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ABSTRACT
On an abstract level, XML Schema increases the limited ex-
pressive power of Document Type Definitions (DTDs) by ex-
tending them with a recursive typing mechanism. However,
an investigation of the XML Schema Definitions (XSDs) oc-
curring in practice reveals that the vast majority of them are
structurally equivalent to DTDs. This might be due to the
complexity of the XML Schema specification and the diffi-
culty to understand the effect of constraints on typing and
validation of schemas. To shed some light on the actual
expressive power of XSDs this paper studies the impact of
the Element Declarations Consistent (EDC) and the Unique
Particle Attribution (UPA) rule. An equivalent formalism
based on contextual patterns rather than on recursive types
is proposed which might serve as a light-weight front end
for XML Schema. Finally, the effect of EDC and UPA on
the way XML documents can be typed is discussed. It is
argued that a cleaner, more robust, stronger but equally ef-
ficient class is obtained by replacing these constraints with
the notion of 1-pass preorder typing: schemas that allow to
determine the type of an element of a streaming document
when its opening tag is met. This notion can be defined
in terms of restrained competition regular expressions and
there is again an equivalent syntactical formalism based on
contextual patterns.

1. INTRODUCTION
One of the many criticisms on Document Type Definitions

(DTDs) was their restricted expressiveness. On an abstract
level, XML Schema obtains a higher expressive power by
extending DTDs with a recursive typing mechanism which
allows to define types in terms of types. However, an inves-
tigation of the XML Schema Definitions (XSDs) occurring
in practice reveals that the vast majority of them are struc-
turally equivalent to a DTD.

More precisely, we harvested a large corpus of XSDs from
the Web and investigated the use of features not present in
Copyright is held by the author/owner(s).
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DTDs such as namespaces, import facilities, built in basic
types, keys, and also the ability to use the same element
name with different types. Concerning expressive power we
were surprised that only 15% of the syntactically correct
XSDs used typing in a way that goes beyond the power of
DTDs. A possible explanation is that the actual modeling
power of XSDs remains unclear to most users: the XML
Schema specification is very hard to read and the effect of
constraints on typing and validation is not fully understood.

The present paper has four main contributions:

(1) We give a detailed account of the features of XSDs that
are actually used in practice.

(2) We try to shed some light on the actual expressive power
of XSDs by discussing the impact of the Element Decla-
rations Consistent (EDC) rule. It turns out that there
is a simple criterion to check whether a set of documents
can be described by an XSD fulfilling EDC.

(3) We propose a framework for pattern based specification
of sets of documents and show that one of its simplest
instantiations leads to a language with exactly the same
power as XSDs with EDC, but avoiding the complexity
of recursive types. We believe that with this framework
a light-weight front-end for XML Schema can be built
suitable for less experienced users. Alternatively, we
discuss how XML Schema itself can be conservatively
extended with contextual patterns. Furthermore, we
exemplify how the use of contextual patterns reduces
duplication of definitions.

(4) Finally, we discuss the effect of the EDC and the Unique
Particle Attribution (UPA) constraints on the way XML
documents can be typed. These constraints allow effi-
cient validation and typing of documents by ensuring
that the type of an element never depends on its con-
tent or the following elements. Hence, the type of an
element of a streaming document can be assigned when
its opening tag is met. We refer to the latter requirement
as 1-pass preorder typing. Although EDC and UPA en-
sure 1-pass preorder typing they are not necessary for



it. More interestingly, it turns out that 1-pass preorder
typing is a very robust notion with various clean seman-
tical and syntactical characterizations. In particular, it
can be defined in terms of restrained competition regular
expressions (introduced by Murata, Lee, and Mani [14])
and by an equivalent syntactical formalism based on
contextual patterns which can serve as a light-weight
front-end. We therefore propose to replace the rather
ad-hoc EDC and UPA constraints by the more robust 1-
pass preorder typing requirement thereby obtaining the
maximal expressiveness in terms of typing in a stream-
ing fashion.

These contributions are based on theoretical results obtained
in previous work conducted by three of us [13]. The main
goal of this paper is to make these results accessible to a
more practical oriented audience and discuss their implica-
tions on the design of XML Schema.

The paper is organized as follows. In Section 2, we re-
call basic properties of DTDs, the notion of (single-type)
specialized DTDs which correspond to XSDs respecting the
EDC constraint. In Section 3, we give a more detailed report
on the structural properties of XSDs that we found on the
Web. Section 4 investigates XSDs with the EDC constraint
more closely, and introduces the pattern based paradigm
mentioned in (2) and its instantiation matching the expres-
siveness of XSDs with EDC. Section 5 defines the notion
of 1-pass preorder typing and explains its relationship to
EDC and UPA. In Section 6, we characterize the expressive
power of 1-pass preorder typing and describe a simple spec-
ification language based on the pattern paradigm invented
before. The paper concludes with Section 7.

Acknowledgements. We thank Dan Suciu for stimulating
discussions and Jan Van den Bussche for comments on a
previous draft of this paper.

2. SCHEMAS AND TYPES
In the present section, we provide the necessary back-

ground on the mathematical formalisms we employ as ab-
stractions of DTDs and XSDs.

Since ordered trees serve as the logical data model for
XML [31], we employ a tree based abstraction of XML doc-
uments. We focus in this work on the structure of XML doc-
uments and disregard data values, attributes, namespaces,
and linking information.We refrain from giving a formal def-
inition, but instead, give an example of an XML document
and its tree representation in Figure 1. For clarity we also
displayed the data values though they will be disregarded in
the rest of the paper (cf. Example 1).

In this respect, a schema defines a set of allowed trees (also
referred to as a tree language in formal language theory).
The DTD in Figure 2, for instance, defines the set of trees
where the root is labeled with store; the children of store
are dvd elements; every dvd element has a title, price, and
an optional discount child.

