
Optimizing Schema Languages for XML:

Numerical Constraints and Interleaving

Wouter Gelade⋆, Wim Martens, and Frank Neven

Hasselt University and Transnational University of Limburg
School for Information Technology

{firstname.lastname}@uhasselt.be

Abstract. The presence of a schema offers many advantages in pro-
cessing, translating, querying, and storage of XML data. Basic decision
problems like equivalence, inclusion, and non-emptiness of intersection
of schemas form the basic building blocks for schema optimization and
integration, and algorithms for static analysis of transformations. It is
thereby paramount to establish the exact complexity of these problems.
Most common schema languages for XML can be adequately modeled
by some kind of grammar with regular expressions at right-hand sides.
In this paper, we observe that apart from the usual regular operators of
union, concatenation and Kleene-star, schema languages also allow nu-
merical occurrence constraints and interleaving operators. Although the
expressiveness of these operators remain within the regular languages,
their presence or absence has significant impact on the complexity of the
basic decision problems. We present a complete overview of the complex-
ity of the basic decision problems for DTDs, XSDs and Relax NG with
regular expressions incorporating numerical occurrence constraints and
interleaving. We also discuss chain regular expressions and the complex-
ity of the schema simplification problem incorporating the new operators.

1 Introduction

XML is the lingua franca for data exchange on the Internet [1]. Within appli-
cations or communities, XML data is usually not arbitrary but adheres to some
structure imposed by a schema. The presence of such a schema not only provides
users with a global view on the anatomy of the data, but far more importantly,
it enables automation and optimization of standard tasks like (i) searching, in-
tegration, and processing of XML data (cf., e.g., [11, 22, 25, 42]); and, (ii) static
analysis of transformations (cf., e.g., [2, 16, 26, 32]). Decision problems like equiv-
alence, inclusion and non-emptiness of intersection of schemas, hereafter referred
to as the basic decision problems, constitute essential building blocks in solutions
for the just mentioned optimization and static analysis problems. Additionally,
the basic decision problems are fundamental for schema minimization (cf., e.g.,

⋆ Research Assistant of the Fund for Scientific Research - Flanders (Belgium)

shop → regular∗ & discount-box∗

regular → cd

discount-box → cd[10,12] price
cd → artist & title & price

Fig. 1. A sample schema using the numerical occurrence and interleave operators. The
schema defines a shop that sells CDs and offers a special price for boxes of 10–12 CDs.

[9, 29]). Because of their widespread applicability, it is therefore important to es-
tablish the exact complexity of the basic decision problems for the various XML
schema languages.

The most common schema languages for XML are DTD, XML Schema [38],
and Relax NG [8] and can be modeled by grammar formalisms [31]. In particular,
DTDs correspond to context-free grammars with regular expressions (REs) at
right-hand sides, while Relax NG is abstracted by extended DTDs (EDTDs) [33]
or equivalently, unranked tree automata [6], defining the regular unranked tree
languages. While XML Schema is usually abstracted by unranked tree automata
as well, recent results indicate that XSDs correspond to a strict subclass of the
regular tree languages and are much closer to DTDs than to tree automata [28].
In fact, they can be abstracted by single-type EDTDs. As detailed in [27], the
relationship between schema formalisms and grammars provides direct upper
and lower bounds for the complexity of the basic decision problems.

A closer inspection of the various schema specifications reveals that the above
abstractions in terms of grammars with regular expressions is too coarse. Indeed,
in addition to the conventional regular expression operators like concatenation,
union, and Kleene-star, the XML Schema and the Relax NG specification allow
two other operators as well:

(1) Both the XML Schema and the Relax NG specification allow a certain form of
unordered concatenation: the ALL and the interleave operator, respectively.
This operator is actually the resurrection of the &-operator from SGML
DTDs that was excluded from the definition of XML DTDs. Although there
are restrictions on the use of ALL and interleave, we consider the operator
in its unrestricted form. We refer by RE(&) to such regular expressions with
the unordered concatenation operator.

(2) The XML Schema specification allows to express numerical occurrence con-
straints which define the minimal and maximal number of times a regular
construct can be repeated. We refer by RE(#) to such regular expressions
with numerical occurrence constraints.

We illustrate these additional operators in Figure 1. The formal definition is given
in Section 2. Although the new operators can be expressed by the conventional
regular operators, they cannot do so succinctly, which has severe implications
on the complexity of the basic decision problems.

The goal of this paper is to study the complexity of the basic decision prob-
lems for DTDs, XSDs, and Relax NG with regular expressions extended with

2

interleaving and numerical occurrence constraints. The latter class of regular
expressions is denoted by RE(#,&). As observed in Section 5, the complexity of
inclusion and equivalence of RE(#,&)-expressions (and subclasses thereof) car-
ries over to DTDs and single-type EDTDs. We therefore first establish the com-
plexity of the basic decision problems for RE(#,&)-expressions and frequently
occurring subclasses. These results are summarized in Table 1 and Table 2.
Of independent interest, we introduce NFA(#,&)s, an extension of NFAs with
counter and split/merge states for dealing with numerical occurrence constraints
and interleaving operators. Finally, we revisit the simplification problem intro-
duced in [28] for schemas with RE(#,&)-expressions. That is, given an extended
DTD, can it be rewritten into an equivalent DTD or a single-type EDTD?

In this paper, we do not consider deterministic or one-unambiguous regular
expressions which form a strict subclass of the regular expressions [7]. The reason
is two-fold. First of all, one-unambiguity is a highly debatable constraint (cf., e.g.,
pg 98 of [40] and [24, 37]) which is only required for DTDs and XML Schema,
not for Relax NG. Actually, the only direct advantage of one-unambiguity is
that it gives rise to ptime algorithms for some of the basic decision problems for
standard regular expressions. The latter does not hold anymore for RE(#,&)-
expressions rendering the notion even less attractive. Indeed, already intersection
for one-unambiguous regular expressions is pspace-hard [27] and inclusion for
one-unambiguous RE(#)-expressions is conp-hard [18]. A second reason is that,
in contrast to conventional regular expressions, one-unambiguity is not yet fully
understood for regular expressions with numerical occurrence constraints and
interleaving operators. Some initial results are provided by Bruggemann-Klein,
and Kilpeläinen and Tuhkanen who give algorithms for deciding one-unambiguity
of RE(&)- and RE(#)-expressions, respectively [5, 19]. No study investigating
their properties has been undertaken. Such a study, although definitely relevant,
is outside the scope of this paper.

Outline. In Section 2, we provide the necessary definitions. In Section 3,
we define NFA(#,&). In Section 4 and Section 5, we establish the complexity
of the basic decision problems for regular expressions and schema languages,
respectively. We discuss simplification in Section 6. We conclude in Section 7. A
version of this paper containing all proofs is available from the authors’ webpages.

2 Definitions

2.1 Regular Expressions with Counting and Interleaving

For the rest of the paper, Σ always denotes a finite alphabet. A Σ-symbol (or
simply symbol) is an element of Σ, and a Σ-string (or simply string) is a finite
sequence w = a1 · · · an of Σ-symbols. We define the length of w, denoted by
|w|, to be n. We denote the empty string by ε. The set of positions of w is
{1, . . . , n} and the symbol of w at position i is ai. By w1 · w2 we denote the
concatenation of two strings w1 and w2. For readability, we usually denote the
concatenation of w1 and w2 by w1w2. The set of all strings is denoted by Σ∗. A

3

inclusion equivalence intersection

RE pspace ([39]) pspace ([39]) pspace ([23])

RE(&) expspace ([30]) expspace ([30]) PSPACE

RE(#) and RE(#, &) EXPSPACE EXPSPACE PSPACE

NFA(#), NFA(&), and NFA(#, &) EXPSPACE EXPSPACE PSPACE

DTDs with RE pspace ([39]) pspace ([39]) pspace ([23])
DTDs with
RE(#), RE(&), or RE(#, &)

EXPSPACE EXPSPACE PSPACE

single-type EDTDs with RE pspace ([27]) pspace ([27]) exptime ([27])
single-type EDTDs with
RE(#), RE(&), or RE(#, &)

EXPSPACE EXPSPACE EXPTIME

EDTD with RE exptime ([36]) exptime ([36]) exptime ([35])
EDTDs with
RE(#), RE(&), or RE(#, &)

EXPSPACE EXPSPACE EXPTIME

Table 1. Overview of new and known complexity results. All results are completeness
results. The new results are printed in bold.

string language is a subset of Σ∗. For two string languages L,L′ ⊆ Σ∗, we define
their concatenation L ·L′ to be the set {w ·w′ | w ∈ L,w′ ∈ L′}. We abbreviate
L·L · · ·L (i times) by Li. By w1&w2 we denote the set of strings that is obtained
by interleaving or shuffling w1 and w2 in every possible way. That is, for w ∈ Σ∗,
w&ε = ε&w = {w}, and a ·w1 &b ·w2 = ({a}·(w1 &b ·w2))∪({b}·(a ·w1 &w2)).
The operator & is then extended to languages in the canonical way.

The set of regular expressions over Σ, denoted by RE, is defined in the usual
way: ε, and every Σ-symbol is a regular expression; and when r and s are regular
expressions, then rs, r + s, and r∗ are also regular expressions. By RE(#,&)
we denote RE extended with two new operators: interleaving and numerical
occurrence constraints. That is, when r and s are RE(#,&)-expressions then so
are r & s and r[k,ℓ] for k, ℓ ∈ N with k ≤ ℓ and ℓ > 0. By RE(#) and RE(&), we
denote RE extended only with counting and interleaving, respectively.

The language defined by a regular expression r, denoted by L(r), is in-
ductively defined as follows: L(ε) = {ε}; L(a) = {a}; L(rs) = L(r) · L(s);

L(r + s) = L(r) ∪ L(s); L(r∗) = {ε} ∪
⋃∞

i=1 L(r)i, L(r[k,ℓ]) =
⋃ℓ

i=k L(r)i; and,
L(r&s) = L(r)&L(s). The size of a regular expression r over Σ, denoted by |r|,
is the number of Σ-symbols and operators occurring in r plus the sizes of the
binary representations of the integers. By r? and r+, we abbreviate the expres-
sion r+ε and rr∗, respectively. We assume familiarity with finite automata such
as nondeterministic finite automata (NFAs) and deterministic finite automata
(DFAs) [15].

2.2 Schema Languages for XML

The set of unranked Σ-trees, denoted by TΣ , is the smallest set of strings over
Σ and the parenthesis symbols “(” and “)” such that, for a ∈ Σ and w ∈ (TΣ)∗,
a(w) is in TΣ . So, a tree is either ε (empty) or is of the form a(t1 · · · tn) where

4

each ti is a tree. In the tree a(t1 · · · tn), the subtrees t1, . . . , tn are attached to
the root labeled a. We write a rather than a(). Notice that there is no a priori
bound on the number of children of a node in a Σ-tree; such trees are therefore
unranked. For every t ∈ TΣ , the set of nodes of t, denoted by Dom(t), is the
set defined as follows: (i) if t = ε, then Dom(t) = ∅; and (ii) if t = a(t1 · · · tn),
where each ti ∈ TΣ , then Dom(t) = {ε}∪

⋃n
i=1{iu | u ∈ Dom(ti)}. In the sequel,

whenever we say tree, we always mean Σ-tree. A tree language is a set of trees.
We make use of the following definitions to abstract from the commonly used

schema languages:

Definition 1. Let M be a class of representations of regular string languages
over Σ.

1. A DTD(M) over Σ is a tuple (Σ, d, sd) where d is a function that maps Σ-
symbols to elements of M and sd ∈ Σ is the start symbol. For convenience
of notation, we denote (Σ, d, sd) by d and leave the start symbol sd implicit
whenever this cannot give rise to confusion.
A tree t satisfies d if (i) labt(ε) = sd and, (ii) for every u ∈ Dom(t) with n

children, labt(u1) · · · labt(un) ∈ L(d(labt(u))). By L(d) we denote the set of
trees satisfying d.

