Complexity of Decision Problems for Simple Regular Expressions

Wim Martens Frank Neven Thomas Schwentick

Main Motivation

To study the complexity of

- inclusion,
- equivalence, and
- intersection
for XML Schema Languages occurring in practice, such as
- Document Type Definitions (DTDs) and
- XML Schema Definitions (XSDs).

Overview

- XML Schema Languages
- Reducing Problems on XML Trees to Strings
- Simple Regular Expressions
- Inclusion of Simple Regular Expressions
- Equivalence of Simple Regular Expressions
- Intersection of Simple Regular Expressions
- Conclusion

XML Schema Languages

- DTDs (Document Type Definitions):

```
store }->\mathrm{ dvd dvd*
dvd }->\mathrm{ title price
```


XML Schema Languages

- DTDs (Document Type Definitions):

XML Schema Languages

- SDTDs (Specialized DTDs):
\equiv tree automata on unranked trees

```
store }->\quad(dv\mp@subsup{d}{}{1}\mp@subsup{)}{}{*}dv\mp@subsup{d}{}{2}(dv\mp@subsup{d}{}{2}\mp@subsup{)}{}{*
dvd}\mp@subsup{}{}{1}\quad->\quad\mathrm{ title price
dvd}\mp@subsup{}{}{2}->\quad->\quad\mathrm{ title price discount
```


XML Schema Languages

- SDTDs (Specialized DTDs):
\equiv tree automata on unranked trees

```
store }->\quad(dv\mp@subsup{d}{}{1}\mp@subsup{)}{}{*}\mp@subsup{d}{|vd}{2}(dv\mp@subsup{d}{}{2}\mp@subsup{)}{}{*
dvd}\mp@subsup{}{}{1}\quad->\quad\mathrm{ title price
dvd}\mp@subsup{}{}{2}->\quad->\quad\mathrm{ title price discount
```


XML Schema Languages

- SDTDs (Specialized DTDs):
\equiv tree automata on unranked trees

```
store }->\quad(dv\mp@subsup{d}{}{1}\mp@subsup{)}{}{*}\mp@subsup{d}{|vd}{2}(dv\mp@subsup{d}{}{2}\mp@subsup{)}{}{*
dvd}\mp@subsup{}{}{1}\quad->\quad\mathrm{ title price
dvd}\mp@subsup{}{}{2}->\quad->\quad\mathrm{ title price discount
```


XML Schema Languages

- Single-type SDTDs: different types for one label in one rhs not allowed!

```
Example: store }->(dv\mp@subsup{d}{}{1}\mp@subsup{)}{}{*}dv\mp@subsup{d}{}{2}(dv\mp@subsup{d}{}{2}\mp@subsup{)}{}{*}\mathrm{ not allowed
    dvd}\mp@subsup{}{}{1}->\mp@subsup{\mathrm{ title }}{}{2}\mathrm{ price }\mp@subsup{}{}{3}\quad\mathrm{ is allowed
store }->\mathrm{ regulars* discounts discounts*
regulars }->\quad\mp@subsup{d}{vd}{}\mp@subsup{}{}{1
discounts }->\mathrm{ dvd}\mp@subsup{}{}{2
dvd}\mp@subsup{}{}{1}\quad->\quad\mathrm{ title price
dvd}\mp@subsup{}{}{2}\quad->\quad\mathrm{ title price discount
```


XML Schema Languages

- Single-type SDTDs: different types for one label in one rhs not allowed!

Example:store $\rightarrow\left(d v d^{1}\right)^{*}$ $d v d^{2}$ $d v d^{1}$ \rightarrow title 2 price			
store	\rightarrow regulars* discounts discounts*	\quad	not allowed
:---			
is allowed			

XML Schema Languages

- Single-type SDTDs: different types for one label in one rhs not allowed!

Note: DTD \subsetneq single-type SDTD $\subsetneq ~ S D T D ~$

Decision Problems

Let \mathcal{M} be a subclass of the class of DTDs or SDTDs

- The inclusion problem for \mathcal{M} asks for two given schemas $d, d^{\prime} \in \mathcal{M}$, whether $L(d) \subseteq L\left(d^{\prime}\right)$.
- The equivalence problem for \mathcal{M} asks for two given schemas $d, d^{\prime} \in \mathcal{M}$, whether $L(d)=L\left(d^{\prime}\right)$.
- The intersection problem for \mathcal{M} asks for an arbitrary number of schemas $d_{1}, \ldots, d_{n} \in \mathcal{M}$, whether $\bigcap_{i=1}^{n} L\left(d_{i}\right) \neq \emptyset$.

Application: lower and upper bounds for type checking

Decision Problems: General Complexity

XML Schema Definitions (XSDs) usually modelled as Specialized DTDs (or Tree Automata)

	DTD	SDTD
inclusion	PSPACE-complete	EXPTIME-complete
equivalence	PSPACE-complete	EXPTIME-complete
intersection	PSPACE-complete	EXPTIME-complete

DTDs: Involved regular expressions
[Murata,Lee,Mani 2001]: XSDs are single-type SDTDs!

