The Tractability Frontier for NFA Minimization

Henrik Björklund

Wim Martens

TU Dortmund

Wim Martens (TU Dortmund)

Tractability Frontier for NFA Minimization

June 4, 2008 1 / 24

< 3 >

- NFA: (Non-Deterministic) Finite State Automata
- DFA: Deterministic Finite State Automata
- UFA: Unambiguous Finite State Automata

Unambiguous = at most one accepting run per string

- NFA: (Non-Deterministic) Finite State Automata
- DFA: Deterministic Finite State Automata
- UFA: Unambiguous Finite State Automata

Unambiguous = at most one accepting run per string

Definition $(X \rightarrow Y$ Minimization standard version)

- Input: Automaton A from class X
- Output: Automaton B in class Y such that
 - A and B are equivalent
 - B is minimal in class Y

Definition $(X \rightarrow Y$ Minimization standard version)

- Input: Automaton A from class X
- Output: Automaton B in class Y such that
 - A and B are equivalent
 - B is minimal in class Y

Example

- \bullet DFA \rightarrow DFA \approx classical DFA minimization problem
- DFA \rightarrow NFA \approx given a DFA, compute minimal NFA

< 回 > < 三 > < 三 >

In this paper we'll use the decision version of state minimization

Definition $(X \rightarrow Y \text{ Minimization} \text{ decision version})$

- Input: Automaton A from class X, integer n in binary
- Output: Does there exist an automaton B in class Y such that
 - A and B are equivalent and
 - *B* has at most *n* states?

Observation

Lower bounds for decision version imply lower bounds for standard version

• • = • • = •

- An old-school problem
- Algorithms for minimizing DFAs are in every undergraduate CS curriculum
- If not, they should be

[Huffmann 1954, Moore 1956, Hopcroft 1971]

 $\mathsf{DFA} \to \mathsf{DFA}$ Minimization is in $\mathscr{O}(n \log n)$

In practice: Bisimulation Minimization [Paige, Tarjan 1987]

- efficient
- usually makes the input automaton smaller

In general, NFA \rightarrow NFA Minimization is PSPACE-complete

Further Results

[Jiang, Ravikumar 1993]:

- UFA \rightarrow UFA Minimization is **NP**-complete
- DFA \rightarrow UFA Minimization is **NP**-complete
- DFA \rightarrow NFA Minimization is **PSPACE**-complete

But What About NFAs?

Further Results

[Malcher 2003]: Minimization is NP-complete for

- DFA \rightarrow k-MDFA for all $k \ge 2$
- DFA \rightarrow NFA(branching k) for all $k \geq 3$

k-MDFA: Possibly ambiguous automata with k initial states, but otherwise a deterministic transition function

NFA(branching k): NFAs with k possible computations per string

Several (technical) different techniques are used for lower bounds

・ 何 ト ・ ヨ ト ・ ヨ ト

Question [Malcher 2003]

Are there any classes of non-DFAs with efficient minimization?

Wim Martens (TU Dortmund) Tractability Frontier for NFA Minimization

• • = • •

Question [Malcher 2003]

Are there any classes of non-DFAs with efficient minimization?

The short answer

[Here]: No

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Question [Malcher 2003]

Are there any classes of non-DFAs with efficient minimization?

The long answer

[Here]: OK, yes. But we don't think they'll be very useful

Wim Martens (TU Dortmund) Tractability Frontier for NFA Minimization

A D A D A D A

So What's the Result?

Definition (δ NFA)

The class of NFAs that

- have at most one pair (q, a) such that $q \stackrel{a}{\rightarrow} q_1$ and $q \stackrel{a}{\rightarrow} q_2$
- have one start state
- are unambiguous
- do not loop

Wim Martens (TU Dortmund)

→ ∃ →

So What's the Result?

Definition (δ NFA)

The class of NFAs that

- have at most one pair (q, a) such that $q \stackrel{a}{\rightarrow} q_1$ and $q \stackrel{a}{\rightarrow} q_2$
- have one start state
- are unambiguous
- do not loop

Theorem

For every class \mathcal{N} of NFAs such that $\delta NFA \subseteq \mathcal{N}$:

 $DFA \rightarrow \mathcal{N}$ Minimization is NP-hard

E SQA

So What's the Result?

