XML Research for Formal Language Theorists

Wim Martens

TU Dortmund

WESTFALISCHE >

|
x
&
8
=]

=

WISSEN:

Wim Martens (TU Dortmund) XML for Formal Language Theorists

tu

May 14, 2008

1/65

Goal of this talk

XML Research vs Formal Languages

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 2 /65

Goal of this talk

XML Research vs Formal Languages

o XML benefits from Formal Language Theory
o XML schemas = tree automata
o XPath patterns & regular expressions
e Formal Language Theory has a nice algorithmic toolbox

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008

2/ 65

Goal of this talk

XML Research vs Formal Languages

o XML benefits from Formal Language Theory

o XML schemas = tree automata

o XPath patterns & regular expressions

e Formal Language Theory has a nice algorithmic toolbox
@ Formal Language Theory benefits from XML

e XML motivates interesting Formal Language problems

Warning

@ Rather informal strongly biased survey

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 2 /65

Outline

@ Introduction to XML

© An FLT Approach to XML Research
@ Document Type Definitions
@ XML Queries
@ Extended Document Type Definitions and XML Schema
@ Characterizations of single-type EDTDs

© From XML to Formal Language Theory
o Complexity of Regular Expressions
@ Constructions on Regular Expressions
@ Automata Minimization

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 3/65

Outline

@ Introduction to XML

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 4 /65

Searching the Internet

Enough with these sissy keyword searches!)

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 5/ 65

Searching the Internet

A real search

Where can | buy a flatscreen-TV, in a store at most 20km from Dresden,
that is open tomorrow until 18:007

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 5/ 65

An Example

Internet

@@@@

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 6 /65

An Example

Wim Martens (TU Dortmund)

XML

XML

<time>
1800
</time>

<time>

1200
</time>

XML

<time>

1700
</time>

XML

XML for Formal Language Theorists

<time>
1800
</time>

May 14, 2008

6/ 65

An Example

XML

XML <time> XN!L

<time> 1200 <time> Xl\!lL
1800 <ftime> /&;0: <time>

</time> < > 1800

</time>

XML Schema

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 6 /65

A self-describing data

<store>
<normal>
<guitar type="electric">
<maker> Tandler </maker>
<price> 3500 </price>
</guitar>
<guitar type="electric">
<maker> Fender </maker>
<price> 1000 </price>
</guitar>
</normal>
<discount>
<guitar type="electric">
<maker> Gibson </maker>
<price> 2500 </price>
<discount> 10% </discount>
</guitar>
</discount>
</store>

element: <title>...</title>

start tag: <title>
end tag: </title>

Wim Martens U Dortmund)

format

XML for Formal Language Theorists

May 14, 2008

765

XML as a hierarchical structure

Example
normal discount
guitar (type=‘electric’) guitar (type="electric") guitar (type="electric")
AN AN RN
maker price maker price maker price discount
“Tandler” “3500" “Fender” "1000" “Gibson” 2500" “10%"
v

Abstraction: ordered, unranked, labeled tree (with data-values)

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 8 /65

XML schema languages

Schema

A schema defines the set of allowable labels and the way they can be
structured.

Advantages

@ automatic validation
automatic integration of data
automatic translation
query optimization

provides a user with a concrete semantics of the document

aids in the specification of meaningful queries over XML data

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 9 /65

XML schema languages

In formal language theoretic terms
A schema defines a tree language.

Example
e DTDs (W3C)
@ XML Schema (W3C)
o Relax NG (Clark, Murata)

@ several dozen others (DSD, Schematron, ...)

CFGs with REs
tree automata

~ tree automata

Wim Martens (TU Dortmund) XML for Formal Language Theorists

May 14, 2008 10 / 65

Summary slide

What to remember?
@ XML is an international standard for data exchange

@ XML documents or XML data are simply ordered unranked labeled
trees with data values

@ a schema defines a tree language (no data values — in this talk)

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 11 / 65

Outline

© An FLT Approach to XML Research

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 12 / 65

Outline

© An FLT Approach to XML Research
@ Document Type Definitions

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 13 / 65

Document Type Definitions (DTDs)

Example

<!DOCTYPE store [
<!ELEMENT store (normal,discount)>
<!ELEMENT normal (guitarx)>
<!ELEMENT discount (guitar+)>
<!ELEMENT guitar (maker,price,discount?)>
<!ELEMENT maker (#PCDATA) >
<!ELEMENT price (#PCDATA) >
<!ELEMENT discount (#PCDATA)>
1>

Corresponding grammar (start symbol store)

store — normal discount
normal — guitar®

discount — guitart

guitar — maker price discount?
maker — DATA

price — DATA

discount — DATA

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 14 / 65

Document Type Definitions (DTDs)