2.1 DTDs
It is customary to abstract DTDs by sets of rules of the

form a → r where a is an element and r is a regular ex-
pression over the alphabet of elements. One element name
is designated as the start symbol. For instance, the DTD of

<store>
<dvd>

<title>Amelie</title>
<price>17</price>

</dvd>
<dvd>

<title>Good bye, Lenin!</title>
<price>20</price>
<discount>20%</discount>

</dvd>
</store>

store

dvd

title

“Amelie”

price

“17”

dvd

title

“Good bye, Lenin!”

price

“20”

discount

”20%”

Figure 1: An XML document and its abstraction as
a tree.

<!ELEMENT store (dvd+)>
<!ELEMENT dvd (title, price, discount?)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT price (#PCDATA)>
<!ELEMENT discount (#PCDATA)>

Figure 2: Example of a DTD describing the docu-
ment in Figure 1.

Figure 2 is represented by the set of rules:

store → dvd dvd∗

dvd → title price (discount + ε)

with start symbol store.
Papakonstantinou and Vianu [16] provided a characteriza-

tion of the structural expressive power of DTDs: a regular1

set T of trees is definable by a DTD iff T has the following
closure property: if two trees t1 and t2 are in T , and there
are two nodes v1 in t1 and v2 in t2 with the same label, then
the trees obtained by exchanging the subtrees rooted at v1

and v2 are also in the set T . We refer to this property as
label-guarded subtree exchange. We illustrate this notion in
Figure 3. Because of the latter characterization, the classes
of XML documents defined by DTDs are also referred to
as local classes. The characterization can be used to prove
that certain languages can not be expressed by a DTD as
exemplified in the following example.

Example 1. Suppose that we want to put the extra con-
straint on the DTD of Figure 2 requiring the presence of at
least one DVD on discount. Then we get a language that
is not definable by a DTD anymore. We can prove this by
applying the above characterization. Indeed, the trees

t1 := store

dvd

title price

dvd

title price discount

and

t2 := store

dvd

title price discount

dvd

title price

are in the language, but the tree

1The notion of a regular set of trees is defined in Section 2.2.
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Figure 3: Label-guarded subtree exchange.

store

dvd

title price

dvd

title price

which is obtained from t1 by replacing its second subtree by
the second subtree of and t2, is not in the language.

2.2 DTDs plus types
As discussed in the introduction, the expressive power of

DTDs can be increased by adding types, as, e.g., in XML
Schema and Relax NG [4]. There is a finite set of possi-
ble types that every element can assume. For notational
simplicity, we denote types for element a by terms ai with
i ∈ N. As can be seen in Example 2, rules are now of the
form ai → r, where r is a regular expression over types (also
referred to as specializations). The designated start sym-
bol has only one type associated with it. These specialized
DTDs (SDTDs) were introduced by Papakonstantinou and
Vianu [16].

Formally, a tree satisfies an SDTD if there exists an as-
signment of types such that the labeled tree is a derivation
tree of the grammar. The following example displays an al-
ternative SDTD for the tree in Figure 1. For clarity, types
are not displayed for element names having a unique type.

Example 2. Consider the following SDTD:

store → (dvd1 + dvd2)∗dvd2(dvd1 + dvd2)∗

dvd1 → title price

dvd2 → title price discount

Intuitively, dvd1 defines ordinary DVDs while dvd2 defines
DVDs on sale. The first rule specifies that has to be at least
one DVD on discount. The tree in Figure 1 satisfies this
SDTD as assigning dvd1 and dvd2 to the left and right dvd-
node, respectively, gives a derivation tree of the grammar.

In Figure 4, a fragment of an XSD corresponding to the
rule for store is depicted. We note that the XSD is not
syntactically correct because it violates EDC as explained
in the next section.

From a structural perspective, SDTDs express exactly the
regular tree languages; a similarly robust class as the regular
string languages. In particular, SDTDs are as expressive as
unranked tree automata [2, 15]. It should be noted that the
formal underpinnings of the schema language Relax NG are
also based upon regular tree languages.

2.3 XML Schema = SDTD + EDC
As noted by Murata et al. [14], XSDs can be abstracted by

SDTDs extended with the Element Declarations Consistent
rule (EDC). Roughly, the constraint forbids the occurrence
of elements with the same name but different types in the
same definition. For instance, the XSD of Figure 4 is not

<xs:element name="store">

<xs:complexType>

<xs:sequence>

<xs:choice minOccurs="0" maxOccurs="unbounded">

<xs:element name="dvd" type="1"/>

<xs:element name="dvd" type="2"/>

</xs:choice>

<xs:element name="dvd" type="2"/>

<xs:choice minOccurs="0" maxOccurs="unbounded">

<xs:element name="dvd" type="1"/>

<xs:element name="dvd" type="2"/>

</xs:choice>

</xs:sequence>

</xs:complexType>

</xs:element>

Figure 4: A fragment of an XSD (violating EDC)
corresponding to the SDTD of Example 2.

allowed as dvd occurs in the presence of two types in the
same rule.2

The EDC rule can be formalized by requiring an SDTD
to be “single-type”, defined as follows [13, 14]:3

Definition 1. A single-type SDTD is an SDTD in which
in no regular expression two types bi and bj with i 6= j occur.

The SDTD of Example 2 is not single type as both dvd1

and dvd2 occur in the rule for store. An example of a
single-type SDTD is given below.

Example 3.

store → regulars discounts

regulars → (dvd1)∗

discounts → dvd2 (dvd2)∗

dvd1 → title price

dvd2 → title price discount

Although there are two element definitions dvd1 and dvd2,
they occur in a different rule.

Although the definition of single-type grammars is quite
transparent, its effect on definable classes of XML docu-
ments is less so. In Section 4 and Section 5, we return to
this issue and discuss the practical implications of the latter
restriction on the expressiveness and typing algorithms for
XSDs. First, we investigate in Section 3 to which extent
the newly added features of XSDs (in comparison with the
features of DTDs) are effectively used in practice.