Overview

- XML Schema Languages
- Reducing Problems on XML Trees to Strings
- Simple Regular Expressions
- Inclusion of Simple Regular Expressions
- Equivalence of Simple Regular Expressions
- Intersection of Simple Regular Expressions
- Conclusion

A Toolbox: From XML trees to strings

\mathcal{R} : a class of regular expressions
Notation:

- DTD (\mathcal{R}) : DTDs with regular expressions in \mathcal{R}
- single-type $\operatorname{DTD}(\mathcal{R})$: single-type DTDs with regular expressions in \mathcal{R}

A Toolbox: From XML trees to strings

\mathcal{R} : a class of regular expressions
\mathcal{C} : a complexity class containing PTIME
THEOREM: Then the following are equivalent:

- The containment problem for \mathcal{R} expressions is in \mathcal{C}.
- The containment problem for DTD (\mathcal{R}) is in \mathcal{C}.
- The containment problem for single-type $\operatorname{SDTD}(\mathcal{R})$ is in \mathcal{C}.

The corresponding statement holds for the equivalence problem.

The above does not hold for SDTDs

A Toolbox: From XML trees to strings

\mathcal{R} : a class of regular expressions
\mathcal{C} : a complexity class containing PTIME
THEOREM: Then the following are equivalent:

- The intersection problem for \mathcal{R} expressions is in \mathcal{C}.
- The intersection problem for $\operatorname{DTD}(\mathcal{R})$ is in \mathcal{C}.

THEOREM: There is class of regular expressions \mathcal{R} such that:

- The intersection problem for single-type $\operatorname{SDTD}(\mathcal{R})$ is EXPTIME-complete.
- The intersection problem for \mathcal{R} is NP-complete.

Overview

- XML Schema Languages
- Reducing Problems on XML Trees to Strings
- Simple Regular Expressions
- Inclusion of Simple Regular Expressions
- Equivalence of Simple Regular Expressions
- Intersection of Simple Regular Expressions
- Conclusion

Simple Regular Expressions

- A base symbol is a regular expression w, w ?, or w^{*} where w is a non-empty string;
- A factor is of the form e, e ?, or e^{*} where e is a disjunction of base symbols.
- A simple regular expression is ε, \emptyset, or a sequence $f_{1} \cdots f_{k}$ of factors.

Factor	Abbr.	Factor	Abbr.	Factor	Abbr.
a	a	$\left(a_{1}+\cdots+a_{n}\right)$	$(+a)$	$\left(w_{1}+\cdots+w_{n}\right)$	$(+w)$
$a ?$	$a ?$	$\left(a_{1}+\cdots+a_{n}\right) ?$	$(+a) ?$	$\left(w_{1}+\cdots+w_{n}\right) ?$	$(+w) ?$
a^{*}	a^{*}	$\left(a_{1}+\cdots+a_{n}\right)^{*}$	$(+a)^{*}$	$\left(w_{1}+\cdots+w_{n}\right)^{*}$	$(+w)^{*}$
$w ?$	$w ?$	$\left(a_{1}^{*}+\cdots+a_{n}^{*}\right)$	$\left(+a^{*}\right)$	$\left(w_{1}^{*}+\cdots+w_{n}^{*}\right)$	$\left(+w^{*}\right)$
w^{*}	w^{*}				

Simple Regular Expressions

- A base symbol is a regular expression w, w ?, or w^{*} where w is a non-empty string;
- A factor is of the form e, e ?, or e^{*} where e is a disjunction of base symbols.
- A simple regular expression is ε, \emptyset, or a sequence $f_{1} \cdots f_{k}$ of factors.
[Bex,Neven,Van den Bussche 2004]: > 90\% of expressions in practical DTDs or XSDs are simple regular expressions

Simple Regular Expressions: Examples

Factor	Abbr.	Factor	Abbr.	Factor	Abbr.
a	a	$\left(a_{1}+\cdots+a_{n}\right)$	$(+a)$	$\left(w_{1}+\cdots+w_{n}\right)$	$(+w)$
$a ?$	$a ?$	$\left(a_{1}+\cdots+a_{n}\right) ?$	$(+a) ?$	$\left(w_{1}+\cdots+w_{n}\right) ?$	$(+w) ?$
a^{*}	a^{*}	$\left(a_{1}+\cdots+a_{n}\right)^{*}$	$(+a)^{*}$	$\left(w_{1}+\cdots+w_{n}\right)^{*}$	$(+w)^{*}$
$w ?$	$w ?$	$\left(a_{1}^{*}+\cdots+a_{n}^{*}\right)$	$\left(+a^{*}\right)$	$\left(w_{1}^{*}+\cdots+w_{n}^{*}\right)$	$\left(+w^{*}\right)$
w^{*}	w^{*}				

$\left((a b c)^{*}+b^{*}\right)(a+b) ?(a b)^{*}(a c+b)^{*}$
$a^{*}\left((a b c)^{*}+c^{*}\right)^{*}$

OK
OK

NOK
NOK

Related Work on Strings

- [Stockmeyer, Meyer, STOC 1973]
- [Hunt III, Rosenkrantz, Szymanski, JCSS 1976]
- [Kozen, FOCS 1977]

Interesting complexity results on fragments of regular expressions.

