
On the Minimization of XML Schemas and

Tree Automata for Unranked Trees ⋆

Wim Martens a,∗ and Joachim Niehren b

a Hasselt University and
Transnational University of Limburg,

B-3590 Diepenbeek, Belgium
b INRIA Futurs, Lille, France

Abstract

Automata for unranked trees form a foundation for XML schemas, querying and
pattern languages. We study the problem of efficiently minimizing such automata.
First, we study unranked tree automata that are standard in database theory, as-
suming bottom-up determinism and that horizontal recursion is represented by de-
terministic finite automata. We show that minimal automata in that class are not
unique and that minimization is np-complete. Second, we study more recent au-
tomata classes that do allow for polynomial time minimization. Among those, we
show that bottom-up deterministic stepwise tree automata yield the most succinct
representations. Third, we investigate abstractions of XML schema languages. In
particular, we show that the class of one-pass preorder typeable schemas allows for
polynomial time minimization and unique minimal models.

Key words: minimization, unranked tree automata, XML schema languages

1 Introduction

The concept of unranked regular tree languages lies at the formal basis for
many XML schema languages such as DTD, XML Schema, and Relax NG.
However, both DTD and XML Schema lack the expressive power to define

⋆ An extended abstract of this paper appeared as reference [19] in the Tenth Inter-
national Symposium on Database Programming Languages (DBPL 2005).
∗ Corresponding author.

Email addresses: wim.martens@uhasselt.be (Wim Martens),
www.lifl.fr/∼niehren (Joachim Niehren).

Preprint submitted to Elsevier Science 27 September 2006

every unranked regular tree language (see, e.g. [20,18] for more details). This
situation is different for Relax NG. Not only is the design of Relax NG based
on unranked tree automata theory, validators for Relax NG are also often
implemented as tree automata [36].

Tree automata for unranked trees are not only useful in the area of schema lan-
guages. They are used as a toolbox in numerous areas of XML-related research
such as path and pattern languages [22,28] and XML querying [10,23]. The
focus of the present article is on studying the problem of efficiently minimizing
such automata.

The problem of minimizing the number of states of a finite unranked tree au-
tomaton is particularly relevant for classes of deterministic automata, since, for
these automata, minimization can be done both efficiently and leads to unique
canonical representatives of regular languages, as is well-known for string lan-
guages and ranked tree languages. It is also well-known that minimal non-
deterministic automata are neither unique, nor efficiently computable [14,16].

Besides being a fundamental problem of theoretical interest, the minimization
problem for tree automata or for XML schemas also has its use in practical ap-
plications. In the context of XML schema languages, minimized schemas would
improve the running time or memory consumption for document validation.
For static tests involving schemas, such as typechecking for XML transforma-
tions (see, e.g., [17,33]), a schema minimizer can be used as a preprocessor to
improve the running time of the typechecker. Minimal deterministic automata
for unranked tree languages play a prominent role in recent approaches to
query induction for Web information extraction [4]. The objective is to iden-
tify a tree automaton for a previously unknown target language from given
examples. Standard algorithms from grammatical inference [1,11,24] such as
RPNI always induce minimal deterministic automata. The smaller this au-
tomaton is, the easier it can be inferred.

The investigation of efficient minimization of bottom-up deterministic au-
tomata for unranked tree languages started quite recently [9,27]. The deter-
ministic devices considered there, however, differ from the standard determin-
istic automata in database theory — the bottom-up deterministic unranked
tree automata (UTAs) of Brüggemann-Klein, Murata, and Wood [3]. In this
article, we investigate efficient 1 minimization starting from such UTAs.

The transition relation of UTAs uses regular string languages over the states
of the automaton to express horizontal recursion. However, it is not speci-
fied how these regular string languages should be represented. In practice,
this is usually done by finite automata or regular expressions. If we allow
for non-deterministic finite automata in bottom-up deterministic UTAs, then

1 That is, ptime, under the assumption that ptime 6= np.

2

minimization becomes pspace-hard, because minimization is already pspace-
hard for the non-deterministic finite automata. As we are interested in efficient
minimization, we restrict the finite subautomata in UTAs to be deterministic
too. These deterministic finite automata (dFAs) impose left-to-right determin-
ism in addition to bottom-up determinism.

We prove two unexpected results for these bottom-up and left-to-right deter-
ministic UTAs. First, we present a counterexample for the uniqueness of mini-
mal UTAs that represent a given regular language. Second, we prove that min-
imization becomes np-complete. Both results are in strong contrast to what
is known for bottom-up deterministic automata in the ranked case. Our np-
hardness proof refines the proof techniques from [14,16], showing np-hardness
of minimization for classes of finite automata with a limited amount of non-
determinism.

Even though minimization for bottom-up and left-to-right deterministic UTAs
is intractable, there exist automata models for unranked trees that do allow for
efficient minimization. Examples of such models are stepwise tree automata [5],
parallel tree automata [9,27], and bottom-up deterministic automata over the
standard first-child next-sibling encoding of regular tree languages. As each
of these models allows for tractable minimization and unique minimal repre-
sentatives, we compare the models in terms of succinctness. We obtain that
stepwise tree automata yield the smallest representations of unranked tree lan-
guages. In general, they are quadratically smaller than parallel tree automata
and exponentially smaller than tree automata over the first-child next-sibling
encoding (up to inversion).

Finally, we investigate models for unranked trees which form a theoretical
basis for XML schema languages. In database theory, XML Schema Defini-
tions [30] are abstracted as single-type extended DTDs [18,20], which are, from
a structural point of view, not very expressive. More expressive is the so-called
class of restrained competition extended DTDs [18,20], which captures precisely
the class of schemas that can be validated and correctly typed in a one-pass
preorder manner. We provide a polynomial time minimization algorithm for
the latter class and show that this class gives rise to unique minimal models.
Moreover, when given an input that satisfies the single-type restriction, the
minimization algorithm outputs a minimal single-type model. It therefore also
minimizes single-type extended DTDs.

2 Complexity of Minimization

We introduce automata for strings, binary trees and unranked trees, and
present an overview over existing and new complexity results for automata

3

minimization.

2.1 Automata Notation and Problems

We explain the generic notation that we will use throughout the paper. For a
finite set S, we denote by |S| its number of elements. Let Σ be a finite alphabet.
We consider data structures built from Σ that may be of different types, either
strings, binary trees, or unranked trees. We write DΣ for the set of all data
structures of the given type that can be built from Σ. For every d ∈ DΣ, we
will define a set nodes(d) and a designated element root(d) ∈ nodes(d), which
will be the root of a tree or the last letter of a string.

We will consider different classes of automata for different data types. An
automaton A will always be a tuple containing a finite set alphabet(A) of
alphabet symbols ranged over by a, b, c, a finite set states(A) which we denote
by p, q, and a set final(A) ⊆ states(A) of final states. The size |A| of A is a
natural number, which will by default be the number states of A:

|A| = |states(A)| if not stated otherwise.

A run of an automaton A on a data structure d ∈ Dalphabet(A) will always be
defined as some function of type r : nodes(d)→ states(A). This allows to infer
an evaluation function of type evalA : Dalphabet(A) → states(A) as follows:

evalA(d) = {r(root(d)) | r is a run of A on d}.

A run r of A on d is accepting or successful if r(root(d)) ∈ final(A). The
language L(A) of an automaton is the set of data structures d that permit a
successful run by A:

L(A) = {d ∈ Dalphabet(A) | there exists a successful run r of A on d}.

Unless otherwise mentioned, an automaton A is unambiguous if it permits
exactly one accepting run for every data structure d ∈ L(A).

The central decision problem of this article is the minimization problem, which
is parametrized by a class C of automata. Minimization is closely related to
equivalence, inclusion, and universality. We define these problems formally.

minimization: Given an automaton A ∈ C and a natural number m ∈ N,
does there exist an A′ ∈ C such that L(A) = L(A′) and the size of A′ is at
most m?

equivalence: Given A, B ∈ C, does L(A) = L(B) hold?
inclusion: Given automata A, B ∈ C, does L(A) ⊆ L(B) hold?
universality: Given an automaton A ∈ C, does Dalphabet(A) ⊆ L(A) hold?

4

We say that an automaton A ∈ C is minimal if minimization is false for A

and every m < |A|.

The minimization problem for a class C of automata can be solved by an
np(equivalence (C))-algorithm, that is, a nondeterministic polynomial time
algorithm with an oracle able to solve the equivalence problem of C. Given A

and m it is sufficient to guess another automaton A′ with size at most m and
to test whether L(A) = L(A′).

As we will see in Table 1, it often holds that universality is easier than
minimization. This will be useful to prove lower bounds for minimization

problems.

2.2 Strings and Finite Automata

By N we denote the set of natural numbers and by N0 we denote N−{0}. By Σ
we always denote a finite alphabet. We call a ∈ Σ a Σ-symbol. A Σ-string (or
simply string) w ∈ Σ∗ is a finite sequence a1 · · ·an of Σ-symbols. We denote
the empty string by ε.

The set of positions, or nodes, of w is nodes(w) = {1, . . . , n}. The root of w

is root(w) = n. The length of w, denoted by |w|, is the number of symbols
occurring in it. The label ai of node i in w is denoted by labw(i).

Definition 1 A possibly nondeterministic finite automaton (nFA) over Σ is
a tuple A = (states(A), alphabet(A), rules(A), init(A), final(A)), where alpha-
bet(A) = Σ, rules(A) is a finite set of rules of the form q1

a
→ q2 with q1, q2 ∈

states(A) and a ∈ alphabet(A), and init(A) ⊆ states(A).

A finite automaton uses Σ-strings as its data structure. A run of A on a string
w ∈ alphabet(A)∗ is a mapping r : nodes(w)→ states(A) such that

(i) there exists q0 ∈ init(A) with q0
a
→ r(1) in rules(A) for labw(1) = a; and,

(ii) for every i = 1, . . . , |w| − 1, it holds that r(i)
a
→ r(i + 1) in rules(A)

where labw(i + 1) = a.

We call an nFA A (left-to-right) deterministic if it satisfies the following two
conditions, implying that no string permits more than one run by A:

(i) init(A) is a singleton; and,
(ii) for every q1 ∈ states(A) and a ∈ alphabet(A), there exists at most one

rule q2 ∈ states(A) such that q1
a
→ q2 is in rules(A).

We denote by dFA be the class of deterministic, and by uFA the class of

5

unambiguous finite automata.

2.3 Unranked and Binary Trees

It is common to view XML documents as finite unranked trees with labels
from a finite alphabet Σ.

We define these finite unranked trees formally. A tree domain N is a non-
empty, prefix-closed subset of N0

∗ satisfying the following condition: if ui ∈ N

for u ∈ N0
∗ and i ∈ N0, then uj ∈ N for all j with 1 ≤ j ≤ i. An unranked Σ-

tree t (which we simply call tree in the following) is a mapping t : nodes(t)→ Σ
where nodes(t) is a finite tree domain. The elements of nodes(t) are called the
nodes of t. For u ∈ nodes(t), we call nodes of the form ui ∈ nodes(t) with
i ∈ N0 the children of u (where ui is the ith child). For a tree t and a node
u ∈ nodes(t), we denote the label t(u) by labt(u). If the root of t is labeled
by a, that is, labt(ε) = a, and if the root has k children at which the subtrees
t1, . . . , tk are rooted from left to right, then we denote this by t = a(t1 · · · tk).
The depth of a node i1 · · · in ∈ (N0)

∗ in a tree is n + 1. The depth of a tree
is the maximum of the depths of its nodes. We denote the set of unranked
Σ-trees by TΣ. A tree language is a set of trees. In the sequel, we adopt the
following convention: when we write a tree as a(t1 · · · tn), we tacitly assume
that all ti’s are trees.

A binary alphabet or binary signature is a pair (Σ, rankΣ), where rankΣ is
a function from Σ to {0, 2}. The set of binary Σ-trees is the set of Σ-trees
inductively defined as follows. When rankΣ(a) = 0, then a is a binary Σ-tree.
When rankΣ(a) = 2 and t1, t2 are binary Σ-trees, then a(t1 t2) is a binary
Σ-tree.

2.4 Traditional Tree Automata for Binary Trees

In this article, we discuss tree automata over binary as well as unranked trees.
For clarity, we refer to the former as “traditional tree automata” and to the
latter as “unranked tree automata”.

Definition 2 A possibly nondeterministic traditional tree automaton (nTA)
over Σ is a tuple A = (states(A), alphabet(A), rules(A), init(A), final(A)) where
Σ = alphabet(A) is a binary alphabet, init(A) ⊆ states(A) is a set of initial
states, and rules(A) is a set of rules of the form

• a→ q with rankalphabet(A)(a) = 0 and q ∈ states(A); or,
• a(q1, q2)→ q with rankalphabet(A)(a) = 2 and q1, q2, q ∈ states(A).

6

A traditional tree automaton uses binary Σ-trees as its data structure. It is
(bottom-up) deterministic if no two of its rules have the same left-hand sides.
A run of A on a binary Σ-tree t is a mapping r : nodes(t) → states(A) such
that

(i) for every leaf node u with label a, a→ r(u) is in rules(A); and,
(ii) for every inner node u with label a, a(r(u1), r(u2))→ r(u) is in rules(A).

We denote by dTA the class of deterministic traditional tree automata and by
uTA the class of unambiguous traditional tree automata.

2.5 Unranked Tree Automata

We recall the definition of unranked tree automata (UTAs) [3] which dates
back to the work of Thatcher [34].

Definition 3 An unranked tree automaton (UTA) over Σ is a tuple A =
(states(A), alphabet(A), rules(A), final(A)), alphabet(A) = Σ, and rules(A) is
a set of rules of the form a(L)→ q such that

(i) a ∈ alphabet(A);
(ii) q ∈ states(A); and
(iii) L is a regular string language over the alphabet states(A).

For every a ∈ alphabet(A) and q ∈ states(A), there is at most one L such
that a(L)→ q is a rule in A. A UTA is bottom-up deterministic if, for all rules
a(L1)→ q1 and a(L2)→ q2 with q1 6= q2, we have that L1 ∩ L2 = ∅.

An unranked tree automaton uses TΣ (that is, unranked Σ-trees) as its data
structure. A run of A on a tree t is a labeling r : nodes(t) → states(A) such
that, for every v ∈ nodes(t) with n children, there is a rule a(L) → r(v) in
rules(A), where the label of v is a and r(v1) · · · r(vn) ∈ L. Notice that, when
v has no children, the criterion reduces to ε ∈ L.

As briefly mentioned in the introduction, we need to specify the representa-
tions for the internal (horizontal) string languages of UTAs for the minimiza-
tion problem. Since our definition of size of an unranked tree automata will
take the states of the finite automata for the internal string languages into
account, the minimization problem for unranked tree automata is at least as
hard as for the finite automata for the internal string languages. As a conse-
quence, the minimization problem is immediately np-hard if we choose nFAs
or uFAs for this representation (see Table 1). We therefore refine the definition
of unambiguousness and (bottom-up) determinism for UTAs as follows.

