
The Typechecking Problem for XML
Transformations: Methods and Formal Models

Wim Martens

Hasselt University and
Transnational University of Limburg,

Agoralaan, Gebouw D
B-3590 Diepenbeek, Belgium
wim.martens@uhasselt.be

Abstract

The typechecking problem for XML to XML transformations has recently attracted
quite some attention in the literature. Given an input schema, an output schema,
and an XML to XML transformation, the typechecking problem asks whether the
output of the transformation is always conform to the output schema for input
documents satisfying the input schema. The present paper takes a detailed look on
the two main ingredients of the typechecking problem: formal models of the XML
schemas and the XML to XML transformations. Finally, we give an overview of
several formal models and techniques that can be used to tackle the typechecking
problem.

1 Introduction

XML is a data format in which documents are essentially structured as labeled,
ordered trees. It is intended to be a common data format for a very wide range
of applications, and aims at being able to model the most diverse forms of
data in an intuitive way. Due to this flexibility, XML has become increasingly
popular in the last few years, and at the moment, it is quite safe to say that
it has become the standard format for data exchange format on the Web.

However, for many applications, it is important to have restrictions on the
structure of XML documents. Consider, for instance, automatic processing of
XML documents, where prior knowledge of the document structure can greatly
facilitate the implementation of the algorithms; or query optimization, which
is in many cases not even possible when the structure of the document is not
known in advance. These restrictions are imposed by XML schemas, which
basically describe sets of XML documents.

On the Web, large user communities usually agree on representing their
data using the same XML schema in order to facilitate the exchange of doc-

uments within the community. It does happen quite regularly, however, that
documents need to be exchanged between two communities with different
schemas. Suppose, for instance, that a certain community A with schema
SA, wants to query an XML database D from a certain community B with
schema SB, and publish the results on the world wide web. In order to answer
the incoming query, B applies a certain transformation T to the database
D, and sends the resulting document T (D) back to A. Before A can auto-
matically process the document T (D) to publish it, the document has to be
dynamically validated against the local schema SA. If this validation fails, the
automated processing of the incoming document is hardly possible. Indeed,
validity against the local schema can, for example, be a necessary precondition
of the algorithms that process the documents.

When many documents are exchanged between the same two communities
using similar transformations, this dynamic validation of incoming documents
can be a very time-consuming task. This motivates the need for static type-
checking : given the schema SB of the sending community, the schema SA of
the receiving community, and a transformation T , we are asked whether for
every document D in SB, T (D) is valid with respect to SA.

Suppose that a static type checker would decide that for every document
D in SA, we have that T (D) is valid with respect to SB. Then, B would not
anymore have to validate the incoming documents coming from A which are
transformed by transformation T . Even better, A can update its document D,
and as long as D is valid with respect to SA, B still does not have to validate
the document T (D) coming from A. It is clear that, in such as setting, a static
type checker can save an important amount of time.

The static typechecking problem has been investigated in several varieties:

Complete Versus Incomplete Typechecking: Of course, the typecheck-
ing problem is undecidable when the transformation language is Turing
complete. In this case, our best hope is to approximate the answers to the
typechecking problem as well as possible. The usual approach that many
typecheckers take, is that they are sound, but not complete. This means
that the typechecker only passes transformations that actually typecheck,
but it sometimes also unjustly rejects a transformation. The aim is of course
to minimize these unjust rejections. We refer to [17] for an excellent tutorial
on this area of XML typechecking.

Data Values Versus No Data Values: Sound and complete typechecking
for XML transformations which have the ability to compare data values
seems to be a very difficult problem. Indeed, even for very restricted cases,
the typechecking problem becomes undecidable [1]. However, many XML
schemas do not constrain the data values in the documents, and the behavior
of many filtering or restructuring transformations does not depend on the
actual data values.

In this paper, we focus on sound and complete typechecking algorithms

for abstractions of XML documents in which data values are not considered.
The purpose of this paper is twofold. First, we visit the two components of
the typechecking problem: the XML schema languages and the XML to XML
transformations. We give a detailed overview on formal models for several
XML schema languages, such as DTD [2] and XML Schema [23], and discuss
some of their properties and alternative characterizations, which are meant
to give the reader insight into their exact expressive power. We also take a
detailed look at sevaral formalisms that have been used to model XML to
XML transformations. Second, we want to to present several useful tools
for obtaining complexity/decidability results on the typechecking problem for
XML transformations.

The outline of this paper is as follows. In Section 2, we introduce some
necessary notation and we formally define the typechecking problem. Sec-
tion 3 discusses the first main ingredient of the typechecking problem: the
schema languages. Among others, we provide formal models for the expres-
sive power of DTDs [2] and XML Schema [23]. We also discuss several al-
ternative characterizations of these formal models which give more insight in
their exact expressive power. Finally, we discuss closure properties of these
XML schema languages under Boolean operations. The second main ingredi-
ent of the typechecking problem is discussed in Section 4: the XML to XML
transformations. We treat two formalisms in detail, and give an overview of
other important formalisms that have been used in the past. In Section 5,
we provide a high-level overview of some techniques that have been used to
obtain complexity/decidability results on the typechecking problem. We treat
complexity upper bounds as well as complexity lower bounds.

2 Preliminaries

2.1 Trees

In this section we provide the necessary background on trees, automata, and
tree transducers. In the remainder of the paper, Σ always denotes a finite
alphabet.

It is common to view XML documents as finite trees with labels from a
finite alphabet Σ. There is no limit on the number of children of a node.
Figure 1 gives an example of an XML document together with its tree repre-
sentation. Of course, elements in XML documents can also contain references
to nodes. But as XML schema languages usually do not constrain these nor
the data values at leaves, it is safe to view schemas as simply defining tree
languages over a finite alphabet.

We assume familiarity with DFAs (Deterministic Finite Automata), NFAs
(Non-deterministic Finite Automata), and REs (Regular Expressions). Given
a DFA, NFA, or RE A, we denote the language accepted by A by L(A).

Throughout this paper, Σ always denotes a finite alphabet. The set of

<store>

<dvd>

<title> "Lola Rennt" </title>

<price> 11 </price>

<discount> 6 </discount>

<summary> ... </summary>

</dvd>

<dvd>

<title> "Goodbye, Lenin!" </title>

<price> 20 </price>

<summary> ... </summary>

</dvd>

</store>

(a) An example XML document.

store

dvd

title

“Lola Rennt”

price

11

discount

6

summary

“...”

dvd

title

“Goodbye, Lenin!”

price

20

summary

“...”

(b) Its tree representation with data values.

store (ε)

dvd (1)

title

(1 1)

price

(1 2)

discount

(1 3)

summary

(1 4)

dvd (2)

title

(2 1)

price

(2 2)

summary

(2 3)

(c) The tree of Figure 1(b) without data values. The nodes are anno-
tated next to the labels, between brackets.

