The Tractability Frontier for NFA Minimization

Henrik Björklund
Wim Martens

TU Dortmund

Notation

- NFA: (Non-Deterministic) Finite State Automata
- DFA: Deterministic Finite State Automata
- UFA: Unambiguous Finite State Automata

Unambiguous $=$ at most one accepting run per string

Notation

- NFA: (Non-Deterministic) Finite State Automata
- DFA: Deterministic Finite State Automata
- UFA: Unambiguous Finite State Automata

Unambiguous $=$ at most one accepting run per string

Definition $(X \rightarrow Y$ Minimization standard version)

- Input: Automaton A from class X
- Output: Automaton B in class Y such that
- A and B are equivalent
- B is minimal in class Y

Notation

Definition $(X \rightarrow Y$ Minimization standard version)

- Input: Automaton A from class X
- Output: Automaton B in class Y such that
- A and B are equivalent
- B is minimal in class Y

Example

- DFA \rightarrow DFA \approx classical DFA minimization problem
- DFA \rightarrow NFA \approx given a DFA, compute minimal NFA

Notation

In this paper we'll use the decision version of state minimization

Definition $(X \rightarrow Y$ Minimization decision version)

- Input: Automaton A from class X, integer n in binary
- Output: Does there exist an automaton B in class Y such that
- A and B are equivalent and
- B has at most n states?

Observation

Lower bounds for decision version imply lower bounds for standard version

DFA Minimization

- An old-school problem
- Algorithms for minimizing DFAs are in every undergraduate CS curriculum
- If not, they should be
[Huffmann 1954, Moore 1956, Hopcroft 1971]
DFA \rightarrow DFA Minimization is in $\mathscr{O}(n \log n)$

But What About NFAs?

In practice: Bisimulation Minimization [Paige, Tarjan 1987]

- efficient
- usually makes the input automaton smaller

In general, NFA \rightarrow NFA Minimization is PSPACE-complete

But What About NFAs?

Further Results

[Jiang, Ravikumar 1993]:

- UFA \rightarrow UFA Minimization is NP-complete
- DFA \rightarrow UFA Minimization is NP-complete
- DFA \rightarrow NFA Minimization is PSPACE-complete

But What About NFAs?

Further Results

[Malcher 2003]: Minimization is NP-complete for

- DFA $\rightarrow k$-MDFA for all $k \geq 2$
- DFA \rightarrow NFA(branching k) for all $k \geq 3$
k-MDFA: Possibly ambiguous automata with k initial states, but otherwise a deterministic transition function

NFA(branching k): NFAs with k possible computations per string

Several (technical) different techniques are used for lower bounds

But What About NFAs?

Question [Malcher 2003]

Are there any classes of non-DFAs with efficient minimization?

But What About NFAs?

Question [Malcher 2003]
Are there any classes of non-DFAs with efficient minimization?

The short answer
[Here]: No

But What About NFAs?

Question [Malcher 2003]

Are there any classes of non-DFAs with efficient minimization?

The long answer
[Here]: OK, yes. But we don't think they'll be very useful

So What's the Result?

Definition (δ NFA)

The class of NFAs that

- have at most one pair (q, a) such that $q \xrightarrow{a} q_{1}$ and $q \xrightarrow{a} q_{2}$
- have one start state
- are unambiguous
- do not loop

So What's the Result?

Definition (δ NFA)

The class of NFAs that

- have at most one pair (q, a) such that $q \xrightarrow{a} q_{1}$ and $q \xrightarrow{a} q_{2}$
- have one start state
- are unambiguous
- do not loop

Theorem

For every class \mathscr{N} of $N F A$ such that $\delta N F A \subseteq \mathscr{N}$:

$$
\text { DFA } \rightarrow \mathscr{N} \text { Minimization is NP-hard }
$$

So What's the Result?