2.4 Attributes and Data Values
DTDs and XML Schema have different expressive power

on attribute level, element level and data-value level. All
these issues can be easily incorporated into the SDTD model
by adapting the tree representation of XML documents.
However, to keep the formalism simple, we focus in the
present paper on the element structure of XML documents.
We address these concerns in the full version of this paper.

3. A PRACTICAL STUDY OF XSDS
A variety of sources [7, 9, 11] discuss the many draw-

backs of DTDs: no modularity, no XML syntax, limited

2We disregard that in XSDs types can not be numerical.
3Actually, [14] used the equivalent model of tree grammars
instead of SDTDs.



basic types, restricted referencing mechanism, verbose spec-
ification of unordered data, and limited expressiveness (def-
inition of an element cannot depend on its context). Most
of these concerns have been addressed by the XML Schema
specification: namespaces and import facilities have been
added; an extensive number of built in basic types as well
as means to fine tune them by restriction are provided; XML
Schema supports key and referential integrity; the all con-
struct allows to specify unordered content; and finally, the
same element name can be defined having different types. Of
course, this raises the question to what extent the added fea-
tures are actually used in practice. To this end, we studied
a corpus of 819 XSDs harvested from the Web. Among the
XSDs gathered, 93 were retrieved via the Cover Pages [6]. 4

Hence, a substantial number of high-quality XSDs repre-
senting various standards such as the XML Schema Specifi-
cation, XHTML, UDDI, RDF and others are represented in
the corpus. Unfortunately this number is rather small, so
the corpus was enlarged to its present size of 819 XSDs using
Google’s web services to retrieve an additional 726 XSDs.

The results concerning the use of syntactical features are
summarized in Table 1. From this table one can conclude
that XML Schema’s simpleType library and the ability to
place restrictions on those are heavily used. Derivation in
the sense of the object orientation paradigm is only used in
about 1/5 of all XSDs. Modularity by way of imports and
(non-trivial) namespaces is fairly important as well. Unique-
ness and key references are fairly uncommon.

feature % of XSDs
derivation

simpleType extension 18.9
simpleType restriction 45.5
complexType extension 20.7
complexType restriction 3.6
abstract attribute 9.8
final attribute 0.9
block attribute 0.0
fixed attribute 6.4
substitutionGroup 6.4
redefine 1.0

interleaving
xs:all 5.5

modularity
namespaces 12.1
import 27.7

linking
key/keyref 4.1
unique 2.9

Table 1: XML Schema features use in the corpus

As explained above, XSDs employ recursively defined types
to increase its expressiveness beyond DTDs. The question
remains whether XSDs occurring in practice actually use
this feature. That is, what percentage of found XSDs are
not structurally equivalent to a DTD? Unfortunately, out of
the corpus of 819 harvested XSDs only 225 remain on which
IBM’s SQC [30] reports no errors.5 Although syntactical
correctness is less critical in testing for presence or absence

4A previous study only focused on the Cover Pages and also
investigated the structure of used regular expressions [1].
5Even worse, already 70% of the XSDs from the Cover pages

of syntactical features, it is mandatory for the expressiveness
analysis which is more semantical in nature. It is impossible
to automatically guess for every syntactically incorrect XSD
what its designer intended.

It turns out that out of the remaining 225 XSDs, 192
(85%) are in fact structurally equivalent to a DTD: at most
one type is associated to every element name.6 So only
33 XSDs (15%) used the typing mechanism to actually de-
fine non-local classes of XML documents. Surprisingly, in
30 XSDs, types only depend on the parent context. That
is, they were of the kind as defined in Example 3, where
the type of dvd only depends on the label of the parent
(regulars or discounts). So, although non-trivial special-
ization is moderately used in practice, it is almost exclu-
sively used in its most simplistic form: dependence on the
label of the parent. Recall that for DTDs, the type of an
element only depends on its own label. Basically, there are
two possible explanations for the above observation. Either,
advanced modeling power as allowed by SDTDs is not nec-
essary in practice. Or, users are simply not aware of what
kind of schemas can be expressed by XSDs. In Section 4.1,
we attempt to address the latter concern as we explain what
is theoretically possible when using XSDs. The former pos-
sibility is analyzed below in more detail.

In the remaining 3 XSDs, types depend on the grand- or
the great grand-parent context. We discuss an abstraction
of one of them as an SDTD:

Example 4.

a → b + c h1 → j1

b → e d1 f h2 → j2

c → e d2 f j1 → k l
d1 → g h1 i j2 → m n
d2 → g h2 i

The interpretation of the example above is simple: an j1

element can only occur as the great grandchild of a b element
while an j2 element can only occur as the great grandchild
of a c element.

Two extreme approaches can be used to code the abstract
example above in an XSD. On the one hand, one can use the
“Russian doll” model, i.e. using anonymous type definitions
within type definitions. In an abstract syntax the latter
reduces to the rules

b → ed[gh[j[kl]]i]f and c → ed[gh[j[mn]]i]f,

where the type definition of the element b encapsulates that
of d1 which in turn defines that of h1 that finally contains
j1’s definition. The alternative is to flatten the XSD as has
been done in Example 4, but this leads to “artificial types”
such as d1 and h1 that only exist to pass down the informa-
tion that their parent and grandparent was a b-element. It
is obvious that in practice both approaches are mixed to a
certain extent. However, both lead to duplication of defini-
tions, making maintenance and further development of an
XSD much harder.

do not pass the syntax checker SQC. In this respect it is
interesting to note that Sahuguet reported similar findings
on the sheer abundance of syntactically incorrect DTDs [18].
6Actually, we encountered one XSD using types to define
a local language. The corresponding SDTD is of the form:
a1 → b, a2 → b where the types differ semantically.
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Figure 6: From left to right: a tree t, the ancestor-
string of v, the ancestor-sibling-string of v and the
preceding of v in t.

In view of the concerns mentioned in the previous para-
graphs, we propose in section 4.2 a general framework for
XML schema languages that allows types to depend on the
label of ancestors. It would no longer be required to define
types in terms of types, which seems to be perceived as a
challenge by the average XSD author, and would allow him
to access the full power offered by XML Schema. Dupli-
cation of definitions would be reduced as well since depen-
dencies on ancestor labels can straightforwardly be declared
rather than being passed down via types.

