
A

BonXai: Combining the simplicity of DTD with the expressiveness of
XML Schema

Wim Martens, Universität Bayreuth

Frank Neven, Hasselt University and Transnational University of Limburg

Matthias Niewerth, Universität Bayreuth

Thomas Schwentick, Technische Universität Dortmund

While the migration from DTD to XML Schema was driven by a need for increased expressivity and flexibil-

ity, the latter was also significantly more complex to use and understand. Whereas DTDs are characterized

by their simplicity, XML Schema Documents are notoriously difficult. In this article, we introduce the XML
specification language BonXai which incorporates many features of XML Schema but is arguably almost as

easy to use as DTDs. In brief, the latter is achieved by sacrificing the explicit use of types in favor of simple
patterns expressing contexts for elements. The goal of BonXai is not to replace XML Schema, but rather to

provide a simpler alternative for users who want to go beyond the expressiveness and features of DTD, but

do not need the explicit use of types. Furthermore, XML Schema processing tools can be used as a back-end
for BonXai, since BonXai can be automatically converted into XML Schema. A particular strong point of

BonXai is its solid foundation rooted in a decade of theoretical work around pattern-based schemas. We

present a formal model for a core fragment of BonXai and the translation algorithms to and from a core
fragment of XML Schema. We prove that BonXai and XML Schema can be converted back-and-forth on

the level of tree languages and we formally study the size trade-offs between the two languages.

1. INTRODUCTION

Through its endorsement by the W3C, XML Schema [Sperberg-McQueen and Thompson
2005] is nowadays adopted as the industry-wide standard for the specification of XML
schema languages. XML Schema can be considered as the replacement of DTDs with added
expressivity and flexibility regarding namespaces, modularization, and datatypes. As an un-
fortunate side effect, the migration to XML Schema has also a negative impact on usability.
Indeed, while DTDs are praised for their simplicity, XML Schema is notoriously difficult. It
is designed to be machine-readable rather than human-readable and the central document
of its specification (Part 1 of the specification) already consists of 100 pages of intricate text
[Gao et al. 2012]. In their book, Møller and Schwartzbach discuss the comprehensibility of
XML Schema as follows [Møller and Schwartzbach 2006, p. 156]:

XML Schema is generally too complicated and hard to use by non-experts. This
is a problem since many non-experts need to be able to read schemas to write
valid instance documents.

From a theoretical perspective, the most significant change in the migration from DTDs
to XML Schema is the introduction of complex types. This addition dramatically increases

Parts of this article are based on [Martens et al. 2015b] and [Martens et al. 2012].
We acknowledge the financial support of grant number MA 4938/2–1 from the Deutsche Forschungsgemein-
schaft (Emmy Noether Nachwuchsgruppe). We further acknowledge the financial support of the Future and
Emerging Technologies (FET) programme within the Seventh Framework Programme for Research of the
European Commission, under the FET-Open grant agreement FOX, number FP7-ICT-233599.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or commercial advantage
and that copies show this notice on the first page or initial screen of a display along with the full citation.
Copyrights for components of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any
component of this work in other works requires prior specific permission and/or a fee. Permissions may be
requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA,
fax +1 (212) 869-0481, or permissions@acm.org.
c© YYYY ACM 0362-5915/YYYY/01-ARTA $10.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2

the expressiveness [Murata et al. 2005; Martens et al. 2006], as explained next. In DTDs,
the definition of an element is determined by the element’s label. For instance, the DTD
rule

<!ELEMENT section (title, paragraph*)>

specifies that every section element should have the same type of content: a left child
labeled title, followed by a sequence of children labeled paragraph. Complex types in
XML Schema go beyond that and allow element definitions to depend on the context in
which they appear (e.g., the label of the parent or grandparent, or any other ancestor
element).1 For instance, in XML Schema we can define several types of section elements
by using complex types. We could define that, if a section element is a child of a preface
element, then it has the content as described before, but section elements appearing inside
chapter elements are also allowed to have children labeled subsection.

XML Schema is currently at version 1.1. Throughout this article, whenever we do not
explicitly mention a version number for XML Schema, we are referring to XML Schema
1.0. For the purpose of this article, XML Schema 1.1 can be understood as an extension of
XML Schema 1.0, i.e., every valid XML Schema 1.0 Document is also a valid XML Schema
1.1 Document.

1.1. Complex Types in Practice

Surprisingly, early studies revealed that XML Schema Documents (henceforth, SDs) occur-
ring in practice hardly took advantage of complex types to go beyond the expressivity of
DTDs [Bex et al. 2004; Bex et al. 2005]. While the precise cause of the latter restricted
use is unclear (we are not aware of any studies that tried to explain this), plausible ex-
planations are (i) that users did not know how to wield the extra expressiveness of XML
Schema; (ii) that it was too cumbersome to write sophisticated and precise schemas when
weighed against their obvious benefits or; (iii) that the full power of complex types is rarely
needed in practice. Actually, Møller and Schwartzbach assert that the introduction of types
is a major aspect complicating the design of XML Schema [Møller and Schwartzbach 2006,
p. 156]:

One important factor of the complexity of the language is the type mechanism.
Even without type derivations and substitution groups, this notion of types adds
an extra layer of complexity: an element in the instance document has a name,
some element declaration in the schema then assigns a type to this element
name, and finally, some type definition then gives us the constraints that must
be satisfied for the given element. In DTD, an element name instead directly
identifies the associated constraints.

In other words, the use of types to express structural constraints could be just too compli-
cated for the majority of users. In fact, the practical study we discuss next emphasizes that
structural constraints beyond the power of DTDs are still hardly used in practice.

Since the study of Bex et al. [Bex et al. 2004; Bex et al. 2005] is over a decade old and
had a corpus of only 225 SDs, we repeated this experiment on a much larger corpus of
SDs. We were able to obtain 8080 unique, well-formed SDs from the Web and analysed
to which extent they use ancestor information to determine complex types (see Section 4
for details). We observed the following: 80.66% of SDs associate at most one complex type
to every element name. In other words, these SDs do not use complex types beyond the
power of DTDs. For a further 13.03%, the complex types were determined by the parent

1Notice that, in principle, ancestors up to an arbitrary height can be relevant to determine the complex
type of an element.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:3

context (as in the example before, with preface and chapter). A further 3.64% also took
the grandparent context into account.

These studies are in strong contrast with the full expressive power of complex types in
XML Schema 1.0 or 1.1. In their full power, XML Schema 1.0 complex types allow the
type of an element in a document to depend on a regular condition on all ancestors of
the element [Martens et al. 2006].2 In practice, we therefore see that the power of regular
languages on the entire path of ancestors is not used at all. Instead, in more than 97%
of schemas, this regular test is extremely limited: it only looks at the element itself, its
parent, and its grandparent. Since XML Schema 1.1, one can use type alternatives to allow
attributes of ancestors influence the complex type of elements. We found 5 schemas (0.06%)
that use this feature.

1.2. A Main Idea of BonXai

A main idea underlying BonXai is to make it easier to define schemas for which the content
of elements depends on an easy-to-specify context. In BonXai, one would write the rule

section = {element title, (element paragraph)*}

to express the DTD rule before and the two rules

preface/section = {element title, (element paragraph)*}
chapter/section = {element title, (element paragraph)*, (element subsection)*}

to define the content of the section inside preface, resp. chapter, respectively. The seman-
tics of the first of the two rules is “the content of every section element inside a preface
element is a title element, followed by a sequence of paragraph elements” (similarly for
the second rule).

An SD fragment that uses complex types for expressing the preface- and chapter rules
is shown in Figure 1.2. The semantics of this SD code is that “the TprefaceSection (resp.,
TchapterSection) complex types occur inside preface (resp., chapter) elements and the
content of these types of sections are [as specified in the schema]”. We note that one could
also write the SD fragment using anonymous complex types. We decided against this because
anonymous complex types come with a few disadvantages and may be considered to be bad
style [Butek and Kendrick 2011]. We will discuss the relationship between XML Schema
anonymous types and BonXai in Section 3.4.

We have implemented a prototype translation from BonXai to XML Schema 1.0. As such,
(i) BonXai only contains features that can be translated to XML Schema and (ii) XML
Schema tools can be used as a back-end for BonXai. We stress that the objective of BonXai
is not to incorporate every feature that XML Schema offers. For instance, BonXai does not
use named types and therefore does not support complex type inheritance (e.g. through
restriction and extension). Complex type inheritance can be quite useful because it allows
for a development style closely resembling object-oriented design and thereby facilitating
modularization.

BonXai is rather intended to provide a way to specify and manipulate a large class of
XML Schemas that only adds little additional complication beyond DTDs and is more
human-readable than XML Schema. Many XML Schema features have a parallel in BonXai
and many XML Schema documents can be translated to BonXai.3

The automatic translation into (and largely also from) XML Schema is an important fea-
ture which distinguishes BonXai from other schema languages for XML. While several good

2We mean this in a very precise way, namely the equivalence between items (a) and (b) in [Martens et al.
2006, Theorem 7.1].
3From our corpus, 2220 schemas (27,5%) only use features that we already support in BonXai and for which
our translation to BonXai is exact (for other schemas, the translation to BonXai may approximate). If we
would add native support for simple types, this number would be 5621 (69.6%).

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4

<element name="preface">
<sequence>
[...]
<element name="section" type="TprefaceSection"/>
[...]

</sequence>
</element>

<element name="chapter">
<sequence>
[...]
<element name="section" type="TchapterSection"/>
[...]

</sequence>
</element>

<complexType name="TprefaceSection">
<sequence>
<element name="title" [...]/>
<element name="paragraph" maxOccurs="unbounded" [...]/>

</sequence>
</complexType>

<complexType name="TchapterSection">
<sequence>
<element name="title" [...]/>
<element name="paragraph" maxOccurs="unbounded" [...]/>
<element name="subsection" maxOccurs="unbounded" [...]/>

</sequence>
</complexType>

Fig. 1. SD fragment with complex types. Some parts, which could, e.g., contain more element tags or
complex type references, are omitted, indicated by [...].

alternatives for XML Schema exist, most notably DSD, Schematron and Relax NG [DSD
2002; Schematron 1999; RelaxNG 2001], each with their own user base, they cannot be
directly compiled into XML Schema for the simple reason that they can express schemas
that are not definable in XML Schema 1.0 or 1.1. We give a comparison with contemporary
schema languages in Section 3.5. On the theoretical side, a strength of BonXai is its solid
foundation which is rooted in pattern-based schemas [Martens et al. 2007; Martens et al.
2006] and which facilitates reasoning and transformation algorithms [Gelade and Neven
2011; Kasneci and Schwentick 2007].

1.3. Structure of the Article

The focus of this article is on the main features of BonXai and the mathematical foundations
of the back-and-forth translation algorithms between BonXai and XML Schema. The paper
is structured as follows.

Section 2 provides a light-weight introduction to BonXai. In particular, we present an
example document together with a DTD, we show how the DTD can be written in BonXai
and, subsequently, how the schema can be extended with features that go beyond the
capabilities of DTDs. (An equivalent SD to the final BonXai schema can be found in the
Appendix.)

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:5

In Section 3, we discuss more features of BonXai, their correspondence to XML Schema
features, and consider its relationship to other XML schema languages. We also discuss our
prototype implementation for a translator from DTD to BonXai and from BonXai to XML
Schema and back (available at www.bonxai.org). Section 4 contains details on the practical
study we conducted on SDs.

In Section 5, we present the formal core of the translation routines between BonXai
and XML Schema. To this end, we define formal models for the theoretical core of XML
Schema and BonXai, stripped of all the features that are not essential for understanding
the translations. We bring both languages to the level of abstraction where they define sets
of labeled unranked trees. We formally describe the translation algorithms on this level and
prove that, in terms of languages of labeled unranked trees, BonXai is equally expressive as
XML Schema. Furthermore, we analyze the worst-case blow-ups in these translations and
prove why our algorithms are worst-case optimal. Finally, we discuss practically relevant
fragments of XML- and BonXai Schemas in which the conversions are particularly efficient.
We conclude in Section 6.

2. BONXAI BY EXAMPLE

In this section, we discuss a detailed (but still toy) example to highlight several features of
BonXai. We will follow the use case of an existing DTD in which we want to incorporate
XML Schema features.

Example 2.1 (An example document). Consider the XML document in Figure 2 (and
its associated tree representation in Figure 3). The document is intended to represent con-
tent formatted in a fictional markup language. The document element has three children:
template, userstyles (which contains user-defined style definitions), and content. The
content part contains the actual text of the document, with markup (bold, font changes,
etc.). Inside content, the text is structured by section elements, which can be nested to
form subsections, etc.

The template element should describe the default formatting of the text within content.
One could think that template defines ACM SIG style, for example. Within template, the
default formatting of sections is specified within the section child of template and the
default formatting of subsections within the section grandchild. So, a difference between
template and content is that, in template, there is at most one section element per
nesting depth. For the sake of the example, the rationale is that the default formatting of
all sections at the same level should be the same. Furthermore, template does not contain
text since all the actual text is within content.

The userstyles element contains a list of style elements. Each such style element
should be thought of as being some user-defined style (e.g., a fancy font for bold mathemat-
ics). Each style element has a unique name, which can be referred to from within content.
Our example uses only one user-defined style: userdefined1.

We chose our example such that it has elements within content and within template that
have the same element names but different syntax and semantics, notably, the section
element. Similarly, style has a different semantics if it is used within userstyles, within
template, or within content. DTDs do not have the expressive power to take these dif-
ferences into account and must define a common content model for all elements with the
same name. That is, a DTD can only define one rule for section, independent of where a
section element occurs in the document.

