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Notation

NFA: (Non-Deterministic) Finite State Automata

DFA: Deterministic Finite State Automata

UFA: Unambiguous Finite State Automata

Unambiguous = at most one accepting run per string

Definition (X → Y Minimization standard version)

Input: Automaton A from class X

Output: Automaton B in class Y such that

A and B are equivalent
B is minimal in class Y
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Notation

Definition (X → Y Minimization standard version)

Input: Automaton A from class X

Output: Automaton B in class Y such that

A and B are equivalent
B is minimal in class Y

Example

DFA → DFA ≈ classical DFA minimization problem

DFA → NFA ≈ given a DFA, compute minimal NFA
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Notation

In this paper we’ll use the decision version of state minimization

Definition (X → Y Minimization decision version)

Input: Automaton A from class X , integer n in binary

Output: Does there exist an automaton B in class Y such that

A and B are equivalent and
B has at most n states?

Observation

Lower bounds for decision version imply lower bounds for standard version
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DFA Minimization

An old-school problem

Algorithms for minimizing DFAs are in every undergraduate CS
curriculum

If not, they should be

[Huffmann 1954, Moore 1956, Hopcroft 1971]

DFA → DFA Minimization is in O(n logn)
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But What About NFAs?

In practice: Bisimulation Minimization [Paige, Tarjan 1987]

efficient

usually makes the input automaton smaller

In general, NFA → NFA Minimization is PSPACE-complete
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But What About NFAs?

Further Results

[Jiang, Ravikumar 1993]:

UFA → UFA Minimization is NP-complete

DFA → UFA Minimization is NP-complete

DFA → NFA Minimization is PSPACE-complete
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But What About NFAs?

Further Results

[Malcher 2003]: Minimization is NP-complete for

DFA → k-MDFA for all k ≥ 2

DFA → NFA(branching k) for all k ≥ 3

k-MDFA: Possibly ambiguous automata with k initial states, but otherwise
a deterministic transition function

NFA(branching k): NFAs with k possible computations per string

Several (technical) different techniques are used for lower bounds
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But What About NFAs?

Question [Malcher 2003]

Are there any classes of non-DFAs with efficient minimization?
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But What About NFAs?

Question [Malcher 2003]

Are there any classes of non-DFAs with efficient minimization?

The short answer

[Here]: No
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But What About NFAs?

Question [Malcher 2003]

Are there any classes of non-DFAs with efficient minimization?

The long answer

[Here]: OK, yes. But we don’t think they’ll be very useful
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So What’s the Result?

Definition (δ NFA)

The class of NFAs that

have at most one pair (q,a) such that q
a→ q1 and q

a→ q2

have one start state

are unambiguous

do not loop

Theorem

For every class N of NFAs such that δNFA⊆N :

DFA →N Minimization is NP-hard

One NP lower bound proof that unifies and strengthens all previous cases
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Outline

1 Some Technical Details

2 Closer to Determinism?

3 Concluding Remarks
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A Proof Revisited (Jiang, Ravikumar 1993)

Definition (Vertex Cover)

G = (V ,E ) graph
V ′ ⊆ V Vertex Cover of G ⇔ ∀(v1,v2) ∈ E , {v1,v2}∩V ′ 6= /0

Definition (Set Basis)

B, C finite collections of finite sets

B Set Basis of C ⇔ ∀C ∈ C ∃BC ⊆B:
⋃

B∈BC

B = C
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A Proof Revisited (Jiang, Ravikumar 1993)

Definition (Set Basis)

B, C finite collections of finite sets

B Set Basis of C ⇔ ∀C ∈ C ∃BC ⊆B:
⋃

B∈BC

B = C

Definition (Separable Normal Set Basis)

B, C finite collections of finite sets

B Separable Normal Set Basis of C ⇔ ∀C ∈ C ∃BC ⊆B:⊎
B∈BC

B = C

the sets in BC are disjoint

BC contains at most two sets
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A Proof Revisited (Jiang, Ravikumar 1993)

Decision Problems

Vertex Cover:

Given G = (V ,E ) and integer k ,
does there exist a Vertex Cover with at most k nodes?

Separable Normal Set Basis:

Given collection C and integer s,
does there exist a Separable Normal Set Basis B with at most s sets?
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A Proof Revisited (Jiang, Ravikumar 1993)

Lemma

(Separable) Normal Set Basis is NP-complete

Proof Idea

Reduction from Vertex Cover
Translate each edge (vi ,vj) in graph G into the collection

bij

xi

yi

xj

aij

dij

eij

c4
ij

c2
ij

c3
ij

c1
ij

ci

c5
ij

cjyj
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This collection has |V |+ 5|E | sets
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A Proof Revisited (Jiang, Ravikumar 1993)

Proof Idea

Translate each edge (vi ,vj) in graph G into the collection

bij

xi

yi

xj

aij

dij

eij

c4
ij

c2
ij

c3
ij

c1
ij

ci

c5
ij

cjyj

This collection has |V |+ 5|E | sets

G has a Vertex Cover of size k ⇔
this collection has a (Sep.) Normal Set Basis with |V |+ 4|E |+k sets �
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Strengthening the Jiang-Ravikumar Result

Lemma (Set Basis = Sep.Norm.Set Basis on some NP-complete instances)

For the above reduction from Vertex Cover to Sep. NSB we also have that

G has a Vertex Cover of size k
⇔ the collection has a Separable NSB with |V |+ 4|E |+k sets

⇔ the collection has a Set Basis with |V |+ 4|E |+k sets

Proof.