4. EXPRESSIVENESS OF XML SCHEMA
As explained in Section 2.3, content models are restrained

by the Element Declarations Consistent rule. Of course, im-
mediately a question arises: what kind of classes of XML
documents can be defined in the presence of this constraint?
To this end, we discuss a subtree exchange property that
characterizes the expressiveness of XSDs completely. Fur-
thermore, we propose a simpler paradigm equivalent to XSDs
which can serve as a light-weight front-end for XML Schema
(for instance, for less experienced users). Alternatively, the
paradigm can be combined with the actual XML Schema
specification reducing artificial definition duplication.

4.1 Subtree exchange property
Recall the notion of label-guarded subtree exchange which

characterized the class of DTD-definable languages. In [13,
Theorem 11], it is shown that a set T of documents is defin-
able by an SDTD satisfying EDC if and only if T is definable
by an SDTD and T is closed under ancestor-guarded sub-
tree exchange, i.e. if the following holds (cf. Figure 5): if two
documents t1 and t2 are in T , and there are two ancestor
equivalent elements v1 in t1 and v2 in t2, then the trees ob-
tained by exchanging the subtrees rooted at v1 and v2 are
also in the set T . Here, ancestor equivalent means that the
sequence of labels on the path from the root of t1 to v1 is the
same as on the path from the root of t2 to v2 (cf. Figure 6).

As an immediate consequence, the language we consid-
ered in Example 1 is not definable by a single-type SDTD.
Note that the counterexample can be constructed in exactly
the same manner. On the other hand, the language defined
by the single-type SDTD in Example 3 is not definable by
a DTD, so single-type SDTDs are strictly more expressive
than DTDs. As a matter of fact, it can be decided in ex-
ponential time whether a given SDTD is equivalent to one

that satisfies EDC. Unfortunately, this complexity bound is
also tight [13, Theorem 14].

The importance of the above theoretical characterization
stems from the fact that inexpressibility results can be for-
mally proved rather than vaguely stated. For instance, a
shortcoming recently attributed to XSDs is their inability
to express certain co-constraints [17]. An example of such
a co-constraint is: a store-element can only have a dvd-
element with discount child if it also has a dvd-element
without a discount child. Using the ancestor-guarded sub-
tree exchange property, it is very easy to formally prove that
this co-constraint cannot be expressed with XSDs. Indeed,
the counterexample is constructed from t1 in Example 1 by
replacing its first subtree by the first subtree of t2.

4.2 A general framework: P-schemas
Although the subtree exchange property characterizes the

classes of XML documents definable by XSDs, it is more a
means to show that schemas are not definable. Therefore,
the average user would benefit from a simple specification
language allowing to express desired schemas in a transpar-
ent way. The conducted practical study reveals that the vast
majority of non-local XSDs lets types depend only on the
parent context. We therefore propose a framework in which
such dependence can be made explicitly. The framework is
related to the paradigm upon which languages like Schema-
tron [19] and DSD [10] are based (contextual patterns). We
combine the latter with non-recursive typing. The main dif-
ference, however, is that our framework is equivalent to the
expressiveness of XML Schema: every such schema can be
translated into an XSD. We discuss in Section 4.3 how to
transform the framework into a workable form.

To ensure maximal flexibility, in a first stage, we only use
patterns in an abstract way. Therefore, let P be a pat-
tern language (e.g., XPath, regular expressions,. . . ) defin-
ing unary patterns. That is, each pattern ϕ ∈ P associates
with every tree a set of selected nodes. For instance, the
XPath expression //hobbit] defines the pattern that selects
all hobbit-elements. We denote the set of nodes selected by
ϕ on t by ϕ(t). Let Σ and Types be finite alphabets of
element and type names, respectively.

Definition 2. A P-schema is a triple S = (Σ, Types, R)
where R is a finite set of rules of the form (α, ϕ) ⇒ r. Here,
α ∈ Types, ϕ ∈ P, and r is a regular expression over Σ.

The semantics of a P-schema is defined in two phases:
(1) checking conformance w.r.t. the extended grammar; and
(2) assignment of types (also referred to as schema-validity
assessment in [26]).

Definition 3. A tree t is valid w.r.t. a P-schema S :=
(Σ, Types, R) if the label of every node belongs to Σ and for
every node v of t there is a rule (α, ϕ) ⇒ r such that v ∈ ϕ(t)
and the children of v match the regular expression r.

If there is only one rule (α, ϕ) ⇒ r such that v ∈ ϕ(t), v
is assigned the type α.

In examples, we use the short hand a → r to define the
rule (a, //a) ⇒ r specifying that the children of every a-
element should match regular expression r. We do not con-
sider the type a to be part of Types.



Example 5. In the current framework, using XPath as
a pattern language, the SDTD of Example 3 is equivalent to
the following schema:

store → regulars discounts
regulars → dvd∗

discounts → dvd dvd∗

(regular-dvd, //regulars/dvd) ⇒ title price
(discount-dvd, //discounts/dvd) ⇒ title price discount

Here, Types = {discount-dvd, regular-dvd}. Intuitively, a
dvd element is a regular-dvd (discount-dvd) when its par-
ent label is regulars (discounts); its content model is then
determined by the regular expression title price (title
price discount). For clarity we used the types regular-dvd
and discount-dvd rather than the cryptic types dvd1 and
dvd2 of Example 3. Clearly, the patterns //regulars/dvd
and //discounts/dvd are disjoint. Hence, a unique type
can be assigned to every dvd element

Remark 1. Definition 3 does not require that each node
has a unique type. If unique types are desired one can add
the requirement that ϕ(t) ∩ ϕ′(t) = ∅ for all patterns ϕ, ϕ′

related to the same tag and all trees t. For most pattern
languages occurring in practice, it can be statically checked
whether this requirements holds, e.g., for XPath cf. [20].
Hence, automatic tools can be developed to assist schema
development. Alternatively, one can assign natural numbers
to rules reflecting priorities in case of conflicts.