Definition (δ NFA)
The class of NFAs that

- have at most one pair (q, a) such that $q \xrightarrow{a} q_{1}$ and $q \xrightarrow{a} q_{2}$
- have one start state
- are unambiguous
- do not loop

Theorem

For every class \mathscr{N} of $N F A$ such that $\delta N F A \subseteq \mathscr{N}$:

$$
\text { DFA } \rightarrow \mathscr{N} \text { Minimization is NP-hard }
$$

One NP lower bound proof that unifies and strengthens all previous cases

Outline

(1) Some Technical Details

A Proof Revisited (Jiang, Ravikumar 1993)

Definition (Vertex Cover)
$G=(V, E)$ graph
$V^{\prime} \subseteq V$ Vertex Cover of $G \Leftrightarrow \forall\left(v_{1}, v_{2}\right) \in E,\left\{v_{1}, v_{2}\right\} \cap V^{\prime} \neq \emptyset$

Definition (Set Basis)

\mathscr{B}, \mathscr{C} finite collections of finite sets
\mathscr{B} Set Basis of $\mathscr{C} \Leftrightarrow \forall C \in \mathscr{C} \exists B_{C} \subseteq \mathscr{B}: \bigcup_{B \in B_{C}} B=C$

A Proof Revisited (Jiang, Ravikumar 1993)

Definition (Set Basis)

\mathscr{B}, \mathscr{C} finite collections of finite sets
\mathscr{B} Set Basis of $\mathscr{C} \Leftrightarrow \forall C \in \mathscr{C} \exists B_{C} \subseteq \mathscr{B}: \bigcup_{B \in B_{C}} B=C$

Definition (Separable Normal Set Basis)
\mathscr{B}, \mathscr{C} finite collections of finite sets
\mathscr{B} Separable Normal Set Basis of $\mathscr{C} \Leftrightarrow \forall C \in \mathscr{C} \exists B_{C} \subseteq \mathscr{B}$:

- $\biguplus B=C$ $B \in B_{C}$
- the sets in B_{C} are disjoint
- B_{C} contains at most two sets

A Proof Revisited (Jiang, Ravikumar 1993)

Decision Problems

- Vertex Cover:

Given $G=(V, E)$ and integer k, does there exist a Vertex Cover with at most k nodes?

- Separable Normal Set Basis:

Given collection \mathscr{C} and integer s, does there exist a Separable Normal Set Basis \mathscr{B} with at most s sets?

A Proof Revisited (Jiang, Ravikumar 1993)

Lemma

(Separable) Normal Set Basis is NP-complete

Proof Idea

Reduction from Vertex Cover
Translate each edge (v_{i}, v_{j}) in graph G into the collection

A Proof Revisited (Jiang, Ravikumar 1993)

Proof Idea

Translate each edge $\left(v_{i}, v_{j}\right)$ in graph G into the collection

This collection has $|V|+5|E|$ sets

A Proof Revisited (Jiang, Ravikumar 1993)

Proof Idea

Translate each edge $\left(v_{i}, v_{j}\right)$ in graph G into the collection

This collection has $|V|+5|E|$ sets
G has a Vertex Cover of size $k \Leftrightarrow$ this collection has a (Sep.) Normal Set Basis with $|V|+4|E|+k$ sets

Strengthening the Jiang-Ravikumar Result

Lemma (Set Basis $=$ Sep.Norm.Set Basis on some NP-complete instances) For the above reduction from Vertex Cover to Sep. NSB we also have that
G has a Vertex Cover of size k
\Leftrightarrow the collection has a Separable NSB with $|V|+4|E|+k$ sets \Leftrightarrow the collection has a Set Basis with $|V|+4|E|+k$ sets

Proof.

If there is a Set Basis, show with a case study that there is also a Separable NSB

From Sep. Normal Set Basis to Automata Minimization

Let $\mathscr{C}=\left\{C_{1}, \ldots, C_{n}\right\}$ be a collection of n sets, $C_{i}=\left\{b_{i, 1}, \ldots, b_{i, m_{i}}\right\}$
A is the DFA for $\{a C b \mid C \in \mathscr{C}$ and $b \in C\}$

From Sep. Normal Set Basis to Automata Minimization

If there is a Separable NSB $\mathscr{B}=\left\{B_{1}, \ldots, B_{\ell}\right\}$ for \mathscr{C}, then
fix, for every $C_{x} \in \mathscr{C}$,

$$
B_{x}^{1} \text { and } B_{x}^{2} \in \mathscr{B} \text { s.t. } C_{x}=B_{x}^{1} \uplus B_{x}^{2}
$$

