Minimizing Tree Automata for Unranked Trees

Wim Martens Joachim Niehren

What and Why?

To study the minimization problem for deterministic automata over unranked trees.

- Bottom-up deterministic: theoretical interest.
 E.g. do results from
 - deterministic automata on strings
 - bottom-up deterministic automata on ranked trees carry over naturally?
- Top-down deterministic: XML schema languages:
 - XML Schema Definitions
 - 1-pass preorder typeable schemas Minimization \equiv optimizing the schema.

Goals for Minimization

Requirements:

- 1. Minimization should be efficient (PTIME)
- 2. Unique minimal automata would be nice (up to isomorphism)
- 3. Minimal automata should be small

Minimization

Minimization:

Given an automaton A, integer k.

Does there exist an automaton **B** such that

- **B** is equivalent to **A**
- the size of B is $\leq k$

Overview

- Unranked Tree Automata (UTAs)
- Minimizing UTAs
- Small Survey on Bottom-up Deterministic TA
- Top-Down Determinism

Evaluate Boolean expressions:

	label		state		language
<u>δ</u> (1	,	t) =	ε
<u>δ</u> (0	,	f) =	ε
<u>δ</u> (\wedge	,	t) =	tt^*
<u>δ</u> (\wedge	,	f) =	$(f t)^*f(f t)^*$
<u>δ</u> (\vee	,	t) =	$(f t)^*t(f t)^*$
<u>δ</u> (\vee	,	f) =	<i>f f</i> *

Evaluate Boolean expressions:

	label		state		language
<u>δ</u> (1	,	t) =	ε
<u>δ</u> (0	,	\boldsymbol{f}) =	ε
<u>δ</u> (\wedge	,	t) =	tt^*
<u>δ</u> (\wedge	,	f) =	$(f t)^*f(f t)^*$
<u>δ</u> (\vee	,	t) =	$(f t)^*t(f t)^*$
<u>δ</u> (\vee	,	f) =	ff^*

Evaluate Boolean expressions:

	labe		state		language
δ (1	,	t) =	ε
<u>δ</u> (0	,	\boldsymbol{f}) =	ε
<u>δ</u> (\wedge	,	t) =	tt^*
<u>δ</u> (\wedge	,	f) =	$(f t)^*f(f t)^*$
<u>δ</u> (\vee	,	\boldsymbol{t}) =	$(f t)^*t(f t)^*$
δ (\vee	,	f) =	$oldsymbol{f}oldsymbol{f}^*$

Evaluate Boolean expressions:

	label		state		language
<u>δ</u> (1	,	t) =	ε
<u>δ</u> (0	,	f) =	ε
<u>δ</u> (\wedge	,	t) =	tt^*
<u>δ</u> (\wedge	,	f) =	$(f t)^*f(f t)^*$
<u>δ</u> (\vee	,	t) =	$(f t)^*t(f t)^*$
<u>δ</u> (\vee	,	$oldsymbol{f}$) =	$oldsymbol{f}oldsymbol{f}^*$

Evaluate Boolean expressions:

	I	abe	:	state	•	language
	δ (1	,	t) =	ε
	<u>δ</u> (0	,	f) =	ε
States: $\{t, f\}$	<u>δ</u> (\wedge	,	t) =	tt^*
	<u>δ</u> (\wedge	,	f) =	$(f t)^*f(f t)^*$
	<u>δ</u> (\vee	,	t) =	$(f t)^*t(f t)^*$
	<u>δ</u> (\vee	,	f) =	$\boldsymbol{f}\boldsymbol{f}^{*}$

Evaluate Boolean expressions:

Evaluate Boolean expressions:

_	labe		state		language
<u>δ</u> (1	,	t) =	ε
<u>δ</u> (0	,	\boldsymbol{f}) =	ε
<u>δ</u> (\wedge	,	t) =	tt^*
<u>δ</u> (\wedge	,	f) =	$(f t)^*f(f t)^*$
<u>δ</u> (\vee	,	t) =	$(f t)^*t(f t)^*$
<u>δ</u> (\checkmark	,	$oldsymbol{f}$) =	$oldsymbol{f}oldsymbol{f}^*$

UTAs by Example

Bottom-up Determinism [BMW 1999]:

label statelanguage δ (\land , t) = tt^* δ (\land , f) = $(f|t)^*f(f|t)^*$

If the labels are the same, then the languages are disjoint

Overview

- Unranked Tree Automata (UTAs)
- Minimizing UTAs
- Small Survey on Bottom-up Deterministic TA
- Top-Down Determinism

What is the size of a UTA?

What is the size of a UTA? Take states + internal languages into account

What is the size of a UTA? Take states + internal languages into account

Representation of internal languages left open NFA, DFA, regular expression, etc.