Example 6. The P-schema equivalent to the SDTD of
Example 4:

a → b + c h → j
b → e d f (1, //b//j) ⇒ k l
c → e d f (2, //c//j) ⇒ m n
d → g h i

Also in this case, types can be uniquely attributed.

Obviously, DTDs are P-schemas where every rule is an
→-rule and the type of an element corresponds to its name.
It remains to discuss how the above framework relates to
single-type SDTDs, our abstraction of XSDs. Therefore, let
R denote the class of regular expressions for strings. Regular
expressions ϕ can be used as unary patterns in the following
way: ϕ selects those nodes v on a tree t whose sequence of
labels on the path from the root to v satisfies ϕ. We refer
to the latter string as the ancestor-string of v (cf. Figure 6).
The last two rules in the R-schema equivalent to the P-
schema of Example 5 then become

(regular-dvd,Σ∗
· regulars · dvd) ⇒ title price

(discount-dvd,Σ∗
· discounts · dvd) ⇒ title price discount

Here, Σ∗ denotes the set of all strings.
In [13, Theorem 11], it is shown that the class of R-

schemas corresponds precisely to the class of schemas rep-
resented by SDTDs satisfying EDC. In other words, the in-
stantiation of the general framework with regular expres-
sions over ancestor-strings can be used as an alternative
syntax for XSDs which can be effectively translated into
XML Schema. XML experts already noticed that XSDs al-
low to express dependence of content models on ancestors
(cf. [29]). However, the above characterization shows that
this dependence can be extended to regular expressions over
the ancestors and, moreover, that it cannot be extended any
further.

We illustrate the translation of R-schemas into single-type
SDTDs by means of an example. In general, the resulting
SDTD can be exponentially larger. However, judging from
the complexity of found XSDs, this will seldom be the case
in practice. The schema of Example 5 translates into the
following SDTD:7

store(·,·) → regulars(reg,·) discounts(·,disc)

regulars(reg,·) → (dvd(reg-dvd,·))∗

discounts(·,disc) → dvd(·,disc-dvd) (dvd(·,disc-dvd))∗

dvd(reg-dvd,·) → title(·,·) price(·,·)

dvd(·,disc-dvd) → title(·,·) price(·,·) discount(·,·)

The translation algorithm first converts every pattern to
a deterministic finite automaton. Then it constructs the
product automaton A of all obtained automata in the stan-
dard manner. We use states of A as types for the SDTD.
The initial state of A is assigned to the start symbol of the
SDTD and every symbol b occurring on the right hand side

of a rule with left-hand side as is replaced by bs′ where s′ is
the state reachable from state s by reading a b.

In this example, we convert the pattern //regulars/dvd

to the automaton A1 depicted in Figure 7. Note that the lat-
ter automaton is optimized w.r.t. the strings that can occur
as paths in derivation trees of the SDTD. The automaton
A2 corresponding to //discounts/dvd is similar. As an ex-
ample of the type assignments, the initial state of A1 × A2

is assigned to the start symbol store. Then, as A1 enters
state reg when reading regulars and A2 remains in its ini-
tial state, we assign state (reg, ·) of A1 × A2 to regulars.
Removing the types for elements having only one type then
results in the SDTD equivalent to that of Example 3.

·

Σ − {regulars}

reg

regulars

reg-dvd

dvd

Figure 7: An automaton representing the pattern
//regulars/dvd.

4.3 R-schemas in practice
The usefulness of an XML schema language requires more

than a thorough understanding of its expressiveness. There-
fore, we discuss in the present section how we can migrate
R-schemas into a full fledged schema language. Rather than
proposing yet another schema language we stipulate how ex-
isting languages and proposals can be adapted.

Several approaches guided by our practical study are con-
ceivable. We suggest a two-pronged approach: on the one
hand an extension to the DTD specification for those most
comfortable with this formalism which probably includes in-
experienced or new users, on the other hand an extension of
XML Schema more suited for power users. However, these
seemingly different approaches converge behind the scenes
since schemas developed both according to the DTD exten-
sion as to the XML Schema extension can be translated
into an XSD valid with respect to the current XML Schema
specification. We discuss both proposals in more detail.

7As illustrated above, the used XPath expressions can be
defined by regular expressions.



4.3.1 An extension of DTDs
The most direct approach is to extend DTDs to the for-

malism of R-schemas as exemplified in Example 7. Instead
of regular expressions, one could allow “linear XPath” ex-
pressions, incorporating only the axes child and descendant.
The results mentioned in Section 3 suggest that the latter
expressiveness would be sufficient to structurally capture the
XSDs occurring in practice, though the power of full regular
expressions is needed to capture all XSDs..

Example 7. The real world XSD of Example 4 can be
rewritten as the following extended DTD:

<!ELEMENT a (b | c)>

<!ELEMENT b (e, d, f)>

<!ELEMENT c (e, d, f)>

<!ELEMENT d (g, h, i)>

<!ELEMENT h (j)>

<!ELEMENT "//b//j" 1 (k, l)>

<!ELEMENT "//c//j" 2 (m, n)>

It is clear that the representation in Example 7 is much
more compact than the corresponding XSD, and that du-
plicate definitions have been avoided altogether. Note that
the evaluation of the linear XPath expression starts at the
document root and that only the child and descendant axes
are used. Hence one can limit oneself to the abbreviated
syntax (‘/’ and ‘//’) which substantially contributes to the
transparency of the expressions.

To alleviate the problem of the very limited set of data
types in DTDs, we propose the addition of the simple data
types as defined in the XML Schema specification [27] for
attributes and text. As we are not the first to propose an
extension of DTDs for expressing schemas for XML, we do
not further go into details here. Already two such proposals
for extensions of DTDs exist [24, 28]. Both focus heavily on
the addition of data types to DTDs. The former (DTD++
1.0) also introduces namespaces and complex objects. To
the best of our knowledge we are the first to justify such a
proposal both by a practical study and a theoretical analysis.
Indeed, in strong contrast to DTD++ 1.0, restriction to R-
schemas can structurally define all XSDs.

