Conjunctive Query Containment over Trees

Henrik Björklund Wim Martens Thomas Schwentick

University of Dortmund, Germany

Outline

(1) Conjunctive Queries over Trees
(2) Main Results
(3) Some Proof Ideas

- A Simple Lower Bound Proof
- Easy Upper Bounds
- A More Challenging Upper Bound
- The Harder Proofs
(4) Final Remarks

Outline

(1) Conjunctive Queries over Trees
(2) Main Results
(3) Some Proof Ideas

- A Simple Lower Bound Proof
- Easy Upper Bounds
- A More Challenging Upper Bound
- The Harder Proofs
(4) Final Remarks

What are Conjunctive Queries over Trees

We know XPath

Pattern:

What are Conjunctive Queries over Trees

What are Conjunctive Queries

Tree:	Pattern:
a	a
/ \}	" 》
$b \quad c$	b c
-	I
$\underset{\text { e }}{\text { l }}$ d	d d
d	

What are Conjunctive Queries over Trees

What are Conjunctive Queries

Tree:	Pattern:
a	a
/ \}	" 》
$b \quad c$	$b \quad c$
1 l	* 1
$e \quad d$	d
I	
d	

What are Conjunctive Queries over Trees

What are Conjunctive Queries
Tree:

Pattern:

What are Conjunctive Queries over Trees

What are Conjunctive Queries

Tree:	Pattern:
a	a
\|	/ \
b	$b \quad c$
I	$\cdots 1$
e	d
1	
c	
।	
d	

What are Conjunctive Queries over Trees

A Conjunctive Query (CQ) is

a positive existential first-order formula without disjunction over

- unary predicates $a(x)$ (i.e., variable x is labeled a)
- binary predicates
- Child (x,y);
- NextSibling (x, y);
- Following (x, y);
and their transitive (and reflexive) closures

What are Conjunctive Queries over Trees

A Conjunctive Query (CQ) is

a positive existential first-order formula without disjunction over

- unary predicates $a(x)$ (i.e., variable x is labeled a)
- binary predicates
- Child (x, y);
- NextSibling (x, y);
- Following (x, y);
and their transitive (and reflexive) closures

Example

$\exists u, v, x, y$. Child $^{*}(x, u) \wedge \operatorname{NextSibling}^{+}(x, y) \wedge$ Child $^{*}(y, v)$

What are Conjunctive Queries over Trees

Example

$\exists u, v, x, y$. Child $^{*}(x, u) \wedge \operatorname{NextSibling}^{+}(x, y) \wedge$ Child $^{*}(y, v)$

Graphical Query Representation

What are Conjunctive Queries over Trees

Example

$\exists u, v, x, y$ Child $^{*}(x, u) \wedge \operatorname{NextSibling}^{+}(x, y) \wedge$ Child $^{*}(y, v)$

Graphical Query Representation

That is,
Following $(u, v)=\exists x, y$. Child $^{*}(x, u) \wedge$ NextSibling $^{+}(x, y) \wedge$ Child $^{*}(y, v)$

Semantics of Conjunctive Queries

We (mainly) consider Boolean satisfaction

- tree t models CQ Q if
Q can be embedded into t (denoted $t \models Q$)
- The language $L(Q)$ of Q is the set of trees modelling Q

Our Problems of Interest

We (mainly) consider Boolean satisfaction

- tree t models CQ Q if

$$
Q \text { can be embedded into } t \text { (denoted } t \models Q \text {) }
$$

- The language $L(Q)$ of Q is the set of trees modelling Q

Our Problems of Interest

- Containment: Given CQs P and Q, is $L(P) \subseteq L(Q)$?
- Satisfiability: Given CQ Q, is $L(Q) \neq \emptyset$?
- Containment w.r.t. a DTD: Given CQs P and Q, and a DTD D, is

$$
L(D) \cap L(P) \subseteq L(D) \cap L(Q) ?
$$

Why Conjunctive Queries over Trees

- They are a clean and simple query model
- They are closely related to XPath 2.0 (using path intersection)
- They are used in several contexts:
- Web information extraction [Baumgartner et al. 2001, Gottlob and Koch 2004]
- Computational linguistics
- Dominance constraints [Marcus et al. 1983]

Known Results

[Gottlob,Koch,Schulz JACM 2006] investigated
(combined) complexity of conjunctive queries over trees