Fig. 1. An example of an XML document and its tree representation.

unranked Σ-trees, denoted by TΣ, is the smallest set of strings over Σ and the
parenthesis symbols “(” and “)” such that, for a ∈ Σ and w ∈ T ∗

Σ , σ(w) is in
TΣ. So, a tree is either ε (empty) or is of the form a(t1 · · · tn) where each ti is
a tree. In the tree a(t1 · · · tn), the subtrees t1, . . . , tn are attached to the root
labeled a. We write a rather than a(). Note that there is no a priori bound on
the number of children of a node in a Σ-tree; such trees are therefore unranked.
For every t ∈ TΣ, the set of nodes of t, denoted by Dom(t), is the set defined
as follows:

(i) if t = ε, then Dom(t) = ∅; and

(ii) if t = a(t1 · · · tn), where each ti ∈ TΣ, then Dom(t) = {ε} ∪
⋃n

i=1{iu |

u ∈ Dom(ti)}.

Figure 1(c) contains a tree in which we annotated the nodes between brackets.
Observe that the n child nodes of a node u are always u1, . . . , un, from left to
right. The label of a node u in the tree t = a(t1 · · · tn), denoted by labt(u), is
defined as follows:

(i) if u = ε, then labt(u) = a; and

(ii) if u = iu′, then labt(u) = labti(u′).

In the sequel, whenever we say tree, we always mean Σ-tree. A tree language
is a set of trees. In the sequel, we will use the letters t, t1, t2, . . . to denote
trees.

2.2 The Typechecking Problem

We define a tree transformation to be a mapping T : TΣ → TΣ.

Definition 2.1 Let T be a tree transformation and Sin and Sout be two
tree languages. We say that T typechecks with respect to Sin and Sout, if

for every t ∈ Sin, T (t) ∈ Sout.

Definition 2.2 Given Sin, Sout, and T , the typechecking problem consists in
deciding whether T typechecks with respect to Sin and Sout.

Of course, the typechecking problem is undecidable when arbitrary (that is,
Turing complete) classes of tree transformations and arbitrary tree languages
are used. We therefore restrict these notions in the following sections.

3 Formal Models for XML Schema Languages

We define several common restrictions on tree languages: DTDs, extended
DTDs, single-type extended DTDs and restrained competition extended DTDs.
Later in this section, we discuss alternate characterizations of these schema
languages and their closure properties under Boolean operations.

3.1 The Schema Languages

DTD is the most widely used XML schema language in practice and only
imposes local restrictions on trees [2]. That is, they only impose restrictions
between the label of a node and the labels of its children. We abstract DTDs
as extended context-free grammars:

Definition 3.1 A DTD is a pair (d, sd) where d is a function that maps Σ-
symbols to regular languages over Σ and sd ∈ Σ is the start symbol. A tree t
satisfies d if its root is labeled by sd and, for every node u with label a, the
sequence a1 · · ·an of labels of its children is in L(d(a)). By L(d) we denote
the set of trees that satisfy d.

We usually denote (d, sd) by d when the start symbol sd is understood
from the context. We parameterize the definition of DTDs by a class of rep-
resentations M of the internal regular string languages such as, for instance,
the class of DFAs (Deterministic Finite Automata), NFAs (Non-deterministic
Finite Automata), or REs (Regular Expressions). For instance, DTD(DFA)
is the class of DTDs, in which the regular languages in the definition of d are
represented by DFAs. In examples, we denote the regular languages in the
definition of a DTD by regular expressions. For clarity, we write a→ r rather
than d(a) = L(r). We also do not list rules of the form a→ ε.

Example 3.2 In this notation, a simple example of a DTD(RE) defining the
inventory of a store which sells DVDs is the following:

store → dvd dvd∗

dvd → title price discount? summary

where the start symbol is “store”. The DTD defines trees of depth 3, where the
root is labeled with “store” and has one or more children labeled with “dvd”.
Every “dvd”-labeled node has three or four children. From left to right, these
children are labeled “title”, “price”, “discount” (which is the optional child),
and “summary”, respectively. The tree in Figure 1(c) is in the language
defined by this DTD.

In this paper, we assume that DTDs do not contain useless symbols, unless
mentioned otherwise (such as in Propositions 5.1, 5.2, and 5.3). That is, we
assume that, for every DTD d and for every a ∈ Σ, there exists a tree t ∈ L(d)
and a node u ∈ Dom(t) such that labt(u) = a.

We now turn to a more expressive formalism for XML schema languages:
extended DTDs [20]. 1 The class of tree languages defined by extended DTDs
corresponds precisely to the regular (unranked) tree languages [3]. We recall
the definition of extended DTDs:

Definition 3.3 ([20]) An extended DTD (EDTD) is a 4-tuple d = (Σ, Σ′, d, µ),
where Σ′ is an alphabet of types, d is a DTD over Σ′, and µ is a mapping from
Σ′ to Σ. Note that µ can be extended to define a homomorphism on trees. A
tree t then satisfies an extended DTD if t = µ(t′) for some t′ ∈ L(d). Again,
we denote by L(d) the set of trees satisfying d.

As with DTDs, we parametrize the definition of EDTDs by a class of
representations M of the internal regular string languages. For example,
EDTD(DFA) is the class of EDTDs (Σ, Σ′, d, µ) in which d is a DTD(DFA).

For ease of exposition, we always take Σ′ = {ai | 1 ≤ i ≤ ka, a ∈ Σ, i ∈ N}
for some natural numbers ka, and we set µ(ai) = a. If a node is labeled by

1 Papakonstantinou and Vianu used the term specialized DTD as types specialize Σ-
symbols. We prefer the term extended DTD as it expresses more clearly that the power
of the schemas is amplified.

some ai ∈ Σ′, we call ai the type of the node. For simplicity, we also denote
EDTDs in examples in a similar way as DTDs, that is, we write ai → r rather
than d(ai) = L(r).

Example 3.4 A simple example of an EDTD(RE) is the following:

store1 → (dvd1 + dvd2)∗dvd2(dvd1 + dvd2)∗

dvd1 → title1 price1 summary1

dvd2 → title1 price1 discount1 summary1

Here, dvd1 defines ordinary DVDs, while dvd2 defines DVDs on sale. The rule
for store1 specifies that there should be at least one DVD on sale.

We consider two restrictions on EDTDs in the remainder of this section,
the first of which is the single-type EDTD [19]. Single-type EDTDs are an
interesting subclass of EDTDs since they correspond to the expressive power
of XML Schema [23], which is a widely used XML schema language in practice.

Definition 3.5 ([19]) A single-type EDTD (EDTDst) is an EDTD (Σ, Σ′, d, µ)
with the property that for every a ∈ Σ′, in the regular expression d(a) no two
types bi and bj with i 6= j occur.

The EDTD in Example 3.4 is not single-type as both dvd1 and dvd2 occur
in the rule for store1.

Example 3.6 A simple example of a single-type EDTD(RE) is the following:

store1 → regulars1 discounts1

regulars1 → (dvd1)∗

discounts1 → dvd2 (dvd2)∗

dvd1 → title1 price1 summary1

dvd2 → title1 price1 discount1 summary1

Although there are still two element definitions dvd1 and dvd2, they can only
occur in different right hand sides.