From Sep. Normal Set Basis to Automata Minimization

If there is a Separable NSB $\mathscr{B}=\left\{B_{1}, \ldots, B_{\ell}\right\}$ for \mathscr{C}, then

is a δ NFA for $\{a C b \mid C \in \mathscr{C}$ and $b \in C\}$ of size $\ell+4$

From Sep. Normal Set Basis to Automata Minimization

There is a Separable NSB $\mathscr{B}=\left\{B_{1}, \ldots, B_{\ell}\right\}$ for \mathscr{C} if and only if

is a δ NFA for $\{a C b \mid C \in \mathscr{C}$ and $b \in C\}$ of size $\ell+4$

From Sep. Normal Set Basis to Automata Minimization

There is a Separable NSB $\mathscr{B}=\left\{B_{1}, \ldots, B_{\ell}\right\}$ for \mathscr{C} if and only if

is an NFA for $\{a C b \mid C \in \mathscr{C}$ and $b \in C\}$ of size $\ell+3$

So we just proved ...

Lemma

The following are equivalent:

- \mathscr{C} has a Sep. NSB of at most ℓ sets
- there is a $\delta N F A$ for $L(A)$ of size at most $\ell+4$
- there is an NFA for $L(A)$ of size at most $\ell+3$

Corollary

There exists a set of regular languages \mathscr{L} such that

- DFA $\rightarrow \delta$ NFA Minimization is NP-complete
for DFAs accepting \mathscr{L}
- for each $L \in \mathscr{L}$, the minimal NFA for L has one state less than the minimal $\delta N F A$ for L

Putting Things Together

```
Theorem
Let \mathscr{N}\mathrm{ be a class of NFAs.}
If }\deltaNFA\subseteq\mathscr{N}\mathrm{ then DFA }->\mathscr{N}\mathrm{ Minimization is NP-hard.
```


Proof.

We gave a reduction from Vertex Cover to DFA $\rightarrow \delta$ NFA Minimization

Putting Things Together

```
Theorem
Let }\mathscr{N}\mathrm{ be a class of NFAs.
If }\deltaNFA\subseteq\mathscr{N}\mathrm{ then DFA }->\mathscr{N}\mathrm{ Minimization is NP-hard.
```


Proof.

We gave a reduction from Vertex Cover to DFA $\rightarrow \delta$ NFA Minimization Let \mathscr{N} be a class s.t. $\delta \mathrm{NFA} \subseteq \mathscr{N} \subseteq \mathrm{NFA}$

Putting Things Together

```
Theorem
Let }\mathscr{N}\mathrm{ be a class of NFAs.
If }\deltaNFA\subseteq\mathscr{N}\mathrm{ then DFA }->\mathscr{N}\mathrm{ Minimization is NP-hard.
```

Proof.
We gave a reduction from Vertex Cover to DFA $\rightarrow \delta$ NFA Minimization
Let \mathscr{N} be a class s.t. $\delta \mathrm{NFA} \subseteq \mathscr{N} \subseteq \mathrm{NFA}$

A decision algorithm for DFA $\rightarrow \mathscr{N}$ Minimization can approximate DFA $\rightarrow \delta$ NFA Minimization within a term 1

Putting Things Together

```
Theorem
Let }\mathscr{N}\mathrm{ be a class of NFAs.
If }\deltaNFA\subseteq\mathscr{N}\mathrm{ then DFA }->\mathscr{N}\mathrm{ Minimization is NP-hard.
```

Proof.
We gave a reduction from Vertex Cover to DFA $\rightarrow \delta$ NFA Minimization
Let \mathscr{N} be a class s.t. $\delta \mathrm{NFA} \subseteq \mathscr{N} \subseteq \mathrm{NFA}$

A decision algorithm for DFA $\rightarrow \mathscr{N}$ Minimization can approximate DFA $\rightarrow \delta$ NFA Minimization within a term 1

The approximation for DFA $\rightarrow \mathscr{N}$ Minimization can be adapted to an approximation of Vertex Cover within a term 1

Putting Things Together

```
Theorem
Let \mathscr{N}\mathrm{ be a class of NFAs.}
If }\deltaNFA\subseteq\mathscr{N}\mathrm{ then DFA }->\mathscr{N}\mathrm{ Minimization is NP-hard.
```


Proof.