7

states : {1,2,3,4} final : {3,4}

a(L(A1))→ 1 with A1:

b(L(A2))→ 2 with A2:

c(L(A3))→ 3 with A3:
1 1

c(L(A4))→ 4 with A4:
1 2

2

Fig. 1. Example for a dUTA of size 12.

c3

a1 a1

c4

a1 b2 b2

Fig. 2. Two successful runs by the dUTA in Figure 1 annotated to the trees.

Definition 4 A possibly nondeterministic unranked tree automaton (nUTA)
A is a UTA whose rules have the form a(L(B)) → q and the string language
L(B) is represented by an nFA B with alphabet(B) = states(A). A (hori-
zontally) unambiguous unranked tree automaton (uUTA) is an unambiguous
nUTA whose finite subautomata are unambiguous, that is, all nFAs are uFAs.
A bottom-up (left-to-right) deterministic unranked tree automaton (dUTA) is
an nUTA that

(i) is bottom-up deterministic as a UTA; and
(ii) whose finite subautomata are all deterministic, that is, all nFAs are dFAs.

The size of an nUTA A is defined differently than before, as the states of all
nFAs for the horizontal languages are also taken into consideration:

|A| = |states(A)|+
∑

a(L(B))→q∈rules(A)

|B|

An example for a dUTA with 12 states is given in Figure 1; it accepts the
unranked tree language {c(w) | w ∈ L(aa ∪ ab+)}. Two of its successful runs
are drawn in Figure 2.

Everyone agrees that a dFA is indeed a deterministic device. When during a
computation the automaton is in a certain state at a certain node, the next
state is always uniquely determined. We raise the question whether a dUTA is
a fully deterministic representation of unranked tree languages or not. Clearly,
every state computed by a run is uniquely determined due to bottom-up de-
terminism. The internal computation inside of horizontal automata is deter-
ministic too since performed by dFAs. However, choice is needed when one has
to decide which rule to apply for a given letter. It requires guessing or testing
the possibilities. Intuitively, dUTAs represent the internal regular languages

8

over states by a disjoint union of dFAs, which is in fact an unambiguous
representation with one non-deterministic step: the choice of the initial state.

The dUTA in the example in Figure 1 has two rules for the letter c. In the
first successful run in Figure 2, we have to chose the upper rule, in the second
one the lower rule. It is precisely this limited form of non-determinism that
will be exploited in our np-hardness proof for dUTA minimization.

2.6 Result Overview

In Table 1, we collect complexity results about automata minimization and
the related problems.

For finite automata, all presented results are very well known, perhaps maybe
with the exception for uFAs, for which equivalence, inclusion, and uni-

versality are in ptime, while minimization is np-complete. The nlog-

space-completeness of dFA equivalence, inclusion, and universality

follows from a reduction from and to the well-known reachability problem for
graphs. To the best of our knowledge, it is not known whether the ptime up-
per bounds for dFA minimization and uFA equivalence, inclusion, and
universality are tight.

For traditional tree automata, the situation is well established too. The ptime

lower bound for universality of dTAs follows from a straightforward reduc-
tion from path systems, which is known to be ptime-complete [7]. Notice
that the same complexities hold for uFAs and uTAs, even though the proofs for
the upper bounds become more involved for uTAs. For the exptime-hardness
of nTA minimization, note that nTA universality can be logspace-
reduced to minimization, since an automaton A with alphabet(A) = Σ is
universal if and only if (i) minimization for A and 1 is true, (ii) a ∈ L(A)
for every a with rankΣ(a) = 0, and (iii) b(a a) ∈ L(A) for every a, b with
rankΣ(b) = 2 and rankΣ(a) = 0.

2.6.1 Some New Results

For nUTAs, the exptime-hardness of equivalence, inclusion, and uni-

versality are immediate from the binary case, since every nTA can be en-
coded in ptime into an nUTA. The exptime upper bound carries over from
the case of traditional tree automata for binary trees, based on some binary
encoding for unranked trees (see, for example, [12]).

The exptime-hardness of minimization follows from a reduction from uni-

versality similarly to the case of traditional tree automata: an nUTA A

9

equivalence, inclusion, minimization

universality

dFA nlogspace

in ptime [13]

nlogspace-hard (from universality)

uFA
in ptime [31]

nlogspace-hard

in np (from equivalence)

np-hard [14]

nFA pspace [32] pspace [32]

dTA
in ptime [6]

ptime-hard [7]

in ptime [6]

ptime-hard (from universality)

uTA ptime [29]
in np (from equivalence)

np-hard (from uFAs)

nTA exptime [29]
in exptime (from equivalence)

exptime-hard (from universality)

dUTA
in ptime (Theorem 5)

ptime-hard (from dTAs)

in np (from equivalence)

NP-hard (Theorem 14)

uUTA
in ptime (Theorem 5)

ptime-hard (from uTAs)

in np (from equivalence)

np-hard (from uFAs)

nUTA
in exptime (from nTAs)

exptime-hard (from nTAs)

in exptime (from equivalence)

exptime-hard (from universality)

Table 1
Complexity overview for nondeterministic, unambiguous, and bottom-up and/or
left-to-right deterministic automata for strings, binary trees, and unranked trees. For
a complexity class C, we write “in C” (or “C-hard”) to denote that the mentioned
problems are in C (or hard for C), respectively.

with alphabet(A) = Σ is universal if and only if (i) minimization for A and
|Σ| + 1 is true, (ii) for every a ∈ Σ, a ∈ L(A), and, (iii) for every a, b ∈ Σ,
a(b) ∈ L(A).

Upper bounds for the inclusion problem for dUTAs and uUTAs can be ob-
tained through an encoding to binary trees, as argued in the following theorem.

Theorem 5 inclusion for dUTAs and uUTAs is in ptime. minimization

for dUTAs and uUTAs is thus in np.

PROOF. Given two uUTAs, we can translate them in ptime into uTAs with

10

respect to a binary encoding of unranked trees. For dUTAs and with respect to
the standard first-child next-sibling encoding of unranked trees, this has been
proposed in Lemma 4.24 of [12]. Another proof through the Curried encoding
is presented in the present paper (Propositions 24 and 18). Due to the work
of Seidl, we can test inclusion of uTAs in ptime (Theorem 4.3 in [29]). 2

Even though the proposed ptime algorithm seems overly complicated, it is,
to the best of our knowledge, not known whether the “standard” inclusion
test of dUTAs works in ptime. The standard test would, given two dUTAs A

and B, test whether L(A) has an empty intersection with the complement of
L(B). The difficulty of this approach lies in finding a sufficiently small dUTA
for the complement of L(B). This is not trivial unless B is complete, then one
simply has to switch final and non-final states. (A UTA B is complete when,
for every w ∈ states(B)∗, there exists a rule a(L)→ q such that w ∈ L.)

There remains one further result in Table 1 that we have not discussed so far.
This is the np-hardness result of dUTA minimization, which is the subject of
Section 3. Alternative notions of bottom-up determinism for other kinds of
automata on unranked trees will be discussed in Section 4. Models for XML
schema languages are studied in Section 5.

3 Minimizing dUTAs

In this section we study the minimization problem of dUTAs. We show two
unexpected negative results:

(1) There are regular tree languages for which no unique (up to isomorphism)
minimal dUTA exists.

(2) The minimization problem for dUTAs even turns out to be np-complete.

3.1 Minimal Automata are not Unique

We show the non-uniqueness by means of an example. Consider the regular
string languages L1, L2, and L3 defined by the regular expressions

(bbb)∗, b(bbbbbb)∗, and bb(bbbbbbbbb)∗ ,

respectively. Notice that L1, L2 and L3 are pairwise disjoint, and that the
minimal dFAs A1, A2, and A3 accepting L1, L2, and L3 have 3, 6, and 9 states,
respectively. The minimal dFAs B1 and B2 accepting L1 ∪ L2 and L1 ∪ L3

(which are depicted as parts of Figure 3) have 6 and 9 states, respectively.

11

states : {q0, q1, q2, b} final : {q0}

b(L(B))→ b with B:

a(L(B1))→ q1 with B1:
b b

b
bb

b

a(L(A3))→ q2 with A3:
b b b b

bbbbb

r(L(R))→ q0 with R:
q1, q2

(a) The dUTA N1.

states : {q0, q1, q2, b} final : {q0}

b(L(B))→ b with B:

a(L(A2))→ q1 with A2:
b b

b
bb

b

a(L(B1))→ q2 with B2:
b b b b

bbbbb

r(L(R))→ q0 with R:
q1, q2

(b) The dUTA N2.

Fig. 3. Two equivalent minimal dUTAs that are not isomorphic.

Define L to be the language L1 ∪ L2 ∪ L3 and consider the tree language
T = {r(a(w)) | w ∈ L}.

There exist two non-isomorphic minimal dUTAs for T . The first one, N1, is
defined in Figure 3(a). Notice that the size of N1 is

|states(N1)|+ 1 + |B1|+ |A3|+ 2 = 4 + 1 + 6 + 9 + 2 = 22.

The other automaton, N2, is defined in Figure 3(b). Notice that the size of N2

is

|states(N2)|+ 1 + |B2|+ |A2|+ 2 = 4 + 1 + 9 + 6 + 2 = 22.

12

Of course, there are other possibilities to write L = L1 ∪ L2 ∪ L3 as a disjoint
union of regular languages. The obvious combinations one can make with A1,
A2 and A3 lead to dUTAs of size 26 (using A1, A2 and A3), 28 (using (A2∪A3)
and A1) and 24 (one automaton for L).

We make use of the following theorem for regular string languages over a
one-letter alphabet:

Theorem 6 (e.g., [26]) A string language L over {a} is regular if and only
if there are two integers n0 ≥ 0, k ≥ 1 such that, for any n ≥ n0, an ∈ L if
and only if an+k ∈ L. Moreover, when L is regular, the minimal dFA for L

contains a cycle with k states.

We show that no other combination of splitting L into a union of regular
languages results in a smaller dUTA accepting T . First, observe that any
dUTA N defining T needs at least three states in states(N), since all trees
in T have depth three. However, as argued above, the minimal size of such a
dUTA with three states is 3 + 1 + 18 + 2 = 24. The only way to obtain an
equivalent dUTA smaller than N1 and N2 is then to define L as a union of
dFAs of which the sum of the number of states is strictly smaller than 9 + 6
= 15. However, if we write L as a union of dFAs, there must be at least one
dFA D1 that accepts an infinite number of strings in L2. It is easy to see that
D1 has a cycle with 6 states, as D1 may not accept strings not in L (applying
Theorem 6 with any k ≤ 6 would imply that L(D1) 6⊆ L). Analogously, we
can argue that there must be at least one dFA D2 that accepts an infinite
number of strings in L3. If D2 6= D1, then we can obtain analogously that D2

has a cycle with 9 states. If D1 = D2, we obtain analogously that D1 has at
least 18 states. Therefore, the above automata are indeed minimal for T , and
as Figure 3 shows, they are clearly not isomorphic as the final states in the
internal dFAs are different.

3.2 Minimization is np-Complete

As Section 3.1 illustrates, the problem of defining a regular string language as
a small disjoint union of dFAs lies at the heart of the minimization problem
for dUTAs. We refer to this problem as minimal disjoint union and we
define it formally later in this section.

In this section, we show that minimal disjoint union is np-complete by a
reduction from vertex cover. Actually, minimal disjoint union is even
np-complete when we are asked to define a regular string language as a small
disjoint union of two dFAs. The proof for this result is technically the hardest
proof in the article. The reduction is technical but interesting in its own right
as it shows that minimization is hard for a class of finite string automata with

13

very little nondeterminism (Lemma 11).

We start by formally defining the decision problems that are of interest to us.
Given a graph G = (V, E) such that V is its set of vertices and E ⊆ V × V

is its set of edges, we say that a set of vertices V C ⊆ V is a vertex cover
of G if, for every edge (v1, v2) ∈ E, V C contains v1, v2, or both. We can
assume without loss of generality that G is an undirected graph which does
not contain self-loops. That is, G does not contain edges of the form (v1, v1),
and if (v1, v2) ∈ E, then (v2, v1) is also in E.

If B and C are finite collections of finite sets, we say that B is a normal set
basis of C if, for each c ∈ C, there is a pairwise disjoint subcollection Bc of
B whose union is c. For m ∈ N0, we say that B is a K-separable normal set
basis of C if B is a normal set basis of C and B can be written as a disjoint
union B1 ⊎ · · · ⊎BK such that, for each j = 1, . . . , K, the subcollection Bc of
B contains at most one element from Bj. The size of a collection of finite sets
is the sum of the sizes of the finite sets it contains.

We say that a collection C of sets contains obsolete symbols if there exist two
elements a 6= b such that, for every c ∈ C, a ∈ c⇔ b ∈ c.

We consider the following decision problems.

vertex cover: Given a pair (G, k) where G is a graph and k is an integer,
does there exist a vertex cover of G of size at most k?

normal set basis: Given a pair (C, s) where C is a finite collection of finite
sets and s is an integer, does there exist a normal set basis of C containing
at most s sets?

K-separable normal set basis: Given a pair (C, s) where C is a finite
collection of finite sets and s is an integer, does there exist a K-separable
normal set basis of C containing at most s sets?

K-minimal disjoint union: Given a pair (M, ℓ) where M is a dFA and ℓ

is an integer, do there exist dFAs M1, . . . , MK such that
(1) L(M) = L(M1) ∪ · · · ∪ L(MK); and
(2) for every i 6= j, L(Mi) ∩ L(Mj) = ∅; and
(3)

∑K
i=1 |Mi| ≤ ℓ?

We assume that the integers in the input of these decision problems are given
in their binary representation. The first two problems are known to be np-
complete [14]. We will show that the last two problems are np-complete (for
K ≥ 2) as well.

We start by showing that normal set basis and K-separable normal

set basis are np-complete for every K ≥ 2. We revisit a slightly modified
reduction which is due to Jiang and Ravikumar [14], as our further results
heavily rely on a construction in their proof.

14

Lemma 7 (Jiang and Ravikumar [14]) normal set basis is np-complete.

PROOF. Obviously, normal set basis is in np. Indeed, given an input
(C, s) for normal set basis, the np algorithm simply guesses a collection B

containing at most s sets, guesses the subcollections Bc for each c ∈ C, and
verifies whether the sets Bc satisfy the necessary conditions.

We show that normal set basis is np-hard by a reduction from vertex

cover. Given an input (G, k) of vertex cover, where G = (V, E) is a graph
and k is an integer, we construct in logspace an input (C, s) of normal

set basis, where C is a finite collection of finite sets and s is an integer. In
particular, (C, s) is constructed such that

G has a vertex cover of size at most k if and only if

C has a normal set basis containing at most s sets.