2. An extended DTD (EDTD(M)) over Σ is a 5-tuple D = (Σ,Σ′, d, s, µ),
where Σ′ is an alphabet of types, (Σ′, d, s) is a DTD(M) over Σ′, and µ is
a mapping from Σ′ to Σ.
A tree t then satisfies an extended DTD if t = µ(t′) for some t′ ∈ L(d). Here
we abuse notation and let µ also denote its extension to define a homomor-
phism on trees. Again, we denote by L(D) the set of trees satisfying D. For
ease of exposition, we always take Σ′ = {ai | 1 ≤ i ≤ ka, a ∈ Σ, i ∈ N} for
some natural numbers ka, and we set µ(ai) = a.

3. A single-type EDTD (EDTDst(M)) over Σ is an EDTD(M) D = (Σ,Σ′, d,

s, µ) with the property that for every a ∈ Σ′, in the regular expression d(a)
no two types bi and bj with i 6= j occur.

We denote by EDTD, EDTD(#), EDTD(&), and EDTD(#,&), the classes
EDTD(RE), EDTD(RE(#)), EDTD(RE(&)), and EDTD(RE(#,&)), respec-
tively. The same notation is used for EDTDst and DTDs.

For clarity, we write a → r rather than d(a) = r in examples and proofs.
Following this notation, a simple example of an EDTD is the following:

shop1 → (dvd1 + dvd2)∗dvd2(dvd1 + dvd2)∗ title1 → ε

dvd1 → title1 price1 price1 → ε

dvd2 → title1 price1 discount1 discount1 → ε

Here, dvd1 defines ordinary DVDs, while dvd2 defines DVDs on sale. The rule
for shop1 specifies that there should be at least one DVD on sale. Note that the
above is not a single-type EDTD as dvd1 and dvd2 occur in the same rule.

As explained in [31, 28], EDTDs and single-type EDTDs correspond to Relax
NG and XML Schema, respectively.

5

2.3 Decision Problems

The following problems are fundamental to this paper.

Definition 2. Let M be a class of regular expressions, string automata, or
extended DTDs. We define the following problems:

– inclusion for M: Given two elements e, e′ ∈M, is L(e) ⊆ L(e′)?
– equivalence forM: Given two elements e, e′ ∈M, is L(e) = L(e′)?.
– intersection for M: Given an arbitrary number of elements e1, . . . , en ∈
M, is

⋂n
i=1 L(ei) 6= ∅?

– membership for M: Given an element e ∈ M and a string or a tree f , is
f ∈ L(e)?

We recall the known results concerning the complexity of REs and EDTDs.

Theorem 3. (1) inclusion, equivalence, and intersection for REs are
pspace-complete [23, 39].

(2) inclusion and equivalence for RE(&) are expspace-complete [30].
(3) inclusion and equivalence for EDTDst are pspace-complete [27]; in-

tersection for EDTDst is exptime-complete [27].
(4) inclusion, equivalence, and intersection for EDTDs are exptime-

complete [35, 36].
(5) membership for RE(&) is np-complete [30].

3 Automata for Occurrence Constraints and Interleaving

We introduce the automaton model NFA(#,&). In brief, an NFA(#,&) is an
NFA with two additional features: (i) split and merge transitions to handle in-
terleaving; and, (ii) counting states and transitions to deal with numerical occur-
rence constraints. The idea of split and merge transitions stems from Jȩdrzejowicz
and Szepietowski [17]. Their automata are more general as they can express
shuffle-closure which is not regular. Counting states are also used in the counter
automata of Kilpeläinen and Tuhkanen [21], and Reuter [34] although these
counter automata operate quite differently from NFA(#)s. Zilio and Lugiez [10]
also proposed an automaton model that incorporates counting and interleaving
by means of Presburger formulas. None of the cited papers consider the com-
plexity of the basic decision problems of their model. We will use NFA(#,&)s
for obtaining complexity upper bounds in Sections 4 and 5.

For readability, we denote Σ ∪ {ε} by Σε. We then define an NFA(#,&) as
follows.

Definition 4. An NFA(#,&) is a 5-tuple A = (Q,Σ, s, f, δ) where

– Q is a finite set of states. To every q ∈ Q, we associate a lower bound
min(q) ∈ N and an upper bound max(q) ∈ N.

– s, f ∈ Q is the start and final state, respectively.

6

– δ is the transition relation and is a subset of the union of the following sets:

(1) Q×Σε ×Q ordinary transition (resets the counter)
(2) Q× {store} ×Q transition that does not reset the counter
(3) Q× {split} ×Q×Q split transition
(4) Q×Q× {merge} ×Q merge transition

Let max(A) = max{max(q) | q ∈ Q} be the largest upper bound occurring
in A. A configuration γ is a pair (P, α) where, P ⊆ Q is a set of states and
α : Q → {0, . . . ,max(A)} is the value function mapping states to the value of
their counter. For a state q ∈ Q, we denote by αq the value function mapping
q to 1 and every other state to 0. The initial configuration γs is ({s}, αs). The
final configuration γf is ({f}, αf). When α is a value function then α[q = 0]
and α[q++] denote the functions obtained from α by setting the value of q to 0
and incrementing the value of q by 1, respectively, while leaving all other values
unchanged.

We now define the transition relation between configurations. Intuitively, the
value of the state at which the automaton arrives is always incremented by one.
When exiting a state, the state’s counter is always reset to zero, except when we
exit through a counting transition, in which case the counter remains the same.
In addition, exiting a state through a non-counting transition is only allowed
when the value of the counter lies between the allowed minimum and maximum.
The latter, hence, ensures that the occurrence constraints are satisfied. Split and
merge transitions start and close a parallel composition.

A configuration γ′ = (P ′, α′) immediately follows a configuration γ = (P, α)
by reading σ ∈ Σε, denoted γ →A,σ γ′, when one of the following conditions
hold:

1. (ordinary transition) there is a q ∈ P and (q, σ, q′) ∈ δ such that min(q) ≤
α(q) ≤ max(q), P ′ = (P − {q}) ∪ {q′}, and α′ = α[q = 0][q′++]. That is, A

is in state q and moves to state q′ by reading σ (note that σ can be ε). The
latter is only allowed when the counter value of q is between the lower and
upper bound. The state q is replaced in P by q′. The counter of q is reset to
zero and the counter of q′ is incremented by one.

2. (counting transition) there is a q ∈ P and (q, store, q′) ∈ δ such that
α(q) < max(q), P ′ = (P − {q}) ∪ {q′}, and α′ = α[q′++]. That is, A is in
state q and moves to state q′ by reading ε when the counter of q has not
reached its maximal value yet. The state q is replaced in P by q′. The counter
of q is not reset but remains the same. The counter of q′ is incremented by
one.

3. (split transition) there is a q ∈ P and (q, split, q′1, q
′
2) ∈ δ such that

min(q) ≤ α(q) ≤ max(q), P ′ = (P − {q}) ∪ {q′1, q
′
2}, and α′ = α[q =

0][q′1
++

][q′2
++

]. That is, A is in state q and splits into states q′1 and q′2 by
reading ε when the counter value of q is between the lower and upper bound.
The state q in P is replaced by (split into) q′1 and q′2. The counter of q is
reset to zero, and the counters of q′1 and q′2 are incremented by one.

7

4. (merge transition) there are q1, q2 ∈ P and (q1, q2,merge, q′) ∈ δ such
that, for each j = 1, 2, min(qj) ≤ α(qj) ≤ max(qj), P ′ = (P−{q1, q2})∪{q

′},
and α′ = α[q1 = 0][q2 = 0][q′++]. That is, A is in states q1 and q2 and moves
to state q′ by reading ε when the respective counter values of q1 and q2 are
between the lower and upper bounds. The states q1 and q2 in P are replaced
by (merged into) q′, the counters of q1 and q2 are reset to zero, and the
counter of q′ is incremented by one.

For a string w and two configurations γ, γ′, we denote by γ ⇒A,w γ′ when
there is a sequence of configurations γ →A,σ1

· · · →A,σn
γ′ such that w =

σ1 · · ·σn. The latter sequence is called a run when γ is the initial configuration
γs. A string w is accepted by A iff γs ⇒A,w γf with γf the final configuration.
We usually denote ⇒A,w simply by ⇒w when A is clear from the context. We
denote by L(A) the set of strings accepted by A. The size of A, denoted by |A|,
is |Q|+ |δ|+ Σq∈Q log(max(q)). So, each max(q) is represented in binary.

An NFA(#) is an NFA(#,&) without split and merge transitions. An NFA(&)
is an NFA(#,&) without counting transitions. An NFA is an NFA(#) without
counting transitions. NFA(#,&) therefore accept all regular languages.

The next theorem shows the complexity of translating between RE(#,&)
and NFA(#,&), and NFA(#,&) and NFA. In brief, the proof of part (1) is
by induction on the structure of RE(#,&)-expressions. Figure 2 illustrates the

inductive steps for expressions r
[k,ℓ]
1 and r1&r2, employing counter, and split and

merge states, respectively. For part (2), we define an NFA from an NFA(#,&)
that keeps in its state the current configuration of the latter: i.e., a set of states
and a value function.

Theorem 5. (1) Given an RE(#,&)-expression r, an equivalent NFA(#,&)
can be constructed in time polynomial in the size of r.

(2) Given an NFA(#,&) A, an equivalent NFA can be constructed in time ex-
ponential in the size of A.

We next turn to the complexity of the basic decision problems for NFA(#,&).

Theorem 6. (1) equivalence and inclusion for NFA(#,&) is expspace-
complete;

(2) intersection for NFA(#,&) is pspace-complete; and,
(3) membership for NFA(#) is np-hard, membership for NFA(&), and NFA(#,

&) is pspace-complete.

We only provide some intuition. For part (1), membership in expspace

follows directly from Theorem 5(2) and the fact that inclusion for NFAs is
pspace-complete [39]. expspace-hardness follows from Theorem 5(1) and The-
orem 7(3). For part (2), pspace-hardness follows from pspace-hardness of in-

tersection for REs [23]. Membership in pspace is witnessed by an in parallel
simulation of the given NFA(#,&)s on a guessed string. Finally, np-hardness of
membership for NFA(#)s is by a reduction from integer knapsack, pspace-
hardness of membership for NFA(&)s is by a reduction from corridor tiling.

8

store

sr sr1
fr1

fr
qr

ε

ε ε
k, ℓ

if k = 0

fr2

sr fr

sr1
fr1

sr2

Fig. 2. From RE(#, &) to NFA(#, &).

4 Complexity of Regular Expressions

Before we turn to schemas, we first deal with the complexity of regular expres-
sions and frequently used subclasses.

Mayer and Stockmeyer already established the expspace-completeness of
inclusion and equivalence for RE(&) [30]. From Theorem 5(1) and Theo-
rem 6(1) it then directly follows that adding numerical occurrence constraints
does not increase the complexity. It further follows from Theorem 5(1) and The-
orem 6(2), that intersection for RE(#,&) is in pspace. We stress that the
latter results could also have been obtained without making use of NFA(#,&)
but by translating RE(#,&)s directly to NFAs. However, in the case of inter-

section such a construction should be done in an on-the-fly fashion in order
not to go beyond pspace. Although such an approach is possible, we prefer the
shorter and more elegant construction using NFA(#,&)s. Finally, we show that
inclusion and equivalence of RE(#) is also expspace-hard. While Mayer
and Stockmeyer reduce from REs with intersection [12], we employ a reduction
from exp-corridor tiling.

Theorem 7. 1. equivalence and inclusion for RE(#,&) is in expspace;
2. intersection for RE(#,&) is pspace-complete; and,
3. equivalence and inclusion for RE(#) is expspace-hard.