The second restricted EDTD that we consider is called the restrained com-
petition EDTD. It was originally defined because it is more expressive than
a single-type EDTD, while still admitting a fast and simple top-down val-
idation algorithm [19]. Interestingly, it has been shown recently that this
restriction corresponds precisely to the semantic notion of one-pass preorder
typeable EDTDs: it defines the largest class of EDTDs for which every node
can be assigned the correct type at the first time it is met in a depth-first
left-to-right traversal of the tree [14]. We elaborate on this in Section 3.2.

Definition 3.7 ([19]) Let d = (Σ, Σ′, d, µ) be an EDTD. A regular expression
r over Σ′ restrains competition if there are no strings waiv and wajv′ in L(r)

with i 6= j. We call d a restrained competition EDTD (EDTDrc) if all regular
expressions occurring in the definition of d restrain competition.

Example 3.8 An example of a restrained competition EDTD(RE) that is
not single-type is given next:

store1 → (dvd1)∗ discounts1 (dvd2)∗

dvd1 → title1 price1 summary1

dvd2 → title1 price1 discount1 summary1

Note that every single-type EDTD is also restrained competition. The
classes of tree languages defined by the grammars introduced above are in-
cluded as follows: DTD (EDTDst(EDTDrc(EDTD [19]. These strict
inclusions can be understood by investigating Examples 3.4–3.8. Using the
characterizations in Section 3.2, it is easy to see that every one of these exam-
ples defines a tree language that is not expressible in the weaker formalisms.

3.2 Alternative Characterizations of the Schema Languages

The expressive power of the above defined schema languages can be character-
ized in several manners: types of EDTDs that functionally depend on a part
of the tree, DTDs that make use of contextual patterns, and closure proper-
ties of tree languages under under subtree exchange [14]. These alternative
characterizations make use of the ancestor-string and the ancestor-left-sibling
string of a node, which we define next.

Let t be a tree and v be a node. By ch-strt(v) we denote the string
formed by the children of v, i.e., labt(v1) · · · labt(vn) if v has n children. By
anc-strt(v) we denote the string formed by the labels on the path from the
root to v, i.e., labt(ε)labt(i1)labt(i1i2) · · · labt(i1i2 · · · ik) where v = i1i2 · · · ik.
By l-sib-str(v) we denote the string formed by the labels of the left siblings
of v, i.e., labt(u1) · · · labt(uk) where v = uk. By anc-sib-str(v) we denote the
string

l-sib-strt(ε)#l-sib-strt(i1)# · · ·#l-sib-strt(i1i2 · · · ik)

formed by concatenating the left-sibling strings of all ancestors starting from
the root. Here, we assume that “#” is a special symbol not occurring in Σ.

For a tree t and a node v we denote by precedingt(v) the tree resulting
from t by removing everything below v, all right siblings of v’s ancestors and
of v, and their respective subtrees. We illustrate the just defined notions in
Figure 2.

Definition 3.9 We say that an EDTD d = (Σ, Σ′, d, µ) has ancestor-based
types if there is a (partial) function f : (Σ ∪ {#})∗ → Σ′ such that, for each
tree t ∈ L(d) the following holds:

(1) there is a unique tree t′ ∈ L(d) with µ(t′) = t; and

(2) for each node v ∈ Dom(t), the label of v in t′ is f(anc-strt(v)).

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

v

t

v

t

v

t

v

t

Fig. 2. From left to right: a tree t, the ancestor-string of v in t, the ances-
tor-sibling-string of v in t and the preceding of v in t.

∈ L

t′1

v1

t1

∈ L

t′2

v2

t2

∈ L

t′2

v1

t1

⇒

Fig. 3. Label-guarded subtree exchange.

We say that d has ancestor-sibling based types (respectively, label-based types)
if the same holds with anc-strt(v) replaced by anc-sib-strt(v) (respectively, by
labt(v)). We say that d has preceding-based types if there is a (partial) function
f : TΣ → Σ′ such that the above statement holds with precedingt(v) in place
of anc-strt(v).

Definition 3.10 An ancestor-guarded DTD d is a pair (d, sd) where sd ∈ Σ
is the start symbol as in a DTD. But in contrast to a DTD, d is a finite set
of triples (r, a, s), where a ∈ Σ and r and s are regular expressions. A tree
t satisfies d if for every node v ∈ Dom(t) the following holds. If labt(v) = a
then there must be a triple (r, a, s) in d such that anc-strt(v) matches r and
ch-strt(v) matches s.

An ancestor-sibling-guarded DTD is defined in the same way with the dif-
ference that r has to be matched by anc-sib-str(v).

Note that it does not make much sense to define a label-guarded DTD, as
this would simply be a DTD.

In the following definition, we denote by t1[u← t2] the tree obtained from
a tree t1 by replacing the subtree rooted at u ∈ Dom(t1) by t2. By subtreet(u)
we denote the subtree of t rooted at u.

Definition 3.11 We say that a tree language L is closed under ancestor-
guarded subtree exchange if the following holds. Whenever for two trees t1, t2 ∈
T with nodes u1 ∈ Dom(t1) and u2 ∈ Dom(t2) it holds that anc-strt1(u1) =
anc-strt2(u2), this implies that t1[u1 ← subtreet2(u2)] ∈ T . We call it closed
under ancestor-sibling-guarded subtree exchange (respectively, label-guarded
subtree exchange) if the same holds with anc-sib-strt1(u1) = anc-sib-strt2(u2)
(respectively, labt1(u1) = labt2(u2)) as precondition of the implication.

These subtree exchange properties are illustrated in Figures 3, 4, and 5.

The following theorems characterize the expressive power of DTDs, single-
type EDTDs, and restrained competition EDTDs. We assume in both theo-
rems that L is a tree language in which every tree has the same root label.

∈ L

t′1

v1

t1

∈ L

t′2

v2

t2

∈ L

t′2

v1

t1

⇒

Fig. 4. Ancestor-guarded subtree exchange.

∈ L

t′1

v1

t1
∈ L

t′2

v2

t2
∈ L

t′2

v1

t1⇒

Fig. 5. Ancestor-sibling-guarded subtree exchange.

Theorem 3.12 ([14]) For a regular tree language L the following are equiv-
alent:

(a) L is definable by a single-type EDTD;

(b) L is definable by an EDTD with ancestor-based types;

(c) L is closed under ancestor-guarded subtree exchange; and,

(d) L is definable by an ancestor-guarded DTD.

A corresponding theorem also holds for DTDs, by replacing ancestor by
label. The equivalence between (c) and (a) is then already obtained in [20]
(and the other equivalences are straightforward).

For restrained competition EDTDs, a similar theorem holds, but it has
one extra characterization:

Theorem 3.13 ([14]) For a regular tree language L the following are equiv-
alent:

(a) L is definable by a restrained competition EDTD;

(b) L is definable by an EDTD with ancestor-sibling-based types;

(c) L is definable by an EDTD with preceding-based types;

(d) L is closed under ancestor-sibling-guarded subtree exchange; and

(e) L is definable by an ancestor-sibling-guarded DTD.

