XPath

Tree: Pattern:

a

b

e

c

d

a

b

d

c

d

Pattern Matching

Tree matches Pattern if there is a homomorphism h : Pattern → Tree

Homomorphism doesn’t have to be injective

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 19 / 65

Queries for XML
Conjunctive Queries over Trees

Conjunctive Queries over Trees

Tree: Pattern:

a

b

e

d

c

d

a

b

d

c

d

Pattern Matching

Tree matches Pattern if there is a homomorphism h : Pattern → Tree

Homomorphism doesn’t have to be injective

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 19 / 65

Queries for XML
Conjunctive Queries over Trees

Conjunctive Queries over Trees

Tree: Pattern:

a

b

e

d

c

d

a

b c

d

Pattern Matching

Tree matches Pattern if there is a homomorphism h : Pattern → Tree

Homomorphism doesn’t have to be injective

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 19 / 65

Queries for XML
Conjunctive Queries over Trees

Conjunctive Queries over Trees

Tree: Pattern:

a

b

e

d

c

d

a

b c

d

Pattern Matching

Tree matches Pattern if there is a homomorphism h : Pattern → Tree

Homomorphism doesn’t have to be injective

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 19 / 65

Queries for XML
Conjunctive Queries over Trees

Conjunctive Queries over Trees

Tree: Pattern:

a

b

e

c

d

a

b c

d

Pattern Matching

Tree matches Pattern if there is a homomorphism h : Pattern → Tree

Homomorphism doesn’t have to be injective

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 19 / 65

Query Optimization

L(Q): the set of trees that match query Q

Query Containment

Given two queries Q1 and Q2, is L(Q1)⊆ L(Q2)?

Query Containment w.r.t. a DTD

Given Q1, Q2, and a DTD d , is L(Q1)∩L(d)⊆ L(Q2)?

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 20 / 65

XPath Query Optimization
Formal Language Theory to the Rescue!

XPath Query

a

b

d

c

d

Lemma

For each XPath query Q there is an Alternating Tree Automaton A s.t.

L(Q) = L(A)

Moreover, |A| is polynomial in |Q|, even if Q uses disjunction and negation

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 21 / 65

XPath Query Optimization
Formal Language Theory to the Rescue!

XPath Query

a

b

d

c

d

Lemma

For each XPath query Q there is an Alternating Tree Automaton A s.t.

L(Q) = L(A)

Moreover, |A| is polynomial in |Q|

, even if Q uses disjunction and negation

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 21 / 65

XPath Query Optimization
Formal Language Theory to the Rescue!

XPath Query

a

b

d

c

d

Lemma

For each XPath query Q there is an Alternating Tree Automaton A s.t.

L(Q) = L(A)

Moreover, |A| is polynomial in |Q|, even if Q uses disjunction and negation

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 21 / 65

XPath Query Optimization
Formal Language Theory to the Rescue!

Lemma

For each XPath query Q there is an Alternating Tree Automaton A s.t.

L(Q) = L(A)

Moreover, |A| is polynomial in |Q|, even if Q uses disjunction and negation

Theorem

XPath Containment is in EXPTIME

XPath Containment w.r.t. DTDs is in EXPTIME

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 22 / 65

XPath Query Optimization
Formal Language Theory to the Rescue!

Lemma

For each XPath query Q there is an Alternating Tree Automaton A s.t.

L(Q) = L(A)

Moreover, |A| is polynomial in |Q|, even if Q uses disjunction and negation

Theorem

XPath Containment (tree pattern fragment) is NP-complete [Miklau, Suciu 2002]

XPath Containment (with ¬ and ∨) is EXPTIME-complete [Marx 2004]

XPath Containment w.r.t. DTDs is EXPTIME-complete [Neven, Schwentick 2003]

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 22 / 65

Conjunctive Query Optimization
Formal Language Theory to the Rescue!

Conjunctive Query

a

b c

d

Lemma (Björklund, Mar., Schwentick 2008)

For each Conjunctive Query Q there is an Alternating Tree Automaton A
s.t.

L(Q) = L(A)

But, |A| is exponential in |Q| and this is optimal

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 23 / 65

Conjunctive Query Optimization
Formal Language Theory to the Rescue!

Conjunctive Query

a

b c

d

Lemma (Björklund, Mar., Schwentick 2008)

For each Conjunctive Query Q there is an Alternating Tree Automaton A
s.t.