We gave a reduction from Vertex Cover to DFA $\rightarrow \delta$ NFA Minimization
Let \mathscr{N} be a class s.t. $\delta \mathrm{NFA} \subseteq \mathscr{N} \subseteq \mathrm{NFA}$
A decision algorithm for DFA $\rightarrow \mathscr{N}$ Minimization can approximate DFA $\rightarrow \delta$ NFA Minimization within a term 1

The approximation for DFA $\rightarrow \mathscr{N}$ Minimization can be adapted to an approximation of Vertex Cover within a term 1

Approximating Vertex Cover within a constant term is NP-complete \Rightarrow DFA $\rightarrow \mathscr{N}$ Minimization is NP-hard

Outline

(1) Some Technical Details

(2) Closer to Determinism?

(3) Concluding Remarks

Are All Classes of non-DFAs hard to Minimize?

(non-DFAs: Classes \mathscr{N} such that DFA $\subseteq \mathscr{N}$ but not $\mathscr{N} \subseteq$ DFA)

Are All Classes of non-DFAs hard to Minimize?

Answer
Of course not!

Example (Infinitely many classes between DFA and δ NFA)
Take the class of DFAs, and add a single δ NFA
\Rightarrow Minimization in \mathbf{P} !

Are All Classes of non-DFAs hard to Minimize?

Let's look at a more interesting example
Definition (δ^{\prime} NFA)
The class of NFAs that

- have at most one pair (q, a) such that $q \xrightarrow{a} q_{1}$ and $q \xrightarrow{a} q_{2}$
- have one start state
- are unambiguous
- for each input w, have at most one rejecting run
(For each input w there are at most 2 runs: 1 accepting and 1 rejecting)

Are All Classes of non-DFAs hard to Minimize?

Let's look at a more interesting example
Definition (δ^{\prime} NFA)
The class of NFAs that

- have at most one pair (q, a) such that $q \xrightarrow{a} q_{1}$ and $q \xrightarrow{a} q_{2}$
- have one start state
- are unambiguous
- for each input w, have at most one rejecting run
(For each input w there are at most 2 runs: 1 accepting and 1 rejecting)

Observation

- δ^{\prime} NFAs can be minimized in \mathbf{P}

Are All Classes of non-DFAs hard to Minimize?

Let's look at a more interesting example
Definition (δ^{\prime} NFA)
The class of NFAs that

- have at most one pair (q, a) such that $q \xrightarrow{a} q_{1}$ and $q \xrightarrow{a} q_{2}$
- have one start state
- are unambiguous
- for each input w, have at most one rejecting run
(For each input w there are at most 2 runs: 1 accepting and 1 rejecting)

Observation

- δ^{\prime} NFAs can be minimized in \mathbf{P}
- but the minimal δ^{\prime} NFAs are the DFAs!

δ^{\prime} NFA can be minimized in PTIME

Take δ^{\prime} NFA A that's not a DFA, let (q, a) be the unique state,label with

$$
q \xrightarrow{a} q_{1} \quad q \xrightarrow{a} q_{2}
$$

Let w be a string that leads A to q

δ^{\prime} NFA can be minimized in PTIME

Take δ^{\prime} NFA A that's not a DFA, let (q, a) be the unique state,label with

$$
q \xrightarrow{a} q_{1} \quad q \xrightarrow{a} q_{2}
$$

Let w be a string that leads A to q
As A is a δ^{\prime} NFA, it must accept all waw ${ }^{\prime}$
(otherwise there are two rejecting runs)

δ^{\prime} NFA can be minimized in PTIME

Take δ^{\prime} NFA A that's not a DFA, let (q, a) be the unique state,label with

$$
q \xrightarrow{a} q_{1} \quad q \xrightarrow{a} q_{2}
$$

Let w be a string that leads A to q
As A is a δ^{\prime} NFA, it must accept all waw ${ }^{\prime}$
(otherwise there are two rejecting runs)
So A can be made smaller by merging q_{1} and q_{2} into new state q_{3} from which A accepts everything
A becomes deterministic this way
So, determinization followed by standard minimization is a \mathbf{P} algorithm

Outline

(1) Some Technical Details

2 Closer to Determinism?
(3) Concluding Remarks

Concluding Remarks

What did we do?

- State minimization is hard for all finite automata classes that include δ NFAs
- One proof unifying and strengthening previous approaches
- The minimization tractability frontier is between δ NFA and δ^{\prime} NFA

Concluding Remarks

Is everything solved yet?

- What we didn't consider yet: fixed alphabet size
- What about approximations?

Thank you for listening