The extra characterization (c) is quite interesting indeed. It states that
an EDTD with ancestor-sibling-based types does not become more expressive
when we allow its types to depend on the entire preceding of a node. The
importance of this characterization becomes apparent in the context of val-
idating XML documents as SAX-streams. Intuitively, the SAX-stream of a
tree is obtained from a tree by traversing it in a depth-first left-to-right man-
ner and writing the opening tag <a> for every a-labeled node that is met for
the first time (when coming from the node’s parent) and the closing tag

for every a-labeled node that is met for the second time in the traversal (when
coming from the node’s children). Indeed, Theorem 3.13 shows that the class

of restrained competition EDTDs is precisely the class of EDTDs that allow
to unambiguously assign a type to a node when its opening tag is met in the
SAX-stream (or, in other words, when the node is visited for the first time in
the depth-first left-to-right traversal of the tree).

3.3 Closure Properties

It is well-known that unranked regular tree languages (and, hence, EDTDs) are
closed under union, difference, complement, and intersection. But does this
also hold for DTDs, single-type EDTDs, and restrained competition EDTDs?
Most of these questions are investigated by Murata et al. [19,18]. We sum-
marize their results, along with closure properties under complement, in Ta-
ble 1. Here, we define the complement of a DTD (d, s) to be the language
{t ∈ TΣ | labt(ε) = s} − L(d) to avoid problems with the start symbol. We
define the complement of languages defined by EDTDsts and EDTDrcs analo-
gously.

union difference complement intersection

DTD not closed not closed not closed closed
EDTDst not closed not closed not closed closed
EDTDrc not closed not closed not closed closed
EDTD closed closed closed closed

Table 1
Closure properties of DTDs, single-type EDTDs, restrained competition EDTDs,

and EDTDs.

We give some insights about why these results hold. We start by showing
that DTDs, EDTDsts, and EDTDrcs are not closed under complement, which
is quite easy using the characterizations of Section 3.2:

Example 3.14 Consider the DTD (d, a) over the alphabet Σ = {a, b} defined
as

a→ b∗

b→ b∗.

This DTD defines the set of trees where the symbol a is only allowed to occur
at the root. We show that the complement of this DTD is not definable by
a EDTDrc, which shows that DTDs, EDTDsts, and EDTDrcs are not closed
under complement. Indeed, consider the two trees in Figure 6(a), which are in
the complement of the DTD d. By applying ancestor-sibling-guarded subtree
exchange on the circled nodes, we obtain the tree a(b(b)b(b)), which is not in
the complement of d.

As the tree language {t ∈ TΣ | labt(ε) = a} is definable by a DTD, this
example shows that DTDs, EDTDsts, and EDTDrcs are also not closed under
difference.

a

b

b

b

a

a

b

a

b

b

(a)

a

b b

a

b

c

b

c

(b)

Fig. 6. Counterexample trees for Example 3.14 and Example 3.15.

We can use a similar argument to show that DTDs, EDTDsts, and EDTDrcs
are not closed under union:

Example 3.15 Consider the DTD (d1, a) over alphabet {a, b, c} defined as

a→ b∗c∗

and the DTD (d2, a) over alphabet {a, b, c} defined as

a→ b∗

b→ c.

In the union of these DTDs, either every b-child of the root has a c-child, or,
none of the b-children of the root has a c-child. We show that this union is
not definable by a EDTDrc. Indeed, consider the two trees in Figure 6(b).
Note that the left tree is in L(d1) and the right tree is in L(d2). However, by
applying ancestor-sibling-guarded subtree exchange on the circled nodes, we
obtain the tree a(bb(c)), which is not in the union of d1 and d2.

Finally, the closure of DTDs, EDTDsts, and EDTDrcs under intersection
can easily be shown by direct construction, using a straightforward product
operation on the characterizations of Theorems 3.12(d) and 3.13(e). An al-
ternative proof can be found in the appendix of [19].

4 Formal Models for XML to XML Transformations

The second main ingredient of the typechecking problem are the tree trans-
formations. In this section, we revisit several formalisms that have been used
to model XML to XML transformations.

4.1 Simple Tree Transducers

We first consider a class of tree transducers which was defined in order to inves-
tigate settings in which the typechecking problem becomes tractable [10,11].
These tree transducers are not very expressive (in fact, they are the least
expressive transducers in this paper), but they are also not meant to model
a full-fledged query language. Instead, they are intended to model simple
document restructurings that occur often in practice.

For a set Q, denote by TΣ(Q) the set of Σ-trees where leaf nodes are labeled
with elements from Σ ∪Q instead of only Σ.

Definition 4.1 A simple tree transducer is a 4-tuple T = (Q, Σ, q0, R), where
Q is a finite set of states, Σ is the input and output alphabet, q0 ∈ Q is the
initial state, and R is a finite set of rules of the form (q, a)→ t, where a ∈ Σ,
q ∈ Q, and t ∈ TΣ(Q). When q = q0, t is restricted to be either empty, or to
have a Σ-symbol as its root label. Simple tree transducers are required to be
deterministic: for every pair (q, a), there is at most one rule in R.

The translation defined by T = (Q, Σ, q0, R) on a tree t in state q, denoted
by T q[t], is inductively defined as follows: if t = ε then T q[t] := ε; if t =
a(t1 · · · tn) and there is a rule (q, a) → t′ ∈ R then T q[t] is obtained from t′

by replacing every node u in t′ labeled with state p by the sequence of trees
T p[t1] · · ·T

p[tn]. Note that such nodes u can only occur at leaves. So, t′ is
only extended downwards. If there is no rule (q, a) → t′ ∈ R then T q[t] := ε.
Finally, the transformation of t by T , denoted by T (t), is defined as T q0

[t].

For simplicity, we have only used trees on the right hand sides of rewrite
rules in simple tree transducers. Usually, their right hand sides contain hedges,
which are essentially sequences of trees. For more details, we refer to [10,11].

Example 4.2 We describe a simple tree transducer T that returns, for a
“store”-document conforming to the DTD in Example 3.2, the “store”- doc-
ument in which first the DVD titles occur together with their prices, and
further in the document, every DVD title occurs with its summary. Here, we
abbreviate “title” by “t”, “price” by “p”, “discount” by “d”, and “summary”
by “s”.

Let T = (Q, Σ, q0, R) where Q = {q0, qtpd, qts}, Σ = {store, dvd, t, p, d, s},
and R contains the rules

(q0, store) → store

qtpd qts

(qtpd, dvd) → qtp

(qtpd, t) → t
(qtpd, p) → p
(qtpd, d) → d

(qts, dvd) → qts

(qts, t) → t
(qts, s) → s

Intuitively, qtpd and qtp select the “t”, “p” and “d” descendants of the “dvd”
node, or the “t” and “s” descendants of the “dvd”-node, respectively.