L(Q) = L(A)

But, |A| is exponential in |Q|

and this is optimal

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 23 / 65

Conjunctive Query Optimization
Formal Language Theory to the Rescue!

Conjunctive Query

a

b c

d

Lemma (Björklund, Mar., Schwentick 2008)

For each Conjunctive Query Q there is an Alternating Tree Automaton A
s.t.

L(Q) = L(A)

But, |A| is exponential in |Q| and this is optimal

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 23 / 65

Conjunctive Query Optimization
Formal Language Theory to the Rescue!

Lemma (Björklund, Mar., Schwentick 2008)

For each Conjunctive Query Q there is an Alternating Tree Automaton A
s.t.

L(Q) = L(A)

But, |A| is exponential in |Q| and this is optimal

Theorem

CQ Containment is ΠP
2 -complete [Björklund, Mar., Schwentick 2007]

CQ Containment w.r.t. DTDs is 2EXPTIME-complete
[Björklund, Mar., Schwentick 2008]

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 24 / 65

Conjunctive Query Optimization
Formal Language Theory to the Rescue!

Lemma (Björklund, Mar., Schwentick 2008)

For each Conjunctive Query Q there is an Alternating Tree Automaton A
s.t.

L(Q) = L(A)

But, |A| is exponential in |Q| and this is optimal

Theorem

CQ Containment is ΠP
2 -complete [Björklund, Mar., Schwentick 2007]

CQ Containment w.r.t. DTDs is 2EXPTIME-complete
[Björklund, Mar., Schwentick 2008]

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 24 / 65

Outline

1 Introduction to XML

2 An FLT Approach to XML Research
Document Type Definitions
XML Queries
Extended Document Type Definitions and XML Schema
Characterizations of single-type EDTDs

3 From XML to Formal Language Theory
Complexity of Regular Expressions
Constructions on Regular Expressions
Automata Minimization

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 25 / 65

Extended DTDs
Grammar based approach to unranked regular tree languages

Typed

tree t

′

store

guitar

maker

“Tandler”

price

“3500”

guitar

maker

“Fender”

price

“1000”

guitar

maker

“Gibson”

price

“2500”

discount

“10%”

1 1 2

Example

store → (guitar1)∗ (guitar2)+

guitar1 → maker price
guitar2 → maker price discount

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 26 / 65

Extended DTDs
Grammar based approach to unranked regular tree languages

Typed tree t ′

store

guitar

maker

“Tandler”

price

“3500”

guitar

maker

“Fender”

price

“1000”

guitar

maker

“Gibson”

price

“2500”

discount

“10%”

1 1 2

Example

store → (guitar1)∗ (guitar2)+

guitar1 → maker price
guitar2 → maker price discount

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 26 / 65

Extended DTDs
Grammar based approach to unranked regular tree languages

Definition (Papakonstantinou, Vianu, 2000)

Let ΣN := {σn | σ ∈ Σ,n ∈ N} be the alphabet of types.

An extended DTD (EDTD) is a tuple D = (Σ,d ,sd), where (d ,sd) is a
(finite) DTD over Σ∪ΣN.

A tree t is valid w.r.t. D if there is an assignment of types such that the
typed tree is a derivation tree of d .

Example

store → (guitar1)∗ (guitar2)+

guitar1 → maker price
guitar2 → maker price discount

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 27 / 65

EDTDs versus Tree Automata

Theorem (Papakonstantinou, Vianu, 2000, BMW)

Non-deterministic (unranked) tree automata and EDTDs define precisely
the class of (homogeneous) regular unranked tree languages.

Example

EDTD

store → (guitar1)∗ (guitar2)+

guitar1 → maker price
guitar2 → maker price discount

NTA

δ (store,store) = (guitar1)∗ (guitar2)+

δ (guitar1,guitar) = maker price
δ (guitar2,guitar) = maker price discount

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 28 / 65

EDTDs versus Tree Automata

Theorem (Papakonstantinou, Vianu, 2000, BMW)

Non-deterministic (unranked) tree automata and EDTDs define precisely
the class of (homogeneous) regular unranked tree languages.

Example

EDTD

store → (guitar1)∗ (guitar2)+

guitar1 → maker price
guitar2 → maker price discount

NTA

δ (store,store) = (guitar1)∗ (guitar2)+

δ (guitar1,guitar) = maker price
δ (guitar2,guitar) = maker price discount

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 28 / 65

Does XML Schema correspond to EDTDs?