Definition (δ NFA)

The class of NFAs that

- have at most one pair (q, a) such that $q \stackrel{a}{\rightarrow} q_1$ and $q \stackrel{a}{\rightarrow} q_2$
- have one start state
- are unambiguous
- do not loop

Theorem

For every class \mathcal{N} of NFAs such that $\delta NFA \subseteq \mathcal{N}$:

 $DFA \rightarrow \mathcal{N}$ Minimization is NP-hard

One NP lower bound proof that unifies and strengthens all previous cases

Wim Martens (TU Dortmund)

Tractability Frontier for NFA Minimization

June 4, 2008 6 / 24

◆□▶ ◆圖▶ ◆圖▶ ◆圖▶ ─ 圖

Outline

2 Closer to Determinism?

(日) (同) (三) (三)

Definition (Vertex Cover)

G = (V, E) graph $V' \subseteq V$ Vertex Cover of $G \Leftrightarrow \forall (v_1, v_2) \in E, \{v_1, v_2\} \cap V' \neq \emptyset$

Definition (Set Basis)

 \mathcal{B} , \mathcal{C} finite collections of finite sets

 $\mathscr{B} \text{ Set Basis of } \mathscr{C} \Leftrightarrow \forall C \in \mathscr{C} \exists B_C \subseteq \mathscr{B}: \bigcup_{B \in B_C} B = C$

くほと くほと くほと

Definition (Set Basis)

 $\mathcal{B}, \ \mathcal{C}$ finite collections of finite sets

 \mathscr{B} Set Basis of $\mathscr{C} \Leftrightarrow \forall C \in \mathscr{C} \exists B_C \subseteq \mathscr{B}: \bigcup_{B \in B_C} B = C$

Definition (Separable Normal Set Basis)

 ${\mathscr B},\,{\mathscr C}$ finite collections of finite sets

 \mathscr{B} Separable Normal Set Basis of $\mathscr{C} \Leftrightarrow \forall C \in \mathscr{C} \exists B_C \subseteq \mathscr{B}$:

- $\biguplus_{B \in B_C} B = C$
- the sets in B_C are disjoint
- B_C contains at most two sets

イロト イポト イヨト イヨト

Decision Problems

• Vertex Cover:

Given G = (V, E) and integer k, does there exist a Vertex Cover with at most k nodes?

• Separable Normal Set Basis:

Given collection \mathscr{C} and integer *s*, does there exist a Separable Normal Set Basis \mathscr{B} with at most *s* sets?

Lemma

(Separable) Normal Set Basis is NP-complete

Proof Idea

Reduction from Vertex Cover Translate each edge (v_i, v_j) in graph *G* into the collection

Proof Idea

Translate each edge (v_i, v_j) in graph G into the collection

This collection has |V| + 5|E| sets

Proof Idea

Translate each edge (v_i, v_j) in graph G into the collection

This collection has |V| + 5|E| sets

G has a Vertex Cover of size $k \Leftrightarrow$ this collection has a (Sep.) Normal Set Basis with |V|+4|E|+k sets

Lemma (Set Basis = Sep.Norm.Set Basis on some NP-complete instances) For the above reduction from Vertex Cover to Sep. NSB we also have that

G has a Vertex Cover of size *k* \Leftrightarrow the collection has a Separable NSB with |V| + 4|E| + k sets \Leftrightarrow the collection has a Set Basis with |V| + 4|E| + k sets

Proof.

If there is a Set Basis,

show with a case study that there is also a Separable NSB

11 / 24

Let $\mathscr{C} = \{C_1, \ldots, C_n\}$ be a collection of *n* sets, $C_i = \{b_{i,1}, \ldots, b_{i,m_i}\}$

A is the DFA for $\{aCb \mid C \in \mathscr{C} \text{ and } b \in C\}$

12 / 24

If there is a Separable NSB $\mathscr{B} = \{B_1, \ldots, B_\ell\}$ for \mathscr{C} , then

fix, for every $C_x \in \mathscr{C}$,

$$B_x^1$$
 and $B_x^2 \in \mathscr{B}$ s.t. $C_x = B_x^1 \uplus B_x^2$

If there is a Separable NSB $\mathscr{B} = \{B_1, \dots, B_\ell\}$ for \mathscr{C} , then

is a δ NFA for $\{aCb \mid C \in \mathscr{C} \text{ and } b \in C\}$ of size $\ell + 4$