XML Document

store

normal discount
guitar guitar guitar
/N /N P N
maker price maker price maker price discount
\ \ \ \ \ \ [
“Tandler” "“3500" “Fender” "“1000" “Gibson” “2500" “10%"

Corresponding grammar (start symbol store)

store — normal discount

normal — guitar®

discount — guitar™

guitar — maker price discount?

maker — DATA

price — DATA

discount — DATA

4

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 15 / 65

Extended Context-free grammars as a formal abstraction

Definition

A DTD is a triple (¥,d,sy) where
@ 2 is a finite alphabet
@ sy € X is the start symbol

@ d: X — RE(X) maps every X-symbol to a regular expression over ¥

v

Definition
A tree t satisfies d (is valid) iff
@ the root of t is labeled sy

o for every node v labeled a the string formed by the children of v
belongs to d(a).

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 16 / 65

Optimization questions: from FLT to XML

Schema containment (CQ)

Given: Schemas di, d»
Question: Is L(dy) C L(d»)?

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 17 / 65

Optimization questions: from FLT to XML

Schema containment (CQ)

Given: Schemas di, d»
Question: Is L(dy) C L(d»)?

DTD containment reduces to containment of regular expressions

di Cds iff d]_(a) - dz(a), Vae X

(when d; and d, are reduced).

v

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 17 / 65

Optimization questions: from FLT to XML

Schema containment (CQ)

Given: Schemas di, d»
Question: Is L(dy) C L(d»)?

DTD containment reduces to containment of regular expressions
di Cds iff d]_(a) - dz(a), Vae X

(when d; and d, are reduced).

v

Theorem (Meyer, Stockmeyer, 1973)

Containment of regular expressions is PSPACE-complete.

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 17 / 65

Optimization questions: from FLT to XML

Schema containment (CQ)

Given: Schemas di, d»
Question: Is L(dy) C L(d»)?

DTD containment reduces to containment of regular expressions
di Cds iff d]_(a) - dz(a), Vae X

(when d; and d, are reduced).

v

Theorem (Meyer, Stockmeyer, 1973)

Containment of regular expressions is PSPACE-complete.

Corollary
DTD containment is PSPACE-complete.

v

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 17 / 65

Outline

© An FLT Approach to XML Research

@ XML Queries

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 18 / 65

Queries for XML

Conjunctive Queries over Trees

XPath

Tree: Pattern:
a a
/7 N\

by e VA
| \ b c
¢ Lo
d d d

Pattern Matching

@ Tree matches Pattern

© Homomorphism doesn’t have to be injective

if there is a homomorphism h: Pattern — Tree

Wim Martens (TU Dortmund)

XML for Formal Language Theorists May 14, 2008 19 / 65

Queries for XML

Conjunctive Queries over Trees

XPath

Tree: Pattern:
a a
i VA
\ b c
‘f I
c d d
\
d

Pattern Matching
@ Tree matches Pattern if there is a homomorphism h: Pattern — Tree

@ Homomorphism doesn’t have to be injective

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 19 / 65

Queries for XML

Conjunctive Queries over Trees

Conjunctive Queries over Trees

Tree:
a
7\
b Cc
\ \
e d
\
d

Pattern:

N\

l

d

Q &

Pattern Matching

@ Tree matches Pattern if there is a homomorphism h: Pattern — Tree

@ Homomorphism doesn’t have to be injective

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 19 / 65

Queries for XML

Conjunctive Queries over Trees

Conjunctive Queries over Trees
Tree: Pattern:

e Ay
o v/
d d

Pattern Matching
@ Tree matches Pattern if there is a homomorphism h: Pattern — Tree

@ Homomorphism doesn’t have to be injective

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 19 / 65

Queries for XML

Conjunctive Queries over Trees

Conjunctive Queries over Trees

Tree: Pattern:
a
VY
b c
\/
d

Pattern Matching
@ Tree matches Pattern if there is a homomorphism h: Pattern — Tree

@ Homomorphism doesn’t have to be injective

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 19 / 65

Queries for XML

Conjunctive Queries over Trees

Conjunctive Queries over Trees

Tree: Pattern:

/\
X/

Q- 0O0—0—0O — L

Pattern Matching
@ Tree matches Pattern if there is a homomorphism h: Pattern — Tree

@ Homomorphism doesn’t have to be injective

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 19 / 65

Query Optimization

L(Q): the set of trees that match query Q

Query Containment
Given two queries Q1 and @, is L(Q1) C L(Q2)?

Query Containment w.r.t. a DTD
Given @1, @, and a DTD d, is L(Q:)NL(d) C L(@2)?