<xs:element name="store">
<xs:complexType>
<xs:sequence>
<xs:element name="guitar" type="1"

minOccurs="0"
maxOccurs="unbounded"/>

<xs:element name="guitar" type="2"
minOccurs="1"
maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

</xs:element>

Rejected by XML Schema validator

Violates the Element Declarations Consistent Constraint.

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 29 / 65

Does XML Schema correspond to EDTDs?

<xs:element name="store">
<xs:complexType>
<xs:sequence>
<xs:element name="guitar" type="1"

minOccurs="0"
maxOccurs="unbounded"/>

<xs:element name="guitar" type="2"
minOccurs="1"
maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

</xs:element>

Rejected by XML Schema validator

Violates the Element Declarations Consistent Constraint.

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 29 / 65

A formalization of XML Schema: single-type EDTDs

XML Schema 1: Element Declarations Consistent constraint (Section
3.8.6)

It is illegal to have two elements of the same name [. . .] but different
types in a content model [. . .].

Definition (Murata, Lee, Mani, 2001)

A single-type EDTD is an EDTD for which in no regular expression two
types bi and bj with i 6= j occur.

Not single-type

store → (guitar1)∗ (guitar2)+

guitar1 → maker price
guitar2 → maker price discount

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 30 / 65

A formalization of XML Schema: single-type EDTDs

XML Schema 1: Element Declarations Consistent constraint (Section
3.8.6)

It is illegal to have two elements of the same name [. . .] but different
types in a content model [. . .].

Definition (Murata, Lee, Mani, 2001)

A single-type EDTD is an EDTD for which in no regular expression two
types bi and bj with i 6= j occur.

Not single-type

store → (guitar1)∗ (guitar2)+

guitar1 → maker price
guitar2 → maker price discount

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 30 / 65

A formalization of XML Schema: single-type EDTDs

XML Schema 1: Element Declarations Consistent constraint (Section
3.8.6)

It is illegal to have two elements of the same name [. . .] but different
types in a content model [. . .].

Definition (Murata, Lee, Mani, 2001)

A single-type EDTD is an EDTD for which in no regular expression two
types bi and bj with i 6= j occur.

Not single-type

store → (guitar1)∗ (guitar2)+

guitar1 → maker price
guitar2 → maker price discount

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 30 / 65

A formalization of XML Schema: single-type EDTDs

Definition (Murata, Lee, Mani, 2001)

A single-type EDTD is an EDTD in which in no regular expression two
types bi and bj with i 6= j occur.

Example

store → normal discount
normal → (guitar1)∗

discount → (guitar2)+

guitar1 → maker price
guitar2 → maker price discount

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 31 / 65

A formalization of XML Schema: single-type EDTDs

Formal abstraction

XML Schema ≈ single-type EDTDs

Immediate Questions

What kind of languages can be defined by single-type EDTDs?

Is it decidable whether an EDTD rewritten to an equivalent
single-type EDTD?

smart XML Schema validator

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 32 / 65

A formalization of XML Schema: single-type EDTDs

Formal abstraction

XML Schema ≈ single-type EDTDs

Immediate Questions

What kind of languages can be defined by single-type EDTDs?

Is it decidable whether an EDTD rewritten to an equivalent
single-type EDTD?

smart XML Schema validator

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 32 / 65

Outline

1 Introduction to XML

2 An FLT Approach to XML Research
Document Type Definitions
XML Queries
Extended Document Type Definitions and XML Schema
Characterizations of single-type EDTDs

3 From XML to Formal Language Theory
Complexity of Regular Expressions
Constructions on Regular Expressions
Automata Minimization

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 33 / 65

Properties of single-type EDTDs

Three properties

1 Single-type EDTDs admit unique top-down typing

2 Closure under a certain form of subtree exchange

3 Characterization as a pattern-based language

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 34 / 65

(1) Single-type EDTDs: simple top-down typing

store

normal

guitar

maker

“Tandler”

price

“3500”

guitar

maker

“Fender”

price

“1000”

discount

guitar

maker

“Gibson”

price

“2500”

discount

“10%”

1 1 2

Example

store → normal discount
normal → (guitar1)∗

discount → (guitar2)+

guitar1 → maker price
guitar2 → maker price discount

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 35 / 65

(1) Single-type EDTDs: simple top-down typing

store

normal

guitar

maker

“Tandler”

price

“3500”

guitar

maker

“Fender”

price

“1000”

discount

guitar

maker

“Gibson”

price

“2500”

discount

“10%”

