Conjunctive Query Containment over Trees

Henrik Björklund Wim Martens Thomas Schwentick

University of Dortmund, Germany

2 Main Results

Some Proof Ideas

- A Simple Lower Bound Proof
- Easy Upper Bounds
- A More Challenging Upper Bound
- The Harder Proofs

Final Remarks

> < = > < = > = = < < < > <

1 Conjunctive Queries over Trees

2 Main Results

3 Some Proof Ideas

- A Simple Lower Bound Proof
- Easy Upper Bounds
- A More Challenging Upper Bound
- The Harder Proofs

Final Remarks

(日) (周) (三) (三) (三) (三) (○)

315

過き イヨト イヨト

A B F A B F

A B F A B F

-

A B F A B F

A B M A B M

A Conjunctive Query (CQ) is

a positive existential first-order formula without disjunction over

- unary predicates a(x) (i.e., variable x is labeled a)
- binary predicates
 - *Child*(*x*,*y*);
 - NextSibling(x,y);
 - Following(x,y);

and their transitive (and reflexive) closures

A Conjunctive Query (CQ) is

a positive existential first-order formula without disjunction over

- unary predicates a(x) (i.e., variable x is labeled a)
- binary predicates
 - *Child*(*x*,*y*);
 - NextSibling(x,y);
 - Following(x,y);

and their transitive (and reflexive) closures

Example

 $\exists u, v, x, y. Child^*(x, u) \land NextSibling^+(x, y) \land Child^*(y, v)$

Example

 $\exists u, v, x, y. Child^*(x, u) \land NextSibling^+(x, y) \land Child^*(y, v)$

通 ト イヨト イヨト

Example

 $\exists u, v, x, y. Child^*(x, u) \land NextSibling^+(x, y) \land Child^*(y, v)$

That is,

 $Following(u, v) = \exists x, y. Child^{*}(x, u) \land NextSibling^{+}(x, y) \land Child^{*}(y, v)$

(日) (國) (王) (王) (王)

Semantics of Conjunctive Queries

We (mainly) consider Boolean satisfaction

• tree t models CQ Q if

Q can be embedded into t (denoted $t \models Q$)

• The language L(Q) of Q is the set of trees modelling Q

레이 지금이 지금이 크네.

Our Problems of Interest

We (mainly) consider Boolean satisfaction

• tree t models CQ Q if

Q can be embedded into t (denoted $t \models Q$)

• The language L(Q) of Q is the set of trees modelling Q

Our Problems of Interest

- Containment: Given CQs P and Q, is $L(P) \subseteq L(Q)$?
- Satisfiability: Given CQ Q, is $L(Q) \neq \emptyset$?
- Containment w.r.t. a DTD: Given CQs P and Q, and a DTD D, is $L(D) \cap L(P) \subseteq L(D) \cap L(Q)?$

<<p>(日本)

- They are a clean and simple query model
- They are closely related to XPath 2.0 (using path intersection)
- They are used in several contexts:
 - Web information extraction [Baumgartner et al. 2001, Gottlob and Koch 2004]
 - Computational linguistics
 - Dominance constraints [Marcus et al. 1983]

(日) (周) (王) (王) (王)

Known Results

[Gottlob,Koch,Schulz JACM 2006] investigated

(combined) complexity of conjunctive queries over trees

	С	<i>C</i> ⁺	<i>C</i> *	NS	NS^+	NS*	F
С	in P	NP	NP	in P	in P	in P	NP
C^+		in P	in P	NP	NP	NP	NP
<i>C</i> *			in P	NP	NP	NP	NP
NS				in P	in P	in P	NP
NS^+					in P	in P	NP
NS*						in P	NP
F							in P

PTIME fragments: $CQ(C, NS, NS^+, NS^*)$, $CQ(C^+, C^*)$, CQ(F)

Together, this is a dichotomy for CQ(S), where S is a set of axes

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Main Results

Some Proof Ideas

- A Simple Lower Bound Proof
- Easy Upper Bounds
- A More Challenging Upper Bound
- The Harder Proofs

Final Remarks

Our Results (1)

Containment:

	С	C ⁺	<i>C</i> *	NS	NS ⁺	NS*	F
С	in P	Π_2^P	Π_2^P	coNP	coNP	coNP	Π_2^P
<i>C</i> ⁺		coNP	coNP	Π_2^P	Π_2^P	Π_2^P	Π_2^P
<i>C</i> *			coNP	Π_2^P	Π_2^P	Π_2^P	Π_2^P
NS				in P	coNP	coNP	Π_2^P
NS ⁺					coNP	coNP	Π_2^P
NS*						coNP	Π_2^P
F							coNP

coNP fragments: $CQ(C, NS, NS^+, NS^*)$, $CQ(C^+, C^*)$, CQ(F)

Together, this is a trichotomy for CQ(S), where S is a set of axes

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Our Results (2)

Satisfiability:

	С	<i>C</i> ⁺	<i>C</i> *	NS	NS^+	NS*	F
С	in P	NP (*)	NP	in P	in P	in P	NP
C^+		in P	in P	?	?	?	?
<i>C</i> *			in P	?	?	?	?
NS				in P	NP	NP	NP
NS ⁺					in P	in P	in P
NS*						in P	in P
F							in P

(*) already obtained in [Hidders DBPL 2003]

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Containment w.r.t. a schema:

... already **EXPTIME** hard for *Child*-only queries, w.r.t. a DTD

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三回日 ののの

So the results hold for Boolean queries...