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 20 / 65

XPath Query Optimization

Formal Language Theory to the Rescue!

XPath Query

VA

Q o
Q «— 0

Lemma

For each XPath query @ there is an Alternating Tree Automaton A s.t.

L(Q) = L(A)

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 21/ 65

XPath Query Optimization

Formal Language Theory to the Rescue!

XPath Query

VA

Q o
Q «— 0

Lemma

For each XPath query @ there is an Alternating Tree Automaton A s.t.

L(Q) = L(A)

Moreover,

A| is polynomial in | Q)|

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 21/ 65

XPath Query Optimization

Formal Language Theory to the Rescue!

XPath Query

VA

Q o
Q «— 0

Lemma

For each XPath query @ there is an Alternating Tree Automaton A s.t.

L(Q) = L(A)

Moreover,

Al is polynomial in |Q

, even if Q uses disjunction and negation
v

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 21/ 65

XPath Query Optimization

Formal Language Theory to the Rescue!

Lemma
For each XPath query Q there is an Alternating Tree Automaton A s.t.

L(Q) = L(A)

Moreover, |A| is polynomial in |Q

, even if Q uses disjunction and negation
4

Theorem

@ XPath Containment is in EXPTIME
@ XPath Containment w.r.t. DTDs is in EXPTIME

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 22 / 65

XPath Query Optimization

Formal Language Theory to the Rescue!

Lemma
For each XPath query @ there is an Alternating Tree Automaton A s.t.

L(Q) = L(A)

Moreover,

Al is polynomial in |Q

, even if Q uses disjunction and negation
v

Theorem
@ XPath Containment (tree pattern fragment) is NP-complete [Miklau, Suciu 2002]
@ XPath Containment (with —~ and V) is EXPTIME-complete [Marx 2004]
@ XPath Containment w.r.t. DTDs is EXPTIME-complete [Neven, Schwentick 2003])

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 22 / 65

Conjunctive Query Optimization

Formal Language Theory to the Rescue!
Conjunctive Query
a
\
b/ c
/
Xd

Lemma (Bjorklund, Mar., Schwentick 2008)

For each Conjunctive Query Q there is an Alternating Tree Automaton A
s.t.

L(Q) = L(A)

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 23 / 65

Conjunctive Query Optimization

Formal Language Theory to the Rescue!
Conjunctive Query
a
\
b/ c
/
Xd

Lemma (Bjorklund, Mar., Schwentick 2008)

For each Conjunctive Query Q there is an Alternating Tree Automaton A
s.t.

L(Q) = L(A)
But,

A| is exponential in |Q|

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 23 / 65

Conjunctive Query Optimization

Formal Language Theory to the Rescue!
Conjunctive Query
a
\
b/ c
/
Xd

Lemma (Bjorklund, Mar., Schwentick 2008)

For each Conjunctive Query Q there is an Alternating Tree Automaton A
s.t.

L(Q) = L(A)

A| is exponential in |Q| and this is optimal

But,

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 23 / 65

Conjunctive Query Optimization
Formal Language Theory to the Rescue!

Lemma (Bjorklund, Mar., Schwentick 2008)

For each Conjunctive Query Q there is an Alternating Tree Automaton A
s.t.

L(Q) = L(A)

But, |A| is exponential in |Q| and this is optimal

Theorem

o CQ Containment w.r.t. DTDs is 2EXPTIME-complete
[Bjérklund, Mar., Schwentick 2008]

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 24 / 65

Conjunctive Query Optimization
Formal Language Theory to the Rescue!

Lemma (Bjorklund, Mar., Schwentick 2008)

For each Conjunctive Query Q there is an Alternating Tree Automaton A
s.t.

L(Q) = L(A)

But, |A| is exponential in |Q| and this is optimal

Theorem
o CQ Containment is I'Ig -complete [Bjorklund, Mar., Schwentick 2007]

o CQ Containment w.r.t. DTDs is 2EXPTIME-complete
[Bjérklund, Mar., Schwentick 2008]

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 24 / 65

Outline

© An FLT Approach to XML Research

@ Extended Document Type Definitions and XML Schema

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 25 / 65

Extended DTDs

Grammar based approach to unranked regular tree languages

tree t
store
\
guitar guitar guitar
JooN JooN PN
maker price maker price maker price discount
\ [\ [\ [[
“Tandler” “3500" “Fender” “1000" “Gibson” “2500" “10%”"
v
Example
store — (guitar’)* (guitar®)*t
guitar! — maker price
guitar> — maker price discount
v
Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 26 / 65

Extended DTDs

Grammar based approach to unranked regular tree languages

Typed tree t/

guitarl
/N
maker price

[[
“Tandler” “3500"

store
|
guitarl
DZEERN
maker price
|

I
“Fender" “1000”

guitar?
PN
maker price discount
\ [\
“Gibson” "2500" “10%"

Example
store —
guitar?
guitar?