What is the size of a UTA? Take states + internal languages into account

Representation of internal languages left open NFA, DFA, regular expression, etc.

Minimizing NFAs, regular expressions is **PSPACE-complete**

What is the size of a UTA? Take states + internal languages into account

Representation of internal languages left open NFA, DFA, regular expression, etc.

Minimizing NFAs, regular expressions is **PSPACE-complete**

As we want efficient minimization, we represent internal languages by DFAs

Then, size = $|states| + \sum |states|$ internal DFAs|

DUTA: Bottom-up deterministic UTA with DFAs for internal languages

DUTA: Bottom-up deterministic UTA with DFAs for internal languages

Unfortunately,

Theorem:

- Minimizing DUTAs is NP-complete
- Minimal DUTAs are not unique

This is **not** what one expects from deterministic automata!

DUTA: Bottom-up deterministic UTA with DFAs for internal languages

Unfortunately,

Theorem:

- Minimizing DUTAs is NP-complete
- Minimal DUTAs are not unique

This is **not** what one expects from deterministic automata!

Why NP-hard? / Why not unique?

DUTA: Bottom-up deterministic UTA with DFAs for internal languages

Unfortunately,

Theorem:

- Minimizing DUTAs is NP-complete
- Minimal DUTAs are not unique

This is **not** what one expects from deterministic automata!

 Why NP-hard? / Why not unique?
 Crux: internal languages can be represented by a disjoint union of DFAs

Internal languages can be represented by a disjoint union of DFAs

label statelanguage δ (\land , t) = tt^* δ (\land , f) = $(f|t)^*f(f|t)^*$

Internal languages can be represented by a disjoint union of DFAs

Can be split up into: even number of t's / odd number of t's

Internal languages can be represented by a disjoint union of DFAs

Lemma:

- Minimizing disjoint unions of DFAs is NP-complete
- Minimal disjoint unions of DFAs are not unique

NP hardness strengthens some results in [Jiang, Ravikumar 1993], [Malcher 2004]

Internal languages can be represented by a disjoint union of DFAs

Lemma:

- Minimizing disjoint unions of DFAs is NP-complete
- Minimal disjoint unions of DFAs are not unique

NP hardness strengthens some results in [Jiang, Ravikumar 1993], [Malcher 2004]

Why is minimization in NP?

Internal languages can be represented by a disjoint union of DFAs

Lemma:

- Minimizing disjoint unions of DFAs is NP-complete
- Minimal disjoint unions of DFAs are not unique

NP hardness strengthens some results in [Jiang, Ravikumar 1993], [Malcher 2004]

Why is minimization in NP?

Guess minimal automaton + check equivalence

Overview

- Unranked Tree Automata (UTAs)
- Minimizing UTAs
- Small Survey on Bottom-up Deterministic TA
- Top-Down Determinism

Other Bottom-up Deterministic TA

- Automata over FCNS encoding, see e.g. [Frick,Grohe,Koch 2003]
- Parallel UTAs [Raeymaekers 2004, Cristau, Löding, Thomas 2005]
- Stepwise automata [Carmen,Niehren,Tommasi 2004]

Requirements:

- 1. Minimization should be efficient –OK
- 2. Minimal automata should be unique –OK
- 3. Minimal automata should be small

Differences:

- Difference in representation: stepwise automata can be quadratically smaller
- Stepwise automata correspond to ranked automata through an encoding (currying)

Size Comparison

Theorem:

Minimal stepwise tree automata are

- quadratically smaller than minimal Parallel UTAs
- exponentially smaller than minimal FCNS-Automata in general

Conversely, minimal stepwise automata are never larger than the corresponding minimal Parallel UTA or FCNS-automaton for the same tree language.

Overview

- Unranked Tree Automata (UTAs)
- Minimizing UTAs
- Small Survey on Bottom-up Deterministic TA
- Top-Down Determinism

In terms of Extended DTDs:

In terms of Extended DTDs:

In terms of Extended DTDs:

In terms of Extended DTDs:

Restrained Competition:

When reading the string from left to right, type of every node should be clear.

In terms of Extended DTDs:

Restrained Competition:

When reading the string from left to right, type of every node should be clear.

Examples:

- Single-type extended DTDs (i.e. XML Schema)
 - 1-pass preorder typeable EDTDs (= Restrained competition extended DTDs!)

Top-Down Determinism

When horizontal languages are represented by DFAs,

Theorem:

- Restraine Competition DTDs can be minized in PTIME
- Minimal restrained competition EDTDs are unique (up to isomorphism)

Minimization algorithm preserves single-type property.

Corollary:

- Single-type EDTDs can be minized in PTIME
- Minimal single-type EDTDs are unique (up to isomorphism)