For a technical reason which will become clear later in the article, we assume
without loss of generality that k < |E|−3. Notice that, under this restriction,
vertex cover is still np-complete under logspace reductions. Indeed, if
k ≥ |E|−3, vertex cover can be solved in logspace by testing all possibil-
ities of the at most 3 vertices which are not in the vertex cover, and verifying
that there does not exist an edge between 2 of these 3 vertices.

Formally, let V = {v1, . . . , vn}. For each i = 1, . . . , n, define ci to be the set
{xi, yi} which intuitively corresponds to the node vi. Let (vi, vj) be in E with
i < j. To each such edge we associate five sets as follows:

c1
ij := {xi, aij , bij},

c2
ij := {yj, bij, dij},

c3
ij := {yi, dij, eij},

c4
ij := {xj, eij , aij}, and

c5
ij := {aij, bij , dij, eij}.

Figure 4 contains a graphical representation of the constructed sets ci, cj ,

c1
ij , . . . , c

5
ij for some (vi, vj) ∈ E.

Then, define

C := {ci | 1 ≤ i ≤ n} ∪ {ct
ij | (vi, vj) ∈ E, i < j, and 1 ≤ t ≤ 5}

and

s := n + 4|E|+ k.

15

c4
ij

xi

yi

yj xjci cj

c5
ij

c2
ij

c1
ij

c3
ij

aij

bij

dij

eij

Fig. 4. The constructed sets ci, cj , c
1
ij , . . . , c

5
ij in the proof of Lemma 7.

Notice that the C contains n+5|E| sets and that C does not contain obsolete
symbols. Obviously, C and s can be constructed from G and k in polynomial
time.

We show that the given reduction is also correct, that is, that G has a vertex
cover of size at most k if and only if C has a normal set basis containing at
most s sets.

(⇒): Let G have a vertex cover V C of size k. We need to show that C has a
normal set basis B containing at most s = n + 4|E|+ k sets.

Thereto, we define a collection B of sets as follows. For every vi ∈ V ,

• if vi ∈ V C, we include both {xi} and {yi} in B;
• otherwise, we include ci = {xi, yi} in B.

The number of sets included in B so far is 2k+(n−k) = k+n. Let e = (vi, vj)
(where i < j) be an arbitrary edge in G. Since V C is a vertex cover, either vi

or vj (or both) is in V C. When vi is in V C, we additionally include the sets

r1
ij := {aij , bij}, r2

ij := {dij, eij},

r3
ij := {yj, bij , dij}, and r4

ij := {xj , aij, eij}

in B. When vi is not in V C, we additionally include the sets

r5
ij := {aij, eij}, r6

ij := {bij , dij},

r7
ij := {xi, aij, bij}, and r8

ij := {yi, dij, eij}

in B. This completes the definition of B. Notice that, when vi ∈ V C, c1
ij, c3

ij ,
and c5

ij can be expressed as a disjoint union of members of B as

c1
ij = {xi} ⊎ r1

ij, c3
ij = {yi} ⊎ r2

ij, c5
ij = r1

ij ⊎ r2
ij

and that c2
ij = r3

ij and c4
ij = r4

ij are members of B. Analogously, when vi 6∈ V C,

16

c2
ij , c4

ij , and c5
ij can be expressed as a disjoint union of members of B as

c2
ij = {yj} ⊎ r6

ij, c4
ij = {xj} ⊎ r5

ij , c5
ij = r5

ij ⊎ r6
ij

and c1
ij = r7

ij and c3
ij = r8

ij are members of B. Since the total number of sets
included in B for each edge is four, B contains (k + n) + 4|E| = s sets. From
the foregoing argument it is also obvious that B is a normal set basis of C.

Notice that B is in fact a 2-separable normal set basis for C. Indeed, we can
partition B into the sets

B1 = {{xi}, {xj, yj} | vi ∈ V C, vj 6∈ V C}

∪ {r2
ij, r

3
ij | (vi, vj) ∈ E, i < j, vi ∈ V C}

∪ {r6
ij, r

7
ij | (vi, vj) ∈ E, i < j, vi 6∈ V C}

and

B2 = {{yi} | vi ∈ V C}

∪ {r1
ij, r

4
ij | (vi, vj) ∈ E, i < j, vi ∈ V C}

∪ {r5
ij, r

8
ij | (vi, vj) ∈ E, i < j, vi 6∈ V C},

which satisfy the necessary condition.

(⇐): Suppose that C has a normal set basis B containing at most s =
n + 4|E| + k sets. We can assume without loss of generality that no proper
subcollection of B is a normal set basis. We show that G has a vertex cover
V C of size at most k. Define V C = {vi | both {xi} and {yi} are in B}. Let k′

be the number of elements in V C. The number of sets in B consisting of only
xi and/or yi is at least n + k′. This can be seen from the fact that B must
have the subset ci for all i such that vi 6∈ V C. Thus, there are n − k′ such
sets in addition to 2k′ singleton sets corresponding to i’s such that vi ∈ V C.
Let E ′ ⊆ E be the set of edges covered by V C, that is, E ′ = {(vi, vj) | vi or
vj is in V C}. The following observation can easily be shown (by checking all
possibilities):

Observation: For any e ∈ E ′ at least four sets of B (excluding sets ci, cj , {xi},
{yi}, {xj},, or {xj}) are necessary to be a normal set basis for the five sets ct

ij ,
t = 1, . . . , 5. Further, at least five sets (excluding sets ci, cj, {xi}, {yi}, {xj},,
or {xj}) are required to be a normal set basis for them if e 6∈ E ′. Notice that,
for e 6∈ E ′, {xi} and {yi}, or {xj} and {yj} are never both in B, by definition
of E ′.

Now the total number of sets needed to cover C is at least n + k′ + 4|E ′| +
5(|E| − |E ′|), which we know is at most s = n + 4|E| + k. Hence, we obtain
that n+k′ +5|E|− |E ′| ≤ n+4|E|+k, which implies that k′ + |E|− |E ′| ≤ k.
We conclude the proof by showing that there is a vertex cover V C ′ of size

17

|E| − |E ′| + k′. Add one of the end vertices of each edge e ∈ E − E ′ to V C.
This vertex cover is of size |E| − |E ′|+ k′ ≤ k. 2

The next proposition now follows from the proof of Lemma 7. The intuition
behind Proposition 8 is that C has a normal set basis containing s sets if
and only if C has a 2-separable normal set basis containing s sets for any
input (C, s) in I. Of course, the latter property does not hold for the set of all
possible inputs for the normal set basis problem.

Proposition 8 There exists a set of inputs I for normal set basis, such
that

(1) normal set basis is np-complete for inputs in I; and,
(2) for each (C, s) ∈ I, the following are equivalent:

(a) C has a normal set basis containing s sets.
(b) there exists a K ≥ 2 such that C has a K-separable normal set basis

containing s sets.
(c) for every K ≥ 2, C has a K-separable normal set basis containing s

sets.

Moreover, for each (C, s) in I, C contains every set at most once, C does not
contain obsolete symbols, and s < |C| − 3.

PROOF. The set I is obtained by applying the reduction in Lemma 7 to
inputs (G, k) of vertex cover. In the proof of Lemma 7 we showed that,
if G has a vertex cover of size k, then C has a 2-separable normal set basis
containing s sets, which implies (a), (b), and (c). Conversely, if (a), (b), or
(c) holds, meaning that C has a normal set basis containing s sets (which is
allowed to be K-separable for any K ≥ 2), we have shown that G has a vertex
cover of size k.

Moreover, we observed that C was constructed such that it does not contain
obsolete symbols. For the size constraint, we have to recall the assumption
in Lemma 7, that k < |E| − 3. Hence, we obtain that s = n + 4|E| + k <

n + 5|E| − 3 = |C| − 3. 2

Since the proof of Lemma 7 shows that normal set basis is an np-complete
problem for inputs in I, we immediately obtain the following:

Corollary 9 For every K ≥ 2, K-separable normal set basis is np-
complete.

18

Our next goal is to show a result for minimal disjoint union which is similar
to Proposition 8. However, in order to apply the result immediately to mini-

mization for dUTAs later, we need to treat a minor technical issue. (Readers
who are only interested in the np-hardness of K-minimal disjoint union

can safely skip the following definition.) Due to the fact that the internal dFAs
of dUTAs do not read alphabet symbols, but states of the tree automaton,
we need to take extra care of the languages we define in the reduction for the
minimal disjoint union problem: we will require that the languages do not
contain interchangeable symbols, a property which we define as follows.

Definition 10 Given a string language L over an alphabet Σ, we say that
two symbols a, b ∈ Σ, a 6= b, are interchangeable with respect to L if, for
every two Σ-strings u and v, we have that uav ∈ L ⇔ ubv ∈ L. We say that
L contains interchangeable symbols if there exist a, b ∈ Σ, a 6= b, which are
interchangeable with respect to L.

We are now ready to show the following lemma.

Lemma 11 For every K ≥ 2, K-minimal disjoint union is np-complete.

PROOF. The np upper bound follows from the fact that we can guess a
disjoint union of sufficiently small size and verify in ptime that it is equivalent
(see also Section 2.6, where we recall that testing equivalence of unambiguous
string automata is in ptime).

For the lower bound, we reduce from 2-separable normal set basis. To
this end, let (C, s) be an input of 2-separable normal set basis. Hence, C

is a collection of n sets and s is an integer. According to Proposition 8, we can
assume without loss of generality that (C, s) ∈ I, that is, C has a 2-separable
normal set basis containing s sets if and only if there exists a K ≥ 2 for which
C has a K-separable normal set basis containing s sets. Moreover, we can
assume that s < n− 3.

We construct in logspace an input (M, ℓ) of minimal disjoint union such
that

C has a 2-separable normal set basis containing at most s sets

if and only if

there exists a K ≥ 2 such that K-minimal disjoint union is true for (M, ℓ)

if and only if,

for every K ≥ 2, K-minimal disjoint union is true for (M, ℓ).

Intuitively, M accepts the language {ca | c ∈ C and a ∈ c}, which is a finite
language of strings of length two.

19

We state the following claim, which is needed later in the article but is not
important for the proof of the present lemma. We prove the claim after the
proof of the present lemma.

Claim 12 L(M) does not contain interchangeable symbols.

Formally, let C = {c1, . . . , cn} and ci = {ai,1, . . . , ai,ni
}. Then, M is defined

over

alphabet(M) =
⋃

1≤i≤n

{ci, ai,1, . . . , ai,ni
}.

The state set of M is states(M) = {q0, q1, . . . , qn, qf}, and the initial and final
state sets of M are {q0} and {qf}, respectively. The transitions rules(M) are
depicted in Figure 5 and are formally defined as follows:

• for every i = 1, . . . , n, q0
ci→ qi; and

• for every i = 1, . . . , n and j = 1, . . . , ni, qi

ai,j
→ qf .

q0

q1

...

qn

qf

c1

cn

a1,1 , . . . , a1,n1

an,1, .
. . , an,nn

Fig. 5. Illustration of a fragment of the constructed automaton M in the proof of
Lemma 11.

Finally, define

ℓ := s + 4.

Obviously, M and ℓ can be constructed from C and s using logarithmic space.
Observe that, due to Proposition 8, C contains every set at most once, and
hence does not contain ci = cj with i 6= j. Hence, M is a minimal dFA for
L(M).

We now show that,

(a) if C has a 2-separable normal set basis containing at most s sets, then
2-minimal disjoint union is true for (M, ℓ); and

(b) if there exists a K ≥ 2 for which K-minimal disjoint union is true for
(M, ℓ), then C has a 2-separable normal set basis containing at most s

sets.

This proves the lemma, since a disjoint union of two dFAs can also be seen as
a disjoint union of K dFAs where K − 2 dFAs have an empty state set.

(a) Assume that C has a 2-separable normal set basis containing s sets. We
need to show that there exist two dFAs M1 and M2 such that

20

(1) L(M) = L(M1) ∪ L(M2); and
(2) L(M1) ∩ L(M2) = ∅; and
(3) |M1|+ |M2| ≤ ℓ,

where ℓ = s + 4.

Thereto, let B = {r1, . . . , rs} be the 2-separable normal set basis of C con-
taining s sets. Also, let B1 and B2 be disjoint subcollections of B such that
each element of C is either an element of B1, an element of B2, or a disjoint
union of an element of B1 and an element of B2.

To describe M1 and M2, we first fix the representation of each set c in C as
a disjoint union of at most one set in B1 and at most one set in B2. Say that
each basic member of B in this representation belongs to c.

We define the state sets of M1 and M2 as

states(M1) = {q1
0, q

1
f} ∪ {ri ∈ B1}

and

states(M2) = {q2
0, q

2
f} ∪ {ri ∈ B2},

respectively. The transition rules of M1 and M2 are defined as follows. For
every i = 1, . . . , n, j = 1, . . . , s, and x = 1, 2, rules(Mx) contains the rules

• qx
0

ci→ rj , if rj ∈ Bx and rj belongs to ci; and
• rj

a
→ qx

f , if rj ∈ Bx and a ∈ rj .

Notice that the sum of the sizes of M1 and M2 is |B| + 4 = s + 4 = ℓ, which
fulfills condition (3). By construction, we have that L(M1) ∪ L(M2) = L(M),
which fulfills condition (1).

We argue that M1 is deterministic (M2 follows by symmetry). By construc-
tion, M1 has only one start state, and all transitions going to its final state
are deterministic. Hence, it remains to show that the transitions of the form
q1
0

ci→ rj , are deterministic. Towards a contradiction, assume that M1 contains

transitions of the form qx
0

ci→ rj and qx
0

ci→ rj′ with j 6= j′. But this means that
both rj and rj′ belong to ci, which contradicts the definition of B1.

We still have to show that L(M1)∩L(M2) is empty. Towards a contradiction,
assume that the string cia is in L(M1) ∩ L(M2). Let rj (respectively, rj′) be
the state that M1, (respectively, M2) reaches after reading ci. By construction
of M1 and M2, we have that j 6= j′. But this means that both rj and rj′

belong to ci, and their intersection contains the element a, which contradicts
the disjointness condition of the is a normal set basis B.

(b) Assume that L(M) can be accepted by a disjoint union of the dFAs

21

M1, . . . , MK such that the sum of the sizes of M1, . . . , MK is at most ℓ, and for
every i = 1, . . . , K, L(Mi) 6= ∅. We can assume that every Mi is minimal. We
need to show that there exists a 2-separable normal set basis for C containing
at most s = ℓ− 4 sets.

Recall that we assumed that s < n − 3. Hence, we have that ℓ = s + 4 <

n + 1 = |M | − 1. As we observed that M is a minimal dFA for L(M), it must
be the case that K ≥ 2.