Proof. We prove (3). It suffices to show that it is expspace-hard to decide
whether a given RE(#) defines Σ∗. The proof is a reduction from exp-corridor

tiling. A tiling instance is a tuple T = (X,H, V, x⊥, x⊤, n) where X is a finite
set of tiles, H,V ⊆ X×X are the horizontal and vertical constraints, x⊥, x⊤ ∈ X,
and n is a natural number in unary notation. A correct exponential corridor tiling
for T is a mapping λ : {1, . . . ,m} × {1, . . . , 2n} → X for some m ∈ N such that
the following constraints are satisfied:

– the first tile of the first row is x⊥: λ(1, 1) = x⊥;

9

– the first tile of the m-th row is x⊤: λ(m, 1) = x⊤;
– all vertical constraints are satisfied: ∀i < m, ∀j ≤ 2n, (λ(i, j), λ(i+1, j)) ∈ V ;

and,
– all horizontal constraints are satisfied: ∀i ≤ m, ∀j < 2n, (λ(i, j), λ(i, j+1)) ∈

H.

The exp-corridor tiling problem asks, given a tiling instance, whether there
exists a correct exponential corridor tiling. The latter problem is easily shown
to be expspace-complete [41].

We proceed with the reduction from exp-corridor tiling. Thereto, let
T = (X,H, V, x⊥, x⊤, n) be a tiling instance. We construct an RE(#)-expression
r which defines the set of all strings iff there is no correct tiling for T . As
expspace is closed under complement, the expspace-hardness of equivalence

and inclusion for RE(#) follows.
Let Σ = X ∪ {△}. For a set S = {s1, . . . , sk} ⊆ Σ, we abuse notation

and abbreviate (s1 + · · · + sk) simply by S. We represent a candidate tiling
consisting of m rows ρ1, . . . , ρm by the string △ρ1△· · ·△ρm△. Here, every two
successive rows are delimited by the symbol △. We now define r as a disjunction
of RE(#)-expressions where every disjunct catches an error in the candidate
tiling. Therefore, when r is equivalent to Σ∗ there can be no correct tiling for
T . It remains to define the disjuncts constituting r:

1. The string does not start or end with △: XΣ∗ + Σ∗X.
2. There are no 2n tiles between two successive delimiters:

Σ∗△(X [0,2n−1] + X [2n+1,2n+1]X∗)△Σ∗.
3. The first tile is not x⊥: △xΣ∗ for every x 6= x⊥.
4. The first tile of the last row is not x⊤: Σ∗△xX∗△ for every x 6= x⊤.
5. Horizontal constraint violation: Σ∗x1x2Σ

∗ for every (x1, x2) 6∈ H.
6. Vertical constraint violation: Σ∗x1Σ

[2n,2n]x2Σ
∗ for every (x1, x2) 6∈ V .

Clearly, a Σ-string that does not satisfy any of the disjuncts in r is a correct
tiling for T . Hence, L(r) 6= Σ∗ iff there is a correct tiling for T . �

Bex et al. [4] established that the far majority of regular expressions occur-
ring in practical DTDs and XSDs are of a very restricted form as defined next.
The class of chain regular expressions (CHAREs) are those REs consisting of
a sequence of factors f1 · · · fn where every factor is an expression of the form
(a1+· · ·+an), (a1+· · ·+an)?, (a1+· · ·+an)+, or, (a1+· · ·+an)∗, where n ≥ 1 and
every ai is an alphabet symbol. For instance, the expression a(b + c)∗d+(e + f)?
is a CHARE, while (ab + c)∗ and (a∗ + b?)∗ are not.1

We introduce some additional notation to define subclasses and extensions
of CHAREs. By CHARE(#) we denote the class of CHAREs where also factors
of the form (a1 + · · · + an)[k,ℓ] are allowed. For the following fragments, we list
the admissible types of factors. Here, a, a?, a∗ denote the factors (a1 + · · ·+an),
(a1 + · · ·+an)?, and (a1 + · · ·+an)+, respectively, with n = 1, while a# denotes
a[k,ℓ], and a#>0 denotes a[k,ℓ] with k > 0.

1 We disregard here the additional restriction used in [3] that every symbol can occur
only once.

10

inclusion equivalence intersection

CHARE pspace [27] in pspace [39] pspace [27]

CHARE(#) EXPSPACE in EXPSPACE PSPACE

CHARE(a, a?) conp [27] in ptime [27] np [27]

CHARE(a, a
∗) conp [27] in ptime [27] np [27]

CHARE(a, a?, a#) PSPACE-hard / in EXPSPACE in PTIME NP

CHARE(a, a#>0) in PTIME in PTIME in PTIME

Table 2. Overview of new and known complexity results concerning Chain Regular
Expressions. All results are completeness results, unless otherwise mentioned. The new
results are printed in bold.

Table 2 lists the new and the relevant known results. We first show that
adding numerical occurrence constraints to CHAREs increases the complexity
of inclusion by one exponential. Again we reduce from exp-corridor tiling.

Theorem 8. inclusion for CHARE(#) is expspace-complete.

Adding numerical occurrence constraints to the fragment CHARE(a, a?)
and CHARE(a, a∗), makes inclusion pspace-hard but keeps equivalence in
ptime and intersection in np.

Theorem 9. (1) equivalence for CHARE(a, a?, a#) is in ptime.
(2) inclusion for CHARE(a, a?, a#) is pspace-hard and in expspace.
(3) intersection for CHARE(a, a?, a#) is np-complete.

Finally, we exhibit a tractable subclass with numerical occurrence constraints:

Theorem 10. inclusion, equivalence, and intersection for CHARE(a, a#>0)
are in ptime.

5 Complexity of Schemas

5.1 DTDs and Single-Type EDTDs

In [27] it was shown for any subclass of the REs that the complexity of inclusion

and equivalence is the same as the complexity of the corresponding problem
for DTDs and single-type EDTDs. We next generalize this result to RE(#,&).
As a corollary, all results of the previous section carry over to DTDs and single-
type DTDs. The same holds for intersection and DTDs.

We call a complexity class C closed under positive reductions if the following
holds for every O ∈ C. Let L′ be accepted by a deterministic polynomial-time
Turing machine M with oracle O (denoted L′ = L(MO)). Let M further have
the property that L(MA) ⊆ L(MB) whenever A ⊆ B. Then L′ is also in C.
For a more precise definition of this notion we refer the reader to [14]. For our
purposes, it is sufficient that important complexity classes like ptime, np, conp,
pspace, and expspace have this property, and that every such class contains
ptime.

11

Proposition 11. Let R be a subclass of RE(#,&) and let C be a complexity
class closed under positive reductions. Then the following are equivalent:

(a) inclusion for R expressions is in C.
(b) inclusion for DTD(R) is in C.
(c) inclusion for EDTDst(R) is in C.

The corresponding statement holds for equivalence.

The previous proposition can be generalized to intersection of DTDs as
well. The proof carries over literally from [27].

Proposition 12. Let R be a subclass of RE(#,&) and let C be a complexity
class which is closed under positive reductions. Then the following are equivalent:

(a) intersection for R expressions is in C.
(b) intersection for DTD(R) is in C.

The above proposition does not hold for single-type EDTDs. Indeed, there is
a class of regular expressions R′ for which intersection is np-complete while
intersection for EDTDst(R′) is exptime-complete [27].

5.2 Extended EDTDs

We next consider the complexity of the basic decision problems for EDTDs
with numerical occurrence constraints and interleaving. As the basic decision
problems are exptime-complete for EDTD(RE), the straightforward approach
of translating every RE(#,&)-expression into an NFA and then applying the
standard algorithms gives rise to a double exponential time complexity. By using
NFA(#,&), we can do better: expspace for inclusion and equivalence, and,
more surprisingly, exptime for intersection.

Theorem 13. (1) equivalence and inclusion for EDTD(#,&) is in ex-

pspace;
(2) equivalence and inclusion for EDTD(#) and EDTD(&) is expspace-

hard; and,
(3) intersection for EDTD(#,&) is exptime-complete.

Proof (Sketch).
(1) Given two EDTDs D1 = (Σ,Σ′

1, d1, s1, µ1) and D2 = (Σ,Σ′
2, d2, s2, µ2),

we compute a set E of pairs (C1, C2) ∈ 2Σ′

1 × 2Σ′

2 where (C1, C2) ∈ E iff there
exists a tree t such that Cj = {τ ∈ Σ′

j | t ∈ L((Dj , τ))} for each j = 1, 2. Here,
(Dj , τ) denotes the EDTD Dj with start symbol τ . So, every Cj is the set of
types that can be assigned by Dj to the root of t. Or when viewing Dj as a tree
automaton, Cj is the set of states that can be assigned to the root in a run on t.
The tree t is called a witness tree. Then, t ∈ L(D1) (resp., t ∈ L(D2)) if s1 ∈ C1

(resp. s2 ∈ C2). Hence, L(D1) 6⊆ L(D2) iff there exists a pair (C1, C2) ∈ E with
s1 ∈ C1 and s2 6∈ C2.

12

Although each witness tree can have exponential depth and therefore double
exponential size, we do not need to compute it directly. Instead, we compute the
set E in a bottom-up fashion where we make use of an NFA(#,&)-representation
of the RE(#,&)-expressions.

(2) Is immediate from Theorem 3(2) and Theorem 7(2).
(3) In brief, given a set of EDTDs, we construct an alternating polynomial

space TM which incrementally guesses a tree defined by all schemas. To be pre-
cise, the algorithm guesses the first-child-next-sibling encoding of the unranked
tree. Again, RE(#,&)-expressions are translated into equivalent NFA(#,&)s.�

6 Simplification

The simplification problem is defined as follows: Given an EDTD, check whether
it has an equivalent EDTD of a restricted type, i.e., an equivalent DTD or
single-type EDTD. In [28], this problem was shown to be exptime-complete
for EDTDs with standard regular expressions. We revisit this problem in the
context of RE(#,&).

Theorem 14. Given an EDTD(#,&), deciding whether it is equivalent to an
EDTDst(#,&) or DTD(#,&) is expspace-complete.

Proof (Sketch). We only show that the problem is hard for expspace. We use
a reduction from universality of RE(#,&), i.e., deciding whether an RE(#,&)-
expression is equivalent to Σ∗. The proof of Theorem 7(2) shows that the latter
is expspace-hard. To this end, let r be an RE(#,&)-expression over Σ and let
b and s be two symbols not occurring in Σ. By definition, L(r) 6= ∅. Define
D = (Σ ∪ {b, s}, Σ ∪ {s, b1, b2}, d, s, µ) as the EDTD with the following rules:
s→ (b1)∗b2(b1)∗, b1 → Σ∗, and b2 → r, where for every τ ∈ Σ ∪ {s}, µ(τ) = τ ,
and µ(b1) = µ(b2) = b. We claim that D is equivalent to a single-type DTD or
a DTD iff L(r) = Σ∗. Clearly, if r is equivalent to Σ∗, then D is equivalent to
the DTD (and therefore also to a single-type EDTD) with rules: s → b∗ and
b → Σ∗. Conversely, suppose that there exists an EDTDst which defines the
language L(D). Towards a contradiction, assume that r is not equivalent to Σ∗.
Let wr be a string in L(r) and let w¬r be a Σ-string not in L(r). Consider
the trees t1 = s(b(wr)b(w¬r)) and t2 = s(b(w¬r)b(wr)). Clearly, t1 and t2 are
in L(D). However, the tree t = s(b(w¬r)b(w¬r)) obtained from t1 by replacing
its left subtree by the left subtree of t2 is not in L(D). According to Theorem
7.1 in [28], every tree language defined by a single-type EDTD is closed under
such an exchange of subtrees. So, this means that L(D) cannot be defined by an
EDTDst, which leads to the desired contradiction. �

7 Conclusion

The present work gives an overview of the complexity of the basic decision prob-
lems for abstractions of several schema languages including numerical occurrence

13

constraints and interleaving. W.r.t. intersection the complexity remains the
same, while for inclusion and equivalence the complexity increases by one
exponential for DTDs and single-type EDTDs, and goes from exptime to ex-

pspace for EDTDs. The results w.r.t. CHAREs also follow this pattern. We
further showed that the complexity of simplification increases to expspace.