1 1

2

Example

store → normal discount
normal → (guitar1)∗

discount → (guitar2)+

guitar1 → maker price
guitar2 → maker price discount

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 35 / 65

(1) Single-type EDTDs: simple top-down typing

store

normal

guitar

maker

“Tandler”

price

“3500”

guitar

maker

“Fender”

price

“1000”

discount

guitar

maker

“Gibson”

price

“2500”

discount

“10%”

1 1 2

Example

store → normal discount
normal → (guitar1)∗

discount → (guitar2)+

guitar1 → maker price
guitar2 → maker price discount

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 35 / 65

(1) Single-type EDTDs: simple top-down typing

Algorithm to validate and type a tree (Murata et al., 2001)

Given: tree t and single-type EDTD D = (Σ,d ,a0)

1 Check if root of t is labeled with a, assign type a0

2 for every interior node u with type bi , test whether the children of u
match µ(d(bi)). If so, assign unique type to every child. Else fail.

µ(a1 + b1c2) = a + bc

Corollary

Single-typedness implies unique top-down typing.

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 36 / 65

(1) Single-type EDTDs: simple top-down typing

Algorithm to validate and type a tree (Murata et al., 2001)

Given: tree t and single-type EDTD D = (Σ,d ,a0)

1 Check if root of t is labeled with a, assign type a0

2 for every interior node u with type bi , test whether the children of u
match µ(d(bi)). If so, assign unique type to every child. Else fail.

µ(a1 + b1c2) = a + bc

Corollary

Single-typedness implies unique top-down typing.

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 36 / 65

(2) An exchange property of single-type EDTDs

The Ancestor-String

a

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 37 / 65

(2) An exchange property for single-type EDTDs

Ancestor-Guarded Subtree Exchange

T is a regular tree language

∈ T

∈ T

⇒

∈ T

∈ T

Theorem (Mar., Neven, Schwentick 2005)

A regular tree language is definable by a single-type EDTD iff it is closed
under ancestor-guarded subtree exchange.

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 38 / 65

(2) Tool for proving inexpressibility

“At least one discount guitar” is not single-type

store

guitar

maker

“Tandler”

price

“3500”

guitar

maker

“Gibson”

price

“2500”

discount

“10%”

store

guitar

maker

“Fender”

price

“1000”

discount

“10%”

guitar

maker

“Gibson”

price

“2500”

store

guitar

maker

“Tandler”

price

“3500”

guitar

maker

“Gibson”

price

“2500”

Single-type EDTDs are not closed under union or complement.

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 39 / 65

(2) Tool for proving inexpressibility

“At least one discount guitar” is not single-type

store

guitar

maker

“Tandler”

price

“3500”

guitar

maker

“Gibson”

price

“2500”

discount

“10%”

store

guitar

maker

“Fender”

price

“1000”

discount

“10%”

guitar

maker

“Gibson”

price

“2500”

store

guitar

maker

“Tandler”

price

“3500”

guitar

maker

“Gibson”

price

“2500”

Single-type EDTDs are not closed under union or complement.

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 39 / 65

(2) Tool for proving inexpressibility

“At least one discount guitar” is not single-type

store

guitar

maker

“Tandler”

price

“3500”

guitar

maker

“Gibson”

price

“2500”

discount

“10%”

store

guitar

maker

“Fender”

price

“1000”

discount

“10%”

guitar

maker

“Gibson”

price

“2500”

store

guitar

maker

“Tandler”

price

“3500”

guitar

maker

“Gibson”

price

“2500”

Single-type EDTDs are not closed under union or complement.

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 39 / 65

(3) Pattern-based Language
Making dependencies explicit

Definition

An ancestor-based DTD A is a set of rules r → s where r and s are regular
expressions over Σ.

∈ L(r)

a

∈ L(s)

Definition

A tree t is valid w.r.t. A iff for every vertex v there is some r → s such
that v ’s ancestor string matches r and the children of v match s.

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 40 / 65

(3) Pattern-based Language
Making dependencies explicit

single-type EDTD

store → normal discount
normal → (guitar1)∗

discount → (guitar2)+

guitar1 → maker price
guitar2 → maker price discount

Ancestor-guarded DTD

store → normal discount
normal → guitar∗

discount → guitar+

∗· normal · guitar → maker price
∗· discount · guitar → maker price discount

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 41 / 65

Smart XML Schema validator

Theorem (Mar., Neven, Schwentick, 2005)

Deciding whether an EDTD is equivalent to a single-type EDTD or a DTD
is EXPTIME-complete.

