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What are Conjunctive Queries over Trees

We know XPath

Tree: Pattern:
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What are Conjunctive Queries over Trees

A Conjunctive Query (CQ) is

a positive existential first-order formula without disjunction over

unary predicates a(x) (i.e., variable x is labeled a)

binary predicates

Child(x ,y);
NextSibling(x ,y);
Following(x ,y);

and their transitive (and reflexive) closures
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unary predicates a(x) (i.e., variable x is labeled a)

binary predicates

Child(x ,y);
NextSibling(x ,y);
Following(x ,y);

and their transitive (and reflexive) closures

Example

∃u,v ,x ,y .Child∗(x ,u)∧NextSibling+(x ,y)∧Child∗(y ,v)
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What are Conjunctive Queries over Trees

Example
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What are Conjunctive Queries over Trees

Example

∃u,v ,x ,y .Child∗(x ,u)∧NextSibling+(x ,y)∧Child∗(y ,v)

Graphical Query Representation

∗

∗ ∗

∗u

x y

v

That is,
Following(u,v) = ∃x ,y .Child∗(x ,u)∧NextSibling+(x ,y)∧Child∗(y ,v)
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Semantics of Conjunctive Queries

We (mainly) consider Boolean satisfaction

tree t models CQ Q if

Q can be embedded into t (denoted t |= Q)

The language L(Q) of Q is the set of trees modelling Q
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Our Problems of Interest

We (mainly) consider Boolean satisfaction

tree t models CQ Q if

Q can be embedded into t (denoted t |= Q)

The language L(Q) of Q is the set of trees modelling Q

Our Problems of Interest

Containment: Given CQs P and Q, is L(P)⊆ L(Q)?

Satisfiability: Given CQ Q, is L(Q) 6= /0?

Containment w.r.t. a DTD: Given CQs P and Q, and a DTD D, is

L(D)∩L(P)⊆ L(D)∩L(Q)?
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Why Conjunctive Queries over Trees

They are a clean and simple query model

They are closely related to XPath 2.0 (using path intersection)

They are used in several contexts:

Web information extraction [Baumgartner et al. 2001, Gottlob and
Koch 2004]
Computational linguistics
Dominance constraints [Marcus et al. 1983]
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Known Results

[Gottlob,Koch,Schulz JACM 2006] investigated

(combined) complexity of conjunctive queries over trees

C C+ C∗ NS NS+ NS∗ F

C in P NP NP in P in P in P NP
C+ in P in P NP NP NP NP
C∗ in P NP NP NP NP
NS in P in P in P NP
NS+ in P in P NP
NS∗ in P NP
F in P

PTIME fragments: CQ(C ,NS ,NS+,NS∗), CQ(C+,C∗), CQ(F )

Together, this is a dichotomy for CQ(S), where S is a set of axes
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Our Results (1)

Containment:

C C+ C∗ NS NS+ NS∗ F

C in P ΠP
2 ΠP

2 coNP coNP coNP ΠP
2

C+ coNP coNP ΠP
2 ΠP

2 ΠP
2 ΠP

2

C∗ coNP ΠP
2 ΠP

2 ΠP
2 ΠP

2

NS in P coNP coNP ΠP
2

NS+ coNP coNP ΠP
2

NS∗ coNP ΠP
2

F coNP

coNP fragments: CQ(C ,NS ,NS+,NS∗), CQ(C+,C∗), CQ(F )

Together, this is a trichotomy for CQ(S), where S is a set of axes
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Our Results (2)

Satisfiability:

C C+ C∗ NS NS+ NS∗ F

C in P NP (*) NP in P in P in P NP
C+ in P in P ? ? ? ?

C∗ in P ? ? ? ?

NS in P NP NP NP
NS+ in P in P in P
NS∗ in P in P
F in P

(*) already obtained in [Hidders DBPL 2003]
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Our Results (3)

Containment w.r.t. a schema:

. . . already EXPTIME hard for Child-only queries, w.r.t. a DTD
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Boolean versus N-Ary Queries

So the results hold for Boolean queries. . .

What about N-ary queries?

Containment: if the fragment has a Child-axis

then the results carry over to N-ary queries

Satisfiability:

all results carry over to N-ary queries
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Satisfiability of CQ(NS ,NS+) is NP-hard

Reduction from Shortest Common Supersequence:

Given

a set of strings S and

an integer k,

is there a string s of length at most k
that is a supersequence of every string in S?

Gadget

#

a1
1 a2

1 · · · an1
1

...
...

a1
1 a2

1 · · · an`
1

∗ ∗ · · · ∗

#
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Similar proofs. . .

Similar proofs can be used for

Satisfiability: NP-hardness for
CQ(C ,C+) CQ(NS ,NS+) CQ(NS ,F )
CQ(C ,C∗) CQ(NS ,NS∗) CQ(C ,F ) (extra trick needed)

Containment: coNP-hardness for
CQ(C+) CQ(NS+) CQ(F )
CQ(C∗) CQ(NS∗) CQ(C ,NS)
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Small Model Property

Small Model Property (SMP)

If L(P) 6⊆ L(Q) then there’s a polynomial-size counterexample

Corollary

For Containment, all the coNP and ΠP
2 upper bounds follow from SMP

and [Gottlob et al. JACM 2006]
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Containment CQ(C ) is in PTIME

This sounds really obvious, but. . .

Example

Query P Query Q

a

b c

b

b c

∗

∗

b c

Eventually:

case study, in which one case is a constraint satisfaction problem
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The ΠP
2 Lower Bound proofs. . .

. . . are mostly harder

Reductions from ∀∃ 1-in-3SAT:

Given a set C1, . . . ,Cm of triples from

{x1, . . . ,xnx}]{y1, . . . ,yny },

Does there exist,

for every truth assignment for {x1, . . . ,xnx},
a truth assignment for {y1, . . . ,yny }

such that each Ci has exactly one true variable?

Lemma

∀∃ 1-in-3SAT is ΠP
2 -complete
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Final Remarks

CQ Containment over Trees:

Gottlob-Koch-Schulz dichotomy → trichotomy
PTIME evaluation → PTIME or coNP containment
NP evaluation → ΠP

2 containment

CQ Satisfiability over Trees:

Lower complexities than Containment (PTIME and NP)
Dichotomy changes (e.g. CQ(NS+,F))

CQ Containment w.r.t. a Schema:

Probably more interesting in practice. . .
. . . but complexity is higher! (already EXPTIME for CQ(Child))
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Backup Slides
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What’s so hard about the other SAT problems?

Our PTIME techniques don’t work anymore. . .
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