A superficially similar approach is taken in the specifica-
tion of DTD++ 2.0 [8], however, the focus is entirely dif-
ferent. The emphasis in DTD++ 2.0 is on the expression
of co-constraints so that the resulting specification exceeds
the expressive power of XML Schema. Indeed, DTD++
2.0 schemas are transformed into SchemaPath [17] which is
strictly more expressive than XML Schema and that requires
a transformation of the XML documents prior to valida-
tion. Our approach avoids the overhead of translating XML
documents and leverages the use of existing XML Schema
implementations and tools.

As illustrated in Section 4.2, the above proposed extended
DTDs can automatically be translated into equivalent XSDs.
This translation introduces many cryptic types (states of an
automaton) so that it may be very difficult for a user to
understand and also edit the resulting XSD. Such post pro-
cessing might sometimes be needed, e.g. to add key/keyrefs,
or to rename types. In that case, we can restrict to a lim-
ited vocabulary (parent, grandparent, greatgrandparent

and ancestor) as opposed to linear XPath or regular expres-
sions, that can be translated into more transparent types
and is nevertheless sufficiently powerful to express all con-
text dependencies found in the corpus we analyzed. This

would facilitate the development of true round-trip editing
software between extended DTDs and the generated XSD
where the overall structure of the XML documents can be
specified in the form of an extended DTD while nuts and
bolts details can be fleshed out in the generated XSD.

4.3.2 A conservative extension of XML Schema
The second option is to extend the XML Schema specifica-

tion in such a way that element type definitions are context
dependent. A syntactic approach using conditional alter-
natives similar to SchemaPath [17] is suggested. However,
rather than full XPath expressions, conditions would be lim-
ited to linear XPath (or general regular expressions) so that
the expressive power of XML Schema is not exceeded as was
discussed in the previous paragraph. Whereas the extended
DTDs are more expressive than traditional DTDs, extended
XML Schemas provide only syntactic sugar to ease the de-
velopment and make XML Schema more legible and easier
to maintain since a lot of definition duplications can be elim-
inated.

Example 8. The essential fragment of Example 4 rewrit-
ten as an extended XSD:

<xs:element name="j">

<xs:alt cond="//b/j" type="1"/>

<xs:alt cond="//c/j" type="2"/>

</xs:element>

Example 8 shows a conditional element definition: element
j is of type 1 (2) if it has a b (c) parent.

5. TOWARDS A ROBUST NOTION OF TYP-
ING

As mentioned before, the expressive power of SDTDs (and
Relax NG) corresponds to the well-understood and very ro-
bust class of regular tree languages. However, this expressive
power comes at a price. Although it can be determined in
linear time whether a tree satisfies a given SDTD, the way
to do that is sometimes at odds with the way one would like
to process XML documents. More concretely, it requires to
process documents in a bottom-up fashion where the type(s)
of an element is only determined after reading its content.
In the context of streaming XML data or for SAX based
processing, i.e., when processing an XML document as a
SAX-stream of opening and closing tags, it is more desirable
to determine the type of an element at the time its opening
tag is met. If an SDTD fulfills this requirement we say it is
1-pass preorder typeable (1PPT). Note that not every SDTD
admits 1PPT. Consider the example a → b1 + b2, b1 → c,
b2 → d and the document <a><b><d/></b></a>. The type
of b depends on the label of its child. It is hence impossi-
ble to assign a type to b when its opening tag <b> is met,
i.e., without looking at its child. An alternative formulation
of 1PPT is that the type of an element cannot depend on
anything occurring in document order after that element.
Hence, we require that a type is uniquely determined by the
preceding of an element (cf. Figure 6). On top of one-pass
typeability, this notion therefore also enforces a unique type
to every element. The latter is, for instance, not the case
for Relax NG which allows ambiguous typing.

In the XML Schema specification as well as in research
papers various kinds of constraints have been defined that
enable efficient validation and typing of XML documents.



Although it is hardly made precise what this should mean
exactly one might argue that the intention roughly matches
our notion of 1-pass preorder typeability. It should be noted
here that 1PPT is a semantical notion, while the proposed
notion of single-type SDTDs, for instance, is a syntactic one
as its definition refers to syntactic restrictions of the schema
rather than to the documents themselves. However, 1PPT
is a robust notion precisely because it is semantic: it de-
fines the largest class of SDTDs that can be typed when
processed in a streaming fashion. In the following we argue
that the single-type restriction (EDC) is too ad-hoc, formal-
ize 1PPT by means of the restrained-competition SDTDs of
Murata, Lee, and Mani [14], and propose to replace UPA
and EDC by 1PPT to get a more robust notion of typing.
In Section 6, we show that the same kind of analysis can be
done for 1PPT schemas as for the current proposal of XSDs.
In particular, we characterize the expressiveness of 1PPT
schemas and present a purely syntactical framework with
corresponding expressibility based on P-schemas. First, we
discuss validation and the constraint on deterministic con-
tent models in the context of DTDs.

5.1 Validation of DTDs
Validation of a document against a DTD simply boils

down to testing local consistency: does the string formed by
the labels of the children of every a-labeled element satisfies
the associated regular expression r? No notion of typing is
available. To ensure efficient validation, regular expressions
in right-hand sides of rules are required to be determinis-
tic [25] (also referred to as one-unambiguous [3]). Intuitively,
a regular expression is deterministic if, when processing the
input from left to right, it is always determined which sym-
bol in the expression matches the next input symbol. We
discuss the latter notion a bit more formally as it returns in
the specification of XML Schema in the form of the Unique
Particle Attribution rule. For a regular expression r over el-
ements, we denote by r the regular expression obtained from
r by replacing every ith a-element in r (counting from left
to right) by ai. For example, when r = (a + b)∗ac(b + c)∗,
then r simply is (a1 + b1)

∗a2c1(b2 + c2)
∗.

