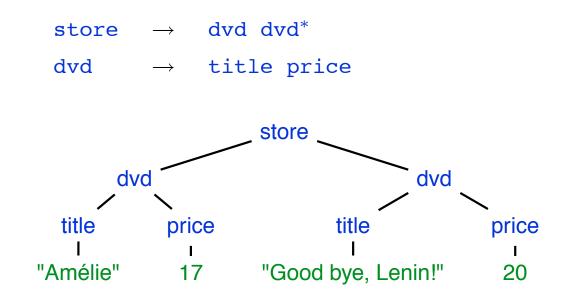
Complexity of Decision Problems for Simple Regular Expressions

Wim Martens Frank Neven

Thomas Schwentick

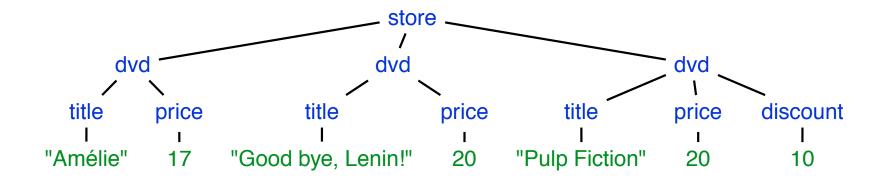
Main Motivation

To study the complexity of

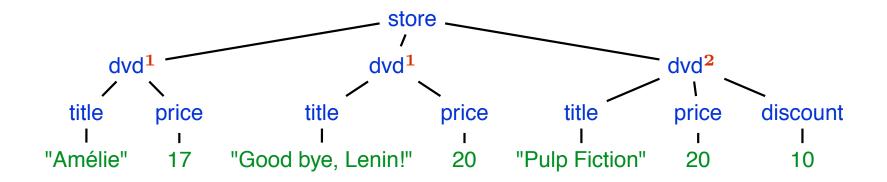

- inclusion,
- equivalence, and
- intersection
- for XML Schema Languages occurring in practice, such as
 - Document Type Definitions (DTDs) and
 - ML Schema Definitions (XSDs).

- XML Schema Languages
- Reducing Problems on XML Trees to Strings
- Simple Regular Expressions
- Inclusion of Simple Regular Expressions
- Equivalence of Simple Regular Expressions
- Intersection of Simple Regular Expressions
- Conclusion

DTDs (Document Type Definitions):

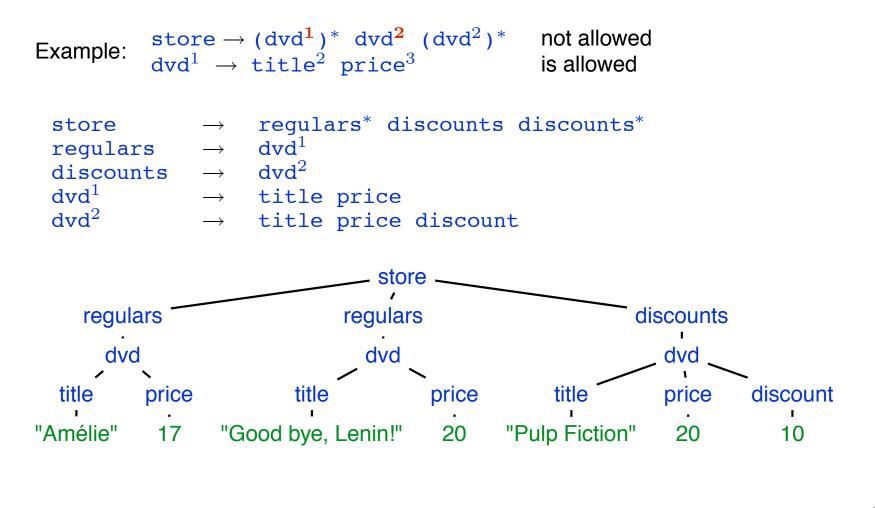

- $\texttt{store} \quad \rightarrow \quad \texttt{dvd} \ \texttt{dvd}^*$
- dvd \rightarrow title price

DTDs (Document Type Definitions):