What about N-ary queries?

• Containment: if the fragment has a *Child*-axis

then the results carry over to N-ary queries

• Satisfiability:

all results carry over to N-ary queries

< 3 > < 3 >

Some Proof Ideas

- A Simple Lower Bound Proof
- Easy Upper Bounds
- A More Challenging Upper Bound
- The Harder Proofs

Some Proof Ideas

- A Simple Lower Bound Proof
- Easy Upper Bounds
- A More Challenging Upper Bound
- The Harder Proofs

Satisfiability of $CQ(NS,NS^+)$ is **NP**-hard

Reduction from Shortest Common Supersequence:

Given

- a set of strings S and
- an integer k,

is there a string s of length at most k

that is a supersequence of every string in S?

Similar proofs can be used for

• Satisfiability: **NP**-hardness for $CQ(C,C^+)$ $CQ(NS,NS^+)$ CQ(NS,F) $CQ(C,C^*)$ $CQ(NS,NS^*)$ CQ(C,F) (extra trick needed)

• Containment: **coNP**-hardness for $CQ(C^+)$ $CQ(NS^+)$ CQ(F) $CQ(C^*)$ $CQ(NS^*)$ CQ(C,NS)

A 回 > A E > A E > E E < のQの</p>

Some Proof Ideas

- A Simple Lower Bound Proof
- Easy Upper Bounds
- A More Challenging Upper Bound
- The Harder Proofs

Small Model Property (SMP)

If $L(P) \not\subseteq L(Q)$ then there's a polynomial-size counterexample

Corollary

For Containment, all the **coNP** and Π_2^P upper bounds follow from SMP and [Gottlob et al. JACM 2006]

레이 지금이 지금이 크네.

Some Proof Ideas

- A Simple Lower Bound Proof
- Easy Upper Bounds

• A More Challenging Upper Bound

• The Harder Proofs

Containment CQ(C) is in **PTIME**

This sounds really obvious, but...

Eventually:

case study, in which one case is a constraint satisfaction problem

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三回日 ののの

Some Proof Ideas

- A Simple Lower Bound Proof
- Easy Upper Bounds
- A More Challenging Upper Bound
- The Harder Proofs

The Π_2^P Lower Bound proofs...

... are mostly harder

Reductions from $\forall \exists 1 \text{-in-3SAT}$:

Given a set C_1, \ldots, C_m of triples from

$$\{x_1,\ldots,x_{n_x}\} \uplus \{y_1,\ldots,y_{n_y}\},\$$

Does there exist,

- for every truth assignment for $\{x_1, \ldots, x_{n_x}\}$,
- a truth assignment for $\{y_1, \ldots, y_{n_y}\}$

such that each C_i has exactly one true variable?

Lemma

$$\forall \exists 1 \text{-in-3SAT is } \Pi_2^P \text{-complete}$$

(日) (周) (日) (日) (日)

Conjunctive Queries over Trees

2 Main Results

3 Some Proof Ideas

- A Simple Lower Bound Proof
- Easy Upper Bounds
- A More Challenging Upper Bound
- The Harder Proofs

4 Final Remarks

Final Remarks

• CQ Containment over Trees:

- Gottlob-Koch-Schulz dichotomy \rightarrow trichotomy
- **PTIME** evaluation \rightarrow **PTIME** or **coNP** containment
- **NP** evaluation $\rightarrow \Pi_2^P$ containment
- CQ Satisfiability over Trees:
 - Lower complexities than Containment (PTIME and NP)
 - Dichotomy changes (e.g. CQ(*NS*⁺, *F*))
- CQ Containment w.r.t. a Schema:
 - Probably more interesting in practice...
 - ... but complexity is higher! (already **EXPTIME** for CQ(Child))

Final Remarks

- CQ Containment over Trees:
 - Gottlob-Koch-Schulz dichotomy \rightarrow trichotomy
 - **PTIME** evaluation \rightarrow **PTIME** or **coNP** containment
 - **NP** evaluation $\rightarrow \Pi_2^P$ containment
- CQ Satisfiability over Trees:
 - Lower complexities than Containment (PTIME and NP)
 - Dichotomy changes (e.g. CQ(*NS*⁺, *F*))
- CQ Containment w.r.t. a Schema:
 - Probably more interesting in practice...
 - ... but complexity is higher! (already **EXPTIME** for CQ(Child))

Final Remarks

- CQ Containment over Trees:
 - Gottlob-Koch-Schulz dichotomy \rightarrow trichotomy
 - **PTIME** evaluation \rightarrow **PTIME** or **coNP** containment
 - **NP** evaluation $\rightarrow \Pi_2^P$ containment
- CQ Satisfiability over Trees:
 - Lower complexities than Containment (PTIME and NP)
 - Dichotomy changes (e.g. CQ(*NS*⁺, *F*))
- CQ Containment w.r.t. a Schema:
 - Probably more interesting in practice...
 - ... but complexity is higher! (already **EXPTIME** for CQ(Child))

Backup Slides

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Our **PTIME** techniques don't work anymore...

(日) (國) (王) (王) (王)

∃ ▶ ∢ ∃