Wim Martens (TU Dortmund) Tractab

Tractability Frontier for NFA Minimization

There is a Separable NSB $\mathscr{B} = \{B_1, \dots, B_\ell\}$ for \mathscr{C} if and only if

is a δ NFA for $\{aCb \mid C \in \mathscr{C} \text{ and } b \in C\}$ of size $\ell + 4$

Wim Martens (TU Dortmund) Tractabilit

Tractability Frontier for NFA Minimization

There is a Separable NSB $\mathscr{B} = \{B_1, \dots, B_\ell\}$ for \mathscr{C} if and only if

is an NFA for $\{aCb \mid C \in \mathscr{C} \text{ and } b \in C\}$ of size $\ell + 3$

Wim Martens (TU Dortmund) Trac

Tractability Frontier for NFA Minimization

So we just proved ...

Lemma

The following are equivalent:

- \mathscr{C} has a Sep. NSB of at most ℓ sets
- there is a δ NFA for L(A) of size at most $\ell + 4$
- there is an NFA for L(A) of size at most $\ell + 3$

Corollary

There exists a set of regular languages $\mathscr L$ such that

• DFA $\rightarrow \delta$ NFA Minimization is **NP**-complete

for DFAs accepting ${\mathscr L}$

• for each $L \in \mathscr{L}$, the minimal NFA for L

has one state less than the minimal δ NFA for L

Theorem

Let \mathscr{N} be a class of NFAs. If δ NFA $\subseteq \mathscr{N}$ then DFA $\rightarrow \mathscr{N}$ Minimization is **NP**-hard.

Proof.

We gave a reduction from Vertex Cover to DFA $\rightarrow \delta \text{NFA}$ Minimization

Wim Martens (TU Dortmund) Tractability Frontier for NFA Minimization

イロト イポト イヨト イヨト

Theorem

Let \mathscr{N} be a class of NFAs. If δ NFA $\subseteq \mathscr{N}$ then DFA $\rightarrow \mathscr{N}$ Minimization is **NP**-hard.

Proof.

We gave a reduction from Vertex Cover to DFA $\rightarrow \delta {\sf NFA}$ Minimization

Let \mathscr{N} be a class s.t. $\delta \mathsf{NFA} \subseteq \mathscr{N} \subseteq \mathsf{NFA}$

イロト イポト イヨト イヨト

Theorem

Let \mathscr{N} be a class of NFAs. If δ NFA $\subseteq \mathscr{N}$ then DFA $\rightarrow \mathscr{N}$ Minimization is **NP**-hard.

Proof.

We gave a reduction from Vertex Cover to DFA $\rightarrow \delta$ NFA Minimization Let \mathscr{N} be a class s.t. δ NFA $\subseteq \mathscr{N} \subseteq$ NFA

A decision algorithm for DFA $\to \mathscr{N}$ Minimization can approximate DFA $\to \delta \text{NFA}$ Minimization within a term 1

- 4 @ > - 4 @ > - 4 @ >

Theorem

Let \mathcal{N} be a class of NFAs. If $\delta NFA \subseteq \mathcal{N}$ then $DFA \rightarrow \mathcal{N}$ Minimization is **NP**-hard.

Proof.

We gave a reduction from Vertex Cover to DFA $\rightarrow \delta$ NFA Minimization Let \mathscr{N} be a class s.t. $\delta \mathsf{NFA} \subseteq \mathscr{N} \subseteq \mathsf{NFA}$ A decision algorithm for DFA $\rightarrow \mathcal{N}$ Minimization can approximate DFA $\rightarrow \delta$ NFA Minimization within a term 1

The approximation for DFA $\rightarrow \mathcal{N}$ Minimization can be adapted to an approximation of Vertex Cover within a term 1

▲□→ ▲ □→ ▲ □→

Theorem

Let \mathscr{N} be a class of NFAs. If δ NFA $\subseteq \mathscr{N}$ then DFA $\rightarrow \mathscr{N}$ Minimization is **NP**-hard.