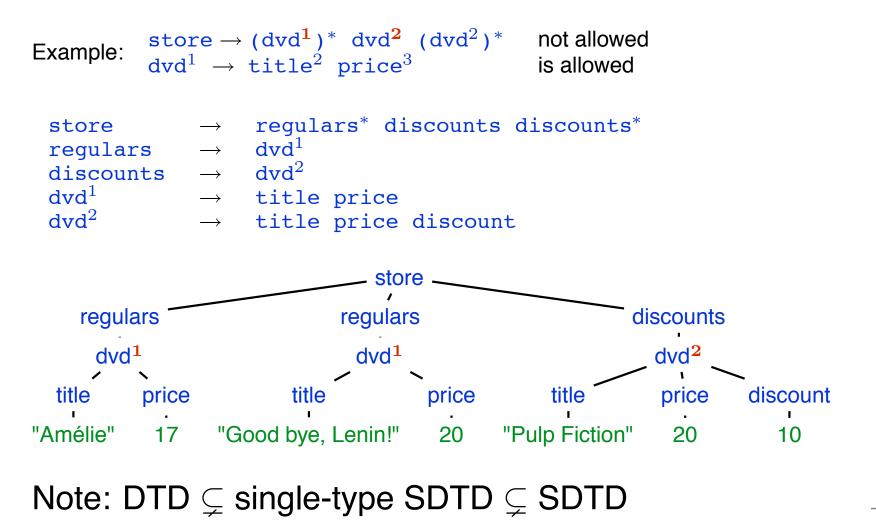


- SDTDs (Specialized DTDs): \equiv tree automata on unranked trees
 - store \rightarrow (dvd¹)* dvd² (dvd²)*
 - ${\rm d} {\rm v} {\rm d}^1 \quad \rightarrow \quad {\rm title \ price}$
 - ${\rm d} {\rm v} {\rm d}^2 \quad \rightarrow \quad {\rm title \ price \ discount}$

- SDTDs (Specialized DTDs):
 \equiv tree automata on unranked trees
 - store \rightarrow (dvd¹)* dvd² (dvd²)*
 - $dvd^1 \longrightarrow title price$
 - $dvd^2 \rightarrow title price discount$



- SDTDs (Specialized DTDs):
 \equiv tree automata on unranked trees
 - store \rightarrow (dvd¹)* dvd² (dvd²)*
 - $dvd^1 \longrightarrow title price$
 - $dvd^2 \rightarrow title price discount$



Single-type SDTDs: different types for one label in one rhs not allowed!

Single-type SDTDs: different types for one label in one rhs not allowed!

Single-type SDTDs: different types for one label in one rhs not allowed!

Decision Problems

Let $\boldsymbol{\mathcal{M}}$ be a subclass of the class of DTDs or SDTDs

- The inclusion problem for \mathcal{M} asks for two given schemas $d, d' \in \mathcal{M}$, whether $L(d) \subseteq L(d')$.
- The equivalence problem for \mathcal{M} asks for two given schemas $d, d' \in \mathcal{M}$, whether L(d) = L(d').
- The intersection problem for \mathcal{M} asks for an arbitrary number of schemas $d_1, \ldots, d_n \in \mathcal{M}$, whether $\bigcap_{i=1}^n L(d_i) \neq \emptyset$.

Application: lower and upper bounds for type checking

Decision Problems: General Complexity

XML Schema Definitions (XSDs) usually modelled as Specialized DTDs (or Tree Automata)

	DTD	SDTD
inclusion	PSPACE -complete	EXPTIME -complete
equivalence	PSPACE -complete	EXPTIME-complete
intersection	PSPACE -complete	EXPTIME-complete

DTDs: Involved regular expressions

[Murata,Lee,Mani 2001]: XSDs are single-type SDTDs!