Example 2.2 (DTD for Example 2.1). Figure 4 contains a DTD against which the XML
document from Figure 2 is valid. We use the entity markup that allows us to write the schema
more succinctly. Notice that all element names in markup can be used recursively. This is

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6

<document xmlns="http://example.org">
<template>

<section>
<titlefont name="SomeFont" size="42"/>
<style></style>
<section>

<titlefont size="23"/>
</section>

</section>
</template>
<userstyles>

<style name="userdefined1">

<color color="red"/>

</style>
<style name="...">

...
</style>

</userstyles>
<content>

<section title="Introduction">
In this paper we discuss ...
<section title="Motivation">

Our problem is important because ...
<bold>This text is bold</bold><italic>and this is italic</italic>
<style name="userdefined1">

This text is red and uses a different font.
</style>

</section>
</section>
<section title="...">

...
</section>

</content>
</document>

Fig. 2. An XML document for our running example.

because we did not want to specify a specific ordering on how markup such as bold, italic,
etc. should be nested in the tree.

We now discuss two BonXai schemas for the running example. The BonXai schema in
Figure 5 closely resembles the DTD given in Figure 4 and, in particular, does not use context
information beyond the power of DTDs. The BonXai schema in Figure 6 on the other hand
uses this additional expressiveness, in the same way as an SD would. Both examples use a
compact syntax inspired by Relax NG [RelaxNG 2001].

We first discuss the BonXai schema in Figure 5 and draw parallels with the DTD. In
fact, the only semantical differences between this BonXai schema and the DTD are that the
BonXai schema has a target namespace, it defines a global element (document) that can be
referred to from outside, and it uses the XML Schema simple types string and integer.

The main part of the BonXai schema is inside the grammar block. Like a DTD, this block
consists of a collection of rules. The right-hand sides of rules denote content model defini-
tions. In this example, the left-hand sides are just element- or attribute names.4 Comparing
the DTD and the BonXai schema, the only essential difference is that, in BonXai, we can

4In general, the left-hand sides can be arbitrary regular expressions over element names (optionally ending
with attributes).

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:7

document

template

section

titlefont
@name=”SomeFont”

@size=”42”

style

font
@name=”Times”

@size=”12”

section

titlefont
@size=”23”

userstyles

style
@name=”userdef.1”

font
@name=

”MyFancyFont”

color
@color=”red”

style
@name=”. . . ”

. . .

content

section
@title=”Intro. . . ”

text section
@title=”Motivation”

text bold

text

italic

text

style
@name=

”userdef.1”

text

section
@title=”. . . ”

. . .

Fig. 3. Our example XML document as a tree.

<!ENTITY % markup "bold | italic | font | style | color">
<!ELEMENT document (template, userstyles, content)>
<!ELEMENT template (section)>
<!ELEMENT userstyles (style)*>
<!ELEMENT content (section)*>
<!ELEMENT section (#PCDATA | titlefont | section | %markup;)*>
<!ATTLIST section title CDATA #IMPLIED>
<!ELEMENT bold (#PCDATA | %markup;)*>
<!ELEMENT italic (#PCDATA | %markup;)*>
<!ELEMENT font (#PCDATA | %markup;)*>
<!ATTLIST font name CDATA #IMPLIED

size CDATA #IMPLIED>
<!ELEMENT style (#PCDATA | %markup;)*>
<!ATTLIST style name CDATA #IMPLIED>
<!ELEMENT titlefont EMPTY>
<!ATTLIST titlefont name CDATA #IMPLIED

size CDATA #IMPLIED>
<!ELEMENT color (#PCDATA | %markup;)*>
<!ATTLIST color color CDATA #REQUIRED>

Fig. 4. A DTD describing the XML document in Figure 2.

immediately specify the attributes of an element in its content model definition, similarly
as in XML Schema.

The BonXai schema in Figure 5 is written to make the correspondence to the DTD
apparent, but it could be written more compactly. For instance, using regular expressions
over element names on the left-hand sides of rules, we could just as well write:

(bold | italic) = mixed { (group markup)* }

The semantics of this rule would be that “all bold or italic elements have mixed content
and allow all elements inside the markup group as children”. We see here that, unlike
anonymous types in XML Schema, the content model definitions for one element (bold)

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8

target namespace http://example.org
namespace xs = http://www.w3.org/2001/XMLSchema

global { document }

groups {
group markup =

{ element bold | element italic | element font | element style | element color }
}

grammar {
document = { element template, element userstyles, element content }
template = { element section }
userstyles = { (element style)* }
content = { (element section)* }
section = mixed { attribute title,

(element section | element titlefont | group markup)* }
bold = mixed { (group markup)* }
italic = mixed { (group markup)* }
font = mixed { attribute name, attribute size, (group markup)* }
style = mixed { attribute name, (group markup)* }
titlefont = { attribute name, attribute size }
color = mixed { attribute color, (group markup)* }
@name = { type xs:string }
@color = { type xs:string }
@title = { type xs:string }
@size = { type xs:integer }

}

Fig. 5. A BonXai schema similar in spirit to the DTD in Figure 4.

can be re-used for defining the content of another element (italic). Similarly, we could
also write a single rule for the attributes name, color, and size:

(@name | @color | @title) = { type xs:string }

Next, we want to illustrate how BonXai’s expressiveness can be used to go beyond the
type mechanism of DTDs. In our example, we actually have two types of sections: one is
used within template and the latter one within content. The former contains definitions
for formatting, while the latter has the actual text content of the document. The rule

template//section = { element titlefont?, element style?, element section?}

defines the former kind. It stipulates that section elements occurring somewhere below
a template element can contain a titlefont child, a style child, and a section child.
Left-hand sides of BonXai rules can use the XPath axes / and //, which stand for “child”
and “descendant”, respectively. The latter kind of section can be defined with the rule

content//section = mixed { attribute title, (element section |group markup)* }

which stipulates that elements occurring somewhere below a content element should con-
tain a title attribute, optional further sections and markup, and may contain text (indicated
by the keyword mixed). The keyword mixed allows mixed content, i.e., it is allowed to inter-
leave text with XML tags. A full BonXai schema is defined in Figure 6. (For completeness,
we provide an XML Schema equivalent to the BonXai schema in Figure 6 in Appendix A.)

Left-hand sides of BonXai rules can use arbitrary regular expressions over element names.
This gives BonXai, in theory, the same power to define element content depending on its
ancestors as complex types in XML Schema 1.0. We prove this in Section 5 by giving
back and forth translations between a formalization of a core of BonXai and a core of XML

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:9

target namespace http://example.org
namespace xs = http://www.w3.org/2001/XMLSchema

global { document }

groups {
attribute-group fontattr = { attribute name?, attribute size? }
group markup = { (element bold | element italic | element font |

element style | element color)* }
}

grammar {
document = { element template, element userstyles, element content }
content = { (element section)* }
template = { (element section)? }
userstyles = { (element style)* }
content//section = mixed { attribute title, (element section | group markup)* }
content//style = mixed { attribute name, group markup }
content//font = mixed { attribute-group fontattr, group markup }
content//color = mixed { attribute color, group markup }
(bold | italic) = mixed { group markup }
template//section = { element titlefont?, element style?, element section? }
template//style = { element font? & element color? }
userstyles/style = { attribute name, element font? & element color? }
(userstyles | template)//color = { attribute color }
(userstyles | template)//(font | titlefont) = { attribute-group fontattr }
(@name | @color| @title) = { type xs:string }
@size = { type xs:integer }

}

Fig. 6. A BonXai schema equivalent that describes the document in Figure 2 more precisely and uses
several XML Schema features. An XML Schema describing the same set of XML documents as this BonXai
schema can be found in Appendix A.

Schema 1.0.5 In the regular expressions over element names, BonXai denotes concatenation,
disjunction, Kleene star, and “optional” by “,”, “|”, “*”, and “?”, as in DTDs. The operator
“&” stands for unordered concatenation, which is known as xs:all in XML Schema.

A left-hand side of a BonXai rule starting with / means that the matching of the left-
hand-side must start at the root of the document. For instance, we could just as well have
written /document. A left-hand side starting with // allows the first element to match
anywhere in the document. If a left-hand side does not start with / or //, we implicitly
assume that it starts with //.

The main difference between the BonXai schema in Figure 6 and the XML Schema
Definition in Appendix A is that contexts in BonXai are defined explicitly. Another way of
viewing the difference between XML Schema and BonXai is top-down versus bottom-up.
In XML Schema, all relevant information about the root-path is propagated in a top-down
fashion, encoded in types, while BonXai, instead, looks upward from a node, thus separating
types from their inference.

3. BONXAI, THE PRACTICAL LANGUAGE

In Section 3.1, we present BonXai in more detail but do not intend to discuss every feature of
the language. Instead, we provide a high-level overview and refer the reader to [Martens et al.

5Expanding BonXai with a feature that corresponds to XML Schema 1.1 type alternatives is conceptually
not difficult. The main idea of the proofs in Section 5 would be the same, but their precise formulation
would be burdened with the additional incorporation of attributes.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10

2015a] for further details. We just discuss a few BonXai-specific matters (ancestor patterns,
child patterns, and priorities) and, since we want to translate BonXai to XML Schema,
argue how BonXai seamlessly incorporates many features also present in XML Schema (like
differentiation between elements/attributes, element- and attribute groups, namespaces,
constraints, schema imports, mixed types, default values, anytype/anyattribute). Section
3.3 explains BonXai’s priority system and Section 3.4 the relationship between BonXai and
XML Schema’s anonymous complex types.

The design of BonXai is heavily influenced by existing XML schema languages. We discuss
these in Section 3.5. In Section 3.6, we discuss a system we built for developing and working
with BonXai schemas and for translating back and forth between BonXai and XML Schema.
In Section 3.7 we discuss a selection of use cases for the system.

3.1. The BonXai Schema Specification Language

BonXai schemas consist of up to five blocks. First is the namespace block, declaring all
namespaces used in the schema. The second block is called the global block and specifies
which element names can occur at the root of documents that match the schema. Third, we
have an optional group block, which can define groups, similar to XML Schema groups (but
without type information). The fourth block is called the grammar block and is the actual
core of the schema. The grammar block contains the definitions of the rules that define
the structure of documents. Finally, there is an optional constraints block which defines
integrity constraints.

We now discuss selected constituents of BonXai and their relationship to XML Schema.
We make two groups: BonXai-specific constructs, which are constituents for which BonXai
differs from XML Schema, and compact syntax constructs, which have exactly the same
semantics in XML Schema than in BonXai.

3.1.1. BonXai-Specific Constructs. The following constructs constitute the core of BonXai.
Here we explain them from a practical point of view. We do not present their formal se-
mantics in detail, which is out of scope of the article. However, Section 5 formally defines
BXSDs, which are very close to the restriction of BonXai to these constructs.6

Global Elements. These are the elements declared in the global block. Global elements
can occur as root elements in XML documents that match the schema. Furthermore, global
elements are precisely the elements that can be referenced from foreign namespaces. In our
running example, there is a single such element, called document.

Global elements in BonXai therefore fulfil a similar role as they do in XML Schema. In
XML Schema, the definition of global elements is implicit: an element is global if and only
if it is defined directly below the xs:schema element. We chose to have an explicit definition
because this allows us to write simpler rules in the grammar block. Indeed, if a rule in the
grammar block just has an element name as a left-hand side, this does not automatically
imply that this element is global. As such, the explicit global block allows rules in the
grammar block to look more like DTD rules.

Rules. Rules within the grammar-block of a BonXai schema are of the form

<ancestor pattern> = <child pattern>

Intuitively, the semantics of such a rule is that “every node selected by the ancestor pattern
should have a list of children that satisfies the child pattern”.

6The formal model in Section 5 ignores features that are not essential for understanding the translation
between BonXai and XML Schema, such as attributes, namespaces, the special syntax for ancestor patterns,
and some of the operators in child patterns.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:11

Ancestor Patterns. The ancestor pattern (left of the equality sign in rules) describes the
context of the rule and should be matched against paths in the tree that start from the
root. Ancestor patterns are variants of regular expressions, built from element names and
attribute names (i.e. names starting with @). The regular expressions have the operators
“|” (union), “/” (concatenation or child), “//” (descendant), “∗” (Kleene star), “+” (one-
or-more), and “?” (zero-or-one). Subpatterns can be grouped using round brackets.

For convenience, a pattern that does not start with either / or // is implicitly assumed
to start with //. This allows to just use an element name as ancestor pattern to match all
elements of this name, as in DTDs. We allow ancestor patterns to contain attribute names
(prefixed with @) for specifying the types of the attributes.

Child Patterns. In its simplest form, a child pattern is a regular expression describing
the content model of a set of elements. To allow some other features (e.g. groups) and not
introducing ambiguity, all element names have to be prefixed with the keyword element.
Regular expressions in child patterns are built using concatenation (,), union (|), inter-
leaving(&), Kleene closure (*), one-or-more (+), zero-or-one (?) and counters ({n,m}). We
may write {n,*} to indicate that m is unbounded. Subexpressions can be grouped using
round brackets. The interleaving operator & is BonXai’s equivalent of the all-pattern in
XML Schema. As such, its use is restricted in the same way as all-patterns are restricted
in XML Schema, see [Gao et al. 2012, Section 3.8.2]. (In plain words, these restrictions say
that no content model should use an interleaving operator and at the same time a union or
a concatenation operator. Furthermore, in content models containing an interleaving oper-
ator, counters are only allowed directly above element declarations in the syntax tree of the
regular expression.)

Alternative to being a regular expression, the child pattern can also be a type reference
to some type specified in some (foreign) namespace. This is mostly useful for using simple
types. For more details, we refer to the paragraph about type references further in this
section.