Proof.

We gave a reduction from Vertex Cover to DFA $\rightarrow \delta$ NFA Minimization Let \mathscr{N} be a class s.t. δ NFA $\subseteq \mathscr{N} \subseteq$ NFA A decision algorithm for DFA $\rightarrow \mathscr{N}$ Minimization can approximate DFA $\rightarrow \delta$ NFA Minimization within a term 1 The approximation for DFA $\rightarrow \mathscr{N}$ Minimization can be adapted to

an approximation of Vertex Cover within a term 1

Approximating Vertex Cover within a constant term is NP-complete \Rightarrow DFA $\rightarrow \mathscr{N}$ Minimization is NP-hard

- 4 同 6 4 日 6 4 日 6

Outline

Some Technical Details

(日) (同) (三) (三)

(non-DFAs: Classes \mathscr{N} such that DFA $\subseteq \mathscr{N}$ but not $\mathscr{N} \subseteq$ DFA)

Answer

Of course not!

Example (Infinitely many classes between DFA and δ NFA)

Take the class of DFAs, and add a single δ NFA

 \Rightarrow Minimization in **P**!

Let's look at a more interesting example

Definition (δ' NFA)

The class of NFAs that

- have at most one pair (q, a) such that $q \stackrel{a}{\rightarrow} q_1$ and $q \stackrel{a}{\rightarrow} q_2$
- have one start state
- are unambiguous
- for each input w, have at most one rejecting run

(For each input w there are at most 2 runs: 1 accepting and 1 rejecting)

Let's look at a more interesting example

Definition (δ' NFA)

The class of NFAs that

- have at most one pair (q, a) such that $q \stackrel{a}{\rightarrow} q_1$ and $q \stackrel{a}{\rightarrow} q_2$
- have one start state
- are unambiguous
- for each input w, have at most one rejecting run

(For each input w there are at most 2 runs: 1 accepting and 1 rejecting)

Observation

• δ' NFAs can be minimized in **P**

Let's look at a more interesting example

Definition (δ' NFA)

The class of NFAs that

- have at most one pair (q, a) such that $q \stackrel{a}{\rightarrow} q_1$ and $q \stackrel{a}{\rightarrow} q_2$
- have one start state
- are unambiguous
- for each input w, have at most one rejecting run

(For each input w there are at most 2 runs: 1 accepting and 1 rejecting)

Observation

- δ' NFAs can be minimized in **P**
- but the minimal δ' NFAs are the DFAs!

δ' NFA can be minimized in **PTIME**

(

Take δ' NFA A that's not a DFA, let (q, a) be the unique state, label with

$$q \stackrel{a}{
ightarrow} q_1 \qquad q \stackrel{a}{
ightarrow} q_2$$

Let w be a string that leads A to q

δ' NFA can be minimized in **PTIME**

Take δ' NFA A that's not a DFA, let (q, a) be the unique state, label with

$$q \stackrel{a}{
ightarrow} q_1 \qquad q \stackrel{a}{
ightarrow} q_2$$

Let w be a string that leads A to q

As A is a δ' NFA, it must accept all waw' (otherwise there are two rejecting runs)

20 / 24

δ' NFA can be minimized in **PTIME**

Take δ' NFA A that's not a DFA, let (q, a) be the unique state, label with

$$q \stackrel{a}{
ightarrow} q_1 \qquad q \stackrel{a}{
ightarrow} q_2$$

Let w be a string that leads A to q

As A is a δ' NFA, it must accept all waw' (otherwise there are two rejecting runs)

So A can be made smaller by merging q_1 and q_2 into new state q_3 from which A accepts everything

A becomes deterministic this way

So, determinization followed by standard minimization is a ${f P}$ algorithm

Outline

Some Technical Details

2 Closer to Determinism?

< ロ > < 同 > < 三 > < 三

What did we do?

- \bullet State minimization is hard for all finite automata classes that include $\delta {\rm NFAs}$
- One proof unifying and strengthening previous approaches
- The minimization tractability frontier is between δ NFA and δ' NFA

Is everything solved yet?

- What we didn't consider yet: fixed alphabet size
- What about approximations?

Thank you for listening

イロト イヨト イヨト イヨト