(guitar!)* (guitar?)*
— maker price
— maker price discount

Wim Martens (TU Dortmund)

XML for Formal Language Theorists

May 14, 2008

26 / 65

Extended DTDs

Grammar based approach to unranked regular tree languages

Definition (Papakonstantinou, Vianu, 2000)
Let ¥V :={0" |6 € ¥£,n € N} be the alphabet of types.

An extended DTD (EDTD) is a tuple D = (X, d, s4), where (d,sq) is a
(finite) DTD over TUXN,

A tree t is valid w.r.t. D if there is an assignment of types such that the
typed tree is a derivation tree of d.

Example

store — (guitart)* (guitar®) ™
guitarl — maker price
guitar> — maker price discount

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 27 / 65

EDTDs versus Tree Automata

Theorem (Papakonstantinou, Vianu, 2000, BMW)

Non-deterministic (unranked) tree automata and EDTDs define precisely
the class of (homogeneous) regular unranked tree languages.

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 28 / 65

EDTDs versus Tree Automata

Theorem (Papakonstantinou, Vianu, 2000, BMW)

Non-deterministic (unranked) tree automata and EDTDs define precisely

the class of (homogeneous) regular unranked tree languages.

Example

EDTD

store — (guitar’)* (guitar®)*t
guitar! — maker price
guitar> — maker price discount

NTA
O(store, store) = (guitar!)* (guitar®)*
8(guitar!, guitar) = maker price
8(guitar?,guitar) = maker price discount
v
Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008

28 / 65

Does XML Schema correspond to EDTDs?

<xs:element name="store">
<xs:complexType>
<xs:sequence>
<xs:element name="guitar" type="1"
min0Occurs="0"
max0Occurs="unbounded" />
<xs:element name="guitar" type="2"
minOccurs="1"
max0Occurs="unbounded" />
</xs:sequence>
</xs:complexType>
</xs:element>

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 29 / 65

Does XML Schema correspond to EDTDs?

<xs:element name="store">
<xs:complexType>
<xs:sequence>
<xs:element name="guitar" type="1"

minNernrae="NN

Rejected by XML Schema validator

Violates the Element Declarations Consistent Constraint.

minOccurs="1"
max0Occurs="unbounded" />
</xs:sequence>
</xs:complexType>
</xs:element>

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 29 / 65

A formalization of XML Schema: single-type EDTDs
XML Schema 1: Element Declarations Consistent constraint (Section
3.8.6)

It is illegal to have two elements of the same name [...] but different
types in a content model [...].

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 30 / 65

A formalization of XML Schema: single-type EDTDs

XML Schema 1: Element Declarations Consistent constraint (Section
3.8.6)

It is illegal to have two elements of the same name [...] but different
types in a content model [...].

Definition (Murata, Lee, Mani, 2001)

A single-type EDTD is an EDTD for which in no regular expression two
types b' and b with j # j occur.

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 30 / 65

A formalization of XML Schema: single-type EDTDs

XML Schema 1: Element Declarations Consistent constraint (Section
3.8.6)

It is illegal to have two elements of the same name [...] but different
types in a content model [...].

Definition (Murata, Lee, Mani, 2001)

A single-type EDTD is an EDTD for which in no regular expression two
types b' and b with j # j occur.

Not single-type

store — (guitar’)* (guitar®)*t
guitar! — maker price
guitar> — maker price discount

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 30 / 65

A formalization of XML Schema: single-type EDTDs

Definition (Murata, Lee, Mani, 2001)

A single-type EDTD is an EDTD in which in no regular expression two
types b’ and b/ with i # j occur.

Example
store — normal discount
normal — (guitar!)*
discount — (guitar®)*t
guitar! — maker price
guitar? — maker price discount

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 31/ 65

A formalization of XML Schema: single-type EDTDs

Formal abstraction
XML Schema = single-type EDTDs J

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 32 /65

A formalization of XML Schema: single-type EDTDs

Formal abstraction
XML Schema = single-type EDTDs

Immediate Questions
@ What kind of languages can be defined by single-type EDTDs?