Example 4.3 In Figure 7 we give the translation of the tree t from Fig-
ure 1(c) by the transducer of Example 4.2. For brevity, we again abbreviate
“title”, “price”, “discount”, and “summary” by their initial letters, respec-
tively. In order to keep the example simple, we abbreviated sequences of the
form T q[a1] · · ·T

q[an] by T q[a1 · · ·an].

Simple tree transducers can easily be extended with XPath expressions [11].

T q0[t]
↓

store

T qtpd[dvd(tpds)] T qtpd[dvd(tps)] T qts[dvd(tpds)] T qts[dvd(tps)]
↓

store

T qtpd[tpds] T qtpd[tps] T qts[tpds] T qts[tps]
↓

store

t p d t p t s t s

Fig. 7. The translation of the tree in Figure 1(c) by the transducer T of Example 4.2.

In that case, right hand sides of rules in the tree transducer can contain pairs
of the form 〈q, X〉, where X is an XPath expression. The semantics of such a
pair is that the transducer continues computation in state q in all the nodes
selected by X (where the current node is the context node), rather than in all
children of the current node. For more details, we refer to [11].

4.2 Macro Tree Transducers

We now turn to a much more powerful model of tree transducer for which the
typechecking problem has been investigated: the macro tree transducer [5].
The reason why we treat macro tree transducers in this paper, is that they
are not only a powerful transformation formalism, but they have also proven
to be a useful tool to obtain upper bounds on the complexity of typechecking
(cfr. Section 5.1.4).

As opposed to the XML schema languages from Section 3 and the simple
tree transducers from Section 4.1, macro tree transducer are defined on ranked
trees instead of unranked trees. However, it is well-known that unranked trees
can be encoded to ranked trees in various ways, which provides a way to
define the semantics of macro tree transducers over unranked trees. We will
illustrate one such encoding later, when we explain the operation of a macro
tree transducer.

Before we define macro tree transducers, we need to introduce some notions
on ranked trees. A ranked alphabet (or ranked set) is a pair (Σ, rankΣ), where
rankΣ : Σ → N is a function that maps each symbol a to the number of
children that an a-labeled node is allowed to have in a ranked Σ-tree. For
k ≥ 0, we denote the set the set {a ∈ Σ | rankΣ(a) = k} by Σ(k). We also
write a(k) to indicate that that rankΣ(a) = k. For a set S, 〈Σ, S〉 is the ranked
set Σ× S with rank〈Σ,S〉(〈a, s〉) = rankΣ(a) for every 〈a, s〉 ∈ 〈Σ, S〉.

Formally, the set T R
Σ of ranked Σ-trees is the set of Σ-trees a(t1 · · · tk),

where a ∈ Σ(k) and each ti is a ranked Σ-tree.

We fix a set of input variables to be X = {x1, x2, . . .} and a set of output

variables to be Y = {y1, y2, . . .}. For k ≥ 0, Xk = {x1, . . . , xk} and Yk =
{y1, . . . , yk}. We require that Σ ∩X = Σ ∩ Y = ∅.

Definition 4.4 [[5]] A (non-deterministic) macro tree transducer (MTT) is
a 5-tuple M = (Q, Σ, ∆, q0, R), where Q is a ranked alphabet of states, Σ
and ∆ are the ranked alphabets of input and output symbols, respectively,
q0 ∈ Q(0) is the initial state, and R is a finite set of rules of the form

〈q, a(x1, . . . , xk)〉(y1, . . . , ym)→ ζ (∗)
for q ∈ Q(m) and a ∈ Σ(k) with m ≥ 0, k ≥ 0. Here, ζ ∈ T R

〈Q,Xk〉∪Σ(Ym). 2

A macro tree transducer is called deterministic if, for every q ∈ Q(m) and
a ∈ Σ(k), at most one rule of the form (∗) exists.

The rules of M can be viewed as term rewriting rules in the obvious way,
with the input variables xi ranging over T R

Σ and the parameters yj ranging
over T R

∆ . Then M induces a derivation relation⇒M on T R
〈Q,T R

Σ
〉∪∆

and an input

tree s ∈ T R
Σ is translated by M into a set of possible output trees t ∈ T R

∆ with
〈q0, s〉 ⇒

∗
M t.

In the Example 4.5, we illustrate the derivation relation induced by a macro
tree transducer in detail.

In order to operate a macro tree transducer over unranked trees, we con-
sider unranked trees as binary trees over the first-child and next-sibling rela-
tion. That is, the left child of a node in the binary tree is the first child of the
node in the unranked tree, and the second child of a node is the next sibling of
the node in the unranked tree. We insert the special symbol ⊥ when no first
child or next sibling exists. For instance, the tree of Figure 8(a) then becomes
the tree in Figure 8(b).

store

dvd

t p d s

dvd

t p s

(a)

store

dvd

t

⊥ p

⊥ d

⊥ s

⊥ ⊥

dvd

t

⊥ p

⊥ s

⊥ ⊥

⊥

⊥

(b)

Fig. 8. An unranked tree (Figure 8(a)) as a binary tree over the first-child and
next-sibling relation (Figure 8(b)).

2 Recall that for a set S, we denote by TΣ(S) the set of Σ-trees where leaf nodes are labeled
with elements from Σ ∪ S. Hence, T R

〈Q,Xk〉∪Σ
(Ym) is the set T R

〈Q,Xk〉∪Σ∪Ym
where for every

y ∈ Ym, rankY (y) = 0.

Example 4.5 We give an example of a MTT that removes all “dvd” nodes
(and their subtrees) that are not on discount from documents satisfying the
DTD from Example 3.2. Again, we abbreviate “title”, “price”, “discount”,
and “summary” by their initial letters, respectively.

The rules of this MTT are depicted in Figure 9. Intuitively, qid is a state
that performs the identity transformation, and qsearch-d is a state that searches
the subtree for a “d”-labeled node and prunes its left subtree in the output
unless the “d”-labeled node is found.

When executed on the tree t in Figure 8(b), we get the derivation in
Figure 10. In this derivation, we denoted by t/u the subtree of t rooted at u.

〈q0, store(x1, x2)〉 → store

〈qsel-d, x1〉 ⊥

〈qsel-d, dvd(x1, x2)〉 → 〈qsearch-d, x1〉

〈qid, x1〉 〈qsel-d, x2〉

〈qsearch-d, a(x1, x2)〉(y1, y2) → 〈qsearch-d, x2〉

y1 y2

for a = t,p

〈qsearch-d, d(x1, x2)〉(y1, y2) → dvd

y1 y2

〈qsearch-d, s(x1, x2)〉(y1, y2) → y2

〈qid, a(x1, x2)〉 → a

〈qid, x1〉 〈qid, x2〉

for a = t,p,d,s

〈qsel-d,⊥〉 → ⊥

〈qid,⊥〉 → ⊥

Fig. 9. Macro tree transducer from Example 4.5.