Let, for every i = 1, . . . , K, qi
0 and qi

f be the initial and final state of Mi,
respectively. Since M1, . . . , MK accept a finite set of strings of length 2, we
can divide the union of the state sets of M1, . . . , MK into three sets Q0, Q1,
and Q2 such that the only transitions in Mi are from Q0 to states in Q1

and from states in Q1 to states in Q2. For each state q ∈ Q1, define a set
Bq = {a | q

a
→ qi

f ∈ rules(Mi), 1 ≤ i ≤ K}.

As K ≥ 2, we have that B = {Bq | q ∈ Q1} contains at most ℓ − 4 sets. We
show that the collection B is also a normal set basis of C.

By definition of L(M), we have that every c ∈ C is the union of Bc := {Bq |
qi
0

c
→ q ∈ rules(Mi)}. It remains to show that Bc is also a disjoint subcollection

of B. When Bc contains only one set, there is nothing to prove. Towards a
contradiction, assume that Bc contains two different sets Bq1 and Bq2 such that
a ∈ Bq1 ∩ Bq2. As every Mi is deterministic, we have that q1 ∈ states(Mi1)
and q2 ∈ states(Mi2) with i1 6= i2. But this means that ca ∈ L(Mi1)∩L(Mi2),
which contradicts that M1, . . . , MK is a disjoint union.

Hence, B is a normal set basis of C. As (C, s) ∈ I, we have that C has a
2-separable normal set basis of size s = ℓ− 4 by Proposition 8. 2

It remains to prove Claim 12.

Proof of Claim 12: L(M) does not contain interchangeable symbols.

PROOF. Recall that M accepts a language {ca | c ∈ C and a ∈ c} of strings
of length 2, for a collection of sets C. We denote by E the set {a | c ∈ C and
a ∈ c} of elements of sets in C.

By definition of L(M), we have that the alphabet C that we use for the letters
of the first position is disjoint from the alphabet E that we use for the letters
of the second position. Hence, symbols from C are never interchangeable with
symbols from E.

We prove the remaining cases by contraposition:

22

• Suppose that c1 and c2 are different elements from C and that c1 and c2

are interchangeable. By definition of L(M), this means that c1 and c2 con-
tain precisely the same elements, which contradicts that they are different
elements from C.
• Suppose that a1 and a2 are different elements from E and that a1 and a2

are interchangeable. By definition of L(M) this means that a1 is contained
in precisely the same sets as a2. But this means that C contains obsolete
symbols, which contradicts that we chose (C, s) in a set I satisfying the
conditions in Proposition 8. 2

The following proposition is the counterpart of Proposition 8 for the minimal

disjoint union problem.

Proposition 13 There exists a set of inputs J for minimal disjoint union,
such that

(1) for each K ≥ 2, K-minimal disjoint union is np-complete for inputs
in J; and,

(2) for each (M, ℓ) ∈ J, the following are equivalent:
(a) there exists a K ≥ 2 such that (M, ℓ) has a solution for K-minimal

disjoint union;
(b) for every K ≥ 2, (M, ℓ) has a solution for K-minimal disjoint

union.

Moreover, L(M) does not contain interchangeable symbols and ℓ < |M | − 1.

PROOF. The set J is obtained by applying the reduction in Lemma 11 to
inputs I of normal set basis in Proposition 8. Let (M, ℓ) in J be obtained
by applying the reduction in Lemma 11 to some (C, s) in I. In the proof of
Lemma 11 we showed that,

(a) if C has a 2-separable normal set basis containing at most s sets, then
2-minimal disjoint union is true for (M, ℓ); and

(b) if there exists a K ≥ 2 for which K-minimal disjoint union is true for
(M, ℓ), then C has a 2-separable normal set basis containing at most s

sets.

Since a 2-minimal disjoint union is also a K-minimal disjoint union for
every K > 2, in which K − 2 dFAs have an empty state set, the equivalence
between (2)(a) and (2)(b) immediately follows.

Since 2-separable normal set basis is np-complete for inputs in I, 2-
minimal disjoint union is np-complete for inputs in J. Due to the equiva-
lence of (2)(a) and (2)(b), we also have that (1) holds.

23

It is shown in Claim 12 that L(M) does not contain interchangeable symbols.
The size constraint is obtained by observing that, in the proof of Lemma 11,
we assumed that s < n− 3, which implied that ℓ < |M | − 1. 2

We are now ready to prove the main result of the present section.

Theorem 14 minimization for dUTAs is np-complete.

PROOF. The upper bound follows from Theorem 5. Given a dUTA A and
an integer m, the np algorithm guesses an automaton B of size at most m

and verifies in ptime whether it is equivalent to A.

For the lower bound, we reduce from 2-minimal disjoint union. Given a
dFA M and integer ℓ, we construct a dUTA A and an integer m such that
A has an equivalent dUTA of size m if and only if M can be written as a
disjoint union of two dFAs for which the sum of their sizes does not exceed
ℓ. Intuitively, we construct A such that it accepts the trees of the form r(w),
where the root node is labeled with a special symbol r 6∈ alphabet(M) and
the string w is in L(M).

According to Proposition 13, we can assume without loss of generality that
(M, ℓ) ∈ J, which implies that ℓ < |M | − 1 and that L(M) does not contain
interchangeable symbols.

We define A formally as follows. The set alphabet(A) is {r} ⊎ alphabet(M).
We define states(A) as {qr} ⊎ alphabet(M), and final(A) = {qr}. For every
a ∈ alphabet(M), we include the rule a({ε}) → a. We also include the rule
r(L(M))→ qr. Finally, let m = 2 + 2|alphabet(M)| + ℓ. Obviously, A and m

can be constructed from (M, ℓ) using logarithmic space. We now show that

K-minimal disjoint union is true for (M, ℓ) for any K ≥ 2

if and only if L(A) can be accepted by a dUTA of size m.

(⇒) Suppose that K-minimal disjoint union is true for (M, ℓ) for any
K ≥ 2. According to Proposition 13, there exist dFAs M1 and M2 such that

(1) L(M) = L(M1) ∪ L(M2); and
(2) L(M1) ∩ L(M2) = ∅; and
(3) |M1|+ |M2| ≤ ℓ.

We construct a dUTA B as follows: states(B) consists of alphabet(M)⊎{r1, r2}
and final(B) = {r1, r2}. The transition rules of B are defined to be

• r(L(M1))→ r1;

24

• r(L(M2))→ r2; and
• a({ε})→ a for every a ∈ alphabet(M).

Obviously, L(B) = L(A). The size of B is

|B| = |M1|+ |M2|+ |states(B)|+
∑

a({ε})→a∈rules(B)

1

= ℓ + |alphabet(M)| + 2 + |alphabet(M)|

= 2 + 2|alphabet(M)|+ ℓ

= m

(⇐) Suppose that there exists a dUTA B for L(A) of size at most m =
2 + 2|alphabet(M)|+ ℓ. We state the following claims (which we prove later):

Claim 15 B has at least |alphabet(M)| non-accepting states.

As B is bottom-up deterministic and only accepts trees of depth two, Claim 15
induces a bijection φ between states of B and alphabet(M)-symbols: for ev-
ery state q ∈ QB, φ(q) is the unique symbol a ∈ alphabet(M) such that
a({ε}) → q is a rule in rules(B). We also denote by φ the homomorphic
bijective extension of φ to string languages.

Claim 16 B has at least two final states.

Let r1, . . . , rx be the accepting states of B, where x > 1. Let, for every i =
1, . . . , x, M ′

i be the minimal dFA such that r(L(M ′
i)) → ri is in rules(B).

It is easy to see that, from each M ′
i , a dFA M ′′

i can be constructed which
is of the same size and accepts φ(L(M ′

i)). Moreover, since B is bottom-up
deterministic, the languages L(M ′

i) are pairwise disjoint. As φ is bijective, the
languages φ(L(M ′

i)) are also pairwise disjoint. The total size of
∑x

i=1 |M
′′
i | is

m − 2|alphabet(M)| − x ≤ ℓ. Hence, 2-minimal disjoint union for (M, ℓ)
is true. According to Proposition 13, we also have that K-minimal disjoint

union is true for (M, ℓ) for every K ≥ 2. 2

It remains to prove Claims 15 and 16.

Proof of Claim 15: B has at least |alphabet(M)| non-accepting states

PROOF. First observe that L(B) contains only trees of depth two. We say
that B assigns a state q ∈ states(B) to a label a ∈ alphabet(M) if a({ε})→ q

is a rule in rules(B).

25

We first argue that B assigns only non-accepting states to labels in alphabet(M).
Indeed, should B assign an accepting state to some a ∈ alphabet(M), then
the tree a, which has depth one, should be in L(B), which is a contradiction.

We now show that B needs at least |alphabet(M)| different non-accepting
states to assign to the leaves. Towards a contradiction, suppose that B uses
lesser than |alphabet(M)| non-accepting states. As B is bottom-up determin-
istic, there exist two alphabet symbols a and b to which B assigns the same
state q in every successful run of B. However, by definition of L(B) this means
that, for every two alphabet(M)-strings u and v, uav ∈ L(M)⇔ ubv ∈ L(M).
This contradicts that L(M) does not contain interchangeable symbols, which
was shown in Proposition 13. 2

Proof of Claim 16: B has at least two final states.

PROOF. We recall that |A| = 1 + 2|alphabet(M)| + |M | and |B| ≤ 2 +
2|alphabet(M)|+ℓ. Since we chose (M, ℓ) ∈ J, and hence, ℓ < |M |−1, we have
|B| < |A|. Towards a contradiction, suppose that B has only one accepting
state qf . Then B has exactly one transition rule of the form r(L(M ′)) → qf ,
where M ′ is a dFA accepting φ−1(L(M)). However, as M ′ accepts a language
isomorphic to L(M), and M is a minimal automaton, the size of M ′ is at least
|M |. But this means that the size of B is at least 1 + 2|alphabet(M)| + |M |,
which is a contradiction. 2

4 Solutions for Efficient Minimization

As we have shown, UTA minimization is np-complete even when the internal
regular string languages are represented by dFAs. The problem is raised when
using multiple rules for the same label, for recognizing these horizontal regular
languages.

Three alternative notions of bottom-up deterministic tree automata for un-
ranked trees were proposed recently, each of them yielding a solution to the
problem. They contribute different notions of automata and bottom-up de-
terminism for unranked trees, which lead to unique minimal automata and
polynomial time minimization. However, as we will see in this section, they
do not lead to minimal automata of the same size.

First, stepwise tree automata [5] are an algebraic notion of automata for un-
ranked trees which also correspond to automata over binary trees by means

26

of a binary encoding. Second, parallel UTAs (PUTAs) alter the rule format
of UTAs and have been independently proposed in [9] and [27]. Third, one
can use tree automata that operate on the standard first-child next-sibling
encoding of unranked into binary trees (see, for example, [10]).

4.1 Stepwise Tree Automata

Stepwise tree automata have been introduced as an algebraic notion of au-
tomata for unranked trees [5]. In this section, we show that regular unranked
tree languages are recognized by unique minimal deterministic stepwise tree
automata, and formulate the corresponding Myhill-Nerode property for un-
ranked tree languages.

From a UTA point of view, the main difference between UTAs and stepwise
tree automata is that stepwise tree automata no longer use different state sets
for the internal nFAs and for assigning to the nodes of a tree in its run: all
these sets are merged into one set.

Definition 17 A possibly nondeterministic stepwise tree automaton (nSTA)
over Σ is a tuple A = (states(A), alphabet(A), rules(A), (inita(A))a∈alphabet(A),

final(A)), where

• alphabet(A) = Σ; and,
• for every a ∈ alphabet(A), (states(A), states(A), rules(A), inita(A), final(A))

is a finite automaton accepting strings over states(A).

We denote the latter finite automaton by A[inita].

A run of a stepwise tree automaton A on an unranked tree t is a function
r : nodes(t) → states(A) such that, for every node ν ∈ nodes(t) with n

children ν1, . . . , νn, it holds that

r(ν) ∈ evalA[initlabt(ν)]
(r(ν1) · · · r(νn)).

That is, the state of a node ν is computed by running A[initlabt(ν)], that is,
the nFA with initial states determined by the label of ν, on the sequence of
states assigned to ν’s children.

A (bottom-up) deterministic stepwise tree automaton (dSTA) A is a stepwise
tree automaton for which every finite automaton A[inita] is a dFA. A uSTA
is an unambiguous stepwise tree automaton for which every finite automaton
A[inita] is a uFA. An example of a dSTA is given in Figure 6.

In the present perspective on stepwise tree automata it is not very clear that
nSTAs can be determinized without altering the language of unranked trees

27

states : {1, 2, 3} final : {3} inita = {1}, initb = {2}

1 3

2

a 1
2

b

a3

a1 b2 b2

Fig. 6. An stepwise tree automaton over {a, b} recognizing {a(w) | w ∈ L(ab∗)} and
one of its successful runs. Initial states for a are pointed to by arrows labeled by a.
The state 3 of the root is obtained by running the automaton with initial states for
a on the string 122.

they recognize, and that every regular language of unranked trees is recog-
nized by a unique minimal deterministic stepwise tree automaton (up to iso-
morphism).

Thereto, we observe in the following section that stepwise tree automata are
in fact traditional tree automata over a binary encoding of unranked trees. In
order to differentiate between the unranked tree language and the binary tree
language a stepwise automaton defines, we write Lu(A) for the language of
unranked trees recognized by A.

4.1.1 Curried Binary Encoding

We can identify stepwise tree automata with traditional tree automata that
operate on Curried binary encodings of unranked trees. While Definition 17
provides the clearest way to present STAs in examples, the present charac-
terization is often more convenient in proofs. It allows to carry over results
directly from the theory of traditional tree automata.

We consider the binary alphabet Σ@ = Σ ⊎ {@} in which all labels in Σ
have rank zero and @ has rank two. The idea of the Curried encoding is to
identify an unranked tree with a lambda term. The tree a(b c d), for instance,
designates the application of function a to the arguments b, c, d. Its Curried en-
coding (((a@b)@c)@d) applies function a to the same arguments but stepwise
one-by-one. Formally, we define the Curried encoding curry(t) of an unranked
tree t as follows:

(i) curry(a) = a;
(ii) curry(a(t1 · · · tn)) = @(curry(a(t1 · · · tn−1)) curry(tn))

An STA A over Σ can be identified with a traditional tree automaton for
binary trees over Σ@, whose states are those of A. Hence, A has the same size
when viewed as an STA or as a traditional tree automaton. We identify the

28

states : {1, 2, 3}

rules : {a→ 1, @(1, 1)→ 3,

b→ 2, @(3, 2)→ 3 }

final : {3}

@3

@3

@3

a1 a1

b2

b2

Fig. 7. The STA of Figure 6 with unranked language {a(w) | w ∈ L(ab∗)} as
standard tree automaton on Curried encodings.

rules as follows:

q1
q2→ q is identified with @(q1, q2)→ q

q ∈ inita(A) is identified with a→ q

The binary tree language Lb(A) of a stepwise tree automaton A over Σ is
the language recognized by the corresponding traditional tree automaton for
binary trees over Σ@.