@ Is it decidable whether an EDTD rewritten to an equivalent
single-type EDTD?

smart XML Schema validator |

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 32 /65

Outline

© An FLT Approach to XML Research

@ Characterizations of single-type EDTDs

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 33 /65

Properties of single-type EDTDs

Three properties
@ Single-type EDTDs admit unique top-down typing
@ Closure under a certain form of subtree exchange

© Characterization as a pattern-based language

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 34 / 65

(1) Single-type EDTDs: simple top-down typing

store

\

normal
. / \ -
guitar guitar
/N /N
maker price maker price
\ [\ [
“Tandler” “3500" “Fender” "1000"

Example
store — normal discount
normal — (guitar!)*
discount — (guitar?)*
guitar! — maker price
guitar? — maker price discount

discount
|
guitar
PN
maker price discount
\ \ [

“Gibson” "2500" “10%"

Wim Martens (TU Dortmund)

XML for Formal Language Theorists

May 14, 2008 35/ 65

(1) Single-type EDTDs: simple top-down typing

store

\

normal
— ~
guitar! guitar!
/N /N
maker price maker price
\ [\ [
“Tandler” “3500" “Fender” "1000"

Example
store — normal discount
normal — (guitar!)*
discount — (guitar?)*
guitar! — maker price
guitar? — maker price discount

discount
|
guitar
PN
maker price discount
\ \ [

“Gibson” "2500" “10%"

Wim Martens (TU Dortmund)

XML for Formal Language Theorists

May 14, 2008 35/ 65

(1) Single-type EDTDs: simple top-down typing

store

\

normal
— ~
guitar! guitar!
/N /N
maker price maker price
\ [\ [
“Tandler” “3500" “Fender” "1000"

Example
store — normal discount
normal — (guitar!)*
discount — (guitar?)*
guitar! — maker price
guitar? — maker price discount

discount
|
guitar?
PN
maker price discount
\ \ [

“Gibson” "2500" “10%"

Wim Martens (TU Dortmund)

XML for Formal Language Theorists

May 14, 2008 35/ 65

(1) Single-type EDTDs: simple top-down typing

Algorithm to validate and type a tree (Murata et al., 2001)
Given: tree t and single-type EDTD D = (X,d, a%)
@ Check if root of t is labeled with a, assign type a°

@ for every interior node u with type b', test whether the children of u
match u(d(b')). If so, assign unique type to every child. Else fail.
p(at +btc?) =a+bc

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 36 / 65

(1) Single-type EDTDs: simple top-down typing

Algorithm to validate and type a tree (Murata et al., 2001)
Given: tree t and single-type EDTD D = (X,d, a%)
@ Check if root of t is labeled with a, assign type a°

@ for every interior node u with type b', test whether the children of u
match u(d(b')). If so, assign unique type to every child. Else fail.
p(at +btc?) =a+bc

Corollary

Single-typedness implies unique top-down typing.

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 36 / 65

(2) An exchange property of single-type EDTDs

The Ancestor-String

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 37 / 65

(2) An exchange property for single-type EDTDs

Ancestor-Guarded Subtree Exchange
T is a regular tree language

A A A

eT

Theorem (Mar., Neven, Schwentick 2005)

A regular tree language is definable by a single-type EDTD iff it is closed
under ancestor-guarded subtree exchange.

o

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 38 / 65

(2) Tool for proving inexpressibility

“At least one discount guitar” is not single-type

store store
guitar guitar guitar guitar
RN PR AN /N
maker price maker price discount maker price discount maker price
I | I | I I | I
“Tandler” “3500" “Gibson” “2500" “10%" “Fender” “1000" “10%" “Gibson” “2500"

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 39 / 65

(2) Tool for proving inexpressibility

“At least one discount guitar” is not single-type
store store
guitar guitar guitar guitar
N PO PN /N
maker price maker price discount maker price discount maker price
| | | | | | | |
“Tandler” “3500" “Gibson” “2500" “10%" “Fender” “1000" “10%" “Gibson” “2500"
store
guitar guitar
/N /N
maker price maker price
| I
“Tandler" “3500" “Gibson” "2500"
y

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 39 / 65

(2) Tool for proving inexpressibility

“At least one discount guitar” is not single-type

guitar
/ AN
maker price

|
“Tandler" “3500"

store store
guitar guitar guitar
PN PN /N
maker price discount maker price discount maker price
| | | | | | |
“Gibson” “2500" “10%" “Fender” “1000" “10%" “Gibson” “2500"
store
guitar guitar
/N /N
maker price maker price
| I
“Tandler" “3500" “Gibson” "2500"

Single-type EDTDs are not closed under union or complement.

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008

39 / 65

(3) Pattern-based Language
Making dependencies explicit
Definition

An ancestor-based DTD A is a set of rules r — s where r and s are regular
expressions over X.

e L(r)

€ L(s)

Definition

A tree t is valid w.r.t. A iff for every vertex v there is some r — s such
that v's ancestor string matches r and the children of v match s.