4.3 Further Tree Transducer Formalisms

4.3.1 k-Pebble Tree Transducers

The research on typechecking for XML transformations was initiated by Milo,
Suciu, and Vianu [16]. As a formal model for tree transformations, they de-
fined k-pebble tree transducers, which they designed to model many existing
XML query languages (without data-value joins), and for which the type-
checking problem w.r.t. extended DTDs is decidable.

〈q0, t〉 ⇒M store

〈qsel-d, t/1〉 ⊥

⇒M store

〈qsel-d, t/11〉

〈qid, t/11〉 〈qsel-d, t/12〉

⊥

⇒∗
M store

〈qsel-d, t/11〉

t/11 〈qsearch-d, t/121〉

〈qid, t/121〉 〈qsel-d, t/122〉

⊥

⇒∗
M store

〈qsel-d, t/11〉

t/11 〈qsearch-d, t/121〉

t/121 ⊥

⊥

⇒2
M store

〈qsel-d, t/11〉

t/11 〈qsearch-d, t/12122〉

t/121 ⊥

⊥

⇒M store

〈qsel-d, t/11〉

t/11 ⊥

⊥

⇒2
M store

〈qsel-d, t/1122〉

t/11 ⊥

⊥

⇒M store
dvd
t

⊥ p
⊥ d
⊥ s
⊥ ⊥

⊥
⊥

Fig. 10. Derivation of the execution of the MTT in Figure 9 on the tree t in
Figure 8(b).

Intuitively, a k-pebble tree transducer is a finite state transducer which
uses up to k heads (i.e., pebbles) that can be placed on the input. However,
the transducer must place and remove the pebbles from the input in a stack-
based fashion, and it can only move the highest ranked pebble that is placed on
the input. In order to produce output, k-pebble tree transducers are equipped
with output transitions. Such an output transition writes a symbol to the
output, and creates a fresh copy of the k-pebble tree transducer for every
child of the current node. These copies then run further in parallel, do not
communicate to each other, and inherit the positions of all pebbles on the
input.

Suciu presented the functional language RecQL, which is meant to char-
acterize precisely the transformations that are expressible by k-pebble tree
transducers [25].

Engelfriet and Maneth investigated the connection between macro tree
transducers and k-pebble tree transducers [4]. They obtained that the trans-
formation of a k-pebble tree transducer can be carried out by a composition of
k + 1 macro tree transducers. Conversely, they also showed that a macro tree

transducer can be simulated by a composition of four 1-pebble tree transducers
(that is, a pebble tree transducer with only one head).

4.3.2 tl-Transformers

Recently, Maneth et al. defined tl-transformers, which are a much more pow-
erful version of the simple tree transducers presented in Section 4.1. For
instance, tl-transformers are not deterministic, and they can use unary or
binary MSO formulas as match and select patterns, respectively. That is,
their programs consist of rules of the form f(m) ⇒ A, where f is a function
name, m is a unary formula that is determine to which nodes the function f
is applicable (the match pattern), and A is the action associated to f . Here,
the action A can contain binary MSO formulas to select the nodes in which
the program can continue (select patterns).

A typechecking algorithm for tl transformations is obtained by decom-
posing tl transformations as a composition of macro tree transducers (See
also Section 5.1.4).

4.3.3 Typechecking with Data Values

Sound and complete typechecking for transformations that have the power
to test equality between data values has been investigated by Alon et al. [1].
They defined the query language QL, which defines queries that map trees with
data values onto trees without data values. Queries in QL are tree templates
in which each node is labeled with a formula, and a Σ-symbol or a variable.
The formulas are existentially quantified conjunctions over path expressions
and comparison formulas. Path expressions are formulas of the form XRY ,
where X and Y are variables (ranging over nodes in the input tree), and R
is a regular expression. Nodes X and Y satisfy such a formula when there
exists a path in the input tree from node X to node Y that matches the
regular expression R. Comparison formulas are formulas of the form X = V
or X 6= V . Here, V can either be a variable ranging over nodes in the input
tree, or a data value. The output of such a query on an input tree is defined
in terms of possible matches of the free variables in the tree template on the
input tree. The tree-structure of the output is inferred from the tree-structure
of the query itself. For the precise details, we refer to [1].

Alon et al. characterize several fragments for which the typechecking prob-
lem for QL transformations is decidable, but they also show that the problem
turns undecidable even in very restricted cases [1].

5 Methods for the Typechecking Problem

5.1 Methods for Proving Upper Bounds

In the past, a variety of methods for proving upper and lower bound for the
typechecking problem have been devised. In the present section, we survey

some of these methods. With the word “schema”, we refer to any of the
schema languages presented in Section 3.

5.1.1 Emptiness

The emptiness test of tree automata or EDTDs seems to be a basic building
stone of complete typechecking algorithms. Both the type inference and in-
verse type inference methods discussed in Sections 5.1.2 and 5.1.3, respectively,
usually make use of the emptiness test of the schema languages at hand.

Formally, the emptiness test of a schema S is the following:

Emptiness: Given a schema S, is L(S) = ∅?

A direct reduction to the emptiness test of the schema language in the
typechecking problem has been used in [10,11], to show tractability of several
fragments of the typechecking problem. Here, it was used that testing empti-
ness of an EDTD in which the regular languages are represented by NFAs, is
ptime-complete [10].

5.1.2 Type Inference

Type inference might intuitively be the most straightforward technique to
obtain a typechecking algorithm. Intuitively, we want to characterize the
set of documents that can result from the transformation, when the input
is conform to the input schema. Finally, we should test whether this set is
contained in the output schema. This idea is used in several incomplete type
checkers such as, for instance, in the programming language XDuce [6].

The type inference approach can be summarized more formally as follows:

Type Inference: Given input and output schemas Sin and Sout and tree
transducer T , compute the tree language Lout = T (L(Sin)). Then verify
whether Lout ⊆ L(Sout).

The last inclusion test usually involves computing an automaton A for
the language Lout ∩ L(Sout), and testing whether L(A) = ∅, which is why
this approach is usually more involved than the emptiness test. Here, L(Sout)
denotes the complement of L(Sout).

The main difficulty in this approach lies in precisely characterizing Lout.
Indeed, even when Sin is a DTD and T is a simple tree transducer, Lout can
be non-regular. For example, consider the DTD s → a∗ defining Sin and the
simple tree transducer T with the rules

(q0, s)→ s(q1q2q3)
(q1, a)→ a
(q2, a)→ b
(q3, a)→ c.

Then, the language Lout = {s(w) | w = anbncn for n ∈ N}, which is clearly
not regular. Note that it is even not possible to approximate Lout: there is no
smallest regular tree language containing Lout. Indeed, for every regular tree

language L that contains Lout and for every tree t ∈ Lout − L, L − {t} is a
better regular approximation for Lout than L.

A sound and complete typechecking algorithm based on type inference
is presented in [11], to show that arbitrary simple tree transducers can be
typechecked w.r.t. DTD(RE+)s in ptime. 3 However, the main difficulty in
this approach was showing the correctness of the algorithm, as it only infers
an approximation of the language Lout.

5.1.3 Inverse Type Inference

Inverse type inference is inspired on type inference, but here we want to infer
the set of input trees t for which T (t) is in the ouput schema (or, not in the
output schema, depending on the preferred variant).