In the case that the ancestor pattern of the rule can match an attribute, i.e., it contains
a label starting with @, the child pattern has to be a reference to a simple type.

The type of the attribute can either be declared directly in the child pattern containing
the attribute, or by a separate rule that matches the attribute, i.e., whose ancestor pattern
selects the attribute.

Priorities. It is possible to define BonXai rules such that two or more rules match the
same path. When such a multiple match occurs, BonXai gives priority to the rule that
occurs last in the schema. To illustrate, assume that in the running example of Section 2
we would change the ancestor pattern content//section to section. Then we would have
the rules

section = mixed {attribute title, (element section|group markup)*}
template//section = { element titlefont?, element style?, element section? }

in the schema. Both rules are matched by a section element that is below a template
element. In cases like this, the rule that occurs last in the schema takes priority. Here,
template//section takes priority and therefore the semantics of the modified schema are
the same as the semantics of the original schema. The rationale behind priorities is that a
developer can first write down rules that generally apply in the schema and write down the
special cases and exceptions later. We introduced priorities in BonXai because they were
required for ensuring that BonXai can be translated into XML Schema. We explain this
matter in more detail in Section 3.3.

3.1.2. Compact Syntax Constructs. The semantics of the following constructs is the same
in BonXai and in XML Schema. BonXai simply offers a compact syntax for them. As a

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12

consequence, translating these back and forth between BonXai and XML Schema is not
difficult.

Attributes. Attributes are specified at the beginning of child patterns, that is, child pat-
terns can have an optional list of attribute declarations before the start of the element
declarations. Attributes are seperated by comma and can be followed by a ?, indicating
that the attribute is optional.

Groups. Groups can be used in BonXai to abbreviate parts of child patterns that are
common to several different patterns, similar to internal entities in DTD and groups in
XML Schema (although BonXai groups do not have complex type information). In our
running example, we use the group markup, to abbreviate the disjunction of the elements
bold, italic, etc. Groups are declared in the groups block and can be used using the
keyword group inside child patterns.

Attribute groups can be used analogously to groups. They are prefixed by the keyword
attribute-group, as for example in the rules for font-elements in Figure 6.

Mixed and nillable content models. Mixed or nillable content models are declared using
the keyword mixed, respectively, nillable, in front of the child pattern. Both keywords
can be combined.

Default and fixed values. Default values for attributes and elements using a simple type
can be declared using the syntax type <typename> default "<value>". Fixed values can
be declared analogously.

Integrity Constraints. BonXai allows to express the same integrity constraints as XML
Schema (i.e., unique, key, and keyref). The term “keyref” is taken from XML Schema, where
it denotes a foreign key constraint. As in XML Schema, keys should have a name, so that
keyrefs can refer to them. The general syntax of key constraints is

key <name> <ancestor pattern> { <selector> { <fields> } },

where the ancestor pattern is used to select the context for which the key should be defined
and selector and fields have the same meaning as in XML Schema. The syntax for unique
constraints is the same. The semantical difference between key and unique is – as in XML
Schema – that a key requires all fields to exist, which is not required for unique constraints.

In a keyref, the semantics of <name> is that it should be the name of the key it refers to.

Example 3.1 (Keys for Example 2.1). To express in our running example that names of
user-defined styles be unique, we can use the key constraint

key stylekey /document { //userstyles/style { @name } }

It says that, below the document root, paths that match //userstyles/style/@name
uniquely identify paths that match //userstyles/style (as in XML Schema).

Finally, we can express that every style used in content should be declared in
userstyles by the foreign key constraint

keyref stylekey /document { //style { @name } }

Namespaces. BonXai has full namespace support. The target namespace is declared us-
ing the keyword target namespace. Other namespaces can be declared using the syntax
namespace <prefix> = <namespace URI>. The target namespace will be used as default
namespace for all names, which are not prefixed with a namespace prefix. Names in other
namespaces can be expressed by <prefix>:<local name>, as in XML Schema.

To reflect the usual practice of using qualified element names and unqualified attributes,
all element names without a namespace prefix are in the target namespace and all attribute
names without a namespace prefix are in the empty namespace, i.e., unqualified.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:13

It is possible (but discouraged) to use unqualified element names by binding the empty
namespace to some prefix. Qualified attribute names can be achieved by adding a namespace
prefix for the target namespace and explicitly using this namespace prefix for all attribute
names that should be qualified.

References to foreign namespaces. BonXai allows to refer to content of foreign XML
Schemas, so that content that is defined elsewhere does not need to be re-defined within
the BonXai schema. In particular, it is possible to refer to foreign elements, attributes, and
XML Schema simple- or complex types. We explain how foreign content can be referenced
and how we intend the use of foreign references in BonXai.

Global elements of foreign namespaces can be referenced by using the elementref key-
word inside child patterns. (In XML Schema it is only possible to refer to foreign el-
ements if they are global elements in the foreign schema. We inherit this restriction.)
For example, if we want to be able to embed SVG vector images, this can be ac-
complished in our running example by adding the namespace declaration namespace
svg=http://www.w3.org/2000/svg and extending the group markup with elementref
svg:svg.

Similarly, foreign global attributes can be referenced by using the attributeref
keyword. For example, if we want to be able to add XLink7 references to doc-
uments, this can be accomplished by adding the namespace declaration namespace
xlink=http://www.w3.org/1999/xlink and extending the content model of the document
rule with attributeref xlink:href?. (We explain how to import a bigger fragment of the
XLink language when we discuss wildcards next.)

Type References. References to types (in foreign XML namespaces) are mainly intended
to refer to simple types like xs:integer and xs:string. Type references are expressed
by replacing the right-hand side of a rule with { type ns:typename }, where type is a
keyword, ns should be a declared namespace, and typename the name of the target type
inside namespace ns. In our running example, the rule @title = { type xs:string }
express that all title attributes throughout the document should use the type string,
which is declared in the XML Schema namespace.

In general, it is also possible (but perhaps not encouraged) to refer to foreign XML Schema
complex types. For example, the rule //foo = { type svg:svgType } would state that
each element with name foo has the type svgType of the svg namespace. (However, we feel
that using elementref svg:svg instead, whenever possible, is more elegant.)

Right now, all type references need to go to a foreign namespace, as BonXai does not
allow users to define new types. (We consider extending BonXai with a syntax for defining
simple types, see Section 3.2.)

In summary, although BonXai is intended to be a language that reduces the use of types
to a minimum, we do allow references to foreign types. The reasons for this decision are
that it allows the use of XML Schema simple types and that we like to allow users to easily
import (e.g., well-known, standard) types which are defined elsewhere. It should be noted
that, whenever an element is declared to have an (XML Schema-)type, no BonXai rules
are applied to nodes below this element, as the set of allowed subtrees for this element is
entirely determined by the type.

Wildcards. Wildcards are expressed by any-patterns in XML Schema. Note that XML
Schema wildcards can be restricted to certain namespaces and it can be declared whether
elements matched by any-patterns should be checked against some schema declaration or
not. BonXai provides the same mechanism for wildcards. For example, to allow arbitrary

7XLink is a language intended to allow embedding of hyperlinks and some other meta-information to
arbitrary XML documents in a standardized way.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14

foreign markup, we could extend the markup group with any {lax namespace {##other}},
meaning, that elements from other namespaces are allowed and should be validated, if a
declaration is present. As in XML schema, the validation policy can be changed to strict (a
declaration has to be present) or skip (the subtree below matched elements is not validated
at all).

It is also possible to allow arbitrary attributes using the keyword anyattribute. As for ar-
bitrary elements, the wildcard can be restricted to certain namespaces. For example to allow
arbitrary XLink information to be added to document roots, we can extend the document
node by anyattribute {strict namespace {http://www.w3.org/1999/xlink}}. The
strict keyword says that the content should be validated and validation should fail if
the XLink declaration is not present.

Annotations. Annotations can be used to add further information to a schema. In BonXai,
annotations can be added before every rule. Annotations have no semantical meaning for
the schema. However they might have a meaning for software used to create and edit BonXai
schemas.

Our implementation (see Sections 3.6 and 3.7) uses annotations to preserve type names
when converting XML Schema to BonXai. This way the user can easily grasp the correspon-
dence between XML Schema complex types and BonXai rules. When converting BonXai
to XML Schema, these annotations are used to generate meaningful XML Schema complex
type names. For example, our implementation uses the annotation

@typename=MyTypename
//a = { ... }

with the meaning that a complex type created for the rule //a = { ... } should be named
MyTypename when converting to XML Schema. In theory, it may be possible that more than
one XML Schema complex type needs to be created for a single BonXai rule. In this case
our implementation adds numbers after the given name.

Unconstrained Elements. It is theoretically possible to write BonXai schemas which do
not constrain certain ancestor paths. For example, if a BonXai schema only has the two
rules

/a = { element b, element c}
//b = { ... }

then the c-child of the root in a corresponding document does not have a matching ancestor
pattern. In this case, BonXai allows any content below this c-child. Concretely, we translate
this case to XML Schema’s anytype, which is the most general type in XML Schema [Pe-
terson et al. 2012, Section 3]. We treat such elements the same as elements that refer to an
XML Schema type (see the last paragraph of References to foreign namespaces). Therefore,
as a consequence, no BonXai rules are matched against descendants of the c-child of the
root.

3.2. Future Extensions

We briefly mention some possible future extensions of BonXai.

Simple Types. A compact syntax for specifying simple types is a natural extension of
the BonXai language. There are two main reasons why simple type specifications were not
there from the beginning. The first is that we wanted to concentrate first on the core of
the language: structural expressiveness and the rule mechanism. The second reason is that
there is a workaround for those who want to use new simple types in a BonXai schema: one
can define an XML Schema that only defines these simple types and import it in BonXai.
For these reasons, simple types were not a priority.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:15

Type Alternatives. XML Schema 1.1 allows to specify alternative types for elements, where
the effective type is selected by some attribute value of the instance document.

If the need arises, it is possible to add support for alternative content models to BonXai
by allowing XPath node tests in ancestor patterns. These node tests can be restricted in a
syntactical way to keep compatibility with XML Schema, i.e., to precisely allow those rules
that can be mapped to XML Schema using the type alternatives mechanism.

Substitution Groups. Support for substitution groups can, in principle, be added to
BonXai. However, we do not know yet if this extension makes sense since, in practice, sub-
stitution groups are very often used in combination with complex type inheritance, which
we do not support.

3.3. Priorities in BonXai

In this subsection, we explain some fine points of the priority-based semantics of rules in
BonXai schemas. Priorities were mainly introduced to avoid compatibility problems with
XML Schema. However, we think they can also be convenient, as we will explain below.

In the theory of pattern-based schemas for XML (of which BonXai is an example), two
alternative semantics for multiple matches of rules have been investigated [Gelade and Neven
2011; Kasneci and Schwentick 2007]: existential semantics and universal semantics. We say
that the ancestor-pattern of rule r = {s} matches a node n in an XML tree, if the string of
element names from the root of the document to n matches the regular expression r. The
two semantics can now informally be defined as follows:

— Universal semantics: for each node n in the XML tree and each rule r = {s} for which
the ancestor pattern matches n, the children of n must match s.

— Existential semantics: for each node n in the XML tree, there must be at least one rule r
= {s} for which the ancestor pattern matches n and the children of n match s.

Thus, under universal semantics, we would require a matching element to match all con-
tent model definitions of relevant rules and under existential semantics, we would require a
matching element to match at least one content model definition of a relevant rule. Unfor-
tunately, neither semantics can be applied while retaining at the same time compatibility
with the Unique Particle Attribution (UPA) rule of the W3C XML Schema specification
[Gao et al. 2012, Section 3.8.6.4]. In a nutshell, UPA requires content model definitions
to be deterministic regular expressions [Brüggemann-Klein and Wood 1998]. Furthermore,
translating BonXai schemas under the universal or existential semantics to XML Schema,
requires deterministic regular expressions to be closed under finite unions and finite inter-
sections, respectively, which is not the case [Brüggemann-Klein and Wood 1998; Caron et al.
2011; Losemann et al. 2012]. As an aside we note that deterministic regular expressions are
also not closed under complement [Caron et al. 2011; Losemann et al. 2012].

A “quick and dirty” solution could be to require ancestor patterns in rules to have an
empty intersection. However, we feel that this would be very user-unfriendly. Consider
again our running example in Figure 6. The two ancestor patterns template//section
and content//section have a non-empty intersection since both could, in theory, match
a word that has an occurrence of template, followed by content, followed by section
(even though such a word cannot occur as a path in trees defined by the schema). Changing
the two ancestor patterns to mend this problem would make the schema less readable and
require users to have deeper expertise in formal language theory.

We show in Section 5 that the priority-based semantics of BonXai does not have the
expressivity problems of universal or existential semantics, by giving conversion algorithms
from the core of BonXai to XML Schema and back; and by observing that the Unique
Particle Attribution constraint is preserved. Furthermore, we feel that priorities make sense
when designing schemas (specify general rules first, special cases later) and lead to more

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16

readable schemas. Therefore, a sensible way of using priorities is for cases where, for a set
of elements with the same name, most of the elements have the same content model, but
there are a few exceptions. (Notice that, if two ancestor patterns define regular expressions
that end with different element names, the intersection of the rules is always empty and
priorities are irrelevant.)

We conclude this section with a use case for priorities: schema evolution. In our running
example, sections can be nested arbitrarily deeply. Assume that we want to change the
schema such that the nesting depth of sections is at most three. In the BonXai schema in
Figure 6, this can be achieved by inserting the rule

content/section/section/section = { attribute title, group markup }

at the end of the rules that start with content. The semantics of this rule would be that
subsubsections only have a title attribute and markup, but no section children.