- XML Schema Languages
- Reducing Problems on XML Trees to Strings
- Simple Regular Expressions
- Inclusion of Simple Regular Expressions
- Equivalence of Simple Regular Expressions
- Intersection of Simple Regular Expressions
- Conclusion

A Toolbox: From XML trees to strings

 \mathcal{R} : a class of regular expressions

Notation:

- **DTD**(\mathcal{R}): DTDs with regular expressions in \mathcal{R}
- single-type DTD(R): single-type DTDs with regular expressions in R

A Toolbox: From XML trees to strings

R: a class of regular expressions*C*: a complexity class containing **PTIME**

THEOREM: Then the following are equivalent:

- The containment problem for \mathcal{R} expressions is in \mathcal{C} .
- The containment problem for $DTD(\mathcal{R})$ is in \mathcal{C} .
- The containment problem for single-type $SDTD(\mathcal{R})$ is in \mathcal{C} .

The corresponding statement holds for the equivalence problem.

The above does not hold for SDTDs

A Toolbox: From XML trees to strings

R: a class of regular expressions*C*: a complexity class containing **PTIME**

THEOREM: Then the following are equivalent:

- The intersection problem for \mathcal{R} expressions is in \mathcal{C} .
- The intersection problem for $DTD(\mathcal{R})$ is in \mathcal{C} .

THEOREM: There is class of regular expressions \mathcal{R} such that:

- The intersection problem for single-type $SDTD(\mathcal{R})$ is **EXPTIME**-complete.
- The intersection problem for \mathcal{R} is NP-complete.

- XML Schema Languages
- Reducing Problems on XML Trees to Strings
- Simple Regular Expressions
- Inclusion of Simple Regular Expressions
- Equivalence of Simple Regular Expressions
- Intersection of Simple Regular Expressions
- Conclusion

Simple Regular Expressions

- A base symbol is a regular expression w, w?, or w* where w is a non-empty string;
- A factor is of the form e, e?, or e* where e is a disjunction of base symbols.
- A simple regular expression is ε , \emptyset , or a sequence $f_1 \cdots f_k$ of factors.

Factor	Abbr.	Factor	Abbr.	Factor	Abbr.
a	a	$(a_1 + \cdots + a_n)$	(+a)	$(w_1 + \dots + w_n)$	(+w)
a?	a?	$(a_1 + \dots + a_n)?$	(+a)?	$(w_1 + \cdots + w_n)?$	(+w)?
a^*	a^*	$(a_1 + \dots + a_n)^*$	$(+a)^{*}$	$(w_1 + \dots + w_n)^*$	$(+w)^{*}$
w?	w?	$(a_1^* + \dots + a_n^*)$	$(+a^{*})$	$(w_1^* + \dots + w_n^*)$	$(+w^{*})$
w^*	w^*				

Simple Regular Expressions

- A base symbol is a regular expression w, w?, or w^* where w is a non-empty string;
- A factor is of the form e, e?, or e* where e is a disjunction of base symbols.
- A simple regular expression is ε , \emptyset , or a sequence $f_1 \cdots f_k$ of factors.

[Bex,Neven,Van den Bussche 2004]: > 90% of expressions in practical DTDs or XSDs are simple regular expressions

Simple Regular Expressions: Examples

Factor	Abbr.	Factor	Abbr.	Factor	Abbr.
a	a	$(a_1 + \cdots + a_n)$	(+a)	$(w_1 + \dots + w_n)$	(+w)
a?	a?	$(a_1 + \dots + a_n)?$	(+a)?	$(w_1 + \dots + w_n)?$	(+w)?
a^*	a^*	$(a_1 + \dots + a_n)^*$	$(+a)^{*}$	$(w_1 + \dots + w_n)^*$	$(+w)^{*}$
w?	w?	$(a_1^* + \dots + a_n^*)$	$(+a^{*})$	$(w_1^* + \dots + w_n^*)$	$(+w^{*})$
w^*	w^*				

$$((abc)^* + b^*)(a + b)?(ab)^*(ac + b)^*$$
 OK
 $a^*((abc)^* + c^*)^*$ OK

$(ac + (abc)^*)$	NOK
$(ab^*c)^*$	NOK

Related Work on Strings

- Stockmeyer, Meyer, STOC 1973]
- [Hunt III, Rosenkrantz, Szymanski, JCSS 1976]
- [Kozen, FOCS 1977]

Interesting complexity results on fragments of regular expressions.