We emphasize that this is a theoretical study delineating the worst case
complexity boundaries for the basic decision problems. Although these complex-
ities must be studied, we note that the regular expressions used in the hardness
proofs do not correspond at all to those employed in practice. Further, w.r.t.
XSDs, our abstraction is not fully adequate as we do not consider the one-
unambiguity (or unique particle attribution) constraint. However, it is doubtful
that this constraint is the right one to get tractable complexities for the basic
decision problems. Indeed, already intersection for unambiguous regular expres-
sions is pspace-hard [27] and inclusion for one-unambiguous RE(#)-expressions
is conp-hard [18]. It would therefore be desirable to find robust subclasses for
which the basic decision problems are in ptime.

References

1. S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web : From Relations to

Semistructured Data and XML. Morgan Kaufmann, 1999.
2. M. Benedikt, W. Fan, and F. Geerts. XPath satisfiability in the presence of DTDs.

In PODS 2005, pages 25–36, 2005.
3. G.J. Bex, F. Neven, T. Schwentick, and K. Tuyls. Inference of concise DTDs from

XML data. In VLDB 2006, pages 115–126, 2006.
4. G.J. Bex, F. Neven, and J. Van den Bussche. DTDs versus XML schema: A

practical study. In WebDB 2004, pages 79–84, 2004.
5. A. Brüggemann-Klein. Unambiguity of extended regular expressions in SGML

document grammars. In ESA 1993, pages 73–84, 1993.
6. A. Brüggemann-Klein, M. Murata, and D. Wood. Regular tree and regular hedge

languages over unranked alphabets: Version 1, april 3, 2001. Technical Report
HKUST-TCSC-2001-0, The Hongkong University of Science and Technology, 2001.

7. A. Brüggemann-Klein and D. Wood. One-unambiguous regular languages. Infor-

mation and Computation, 142(2):182–206, 1998.
8. J. Clark and M. Murata. RELAX NG Specification. OASIS, December 2001.
9. J. Cristau, C. Löding, and W. Thomas. Deterministic automata on unranked trees.

In FCT 2005, pages 68–79. Springer, 2005.
10. S. Dal-Zilio and D. Lugiez. XML schema, tree logic and sheaves automata. In

RTA, pages 246–263, 2003.
11. Alin Deutsch, Mary F. Fernandez, and Dan Suciu. Storing Semistructured Data

with STORED. In SIGMOD 1999, pages 431–442, 1999.
12. M. Fürer. The complexity of the inequivalence problem for regular expressions

with intersection. In ICALP 1980, pages 234–245. Springer, 1980.
13. M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the

Theory of NP-Completeness. Freeman, 1979.
14. L. Hemaspaandra and M. Ogihara. Complexity Theory Companion. Springer, 2002.
15. J.E. Hopcroft, R. Motwani, and J.D. Ullman and. Introduction to Automata The-

ory, Languages, and Computation. Addison-Wesley, second edition, 2001.

14

16. H. Hosoya and B. C. Pierce. XDuce: A statically typed XML processing language.
ACM Trans. Inter. Tech., 3(2):117–148, 2003.

17. J. Jȩdrzejowicz and A. Szepietowski. Shuffle languages are in P. Theoretical Com-

puter Science, 250(1-2):31–53, 2001.
18. P. Kilpeläinen. Inclusion of unambiguous #REs is NP-hard. Unpublished note,

University of Kuopio, Finland, May 2004.
19. P. Kilpeläinen and R. Tuhkanen. One-unambiguity of regular expressions with

numeric occurrence indicators. Tech. Rep. A/2006/2, Univ. Kuopio, Finland, 2006.
20. P. Kilpeläinen and R. Tuhkanen. Regular expressions with numerical occurrence

indicators — preliminary results. In SPLST 2003, pages 163–173, 2003.
21. P. Kilpeläinen and R. Tuhkanen. Towards efficient implementation of XML schema

content models. In DOCENG 2004, pages 239–241. ACM, 2004.
22. C. Koch, S. Scherzinger, N. Schweikardt, and B. Stegmaier. Schema-based schedul-

ing of event processors and buffer minimization for queries on structured data
streams. In VLDB 2004, pages 228–239, 2004.

23. D. Kozen. Lower bounds for natural proof systems. In FOCS 1977, pages 254–266.
IEEE, 1977.

24. M. Mani. Keeping chess alive — Do we need 1-unambiguous content models? In
Extreme Markup Languages, Montreal, Canada, 2001.

25. I. Manolescu, D. Florescu, and D. Kossmann. Answering XML Queries on Hetero-
geneous Data Sources. In VLDB 2001, pages 241–250, 2001.

26. W. Martens and F. Neven. Frontiers of tractability for typechecking simple XML
transformations. Journal of Computer and System Sciences, 2006. To Appear.

27. W. Martens, F. Neven, and T. Schwentick. Complexity of decision problems for
simple regular expressions. In MFCS 2004, pages 889–900, Berlin, 2004. Springer.

28. W. Martens, F. Neven, T. Schwentick, and G. J. Bex. Expressiveness and com-
plexity of XML schema. ACM Trans. Database Systems, 31(3), 2006. To appear.

29. W. Martens and J. Niehren. Minimizing tree automata for unranked trees. In
DBPL 2005, pages 232–246, 2005.

30. A. J. Mayer and L. J. Stockmeyer. Word problems — this time with interleaving.
Information and Computation, 115(2):293–311, 1994.

31. M. Murata, D. Lee, M. Mani, and K. Kawaguchi. Taxonomy of XML schema
languages using formal language theory. ACM Trans. Inter. Tech., 5(4):1–45, 2005.

32. F. Neven and T. Schwentick. XPath containment in the presence of disjunction,
DTDs, and variables. Logical Methods in Computer Science, page To appear, 2006.

33. Y. Papakonstantinou and V. Vianu. DTD inference for views of XML data. In
PODS 2000, pages 35–46, New York, 2000. ACM Press.

34. F. Reuter. An enhanced W3C XML Schema-based language binding for object
oriented programming languages. Manuscript, 2006.

35. H. Seidl. Deciding equivalence of finite tree automata. SIAM Journal on Comput-

ing, 19(3):424–437, 1990.
36. H. Seidl. Haskell overloading is DEXPTIME-complete. Information Processing

Letters, 52(2):57–60, 1994.
37. C.M. Sperberg-McQueen. XML Schema 1.0: A language for document grammars.

In XML 2003, 2003.
38. C.M. Sperberg-McQueen and H. Thompson. XML Schema.

http://www.w3.org/XML/Schema, 2005.
39. L.J. Stockmeyer and A.R. Meyer. Word problems requiring exponential time:

Preliminary report. In STOC 1973, pages 1–9. ACM Press, 1973.
40. E. van der Vlist. XML Schema. O’Reilly, 2002.

15

41. P. van Emde Boas. The convenience of tilings. In Complexity, Logic and Recursion

Theory, volume 187 of Lec. Notes in Pure and App. Math., pages 331–363. 1997.
42. G. Wang, M. Liu, J. X. Yu, B. Sun, G. Yu, J. Lv, and H. Lu. Effective schema-based

XML query optimization techniques. In IDEAS 2003, pages 230–235, 2003.

Appendix

Proofs for Section 3

10,12

dvd

store

store

cd
10,12

Fig. 3. An NFA(#, &) for the language dvd[10,12] & cd[10,12]. For readability, we only
displayed the alphabet symbol on non-epsilon transitions and counters for states q

where min(q) or max(q) are different from one. The arrows from the initial state and
to the final state are split and merge transitions, respectively. The arrows labeled store

represent counting transitions.

Proof of Theorem 5:

(1) Given an RE(#,&)-expression r, an equivalent NFA(#,&) can be con-
structed in time polynomial in the size of r.

(2) Given an NFA(#,&) A, an equivalent NFA can be constructed in time ex-
ponential in the size of A.

Proof. (1) We prove the theorem by induction on the structure of RE(#,&)-
expressions. For every r we define a corresponding NFA(#,&) A(r) = (Qr, Σ, sr,

fr, δr) such that L(r) = L(A(r)).
For r of the form ε, a, r1 · r2, r1 + r2 and r∗1 these are the usual RE to NFA

with ε-transition constructions as displayed in text books such as [15].
We perform the following steps for the numerical occurrence and interleaving

operator which are graphically illustrated in Figure 2.

(i) If r = (r1)
[k,ℓ] and A(r1) = (Q1, Σ, s1, f1, δ1), then

– Qr := Qr1
⊎ {sr, fr, qr};

– min(sr) = max(sr) = min(fr) = max(fr) = 1, min(qr) = k, and
max(qr) = ℓ;

– if k 6= 0 then δr := δr1
⊎{(sr, ε, sr1

), (fr1
, ε, qr), (qr, store, sr1

), (qr, ε, fr)};
and,

16

– if k = 0 then δr := δr1
⊎{(sr, ε, sr1

), (fr1
, ε, qr), (qr, store, sr1

), (qr, ε, fr),
(sr, ε, fr)}.

(ii) If r = r1 & r2, A(r1) = (Qr1
, Σ, sr1

, fr1
, δr1

) and A(r2) = (Qr2
, Σ, sr2

, fr2
,

δr2
), then

– Qr := Qr1
⊎Qr2

⊎ {sr, fr};
– min(sr) = max(sr) = min(fr) = max(fr) = 1;
– δr := δr1

⊎ δr2
⊎ {(sr, split, sr1

, sr2
), (fr1

, fr2
,merge, fr)}.

Notice that in each step of the construction, a constant number of states are
added to the automaton. Moreover, the constructed counters are linear in the
size of r. It follows that the size of A(r) is linear in the size of r.

We argue that the construction is correct by induction on the structure of
r. When r = a or r = ε, the correctness is immediate from the standard con-
struction. We proceed with the induction step for the numerical and interleaving
operators. In both cases, correctness can be shown by observing the sequences
of transitions that take automata from their initial to their final configuration.

(i) Let r = (r1)
[k,ℓ] and w be a string. We show that w ∈ L(r) iff w ∈ L(A(r)).

If k = 0 and w = ε, we have that w ∈ L(r) iff w ∈ L(A(r)) by con-
struction, since (sr, ε, fr) is a transition in A(r). If k 6= 0 or w 6= ε, then
w ∈ L(r) iff there exists an n ∈ {k, . . . , ℓ} and strings w1, . . . , wn ∈ L(r1)
such that w = w1 · · ·wn. By induction, for each i = 1, . . . , n, wi ∈ L(r1)
iff wi ∈ L(A(r1)). For each i = 1, . . . , n, wi ∈ L(A(r1)) iff there ex-
ists a sequence Ti of transitions of A(r1) that takes A(r1) from its ini-
tial to its final configuration while reading wi. The latter sequences of
transitions exist for each i = 1, . . . , n iff there exists a sequence of tran-
sitions T = (s, ε, sr1

)T1(fr1
, ε, qr)(qr, store, sr1

)T2 · · ·Tn(fr1
, ε, qr)(qr, ε, f)

that takes A(r) from its initial to its final configuration while reading w.
(ii) Let r = r1 & r2 and let w be a string. We show that w ∈ L(r) iff w ∈

L(A(r)). We have that w ∈ L(r) iff there exist w1 ∈ L(r1) and w2 ∈ L(r2)
such that w ∈ w1 & w2. By induction, w1 ∈ L(r1) and w2 ∈ L(r2) iff
w1 ∈ L(A(r1)) and w2 ∈ L(A(r2)). For each j = 1, 2, wj ∈ L(A(rj)) iff
there exists a sequence Tj of transitions that take A(rj) from its initial to
its final configuration while reading wj . The latter is the case if and only if
there exists a sequence of transitions (s, split, sr1

, sr2
)T (fr1

, fr2
,merge, f)

that takes A(r) from s to f while reading r, such that the concatenation
of the labels in T is w.