Definition 4. A regular expression r is one-unambiguous
iff there are no strings waiv and wajv

′ in L(r) so that i 6= j.

The restriction to deterministic regular expressions is heav-
ily criticized (cf., e.g., p. 98 of [23] and [12]) as it does not
serve its purpose: even for unrestricted regular expressions
efficient simple validation algorithms exist. Further, the con-
straint is semantical in nature, and therefore it is difficult for
the average user to assess whether a given regular expression
is deterministic or not. To date, no transparent syntactical
equivalent counterpart is known.

5.2 Typing of XSDs
As noted by Murata et al. [14], the EDC rule induces a

simple top-down validation algorithm which assigns to every
element with a symbol a a unique type ai. The algorithm
proceeds as follows: The unique type is assigned to the root;
for each interior node u with type ai, it checks whether the
children of u match the right hand side of ai → r, ignoring
all types; if not the tree is rejected, otherwise, as the SDTD
is single-type, to each child a unique type can be assigned.
The tree is accepted if this process terminates at the leaves
without any rejection.

In [13, Theorem 11], we characterize single-type SDTDs
precisely as the class of SDTDs where the type of every
element v in a tree is uniquely determined by the sequence
of labels on the path from the root to v (i.e., the ancestor-
string of v, cf. Figure 6). Therefore, every SDTD admits
1PPT. The converse, however, is not true. Consider for
example the following SDTD which is not single-type: a →
b1 b2, b1 → c, b2 → d. Nevertheless, the SDTD admits
1PPT. Indeed, it is easy to see that the SDTD only defines
the singleton <a><b><c/></b><b><d/></b></a>. The rule
for a says that the first b-child needs to be typed b1 and the
second b-child needs to be typed b2. For each of the b’s in
the document, it can be easily determined whether it is the
first or second child of a by investigating its preceding (cf.
Figure 6). Hence, the notion of single-type SDTDs allows
for efficient unique typing, but does not capture the robust
class of 1PPT SDTDs.

Apart from EDC, the XML specification also mentions
the Unique Particle Attribution (UPA) constraint which is
a rephrasing of the debatable determinism constraint for
DTDs. Although, the constraint does not mention typing
explicitly, it does influence typing in an unexpected but
drastic way. Surprisingly, as explained in Section 5.4, ev-
ery SDTD which satisfies UPA already admits 1PPT.

5.3 Restrained-competition SDTDs
Murata, Lee, and Mani [14], propose the semantical re-

striction to restrained competition regular expressions.

Definition 5. A regular expression r (over types) re-
strains competition if there are no strings waiv and wajv′ in
L(r) with i 6= j. An SDTD is restrained competition iff all
regular expressions occurring in rules restrain competition.

Intuitively, a restrained competition regular expression en-
sures that when visiting the children of a node from left to
right it is always clear which type is associated to each node
without seeing its right siblings. An example of a restrained
competition SDTD that is not single-type is given next:

store → (dvd1)∗ discounts (dvd2)∗

discounts → ε
dvd1 → title price

dvd2 → title price discount

This restriction allows a strictly larger class of schemas
than EDC while still permitting a unique top-down left-to-
right assignment of types as discussed in the next paragraph.
Note that both the single-type and the restrained compe-
tition constraint are local: they restrain the structure of
admissible regular expressions. Unfortunately, EDC is syn-
tactic while restrained-competition is a semantical notion.
Nevertheless, deciding whether an SDTD is restrained com-
petition can be done in polynomial time [13, Theorem 13].
In Section 6.2 we generalize the framework of Section 4.2
to get an equivalent but syntactical language for restrained
competition SDTDs.

We discuss typing of restrained competition SDTDs. The
ancestor-sibling string of an element is the string of ances-
tors of the element, and their left siblings (cf. Figure 6).8

We say that an SDTD has ancestor-sibling-based types if the

8Here the sibling strings are suitably separated from each
other by additional symbols.



type of an element in a tree only depends on its ancestor-
sibling string. In [13, Theorem 12], we characterize re-
strained competition SDTDs exactly as the class of SDTDs
with ancestor-sibling-based types.

One of the most remarkable results of [13, Corollary 10]
is that every SDTD satisfying 1PPT already has ancestor-
sibling-based types, and thus can be written as a restrained
competition SDTD. Hence, the latter can serve as a concrete
instantiation of the semantical concept of 1-pass preorder
typing. A remarkable consequence is that in a streaming
context, for any 1PPT SDTD, documents can be validated
and typed in a 1-pass preorder fashion only using memory of
size O(|d|), where |d| is the maximum depth of the document
that is being validated. The validation algorithm is then the
preorder version of the algorithm sketched in Theorem 5.1
of [21].

5.4 Discussion
Although the XML Schema specification allows typing in

multiple passes (Section 5.2 in [26], note on multiple assess-
ment episodes), we now show that, even without the EDC
constraint, 1PPT is always enforced by the UPA constraint.

An SDTD satisfies the UPA constraint when for every
regular expression r over types we have that el(r) is one-
unambiguous (cf. Definition 4), where el(r) denotes the ex-
pression obtained from r by replacing every type ai by the el-
ement a. We argue by means of a concrete example that any
SDTD satisfying UPA is restrained competition, and there-
fore, admits 1PPT. Suppose that r = a1?b1(b1 + c1)∗a2c1.

Then, el(r) = a?b(b + c)∗ac and el(r) = a1?b1(b2 + c1)
∗a2c2.

Clearly, el(r) is one-unambiguous, which means that when
we match e.g. bbcbac against el(r), the symbol against which

the a must be matched (a2 in el(r)), is uniquely determined
without looking ahead. But then, the symbol in r that cor-
responds to a2 is also uniquely determined, and this symbol
has only one type. So we also know what type must be
assigned to a without looking ahead to c. It is easy to gen-
eralize this example to show that any SDTD satisfying UPA
is also restrained competition.