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 40 / 65

(3) Pattern-based Language

Making dependencies explicit

single-type EDTD

store — normal discount
normal — (guitar!)*

discount — (guitar?)*

guitar! — maker price

guitar? — maker price discount

Ancestor-guarded DTD

store — normal discount
normal — guitar®
discount — guitar™
- normal - guitar ~ — maker price
x- discount - guitar — maker price discount
v
Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 41 /65

Smart XML Schema validator

Theorem (Mar., Neven, Schwentick, 2005)

Deciding whether an EDTD is equivalent to a single-type EDTD or a DTD
is EXPTIME-complete.

v

Upper bound

Compute single-type closure D’ of given EDTD D:
E.g, al — p1p?, b — 1, b?2 — 2 becomes

21 pl12) pi12)
12} _, 1) | (2}

L(D") = L(D) iff L(D) is single-type.
We know that L(D) C L(D').
So, only need to test L(D') C L(D): D'n—-D =0.

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 42 / 65

Smart XML Schema validator

Theorem (Mar., Neven, Schwentick, 2005)

Deciding whether an EDTD is equivalent to a single-type EDTD or a DTD
is EXPTIME-complete.

v

Upper bound

Compute single-type closure D’ of given EDTD D:
E.g, al — p1p?, b — 1, b?2 — 2 becomes

S pl12)pi12)
b{172} — C{1,2} =+ C{l’2}

L(D") = L(D) iff L(D) is single-type.
We know that L(D) C L(D').
So, only need to test L(D') C L(D): D'n—-D =0.

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 42 / 65

Summary slide

What to remember?
@ XML Schema = single-type EDTDs C regular tree languages
@ single-type EDTDs admit top-down unique typing
@ XML Schema can be simply characterized without using types

@ Relax NG corresponds to unranked regular tree languages (EDTDs)

v

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 43 / 65

Outline

© From XML to Formal Language Theory

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 44 / 65

Outline

© From XML to Formal Language Theory
o Complexity of Regular Expressions

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 45 / 65

Complexity of basic decision problems

Theorem (Mar., Neven, Schwentick 2004)

Let R be a class of regular expressions and € a complexity class. Then the
following are equivalent:

o CONTAINMENT for R is in €;
o CONTAINMENT for DTD(R) is in €;
o CONTAINMENT for single-type EDTD(R) is in €;

Theorem (Seidl 1990, 1994)

CONTAINMENT and EQUIVALENCE are EXPTIME-complete for
EDTDs (even with deterministic REs).

Wim Martens (TU Dortmund) XML for Formal Language Theorists

May 14, 2008 46 / 65

Complexity of basic decision problems

INTERSECTION: Given a number of schemas S1,...,S,, decide if
=1 L(Si) # 0.
Theorem (Mar., Neven, Schwentick 2004)

Let R be a class of regular expressions and € a complexity class. Then the
following are equivalent:

o INTERSECTION for R is in €;
e INTERSECTION for DTD(R) is in €.

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 47 / 65

Complexity of basic decision problems

INTERSECTION: Given a number of schemas S1,...,S,, decide if
i1 L(Si) # 0.
Theorem (Mar., Neven, Schwentick 2004)

Let R be a class of regular expressions and € a complexity class. Then the
following are equivalent:

o INTERSECTION for R is in €;
e INTERSECTION for DTD(R) is in €.

Theorem (Mar., Neven, Schwentick 2004)
There is a class of regular expressions 2" such that
o INTERSECTION for 2" is NP-complete;

o INTERSECTION for single-type EDTD(Z") is
EXPTIME-complete.

Remark: INTERSECTION for deterministic REs is PSPACE-complete.
XML for Formal Language Theorists May 14, 2008 47 / 65

Focus on Regular Expressions

What to remember?

@ Decision problems for XML Schema translate to decision problems for
regular expressions.

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 48 / 65

Focus on Regular Expressions

What to remember?

@ Decision problems for XML Schema translate to decision problems for
regular expressions.

What regular expression classes are interesting?
Regular expressions that occur in schemas!
@ A base symbol is a regular expression w, w?, or w* where w is a
non-empty string;
@ A factor is of the form e, e?, e™, or e* where e is a disjunction of
base symbols.

e A CHAin Regular Expression (CHARE) is €, 0, or a sequence fi --- fx
of factors.