These fragments are more general than Simple Regular Expressions.

Overview

- XML Schema Languages
- Reducing Problems on XML Trees to Strings
- Simple Regular Expressions
- Inclusion of Simple Regular Expressions
- Equivalence of Simple Regular Expressions
- Intersection of Simple Regular Expressions
- Conclusion

Inclusion

THEOREM: The inclusion problem

- is CONP-hard for $\operatorname{RE}\left(a, a^{*}\right)$ and $R E(a, a$?);
- is in CONP for $\boldsymbol{R E}\left(\mathrm{All}-\left\{(+a)^{*},(+w)^{*}\right\}\right)$;
- is PSPACE-hard for $\operatorname{RE}\left(a,(+a)^{*}\right)$;
- is in PSPACE for $R E$ (All); and,
- is in PTIME for $R E \leq k$.
[Abdullah et al. 1998]: inclusion of $R E\left(a ?,(+a)^{*}\right)$ can be solved in linear time
[Milo, Suciu 1999]: inclusion for $\operatorname{RE}\left(a, \Sigma, \Sigma^{*}\right)$ is in PTIME

Inclusion

Hint: cONP-hardness for $R E\left(a, a^{*}\right)$ and $R E(a, a ?)$ Reduction from VALIDITY:
$\left(x_{1} \wedge \neg x_{2} \wedge x_{3}\right) \vee\left(\neg x_{1} \wedge x_{3} \wedge \neg x_{4}\right)$ reduces to testing
$\# a|a| a|a \# \quad a ? a ?| a ? a ?|a ? a ?| a ? a ? \quad \# a|a| a \mid a \#$ \subseteq
$\# ? a ?|? a ?| ? a ? \mid ? a ? \# ?$

$$
\begin{aligned}
& a a ?|a ?| a a ?|a ? a ? \# a ?| a ? a ?|a a ?| a ? \\
& \# ? a ?|? a ?| ? a ? \mid ? a ? \# ?
\end{aligned}
$$

Intuition: $\varepsilon \equiv$ false, aa \equiv true

Overview

- XML Schema Languages
- Reducing Problems on XML Trees to Strings
- Simple Regular Expressions
- Inclusion of Simple Regular Expressions
- Equivalence of Simple Regular Expressions
- Intersection of Simple Regular Expressions
- Conclusion

Equivalence

THEOREM: The equivalence problem is in PTIME for $R E(a, a ?)$, and $R E\left(a, a^{*}\right)$.

Idea: equivalent expressions have identical normal form

Not trivial!
Example: $a^{+} b^{*} a^{*} b^{+} a^{+}$and $a^{+} b^{+} a^{*} b^{*} a^{+}$

Overview

- XML Schema Languages
- Reducing Problems on XML Trees to Strings
- Simple Regular Expressions
- Inclusion of Simple Regular Expressions
- Equivalence of Simple Regular Expressions
- Intersection of Simple Regular Expressions
- Conclusion

Intersection

THEOREM: The intersection problem is

- NP-hard for $R E\left(a, a^{*}\right)$ and $R E(a, a$? ;
- in NP for $\boldsymbol{R E}\left(\mathrm{All}-(+w)^{*}\right)$;
- PSPACE-hard for $R E \leq 3$; and
- in PTIME for $R E\left(a, a^{+}\right)$.

Overview

- XML Schema Languages
- Reducing Problems on XML Trees to Strings
- Simple Regular Expressions
- Inclusion of Simple Regular Expressions
- Equivalence of Simple Regular Expressions
- Intersection of Simple Regular Expressions
- Conclusion

Conclusion

- DTDs, XML Schema Definitions:
- Inclusion, equivalence: complexity carries over from string case
- Intersection: complexity only carries over to DTDs
- Simple Regular Expressions:
- Inclusion, intersection: hard surprisingly quickly
- Equivalence: seems easier than inclusion
- One unambiguous regular expressions:
- Inclusion, equivalence: PTIME (DFA)
- Intersection: PSPACE-hard

Overview

RE-fragment	Inclusion	Equivalence	Intersection
a, a^{+}	in PTIME (DFA!)	in PTIME	in PTIME
a, a^{*}	CONP-complete	in PTIME	NP-complete
$a, a ?$	cONP-complete	in PTIME	NP-complete
All $-\left\{(+a)^{*},(+w)^{*}\right\}$	CONP-complete	in CONP	NP-complete
$a,(+a)^{*}$	PSPACE-complete	in PSPACE	NP-complete
All $-\left\{(+w)^{*}\right\}$	PSPACE-complete	in PSPACE	NP-complete
All	PSPACE-complete	in PSPACE	in PSPACE
RE $\leq k(k \geq 3)$	in PTIME	in PTIME	PSPACE-complete
one-unambiguous	in PTIME	in PTIME	PSPACE-complete