If there is a Set Basis,
show with a case study that there is also a Separable NSB
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From Sep. Normal Set Basis to Automata Minimization

Let C = {C1, . . . ,Cn} be a collection of n sets, Ci = {bi ,1, . . . ,bi ,mi
}

A is the DFA for {aCb | C ∈ C and b ∈ C}

start

q1

qn

...
a

C1

Cn

b1,1, . . . ,b1,m1

bn,1, . . . ,bn,mn
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From Sep. Normal Set Basis to Automata Minimization

If there is a Separable NSB B = {B1, . . . ,B`} for C , then

fix, for every Cx ∈ C ,

B1
x and B2

x ∈B s.t. Cx = B1
x ]B2

x
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From Sep. Normal Set Basis to Automata Minimization

If there is a Separable NSB B = {B1, . . . ,B`} for C , then

start

B1
x

B1
y

B2
x

B2
y

...

...

a

a

Cx , . . .

Cy , . . .

b ∈ B1
x

b ∈ B1
y

Cx , . . .

Cy , . . .

b ∈ B2
x

b ∈ B2
y

is a δ NFA for {aCb | C ∈ C and b ∈ C} of size `+ 4
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From Sep. Normal Set Basis to Automata Minimization

There is a Separable NSB B = {B1, . . . ,B`} for C if and only if
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From Sep. Normal Set Basis to Automata Minimization

There is a Separable NSB B = {B1, . . . ,B`} for C if and only if

start

B1
x

B1
y

B2
x

B2
y

...

...

a

Cx , . . .

Cy , . . .

b ∈ B1
x

b ∈ B1
y

Cx , . . .

Cy , . . .

b ∈ B2
x

b ∈ B2
y

is an NFA for {aCb | C ∈ C and b ∈ C} of size `+ 3
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So we just proved . . .

Lemma

The following are equivalent:

C has a Sep. NSB of at most ` sets

there is a δNFA for L(A) of size at most `+ 4

there is an NFA for L(A) of size at most `+ 3

Corollary

There exists a set of regular languages L such that

DFA → δNFA Minimization is NP-complete
for DFAs accepting L

for each L ∈L , the minimal NFA for L
has one state less than the minimal δNFA for L
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Putting Things Together

Theorem

Let N be a class of NFAs.
If δNFA⊆N then DFA →N Minimization is NP-hard.

Proof.

We gave a reduction from Vertex Cover to DFA → δ NFA Minimization

Let N be a class s.t. δ NFA⊆N ⊆ NFA

A decision algorithm for DFA →N Minimization can approximate
DFA → δ NFA Minimization within a term 1

The approximation for DFA →N Minimization can be adapted to
an approximation of Vertex Cover within a term 1

Approximating Vertex Cover within a constant term is NP-complete
⇒ DFA →N Minimization is NP-hard
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Are All Classes of non-DFAs hard to Minimize?

(non-DFAs: Classes N such that DFA ⊆N but not N ⊆ DFA)
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Are All Classes of non-DFAs hard to Minimize?

Answer

Of course not!

Example (Infinitely many classes between DFA and δ NFA)

Take the class of DFAs, and add a single δ NFA
⇒ Minimization in P!
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Are All Classes of non-DFAs hard to Minimize?

Let’s look at a more interesting example

Definition (δ ′NFA)

The class of NFAs that

have at most one pair (q,a) such that q
a→ q1 and q

a→ q2

have one start state

are unambiguous

for each input w , have at most one rejecting run

(For each input w there are at most 2 runs: 1 accepting and 1 rejecting)
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Observation

δ ′NFAs can be minimized in P

but the minimal δ ′NFAs are the DFAs!
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δ ′NFA can be minimized in PTIME

Take δ ′NFA A that’s not a DFA, let (q,a) be the unique state,label with

q
a→ q1 q

a→ q2

Let w be a string that leads A to q

As A is a δ ′NFA, it must accept all waw ′

(otherwise there are two rejecting runs)

So A can be made smaller by merging q1 and q2 into new state q3

from which A accepts everything

A becomes deterministic this way

So, determinization followed by standard minimization is a P algorithm
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Concluding Remarks

What did we do?

State minimization is hard for all finite automata classes that include
δ NFAs

One proof unifying and strengthening previous approaches

The minimization tractability frontier is between δ NFA and δ ′NFA
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Concluding Remarks

Is everything solved yet?

What we didn’t consider yet: fixed alphabet size

What about approximations?
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Thank you for listening
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