If one would want to perform the equivalent change directly in XML Schema, one would
be required to make three complex types for sections below content: one for each allowed
nesting depth. The change would introduce much more clutter.

3.4. BonXai and XML Schema Anonymous Types

We briefly discuss the relationship between XML Schema anonymous types and BonXai.
As BonXai does not explicitly use named types, one may believe that it essentially offers
a compact syntax for anonymous complex types in XML Schema. However, this is not the
case for the simple reason that BonXai is more expressive. For instance, BonXai allows the
content of nodes to depend on ancestors arbitrarily high in trees (cfr. Section 5) which is
not possible using only anonymous types.

From a more practical perspective, XML Schema anonymous types come with a set of
disadvantages and may be considered to be bad style. Butek and Kendrick [Butek and
Kendrick 2011] note the following disadvantages of anonymous types:

(1) they cannot be re-used to define content of other elements;
(2) they still often must be named (as some applications need names for the complex types);

and
(3) they may render a schema less readable (they are less elegant as named types).

In contrast, BonXai does not have any of these three disadvantages:

(1) BonXai content model definitions can be re-used for other elements (see, for example,
in Figure 6, where we use the same content for bold and italic elements or for font
and titlefont elements).

(2) BonXai uses XML Schema as a back-end and our translation8 from BonXai to XML
Schema does not generate anonymous types. As explained in Section 3.1 (under Anno-
tations), users can even specify the name of the complex type to be generated.

(3) This is purely a matter of opinion, but we feel that BonXai rules are even simpler to
understand than XML Schema code with named types. For instance, we believe that the
two BonXai rules for preface/section and chapter/section in the Introduction are
simpler to understand than the corresponding fragment of the XML Schema document.

3.5. A Comparison With Other Schema Languages for XML

As already stated before, BonXai borrows concepts from several existing schema languages
for XML. The purpose of this section is to give an overview of the most well-known of those
languages and discuss their relationship with BonXai.

8Here, we refer to the translation we implemented, not the translation between the formal models of the
core of the languages in Section 5, which is a drastic simplification.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:17

Following [Møller and Schwartzbach 2006], DSD2 [DSD 2002] (Document Structure De-
scription 2.0) is a language developed by the University of Aarhus and AT&T Research
Labs whose primary goal is to be simple yet expressive. Like BonXai, DSD2 is based on
rules which must be satisfied for every element in the input document. BonXai and DSD2
are incomparable in how context is defined. While DSD2 is far more expressive than DTDs,
its exact expressiveness in formal language theoretic terms is unclear. It allows context to be
defined in terms of Boolean expressions which can refer to structural predicates like parent
and ancestor, but, unlike BonXai, also allows to look downward using predicates like child
and descendant. BonXai on the other hand harnesses the full power of regular languages on
the ancestor path, while DSD2 seems to remain within the star-free regular languages (on
the ancestor path). For this reason, DSD2, on a structural level, is incomparable to XML
Schema.

Relax NG [RelaxNG 2001] has been developed within the Organization for the Advance-
ment of Structured Information Standards (OASIS). Like DSD2, its main goal is to combine
simplicity with expressivity. In formal language theoretic terms, the expressiveness of Re-
lax NG corresponds to the unranked regular tree languages which strictly includes XML
Schema [Murata et al. 2005; Martens et al. 2006]. Like XML Schema, Relax NG is grammar
based and utilizes types to define context. However, Relax NG schemas are not restrained
by the Unique Particle Attribution constraint or the Element Declarations Consistent con-
straint. So, unlike XML Schema and therefore BonXai, the context of an element in Relax
NG can depend on the complete tree. As BonXai strives for simplicity it utilizes a readable
compact syntax which is inspired by that of Relax NG.

Schematron [Schematron 1999] is a rule-based language based on patterns, rules and as-
sertions. Basically, an assertion is a pair (φ,m) where φ is an XPath expression and m an
error message. The error message is displayed when φ fails. A rule groups various assertions
together and defines by means of an XPath expression a context in which the grouped asser-
tions are evaluated. Patterns then group various rules together. Schematron is not so much
intended as a stand-alone schema language but can be used in cooperation with existing
schema languages. BonXai shares the use of XPath-expressions with Schematron, although
BonXai restricts them to a very small subset (linear expressions) to ensure compatibility
with XML Schema.

Co-constraints is an overloaded term which generally refers to a mechanism for verifying
data interdependencies. While DSD, Schematron, and Relax NG quite naturally allow to ex-
press co-constraints, XML Schema is rather limited in this respect. The latter motivated the
formulation of extensions of DTDs and XML Schema, named DTD++ [Fiorello et al. 2004]
and SchemaPath [Coen et al. 2004], with XPath expressions to express co-existence and
co-absence of element names and attributes. These extensions share with BonXai the use of
XPath to express conditions but differ from BonXai in that they increase the expressiveness
beyond that of XML Schema.

We composed an overview of a set of properties (top half) and features (bottom half) of
the languages we discussed here in Table I. A bullet means that we believe the language
to have the respective property (or support the respective feature). Compared with other
schema languages, the novelty of BonXai is that it

(1) can be translated automatically into XML Schema and
(2) offers a novel compact syntax that makes the relationship between the content of ele-

ments and context information explicit.

Item (1) implies that BonXai can make use of the wide array of tools for XML Schema such
as validators, mappers into programming languages, query optimization engines that take
XML Schema information into account, etc. DSD2, Relax NG, and Schematron can express

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18

Table I. Properties and Features of schema languages

DTD BonXai XML Schema Relax NG DSD2 Schematron

convertible to XML Schemaa • • •
rule based •b • • •
grammar based •b • •
standalone schema language • • • • • ◦c
compact syntax • • •
namespace support • • • • •
integrity constraints ◦d • • ◦d • •
type hierachies •
simple types ◦e • ◦e • ◦f

aFor every schema there exists an XML Schema document that accepts the same set of XML documents.
bDue to their simplicity, DTDs can be seen as both rule- and grammar based.
cPossible to use stand-alone, but usually used as supplement to a grammar based language.
dVery limited constraint support by ID/IDREF mechanism.
eUsage of externally defined simple types is possible.
fSimple types can be emulated using assertions.

JEdit

BonXai-
Plugin

BonXai
OM

XSD
OM

DTD
OM

BonXai
Validator

DFA-based
XSD

GUI BonXai-Library
Automaton-

Library

P/W

P/W

P/W
XML

C

C

C

Fig. 7. Schematic overview of the system components. P/W: Parser/Writer, C: Converter, OM: Object
Model.

schemas that are not expressible as XML Schema9 and therefore do not have this feature.
Concerning item (2), we note that although Relax NG has a compact syntax, it also does
not make the relationship between content and context of elements explicit. Compared to
XML Schema, we feel that BonXai’s compact syntax renders many schema definitions more
readable, as argued in the Introduction and in Section 2.

3.6. Implementation and System

We implemented a prototype system that supports the development and maintenance of
BonXai schemas, which was presented at VLDB 2012 [Martens et al. 2012] and is available at
www.bonxai.org. The system includes a parser for the BonXai language, conversion routines
(between BonXai and XML Schema, from DTD to BonXai), and native validation against
BonXai schemas.

Figure 7 presents a general overview of the system. The system is roughly divided into
three parts, the Graphical User Interface (GUI), the actual BonXai library, and a general
purpose automaton library.

9This can be proved using [Martens et al. 2006, Theorem 7.1].

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:19

3.6.1. User Interface. The GUI of our current implementation is provided through a plugin
for the open source editor JEdit [JEdit]. JEdit provides basic text editing functionalities,
syntax highlighting and a flexible plugin interface. Through the GUI, the user can directly
develop BonXai schemas. The BonXai-Plugin provides the connection between the BonXai
library and JEdit. We also developed a command line client which provides an easy way for
batch conversion of schemas.

3.6.2. Automaton Library. The automaton library provides a solid automata-theoretic core
which, in addition, allows for an easy integration of existing automaton based algorithms,
like for instance XML Schema inference algorithms [Bex et al. 2010] or algorithms for
repairing the unique particle attribution constraint of XML Schema [Bex et al. 2009]. The
automaton library is capable of storing so-called DFA-based XSDs [Martens et al. 2007],
which are an intermediate format between XML Schema and BonXai and which we extended
to be able to cope with XML Schema features (for instance, those discussed in Section 3.1.2).
We discuss the underlying principles of DFA-based XSDs in more depth in Section 5 of this
article.

3.6.3. BonXai Library. The BonXai library constitutes the heart of the system. It provides
modules for the representation, import and export, and the conversion between DTD, XML
Schema, and BonXai. It also supports native validation of XML against DFA-based XSDs.
The theoretical foundations of the conversion algorithms between BonXai and XML Schema
are discussed in Section 5.

Object Models. Schemas are represented in an abstract way as extensions of DFA-based
XSDs. These object models store additional information, such as key, foreign key and unique-
ness constraints, identifiers used for namespaces, complex type names, etc. To facilitate
manipulation of schemas, each class of schemas has its own object model.

Conversion Routines. As all conversions pass through the DFA-based XSD representa-
tion, there are six conversion routines. The translation to and from XML Schema and DTD
is rather direct (not difficult from a theoretical perspective). The computation of a DFA-
based XSD from a BonXai schema is discussed in detail in Section 5. It basically reduces to
the construction of a product automaton encompassing all regular contexts in the schema.
The converse direction requires to compute regular contexts for every state of the DFA-based
XSD. In addition, the conversion routine creates mappings between automaton states and
the corresponding BonXai rules or XML schema types. This information, together with
the mappings between XML nodes and automaton states produced by the XML valida-
tor, is used by the GUI to highlight matching nodes/rules in the editor. Information about
constraints and namespace identifiers is directly converted between the object models.

3.7. BonXai at Work

The GUI aids to understand the correspondence between BonXai rules and the gener-
ated complex types in the transformed XML Schema document. Although the simplicity
of BonXai relies on the absence of complex types, type names (which can be provided in
BonXai annotations, see Section 3) can serve as short descriptions to help the user un-
derstand BonXai rules. In contrast to XML Schema, such type names have no semantic
meaning whatsoever. However, in the translation to XML Schema, we use type names (if
present) to generate names for XML Schema complex type definitions.

Advanced functionalities of our GUI facilitate schema development and -debugging. In
particular, we support the analysis of the relationships between an XML document, a
BonXai schema, and a corresponding XML Schema document as follows:

— Highlighting of XML elements matched by a certain BonXai rule or by an XML Schema
complex type.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20

F
ig
.
8
.

T
h

e
jed

it-p
lu

g
in

in
a
ctio

n
.

H
ere

w
e

h
a
v
e

th
ree

ed
ito

r
p

a
n

es:
T

o
p

-L
eft:

X
M

L
d

o
cu

m
en

t
fro

m
F

ig
u

re
2
,

B
o
tto

m
-L

eft:
B

o
n

X
a
i

sch
em

a
fro

m
F

ig
u

re
6
,

R
ig

h
t:

a
n

X
M

L
S

ch
em

a
eq

u
iv

a
len

t
to

th
e

B
o
n

X
a
i

sch
em

a
o
n

th
e

left.
T

h
e
s
e
c
t
i
o
n

elem
en

t
is

m
a
rk

ed
o
ra

n
g
e,

a
s

its
co

n
ten

t
m

o
d

el
is

n
o
t

co
rrect.

T
h

e
b
o
l
d
d

elem
en

t
is

m
a
rk

ed
red

a
s

it
is

n
o
t

a
llo

w
ed

to
a
p

p
ea

r
a
t

th
is

p
o
sitio

n
in

th
e

d
o
cu

m
en

t
(n

o
te

th
e

sp
ellin

g
erro

r).
T

h
e

tu
rq

u
o
ise

f
o
n
t

elem
en

t
h

a
s

b
een

selected
b
y

th
e

u
ser

in
th

e
X

M
L

d
o
cu

m
en

t.
T

h
e

p
lu

g
in

sh
o
w

s
w

h
ere

th
e

elem
en

t
is

d
ecla

red
in

th
e

B
o
n

X
a
i

sch
em

a
a
n

d
X

M
L

S
ch

em
a

resp
ectiv

ely
b
y

h
ig

h
lig

h
tin

g
th

e
elem

en
t

d
ecla

ra
tio

n
in

p
u

rp
le.

F
u

rth
erm

o
re

it
sh

o
w

s
w

h
ere

th
e

co
n
ten

t
m

o
d

el
o
f

th
e

selected
elem

en
t

is
d

ecla
red

b
y

m
a
rk

in
g

its
a
n

cesto
r

p
a
th

(B
o
n

X
a
i)

a
n

d
ty

p
e

d
ecla

ra
tio

n
(X

M
L

S
ch

em
a
)

in
g
reen

.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:21

— Highlighting of the rule/type that matches an element in an XML tree.
— Highlighting the BonXai rule corresponding to an XML Schema complex type and vice

versa.
— Finding nodes in an XML tree violating the schema.
— Finding nodes in an XML tree which are unconstrained by the schema, i.e., for which the

schema allows arbitrary content.

We now discuss a few more specific use cases for BonXai to illustrate that BonXai is
not just a “readable syntax for XML Schema” but can also be used to perform some more
serious tasks more efficiently.

Developing new Schemas / Using BonXai Stand-Alone. As mentioned before, BonXai
is not primarily meant as a replacement for XML Schema, but to a large extent it can
be used as such. The system can be used to develop schemas from scratch and to debug
them. When the schema is finished, XML documents can be validated natively against the
BonXai schema. An alternative validation method is to use our conversion routine to XML
Schema and validate against the XML Schema document using a third-party XML Schema
validator.