More formally, inverse type inference can be described as follows:

Inverse Type Inference I: Given input and output schemas Sin and Sout

and tree transducer T , first compute the pre-image Lin = {t ∈ TΣ | T (t) ∈
L(Sout)}. Then, test whether L(Sin) ⊆ Lin.

Of course, one could also try another variant of inverse type inverence:

Inverse Type Inference II: Given input and output schemas Sin and Sout

and tree transducer T , compute the complement L(Sout) of L(Sout). Then,
compute the pre-image of L(Sout) through T , that is, Lin = {t ∈ TΣ | T (t) ∈
L(Sout)}. Then verify whether L(Sin) ∩ Lin = ∅.

The preferred variant of the inverse typechecking method depends on the com-
plexities of computing the complement of the output schema, and computing
the pre-image of a tree language.

The inverse type inference technique was used for typechecking k-pebble
tree transducers [16], macro tree transducers [4], and tl-programs [9]. Even
though the transformation languages were quite powerful in all the three cases,
it turned out that the inferred set Lin is regular when the output schema defines
a regular language.

5.1.4 Compositions of Macro Tree Transducers or k-Pebble Tree Transducers

Of course, one can always reduce to instances of the typechecking problem
which are known to be decidable, such as for macro tree transducers or for k-
pebble tree transducers. Maneth et al., for example, reduced the typechecking
problem for tl-transformations to the typechecking problem for a composition
of macro tree transducers [9]. More specifically, they showed that a tl program
can be rewritten as a composition of (i) three deterministic MTTs when the
tl program is deterministic, or (ii) two MTTs and one stay MTT otherwise.
Here, a stay MTT is a MTT which does not have to go to the children of the
current node in a computation step, but is also allowed to stay at the current
node.

3 Here, RE+ is a restricted fragment of regular expressions.

The time complexity for the inferred typechecking algorithm will be rather
high with these approaches. In the case of macro tree transducers, it is hyper-
exponential in the number of compositions, and in the case of k-pebble tree
transducers it is hyperexponential in the number of pebbles [4,16].

5.2 Methods for Proving Lower Bounds

5.2.1 Inclusion, Emptiness, Universality

The most obvious way to obtain lower bounds on the complexity of the type-
checking problem is to use a (trivial) reduction from the inclusion problem
of the schema language at hand. Indeed, the inclusion problem is simply an
instance of the typechecking problem in which the tree transducer performs
the identity transformation.

Inclusion: Given schemas Sin and Sout, is L(Sin) ⊆ L(Sout)?

Note that, when considering settings of the typechecking problem where
the input and/or output schema is fixed, this straightforward approach does
not work anymore. When only the output schema is fixed, the emptiness test
of the input schema is a lower bound: test whether L(Sin) ⊆ ∅. When only
the input schema is fixed, the universality test for the output schema can be
a lower bound: test whether TΣ ⊆ L(Sout). When considering a setting for
typechecking in which both schemas are fixed, however, one of the simulation
methods in Section 5.2.2 might be more interesting.

The following propositions give an overview on the complexity of the inclu-
sion, emptiness and universality problems for the the schema languages from
Section 3:

Proposition 5.1 The inclusion problem is

• ptime-complete for D(DFA)s [12,13];

• pspace-complete for D(NFA)s and D(RE)s [7,13,24]; and,

• exptime-complete for EDTD(DFA)s, EDTD(NFA)s, and EDTD(RE)s [21],

where D stands for DTD, EDTDst, or EDTDrc.

Proposition 5.2 The universality problem is

• nlogspace-complete for D(DFA)s;

• pspace-complete for D(NFA)s and D(RE)s [7,13,15]; and,

• exptime-complete for EDTD(DFA)s, EDTD(NFA)s, and EDTD(RE)s [21].

where D stands for DTD, EDTDst, or EDTDrc.

Proposition 5.3 The emptiness problem is

• ptime-hard for DTD(DFA) [12]; and,

• in ptime for EDTD(NFA)s and EDTD(RE)s [10].

As opposed to the rest of the paper, we do not assume here that DTDs
do not contain useless symbols (otherwise, the emptiness problem would be
trivial).

Maybe a note on the mentioned references is appropriate: pspace complete-
ness of the universality and equivalence problems for regular expressions and
NFAs is shown in [7,15,24]. For DFAs, these problems are in ptime. In the
full version of [13], it is shown that these upper bounds carry over to DTDs,
EDTDsts, and EDTDrcs (lower bounds carry over trivially).

Proposition 5.2 states that the universality problem is nlogspace-hard for
DTD(DFA)s and in nlogspace for EDTDrc(DFA)s. The former is immediate,
since graph reachability is nlogspace-hard. The latter follows from the fact
that universality for EDTDrc(DFA)s can be decided using a reachability algo-
rithm. Indeed, for a given EDTDrc d = (Σ, Σ′, d, µ), we have to test whether
the extended context free grammar d contains a symbol s that is (i) reachable
from d’s start symbol, and (ii) for which µ(d(s)) 6= Σ∗. If this test succeeds,
the EDTDrc is non-universal. The result follows, as nlogspace is closed under
complement.

Seidl showed that the inclusion and equivalence problem are exptime-
complete for standard non-deterministic tree automata [21]. The exptime up-
per bounds for EDTD(NFA)s and EDTD(RE)s can then be obtained through
unranked-to-ranked encodings (which we also used in Section 4.2). Finally, the
ptime-hardness for emptiness of DTD(DFA)s is shown in [12], and ptime mem-
bership for emptiness of EDTD(NFA)s and EDTD(RE)s follows from results
in [10].

5.2.2 Simulations with the Tree Transducer

Perhaps the technically most interesting way to obtain lower bounds on the
complexity of typechecking, is through simulation of a certain automata model
(or, simulation of acceptance for classes of regular expressions) by the tree
transducer.

Here, we focus on simulation of finite automata. 4 To this end, let A be a
class of finite automata. The overall idea is to generate all possible inputs of
A with the input schema. Then, we use the tree transducer to simulate one
or more automata in A on the input tree and write to the output whether
the input is accepted or not. The ouput schema can then verify whether some
property holds for the simulated automata.

In this manner, we can test various decision problems of automata such as
emptiness, inclusion, equivalence, and universality. For the inclusion problem
of tree automata A1 and A2, for instance, we can do the following reduction.
Our goal is to construct an instance of the typechecking problem that type-
checks if and only if L(A1) ⊆ L(A2). The input schema defines all possible

4 Of course, the techniques we present can also be used to test e.g. satisfiability or validity
of logical formulas.

input trees for A1 or A2. Given an input tree t, the tree transducer copies the
t twice and simulates A1 and A2 in parallel on the left and right copy of t,
respectively. At the end of this simulation, it can write to the output whether
A1, respectively A2, accept t or not. Finally, the output schema can verify
whether the tree transducer’s output always encodes a situation in which A1

had an accepting computation only if A2 had an accepting computation. Note
that, for this reduction, the tree transducer only has to be able to simulate the
automata in A, and copy a subtree of the input twice. Also, when the alpha-
bets of the automata A1 and A2 are fixed, the constructed input and output
schemas in the reduction do not depend on the given automata. Therefore, it
is possible to obtain complexity hardness results using this reduction even in
settings where both the input and output schemas are fixed.