	C	C^{+}	C^{*}	$N S$	N^{+}	$N S^{*}$	F
C	in \mathbf{P}	NP	NP	in \mathbf{P}	in \mathbf{P}	in \mathbf{P}	NP
C^{+}		in \mathbf{P}	in \mathbf{P}	NP	NP	NP	NP
C^{*}			in \mathbf{P}	NP	NP	NP	NP
$N S$				in \mathbf{P}	in \mathbf{P}	in \mathbf{P}	NP
NS^{+}					in \mathbf{P}	in \mathbf{P}	NP
NS^{*}						in \mathbf{P}	NP
F							in \mathbf{P}

PTIME fragments: $\mathrm{CQ}\left(C, N S, N S^{+}, N S^{*}\right), \mathrm{CQ}\left(C^{+}, C^{*}\right), \mathrm{CQ}(F)$
Together, this is a dichotomy for $\mathrm{CQ}(S)$, where S is a set of axes

Outline

(1) Conjunctive Queries over Trees

(2) Main Results
(3) Some Proof Ideas

- A Simple Lower Bound Proof
- Easy Upper Bounds
- A More Challenging Upper Bound
- The Harder Proofs
(4) Final Remarks

Our Results (1)

Containment:

	C	C^{+}	C^{*}	$N S$	$N S^{+}$	$N S^{*}$	F
C	in P	Π_{2}^{P}	Π_{2}^{P}	coNP	coNP	coNP	Π_{2}^{P}
C^{+}		coNP	coNP	Π_{2}^{P}	Π_{2}^{P}	Π_{2}^{P}	Π_{2}^{P}
C^{*}			coNP	Π_{2}^{P}	Π_{2}^{P}	Π_{2}^{P}	Π_{2}^{P}
$N S$				in P	coNP	coNP	Π_{2}^{P}
N^{+}					coNP	coNP	Π_{2}^{P}
${N S^{*}}^{2}$						coNP	Π_{2}^{P}
F							coNP

coNP fragments: $\mathrm{CQ}\left(C, N S, N S^{+}, N S^{*}\right), \mathrm{CQ}\left(C^{+}, C^{*}\right), \mathrm{CQ}(F)$
Together, this is a trichotomy for $\mathrm{CQ}(S)$, where S is a set of axes

Our Results (2)

Satisfiability:

	C	C^{+}	C^{*}	$N S$	$N S^{+}$	$N S^{*}$	F
C	in \mathbf{P}	$\left.\mathbf{N P} \mathbf{~}^{*}\right)$	$\mathbf{N P}$	in \mathbf{P}	in \mathbf{P}	in \mathbf{P}	NP
C^{+}		in \mathbf{P}	in \mathbf{P}	$?$	$?$	$?$	$?$
C^{*}			in \mathbf{P}	$?$	$?$	$?$	$?$
$N S$				in \mathbf{P}	NP	NP	NP
NS^{+}					in \mathbf{P}	in \mathbf{P}	in \mathbf{P}
NS^{*}						in \mathbf{P}	in \mathbf{P}
F							in \mathbf{P}

(*) already obtained in [Hidders DBPL 2003]

Our Results (3)

Containment w.r.t. a schema:
...already EXPTIME hard for Child-only queries, w.r.t. a DTD

Boolean versus N-Ary Queries

So the results hold for Boolean queries. . .
What about N -ary queries?

- Containment: if the fragment has a Child-axis
then the results carry over to N -ary queries
- Satisfiability:
all results carry over to N -ary queries

Outline

(1) Conjunctive Queries over Trees
(2) Main Results
(3) Some Proof Ideas

- A Simple Lower Bound Proof
- Easy Upper Bounds
- A More Challenging Upper Bound
- The Harder Proofs
(4) Final Remarks

Outline

(1) Conjunctive Queries over Trees

(2) Main Results
(3) Some Proof Ideas

- A Simple Lower Bound Proof
- Easy Upper Bounds
- A More Challenging Upper Bound
- The Harder Proofs
(4) Final Remarks

Satisfiability of $\mathrm{CQ}\left(N S, N S^{+}\right)$is NP-hard

Reduction from Shortest Common Supersequence:
Given

- a set of strings S and
- an integer k,
is there a string s of length at most k that is a supersequence of every string in S ?

Gadget

Similar proofs...