[Bex,Neven,Van den Bussche 2004]: > 90% of expressions in practical
DTDs or XSDs are CHAREs

v

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 48 / 65

Regular Expression Analysis Revisited

Fragment CONTAINMENT | EQUIVALENCE INTERSECTION
a,at in PTIME (DFA!) in PTIME in PTIME
a,a" coNP in PTIME NP
a,a? coNP in PTIME NP

a,(+a)* PSPACE in PSPACE NP

all— {(+w)*, (+w)*} PSPACE in PSPACE NP

a,(+w) PSPACE in PSPACE | PSPACE [Bala 2002]

RE PSPACE PSPACE PSPACE
XML for Formal Language Theorists May 14, 2008

49 / 65

Regular Expression Analysis Revisited

Fragment CONTAINMENT | EQUIVALENCE INTERSECTION
a,at in PTIME (DFA!) in PTIME in PTIME
a,a* coNP in PTIME NP
a,a? coNP in PTIME NP
a,(+a)* PSPACE in PSPACE NP
all— {(+w)*, (+w)*} PSPACE in PSPACE NP
a,(+w)* PSPACE in PSPACE PSPACE [Bala 2002]
RE PSPACE PSPACE PSPACE
Observation
Not many PTIME results. ..
XML for Formal Language Theorists May 14, 2008 49 / 65

What Regular Expressions are Allowed in Schemas?

Counting and shuffle

o Numerical occurrence operator (#): (al*%(b+ c*)7)
o shuffle operator (a&b = {ab, ba})

Theorem (Mayer, Stockmeyer 1994)

CONTAINMENT and EQUIVALENCE for RE(&) is
EXPSPACE-complete

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 50 / 65

What Regular Expressions are Allowed in Schemas?

Counting and shuffle

o Numerical occurrence operator (#): (al*%(b+ c*)7)
o shuffle operator (a&b = {ab, ba})

Theorem (Mayer, Stockmeyer 1994)

CONTAINMENT and EQUIVALENCE for RE(&) is
EXPSPACE-complete

Theorem (Gelade, Mar., Neven 2007)

CONTAINMENT and EQUIVALENCE /s EXPSPACE-complete for
e RE(#) and
o RE(#,&)

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 50 / 65

On the Search for more PTIME fragments

Theorem (Ghelli, Colazzo, Sartiani 2007)
CONTAINMENT s in PTIME for conflict-free regular expressions

Conflict-free

@ counting and interleaving allowed!

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 51/ 65

On the Search for more PTIME fragments

Theorem (Ghelli, Colazzo, Sartiani 2007)
CONTAINMENT /s in PTIME for conflict-free regular expressions

Conflict-free
@ counting and interleaving allowed!

@ single occurrence

@ Kleene star only applied to disjunctions single symbols

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 51/ 65

Outline

© From XML to Formal Language Theory

@ Constructions on Regular Expressions

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 52 / 65

Complementing schemas

Schema Complementation

@ | have a schema S which | update to S’

@ What are the documents | admitted in S, but not in S’ anymore?

This should be L(S)—L(S") = L(S)NL(S)

Wim Martens (TU Dortmund)

XML for Formal Language Theorists

May 14, 2008

53 / 65

Complementing regular expressions

Given a regular expression r, define a regexp for L(r).

Naive approach: transform to an NFA, determinize, complement, and
transform again to a regular expression (2EXPTIME)

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008

54 / 65

Complementing regular expressions

Given a regular expression r, define a regexp for L(r).

Naive approach: transform to an NFA, determinize, complement, and
transform again to a regular expression (2EXPTIME)

Lemma [Gelade and Neven 2008]

For every n, there is a regular expression r of size &'(n), such that any
regular expression defining L(r) must be of size Q(2%")

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 54 / 65

Complementing regular expressions

Given a regular expression r, define a regexp for L(r).

Naive approach: transform to an NFA, determinize, complement, and
transform again to a regular expression (2EXPTIME)

Lemma [Gelade and Neven 2008]

For every n, there is a regular expression r of size &'(n), such that any
regular expression defining L(r) must be of size Q(2%")

Idea

o Ehrenfeucht, Zeiger (1974): There is a class of DFAs K), whose
smallest equivalent regular expression is at least 2". (States =
{1,...,n}, edges between i and j labeled with a; ;)

@ Generalize this theorem to four-letter alphabets

e Construct r of size &(n) for Kan

v

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 54 / 65

Outline

© From XML to Formal Language Theory

@ Automata Minimization

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 55 / 65

Schema Minimization

Schema Minimization

Given a schema D, compute the smallest equivalent schema D’

Why relevant?
@ Recall: Query Optimization
@ Input: Queries @1, @, and a schema D

Smaller schema improves the run-time of the query optimization problems!

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 56 / 65

Schema Minimization

Minimization is typically studied on automata models

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 57 / 65

Schema Minimization

Minimization is typically studied on automata models
and the results look prettier on deterministic automata

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 57 / 65

Schema Minimization

Minimization is typically studied on automata models
and the results look prettier on deterministic automata

Question
What's the deterministic automata model for XML?

@ single-type EDTDs with DFAs?

@ deterministic unranked tree automata?