Upper bound

Compute single-type closure D ′ of given EDTD D:
E.g, a1→ b1b2, b1→ c1, b2→ c2 becomes

a{1}→ b{1,2}b{1,2}

b{1,2}→ c{1}+ c{2}

L(D ′) = L(D) iff L(D) is single-type.
We know that L(D)⊆ L(D ′).
So, only need to test L(D ′)⊆ L(D): D ′∩¬D = /0.

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 42 / 65

Smart XML Schema validator

Theorem (Mar., Neven, Schwentick, 2005)

Deciding whether an EDTD is equivalent to a single-type EDTD or a DTD
is EXPTIME-complete.

Upper bound

Compute single-type closure D ′ of given EDTD D:
E.g, a1→ b1b2, b1→ c1, b2→ c2 becomes

a{1}→ b{1,2}b{1,2}

b{1,2}→ c{1,2}+ c{1,2}

L(D ′) = L(D) iff L(D) is single-type.
We know that L(D)⊆ L(D ′).
So, only need to test L(D ′)⊆ L(D): D ′∩¬D = /0.

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 42 / 65

Summary slide

What to remember?

XML Schema ≈ single-type EDTDs (regular tree languages

single-type EDTDs admit top-down unique typing

XML Schema can be simply characterized without using types

Relax NG corresponds to unranked regular tree languages (EDTDs)

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 43 / 65

Outline

1 Introduction to XML

2 An FLT Approach to XML Research
Document Type Definitions
XML Queries
Extended Document Type Definitions and XML Schema
Characterizations of single-type EDTDs

3 From XML to Formal Language Theory
Complexity of Regular Expressions
Constructions on Regular Expressions
Automata Minimization

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 44 / 65

Outline

1 Introduction to XML

2 An FLT Approach to XML Research
Document Type Definitions
XML Queries
Extended Document Type Definitions and XML Schema
Characterizations of single-type EDTDs

3 From XML to Formal Language Theory
Complexity of Regular Expressions
Constructions on Regular Expressions
Automata Minimization

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 45 / 65

Complexity of basic decision problems

Theorem (Mar., Neven, Schwentick 2004)

Let R be a class of regular expressions and C a complexity class. Then the
following are equivalent:

CONTAINMENT for R is in C ;

CONTAINMENT for DTD(R) is in C ;

CONTAINMENT for single-type EDTD(R) is in C ;

Theorem (Seidl 1990, 1994)

CONTAINMENT and EQUIVALENCE are EXPTIME-complete for
EDTDs (even with deterministic REs).

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 46 / 65

Complexity of basic decision problems

INTERSECTION: Given a number of schemas S1, . . . ,Sn, decide if⋂n
i=1 L(Si) 6= /0.

Theorem (Mar., Neven, Schwentick 2004)

Let R be a class of regular expressions and C a complexity class. Then the
following are equivalent:

INTERSECTION for R is in C ;

INTERSECTION for DTD(R) is in C .

Theorem (Mar., Neven, Schwentick 2004)

There is a class of regular expressions X such that

INTERSECTION for X is NP-complete;

INTERSECTION for single-type EDTD(X) is
EXPTIME-complete.

Remark: INTERSECTION for deterministic REs is PSPACE-complete.

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 47 / 65

Complexity of basic decision problems

INTERSECTION: Given a number of schemas S1, . . . ,Sn, decide if⋂n
i=1 L(Si) 6= /0.

Theorem (Mar., Neven, Schwentick 2004)

Let R be a class of regular expressions and C a complexity class. Then the
following are equivalent:

INTERSECTION for R is in C ;

INTERSECTION for DTD(R) is in C .

Theorem (Mar., Neven, Schwentick 2004)

There is a class of regular expressions X such that

INTERSECTION for X is NP-complete;

INTERSECTION for single-type EDTD(X) is
EXPTIME-complete.

Remark: INTERSECTION for deterministic REs is PSPACE-complete.
Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 47 / 65

Focus on Regular Expressions

What to remember?

Decision problems for XML Schema translate to decision problems for
regular expressions.

What regular expression classes are interesting?

Regular expressions that occur in schemas!

A base symbol is a regular expression w , w?, or w∗ where w is a
non-empty string;

A factor is of the form e, e?, e+, or e∗ where e is a disjunction of
base symbols.