The following proposition shows the connection between runs of an STA on
unranked trees and their binary encodings.

Proposition 18 For every STA A, curry(Lu(A)) = Lb(A). Furthermore, A

is a dSTA (respectively, uSTA) if and only if it is a dTA (respectively, uTA)
as a traditional tree automaton on binary trees.

PROOF. Let evaluA and evalbA be the evaluators defined by A on unranked
and binary trees respectively, and evalA[inita] the evaluators on strings of states.

We show that evaluA(t) = evalbA(curry(t)) for all unranked trees t over Σ. The
proof is by induction on the structure of unranked trees.

For the base case, let t = a. Then we have q ∈ evaluA(t) if and only if
q ∈ evalA[inita](root(t)), if and only if q ∈ inita(A), if and only if a → q ∈

rules(A), if and only if q ∈ evalbA(t) = evalbA(curry(t)). For the inductive
case, we assume t = a(t1 · · · tn). It then holds that q ∈ evaluA(t) if and only
if q ∈ evalA[inita](evaluA(t1) · · · evaluA(tn)). By induction, this is equivalent to

q ∈ evalA[inita](evalbA(curry(t1)) · · · evalbA(curry(tn))), which holds if and only if

q ∈ evalbA(@(· · ·@(a curry(t1)) · · ·) curry(tn)) given the correspondence of the
automaton rules. By definition of the Curried encoding the latter is equivalent
to q ∈ evalbA(curry(a(t1 · · · tn))). 2

As a consequence, we can determinize every stepwise tree automaton seen as a
traditional tree automaton, without changing its language of unranked trees.

29

Theorem 19 minimization for dSTAs is in ptime. Moreover, every regular
unranked tree language is recognized by an up to isomorphism unique minimal
dSTA (up to isomorphism).

PROOF. It is well-known that every regular unranked tree language can be
recognized by a stepwise tree automaton. A proof will follow by conversion
of nUTAs to parallel UTAs (see Section 4.2) to STAs (Proposition 24). Step-
wise tree automata can be determinized as traditional tree automata without
changing the unranked tree language. The minimal dSTA for a language of
unranked trees T is the minimal deterministic tree automaton for the binary
tree language curry(T). This follows from Proposition 18. It can be computed
by the usual algorithm for minimizing traditional tree automata. 2

4.1.2 Myhill-Nerode Property

Myhill and Nerode characterized regular languages in terms of congruences
induced by the language, proved the existence of minimal deterministic au-
tomata for regular languages, and characterized such automata in terms of
the congruence.

The Myhill-Nerode property holds generally for algebraic notions of automata
(see, for example, [8]) and thus for finite automata over strings, traditional tree
automata [15,35], and stepwise tree automata [5]. A Myhill-Nerode inspired
theorem for UTAs was shown in Theorem G in [3]. Remarkably, this theorem
does not lead to minimal automata. Another Myhill-Nerode inspired theorem
for tree automata for unranked trees was shown by Thomas et al. [9], which
we treat in Section 4.2.

In this section, we formulate the Myhill-Nerode theorem for stepwise tree
automata on unranked trees, by translating the Myhill-Nerode theorem for
traditional tree automata for binary trees via Currying. Our main motivation
for discussing the Myhill-Nerode theorem is that the present version has the
advantages of the two other Myhill-Nerode inspired theorems, while not shar-
ing their disadvantages: (i) it leads to unique minimal deterministic automata,
which can be computed in ptime, (ii) it uses a single, natural congruence re-
lation, and (iii) it allows to carry over the minimization algorithm directly
from traditional tree automata. Moreover, we show later that it leads to the
smallest minimal deterministic automata, when compared to the parallel UTAs
of [9,27] and to traditional tree automata over the standard first-child next-
sibling encoding (Sections 4.2.1 and 4.3.2).

A binary context C is a function mapping binary trees to binary trees. A
context can be represented by a pointed binary tree, that is, a binary tree over
the signature Σ ⊎ {•} that contains a single occurrence of the symbol “•”

30

which we call the hole marker. The hole marker is always at a leaf. Context
application C[t] of context C to a binary tree t replaces the hole marker in C

by t.

An unranked context C is a tree over the unranked signature Σ ⊎ {•} that
contains a single occurrence of the hole marker, but this time possibly labeling
an internal node. Given an unranked context C and an unranked tree t =
a(t1 · · · tn), we define context application C[t] inductively as follows:

(i) •(t′1 · · · t
′
m)[a(t1 · · · tn)] = a(t1 · · · tnt

′
1 · · · t

′
m); and

(ii) a(t′1 · · · t
′
i · · · t

′
m)[t] = a(t′1 · · · t

′
i[t] · · · t

′
m) where t′i contains the •.

We claim that the unranked contexts and context applications that we defined
are precisely the Curried versions of the binary contexts.

Lemma 20 If C is an unranked context and t is an unranked tree, we have
that curry(C[t]) = curry(C)[curry(t)].

The proof is by straightforward induction on the structure of contexts.

The following definitions are parametric, in that they apply to unranked trees
as well as to binary trees. A congruence on trees is an equivalence relation ≡
such that,

for every context C, if t1 ≡ t2 then C[t1] ≡ C[t2].

We refer to the number of equivalence classes of an equivalence relation as
the index of the equivalence relation. An equivalence relation is of finite in-
dex when there are only a finite number of equivalence classes. Given a tree
language T , we define the congruence ≡T induced by T through:

t1 ≡T t2 if and only if for every context C: C[t1] ∈ T ⇔ C[t2] ∈ T.

Given these definitions, the Myhill-Nerode theorem directly generalizes from
ranked to unranked tree languages.

Theorem 21 (Myhill-Nerode) For any binary or unranked tree language
T it holds that T is a regular tree language if and only if its congruence ≡T has
finite index. Furthermore, there exists an (up to isomorphism) unique minimal
bottom-up deterministic (stepwise) tree automaton for all regular languages T .
The size of this automaton is equal to the index of ≡T .

The proof of this theorem is immediate from the binary case [15], Proposi-
tion 18, and Lemma 20.

31

4.2 Parallel UTAs

Parallel UTAs are automata for unranked trees which have been independently
proposed in [9] and [27] for efficient minimization. In this section, we compare
parallel UTAs and stepwise tree automata with respect to the size of minimal
deterministic automata and their Myhill-Nerode theorems.

The idea of parallel UTAs is to start with an nUTA and to merge all its
nFAs for the same alphabet symbol into one nFA. When each such nFA is a
dFA, this should solve the main reason for why efficient minimization fails for
dUTAs. In order to distinguish final states of different nFAs after the merge,
an explicit output function needs to be added.

Definition 22 A possibly nondeterministic parallel UTA (nPUTA) over Σ is
a tuple A = (states(A), alphabet(A), (Aa)a∈alphabet(A), o) where alphabet(A) =
Σ, every Aa is an nFA, and o is an output function of type o : ∪a∈Σ final(Aa)→
states(A).

A run r of an nPUTA A on an unranked tree t over alphabet(A) is a function
r : nodes(t)→ ∪a∈alphabet(A) states(Aa) such that, for every ν ∈ nodes(t) with
n children ν1, . . . , νn,

r(ν) ∈ evalAlabt(ν)
(o(r(ν1)) · · · o(r(νn))).

A run r on t is successful if o(r(root(t))) ∈ final(A).

A (bottom-up) deterministic parallel UTA (dPUTA) is a parallel UTA for
which every Aa is a dFA. A uPUTA is an unambiguous parallel UTA for
which every Aa is a uFA. An example for the minimal dPUTA for the language
{a(w) | w ∈ L(ab∗)} is given in Figure 8.

The size of an nPUTA A is defined to be

|states(A)|+
∑

a∈alphabet(A)

|states(Aa)|.

Although not explicitly stated in [9], we note that it is assumed that the state
sets of the automata Aa in PUTAs are disjoint. The latter can be concluded
from Theorem 26.

Theorem 23 ([9] and [27]) minimization for dPUTAs is in ptime. Fur-
thermore, every regular unranked tree language is recognized by a unique min-
imal dPUTA (up to isomorphism).

It is instructive to convert nUTAs into nPUTAs. Let A be an nUTA for which

32

states : {1′, 2′, 3′} final : {3′} o(1) = 1′, o(2) = 2′, and o(3) = 3′

Aa: 1 3
1′

2′

Ab: 2

a3′

a1′ b2′ b2′

Fig. 8. A dPUTA for {a(w) | w ∈ L(ab∗)} and one of its runs. The corresponding
stepwise tree automaton is given in Figure 7.

we assume that the state sets of the automata B with a(L(B))→ q ∈ rules(A)
are pairwise disjoint. We define an nPUTA PA with the same states and final
states such that

• for every a ∈ alphabet(A), PAa := ∪a(L(B))→q∈rules(A)B; and,
• for every a(L(B))→ q ∈ rules(A), o(final(B)) := q.

The automata PAa are obtained by unifying all horizontal nFAs for letter a.
That is, the state set of PAa is ⊎a(L(B))→q∈rules(A)states(B) and the rules of
PAa are ⊎a(L(B))→q∈rules(A)rules(B). This transformation preserves unambigu-
ity but not determinism, that is, dUTAs are mapped to uPUTAs. The reason
why determinism fails is that the union of dFAs with disjoint languages is
an unambiguous, but not necessarily deterministic representation of regular
string languages (it may have multiple initial states).

4.2.1 Size Comparison with Stepwise Tree Automata

Every PUTA can be translated into a stepwise tree automaton with fewer or
equally many states, such that determinism is preserved. The idea is to unify
all nFAs of an PUTA into a single nFA.

Given an nPUTA A, we define an nSTA step(A) that recognizes the same lan-
guage. We replace q ∈ states(A) by all possible values in ∪a∈alphabet(A) o−1(q),
so that the following states remain:

states(step(A)) := ⊎a∈alphabet(A) states(Aa)

final(step(A)) := o−1(final(A))

The rules of step(A) are then given by the following two inference schemata:

q1
p
→ q2 ∈ rules(Aa) q ∈ o−1(p)

q1
q
→ q2 ∈ rules(step(A))

q ∈ init(Aa) a ∈ alphabet(A)

q ∈ inita(step(A))

The stepwise tree automaton in Figure 7, for instance, is the translation of the

33

PUTA in Figure 8. The main difference is that the nSTA shares the states of
all nFAs of the PUTA. As we will see, this kind of sharing allows an automaton
to be more succinct in some cases.

In general, the translation preserves runs, successful runs, unambiguity, tree
languages, determinism, and the number of states. By composing the two
above automata conversions, we obtain:

Proposition 24 Every dUTA or uUTA can be translated in ptime to an
equivalent uPUTA or uSTA with equally many states.

The latter translation allows us to compare the sizes of minimal deterministic
automata for unranked trees:

Theorem 25 Given a regular tree language T , the minimal dSTA A for T is
always smaller or equal in size than the minimal dPUTA. Moreover, the size
of the minimal dPUTA for T is in O(|alphabet(A)| · |A|).

PROOF. It remains to show the O(|alphabet(A)| · |A|) bound of the size
increase. We show that any deterministic stepwise tree automaton A can be
translated to an equivalent dPUTA PA of size O(|alphabet(A)| · |A|). For
every a ∈ alphabet(A), let Aa be the dFA defined by states(Aa) := {qa | q ∈
states(A[inita])}, final(Aa) := {qa | q ∈ final(A[inita])}, init(Aa) := {qa | q ∈

inita}, and rules(Aa) := {qa
b
→ q′a | q

b
→ q′ ∈ rules(A)}. Then, simply set

PAa := Aa for every a ∈ alphabet(A), states(PA) := ⊎a∈alphabet(A)states(Aa),
and o(q) := q for every q ∈ final(A). 2

The minimal stepwise automata can indeed be quadratically smaller than
minimal PUTAs, which we will show in Proposition 27, based on the Myhill-
Nerode property. This shows that the conversion in the proof of Theorem 25
is optimal.

4.2.2 Myhill-Nerode Property

Cristau, Löding, and Thomas [9] prove a Myhill-Nerode inspired property for
dPUTAs. The goal of this section is to compare this Myhill-Nerode property
with the previous one for stepwise tree automata. Moreover, the Myhill-Nerode
property for dPUTAs allows us to compare the size of minimal dPUTAs with
minimal stepwise automata.

A pointed tree C over Σ is an unranked context over Σ such that the unique
node in C that is labeled by “•” is a leaf. For a tree language T , the equivalence

34

states : {a, 0, 1, 2, . . . , n} final : {n}

inita = {a} init{j} = 0 for all 1 ≤ j ≤ n

0 1 2 · · · n
1, . . . , n a a a a

aa

Fig. 9. Deterministic STA for the language Tn of Proposition 27.

relation ∼T is defined as

t1 ∼T t2 if and only if for every pointed tree C: C[t1] ∈ T ⇔ C[t2] ∈ T .

For two trees t = a(t1 · · · tk) and t′ = a(t′1 · · · t
′
ℓ), define

t⊙ t := a(t1 · · · tkt
′
1 · · · t

′
ℓ).

For a ∈ Σ, let T a
Σ denote the set of Σ-trees which have a as their root label.

Then, the equivalence relation
→
∼T is defined for all t1, t2 ∈ T

a
Σ by

t1
→
∼T t2 if and only if ∀t ∈ T a

Σ : t1 ⊙ t ∼T t2 ⊙ t.

Theorem 26 (Theorem 1 in [9], rephrased) For every regular tree lan-
guage T , the size of the minimal dPUTA accepting T is ST +

∑

a∈Σ Sa
T , where

• ST denotes the number of equivalence classes of the relation ∼T ; and,
• for each a ∈ Σ, Sa

T denotes the number of equivalence classes of the relation
→
∼T in the set T a

Σ .

Theorem 26 admits us to formally prove that minimal dSTAs are indeed
quadratically smaller than minimal dPUTAs in general.

Proposition 27 There exists a family of unranked regular tree languages
(Tn)n∈N for which the minimal dSTA is quadratically smaller than the minimal
dPUTA.

PROOF. Let Σn be the alphabet {1, . . . , n, a} and define the languages

Tn := {j(a · · ·a
︸ ︷︷ ︸

n

) | 1 ≤ j ≤ n}.

Figure 9 shows a dSTA of size O(n) accepting Tn.

We show that the minimal dPUTA for Tn has at least n2 states. Intuitively,
the minimal dPUTA for Tn needs n different finite string automata (one for

35

each i) with n states each (to accept a language consisting of a single string
of length n).