(2) Let A = (QA, Σ, sA, fA, δA) be an NFA(#,&). We define an NFA B =
(QB , Σ, sB , fB , δB) such that L(A) = L(B). Formally,

– QB = 2Q × ({1, . . . ,max(A)}QA);
– sB = ({sA}, αsA

);
– fB = ({fA}, αfA

);
– δB = {

(
(P1, α1), σ, (P2, α2)

)
| σ ∈ Σε and (P1, α1) →A,σ (P2, α2) for config-

urations (P1, α1) and (P2, α2) of A}.

17

Obviously, B can be constructed from A in exponential time. Notice that the size
of QB is smaller than 2|QA| ·2|A|·|QA|. Furthermore, as the transition relation of B

is isomorphic to the union of the relations →A,σ over all σ ∈ Σε, it is immediate
that L(A) = L(B). �

Before giving the proof of Theorem 6, we describe some new merge and
split transitions which can be written in function of the regular split and merge
transitions. These transitions will be used in the proof of Theorem-6(3).

1. (q1, q2,merge-split, q′1, q
′
2): States q1 and q2 are read, and immediately split

into states q′1 and q′2.
2. (q1, q2, q3,merge-split, q′1, q

′
2, q

′
3): States q1, q2 and q3 are read, and immedi-

ately split into states q′1, q
′
2 and q′3.

3. (q1, split, q′1, . . . , q
′
n): State q1 is read, and is immediately split into states

q′1, . . . , q
′
n.

4. (q1, . . . , qn,merge, q′1): States q1, . . . , qn are read, and are merged into state
q′1.

Transitions of type 1 (resp. 2) can be rewritten using 2 (resp. 4) regular
transitions, and 1 (resp. 3) new helping states. Transitions of type 3 and 4 can
be rewritten using (n − 1) regular transitions and (n − 1) new helping states.
For example, the transition (q1, q2,merge-split, q′1, q

′
2) is equal to the transitions

(q1, q2,merge, qh), and (qh, split, q′1, q
′
2), where qh is a new helping state.

Proof of Theorem 6:

(1) equivalence and inclusion for NFA(#,&) is expspace-complete;
(2) intersection for NFA(#,&) is pspace-complete; and,
(3) membership for NFA(#) is np-hard and membership for NFA(&) and

NFA(#,&) is pspace-complete.

Proof. (1) expspace-hardness follows from Theorem 5(1) and Theorem 7(3).
Membership in expspace follows from Theorem 5(2) and the fact that inclu-

sion for NFAs is pspace-complete [39].

(2) For j = 1, . . . , n, let Aj = (Qj , Σ, sj , fj , δj) be an NFA(#,&). The algorithm
proceeds by guessing a Σ-string w such that w ∈

⋂n

j=1 L(Aj). Instead of guessing
w at once, we guess it symbol by symbol and keep for each Aj one current
configuration γj on the tape. More precisely, at each time instant, the tape
contains for each Aj a pair cj = (Pj , αj) such that γsj

⇒Aj ,wi
(Pj , αj), where

wi = a1 · · · ai is the prefix of w guessed up to now. The algorithm accepts when
each cj is a final configuration. Formally, the algorithm works as follows.

1. Set cj = ({sj}, αsj
) for j = 1, . . . , n;

2. While not every cj is a final configuration
(i) Guess an a ∈ Σ.
(ii) Non-deterministically replace each cj by a (P ′

j , α
′
j) such that

(Pj , αj)⇒Aj ,a (P ′
j , α

′
j).

18

As the algorithm only uses space polynomial in the size of the NFA(#,&)
and step (b,ii) can be done pspace, the overall algorithm operates in pspace.

(3) The membership problem for NFA(#,&)s is easily seen to be in pspace by
an on-the-fly implementation of the construction in Theorem 5(2). Indeed, as a
configuration of an NFA(#,&) A = (Q,Σ, s, f, δ) has size as most |Q| + |Q| ·
max(A), we can store a configuration using only polynomial space.

We show that the membership problem for NFA(#)s is np-hard by a re-
duction from a modification of integer knapsack. We define this problem as
follows. Given a set of natural numbers W = {w1, . . . , wk} and two integers m

and n, the problem asks whether there exists a mapping τ : W → N such that
m ≤

∑

w∈W τ(w)×w ≤ n. The latter mapping is called a solution. This problem
is known to be np-complete [13].

We construct an NFA(#) A = (Q,Σ, s, f, δ) such that L(A) = {ε} if W,m,n

has a solution, and L(A) = ∅ otherwise.
The state set Q consists of the start and final states s and f , a state qwi

for
each weight wi, and a state q. Intuitively, a successful computation of A loops at
least m and at most n times through state q. In each iteration, A also visits one
of the states qwi

. Using numerical occurrence constraints, we can ensure that
a computation accepts if and only if it passes at least m and at most n times
through q and a multiple of wi times through each qwi

. Hence, an accepting
computation exists if and only if there is a τ such that m ≤

∑

w∈W τ(w)×w ≤ n.
Formally, the transitions of A are the following:

– (s, ε, qwi
) for each i = 1, . . . , k;

– (qwi
, store, q) for each i = 1, . . . , k;

– (qwi
, ε, q) for each i = 1, . . . , k;

– (q, store, s); and,
– (q, ε, f).

We set min(q) = m, max(q) = n and min(qwi
) = max(qwi

) = wi for each qwi
.

Finally, we show that membership for NFA(&)s is pspace-hard. The proof is
a reduction from corridor tiling. A tiling instance is a tuple T = (X,H, V, b, t, n)
where X is a finite set of tiles, H,V ⊆ X × X are the horizontal and vertical
constraints, and b, t are n-tuples of tiles (b and t stand for bottom row and top
row, respectively).

A correct corridor tiling for T is a mapping λ : {1, . . . ,m}× {1, . . . , n} → X

for some m ∈ N such that the following constraints are satisfied:

– the bottom row is b: b = (λ(1, 1), . . . , λ(1, n));
– the top row is t: t = (λ(m, 1), . . . , λ(m,n));
– all vertical constraints are satisfied: ∀i < m, ∀j ≤ n, (λ(i, j), λ(i+1, j)) ∈ V ;

and,
– all horizontal constraints are satisfied: ∀i ≤ m, ∀j < n, (λ(i, j), λ(i, j +1)) ∈

H.

The corridor tiling problem asks, given a tiling instance, whether there exists
a correct corridor tiling. The latter problem is pspace-complete [41].

19

Given a tiling instance T , we will construct an NFA(&)A over the empty
alphabet (Σ = ∅), which accepts ε iff there exists a correct corridor tiling for T .
Our automaton will try to construct a correct tiling for T , and accept when it
finds such a tiling.

We will try to construct the tiling row by row. Therefore, A must at any
time reflect the current row in its state set (note that a NFA(&) can be in more
than one state at once). To do this, we construct for every tile x, a set of states
x1, . . . , xn, where n is the length of each row. If A is in state xi, this means that
the ith tile of the current row is x. For example, if b = x1x3x1, and t = x2x2x1,
then the initial state set is {x1

1, x
2
3, x

3
1}, and A can accept when the state set is

{x1
2, x

2
2, x

3
1}.

The only question left is how A can transform its state set which describes
the current row, into a state set which describes a valid row on top of the current
row. We do this one tile at a time, and begin with the first tile, say xi, in the
current row. This tile is represented by x1

i in the state set. Now, for every tile
xj , for which (xi, xj) ∈ V , we allow x1

i to be replaced by x1
j , since xj can be the

first tile of the row on top of the current row. For the second tile of the next row,
we have to replace the second tile of the current row, say xk, by a new tile, say
xl, such that the vertical constraints between xk and xl are satisfied and such
that the horizontal constraints between xl and the tile we just placed at the first
position of the first row, xj , are satisfied.

In this manner, we run through the whole row and replace it by a new one.
To do this properly, we need to know at any time at which position we have
to update the tile. Therefore, we create an extra set of states p1, . . . , pn, where
the state pi says that the tile at position i has to be updated. So, the state set
always consists of a state pi, and a number of states which represent the current
and next row. Here, the states up to position i already represent the tiles of the
next row, the states from position i still represent the current row, and i is the
next position where we have to update the tile.

We can now formally construct an NFA(&) A = (Q,Σ, s, f, δ) which accepts
ε iff there exists a correct corridor tiling for a tiling instance T = (X,H, V, b, t, n)
as follows:

– Q = {xj |x ∈ X, 1 ≤ j ≤ n} ∪ {pi|1 ≤ i ≤ n} ∪ {s, f}
– Σ = ∅
– δ is the union of the following

• (s, split, p1, b
1

1, . . . , b
n

n): From the initial state we immediately go to the
states which represent the bottom row.

• (p1, t
1
1, . . . , t

n

n,merge, f): When the state set represents a full row (we are
in state p1), and the current row is the accepting row, we merge all the
states to the accepting state.

• ∀xi, xj ∈ X, (xj , xi) ∈ V : (p1, x
1
j ,merge-split, p2, x

1
i): When we have to

update the first tile, we only have to check the vertical constraints with
the first tile of the previous row.

• ∀xi, xj , xk ∈ X,m ∈ N, 2 ≤ m ≤ n, (xk, xi) ∈ V, (xj , xi) ∈ H:
(pm, xm

k , xm−1
j ,merge-split, p(m mod n)+1, x

m
i , xm−1

j): When we have to

20

update a tile at the nth (n 6= 1) position, we have to check the verti-
cal constraint with the nth tile at the previous row, and the horizontal
constraint with the (n− 1)th tile of the new row.

Clearly, if there exists a correct corridor tiling for T , there exists a run of
A accepting ε. Conversely, the construction of our automaton, in which the
updates are always bounded to the position pi, and the horizontal and vertical
constraints, assures that when there is an accepting run of A on ε, this run
simulates a correct corridor tiling for T . �

Proofs for Section 4

Proof of Theorem 7:

(1) equivalence and inclusion for RE(#,&) is in expspace;
(2) intersection for RE(#,&) is pspace-complete; and,
(3) equivalence and inclusion for RE(#) is expspace-hard.

Proof. (1) Follows directly from Theorem 5(1) and Theorem 6(1).

(2) The upper bound follows directly from Theorem 5(1) and Theorem 6(2). The
lower bound is already known for ordinary regular expressions.

(3) This proof is provided in the body of the paper. �

Proof of Theorem 8:
inclusion for CHARE(#) is expspace-complete.

Proof. The expspace upper bound already follows from Theorem 7(1).
The proof for the expspace lower bound is in the same spirit as the proof

for pspace-hardness of inclusion for CHAREs in [27].
The proof is a reduction from exp-corridor tiling (see the proof of Theo-

rem 7(3)). Thereto, let T = (X,H, V, x⊥, x⊤, n) be a tiling instance. Without loss
of generality, we assume that n ≥ 2. We construct two CHARE(#)-expressions
r1 and r2 such that

L(r1) ⊆ L(r2) if and only if

there exists no correct exponential corridor tiling for T.

As expspace is closed under complement, the expspace-hardness of inclusion

for CHARE(S) follows.
Set Σ = X ⊎ {$,△}. For ease of exposition, we denote X ∪ {△} by X△ and

X ∪ {△, $} by X△,$. We encode candidates for a correct tiling by a string in
which the rows are separated by the symbol △, that is, by strings of the form

△R0△R1△· · ·△Rm△, (†)

in which each Ri represents a row and is in X2n

. Moreover, R0 is the bottom
row and Rm is the top row. The following regular expressions detect strings of
this form which do not encode a correct tiling for T :

21

– X∗
△△X [0,2n−1]△X∗

△. This expression detect rows that are too short, that is,
contain less than 2n symbols.

– X∗
△△X [2n+1,2n+1]X∗△X∗

△. This expression detect rows that are too long,
that is, contain more than 2n symbols.