For stand-alone use, BonXai’s main strength lies in its succinct and transparent way
for defining the structure of XML documents. BonXai does not (yet) have a syntax for
defining XML Schema simple types. Therefore, simple types always need to be imported
from an existing XML Schema document One way to do this is to write a structurally very
simple XML Schema document that only defines a set of simple types. This XML Schema
document can be imported into the BonXai schema, which can then use the simple types
from the XML Schema document and define structural aspects through its grammar.

Evolving from a DTD to an XML Schema document. BonXai can be used to move from
DTD to XML Schema rather painlessly while, at the same time, taking advantage of the
extra expressiveness. One can automatically convert the given DTD into BonXai, add the
desired extra structural features directly in the BonXai schema, and convert the result to
XML Schema.

Example 3.2. The BonXai schema in Figure 5 is equivalent to the DTD in Figure 4. By
only a few modifications it can be extended to the BonXai schema from Figure 6, which
can then be exported to an XML Schema document equivalent to the one in Appendix A.

Schema Evolution. Schema evolution refers to updating a schema to reflect a re-
structuring of the underlying data. We distinguish two use cases regarding schema evolution,
depending on whether we want to modify an existing XML Schema document or an existing
BonXai schema using our system. In the latter case, schema evolution can simply be done
by editing the BonXai schema. In the former case, the workflow is roughly the following:
Convert the XML Schema document to BonXai; alter the schema by specifying additional
constraints or changing some content models; and re-export the schema to XML Schema.

The highlighting features of the system, mapping patterns in BonXai rules to complex
types in the generated XML Schema fragment provide the developer with control to inspect
the induced changes in the original XML Schema more rapidly and accurately.

Especially the priority system used by BonXai can be very helpful in schema evolution.
For example, in our running example, sections can be nested arbitrarily deeply. Assume
that we want to change the schema such that the nesting depth of sections is at most three.
In the BonXai schema in Figure 6, this can be achieved by inserting the rule

content/section/section/section = { attribute title, group markup }

at the end of the rules that start with content. The semantics of this rule would be that
subsubsections only have a title attribute and markup, but no section children.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22

Doing the equivalent change directly in XML Schema requires to make three complex
types for sections below content: one for each allowed nesting depth.

Analyzing existing XML Schema documents. Existing XML Schema documents can be
converted to BonXai to analyze their structural complexity. Such a BonXai inspection can,
e.g., give an idea of the amount of structural expressiveness which goes beyond DTDs
and where it sits. In addition, the selection patterns provided by BonXai can give direct
insight into the definition of elements depending on their context. As such, the BonXai
translation, converting the machine readable syntax of XML Schema in the more human-
readable compact syntax of BonXai, and the associated highlighting features in our GUI
help users to understand schema definitions more quickly and easily. The selection patterns
in the left-hand sides of BonXai rules give users immediate insight on where a given complex
type is used in an XML document. Since such selection patterns are basically specified in
a fragment of XPath, users familiar with XML technology can already benefit from this
feature without having to learn yet another standard.

Example 3.3. In our running example, the BonXai rules

template//section = {element titlefont?, element style?, element section?}

and

content//section = mixed {attribute title, (element section|group markup)*}

give immediate insight in the difference between the complex types TtemplateSection and
Tsection from the XML Schema Document in Appendix A. The former specifies the struc-
ture of section-descendants of template elements in the tree; and the latter of section-
descendants of content elements.

4. A PRACTICAL STUDY ON THE USE OF COMPLEX TYPES

As a part of the motivation for BonXai, we conducted a large-scale practical study to
investigate the extent to which XML Schema complex types are used in practice. A similar
study was already conducted over a decade ago by Bex et al. [Bex et al. 2005] but we decided
that we needed more up-to-date information. Whereas Bex et al. [Bex et al. 2005] studied
a corpus of 225 unique SDs, we were able to collect 8080 unique, well-formed SDs from the
Web. Our data set was obtained in three steps. We started with the set of 1191 SDs from
the practical study in [Björklund et al. 2015] and augmented it with a second set which we
harvested using Google’s CSE in 2016. We obtained this set by querying Google’s CSE for
files of type ’xsd’, iteratively over all domains listed in Wikipedia10 and downloading the
results. We iterated through date ranges to be able to go beyond the 100 result restriction
of Google’s CSE. (In particular, whenever we noticed that CSE returned 100 results, we
decreased the date range to make sure that we got all results that CSE could give us.) Since
some of the results (about 10%; similar as in [Björklund et al. 2015]) are not actual XSD files
but HTML documents that link to an XSD file, we extracted these links and downloaded the
resulting XML Schema documents. We then compared the results we obtained from Google
CSE with Google’s Web interface and noticed that the Web interface gives significantly
more results (possibly due to the use of the date range operator). We therefore composed
a third data set semi-manually. With the help of a student research assistant we manually
queried Google’s Web interface (again, over every top-level domain mentioned before) and
saved the returned links to file. We downloaded these SDs automatically and, again, we
considered the HTML files and downloaded the linked XSD files.

The resulting data was cleaned, filtered using an XML Schema parser, normalized for
whitespace, and then deduplicated. This resulted in the 8080 unique files that we could

10https://en.wikipedia.org/wiki/List of Internet top-level domains

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:23

Table II. The amount of context information needed to determine complex types in our data set.

k # schemas relative k # schemas relative k # schemas relative
1 6517 80.66 % 5 24 0.30 % 9 2 0.02 %
2 1053 13.03 % 6 9 0.11 % 14 1 0.01%
3 294 3.64 % 7 3 0.04 % 15 1 0.01%
4 132 1.63 % 8 4 0.05 % ∞ 35 0.43 %

TA 5 0.06 %

parse as XML Schema. We analysed to which extent these SDs use ancestor information
to determine complex types (Table II). We observed the following: 80.66% of SDs associate
at most one complex type to every element name. In other words, these SDs do not use
complex types beyond the power of DTDs. For a further 13.03%, the complex types were
determined by the parent context (as in the example before, with preface and chapter). A
further 3.64% also took the grandparent context into account. The longest finite dependency
we found was up to ancestors of height fifteen.11 As indicated by the entry ∞, we found
35 schemas for which ancestors up to arbitrary height determined the complex type of an
element (which can only happen through recursion in the schema). Finally, the entry “TA”
denotes the number of schemas in our corpus that use XML Schema 1.1 type alternatives.12

To conclude, this practical study shows that the expressiveness of XML Schema complex
types is only used very sparingly in practice. Furthermore, it shows that, for the overwhelm-
ing majority of Schema Documents, the structure of their complex types can be expressed
using BonXai schemas with very simple ancestor patterns. We discuss this matter from a
theoretical perspective in Section 5.4.

We made the links to all the .xsd files we found available for download [Martens et al.
2017]. The data set contains raw links to 79.642 SDs. We also provided a smaller data set
of links to unique SDs that were still reachable in May 2017.

5. FOUNDATIONS OF BONXAI

In this section, we define clean formal models for the core of BonXai and XML Schema to
explain the principles of our translation from BonXai to XML Schema and back. However,
we do not describe the translation of all features (such as namespace support, attributes,
groups, key/keyrefs, references to types in foreign namespaces, etc.), since this is beyond
the scope of this article. Instead, we focus on considerably restricted, clean, cores of BonXai
and XML Schema and formally define how we translate these back and forth. Our abstrac-
tions will be on the level of tree languages, i.e., the abstraction level of [Murata et al. 2005;
Martens et al. 2006]. These abstractions allow us to explain the theoretically most challeng-
ing part of the translations that we implemented and to analyse size tradeoffs between the
languages.

The theoretical novelty in this section is that the translations that we present here are
the first that can preserve XML Schema’s expressive power on the level of tree languages.
Although other characterizations and translations exist (see [Martens et al. 2006; Gelade
and Neven 2011; Kasneci and Schwentick 2007]), the translations we present here are the
first that take into account XML Schema’s Unique Particle Attribution (UPA) constraint
[Gao et al. 2012, Section 3.8.6.4]. Indeed, the abstractions in [Martens et al. 2006; Gelade
and Neven 2011; Kasneci and Schwentick 2007] all assume that XML Schema content models
correspond to regular languages. However, as noted in Section 3.3, the UPA constraint in
XML Schema restricts content model definitions to a strict subclass of the regular languages
that is not closed under union or intersection. This has an important consequence, namely

11This particular schema was quite large and validated trees that encode strategies for tic-tac-toe (using
two levels in the tree for encoding one move). Schema: https://xopus.com/files/tictactoe/tictactoe.xsd
12Using type alternatives, the complex type of an element may also be determined by attribute values of
its ancestors.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24

that the universal semantics and existential semantics of BonXai-like schemas that were
studied in [Gelade and Neven 2011; Kasneci and Schwentick 2007] are not well compatible
with XML Schema (see Section 3.3 for a deeper discussion). Here, we build further on the
ideas in [Gelade and Neven 2011; Kasneci and Schwentick 2007] to define a priority-based
semantics for BonXai. We prove that this system does allow for back-and-forth translations
that take XML Schema’s weaker content model definitions into account and, to the best of
our knowledge, is the first to do so.

In summary, we will present the following:

— compact and clear formal models of the core of BonXai and the core of XML Schema,
stripped of features that are not essential for analysing the conversion algorithms;

— formal back and forth translation procedures between core XML Schema and core BonXai;
— an analysis of the blow-up of these conversions;
— a proof of worst-case optimality for the conversions; and
— practically relevant fragments of XML Schema and BonXai, where the conversions are

efficient.

As a consequence, we obtain that BonXai and XML Schema are equally expressive on the
level of tree languages.

5.1. The Theory Underlying BonXai: Core XML Schema and Core BonXai

Before we introduce the formal model for the core of BonXai and XML Schema, we first
establish some basic terminology and notation.

5.1.1. Basic Terminology. We introduce XML trees, regular expressions, and finite automata.
We view an XML document as a finite, rooted, ordered, labeled, unranked tree D. We

assume a finite alphabet (that is, a finite set) EName of element names from which the
nodes of XML trees take their labels, that is, each node v of D carries exactly one label
lab(v) ∈ EName. By a, b, c, . . . we denote elements from EName. For a node v, we denote by
anc-strD(v) the ancestor-string of v in D which is given by the concatenation of the labels
of the nodes on the path from the root of D to v. More formally, the ancestor-string of v
in D is the string lab(v1) · · · lab(vn), where v1 is the root of D, vn = v, and vi+1 is a child
of vi for each i = 1, . . . , n − 1. We denote by ch-strD(v) the concatenation of the labels of
the children of v in D. More formally, if the children of v are u1, . . . , um from left to right,
then ch-strD(v) = lab(u1) · · · lab(um). We note that ch-strD(v) is sometimes also called the
content of node v. We often omit D in the notation of ancestor- or child-strings when it is
clear from the context.

Example 5.1. Consider the section child v of the element template in the tree of Fig-
ure 3. Then

anc-str(v) = document template section

ch-str(v) = titlefont style section .

We assume familiarity with finite automata and only discuss notation here. We denote
a (nondeterministic) finite automaton or NFA as a tuple A = (Q,EName, δ, q0, F) where Q
is its finite set of states, EName is the alphabet, δ : (Q × EName) → 2Q is the transition
function, q0 ∈ Q is the initial state and F ⊆ Q is the set of accepting states. An NFA is
deterministic if δ(q, a) contains at most one state for each q ∈ Q and a ∈ EName. The lan-
guage of A (i.e., the set of words accepted by A) is defined in the standard manner. The size
of A, denoted |A|, is the number of states of A. Sometimes we use finite automata without
accepting states. We then simply write them as A = (Q,EName, δ, q0). We sometimes use
A(w) as an abbreviation for the set δ∗(q0, w) of states that A can reach after reading w,
starting from its initial state.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:25

We use regular expressions r with the following syntax13

r ::= ε | ∅ | a | rr | r + r | (r)? | (r)+ | (r)∗ ,

where ε denotes the empty string and a ranges over symbols in the alphabet EName. Some-
times we also use the symbol · for regular expression concatenation to improve readability.
For a set S = {a1, . . . , an} ⊆ EName we sometimes abbreviate the disjunction (a1 + · · ·+an)
by S. As usual, we write L(r) for the language defined by regular expression r. We define
the size of regular expression r to be its total number of alphabet symbol occurrences. For
example, both expressions aaa and a(b+ c)? have size three.

The Unique Particle Attribution (UPA) of XML Schema specifies that regular expressions
in content models need to be deterministic [Gao et al. 2012, Section 3.8.6.4]. We note that
such expressions are sometimes also called one-unambiguous [Brüggemann-Klein and Wood
1998]. Intuitively, a regular expression is deterministic if, without looking ahead in the
input string, it allows to match each symbol of that string uniquely against a position
in the expression when processing the input in one pass from left to right. For instance,
(a+ b)∗a is not deterministic as already the first symbol in the string aaa could be matched
by either the first or the second a in the expression. Without lookahead, it is impossible
to know which one to choose. The equivalent expression b∗a(b∗a)∗, on the other hand, is
deterministic. Formally, let r̄ stand for the regular expression obtained from r by replacing
the i-th occurrence of alphabet symbol a in r by ai, for every i and a. For example, for
r = b∗a(b∗a)∗, we have r̄ = b∗1a1(b∗2a2)∗.