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 57 / 65

Schema Minimization

Minimization is typically studied on automata models
and the results look prettier on deterministic automata

Question
What's the deterministic automata model for XML?
@ single-type EDTDs with DFAs? ~ top-down det.

@ deterministic unranked tree automata? =~ bottom-up det.

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 57 / 65

Single-type EDTD Minimization

Theorem (Mar., Niehren 2005)

o Single-type EDTD with DFA Minimization is in PTIME
@ Minimal models are unique

Minimization Algorithm

Reduce the input single-type EDTD

For every pair of states q;, g», decide equivalence
If equivalent, merge g1 and g»

In the resulting EDTD, minimize each DFA

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008

58 / 65

Unranked Tree Automaton Minimization

(Briiggemann-Klein, Murata, Wood 2001)

A bottom-up unranked tree automaton is deterministic if for every pair of
rules a(L1) — g1 and a(L2) — qo,

LiNnl,=20

Additional requirement: L, Ly represented by DFAs

Theorem (Mar., Niehren 2005)

MINIMIZATION js NP-complete for deterministic unranked tree
automata

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 59 / 65

Unranked Tree Automaton Minimization

For the right definition of bottom-up determinism:

Theorem (Mar., Niehren 2005)
o MINIMIZATION s in P for bottom-up deterministic tree automata
e the Myhill-Nerode theorem for unranked tree languages holds

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 60 / 65

Myhill-Nerode for Unranked Tree Automata

For tree language L, define relation =; on trees

Definition

A-A

=, is an equivalence relation on unranked trees

Wim Martens (TU Dortmund) XML for Formal Language Theorists

May 14, 2008

61/ 65

Myhill-Nerode for Unranked Tree Automata

Theorem (Myhill-Nerode for Unranked Trees (Mar., Niehren 2005))

Let L be an unranked tree language.
The following are equivalent:

o L is regular
@ =, has finitely many equivalence classes

Moreover, the equivalence classes of =; correspond to states of minimal
(new) bottom-up deterministic unranked TA for L

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 62 / 65

Back to the Basics
NFA Minimization

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 63 / 65

Back to the Basics
NFA Minimization

Question J

How much non-determinism can be admitted for PTIME minimization?

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 63 / 65

Back to the Basics
NFA Minimization

Question

How much non-determinism can be admitted for PTIME minimization?

Theorem (Jiang, Ravikumar 1993)
DFA — unambiguous FA MINIMIZATION is NP-complete

Theorem (Malcher 2003)
MINIMIZATION is NP-complete for
e NFAs with fixed branching (> 3)

@ NFAs with at least two start states

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 63 / 65

Back to the Basics

NFA Minimization

Question

How much non-determinism can be admitted for PTIME minimization?

Theorem (Jiang, Ravikumar 1993)
DFA — unambiguous FA MINIMIZATION is NP-complete

Theorem (Malcher 2003)
MINIMIZATION is NP-complete for
e NFAs with fixed branching (> 3)

@ NFAs with at least two start states

Question Revisited

Can there be any non-determinism at all?

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008

63 / 65

Back to the Basics

Finite State Automata Minimization

Definition (6NFA)
The class of NFAs that
@ have at most one pair (g, a) such that (g,a) — g1 and (g,a) — g2

@ are unambiguous
@ do not loop

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008

64 / 65

Back to the Basics

Finite State Automata Minimization

Definition (6NFA)

The class of NFAs that
@ have at most one pair (g, a) such that (g,a) — g1 and (g,a) — g2
@ are unambiguous

@ do not loop

Theorem (Bjorklund, Mar., ICALP 2008)
For every class € of NFAs such that SNFA C % :

DFA — & MINIMIZATION is NP-hard

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 64 / 65

Conclusion and Outlook

XML and Formal Languages are great for cross-fertilization
@ Many problems in XML research are solved through FLT techniques

@ XML research poses interesting questions for FLT

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 65 / 65

Conclusion and Outlook

XML and Formal Languages are great for cross-fertilization
@ Many problems in XML research are solved through FLT techniques

@ XML research poses interesting questions for FLT

So, ...
e if you like formal language theory, but also want a PODS/ICDT paper
have a look at XML

o if you like formal language theory, and you want more formal
language theory

have a look at XML

Wim Martens (TU Dortmund) XML for Formal Language Theorists May 14, 2008 65 / 65

	Introduction to XML
	An FLT Approach to XML Research
	Document Type Definitions
	XML Queries
	Extended Document Type Definitions and XML Schema
	Characterizations of single-type EDTDs

	From XML to Formal Language Theory
	Complexity of Regular Expressions
	Constructions on Regular Expressions
	Automata Minimization