A CHAin Regular Expression (CHARE) is ε, /0, or a sequence f1 · · · fk
of factors.

[Bex,Neven,Van den Bussche 2004]: > 90% of expressions in practical
DTDs or XSDs are CHAREs

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 48 / 65

Focus on Regular Expressions

What to remember?

Decision problems for XML Schema translate to decision problems for
regular expressions.

What regular expression classes are interesting?

Regular expressions that occur in schemas!

A base symbol is a regular expression w , w?, or w∗ where w is a
non-empty string;

A factor is of the form e, e?, e+, or e∗ where e is a disjunction of
base symbols.

A CHAin Regular Expression (CHARE) is ε, /0, or a sequence f1 · · · fk
of factors.

[Bex,Neven,Van den Bussche 2004]: > 90% of expressions in practical
DTDs or XSDs are CHAREs

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 48 / 65

Regular Expression Analysis Revisited

Fragment CONTAINMENT EQUIVALENCE INTERSECTION
a,a+ in PTIME (DFA!) in PTIME in PTIME
a,a∗ coNP in PTIME NP
a,a? coNP in PTIME NP

a,(+a)∗ PSPACE in PSPACE NP
all−{(+w)∗,(+w)+} PSPACE in PSPACE NP

a,(+w)∗ PSPACE in PSPACE PSPACE [Bala 2002]
RE PSPACE PSPACE PSPACE

Observation

Not many PTIME results. . .

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 49 / 65

Regular Expression Analysis Revisited

Fragment CONTAINMENT EQUIVALENCE INTERSECTION
a,a+ in PTIME (DFA!) in PTIME in PTIME
a,a∗ coNP in PTIME NP
a,a? coNP in PTIME NP

a,(+a)∗ PSPACE in PSPACE NP
all−{(+w)∗,(+w)+} PSPACE in PSPACE NP

a,(+w)∗ PSPACE in PSPACE PSPACE [Bala 2002]
RE PSPACE PSPACE PSPACE

Observation

Not many PTIME results. . .

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 49 / 65

What Regular Expressions are Allowed in Schemas?

Counting and shuffle

Numerical occurrence operator (#): (a[4,5](b + c∗)7)

shuffle operator (a&b = {ab,ba})

Theorem (Mayer, Stockmeyer 1994)

CONTAINMENT and EQUIVALENCE for RE(&) is
EXPSPACE-complete

Theorem (Gelade, Mar., Neven 2007)

CONTAINMENT and EQUIVALENCE is EXPSPACE-complete for

RE(#) and

RE(#,&)

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 50 / 65

What Regular Expressions are Allowed in Schemas?

Counting and shuffle

Numerical occurrence operator (#): (a[4,5](b + c∗)7)

shuffle operator (a&b = {ab,ba})

Theorem (Mayer, Stockmeyer 1994)

CONTAINMENT and EQUIVALENCE for RE(&) is
EXPSPACE-complete

Theorem (Gelade, Mar., Neven 2007)

CONTAINMENT and EQUIVALENCE is EXPSPACE-complete for

RE(#) and

RE(#,&)

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 50 / 65

On the Search for more PTIME fragments

Theorem (Ghelli, Colazzo, Sartiani 2007)

CONTAINMENT is in PTIME for conflict-free regular expressions

Conflict-free

counting and interleaving allowed!

single occurrence

Kleene star only applied to disjunctions single symbols

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 51 / 65

On the Search for more PTIME fragments

Theorem (Ghelli, Colazzo, Sartiani 2007)

CONTAINMENT is in PTIME for conflict-free regular expressions

Conflict-free

counting and interleaving allowed!

single occurrence

Kleene star only applied to disjunctions single symbols

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 51 / 65

Outline

1 Introduction to XML

2 An FLT Approach to XML Research
Document Type Definitions
XML Queries
Extended Document Type Definitions and XML Schema
Characterizations of single-type EDTDs

3 From XML to Formal Language Theory
Complexity of Regular Expressions
Constructions on Regular Expressions
Automata Minimization

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 52 / 65

Complementing schemas

Schema Complementation

I have a schema S which I update to S ′

What are the documents I admitted in S , but not in S ′ anymore?

This should be L(S)−L(S ′) = L(S)∩L(S ′)

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 53 / 65

Complementing regular expressions

Given a regular expression r , define a regexp for L(r).