The converse however, is not true. A counterexample is
the expression r = (a1 + b1)∗a1(a1 + b1). Indeed, when
matching a string against this expression, we always know
that we need to type a and b by a1 and b1 respectively.
However, the expression el(r) = (a + b)∗a(a + b) is not one-
unambiguous. Indeed, a1a2a3 and a2a3 are both in L((a1 +
b1)

∗a2(a3 + b2)). In [3] it is even shown that el(r) can not
be defined by any one-unambiguous regular expression.

To summarize, we propose to replace the UPA and EDC
constraint in the XML Schema specification by the robust
notion of 1PPT. The latter guarantees a large and robust
class of schemas that can be uniquely (unambiguously) and
efficiently typed. A local semantical definition in terms of
the restrained competition regular expressions of Murata,
Lee, and Mani can be adopted. Moreover, in Section 6.2,
we present a purely syntactical front-end for 1PPT which
is a natural instantiation of the framework of P-schemas in
Section 4.2 capturing all one-pass preorder typeable SDTDs.

6. EXPRESSIVENESS OF 1PPT
We provide the same kind of analysis for 1PPT SDTDs

as we did for single-type ones. In particular, we provide a
mechanism to show that certain schemas are not express-
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Figure 8: Ancestor-sibling-guarded subtree ex-
change.

ible by 1PPT SDTDs and instantiate the framework of P-
schemas to get an equivalent syntactical counterpart.

6.1 Subtree Exchange Property
Just like for DTDs and SDTDs satisfying EDC, there also

exists a characterization of the sets of XML documents defin-
able by SDTDs admitting 1PPT ([13, Theorem 12]). Indeed,
a regular set T of documents is definable by a 1PPT SDTD
if and only if it is closed under ancestor-sibling-guarded sub-
tree exchange. The latter property is defined as follows
(cf. Figure 8): if two documents t1 and t2 are in T , and
there are two nodes v1 in t1 and v2 in t2 with the same
ancestor-sibling string, then the trees obtained by exchang-
ing the subtrees rooted at v1 and v2 are also in the set T .

The language we considered in Example 1 is not definable
by an SDTD admitting 1PPT. Note that the counterexam-
ple can be constructed in exactly the same manner.

Just as for EDC, given an arbitrary SDTD it is decid-
able in exponential time whether there exists an equivalent
SDTD admitting 1PPT. This upper bound is also tight [13,
Theorem 14].

6.2 R∗-Schemas
To raise the expressiveness of the framework proposed in

Section 4.2 to the level of 1PPT SDTDs, we need an ade-
quate pattern language. To this end, let R∗ be the class of
regular expressions over symbols a[r] where r is a regular
expression over element names and a is an element name.
For instance, (a[a+ b∗] + b)∗a[b∗] belongs to R∗. We simply
write a for a[Σ∗]. We note that the given expression uses
the three symbols a[a+ b∗], b[Σ∗] and a[b∗]. The intuition is
that a[r] matches node v when v is labeled with a and the
string formed by the labels of the left-siblings of v match r.
We explain how general regular expressions can be used as
unary patterns. Let a1w2a2 · · ·wnan be the ancestor-sibling
string of node v in tree t, such that a1 · · · an are the labels
on the path from the root to v. So, the root of t is labeled
a1 and v is labeled an, and wi is the sequence of labels of
left-siblings of ai (from left to right). Node v is selected by
pattern ϕ iff there exists a string a1a2[r2] · · · an[rn] ∈ L(ϕ)
such that for every i = 2, . . . , n, wi ∈ L(ri). In other words,
for each symbol ai[ri], ri constrains the left siblings of the
element ai.

Example 9. Using R∗ as pattern language, we can define
the SDTD in Section 5.3 in the following way:

store → dvd∗ discounts dvd∗

discounts → ε
(regular-dvd, store dvd[dvd∗]) ⇒ title price

(discount-dvd, store dvd[dvd∗ discount dvd∗])
⇒ title price discount

In [13, Theorem 12] it is shown that the class of R∗-
schemas corresponds precisely to the class of schemas rep-
resented by SDTDs satisfying 1PPT. In other words, the



instantiation of the general framework with regular expres-
sions over ancestor-sibling-strings is an alternative syntax
for all SDTDs admitting 1PPT.

6.3 R∗-schemas in practice
As in Section 4.3, we can adopt two approaches: extend

DTDs or extend XML Schema. To capture 1PPT SDTDs it
suffices to add R∗-patterns. A more practical way is to add
full XPath, but semantically restrict its evaluation to the
preceding of each node (cf. Figure 6). For instance, the ex-
pression //*[.//b]//c selects only those c-elements having
a b-element in their preceding as illustrated in Figure 9.

a

d

c b

c

d

Figure 9: Only the circled c-element in the docu-
ment has a b-element in its preceding.

7. DISCUSSION
The exchange property for single-type SDTDs and the

framework of R-schemas provides insight into what can and
cannot be expressed on a structural level by the current
definition of XSDs. In future work, we plan to implement
a concrete pattern based schema language as discussed in
Section 4.3. Although already an abundance of schema
languages for XML has been proposed, we believe that a
light-weight front end for XML Schema is beneficiary for
less experienced XML users (as, e.g., in the bioinformatics
community [5]).

Although we think the restriction to unambiguous typ-
ing increases transparency and efficiency of validation, the
recommendations in the present paper do not justify the for-
mer. For instance, Relax NG as well as the formal model for
XML Schema of Siméon and Wadler [22] allow ambiguous
typing to relieve users from opaque restrictions. However, if
unambiguous typing is required, it should not be obtained by
ad-how restrictions, but by the most liberal ones. We believe
that the restriction to 1-pass preorder typable schemas is as
such. Moreover, it can be reached by allowing restrained
competition regular expressions. Further, we provided an
equivalent syntactic framework in terms of P-schemas.

8. REFERENCES
[1] G.J. Bex, F. Neven and J. Van den Bussche. DTDs

versus XML Schema: A Practical Study. In WebDB
2004, pages 79–84, 2004.
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