Definition 1 ([Brüggemann-Klein and Wood 1998], Definition 2.1). A regular
expression r is deterministic (also: one-unambiguous) if there are no strings waiv and wajv

′

in L(r̄) such that i 6= j. �

Equivalently, an expression is deterministic if the Glushkov construction translates it into a
deterministic finite automaton [Brüggemann-Klein and Wood 1998]. As a matter of fact, not
every regular expression is equivalent to a deterministic one [Brüggemann-Klein and Wood
1998]. Thus, semantically, the class of deterministic regular expressions forms a strict sub-
class of the class of all regular expressions. We note that deciding if for a given regular expres-
sion there exists an equivalent deterministic regular expression is PSPACE-complete [Cz-
erwiński et al. 2013a].

5.1.2. A Formal Model for BonXai’s Core. Now we define BonXai Schema Definitions
(BXSDs), which are a formal model for the core of BonXai schemas. The difference be-
tween the BonXai schema specification language and BXSDs is that the former can be used
in our implementation [Martens et al. 2012] and has most of the XML Schema Language
features to make it usable in practice, whereas the latter is a stripped down version that we
use here to study translations between BonXai and XML Schema. For instance, the BonXai
language supports integrity constraints, but we do not define these in BXSDs since their
translation from and to XML Schema is straightforward.

Definition 2. A BonXai Schema Definition (BXSD) is a pair B = (EName, S,R) where
S ⊆ EName is a set of start elements and R is an ordered list r1 → s1, . . . , rn → sn of rules,
where

— all ri and si are regular expressions over EName, and
— all si are deterministic.

13We note that BonXai and XML Schema content models have the same limited support for the all-operator
(denoted & in BonXai). Similarly, BonXai has the same support of counters (minOccurs/maxOccurs) than
XML Schema. We exclude both here for simplicity, because their back-and-forth translation is straightfor-
ward.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:26

�

We call i the index of rule ri → si, for each i = 1, . . . , n. Furthermore, we call ri the ancestor
pattern and si the child pattern of the rule. Let D be an XML document and u a node of
D. A rule ri → si is relevant for u if i is the largest index such that anc-strD(u) ∈ L(ri).
Notice that a node u has at most one relevant rule in B. An XML document D conforms to
the BXSD B if the label of root(D) is in S and, for each node u ∈ Nodes(D), if ri → si is
relevant for u, then ch-strD(u) ∈ L(si). The definition of relevant rules reflects the priority
system in BonXai: rules with a higher index have higher priority.

Our abstraction of BonXai Schema Definitions requires expressions si to be deterministic
to make BXSDs expressively equivalent to XML Schema’s core.

Example 5.2. The formal abstraction of the BonXai schema in Figure 6 is the BXSD
B = (EName, S,R) where

— EName = {document, template, userstyles, content, section, style, title}
— S = {document}
—R is the ordered list containing rules (parts omitted):

//document→ template userstyles content
//content → section∗

//template → section
//userstyles → style∗

//content//section → (bold + · · ·+ section)∗

...
//template//section → titlefont? style? section?

...
Here, we wrote the left-hand-sides of BonXai rules as in Section 2. Formally, in this section,
// abbreviates the regular expression EName∗.

Given the lacking closure of DRE under Boolean operations noted in Section 3.3, it is
crucial that none of our conversion algorithms presented in Section 5.2 construct unions,
intersections, or complements of content models. In fact, all our conversion algorithms only
copy these expressions. Therefore, if one were interested in converting between BonXai and
a dialect of XML Schema that does not require expressions to be deterministic, one can
simply remove the corresponding requirement from BXSDs and use the same conversion
algorithms.

5.1.3. A Formal Model for Core XML Schema. Our abstraction of an XML Schema closely
follows the definition from [Murata et al. 2005; Martens et al. 2006; Martens et al. 2007].

An XML Schema uses a finite set of element names and complex type names. We therefore
fix finite sets EName and Types of element names and complex type names, respectively. The
set TEname of typed element names is then defined as {a[t] | a ∈ EName, t ∈ Types}. In an
XML Schema, a typed element name a[t] could, for example, be written as <xs:element
name="a" type="t"/>.

Definition 3. An XSchema Definition (XSD) is a tuple X = (EName,Types, ρ, T0)
where EName and Types are finite sets of elements and types, respectively, ρ is mapping
from Types to regular expressions over alphabet TEname, and T0 ⊆ TEname is a set of typed
start elements. Furthermore, the following two conditions hold:

Element Declarations Consistent (EDC). There are no typed elements a[t1] and a[t2] in
a regular expression ρ(t) with t1 6= t2. Furthermore, there are no typed elements a[t1]
and a[t2] in T0 with t1 6= t2.
Unique Particle Attribution (UPA). Each regular expression ρ(t) is deterministic.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:27

�

Throughout this section we consistently use the abbreviation XSD to denote XSchema
definitions. We sometimes refer to ρ(t) as the content model associated to t. The EDC
constraint can be found in [Gao et al. 2012, Section 3.8.6.3] and, as mentioned before, the
UPA constraint in [Gao et al. 2012, Section 3.8.6.4].

A typing of an XML document D w.r.t. X associates, to each node u of D, a type of
the schema. Formally, a typing of D w.r.t. X is a mapping µ from Nodes(D) to TEname. A
typing µ is correct if it satisfies the following three conditions:

— µ(root(D)) ∈ T0.
— For each node u ∈ Nodes(D), we have µ(u) ∈ {lab(u)[t] | t ∈ Types}.
— For each node u ∈ Nodes(D) with children u1, . . . , un from left to right, we have
µ(u1) · · ·µ(un) ∈ L(µ(u)).

An XML document D conforms to an XSD X if there exists a correct typing µ of D w.r.t.
X. Notice that typings are unique due to the EDC condition, that is, there can be at most
one correct typing for a given document D w.r.t. a given XSD X.

Example 5.3. We present a simplified XSchema Definition for our example markup
language from Section 2 to illustrate XSchemas. We focus on elements, since this is the
part where the complexity lies when converting between XML Schema and BonXai. We can
abstract the schema as XSD X = (EName,Types, ρ, T0), where

— EName = {document, content, section, style, bold, italic, font, color, template, userstyles}
— Types = {Tdocument, Ttemplate, Tuserstyles, Tcontent, TtemplateSection, TtemplateStyle,

TtemplateFont, TtemplateColor, TnamedStyle, Tsection, Tmarkup, TstyleRef,
Tfont, Tcolor}

— ρ is defined as follows (some parts omitted):
Tdocument → template[Ttemplate] userstyles[Tuserstyles] content[Tcontent]
Ttemplate → (section[TtemplateSection])?
Tuserstyles → (style[TnamedStyle])∗

Tcontent → (section[Tsection])∗

TtemplateSection→ titlefont[TtemplateFont]? style[Ttemplatestyle]?
section[TtemplateSection]?

Tsection → (bold[Tmarkup] + · · ·+ color[Tcolor] + section[Tsection])∗

· · ·
— T0 = {Tdocument}

For the sake of the presentation we simplified the example a bit. In particular, we did not
specify the function ρ for all types and we omitted rules that would use the xs:all operator
(respectively, the &-operator in BonXai).

The correct typing for the XML document in Figure 2 according to the XSD in Exam-
ple 5.3 is displayed in Figure 9.

5.2. Translations Between Schemas

5.2.1. From XML Schema to BonXai. We present a translation algorithm from XSDs to
BXSDs. This algorithm is the core of a procedure that we implemented to translate XML
Schema into BonXai [Martens et al. 2012]. The algorithm consists of two phases. The first
phase converts an XSD into an intermediate data structure, which is called a DFA-based
XSD. We will define such a DFA-based XSD formally, because it is a representation of
schemas that is very convenient in proofs. In the second phase, the DFA-based XSD is
translated to the BXSD.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:28

document
Tdocumenttemplate

Ttemplate

section
TtemplateSection

titlefont
TtemplateFont

style
TtemplateStyle

font
TtemplateFont

section
TtemplateSection

titlefont
TtemplateFont

userstyles
Tuserstyles

style
TnamedStyle

font
TtemplateFont

color
TtemplateColor

style
TnamedStyle

. . .

content
Tcontent

section
Tsection

section
Tsection

bold
Tmarkup

italic
Tmarkup

style
TstyleRef

section
Tsection

. . .

Fig. 9. Typing for the XML document in Figure 2 and the XML Schema Definition in Example 5.3.

DFA-based XSDs were introduced in [Martens et al. 2007, Definition 6] as an alternative
characterization of XML Schema Definitions. We define DFA-based XSDs here with a minor
difference: due to the UPA condition, we require their content models to be deterministic
regular expressions.

Definition 4. A DFA-based XSD is a tuple (A,S, λ), where A = (Q,EName, δ, q0) is a
DFA with initial state q0 and without final states, S ⊆ EName is the set of allowed root
element names and λ is a function mapping each state in Q\{q0} to a deterministic regular
expression over EName. Furthermore, q0 has no incoming transitions and for every state
q ∈ Q and every element name a occurring in λ(q), we have that δ(q, a) is non-empty. �

In the remainder of the article, S usually equals {a | δ(q0, a) 6= ∅}. (The intuition is that,
for each element a ∈ S, the automaton A can read a string that starts with a. Since S is
simply the set of root elements, λ does not map q0 to a regular expression.) However, we
sometimes use fully defined DFAs (which are DFAs in which |δ(q, a)| = 1 for every state q
and label a) and therefore we need to explicitly mention S in general.

An XML document D satisfies (A,S, λ) if the root node is labeled with an element name
from S and, for every node u, A(anc-strt(u)) = {q} implies that ch-strD(u) is in the language
defined by λ(q).

We now explain how to translate a given XSD X = (EName,Types, ρ, T0) into an equiv-
alent DFA-based XSD A in linear time. The procedure is outlined in Algorithm 1 and
resembles procedures in [Martens et al. 2006; Gelade and Neven 2011], which were devel-
oped for different models of XSDs.14 It has the following property.

Lemma 5 (Adapted from [Gelade and Neven 2011, Lemma 7]). Each XSD can
be translated into an equivalent DFA-based XSD in linear time.

Proof. Let X = (EName,Types, ρ, T0) be an arbitrary XSD. The equivalent DFA-based
XSD (A, λ) with A = (EName, Q, δ, q0) is constructed by Algorithm 1. We provide additional
explanation for the algorithm. In line 3, δ(q0, a) is well-defined thanks to the EDC constraint

14One consequence of the slightly different models of XSDs is that the translation in [Gelade and Neven
2011] is quadratic, whereas it is linear in our case.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:29

Algorithm 1 Translating an XSD to an equivalent DFA-based XSD.

Input: XSD X = (EName,Types, ρ, T0)
Output: DFA-based XSD (A = (Q,EName, δ, q0), S, λ) equivalent to X

1: S := {a | ∃t ∈ Types such that a[t] ∈ T0}
2: Q := {q0}] Types
3: For each a[t] ∈ T0, δ(q0, a) := t
4: For each t1 ∈ Types and a ∈ EName such that a[t2] occurs in ρ(t1), δ(t1, a) := t2
5: For each t ∈ Types, λ(t) := µ(ρ(t)) . µ(ρ(t)) is obtained from ρ(t) by

replacing every a[t′] with a

Algorithm 2 Translating a DFA-based XSD into an equivalent BXSD.

Input: DFA-based XSD (A = (Q,EName, δ, q0), S, λ)
Output: BXSD B = (EName, S,R) equivalent to X

1: for every state q ∈ Q do
2: rq := a reg. expression for (Q,EName, δ, q0, {q})
3: sq := λ(q)

4: R := rq1→ sq1 , . . . , rqn→ sqn , where {q1, . . . , qn} = Q

for XSDs (that states that t is uniquely determined by a). Similarly, in line 4 we have that
X fulfills the EDC constraint. Therefore, δ(t1, a) is well-defined and A is guaranteed to be a
deterministic automaton. Finally, in line 5, µ(ρ(t)) denotes the regular expression obtained
from ρ(t) by replacing every typed element a[t] by the element a. Notice that, since X fulfills
the UPA constraint, we have that µ(ρ(t)) is a deterministic regular expression. Therefore,
(A,S, λ) is a DFA-based XSD and has deterministic content models. The fact that (A,S, λ)
can be constructed from X in linear time is immediate from the algorithm. The equivalence
between (A,S, λ) and X is easily seen.

We now show how to translate DFA-based XSDs into equivalent BXSDs. The translation
is in Algorithm 2 and is similar to the proof of Theorem 7.1 ((a) ⇒ (d)) in [Martens et al.
2006].

Lemma 6. Each DFA-based XSD (A,S, λ) can be translated into an equivalent BXSD
B with linearly many rules in |A|.

Proof. Let (A,S, λ) be a DFA-based XSD with A = (EName, Q, δ, q0). Algorithm 2
specifies how to obtain the equivalent BXSD B = (EName, S,R). In line 2, the regular
expression rq defines the language of the DFA A in which q is an accepting state, i.e.,
the language of the automaton (EName, Q, δ, q0, {q}). Since each expression sq on line 3 is
deterministic, the right-hand sides of rules in R are deterministic as well. Finally, R contains
the rules rq → sq, for each q ∈ Q, in arbitrary order.

Notice that the ordering of the rules in R in Algorithm 2 can be arbitrary, since, because
A is a DFA, L(rq1) ∩ L(rq2) = ∅ for each pair of states q1 6= q2 from A. We emphasize that
the BXSD B can have regular expressions that are exponentially larger than |A| in general.
This cannot be avoided15 because A is a DFA and the worst-case conversion from a DFA
to a regular expression is well-known to be exponential [Ehrenfeucht and Zeiger 1976]. In
Section 5.4 we discuss classes of schemas that capture most cases in practice and that do
not lead to such a blow-up.