Naive approach: transform to an NFA, determinize, complement, and
transform again to a regular expression (2EXPTIME)

Lemma [Gelade and Neven 2008]

For every n, there is a regular expression r of size O(n), such that any
regular expression defining L(r) must be of size Ω(22n

)

Idea

Ehrenfeucht, Zeiger (1974): There is a class of DFAs Kn whose
smallest equivalent regular expression is at least 2n. (States =
{1, . . . ,n}, edges between i and j labeled with ai ,j)

Generalize this theorem to four-letter alphabets

Construct r of size O(n) for K2n

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 54 / 65

Complementing regular expressions

Given a regular expression r , define a regexp for L(r).

Naive approach: transform to an NFA, determinize, complement, and
transform again to a regular expression (2EXPTIME)

Lemma [Gelade and Neven 2008]

For every n, there is a regular expression r of size O(n), such that any
regular expression defining L(r) must be of size Ω(22n

)

Idea

Ehrenfeucht, Zeiger (1974): There is a class of DFAs Kn whose
smallest equivalent regular expression is at least 2n. (States =
{1, . . . ,n}, edges between i and j labeled with ai ,j)

Generalize this theorem to four-letter alphabets

Construct r of size O(n) for K2n

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 54 / 65

Complementing regular expressions

Given a regular expression r , define a regexp for L(r).

Naive approach: transform to an NFA, determinize, complement, and
transform again to a regular expression (2EXPTIME)

Lemma [Gelade and Neven 2008]

For every n, there is a regular expression r of size O(n), such that any
regular expression defining L(r) must be of size Ω(22n

)

Idea

Ehrenfeucht, Zeiger (1974): There is a class of DFAs Kn whose
smallest equivalent regular expression is at least 2n. (States =
{1, . . . ,n}, edges between i and j labeled with ai ,j)

Generalize this theorem to four-letter alphabets

Construct r of size O(n) for K2n

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 54 / 65

Outline

1 Introduction to XML

2 An FLT Approach to XML Research
Document Type Definitions
XML Queries
Extended Document Type Definitions and XML Schema
Characterizations of single-type EDTDs

3 From XML to Formal Language Theory
Complexity of Regular Expressions
Constructions on Regular Expressions
Automata Minimization

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 55 / 65

Schema Minimization

Schema Minimization

Given a schema D, compute the smallest equivalent schema D ′

Why relevant?

Recall: Query Optimization

Input: Queries Q1, Q2, and a schema D

Smaller schema improves the run-time of the query optimization problems!

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 56 / 65

Schema Minimization

Minimization is typically studied on automata models

and the results look prettier on deterministic automata

Question

What’s the deterministic automata model for XML?

single-type EDTDs with DFAs?

≈ top-down det.

deterministic unranked tree automata?

≈ bottom-up det.

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 57 / 65

Schema Minimization

Minimization is typically studied on automata models
and the results look prettier on deterministic automata

Question

What’s the deterministic automata model for XML?

single-type EDTDs with DFAs?

≈ top-down det.

deterministic unranked tree automata?

≈ bottom-up det.

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 57 / 65

Schema Minimization

Minimization is typically studied on automata models
and the results look prettier on deterministic automata

Question

What’s the deterministic automata model for XML?

single-type EDTDs with DFAs?

≈ top-down det.

deterministic unranked tree automata?

≈ bottom-up det.

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 57 / 65

Schema Minimization

Minimization is typically studied on automata models
and the results look prettier on deterministic automata

Question

What’s the deterministic automata model for XML?

single-type EDTDs with DFAs? ≈ top-down det.

deterministic unranked tree automata? ≈ bottom-up det.

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 57 / 65

Single-type EDTD Minimization

Theorem (Mar., Niehren 2005)

Single-type EDTD with DFA Minimization is in PTIME

Minimal models are unique

Minimization Algorithm

Reduce the input single-type EDTD
For every pair of states q1, q2, decide equivalence
If equivalent, merge q1 and q2

In the resulting EDTD, minimize each DFA

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 58 / 65

Unranked Tree Automaton Minimization

(Brüggemann-Klein, Murata, Wood 2001)

A bottom-up unranked tree automaton is deterministic if for every pair of
rules a(L1)→ q1 and a(L2)→ q2,

L1∩L2 = /0

Additional requirement: L1, L2 represented by DFAs

Theorem (Mar., Niehren 2005)

MINIMIZATION is NP-complete for deterministic unranked tree
automata

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 59 / 65

Unranked Tree Automaton Minimization

For the right definition of bottom-up determinism:

Theorem (Mar., Niehren 2005)

MINIMIZATION is in P for bottom-up deterministic tree automata

the Myhill-Nerode theorem for unranked tree languages holds

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 60 / 65

Myhill-Nerode for Unranked Tree Automata

For tree language L, define relation ≡L on trees

Definition

t1
≡L t2

if

∀
E

:
E

t1

∈ L iff
E

t2

∈ L

≡L is an equivalence relation on unranked trees

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 61 / 65

Myhill-Nerode for Unranked Tree Automata

Theorem (Myhill-Nerode for Unranked Trees (Mar., Niehren 2005))

Let L be an unranked tree language.
The following are equivalent:

L is regular

≡L has finitely many equivalence classes

Moreover, the equivalence classes of ≡L correspond to states of minimal
(new) bottom-up deterministic unranked TA for L

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 62 / 65

Back to the Basics
NFA Minimization

Question

How much non-determinism can be admitted for PTIME minimization?

Theorem (Jiang, Ravikumar 1993)

DFA → unambiguous FA MINIMIZATION is NP-complete

Theorem (Malcher 2003)

MINIMIZATION is NP-complete for

NFAs with fixed branching (≥ 3)

NFAs with at least two start states

Question Revisited

Can there be any non-determinism at all?

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 63 / 65

Back to the Basics
NFA Minimization

Question

How much non-determinism can be admitted for PTIME minimization?

Theorem (Jiang, Ravikumar 1993)

DFA → unambiguous FA MINIMIZATION is NP-complete

Theorem (Malcher 2003)

MINIMIZATION is NP-complete for

NFAs with fixed branching (≥ 3)

NFAs with at least two start states

Question Revisited

Can there be any non-determinism at all?

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 63 / 65

Back to the Basics
NFA Minimization

Question

How much non-determinism can be admitted for PTIME minimization?

Theorem (Jiang, Ravikumar 1993)

DFA → unambiguous FA MINIMIZATION is NP-complete

Theorem (Malcher 2003)

MINIMIZATION is NP-complete for

NFAs with fixed branching (≥ 3)

NFAs with at least two start states

Question Revisited

Can there be any non-determinism at all?

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 63 / 65

Back to the Basics
NFA Minimization

Question

How much non-determinism can be admitted for PTIME minimization?

Theorem (Jiang, Ravikumar 1993)

DFA → unambiguous FA MINIMIZATION is NP-complete

Theorem (Malcher 2003)

MINIMIZATION is NP-complete for

NFAs with fixed branching (≥ 3)

NFAs with at least two start states

Question Revisited

Can there be any non-determinism at all?

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 63 / 65

Back to the Basics
Finite State Automata Minimization

Definition (δ NFA)

The class of NFAs that

have at most one pair (q,a) such that (q,a)→ q1 and (q,a)→ q2

are unambiguous

do not loop

Theorem (Björklund, Mar., ICALP 2008)

For every class C of NFAs such that δ NFA ⊆ C :

DFA → C MINIMIZATION is NP-hard

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 64 / 65

Back to the Basics
Finite State Automata Minimization

Definition (δ NFA)

The class of NFAs that

have at most one pair (q,a) such that (q,a)→ q1 and (q,a)→ q2

are unambiguous

do not loop

Theorem (Björklund, Mar., ICALP 2008)

For every class C of NFAs such that δ NFA ⊆ C :

DFA → C MINIMIZATION is NP-hard

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 64 / 65

Conclusion and Outlook

XML and Formal Languages are great for cross-fertilization

Many problems in XML research are solved through FLT techniques

XML research poses interesting questions for FLT

So, . . .

if you like formal language theory, but also want a PODS/ICDT paper

have a look at XML

if you like formal language theory, and you want more formal
language theory

have a look at XML

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 65 / 65

Conclusion and Outlook

XML and Formal Languages are great for cross-fertilization

Many problems in XML research are solved through FLT techniques

XML research poses interesting questions for FLT

So, . . .

if you like formal language theory, but also want a PODS/ICDT paper

have a look at XML

if you like formal language theory, and you want more formal
language theory

have a look at XML

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 65 / 65

	Introduction to XML
	An FLT Approach to XML Research
	Document Type Definitions
	XML Queries
	Extended Document Type Definitions and XML Schema
	Characterizations of single-type EDTDs

	From XML to Formal Language Theory
	Complexity of Regular Expressions
	Constructions on Regular Expressions
	Automata Minimization