Formally, we argue that the equivalence relation
→
∼Tn

induces at least n2 dif-
ferent equivalence classes, which proves the proposition, according to Theo-
rem 26. Thereto, suppose that t1 = i(ak) and t2 = j(aℓ) are two trees with
i, j, k, ℓ ∈ {1, . . . , n}.

• If i 6= j, then t1 and t2 are clearly in different equivalent classes, because
the relation

→
∼Tn

is only defined between trees with the same root.
• If i = j and k 6= ℓ, then let t be the tree i(an−k). Then we have that

t ⊙ t1 ∈ Tn while t ⊙ t2 6∈ Tn. Taking the context C = •, this implies that
t ⊙ t1 6∼T t ⊙ t2 since C[t ⊙ t1] ∈ Tn while C[t ⊙ t2] 6∈ Tn. Hence, t1 and t2
are in different equivalence classes.

It follows that the relation
→
∼Tn

induces at least n2 different equivalence classes.
2

4.3 Standard Binary Encoding

Another approach towards efficient minimization for automata representing
unranked tree languages is to use the first-child next-sibling encoding [10,21,33].

The first-child next-sibling encoding fcns(t) of some unranked tree t over Σ is
a binary tree over the signature Σ⊥ = Σ⊎{⊥}, where the first-child relation is
associated with the first position, and the next-sibling relation with the second
position.

The idea of using the first-child next-sibling encoding for minimization, is to
represent a regular language of unranked trees T by a minimal dTA for the
language of their binary encodings fcns(T), as with stepwise tree automata
that recognize the binary tree language curry(T).

4.3.1 Inversion

The goal of this section is to compare the size of the dTAs for fcns(T) and
curry(T) for regular languages of unranked trees T . Figure 10 illustrates these
two binary encodings and two others at the example of the unranked tree
t = a(bcd).

The first important difference between fcns(T) and curry(T) is that lists of
children dare inverted. When traversing fcns(t) bottom-up, the list (b c d) of
a’s children is encountered in inverted order (d c b), while it occurs in the

36

a

b

⊥ c

⊥ d

⊥ ⊥

⊥

(a) fcns(t)

a

d

⊥ c

⊥ b

⊥ ⊥

⊥

(b) inverse(fcns(t))

a

⊥ d

c

b

⊥ ⊥

⊥

⊥

(c) TtU

@

@

@

a b

c

d

(d) curry(t)

Fig. 10. Four binary encodings of the unranked tree t = a(b c d): first-child nex-
t-sibling fcns(t), inverted first-child next-sibling inverse(fcns(t)), previous-sibling
last-child TtU, and the Curried encoding curry(t).

original order in curry(t).

It is well known for dFAs that language inversion leads to an exponential
blow-up of their minimal size. As a consequence, there is in general an ex-
ponential blow-up between the minimal dTAs for fcns(T) and curry(T) in
both directions. For instance, for the tree languages Tn = {c(w) ∈ TΣ | w ∈
(a + b)na(a + b)∗}, where n ∈ N, the minimal dTA over the curry-encoding is
exponentially smaller than the minimal dTA over the fcns-encoding. For the
translation in the other direction, the exponential blow-up occurs for the tree
languages T ′

n = {c(w) ∈ TΣ | w ∈ (a + b)∗a(a + b)n}.

We wish to ignore such succinctness differences due to inversion. Our goal
thus becomes to compare the inverted first-child next-sibling encoding with
Currying. Finally, the previous-sibling last-child encoding T.U is equal to the
inverted fcns-encoding, except that first and second positions are exchanged
for all nodes. This is a minor difference which does not affect the succinctness
of minimal bottom-up deterministic automata. The inverted fcns-encoding
and the previous-sibling last-child encoding T.U are illustrated in Figure 10.
We wish to turn to the previous-sibling last-child encoding since it facilitates
constructions later in the article.

The main difference that remains between the previous-sibling last-child en-
coding TtU and curry(t) in the above example, is that t’s root’s label a is
located at the root of TtU, while it is found in the leftmost leaf of curry(t).
In bottom-up processing, one sees leaves first, so the Curried encoding should
have advantages for minimization.

4.3.2 Size Comparison to Stepwise Tree Automata

We show that minimal deterministic STAs for languages T of unranked trees
are at most quadratically larger than dTAs for the previous-sibling last-child
encoding TTU. On the other hand, they can be exponentially smaller.

Let us define the previous-sibling last-child encoding TtU of some unranked

37

tree t of Σ more formally. It is a binary tree over the signature Σ⊥ = Σ⊎{⊥},
where the previous-sibling relation is associated with the first position and the
last-child relation with the second position:

Ta(t1 · · · tn)U := T〈a(t1 · · · tn)〉U

T〈t1 · · · tna(s1 · · · sm)〉U := a(T〈t1 · · · tn〉UT〈s1 · · · sm〉U)

T〈〉U := ⊥

In order to relate the language TLU to curry(L), we define a tree transforma-
tion “shift” that transforms a tree TtU to curry(t). Intuitively, the transfor-
mation processes the tree TtU in a top-down manner and moves the labels of
parents (in the unranked tree) downwards. On the example in Figure 10(c),
it would move the a downwards to obtain the tree in Figure 10(d). Formally,
the transformation is defined as follows:

shift(a(⊥ t)) := shifta(t)

shifta(b(t1 t2)) := @(shifta(t1) shiftb(t2))

shifta(⊥) := a

The following simple equality will be useful in the proofs to come:

shift(Ta(t1 · · · tn)U = shifta(T〈t1 · · · tn〉U) (†)

It holds by definition of the encoding T.U and the shift transformation.

Proposition 28 For every unranked tree t over Σ, shift(TtU) = curry(t).

PROOF. The proof is by induction on the structure of unranked trees. The
base case t = a is simple: shift(TaU) = shifta(⊥) = a = curry(a).

In the induction, we have t = a(t1 · · · tnb(s1 · · · sm)), where n and m can be
zero, so we can apply equation (†) and the definitions of T.U and shifta:

shift(TtU) = shifta(T〈t1 · · · tnb(s1 · · · sm)〉U)

= shifta(b(T〈t1 · · · tn〉U T〈s1 · · · sm〉U)

= @(shifta(T〈t1 · · · tn〉U) shiftb(T〈s1 · · · sm〉U))

38

S1
⊥ → p ∈ rulesA a ∈ Σ

a→ p[a] ∈ rules(step(A))

S2
b(p1, p2)→ p ∈ rulesA a ∈ Σ

@(p1[a], p2[b])→ p[a] ∈ rules(step(A))

Fig. 11. Converting automata A for previous-sibling last-child encodings of unranked
trees into stepwise tree automata step(A).

We are now in the position to apply the induction hypothesis, and to conclude

shift(TtU) = @(curry(a(t1 · · · tn)) curry(b(s1 · · · sm)))

= curry(a(t1 · · · tnb(s1 · · · sm)))

= curry(t)

by the definition of the Curried encoding. 2

Our next goal is to encode nTAs over Σ⊥ into nTAs over Σ@ that recognize
the shifted language. The size should grow no more than quadratically and
bottom-up determinism should be preserved.

The idea of the automata conversion is to memorize node labels that have
been shifted down. In bottom-up processing, these labels will be seen earlier
than needed, so we simply memorize them in the state when moving upwards.
Given a traditional tree automaton A over Σ⊥ we define an automaton step(A)
over Σ@ such that:

states(step(A)) = states(A)× Σ

We write p[a] for pairs (p, a) where p ∈ states(A) and a ∈ Σ. Note that
|step(A)| = |Σ| · |A|, so the size increases at most by a factor of |Σ|. The
rules of step(A) are produced by the inference rules in Figure 11. It remains
to define the final states of step(A). Thereto, for ease of notation, we extend
the definition of evalA to binary trees in which the leaves can be labeled with
states. In particular, we define evalA(p) := {p} for every p ∈ states(A) and
evalA(a(t1t2)) := {q | q1 ∈ evalA(t1), q2 ∈ evalA(t2), and a(p1, p2) → p ∈
rules(A)} for binary (states(A) ∪ alphabet(A))-trees t1, t2 in which the labels
from states(A) only occur at leaves. Then, the final states of step(A) are
defined as

final(step(A)) := {p[a] | evalA(a(⊥ p)) ∩ final(A) 6= ∅}.

We illustrate the conversion in Figure 12. It presents a run of some automaton

39

a6

⊥0 e5

b3

⊥0 d2

c1

⊥0 ⊥0

⊥0

f 4

⊥0 ⊥0

shift
=⇒

@5[a]

@3[a]

a0[a] @2[b]

@1[b]

b0[b] c0[c]

d0[d]

@4[e]

e0[e] f 0[f]

Fig. 12. A run of some tree automaton A on the previous-sibling last-child encoding
of the unranked tree a(b(c d) e(f)) and the corresponding run of step(A) on the
Curried encoding.

A on the previous-sibling last-child encoding of the unranked tree a(b(cd) e(f))
and the corresponding run of step(A) on the Curried encoding.

Lemma 29 Let t be a binary tree over Σ⊥ and A a traditional tree automaton
over Σ⊥. It then holds for all p ∈ states(A) and a ∈ Σ that

p ∈ evalA(t) if and only if p[a] ∈ evalstep(A)(shifta(t)).

PROOF. By induction on the structure of t. If t = ⊥ then the lemma follows
from the definition of shifta and inference rule S1:

p ∈ evalA(t) if and only if ⊥ → p ∈ rules(A)

if and only if a→ p[a] ∈ rules(step(A))

if and only if p[a] ∈ evalstep(A)(a)

if and only if p[a] ∈ evalstep(A)(shifta(t))

Otherwise, t = b(t1t2) for some b ∈ Σ and binary trees t1, t2 over Σ⊥. For
the one direction, we assume p ∈ evalA(t). Hence, there exists b(p1, p2) →
p ∈ rules(A) such that p1 ∈ evalA(t1) and p2 ∈ evalA(t2). The induction
hypothesis applied to t1 and t2 yields that p1[a] ∈ evalstep(A)(shifta(t1)) and
p2[b] ∈ evalstep(A)(shiftb(t2)). Since b(p1, p2) → p ∈ rules(A), we can apply
inference rule S2 of the construction of step(A) in Figure 11 to obtain

p[a] ∈ evalstep(A)(@(shifta(t1) shiftb(t2))).

This is equivalent to p[a] ∈ evalstep(A)(shifta(t)), as required.

For the other direction, let p[a] ∈ evalstep(A)(shifta(t)). There exists a rule of
step(A) by which to infer p[a]. Since shifta(t) = shifta(b(t1t2)) = @(shifta(t1)
shiftb(t2)), it must be inferred form S2 and have the form

@(p1[a], p2[b])→ p[a],

40

for some b(p1, p2) → p ∈ rules(A) for which p1[a] ∈ evalstep(A)(shifta(t1)) and
p2[b] ∈ evalstep(A)(shiftb(t2)). The induction hypothesis applied to t1 and t2
yields p1 ∈ evalA(t1) and p2 ∈ evalA(t2). Thus, p ∈ evalA(b(t1, t2)), that is,
p ∈ evalA(t), as required. 2

Proposition 30 For every nTA A over Σ⊥ accepting the previous-sibling last-
child encoding of some unranked tree language,

L(step(A)) = shift(L(A)).

PROOF. Let s ∈ shift(L(A)) be a binary tree over Σ ∪ {@}. There is some
tree t ∈ L(A) over Σ⊥ such that s = shift(t). By definition of the shift function,
we have t = a(⊥ t2) for some a ∈ Σ and tree t2 with shift(t) = shifta(t2).
Furthermore, there exists a p ∈ final(A) ∩ evalA(t). Let p2 be such that p ∈
evalA(a(⊥ p2)). Note that p2[a] ∈ final(step(A)). Lemma 29 proves p[a] ∈
evalstep(A)(shifta(t2)). Thus s = shifta(t2) ∈ L(step(A)).

For the converse, let s ∈ L(step(A)). The shift function is one-to-one and
onto, so there exists some tree t such that s = shift(t). It remains to show
that t ∈ L(A). By definition of the shift function, t has the form a(⊥ t2)
and s = shift(t) = shifta(t2). There exists p[a] ∈ final(step(A)) such that
p[a] ∈ evalstep(A)(shifta(t2)). By Lemma 29, it follows that p ∈ evalA(t2). By
definition of final(step(A)) it holds that evalA(a(⊥ p)) ∩ final(A) 6= ∅. Thus,
t = a(⊥ t2) ∈ L(A) so that s = shift(t) ∈ shift(L(A)). 2

Theorem 31 For every regular language T of unranked trees over Σ, the size
of the minimal dTA the previous-sibling last-child encoding TTU is at most |Σ|
times smaller than the minimal deterministic stepwise tree automaton for T .

PROOF. Let A be the minimal deterministic automaton recognizing TTU.
The automaton step(A) is deterministic and a factor of |Σ| larger than A and
recognizes curry(T):

L(step(A)) = shift(L(A)) by Proposition 30

= shift(TTU)

= curry(T) by Proposition 28

By Proposition 18, the minimal dSTA recognizing T is thus smaller or equal
in size to step(A), that is, at most a factor of |Σ| larger than A. 2

We give two examples relating minimal dTAs with respect to the previous-
sibling last-child encoding to minimal dSTAs. The first example proves that

41

the quadratic construction of Theorem 31 is optimal. The second one illus-
trates that minimal dSTAs can be exponentially smaller than minimal dTAs
over the previous-sibling last-child encodings.

Proposition 32 There exists an infinite class of languages (Tn)n∈N such that,
for every Tn, the minimal dSTA for Tn is quadratically larger than than the
minimal dTA for TTnU.

PROOF. For every n ∈ N, we define a tree language Tn such that the minimal
dSTA for Tn is quadratically larger than the minimal tree automaton accepting
TTnU. Indeed, consider, for every n ∈ N, the regular tree language Tn =
{bi(bi(a · · ·a︸ ︷︷ ︸

n

)) | 1 ≤ i ≤ n} over the alphabet Σn = {b1, . . . , bn, a}.

The following dTA An with alphabet(A) = Σn ∪ {⊥} recognizes TTnU, has
2n+2 states {a1, . . . , an, b1, . . . , bn,⊥, ok} where ok is the only final state, and
the following rules:

• ⊥ → ⊥;
• a(⊥ ⊥)→ a1;
• a(ak ⊥)→ ak+1, for every 1 ≤ k < n;
• bi(⊥ an)→ bi, for every 1 ≤ i ≤ n; and,
• bi(⊥ bi)→ ok.