15Proving that an exponential blow-up cannot be avoided is more technical than just this observation, see
Section 5.3.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:30

5.2.2. From BonXai to XML Schema. The translation from BonXai to XML Schema follows a
similar overall outline as the reverse translation of Section 5.2.1. Again, we use DFA-based
XSDs as an intermediate representation in the translation. That is, we first translate BXSDs
into DFA-based XSDs and translate the latter to XSDs. However, the present translation
is more technical than the one before.

Algorithm 3 describes the translation of BXSDs into DFA-based XSDs.

Lemma 7. Each BXSD B can be translated into an equivalent DFA-based XSD (A,S, λ)
for which |A| is at most exponential in |B|.

Proof. Let B = (EName, S,R) be a BXSD, where R = r1 → s1, . . . , rn → sn. We
translate B into (A,S, λ) as described in Algorithm 3. On line 2 we want the DFAs Ai =
(EName, Qi, δi, q

i
0, Fi) to be minimal and complete. Here, a DFA Ai is complete when δi(q, a)

is defined for every q ∈ Qi and a ∈ EName. A DFA can be made complete by adding an
extra “sink state” to which all previously non-defined transitions lead. Furthermore, it is
well-known that every regular language has a unique minimal, complete DFA. (Notice that,
since regular expressions are exponentially more succinct than deterministic finite automata,
Ai can be exponentially larger than ri in the worst case.)

The DFA-based XSD (A,S, λ) is then constructed through a product automaton: in line 3,
we define A to be the product A1 × · · · ×An. More precisely, A = (Q,EName, δ, q0), where
Q = Q1 × · · · × Qn, q0 = (q1

0 , . . . , q
n
0) and, for every state (p1, . . . , pn) ∈ Q and every

a ∈ EName, we have δ((p1, . . . , pn), a) = (q1, . . . , qn) where, for every i, δ(pi, a) = qi. Notice
that A can be exponentially larger than |B| and does not have accepting states.

The content models of the DFA-based XSD are defined in lines 7 and 9. Line 7 handles
the case where at least one of the automata A1, . . . , An accepts, i.e., at least one BXSD rule
matches. The content model of the relevant state in the DFA-based XSD is then defined to
be the content of the highest-priority matching BXSD rule. Line 9 handles the case where no
BXSD rule matches. Here, according to the definition of BXSDs, every child-string should
be allowed. We therefore must allow the content (EName)∗. It can be shown that B is
equivalent to (A,S, λ).

It should be noted that Algorithm 3 is optimized for readability and not for efficiency.
It is straightforward to change it such that it only computes reachable states of A. Note
that whether a state is reachable also depends on the right-hand sides of the rules, because
a transition δ(p, a) for which the label a does not occur in λ(p) can never be taken in a
satisfying document.

The final translation we need is the one from DFA-based XSDs into XSDs. It is summa-
rized in Algorithm 4 and has linear running time.

Lemma 8 (Adapted from [Gelade and Neven 2011, Lemma 7]). Each DFA-
based XSD can be translated into an equivalent XSD in linear time.

Proof. Let (A,S, λ) be a DFA-based XSD, where A = (EName, Q, q0, δ). We construct
an equivalent XSD X = (EName,Types, ρ, T0) in Algorithm 4. In line 4 of the algorithm we
implicitly use that δ(q, a) is non-empty for every state q and every element name a occurring
in λ(q).

We note that the XSD that results from Algorithm 4 can be “minimized” efficiently using
a minor adaptation of the minimization algorithm for XSDs from [Martens and Niehren

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:31

Algorithm 3 Translating a BXSD to an equivalent DFA-based XSD.

Input: BXSD B = (EName, S,R = r1→ s1, . . . , rn→ sn)
Output: DFA-based XSD (A,S, λ) equivalent to B

1: for each i = 1, . . . , n do
2: Ai := minimal complete DFA (Qi,EName, δi, q

i
0, Fi) for L(ri)

3: A := A1 × · · · ×An . A has state set Q1 × · · · ×Qn
4: for each (q1, . . . , qn) ∈ Q1 × · · · ×Qn do
5: if ∃i ∈ {1, . . . , n} such that qi ∈ Fi then
6: i := largest number such that qi ∈ Fi
7: λ((q1, . . . , qn)) := si
8: else
9: λ((q1, . . . , qn)) := (EName)∗

Algorithm 4 Translating a DFA-based XSD to an equivalent XSD.

Input: DFA-based XSD (A = (Q,EName, δ, q0), S, λ)
Output: XSD X = (EName,Types, ρ, T0) equivalent to (A,S, λ)

1: Types := Q
2: T0 := {a[δ(q0, a)] | a ∈ S, δ(q0, a) 6= ∅}
3: for each state q ∈ Q do
4: rq := expression obtained from λ(q) by replacing each symbol a with a[δ(q, a)]
5: ρ(q) = rq

2007].16 The difference with the minimization algorithm from [Martens and Niehren 2007]
would be that the deterministic regular expressions rq should not be minimized.17

5.3. Worst-Case Optimality of the Translation Algorithms

We now prove that both translation algorithms are worst-case optimal. In particular, we
show that both conversions from the previous section can lead to exponential size blow-ups
in general. In Section 5.4, we exhibit fragments that are prevalent in practice for which the
conversions are efficient.

5.3.1. From XML Schema to BonXai. When converting an XSchema Definition (XSD) to a
BonXai Schema Definition (BXSD) using the procedures in Lemmas 5 and 6 it is possible
that the BXSD is exponentially larger than the XSD. The source of this exponential blow-
up lies in Algorithm 2 which is used in Lemma 6. More precisely, line 1 constructs a regular
expression equivalent to a DFA, which is well known to be exponential in the worst case
[Ehrenfeucht and Zeiger 1976].

We will now show that this blow-up cannot be avoided in general, which means that,
in this sense, our conversion algorithm is worst-case optimal. We recall, however, that our
conversion which we showed in Lemma 6 does not produce a large number of rules in the
BXSD. Therefore, if the DFAs that Algorithm 2 encounters on line 2 only yield polynomially
large regular expressions, then the whole conversion is polynomial. We discuss a particularly
relevant such case in Section 5.4.

16More formally, it is possible to efficiently produce an XSD such that the set Types is minimal among all
equivalent XSDs. Also, the expressions rq do not become larger.
17In fact, it is not clear how to efficiently minimize a deterministic regular expression — if it were possible
to do this efficiently, the whole resulting XSD could be minimized in polynomial time by the algorithm from
[Martens and Niehren 2007].

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:32

The following theorem is the most technical result in this article. Its proof leverages a
technique from [Ehrenfeucht and Zeiger 1976]. The hard part of our proof is to show that
the exponential blowup cannot be avoided by a clever use of the priorities in BonXai.

Theorem 9. There exists a family (Xn)n∈N of XSDs such that, for each n, Xn has size
O(n2) but the smallest BXSD equivalent to Xn has size at least 2Ω(n).

Before we give the proof of Theorem 9, we need a lemma that bounds the size of regular
expressions for left derivatives of languages (left derivatives were defined by Brzozowski [Br-
zozowski 1964]). To this end, the left derivative of a string language L with respect to a string
w, denoted by ∂w L, is defined as

∂w L
def
= {v | wv ∈ L}.

The left derivative of a language L with respect to a language X, denoted by ∂X L, is defined
as

∂X L
def
=
⋃
w∈X

∂wL = {v | ∃w ∈ X such that wv ∈ L}.

For a regular expression α, we denote by ∂X α a regular expression for the language ∂X L(α).
We denote by depth(α) the depth of the parse tree for α.

Lemma 10. Let α be a regular expression and X be an arbitrary language. Then there
exists a regular expression α′ for the language ∂XL(α), such that |α′| ∈ O(depth(α)|α|).

Proof. If X = ∅ then ∂XL(α) = ∅ and the lemma holds. We therefore assume from
now on that X 6= ∅. For a language L, let prefix(L) = {v | ∃w such that vw ∈ L} be the set
of all prefixes of strings in L. We construct α′ inductively as follows.

∂X ∅ = ∅

∂X ε =

{
ε if ε ∈ X
∅ otherwise

∂X a =

ε+ a if X ∩ {ε, a} = {ε, a}
a if X ∩ {ε, a} = {ε}
ε if X ∩ {ε, a} = {a}
∅ otherwise

∂X (α1 + α2) = ∂X α1 + ∂X α2

∂X (α1 · α2) = (∂X1 α1) · α2 + ∂∂L(α1)X α2

∂X α
∗ = (∂∂L(α∗)X (ε+ α)) · α∗

Here, X1
def
= X ∩ prefix(L(α1)) and, by definition ∂L(α1)X = {v | ∃w ∈ L(α1) such that

wv ∈ X} and, similarly, ∂L(α∗)X = {v | ∃w ∈ L(α∗) such that wv ∈ X}.
We sketch how it can be inductively shown that the above definitions are correct in the case
where X 6= ∅. The base cases are clear. In the inductive step, the set ∂X (α1 + α2) consists
of all strings v for which that there is a string w ∈ X such that wv ∈ L(α1) or wv ∈ L(α2).
This language is defined by the (inductively obtained) regular expression ∂X α1 + ∂X α2.
The language ∂X (α1 · α2) is the set of strings v for which there exists a w ∈ X such that
wv ∈ L(α1 · α2). Here, we have two cases depending on how wv matches α1 · α2. In the
first we have wv = wv1v2 with wv1 ∈ L(α1) and v2 ∈ L(α2) and in the second we have
wv = w1w2v with w1 ∈ L(α1) and w2v ∈ L(α2). In the first case, we have that w is a prefix
of a word in L(α1) and, therefore, v ∈ (∂X1

α1) · α2. In the second case, w2 ∈ ∂L(α1)X and,
therefore, v ∈ ∂∂L(α1)X α2. This concludes the proof for the language ∂X (α1 · α2). We now
move on to the final case in the definition, ∂X α

∗. Here we must find a regular expression

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:33

for the strings v for which there is a w ∈ X such that wv ∈ L(α∗). Since wv ∈ L(α∗) we
have that wv can be written as wv = w1w2v1v2 where w = w1w2, v = v1v2, w1 ∈ L(α∗),
w2v1 ∈ L(ε + α), and v2 ∈ L(α∗). We have that w2 ∈ ∂L(α∗)X and, therefore, v1 is in the
language of (∂∂L(α∗)X (α+ε)). This means that v is in the language of (∂∂L(α∗)X (α+ε)) ·α∗.

It remains to show that |α′| ≤ depth(α)|α|. We emphasize that the bound on the length
of ∂XL(α) does not depend on X (and therefore the complicated subscript languages do not
matter). This is because the only case where a subscript has a real effect on the expression
is for expressions of the form ∂X a.

We show |α′| ≤ 2(depth(α)|α|) by an induction on the structure of α. For the induction
base case, we observe that |α| = |α′| ≤ 2 in the cases where |α| is an atomic expression.
Applying the induction hypothesis to the equations above gives us

|α′| ≤

2
(

depth(α1)|α1|+ depth(α2)|α2|
)

if α = α1 + α2

2 depth(α1)|α1|+ |α2|+ 2 depth(α2)|α2| if α = α1 · α2

2 depth(α1)|α1|+ |α| if α = α∗1

Using the fact that both depth(α1) and depth(α2) are bounded by depth(α)− 1, we get
that

|α′| ≤

2(depth(α)− 1)(|α1|+ |α2|) if α = α1 + α2

2(depth(α)− 1)(|α1|+ |α2|) + |α2| if α = α1 · α2

2(depth(α)− 1)|α1|+ |α| if α = α∗1

Using the fact that |α1| + |α2| ≤ |α|, we can conclude in all three cases that |α′| ≤
2(depth(α)|α|). This concludes the proof.

Now we are ready to prove Theorem 9: there exists a family (Xn)n∈N of XSDs such that,
for each n, Xn has size O(n2) but the smallest BXSD equivalent to Xn has size at least
2Ω(n).

Proof of Theorem 9. We leverage a technique by Ehrenfeucht and Zeiger [Ehren-
feucht and Zeiger 1976], who showed that there exists a class of languages (Zn)n∈N, such
that Zn can be accepted by a DFA of size O(n2) but cannot be defined by a regular expres-
sion of size smaller than 2n−1.

For every n ∈ N we let Σn = {aij | i, j ∈ {1, . . . , n}}. We call i the source and j the target
of a symbol aij . We define Zn as

Zn =
{
w1 · · ·wm ∈ Σ∗n | ∀i ∈ {1, . . . ,m− 1},

∃j, k, l such that wiwi+1 = ajkakl
}
.

That is, in every word in Zn, the target of a symbol and the source of the following symbol
must be equal. Every word w ∈ Σ∗n \ Zn has a first symbol ai` whose target ` does not
coincide with the source of the following symbol. We call ` the error index of w.

We now construct a family (Xn)n∈N of XSDs, such that Xn is of size O(n2) and the
smallest BXSD equivalent to Xn has size 2Ω(n). We define Xn by its DFA-based XSD
(An, Sn, λn). To this end, we let Sn = Σn and choose the components of An = (Q ∪
Q′,Σn, δ, q1) as follows.

—Q = {qi|1 ≤ i ≤ n} and Q′ = {q′i|1 ≤ i ≤ n};

— for every qi ∈ Q and aj` ∈ Σ, δ(qi, aj`) =

{
q` if i = j

q′i if i 6= j
— and, for every q′i ∈ Q′ and aj` ∈ Σ, δ(q′i, aj`) = q′i,
— for every qi ∈ Q, λ(qi) = ε ∪ Σ,
— for every q′` ∈ Q, λ(q′`) = ε ∪ Σ ∪ {a``a``}.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:34

In other words, An is a DFA that tests whether a word is in Zn and remembers, for words
not in Zn, their error index.