– X∗
△x1x2X

∗
△, for every x1, x2 ∈ X, (x1, x2) 6∈ H. These expressions detect all

violations of horizontal constraints.
– X∗

△x1X
[2n−1,2n−1]
△ x2X

∗
△, for every x1, x2 ∈ X, (x1, x2) 6∈ V . These expres-

sions detect all violations of vertical constraints.

Let e1, . . . , ek be an enumeration of the above expressions. Notice that k =
O(|X|2). It is straightforward that a string w in (†) does not match

⋃k

i=1 ei if
and only if w encodes a correct tiling.

Let e = e1 · · · ek. Because of leading and trailing X∗
△ expressions, L(e) ⊆

L(ei), for every i = 1, . . . , k. We are now ready to define r1 and r2:

r1 =

k times e
︷ ︸︸ ︷

ee$ · · · e△x⊥X [2n−1,2n−1]△X∗
△△x⊤X [2n−1,2n−1]△

k times e
︷ ︸︸ ︷

ee$ · · · e; and,

r2 = $X∗
△,$$e1$e2$ · · · ekX∗

△,$$.

Notice that both r1 and r2 are in CHARE(#) and can be constructed in poly-
nomial time. It remains to show that L(r1) ⊆ L(r2) if and only if there is no
correct tiling for T .

We first show the implication from left to right. Thereto, let L(r1) ⊆ L(r2).
Let uwu′ be an arbitrary string in L(r1) such that u, u′ ∈ L(ee$ · · · e) and
w ∈ △x⊥X [2n−1,2n−1]△X∗

△△x⊤X [2n−1,2n−1]△. Hence, uwu′ ∈ L(r2).
Notice that uwu′ contains 2k + 2 times the symbol “$”. Moreover, the first

and the last “$” of uwu′ is always matched onto the first and last “$” of r2. This
means that k + 1 consecutive $-symbols of the remaining 2k $-symbols in uwu′

must be matched onto the $-symbols in $e1$e2$ · · · ek. Hence, w is matched
onto some ei. So, w does not encode a correct tiling. As the sub-expression
△x⊥X [2n−1,2n−1]△X∗

△△x⊤X [2n−1,2n−1]△ of r1 defines all candidate tilings, the
system T has no solution.

To show the implication from right to left, assume that there is a string
uwu′ ∈ L(r1) that is not in r2, where u, u′ ∈ L(ee$ · · · e). Then w 6∈
⋃k

i=1 L(ei) and, hence, w encodes a correct tiling. �

Proof of Theorem 9:

(1) inclusion for CHARE(a, a?, a#) is pspace hard and in expspace.
(2) equivalence for CHARE(a, a?, a#) is in ptime.
(3) intersection for CHARE(a, a?, a#) is np-complete.

Proof. (1) The expspace upper bound is immediate from Theorem 7(1).
The proof for the pspace lower bound is in the same spirit as the proof of

Theorem 8, except that we now use a reduction from corridor tiling instead

22

of exp-corridor tiling, and we are no longer allowed to use the Kleene star
operator.

The corridor tiling problem asks, given a tiling instance T = (X,H, V, x⊥,

x⊤, n) whether there is a correct corridor tiling for T , that is, a mapping λ :
{1, . . . ,m} × {1, . . . , n} → X for some m such that the first tiles of the first
and last rows are x⊥ and x⊤, respectively; and that the horizontal and vertical
constraints are satisfied. Notice that the only difference between exp-corridor

tiling and corridor tiling is that the rows have length 2n in the former
problem, while they have length n in the latter problem.

Thereto, let Let T = (X,H, V, x⊥, x⊤, n) be a tiling instance. Without loss
of generality, we assume that n ≥ 2. We construct two CHARE(a, a?, a#)-
expressions r1 and r2 such that

L(r1) ⊆ L(r2) if and only if there exists no correct corridor tiling for T.

As pspace is closed under complement, the pspace-hardness of inclusion for
CHARE(a, a?, a#) follows.

Notice that there exists a correct corridor tiling for T if and only if there
exists a correct corridor tiling for T with at most |X|n rows. Indeed, any correct
corridor tiling with more than |X|n rows contains two times the same row and
can be shortened due to a pumping argument.

Set Σ = X ⊎ {$,△}. For ease of exposition, we denote X ∪ {△} by X△ and
X ∪ {△, $} by X△,$. We encode candidates for a correct tiling by a string in
which the rows are separated by the symbol △, that is, by strings of the form

△R0△R1△· · ·△Rm△, (†)

in which each Ri represents a row and is in Xn. Moreover, R0 is the bottom
row and Rm is the top row. Let M be the number |X|n(n + 1) + 1, which
is the maximum length of the strings (†) that we need to consider. Let N be
2M + (|X|2 + 1)(2|M | + n + 3). The definition of N will become clear later in
the proof. For the moment, it is only important to notice that we only need
a polynomial number of bits for the binary representation of N . The following
regular expressions detect strings of this form which do not encode a correct
tiling for T :

– X
[0,N]
△ △X [0,n−1]△X

[0,N]
△ . This expression detect rows that are too short,

that is, contain less than n symbols.

– X
[0,N]
△ △X [n+1,M]△X

[0,N]
△ . This expression detect rows that are too long,

that is, contain more than n symbols.

– X
[0,N]
△ x1x2X

[0,N]
△ , for every x1, x2 ∈ X, (x1, x2) 6∈ H. These expressions

detect all violations of horizontal constraints.
– X

[0,N]
△ x1X

[n−1,n−1]
△ x2X

[0,N]
△ , for every x1, x2 ∈ X, (x1, x2) 6∈ V . These ex-

pressions detect all violations of vertical constraints.

Let e1, . . . , ek be an enumeration of the above expressions. Notice that k ≤
2 + 2|X|2. It is straightforward that a string w in (†) does not match

⋃k

i=1 ei if
and only if w encodes a correct tiling. Let e be the concatenation of

23

– X
[0,M]
△ △X [0,n−1]△,

– X
[0,M]
△ △X [n+1,M]△,

– X
[0,M]
△ x1x2, for every (x1, x2) ∈ X2 −H,

– X
[0,M]
△ x1X

[n−1,n−1]
△ x2, for every (x1, x2) ∈ X2 − V , and

– X
[0,M]
△ .

Notice that the maximum length of a string in L(e) is (M +n+1)+(2M +2)+
(|X|2(M + 2)) + (|X|2(M + n + 1)) + M , which is equal to N . Because of the

leading and trailing X
[0,N]
△ expressions in each ei, we have that L(e) ⊆ L(ei) for

every i = 1, . . . , k. We are now ready to define r1 and r2:

r1 =

k times e
︷ ︸︸ ︷

ee$ · · · e△x⊥X [n−1,n−1]△X
[0,M]
△ △x⊤X [n−1,n−1]△

k times e
︷ ︸︸ ︷

ee$ · · · e; and,

r2 = $X
[0,kN]
△,$ $e1$e2$ · · · ekX

[0,kN]
△,$ $.

Notice that both r1 and r2 are in CHARE(a, a?, a#) and can be constructed in
polynomial time. It remains to show that L(r1) ⊆ L(r2) if and only if there is
no correct tiling for T .

We first show the implication from left to right. Thereto, let L(r1) ⊆ L(r2).
Let uwu′ be an arbitrary string in L(r1) such that u, u′ ∈ L(ee$ · · · e) and

w ∈ △x⊥X [n−1,n−1]△X
[0,M]
△ △x⊤X [n−1,n−1]△. Hence, uwu′ ∈ L(r2).

Notice that uwu′ contains 2k + 2 times the symbol “$”. Moreover, the first
and the last “$” of uwu′ is always matched onto the first and last “$” of r2. This
means that k + 1 consecutive $-symbols of the remaining 2k $-symbols in uwu′

must be matched onto the $-symbols in $e1$e2$ · · · ek. Hence, w is matched
onto some ei. So, w does not encode a correct tiling. As the sub-expression

△x⊥X [n−1,n−1]△X
[0,M]
△ △x⊤X [n−1,n−1]△ of r1 defines all candidate tilings, the

system T has no solution.
To show the implication from right to left, assume that there is a string

uwu′ ∈ L(r1) that is not in r2, where u, u′ ∈ L(ee$ · · · e). Then w 6∈
⋃k

i=1 L(ei) and, hence, w encodes a correct tiling.

(2) It is shown in [27] that two CHARE(a, a?)-expressions are equivalent if and
only if they have the same sequence normal form (which is defined below).
As a[k,ℓ] is equivalent to ak(a?)ℓ−k, we also have that two CHARE(a, a?, a#)-
expressions are equivalent if and only if they have the same sequence normal
form.

We have to argue that the sequence normal form of CHARE(a, a?, a#)-
expressions can be computed in polynomial time. To this end, let r = r1 · · · rn

be a CHARE(a, a?, a#)-expression with factors r1, . . . , rn. The sequence normal
form of a CHARE(a, a?) r = r1 · · · rn is obtained in the following way. First, we
replace every factor of the form

– a by a[1, 1];
– a? by a[0, 1]; and,

24

– a[k,ℓ] by a[k, ℓ].

where a is an alphabet symbol. We call a the base symbol of the factor a[i, j].
Then, we replace successive subexpressions a[i1, j1] and a[i2, j2] with the same
base symbol a by a[i1 + i2, j2 + j2] when j1 and j2 are integers until no such
replacements can be made anymore. For instance, the sequence normal form of
aa?a2,5a?bb?b?b[1,7] is a[3, 8]b[2, 10].

Obviously, the above algorithm to compute sequence normal form of CHARE(a,

a?, a#)-expressions can be implemented in polynomial time. It can be tested in
linear time whether two sequence normal forms are the same.

(3) The np-hardness of this problem is immediate since intersection is already
np-complete for CHARE(a, a?)-expressions [27].

We show that the problem is in np. To this end, we represent a string w by
its sequence normal form, as defined in the proof of Theorem 9(2). We call such
a string a compressed string. Let r1, . . . , rn be CHARE(a, a?, a#) expressions.

Lemma 15. If
⋂n

i=1 L(ri) 6= ∅, then there exists a string w = a
j1
1 · · · a

jm
m ∈

⋂n
i=1 L(ri) such that m ≤ min{|ri| | i ∈ {1, . . . , n}} and, for each i = 1, . . . , n,

ji is not larger than the largest integer occurring in r1, . . . , rn.

Proof. Suppose that there exists a string w = a
j1
1 · · · a

jm
m ∈

⋂n

i=1 L(ri), with ai 6=
ai+1 for every i = 1, . . . ,m−1. Since w is matched by every expression r1, . . . , rn,
and since a factor of a CHARE(a, a?, a#)-expression can never match a strict
superstring of a

ji

i for i = 1, . . . , n, we have that m ≤ min{|ri| | i ∈ {1, . . . , n}}.
Furthermore, since w is matched by every expression r1, . . . , rn, no ji can be

larger than the largest integer occurring in r1, . . . , rn. �

The np algorithm consists of guessing a compressed string w of polynomial
size and verifying whether w ∈

⋂n

i=1 L(ri). To verify whether w is in the intersec-
tion, we essentially do the following. We start by representing w as a compressed
string a1[i1, i1] · · · am[im, im] and each regular expression by its sequence normal
form. We then guess how w should be matched to each regular expression and
we verify in polynomial time whether we have guessed this correctly.

To this end, let r = b1[k1, ℓ1] · · · bm0
[km0

, ℓm0
] be a CHARE(a, a?, a#)-expres-

sion in sequence normal form. Formally, we guess a sequence of integers j1, . . . , jm0

such that, for each i = 1, . . . ,m0, ki ≤ ji ≤ ℓi. Each such integer ji represents
the number of symbols of w that will be matched with bi[ki, ℓi].

We describe a ptime procedure to test whether j1, . . . , jm0
represents a cor-

rect match between w and r. We start by reading j1.

(1) While there are still integers ji left, do the following. Read ji and verify
whether the first ji symbols of w can be matched onto bi[ki, ℓi]. This is the
case if and only if the first factor of w is of the form bi[x, x] with x ≤ ji.