We show that the minimal stepwise automaton for Tn has size at least n2 +
n + 2. To this end, we apply the Myhill-Nerode Theorem 21 for stepwise tree
automata. We show that index of ≡Tn

is at least n2 + n + 2. It is easy to see
that the sets Tn, {a}, and {bi} for i = 1, . . . , n form n + 2 equivalence classes
of ≡Tn

. Furthermore, consider the trees ti1,j1 = bi1(a
j1) and ti2,j2 = bi2(a

j2) for
1 ≤ i1, i2, j1, j2 ≤ n. Suppose that i1 6= i2 or j1 6= j2, and consider the context
C = bi1(•(a

n−j1)). Then we have that C[ti1,j1] ∈ Tn, while C[ti2,j2] 6∈ Tn. Hence,
each ti1,j1 and ti2,j2 are in different equivalence classes when i1 6= i2 or j1 6= j2,
which implies that that the index of ≡Tn

is at least n2 + n + 2. 2

The translation from minimal dSTAs to minimal dTA for the previous-sibling
last-child encoding of its language can be worse than quadratic, that is, expo-
nential.

Proposition 33 There exists an infinite class of languages (Tn)n∈N such that
for every Tn, the minimal dSTA for Tn is exponentially smaller than the min-
imal dTA for the encoding TTnU.

PROOF. The proof is based on the fact that the smallest dFA for the union
of an arbitrary number of dFAs can be exponentially larger than the sum

42

j

· · ·a a

multiple of pj

(a) The language Tn.

j

@

@

a

a

multiple of pj

@

a

. .
.

(b) The language curry(Tn).

j

⊥

⊥

⊥

a

⊥

⊥

a

a

multiple of pj

. .
.

(c) The language TTnU.

Fig. 13. Illustration of the languages used in the proof of Proposition 33.

of their sizes (see, for example, [26]). Indeed, let Aj to be the minimal dFA
accepting (apj)∗, where pj denotes the j-th prime number. Then, the minimal
size of the dFA for (ap1)∗ ∪ · · · ∪ (apn)∗ is

∏

j=1,...,n pj , which is exponentially
larger than

∑

j=1,...,n pj when n is arbitrary. The proposition now holds for the
tree languages Tn with alphabet {1, . . . , n, a}:

Tn :=
⋃

j=1,...,n

{j(w) | w ∈ L(Aj)}.

We first show that, for every n ∈ N, there exists a dSTA for Tn of size
∑

j=1,...,n pj . Let Bn be the minimal dFA with alphabet(Bn) = {1, . . . , n, a}
that accepts the string language ∪n

j=1j(a
pj)∗. The size of Bn is 1+

∑

j=1,...,n pj .
It can be turned into a stepwise automaton A for Tn by removing the initial
state of Bn, adding the state a = inita(A), and setting setting initj(A) =
evalBn

(j), resulting in a size of 1 +
∑

j=1,...,n pj .

We show that the minimal dTA for TTnU has size at least 2 +
∏

j=1,...,n pj

by showing that the index of ≡TTnU is at least that large. We only consider
equivalence classes that contain a tree t for which there exists a context C such
that C[t] ∈ Tn. One equivalence class of ≡TTnU consists precisely of the trees
in TTnU. Notice that these trees always have some j as their root symbol.
A second equivalence class consists of the singleton {⊥}. The remaining N

equivalence classes consist of trees that have their root labeled with a. These
equivalence classes are isomorphic to the equivalence classes induced by the
minimal dFA for (ap1)∗ ∪ · · · ∪ (apn)∗. Indeed, let φ be the function that maps
every binary tree of the form a(a(· · ·a(⊥ ⊥) · · ·⊥) ⊥) (with k occurrences of
a) to the string ak. Then, φ is an isomorphism. It is easy to see that a set of
trees S is an equivalence class of ≡TTnU if and only if φ(S) is an equivalence
class of ≡(ap1)∗∪···∪(apn)∗ . Hence, N =

∏

j=1,...,n pj . 2

43

5 Models for XML Schema Languages

We now focus on abstractions for XML schema languages. In the literature,
XML schema languages are usually abstracted as extended DTDs [25] instead
of tree automata. 2 We will follow this convention. In particular, we will treat
extended DTDs with the single-type and the restrained competition restric-
tions, which correspond to the expressive power of XML Schema [30] and
1-pass preorder typeable schemas [18], respectively. As remarked by Cristau
et al., restrained competition extended DTDs can be seen as a restricted ver-
sion of the top-down deterministic tree automata studied in their paper [9].

We recall the notion of a DTD, which is the most widely used XML schema
language:

Definition 34 A DTD over Σ is a triple

d = (alphabet(d), rules(d), start(d)),

where alphabet(d) = Σ. For every a ∈ alphabet(d), rules(d) contains precisely
one rule of the form a → Da, where Da is a dFA over alphabet(d), and
start(d) ∈ alphabet(d) is the start symbol. A tree t is valid with respect to
d (or satisfies d) if its root is labeled with start(d) and, for every node with
label a and sequence a1 · · ·an of labels of its children, there is a rule a→ Da

in rules(d) such that a1 · · ·an ∈ L(Da).

We define the size |d| of a DTD d to be
∑

a∈alphabet(d) |Da|. By L(d) we denote

the set of trees that satisfy d. By d[start = a] we denote the DTD d in which
the start symbol is replaced by a.

Given a DTD d, we say that the symbol a ∈ alphabet(d) is reachable in d

when either (i) a = start(d), or (ii) b is reachable, b → Db is a rule in d,
and there exist strings w1, w2 ∈ alphabet(d)∗ such that w1aw2 ∈ L(Db). We
say that d is reduced if, for every symbol a ∈ alphabet(d), a is reachable and
L(d[start = a]) 6= ∅. Notice that, when d is reduced, for every a ∈ alphabet(d),
there exists a tree t ∈ L(d) such that a is a label in t.

Definition 35 ([2,25]) An extended DTD (EDTD) over Σ is a quadruple

E = (alphabet(E), types(E), dtd(E), start(E), nameE),

where alphabet(E) = Σ, types(E) is an alphabet of types, dtd(E) is a DTD
over types(E), start(E) ∈ types(E) is the start symbol of dtd(E), and nameE

2 Papakonstantinou and Vianu used the term specialized DTD, as types specialize
tags. We prefer the term extended DTD as it expresses more clearly that the power
of the schemas is amplified.

44

types : {store1, dvd1, dvd2, title1, price1, discount1} start : store1

store1 → Dstore1 with Dstore1:

dvd1

dvd2

dvd1, dvd2

dvd1 → Ddvd1 with Ddvd1: title1 price1

dvd2 → Ddvd2 with Ddvd2: title1 price1
discount1

title1 → Dtitle1, price1 → Dprice1 , discount1 → Ddiscount1,

with L(Dtitle1) = L(Dprice1) = L(Ddiscount1) = {ε}

(a) An EDTD E defining a store document.

store

dvd

title price

dvd

title price discount

store1

dvd1

title1 price1

dvd2

title1 price1 discount1

(b) A tree t ∈ L(E) (left) and a typing t′ of E on t (right).

Fig. 14. An example of an EDTD defining a schema for a store with DVDs.

is a mapping from types(E) to alphabet(E). We extend the function nameE

in the homomorphic way to strings and trees over types(E).

A tree t is valid with respect to E (or satisfies E) if t = nameE(t′) for some
tree t′ ∈ L(dtd(E)). Again, we denote by L(E) the set of trees satisfying E.
For a symbol s ∈ types(E), we denote by E[start = s] the extended DTD E

where the start symbol start(E) is replaced by s.

For ease of exposition, we always take types(E) = {ai | 1 ≤ i ≤ ka, a ∈
alphabet(E), i ∈ N} for some ka ∈ N, and we set nameE(ai) = a. We refer
to the label ai of a node in t′ as its type. If t ∈ L(E) and t′ ∈ dtd(E) with
nameE(t′) = t, we also say that t′ is a typing of E on t. The size |E| of an
extended DTD E is |types(E)|+ |dtd(E)|. We say that E is reduced if dtd(E)
is reduced.

Example 36 Figure 14(a) contains an EDTD E which defines a store that
sells two types of DVDs: dvd1 defines ordinary DVDs, while dvd2 defines
DVDs on sale, which is reflected by an extra “discount”-child. The rule for
store1 specifies that there should be at least one DVD on sale. Figure 14(b)
shows a tree defined by the EDTD, together with its typing.

Remark 37 It is well-known that EDTDs can be identified with nUTAs.

45

In particular, given an EDTD E, one can obtain an nUTA A equivalent to
E by setting alphabet(A) = alphabet(E), states(A) = types(E), final(A) =
start(E), and by including the rule a(L(Dai))→ ai in rules(A) for every rule
ai → Dai ∈ rules(dtd(E)). It is easy to see that L(A) = L(E) and that A

can be constructed from E in linear time. In this perspective, a typing of E

corresponds to a run of A.

We formally define single-type and restrained competition EDTDs as follows.

Definition 38 Let E be an EDTD. We say that a regular language L over
alphabet types(E) is single-type if, for every two strings w1a

iv1 and w2a
jv2 in

L, we have that i = j. We say that L restrains competition if, for every two
strings waiv1 and wajv2 in L, we have that i = j.

An EDTD E is single-type (respectively, restrained competition) if every reg-
ular language defined by dFAs Dai in the definition of dtd(E) is single-type
(respectively, restrains competition).

Example 39 The EDTD E of Figure 14(a) is not single-type or restrained
competition. If we replace Dstore with a dFA defining the language dvd2(dvd1)∗,
then the EDTD is restrained competition. If we replace Dstore with a dFA
defining the language (dvd1)∗, then the EDTD is single-type.

The goal of this section is to prove the following theorem:

Theorem 40

(1) minimization for restrained competition EDTDs is in ptime.
(2) Minimal restrained competition EDTDs are unique up to isomorphism.
(3) minimization for single-type EDTDs is in ptime.
(4) Minimal single-type EDTDs are unique up to isomorphism.

We first give the minimization algorithm for restrained competition EDTDs
and prove Theorem 40(1) and (2) in a series of lemmas. We then observe that
the obtained results also carry over to single-type EDTDs.

Let E be a restrained competition EDTD. We assume without loss of gener-
ality that each dFA Dai in E is minimal. The following algorithm minimizes
E, i.e., computes an equivalent minimal restrained competition EDTD.

(1) Reduce E, that is,
(a) remove all symbols ai from types(E) for which L(E[start = ai]) = ∅,

remove the corresponding rules ai → Dai from dtd(E), and remove

the corresponding transitions of the form q1
ai

→ q2 in every dFA in
dtd(E); and,

(b) remove all symbols ai from types(E) which are not reachable in dtd(E),

46

remove the corresponding rules ai → Dai , and remove the correspond-

ing transitions of the form q1
ai

→ q2 in every dFA in dtd(E).
(2) Test, for each ai and aj in types(E) with i < j, whether L(E[start =

ai]) = L(E[start = aj]). If this is so, then
(a) replace all occurrences of aj in the definition of dtd(E) by ai. That

is, for every bk ∈ types(E), replace every transition rule q1
aj

→ q2 in

rules(Dbk) by q1
ai

→ q2.
(b) remove the rule aj → Daj from dtd(E); and,
(c) remove aj from types(E).

(3) For each rule ai → Dai in dtd(E), minimize the dFA Dai .

We argue that the algorithm can be executed in polynomial time. Step (1) can
be performed in polynomial time by a polynomial number of emptiness and
reachability tests of DTDs. Testing whether a DTD defines an empty language
is known to be in ptime because of the correspondence with EDTDs and
nUTAs as explained in Remark 37, and testing emptiness of nUTAs is known
to be in ptime (see, e.g., [17]). Testing whether a symbol is reachable is in
nlogspace, by a straightforward reduction to graph reachability. Step (2) is
in polynomial time since testing inclusion of restrained competition EDTDs
is in ptime (Theorem 10.4 in [18]). For an alternative, less direct proof that
inclusion of restrained competition EDTDs is in ptime, one can also observe
that the polynomial time conversion of a restrained competition EDTD to
an nUTA in Remark 37 gives rise to a uUTA. According to Theorem 5, we
can test equivalence between uUTAs in ptime. To show that step (3) can be
carried out in polynomial time, we need to argue that, for each rule ai → Dai ,
the automaton Dai is still deterministic, as we replaced some of its transitions
in step (2)(a). Thereto, take, for an arbitrary bk ∈ types(E), the dFA Dbk

before execution of step (2)(a). Since L(Dbk) restrains competition and Dbk is
a minimal dFA, we have that Dbk does not contain any transitions of the form

q1
ai

→ q2 and q1
aj

→ q3 with q2 6= q3 or i 6= j. Therefore, replacing all occurrences
of aj in the definition of Dbk by ai preserves the determinism in Dbk and the
restrained competition property of L(Dbk). Consequently, in step (3), we still
have that each automaton Dai is deterministic. Since minimizing dFAs is in
polynomial time, step (3) can also be carried out in polynomial time.

Let Emin be the EDTD obtained by applying the above minimization algorithm
on a restrained competition EDTD E. We will show that Emin is the minimal
restrained competition EDTD for L(E). More formally, we need that

(a) Emin is restrained competition;
(b) L(Emin) = L(E); and that
(c) every minimal restrained competition EDTD E0 for L(E) is isomorphic

to Emin.

47

We already argued above that (a) holds. It can be shown that (b) holds by
a straightforward structural induction on the trees defined by dtd(E) and by
using the fact that, in step (2)(a) of the algorithm, we have only replaced types
ai by types aj that define the same set of Σ-trees. The proof of (c), however,
is more complicated; we proceed with showing (c) in a series of lemmas.

We start with some terminology. Let t be a tree and v be a node in t. The
ancestor-sibling-string of v is the string formed by the ancestors of v and all
their left siblings. More formally, for a node v = uk in a Σ-tree t with k ∈ N0,
we denote by l-sib-strt(v) the string formed by the label of the v and the
labels of its left siblings, that is, labt(u1) · · · labt(uk). Let v = i1i2 · · · iℓ with
i1, i2, . . . , iℓ ∈ N0. By anc-sib-strt(v) we denote the ancestor-sibling-string

l-sib-strt(ε)#l-sib-strt(i1)# · · ·#l-sib-strt(i1i2 · · · iℓ)

formed by concatenating the left-sibling-strings of all ancestors of v starting
from the root. We assume that the special marker “#” does not occur in Σ.

For two Σ-trees t1 and t2, and a node u ∈ nodes(t1), we denote by t1[u← t2]
the tree obtained from t1 by replacing its subtree rooted at u by t2.

Definition 41 We say that an EDTD E over Σ has ancestor-sibling-based
typings if there is a (partial) function

f : (Σ ∪ {#})∗ → types(E)

such that, for each tree t ∈ L(E) and typing t′ of E on t, we have that, for
each node v ∈ nodes(t′),

labt′(v) = f(anc-sib-strt(v)).

Notice that, if E has ancestor-sibling-based typings, there is a unique typing
of E on t for each t ∈ L(E).