These fragments are more general than Simple Regular Expressions.

- XML Schema Languages
- Reducing Problems on XML Trees to Strings
- Simple Regular Expressions
- Inclusion of Simple Regular Expressions
- Equivalence of Simple Regular Expressions
- Intersection of Simple Regular Expressions
- Conclusion

Inclusion

THEOREM: The inclusion problem

- is CONP-hard for $RE(a, a^*)$ and RE(a, a?);
- is in CONP for $RE(All \{(+a)^*, (+w)^*\});$
- is **PSPACE**-hard for $RE(a, (+a)^*)$;
- is in **PSPACE** for RE(AII); and,
- is in **PTIME** for $RE^{\leq k}$.

[Abdullah et al. 1998]: inclusion of $RE(a?, (+a)^*)$ can be solved in linear time

[Milo, Suciu 1999]: inclusion for $RE(a, \Sigma, \Sigma^*)$ is in PTIME

Inclusion

Hint: CONP-hardness for $RE(a, a^*)$ and RE(a, a?)Reduction from VALIDITY:

 $(x_1 \wedge \neg x_2 \wedge x_3) \vee (\neg x_1 \wedge x_3 \wedge \neg x_4)$ reduces to testing #a|a|a|a# a?a?|a?a?|a?a?|a?a? #a|a|a|a# \subseteq #?a?|?a?|?a?|?a?#? aa?|a?|aa?|a?a?#a?|a?a?|aa?|a?#?a?|?a?|?a?|?a?#?

Intuition: $\varepsilon \equiv false$, $aa \equiv true$

- XML Schema Languages
- Reducing Problems on XML Trees to Strings
- Simple Regular Expressions
- Inclusion of Simple Regular Expressions
- Equivalence of Simple Regular Expressions
- Intersection of Simple Regular Expressions
- Conclusion

Equivalence

THEOREM: The equivalence problem is in **PTIME** for RE(a, a?), and $RE(a, a^*)$.

Idea: equivalent expressions have identical normal form

Not trivial! Example: $a^+b^*a^*b^+a^+$ and $a^+b^+a^*b^*a^+$

- XML Schema Languages
- Reducing Problems on XML Trees to Strings
- Simple Regular Expressions
- Inclusion of Simple Regular Expressions
- Equivalence of Simple Regular Expressions
- Intersection of Simple Regular Expressions
- Conclusion

Intersection

THEOREM: The intersection problem is

- NP-hard for $RE(a, a^*)$ and RE(a, a?);
- in NP for $RE(All (+w)^*)$;
- **PSPACE-hard for** $RE^{\leq 3}$; and
- in PTIME for $RE(a, a^+)$.

- XML Schema Languages
- Reducing Problems on XML Trees to Strings
- Simple Regular Expressions
- Inclusion of Simple Regular Expressions
- Equivalence of Simple Regular Expressions
- Intersection of Simple Regular Expressions
- Conclusion

Conclusion

- DTDs, XML Schema Definitions:
 - Inclusion, equivalence: complexity carries over from string case
 - Intersection: complexity only carries over to DTDs
- Simple Regular Expressions:
 - Inclusion, intersection: hard surprisingly quickly
 - Equivalence: seems easier than inclusion
- One unambiguous regular expressions:
 - **•** Inclusion, equivalence: **PTIME** (DFA)
 - Intersection: PSPACE-hard

RE-fragment	Inclusion	Equivalence	Intersection
a, a^+	in ртіме (DFA!)	in PTIME	in PTIME
a,a^*	соир-complete	in PTIME	NP-complete
a,a?	соир-complete	in PTIME	NP-complete
All $-\{(+a)^*, (+w)^*\}$	соир-complete	in CONP	NP-complete
$a, (+a)^*$	PSPACE-complete	in PSPACE	NP-complete
$All - \{(+w)^*\}$	PSPACE-complete	in PSPACE	NP-complete
All	PSPACE-complete	in PSPACE	in PSPACE
$RE^{\leq k}$ ($k \geq 3$)	in PTIME	in PTIME	PSPACE-complete
one-unambiguous	in PTIME	in PTIME	PSPACE-complete