(2) If the test in step (1) fails, reject.
(3) If the test in step (1) is successful, remove the ji first symbols of w (that

is, replace its first factor bi[x, x] of w by bi[x− ji, x− ji] or remove it when
ji = x. Return to step (1). �

25

Proof of Theorem 10:
inclusion, equivalence, and intersection for CHARE(a, a#>0) are in ptime.

Proof. The upper bound for equivalence is immediate from Theorem 9(2).
For inclusion, let r1 and r2 be two CHARE(a, a#>0) in sequence normal

form. Let r1 = a1[k1, ℓ1] · · · an[kn, ℓn] and r2 = a′
1[k

′
1, ℓ

′
1] · · · a

′
n′ [k′

n′ , ℓ′n′]. Notice
that every number k1, . . . , kn, k′

1, . . . , k
′
n′ is greater than zero. We claim that

L(r1) ⊆ L(r2) if and only if

– n = n′;
– for every i = 1, . . . , n, ai = a′

i;
– for every i = 1, . . . , n, ki ≥ k′

i; and,
– for every i = 1, . . . , n, ℓi ≤ ℓ′i.

Indeed, if n 6= n′, or if there exists an i such that ai 6= a′
i or ki < k′

i, then
ak1

1 · · · a
kn
n ∈ L(r1)−L(r2). If there exists an i such that ℓi > ℓ′i, then aℓ1

1 · · · a
ℓn
n ∈

L(r1) − L(r2). Conversely, it is immediate that every string in L(r1) is also in
L(r2). It is straightforward to test the four above conditions in linear time.

For intersection, let, for every i = 1, . . . , n, ri = ai,1[ki,1, ℓi,1] · · · ai,mi
[ki,mi

,

ℓi,mi
] be a CHARE(a, a#>0) in sequence normal form. Notice that every number

ki,1, . . . , ki,mi
is greater than zero. We claim that

⋂n
i=1 L(ri) 6= ∅ if and only if

(i) m1 = m2 = · · · = mn;
(ii) for every i, j = 1, . . . , n and x = 1, . . . ,m1, ai,x = aj,x; and,
(iii) for every x = 1, . . . ,m1, max{ki,x | 1 ≤ i ≤ n} ≤ min{ℓi,x | 1 ≤ i ≤ n}.

Indeed, if the above conditions hold, we have that aK1

1,1 · · · a
Km1

1,m1
is in

⋂n

i=1 L(ri),
where Kx = max{ki,x | 1 ≤ i ≤ n} for every x = 1, . . . ,m1. If mi 6= mj

for some i, j ∈ {1, . . . , n}, then the intersection between ri and rj is empty.
So assume that condition (i) holds. If ai,x 6= aj,x for some i, j ∈ {1, . . . , n}
and x ∈ {1, . . . ,m1}, then we also have that the intersection between ri and
rj is empty. Finally, if condition (iii) does not hold, take i, j, and x such that
ki,x = max{ki,x | 1 ≤ i ≤ n} and ℓj,x = min{ℓi,x | 1 ≤ i ≤ n}. Then the
intersection between ri and rj is empty.

Finally, testing conditions (i)–(iii) can be done in linear time. �

Proofs for Section 5

We provide some extra terminology for the proofs of Section 5.
We say that a DTD(M) (Σ, d, s), is reduced if, for every a ∈ Σ, there exists

a tree t ∈ L(d) such that a is a label in t.
We say that an EDTD(M) D = (Σ,Σ′, d, s, µ) is reduced if the DTD (Σ′, d, s)

is reduced. Reducing an EDTD D is the act of finding an equivalent reduced
EDTD.

In the proofs of the following propositions, we will use the fact that reducing
an EDTD(#,&) is tractable.

Lemma 16. Reducing a DTD(#,&) is in polynomial time.

26

Proof. The algorithm works along the same lines as for tree automata but is
slightly more involved due to the RE(#,&) expressions. First, it computes in a
bottop-up pass which symbols do not generate a tree and removes these symbols
from the DTD. Then it computes in a top-down pass which symbols are not
reachable from the start symbol and removes these symbols from the DTD.

However, we need to take a little bit of care about the RE(#,&)-expressions.
Given a RE(#,&)-expression r and a set of alphabet symbols S, we need to be
able to construct an RE(#,&) expression for L(r) ∩ S∗. We do this as follows.
First, replace every symbol in Σ − S occurring in r by ∅. Now, we eliminate all
symbols ∅ from r by applying the following rules until no rule can be applied
anymore:

– replace ∅ · a or a · ∅ by ∅;
– replace ∅∗ by ε;
– replace (∅+ r′) or (r′ + ∅) by r′;
– replace (∅& r′) or (r′ & ∅) by ∅;
– replace ∅[k,ℓ] by ∅ if k > 0; and
– replace ∅[k,ℓ] by ε if k = 0,

where r′ is a subexpression of r. If we extend the semantics of RE(#,&) ex-
pressions in the straightforward manner to RE(#,&) expressions with ∅ (where
∅ is the symbol defining the empty language), then it is easy to see that the
above rules only replace subexpressions of r by expressions that are equivalent.
Moreover, since every rule either eliminates an ∅ or a subexpression of r, we can
only apply a linear number of rewrite rules to a given RE(#,&) expression r.
Hence, we can rewrite r in quadratic time.

Let (Σ, d, s) be a DTD(#,&). We reduce d as follows.

1. Compute R1 = {a ∈ Σ | L((Σ, d, a)) 6= ∅}. This can be done in the
standard bottom-up manner: let R1,1 := {a | ε ∈ L(d(a))} and, for ev-
ery i = 1, . . . , |Σ| − 1, let R1,i+1 := {a | L(d(a)) ∩ L((Ri)

∗) 6= ∅}. Then,
R1 = R1,|Σ|.

2. If R1 = ∅, then return the empty DTD. Otherwise, let (Σ−R1, d1, s) be ob-
tained from d by replacing every RE(#,&)-expression r in d by an RE(#,&)
expression for L(r) ∩ (Σ −R1)

∗.
3. Compute the reachable symbols R2 of d1. That is, s is reachable and, if a

is reachable and there is a string w1bw2 ∈ L(d(a)), then b is also reachable.
Computing R2 is straightforward.

4. Let (Σ− (R1 ∪R2), d2, s) be obtained from d1 by replacing every RE(#,&)-
expression r in d1 by an RE(#,&) expression for L(r) ∩ (Σ − (R1 ∪R2))

∗.

The DTD (Σ− (R1 ∪R2), d2, s) is a reduced DTD which is equivalent to d. The
above algorithm computes d2 in polynomial time. �

Corollary 17. Reducing an EDTD(#,&) is in polynomial time.

Proof of Proposition 11:
Let R be a subclass of RE(#,&) and let C be a complexity class which contains
ptime and is closed under positive reductions. Then the following are equivalent:

27

(a) inclusion for R expressions is in C.
(b) inclusion for DTD(R) is in C.
(c) inclusion for EDTDst(R) is in C.

The corresponding statement holds for equivalence.

Proof. It suffices to prove the implication from (a) to (c). Thereto, let D1 =
(Σ,Σ′

1, d1, s1, µ1) and D2 = (Σ,Σ′
2, d2, s2, µ2) be two single-type EDTDs. We

can assume Σ′
1 ∩Σ′

2 = ∅. We first need to reduce D1 and D2, which can be done
in polynomial time, according to Corollary 17.

We then compute a correspondence relation ∼⊆ Σ′
1 ×Σ′

2 as follows:

– s1 ∼ s2; and,
– if τ1 ∼ τ2, then for every a ∈ Σ, τ ′

1 ∼ τ ′
2 where τ ′

1 is the unique a-type in
d1(τ1) and τ ′

2 is the unique a-type in d2(τ2).

It now can be shown that L(D1) ⊆ L(D2) iff for every τ1 ∈ Σ′
1 and τ2 ∈ Σ′

2

with τ1 ∼ τ2, L(µ1(d1(τ1))) ⊆ L(µ2(d2(τ2))). Notice that, because of the single-
type property, di(τi) is an R expression iff µi(di(τi)) is an R expression for each
i = 1, 2. �

Proof of Theorem 13:

(1) equivalence and inclusion for EDTD(#,&) is in expspace;
(2) equivalence and inclusion for EDTD(#) and EDTD(&) is expspace-

hard;
(3) intersection for EDTD(#,&) is exptime-complete.

Proof. (1) We show that inclusion is in expspace. The upper bound for equiv-

alence then immediately follows.
First, we introduce some notation. For an EDTD D = (Σ,Σ′, d, s, µ), we will

denote elements of Σ′, i.e., types, by τ . We denote by (D, τ) the EDTD D with
start symbol τ . We define the depth of a tree t, denoted by depth(t), as follows: if
t = ε, then depth(t) = 0; and if t = σ(t1 · · · tn), then depth(t) = max{depth(ti) |
i = 1, . . . , n}+ 1.

Suppose that we have two EDTDs D1 = (Σ,Σ′
1, d1, s1, µ1) and D2 = (Σ,Σ′

2,

d2, s2, µ2). We provide an expspace algorithm that decides whether L(D1) 6⊆
L(D2). As expspace is closed under complement, the theorem follows. The
algorithm computes a set E of pairs (C1, C2) ∈ 2Σ′

1 ×2Σ′

2 where (C1, C2) ∈ E iff
there exists a tree t such that Cj = {τ ∈ Σ′

j | t ∈ L((Dj , τ))} for each j = 1, 2.
That is, every Cj is the set of types that can be assigned by Dj to the root
of t. Or when viewing Dj as a tree automaton, Cj is the set of states that can
be assigned to the root in a run on t. Therefore, we say that t is a witness for
(C1, C2). Notice that t ∈ L(D1) (resp., t ∈ L(D2)) if s1 ∈ C1 (resp. s2 ∈ C2).
Hence, L(D1) 6⊆ L(D2) iff there exists a pair (C1, C2) ∈ E with s1 ∈ C1 and
s2 6∈ C2.

We compute the set E in a bottom-up manner as follows:

28

1. Initially, set E1 := {(C1, C2) | ∃τ1 ∈ Σ′
1, τ2 ∈ Σ′

2 such that µ1(τ1) = µ2(τ2),
C1 = {τ1 ∈ Σ′

1 | ε ∈ d1(τ1)}, and C2 = {τ2 ∈ Σ′
2 | ε ∈ d2(τ2)}}.

2. For every k > 1, Ek is the union of Ek−1 and the pairs (C1, C2) for which
there is an a ∈ Σ and a string (C1,1, C2,1) · · · (C1,n, C2,n) in E∗

k−1 such that

Cj = {τ ∈ Σ′
j | µj(τ) = a,∃bj,1 ∈ Cj,1, . . . , bj,n ∈ Cj,n with bj,1 · · · bj,n ∈ dj(τ)},

for each j = 1, 2.
3. E := Eℓ for ℓ = 2|Σ

′

1
| · 2|Σ

′

2
|.

4. Accept when there is a pair (C1, C2) ∈ E with s1 ∈ C1 and s2 6∈ C2. Reject
otherwise.

We argue that the algorithm is correct. As Ek ⊆ Ek+1, for every k, it follows
that Eℓ = Eℓ+1. Hence, the algorithm computes the largest set of pairs. The
following lemma then shows that the algorithm decides whether L(D1) 6⊆ L(D2).
The lemma can be proved by induction on k.

Lemma 18. For every k ≥ 1, (C1, C2) ∈ Ek if and only if there exists a witness
tree for (C1, C2) of depth at most k.