We start by proving the following basic property of restrained competition
EDTDs:

Lemma 42 Every restrained competition EDTD has ancestor-sibling-based
typings.

PROOF. Let E be a restrained competition EDTD over Σ. Notice that a
language L over types(E) is restrained competition if and only if, for every
two strings w1a

iv1 and w2a
jv2 in L, if nameE(w1) = nameE(w2) then i = j.

We assume w.l.o.g. that E is reduced. We define the function f : (Σ∪{#})→
types(E) inductively as follows : f(nameE(start(E))) = start(E). Further,

48

for every string w0#wa with w0 ∈ (Σ ∪ #)∗, w ∈ Σ∗, and a ∈ Σ, we define
f(w0#wa) = ai where f(w0) = bj and ai is the unique type such that w1a

iv1 ∈
L(Dbj) with nameE(w1) = w. As E is restrained competition, f is well-defined
and induces a unique typing. 2

Lemma 43 Let E1 and E2 be reduced, equivalent restrained competition EDTDs
and let t ∈ L(E1) = L(E2). Let t′1 and t′2 be the unique typings of E1 and E2

on t, respectively, and let u be a node in t. Then L(E1[start = labt′1(u)]) =
L(E2[start = labt′2(u)]).

PROOF. Let ai and aj be the label of u in t′1 and t′2, respectively.

If |L(E1[start = ai])| = |L(E2[start = aj])| = 1, the proof is trivial. We show
that L(E1[start = ai]) ⊆ L(E2[start = aj]). The other inclusion follows by
symmetry.

Towards a contradiction, assume that there exists a tree t0 ∈ L(E1[start =
ai])−L(E2[start = aj]). As E1 is reduced, there exists a tree T0 in L(E1), such
that

• t0 is a subtree of T0 at some node v; and,
• labT ′

0(v) = ai, where T ′
0 is the unique typing of E1 on T0.

As labt′1(u) = ai = labT ′

0(v), the tree t3 = t[u← t0] is also in L(E1). As E1 and
E2 are equivalent, t3 is also in L(E2). Notice that u has the same ancestor-
sibling-string in t and in t3 = t[u ← t0]. By Lemma 42, E2 has ancestor-
sibling-based typings, which implies that labt′3(u) = aj for the unique typing
t′3 of E2 on t3. Therefore, t0 ∈ L(E2[start = aj]), which leads to the desired
contradiction. 2

Let Emin be an EDTD which is obtained by applying the above minimization
algorithm to an EDTD E over Σ. The next lemma states that every equivalent
minimal restrained competition EDTD has an equal number of types as Emin.

Lemma 44 Let E0 be a minimal restrained competition EDTD for L(Emin).
Then, for every a ∈ Σ, we have that

|{ai ∈ types(E0) | nameE0(a
i) = a}| = |{aj ∈ types(Emin) | nameEmin

(aj) = a}|.

PROOF. Fix an a ∈ Σ and denote the sets {ai ∈ types(E0) | nameE0(a
i) =

a} and {aj ∈ types(Emin) | nameEmin
(aj) = a} by Types0(a) and Typesmin(a)

respectively. We first show that |Types0(a)| cannot be larger than |Typesmin(a)|.
Towards a contradiction, assume that |Types0(a)| > |Typesmin(a)|. For every

49

ai ∈ Types0(a), let ti be an arbitrary tree such that ai is a label of some node
ui the unique typing t′i,E0

of E0 on ti. Also, let t′i,Emin
be the unique typing of

Emin on ti (hence, ui is labeled with some element of Typesmin(a) in t′i,Emin
).

We now have |Types0(a)| typings t′i,Emin
. Since |Types0(a)| > |Typesmin(a)|

there must exist two different indices j and k such that

there exists an aℓ ∈ Typesmin(a) such that

the label of uj in t′j,Emin
and the label of uk in t′k,Emin

is aℓ.

From Lemma 43, it now follows that L(E0[start = aj]) = L(Emin[start =
aℓ]) = L(E0[start = ak]). Therefore, replacing every ak with aj in E0 results
in an equivalent, strictly smaller restrained competition EDTD than E0. This
contradicts that E0 is minimal.

The other direction can be proved completely analogously, with the roles of E0

and Emin interchanged. Now the contradiction is that Emin cannot be the out-
put of the minimization algorithm, as there still exist aj and ak in types(Emin)
for which L(Emin[start = aj]) = L(Emin[start = ak]). 2

We argue that, for every minimal restrained competition EDTD E0 accept-
ing L(Emin), there exists a bijection I from types(Emin) to types(E0) such that
I(ai) is the unique aj ∈ types(E0) for which L(E0[start = ai]) = L(Emin[start =
aj]). Due to Lemma 44, we know that every minimal restrained competi-
tion EDTD for L(Emin) has the same number of types for each alphabet
symbol. Hence, we only need to show that I is surjective, that is, for ev-
ery ai ∈ types(E0), there exists an aj ∈ types(Emin) for which L(E0[start =
ai]) = L(Emin[start = aj]). The latter is immediate from Lemma 43.

Let bk be an arbitrary symbol in types(Emin). Let Lbk and LI(bk) denote the
languages defined by the dFAs in the rules bk → Dbk in rules(Emin) and
I(bk)→ DI(bk) in rules(E0), respectively. Then, we have that Lbk = I−1(LI(bk))
(where we denoted by I the homomorphic bijective extension of I to string
languages). As minimal dFAs for a given regular language are unique up to
isomorphisms, we have the following lemma:

Lemma 45 Every minimal restrained competition EDTD E0 for L(Emin) is
isomorphic to Emin.

The next lemma is immediate from the observation that, given a single-type
EDTD, the minimization algorithm also returns a single-type EDTD. This is
due to the fact that, in step (2)(a), the algorithm only overwrites all occur-
rences of a certain type with another type from the schema.

50

Lemma 46 minimization for single-type EDTDs is in ptime. Moreover,
minimal single-type EDTDs are unique up to isomorphism.

Hence, Theorem 40 now follows from Lemma 45 and Lemma 46.

6 Conclusions

We have shown that the minimization problem is np-complete for bottom-up
deterministic unranked tree automata (UTAs) in which the string languages
in the transition function are represented by dFAs (dUTAs). The source of this
complexity is a minor amount of non-determinism that is still present in the
manner how dUTAs are represented. Indeed, dUTAs still allow to represent
regular languages over states by a disjoint union of dFAs, as exemplified in
Section 3.1.

This raises the question of what a good notion for bottom-up determinism
is for unranked tree automata. Therefore, we compare several notions of de-
terminism for unranked tree automata in a second part of the article: deter-
ministic parallel UTAs, which are defined independently in [9] and [27], deter-
ministic stepwise tree automata [5], and deterministic ranked tree automata
over the first-child next-sibling encoding. Among these three candidates, we
feel that deterministic stepwise tree automata provide the most suited notion
of bottom-up determinism for unranked tree languages. We base this on the
following observations:

(1) In general, the deterministic stepwise tree automata provide the small-
est minimal automata: they are generally quadratically smaller than de-
terministic parallel UTAs and exponentially smaller than deterministic
ranked tree automata over the first-child next-sibling encoding (up to in-
version).

(2) Stepwise tree automata have a direct connection to ranked tree automata
through an encoding which is based on currying. This encoding allows
to use the same (ptime) minimization algorithm for tree automata over
unranked trees than for traditional tree automata over binary trees. More-
over, a Myhill-Nerode theorem for unranked tree languages is immediate.

(3) The Myhill-Nerode theorem for deterministic stepwise tree automata uses
a single, natural congruence relation and leads to (unique) minimal au-
tomata. To the best of our knowledge, none of the Myhill-Nerode inspired
theorems for unranked tree languages that have been proven in the past
(e.g. in [3,9]) fulfill both of these conditions.

In spite of the quadratical difference in minimal size, deterministic stepwise
automata and deterministic parallel UTAs are very closely related. Essentially,

51

the differences between parallel UTAs and stepwise automata are that

(1) parallel UTAs use an output function to relate states of the internal DFAs
to the states of the tree automaton; and

(2) parallel UTAs require the state sets of the internal DFAs to be disjoint.

While the first difference only has a minor effect on the size of minimal de-
terministic parallel UTAs, it is the second difference that causes them to be
quadratically larger than stepwise automata.

In a third part of the paper, we investigated the minimization problem for
single-type and restrained competition extended DTDs, which are abstrac-
tions of XML Schema and one-pass preorder typeable schemas, respectively.
We showed that such extended DTDs can be minimized in polynomial time,
and that a language has a unique minimal canonical model. Moreover, as
the minimization algorithm preserves the single-type property of its input
extended DTD, we also obtain that the above results hold for single-type
extended DTDs.

Acknowledgments

We would like to thank Frank Neven and Thomas Schwentick for helpful dis-
cussions and comments on a previous version of the article. Frank Neven’s
comments have lead to significant improvements of the readability of the proof
in Section 3.2. We also thank Mario Vöhl for suggestions that helped to im-
prove Section 5.

References

[1] D. Angluin. Learning regular sets from queries and counterexamples.
Information and Computation, 75(2):87–106, November 1987.

[2] A. Balmin, Y. Papakonstantinou, and V. Vianu. Incremental validation of XML
documents. ACM Transactions on Database Systems, 29(4):710–751, 2004.

[3] A. Brüggemann-Klein, M. Murata, and D. Wood. Regular tree and regular
hedge languages over unranked alphabets: Version 1, april 3, 2001. Technical
Report HKUST-TCSC-2001-0, The Hongkong University of Science and
Technology, 2001.

[4] J. Carme, A. Lemay, and J. Niehren. Learning node selecting tree transducers
from completely annotated examples. In International Colloquium on
Grammatical Inference (ICGI 2004), pages 91–102, 2004.

52

[5] J. Carme, J. Niehren, and M. Tommasi. Querying unranked trees with stepwise
tree automata. In International Conference on Rewriting Techniques and
Applications (RTA 2004), pages 105–118, 2004.

[6] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison,
and M. Tommasi. Tree automata techniques and applications. Available on
http://www.grappa.univ-lille3.fr/tata, 2001.

[7] S.A. Cook. An observation on time-storage trade-off. Journal of Computer and
System Sciences, 9(3):308–316, 1974.

[8] B. Courcelle. On recognizable sets and tree automata. In Resolution of equations
in algebraic structures, pages 93–126, 1989.

[9] J. Cristau, C. Löding, and W. Thomas. Deterministic automata on unranked
trees. In Proceedings 15th International Symposium on Fundamentals of
Computation Theory (FCT 2005), pages 68–72, 2005.

[10] M. Frick, M. Grohe, and C. Koch. Query evaluation on compressed trees
(extended abstract). In 18th IEEE Symposium on Logic in Computer Science
(LICS 2003), pages 188–197, 2003.

[11] E.M. Gold. Complexity of automaton identification from given data. Inform.
Control, 37:302–320, 1978.

[12] G. Gottlob, C. Koch, R. Pichler, and L. Segoufin. The complexity of XPath
query evaluation and XML typing. Journal of the ACM, 52(2):284–335, 2005.

[13] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata
Theory, Languages, and Computation. Addison-Wesley, 2001.

[14] T. Jiang and B. Ravikumar. Minimal NFA problems are hard. SIAM Journal
on Computing, 22(6):1117–1141, 1993.

[15] D. Kozen. On the Myhill-Nerode theorem for trees. Bulletin of the European
Association for Theoretical Computer Science, 147:170–173, 1992.

[16] A. Malcher. Minimizing finite automata is computationally hard. Theoretical
Computer Science, 327(3):375–390, 2004.

[17] W. Martens and F. Neven. On the complexity of typechecking top-down XML
transformations. Theoretical Computer Science, 336(1):153–180, 2005.

[18] W. Martens, F. Neven, T. Schwentick, and G. J. Bex. Expressiveness and
complexity of XML Schema. ACM Transactions on Database Systems, 31(3),
2006. To appear.

[19] W. Martens and J. Niehren. Minimizing tree automata for unranked trees
[extended abstract]. In Proceedings of the Tenth International Symposium on
Database Programming Languages (DBPL 2005), pages 233–247, 2005.

[20] M. Murata, D. Lee, M. Mani, and K. Kawaguchi. Taxonomy of XML schema
languages using formal language theory. ACM Transactions on Internet
Technology, 5(4):1–45, 2005.

53

[21] F. Neven. Automata theory for XML researchers. SIGMOD Record, 31(3),
2002.

[22] F. Neven and T. Schwentick. Expressive and efficient pattern languages for
tree-structured data. In Proceedings of the 19th Symposium on Principles of
Database Systems (PODS 2000), pages 145–156, 2000.

[23] F. Neven and T. Schwentick. Query automata on finite trees. Theoretical
Computer Science, 275:633–674, 2002.

[24] J. Oncina and P. Garcia. Inferring regular languages in polynomial update time.
In Pattern Recognition and Image Analysis, pages 49–61, 1992.

[25] Y. Papakonstantinou and V. Vianu. DTD inference for views of XML data. In
Proceedings of the 19th Symposium on Principles of Database Systems (PODS
2000), pages 35–46. ACM Press, 2000.

[26] G. Pighizzini and J. Shallit. Unary language operations, state complexity
and Jacobsthal’s function. International Journal of Foundations of Computer
Science, 13(1):145–159, 2002.

[27] S. Raeymaekers and M. Bruynooghe. Minimization of finite unranked tree
automata. Manuscript, 2004.

[28] T. Schwentick. XPath query containment. Sigmod Record, 33(2):101–109, 2004.

[29] H. Seidl. Deciding equivalence of finite tree automata. SIAM Journal on
Computing, 19(3):424–437, 1990.

[30] C.M. Sperberg-McQueen and H. Thompson. XML Schema.
http://www.w3.org/XML/Schema, 2005.

[31] R. E. Stearns and H. B. Hunt III. On the equivalence and containment problems
for unambiguous regular expressions, regular grammars and finite automata.
SIAM Journal on Computing, 14(3):598–611, 1985.

[32] L. J. Stockmeyer and A. R. Meyer. Word problems requiring exponential time:
Preliminary report. In Fifth ACM Symposium on Theory of Computing (STOC
1973), pages 1–9. ACM, 1973.

[33] D. Suciu. Typechecking for semistructured data. In Proceedings of the 8th
Workshop on Data Bases and Programming Languages (DBPL 2001), pages
1–20, 2001.

[34] J. W. Thatcher. Characterizing derivation trees of context-free grammars
through a generalization of automata theory. Journal of Computer and System
Sciences, 1:317–322, 1967.

[35] J. W. Thatcher and J. B. Wright. Generalized finite automata theory with an
application to a decision problem of second-order logic. Mathematical Systems
Theory, 2(1):57–81, 1968.

[36] E. van der Vlist. Relax NG. O’Reilly, 2003.

54