Similar proofs can be used for

- Satisfiability: NP-hardness for
$\mathrm{CQ}\left(C, C^{+}\right) \quad \mathrm{CQ}\left(N S, N S^{+}\right) \quad \mathrm{CQ}(N S, F)$ $\mathrm{CQ}\left(C, C^{*}\right) \quad \mathrm{CQ}\left(N S, N S^{*}\right) \quad \mathrm{CQ}(C, F)$ (extra trick needed)
- Containment: coNP-hardness for $\mathrm{CQ}\left(C^{+}\right) \quad \mathrm{CQ}\left(N S^{+}\right) \quad \mathrm{CQ}(F)$ $\mathrm{CQ}\left(C^{*}\right) \quad \mathrm{CQ}\left(N S^{*}\right) \quad \mathrm{CQ}(C, N S)$

Outline

(1) Conjunctive Queries over Trees
(2) Main Results
(3) Some Proof Ideas

- A Simple Lower Bound Proof
- Easy Upper Bounds
- A More Challenging Upper Bound
- The Harder Proofs

4. Final Remarks

Small Model Property

Small Model Property (SMP)

If $L(P) \nsubseteq L(Q)$ then there's a polynomial-size counterexample

Corollary

For Containment, all the coNP and Π_{2}^{P} upper bounds follow from SMP and [Gottlob et al. JACM 2006]

Outline

(1) Conjunctive Queries over Trees

(2) Main Results
(3) Some Proof Ideas

- A Simple Lower Bound Proof
- Easy Upper Bounds
- A More Challenging Upper Bound
- The Harder Proofs

4. Final Remarks

Containment $\mathrm{CQ}(C)$ is in PTIME

This sounds really obvious, but...

Example

Eventually:
case study, in which one case is a constraint satisfaction problem

Outline

(1) Conjunctive Queries over Trees
(2) Main Results
(3) Some Proof Ideas

- A Simple Lower Bound Proof
- Easy Upper Bounds
- A More Challenging Upper Bound
- The Harder Proofs
(4) Final Remarks

The Π_{2}^{P} Lower Bound proofs. . .

... are mostly harder
Reductions from $\forall \exists$ 1-in-3SAT:
Given a set C_{1}, \ldots, C_{m} of triples from

$$
\left\{x_{1}, \ldots, x_{n_{x}}\right\} \uplus\left\{y_{1}, \ldots, y_{n_{y}}\right\}
$$

Does there exist,

- for every truth assignment for $\left\{x_{1}, \ldots, x_{n_{x}}\right\}$,
- a truth assignment for $\left\{y_{1}, \ldots, y_{n_{y}}\right\}$
such that each C_{i} has exactly one true variable?

Lemma

$\forall \exists$ 1-in-3SAT is Π_{2}^{P}-complete

Outline

(1) Conjunctive Queries over Trees
(2) Main Results
(3) Some Proof Ideas

- A Simple Lower Bound Proof
- Easy Upper Bounds
- A More Challenging Upper Bound
- The Harder Proofs
(4) Final Remarks

Final Remarks

- CQ Containment over Trees:
- Gottlob-Koch-Schulz dichotomy \rightarrow trichotomy
- PTIME evaluation \rightarrow PTIME or coNP containment
- NP evaluation $\rightarrow \Pi_{2}^{P}$ containment
- CQ Satisfiability over Trees:
- Lower complexities than Containment (PTIME and NP)
- Dichotomy changes (e.g. CQ(NS $\left.\left.{ }^{+}, F\right)\right)$
- CQ Containment w.r.t. a Schema:
- Probably more interesting in practice.
- ... but complexity is higher! (already EXPTIME for CQ(Child))

Final Remarks

- CQ Containment over Trees:
- Gottlob-Koch-Schulz dichotomy \rightarrow trichotomy
- PTIME evaluation \rightarrow PTIME or coNP containment
- NP evaluation $\rightarrow \Pi_{2}^{P}$ containment
- CQ Satisfiability over Trees:
- Lower complexities than Containment (PTIME and NP)
- Dichotomy changes (e.g. CQ(NS $\left.\left.{ }^{+}, F\right)\right)$
- CQ Containment w.r.t. a Schema:
- Probably more interesting in practice.
- ... but complexity is higher! (already EXPTIME for CQ(Child))

Final Remarks

- CQ Containment over Trees:
- Gottlob-Koch-Schulz dichotomy \rightarrow trichotomy
- PTIME evaluation \rightarrow PTIME or coNP containment
- NP evaluation $\rightarrow \Pi_{2}^{P}$ containment
- CQ Satisfiability over Trees:
- Lower complexities than Containment (PTIME and NP)
- Dichotomy changes (e.g. CQ $\left(N S^{+}, F\right)$)
- CQ Containment w.r.t. a Schema:
- Probably more interesting in practice...
- ... but complexity is higher! (already EXPTIME for CQ(Child))

Backup Slides

What's so hard about the other SAT problems?

Our PTIME techniques don't work anymore. . .

What's so hard about the other SAT problems?

What's so hard about the other SAT problems?

What's so hard about the other SAT problems?