When the tree transducer has the power to copy a part of its input tree
an arbitrary number of times, the following problem can be interesting:

Intersection Emptiness: Given finite automata A1, . . . , An, is

L(A1) ∩ · · · ∩ L(An) = ∅?

The reduction in this case is analogous to the reduction that we just sketched.
Typically, the tree transducer copies its input tree n times and simulates all
the automata A1, . . . , An in parallel. Finally, the output schema should verify
whether the tree transducer’s output always encodes a situation in which at
least one simulated automaton rejects.

The following proposition gives the complexities of the intersection empti-
ness problem for various kinds of automata (or schema languages):

Proposition 5.4 The intersection emptiness problem is

• pspace-complete for DFAs, NFAs, and REs [8];

• exptime-complete for top-down deterministic (standard) tree automata [22];

• pspace-complete for DTD(DFA)s, DTD(NFA)s, and DTD(RE)s [13];

• exptime-hard for EDTDst(DFA)s [13]; and

• in exptime for EDTD(NFA)s and EDTD(RE)s.

In the last item, membership in exptime is immediate, as a product au-
tomaton for the intersection can be constructed in exptime, and we can test
emptiness of this product automaton in polynomial time in the size of the
automaton [10].

This technique has been used many times in the literature. Milo, Su-
ciu, and Vianu used a simulation of acceptance by star-free generalized reg-
ular expressions to obtain a non-elementary lower bound on the complexity
of typechecking k-pebble tree transducers, even for fixed input and output
schemas [16]. Martens, Neven, and Gyssens used a simulation of top-down
deterministic standard tree automata by the simple tree transducers of Sec-
tion 4.1 to obtain exptime lowerbounds in several settings of the typechecking
problem, also for fixed input and output schemas [12].

Acknowledgments

The author wishes to thank Frank Neven for his comments on a previous
version of this paper.

References

[1] Alon, N., T. Milo, F. Neven, D. Suciu and V. Vianu, XML with data values:
typechecking revisited, Journal of Computer and System Sciences 66 (2003),
pp. 688–727.

[2] Bray, T., J. Paoli, C. Sperberg-McQueen, E. Maler and F. Yergeau, Extensible
Markup Language (XML), Technical report, World Wide Web Consortium
(2004), http://www.w3.org/TR/REC-xml/.

[3] Brüggemann-Klein, A., M. Murata and D. Wood, Regular tree and regular hedge
languages over unranked alphabets: Version 1, april 3, 2001, Technical Report
HKUST-TCSC-2001-0, The Hongkong University of Science and Technology
(2001).

[4] Engelfriet, J. and S. Maneth, A comparison of pebble tree transducers with
macro tree transducers, Acta Informatica 39 (2003), pp. 613–698.

[5] Engelfriet, J. and H. Vogler, Macro tree transducers, Journal of Computer and
System Sciences 31 (1985), pp. 71–146.

[6] Hosoya, H. and B. C. Pierce, XDuce: A statically typed XML processing
language, ACM Transactions on Internet Technology 3 (2003), pp. 117–148.

[7] Hunt III, H. B., D. J. Rosenkrantz and T. G. Szymanski, On the equivalence,
containment, and covering problems for the regular and context-free languages,
Journal of Computer and System Sciences 12 (1976), pp. 222–268.

[8] Kozen, D., Lower bounds for natural proof systems, in: Proc. 18th Annual
Symposium on Foundations of Computer Science (FOCS 1977), 1977, pp. 254–
266.

[9] Maneth, S., T. Perst, A. Berlea and H. Seidl, XML type checking with macro
tree transducers, in: Proc. 24th Symposium on Principles of Database Systems
(PODS 2005), 2005, pp. 283–294.

[10] Martens, W. and F. Neven, On the complexity of typechecking top-down XML
transformations, Theoretical Computer Science 336 (2005), pp. 153–180.

[11] Martens, W. and F. Neven, Frontiers of tractability for typechecking simple
XML transformations, Journal of Computer and System Sciences (2006), to
Appear.

[12] Martens, W., F. Neven and M. Gyssens, On typechecking top-down XML
tranformations: Fixed input or output schemas (2005), submitted, available at
http://alpha.uhasselt.be/wim.martens.

[13] Martens, W., F. Neven and T. Schwentick, Complexity of decision problems
for simple regular expressions, in: Proc. 29th Symposium on Mathematical
Foundations of Computer Science (MFCS 2004), 2004, pp. 889–900.

[14] Martens, W., F. Neven and T. Schwentick, Which XML schemas admit 1-pass
preorder typing?, in: Proc. 10th International Conference on Database Theory
(ICDT 2005), 2005, pp. 68–82.

[15] Meyer, A. R. and L. J. Stockmeyer, The equivalence problem for regular
expressions with squaring requires exponential space, in: Proc. 13th Annual
Symposium on Foundations of Computer Science (FOCS 1972), 1972, pp. 125–
129.

[16] Milo, T., D. Suciu and V. Vianu, Typechecking for XML transformers, Journal
of Computer and System Sciences 66 (2003), pp. 66–97.

[17] Møller, A. and M. I. Schwartzbach, The design space of type checkers for XML
transformation languages, in: Proc. 10th International Conference on Database
Theory (ICDT 2005), 2005, pp. 17–36.

[18] Murata, M., D. Lee and M. Mani, Taxonomy of XML schema languages using
formal language theory, in: Extreme Markup Languages, Montreal, Canada,
2001.

[19] Murata, M., D. Lee, M. Mani and K. Kawaguchi, Taxonomy of XML
schema languages using formal language theory, ACM Transactions on Internet
Technology 5 (2005), to Appear, Full version of [18].

[20] Papakonstantinou, Y. and V. Vianu, DTD inference for views of XML data, in:
Proc. 19th ACM Symposium on Principles of Database Systems (PODS 2000),
2000, pp. 35–46.

[21] Seidl, H., Deciding equivalence of finite tree automata, SIAM Journal on
Computing 19 (1990), pp. 424–437.

[22] Seidl, H., Haskell overloading is DEXPTIME-complete, Information Processing
Letters 52 (1994), pp. 57–60.

[23] Sperberg-McQueen, C. and H. Thompson, XML Schema (2005),
http://www.w3.org/XML/Schema.

[24] Stockmeyer, L. J. and A. R. Meyer, Word problems requiring exponential
time: Preliminary report, in: Proc. 5th Annual ACM Symposium on Theory
of Computing (STOC 1973), 1973, pp. 1–9.

[25] Suciu, D., Typechecking for semistructured data, in: Proc. 8th International
Workshop on Database Programming Languages (DBPL 2001), 2001, pp. 1–
20.