It remains to show that the algorithm can be carried out using exponential
space. Step (a) reduces to a linear number of tests ε ∈ L(r), for some RE(#,&)-
expressions r which is in ptime by [20]. Step (c) and (d) can be carried out in
exponential time, since the size of E is exponential in the input. For step (b), it
suffices to argue that, when Ek−1 is known, it is decidable in expspace whether
a pair (C1, C2) is in Ek. As there are only an exponential number of such possible
pairs, the result follows. To this end, we need to verify that there exists a string
W = (C1,1, C2,1) · · · (C1,n, C2,n) in E∗

k−1 such that for each j = 1, 2,

(A) for every τ ∈ Cj , there exist bj,1 ∈ Cj,1, . . . , bj,n ∈ Cj,n with bj,1 · · · bj,n ∈
dj(τ); and,

(B) for every τ ∈ Σ′
j \ Cj , there do not exist bj,1 ∈ Cj,1, . . . , bj,n ∈ Cj,nwith

bj,1 · · · bj,n ∈ dj(τ).

Assume that Σ′
1 ∩ Σ′

2 = ∅. Let, for each j = 1, 2 and τ ∈ Σ′
j , N(τ) be the

NFA(#,&) accepting dj(τ). Intuitively, we guess the string W one symbol at a
time and compute the set of reachable configurations Γτ for each N(τ).

Initially, Γτ is the singleton set containing the initial configuration of N(τ).
Suppose that we have guessed a prefix (C1,1, C2,1) · · · (C1,m−1, C2,m−1) of W and
that we guess a new symbol (C1,m, C2,m). Then, we compute the set Γ ′

τ = {γ′ |
∃b ∈ Cj,m, γ ∈ Γτ such that γ ⇒N(τ),b γ′} and set Γτ to Γ ′

τ .Each set Γ ′
τ can

be computed in exponential space from Γτ . We accept (C1, C2) when for every
τ ∈ Σ′

j , τ ∈ Cj iff Γτ contains an accepting configuration.

(2) It is shown by Mayer and Stockmeyer that equivalence and inclusion

are expspace-hard for RE(#,&)s. Hence, equivalence and inclusion are
also expspace hard for EDTD(&). Hardness for EDTD(#) is immediate from
Theorem 7(2).

29

(3) The lower bound follows from [36]. We argue that the problem is in exptime.
Thereto, let, for each i = 1, . . . , n, Di = (Σ,Σ′

i, di, si, µi) be an EDTD(#,&).
We assume w.l.o.g. that the sets Σ′

i are pairwise disjoint. We also assume that
the start type si never appears at the right-hand side of a rule. Finally, we
assume that no derivation tree consists of only the root. For each type τ ∈ Σ′

i,
let N(τ) denote an NFA(#,&) for di(τ). According to Theorem 5, N(τ) can be
computed from di(τ) in polynomial time. We provide an alternating polynomial
space algorithm that guesses a tree t and accepts if t ∈ L(D1)∩ · · · ∩L(Dn). As
apspace = exptime, this shows the theorem.

We guess t node by node in a top-down manner. For every guessed node v, the
following information is written on the tape of the TM: for every i ∈ {1, . . . , n},
the triple ci = (τ i

v, τ i
p, γ

i) where τ i
v is the type assigned to v by grammar Di, τ i

p is

the type of the parent assigned by Di, and γi is the current configuration N(τ i
p)

is in after reading the string formed by the left siblings of v. In the following, we
say that τ ∈ Σ′

i is an a-type when µi(τ) = a.

The algorithms proceeds as follows:

1. As for each grammar the types of the roots are given, we start by guessing the
first child of the root. That is, we guess an a ∈ Σ, and for each i ∈ {1, . . . , n},
we guess a type τ i and write the triple ci = (τ i, si, γ

i
s) on the tape where γi

s

is the start configuration of N(si).

2. For i ∈ {1, . . . , n}, let ci = (τ i, τ i
p, γ

i) be the triples on the tape. The algo-
rithm now universally splits into two parallel branches as follows:

(a) Downward extension: When for every i, ε ∈ di(τ
i) then the current

node can be a leaf node and the branch accepts. Otherwise, guess an
a ∈ Σ and for each i, guess an a-type θi. Replace every ci by the triple
(θi, τ i, γi

s) and proceed to step (b). Here, γi
s is the start configuration of

N(τ i).

(b) Extension to the right: For every i ∈ {1, . . . , n}, compute a configura-
tion γ′i for which γi ⇒N(τ i

p),τ i γ′i. When every γi is a final configuration,
then we do not need to extend to the right anymore and the algorithm
accepts. Otherwise, guess an a ∈ Σ and for each i, guess an a-type θi.
Replace every ci by the triple (θi, τ i, γ′i) and proceed to step (b).

We argue that the algorithm is correct. If the algorithm accepts, we have
guessed a tree t and, for every i = 1, . . . , n, a tree t′i with µi(t

′
i) = t and t′i ∈ L(di).

Therefore, t ∈
⋂n

i=1 L(Di). For the other direction, suppose that there exists a
tree t ∈

⋂n
i=1 L(Di) and t is minimal in the sense that no subtree t0 of t is

in
⋂n

i=1 L(Di). Then, there is a run of the above algorithm that guesses t and
guesses trees t′i with µi(t

′
i) = t. The tree t must be minimal since the algorithm

stops extending the tree as soon as possible.

The algorithm obviously uses only polynomial space.

�

30

Proofs for Section 6

We need a bit of terminology for the proof of Theorem 14. Let t be a tree and
v be a node. By anc-strt(v) we denote the string formed by the labels on the
path from the root to v, i.e., labt(ε)labt(i1)labt(i1i2) · · · labt(i1i2 · · · ik) where
v = i1i2 · · · ik.

We say that a tree language L is closed under ancestor-guarded subtree ex-
change if the following holds. Whenever for two trees t1, t2 ∈ L with nodes
u1 ∈ Dom(t1) and u2 ∈ Dom(t2) it holds that anc-strt1(u1) = anc-strt2(u2) im-
plies t1[u1 ← subtreet2(u2)] ∈ L. Here, t1[u1 ← subtreet2(u2)] denotes the tree
obtained from t1 by replacing its subtree rooted at u1 by the subtree rooted at
u2 in t2.

We recall the following theorem from [28]:

Theorem 19 (Theorem 7.1 in [28]). Let L be a tree language defined by an
EDTDs. Then the following conditions are equivalent.

(a) T is definable by a single-type EDTD.
(b) T is closed under ancestor-guarded subtree exchange.

We are now ready for the proof of Theorem 14.

Proof of Theorem 14:
Given an EDTD(#,&), deciding whether it is equivalent to an EDTDst(#,&)
or DTD(#,&) is expspace-complete.

Proof. We first show that the problem is hard for expspace. We use a reduction
from universality of RE(#,&), i.e., deciding whether an RE(#,&)-expression is
equivalent to Σ∗. The proof of Theorem 7(2) shows that the latter is expspace-
hard.

To this end, let r be an RE(#,&)-expression over Σ and let b and s be two
symbols not occurring in Σ. By definition L(r) 6= ∅. Define D = (Σ ∪{b, s}, Σ ∪
{s, b1, b2}, d, s, µ) as the EDTD with the following rules:

s → (b1)∗b2(b1)∗

b1 → Σ∗

b2 → r,

where for every τ ∈ Σ ∪ {s}, µ(τ) = τ , and µ(b1) = µ(b2) = b. We claim that
D is equivalent to a single-type DTD or a DTD iff L(r) = Σ∗. Clearly, if r

is equivalent to Σ∗, then D is equivalent to the DTD (and therefore also to a
single-type EDTD)

s→ b∗

b → Σ∗.

Conversely, suppose that there exists an EDTDst which defines the language
L(D). Towards a contradiction, assume that r is not equivalent to Σ∗. Let wr

be a string in L(r) and let w¬r be a Σ-string not in L(r). Consider the trees

31

t1 = s(b(wr)b(w¬r)) and t2 = s(b(w¬r)b(wr)). Clearly, t1 and t2 are in L(D).
However, the tree t = s(b(w¬r)b(w¬r)) obtained from t1 by replacing its left
subtree by the left subtree of t2 is not in L(D). According to Theorem 19, every
tree language defined by a single-type EDTD is closed under such an exchange
of subtrees. So, this means that L(D) cannot be defined by an EDTDst, which
leads to the desired contradiction.

For the upper bound, we proceed as follows. Let D = (Σ,Σ′, d, s, µ) be an
EDTD. Intuitively, we compute an EDTDst D0 = (Σ,Σ′

0, d0, s, µ0) which is the
closure of D under the single-type property. The EDTDst D0 has the following
properties:

(a) Σ′
0 is in general exponentially larger than Σ′;

(b) the RE(#,&)-expressions in the definition of d0 are only polynomially larger
than the RE(#,&)-expressions in the definition of d;

(c) L(D) ⊆ L(D0); and,
(d) L(D0) = L(D) ⇔ simplification is true for D.

Hence, we have that simplification is true for D if and only if L(D0) ⊆ L(D).
We first show how D0 can be constructed. According to Corollary 17, we can

assume w.l.o.g. that, for each type ai ∈ Σ′, there exists a tree t′ ∈ L(d) such
that ai is a label in t′. For a string w ∈ Σ∗ and a ∈ Σ let types(wa) be the
set of all types ai ∈ Σ′, for which there is a tree t and a tree t′ ∈ L(d) with
µ(t′) = t, and a node v in t such that anc-strt(v) = wa and the type of v in t0
is ai. We show how to compute types(wa) in exponential time. To this end, we
enumerate all sets types(w). Let s = c1. Initially, set W := {c}, Types(c) := {c1}
and R := {{c1}}. Repeat the following until W becomes empty:

(1) Remove a string wa from W .
(2) For every b ∈ Σ, let Types(wab) contain all bi for which there exists an aj in

Types(wa) and a string in d(aj) containing bi. If Types(wab) is not empty
and not already in R, then add it to R and add wab to W .

Since we add every set only once to R, the algorithm runs in time exponential
in the size of D. Moreover, we have that Types(w) = types(w) for every w, and
that R = Σ′

0.
For each a ∈ Σ, let types(D, a) be the set of all nonempty sets types(wa), with

w ∈ Σ∗. Clearly, each types(D, a) is finite. We next define D0 = (Σ,Σ′
0, d0, s, µ0).

Its set of types is Σ′
0 :=

⋃

a∈Σ types(D, a). Note that s ∈ Σ′
0. For every τ ∈

types(D, a), set µ0(τ) = a. In d0, the right-hand side of the rule for each
types(wa) is the disjunction of all d(ai) for ai ∈ types(wa), with each bj in
d(ai) replaced by types(wab).

We show that properties (a)–(d) hold. Since Σ′
0 ⊆ 2Σ′

, we immediately have
that (a) holds. The RE(#,&)-expressions that we constructed in D0 are unions of
a linear number of RE(#,&)-expressions in D, but have types in 2Σ′

rather than
in Σ′. Hence, the size of the RE(#,&)-expressions in D0 is at most quadratic
in the size of D. Finally, we note that it has been shown in Theorem 7.1 in [28]
that (c) and (d) also hold.

32

It remains to argue that it can be decided in expspace that L(D0) ⊆ L(D).
A direct application of the expspace algorithm in Theorem 13(2) leads to a
2expspace algorithm to test whether L(D0) ⊆ L(D), due to the computation of
C1. Indeed, the algorithm remembers, given the EDTDs D0 = (Σ,Σ′

0, d0, s0, µ0)
and D = (Σ,Σ′, d, s, µ), all possible pairs (C1, C2) such that there exists a tree t

with C1 = {τ ∈ Σ′
0 | t ∈ L((D0, τ))} and C2 = {τ ∈ Σ′ | t ∈ L((D, τ))}. It then

accepts if there exists a such a pair (C1, C2) with s0 ∈ C1 and s 6∈ C2. However,
when we use non-determinism, notice that it is not necessary to compute the
entire set C1. Indeed, as we only test whether there exist elements in C1 in the
entire course of the algorithm (i.e. in steps 2 and 4), we can adapt the algorithm
to compute pairs (c1, C2), where c1 is an element of C1, rather than the entire
set. Since nexpspace = expspace, we can use this adaption to test whether
L(D0) ⊆ L(D) in expspace. �

33