The documents valid with respect to Xn are thus characterized by the following two
properties.

— All label sequences over Σn are allowed in paths.
— The only allowed kind of branching is binary branching of the form aij → a``a`` below

nodes whose ancestor path contains a Zn-error with error index `.

We note that, as branching can only take place below an error, and the first error of a path
is unique, in every document there can be binary branching a``a`` with at most one kind
of symbols.

It is straightforward that Xn is of size O(n2). To show that every BXSD B equivalent
to (An, Sn, λn) is of size 2Ω(n) we prove that B must have at least one ancestor pattern of
size 2Ω(n). As already mentioned, it is known from [Ehrenfeucht and Zeiger 1976] that every
regular expression for Zn is of size 2Ω(n). Actually Ehrenfeucht and Zeiger prove a stronger
result:

Proposition 11 ([Ehrenfeucht and Zeiger 1976, Theorem 4.1]). For every n ∈
N, there is a string g ∈ Zn, such that every regular expression α with vgw ∈ L(α) for some
v and w and L(α) ⊆ Zn is of size 2Ω(n).

For our purposes, we need a slightly stronger version:

Proposition 12. For every n ∈ N, there are strings g1, . . . , gn ∈ Zn such that h =
g1g2 . . . gn ∈ Zn and for every i ∈ {1, . . . , n},

— gi contains no symbol from {a1i, . . . , ani}; and
— every regular expression αi with vgiw ∈ L(αi) for some v and w and L(αi) ⊆ Zn is of

size 2Ω(n).

Proof of Proposition 12. First we note that Proposition 11 still holds, if we replace
the condition L(α) ⊆ Zn by L(α) ⊆ Zm, for any m > n. This is because symbols outside
Σn are useless for strings from Zn, and therefore any regular expression for Zn over Σm
could be translated into an expression of (at most) the same size over Σn by replacing every
symbol outside Σn with ∅.

By the same kind of reasoning it follows that, for every i ∈ {1, . . . , n}, Proposition 11 also

holds with respect to strings in Zn over Σ
(i)
n = Σn \ {aij , aji | j ≤ n} and expressions over

Σn. Let thus, for every i, hi ∈ Zn be a string over Σ
(i)
n such that every regular expression α

with vihiwi ∈ L(α) for some vi and wi and L(α) ⊆ Zn is of size 2Ω(n). By choosing vi and
wi as suitable one-letter strings we obtain strings gi = vihiwi with the stated properties.
This concludes the proof of Proposition 12.

Let now B be a BXSD for (An, Sn, λn). Our goal is to show that B has at least one
ancestor pattern of size 2Ω(n). We can assume w.l.o.g. that B does not contain any rule
with a child pattern allowing content models aiiaii and ajjajj , for i 6= j. To this end, let us
assume such a rule α exists and there is a string z = a1 . . . am matching the left hand side
of α such that some document in L(B) contains z as its ancestor path. If no such z exists, α
can be deleted from B without changing its language. On the other hand, if such a document
exists, α allows the document in which below the z-path two leaves labeled aii occur and
the document in which below the z-path two leaves labeled ajj occur, contradicting the
definition of the language of Xn.

We call any rule allowing a content model aiiaii a ti-rule and any other rule a t-rule. We
emphasize that, as we just showed, a rule can only be a ti-rule, for one index i.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:35

We consider strings (as ancestor paths) from Zn of the form s = hks′, with h from
Proposition 12, k ≥ 1 and s′ ∈ Σ∗n. Clearly, strings can be matched by several rules, but
for each string s, B must have a last rule rs : αs → βs whose left hand side matches s.
However, several strings can possibly share the same last rule.

Let, for every such s,

α′s = ∂hk−1g1...gj αs,

where j = 0 if αs is a t-rule and j = i− 1 if αs is a ti-rule. We note that gj+1 . . . gns
′ ∈

L(α′s) by construction. By Lemma 10, it follows that |α′s| = O(|αs|2) and therefore |αs| =
Ω(
√
|α′s|).

For each string s = hks′ ∈ Σ∗n one of the following conditions must hold, for some
` ∈ {1, . . . , n}.

(1a)L(α′s) ⊆ Zn.
(1b)L(α′s) 6⊆ Zn, rs is a t`-rule, and every string in L(α′s) \ Zn has error index `.
(2a)L(α′s) 6⊆ Zn, rs is a t`-rule, and there exists a string in L(α′s) \Zn with error index j 6= `.
(2b)L(α′s) 6⊆ Zn and rs is a t-rule.

Let us assume first that, for some s = hks′ ∈ Σ∗n, one of the cases (1a) or (1b) holds.
In case (1a), we can conclude from Proposition 12 that α′s is of size 2Ω(n). Therefore αs

is of size
√

2Ω(n) = 2Ω(n).
In case (1b), we construct a regular expression γ from α′s by replacing each occurrence

of a symbol ai` with i ∈ {1, . . . , n} by ∅. By construction, γ has the following properties:

— |γ| ≤ |α′s|;
—L(γ) ⊆ Zn, since every string in L(α′s) \ Zn has a symbol ai` for some i; and
— g` ∈ L(γ), as g` ∈ L(α′s) and g` contains no symbol ai` by definition.

We can conclude from Proposition 12, that γ and therefore α′s is of size 2Ω(n). We can
conclude again that αs is of size 2Ω(n), as well.

We can thus assume from now on that, for every s = hks′ ∈ Σ∗n, one of the cases (2a)
or (2b) applies. We are going to show next that this implies that the number of rules in
B must be unbounded, a contradiction from which we can conclude the statement of the
theorem. More precisely, we show that for each string of the form s = hks′ ∈ Σ∗n, there is a
string z = hk−1z′ ∈ Σ∗n such that rz comes strictly after rs in the list of rules of B. Clearly,
repeated application of this statement yields a sequence of at least k rules with ascending
indexes. As the process can be started with an arbitrary k, we get the desired contradiction.

Let thus s = hks′ ∈ Σ∗n, for some k ≥ 1. By our assumption, either condition (2a) or (2b)
holds for α′s.

We first consider the case that rs is a t`-rule, for some ` ∈ {1, . . . , n} and (2a) holds with
some string w ∈ L(α′s) \ Zn with error index j 6= `. Let us assume towards a contradiction
that rs is the last rule (in the order of rules) matching z = hk−1g1 . . . g`−1w. Then the
document consisting of a path with label sequence z arriving at some node v with two leaf
children labeled by a`` below v, is valid for B, a contradiction as the error index of z is not
`. Therefore, there must be another rule in B after rs whose left hand side matches z and
whose right hand side does not allow the content model a``a``.

We next consider the remaining case that rs is a t-rule and (2b) holds. Let w ∈ L(α′s)\Zn
with some error index j and let us assume towards a contradiction that rs is the last rule
matching z = hk−1w. Then the document consisting of a path with label sequence z arriving
at a node v with two leaf children labeled by ajj is not valid for B, a contradiction.

Therefore, again there must be another rule in B after rs whose left hand side matches
z and whose right hand side allows the content model ajjajj .

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:36

Thus, we have shown that for each string of the form s = hks′ ∈ Σ∗n, there is a string
z = hk−1z′ ∈ Σ∗n such that rz comes strictly after rs in the list of rules of B, and we are
done.

This completes the proof that B has size 2Ω(n).

5.3.2. From BonXai to XML Schema. We prove that the translation from BXSDs to XSDs is
worst-case optimal.

Theorem 13. There exists a family of BXSDs (Bn)n∈N such that, for each n, the BXSD
Bn has size O(n) but the smallest XSD equivalent to Bn has size at least 2n.

Proof sketch. Let n ∈ N be arbitrary. Let Bn = (ENamen, Sn, Rn) be the BXSD with

ENamen = {a, a1, . . . , an, b1, . . . , bn},

Sn = {a1, . . . , an}, and Rn consisting of the following rules:

//a → ε
//(b1 + · · ·+ bn) → ε
//(a1 + · · ·+ an) → (a+ a1 + · · ·+ an)

//a1//a1//a → b1
//a2//a2//a → b2

...
...

...
//an//an//a → bn

Here we wrote the regular expressions on the left-hand-side of rules as in Section 2 with
// as an abbreviation for EName∗. This schema defines a set of unary (i.e., non-branching)
trees and its semantics is the following. If the ancestor path of an a-element contains, for
each 1 ≤ i ≤ n, at most one ai element, its content model is ε. Otherwise, if j is the largest
number such that aj occurs at least two times on the path to the a element, then this a
element has bj as a child.

It can be proved with techniques from [Martens and Niehren 2007] that the smallest
XSD equivalent to the above BXSD is exponentially large in n. Intuitively, in order to
decide which bi is the child under an a, the types of the XSD needs to keep track of the
largest j, for which aj has already occurred twice, and, worse, the set of i > j, for which ai
has already occurred once.

5.4. Efficient Translations for Fragments

Even though the translations between XSD and BonXai in Sections 5.2.1 and 5.2.2 are
provably optimal, they can be exponential in the worst case. In this section, we argue
why we do not expect this to be a problem in practice. In particular, we prove that the
translation is polynomial for a restriction of XSDs that accounts for the overwhelming
majority of schemas in practice. Our examination of 8080 XML Schemas from the Web
revealed that, in more than 97%, the content model of an element only depends on the
label of the element itself, the label of its parent, and the label of its grandparent (see
Table II in the Appendix; these are the schemas with k ≤ 3). This data motivates a class
of schemas which can be converted efficiently. More precisely, consider the following class
of DFA-based XSDs.

Definition 14. A DFA-based XSD is k-suffix, if the type of an element only depends
of the last k symbols of its ancestor string. More precisely, a DFA-based XSD (A,S, λ)
with A = (Q,EName, δ, q0) is k-suffix based if A(w1a1 · · · ak) = A(w2a1 · · · ak) for all strings
w1, w2 over EName and symbols a1, . . . , ak ∈ EName. �

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:37

Hence, 97% of the schemas in our data set have a corresponding 3-suffix DFA-based XSD.
Actually, this DFA-based XSD can be obtained simply by applying the construction of
Lemma 5 to the given XSD. Furthermore, according to Lemmas 5 and 8, the translations
between XSDs and DFA-based XSDs are straightforward and very efficient. We therefore
do not revisit these constructions and focus on translations between (k-suffix) DFA-based
XSDs and BXSDs. The BXSDs corresponding to this class of schemas can be defined as
follows.

Definition 15. A regular language L is a suffix language if L = {w} or L =
L(EName∗w) for some word w. It is a k-suffix language if, additionally, |w| ≤ k. A BXSD
(EName, S,R) is k-suffix based if, for every rule r → s in R, the left-hand side r is a k-suffix
language. �

The following theorem considers the translation from k-suffix based BXSDs and k-suffix
DFA-based XSDs. It is similar in flavor to Proposition 5.2 in [Kasneci and Schwentick 2007],
but considers rules with a priority system as in BonXai. Kasneci and Schwentick avoided
this issue by assuming that rules have pairwise disjoint left-hand-side languages.

Theorem 16. Each k-suffix based BXSD can be translated in polynomial time into an
equivalent k-suffix DFA-based XSD of linear size.

Proof. Let B = (EName, S,R) be a k-suffix based BXSD where R = (r1 → s1, . . . , rn →
sn) where, for each i = 1, . . . , n, ri = wi or ri = //wi with wi a string of length at most k.

The equivalent k-suffix DFA-based XSD D = (A,S, λ) with A = (Q,EName, δ, qε) can
be defined as follows. Let P = {w | ∃ string v over EName for which wv ∈ {w1, . . . , wn}}
be the set of prefixes of all wi and let Q := {(qw, j) | w ∈ P, j ∈ {0, 1}} be a set of states
representing all prefixes and indicating whether the “current prefix” is still a prefix of the
whole word. Then we define

δ((qw, j), a) =

{
(qv, j), if wa = v,

(qv, 1), otherwise,

where v is the longest suffix of wa in P . Furthermore we let λ((w, 1)) = si, where i is the
highest index such that ri = //wi and wi is a suffix of w, and λ((w, 0)) = `, where ` is
the highest index such that r` = w` = w. The construction of D from B is easily seen to
be polynomial. Equivalence between B and A can be immediately seen since A follows the
standard approach for pattern matching with automata. Furthermore, D fulfills the k-suffix
property by definition.

We note that A follows a standard approach for pattern matching with automata. The
computed DFA-based XSD is equivalent to the one computed by Algorithm 3. It exploits
the fact, that the BXSD is suffix based to avoid the (expensive) product construction.

We now consider the reverse direction. An important difference with Theorem 16 is that
this direction is exponential in k, that is, it needs k to be constant in order to be polynomial.
However, as we noted before, in 97% of the schemas occurring in out practical study, we
see that k ≤ 3.

Theorem 17. Let k be a constant. Each k-suffix DFA-based XSD can be translated in
polynomial time into an equivalent k-suffix based BXSD.

Proof. Let D = (A,S, λ) with A = (Q,EName, δ, q0) be a k-suffix DFA-based XSD.
The BXSD B = (EName, S,R), where B consists of the rules

//a1/a2/ . . . /ak → α, for which λ(A(a1a2 . . . ak)) = α and

/a1/a2/ . . . /a` → α, for which ` < k and λ(A(a1a2 . . . a`)) = α.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:38

Note that the ordering of the rules does not matter as the ancestor patterns describe
pairwise disjoint languages.

The BXSD B is equivalent to D and contains less than |EName|(k+1) rules. It is clear
that B can be computed in polynomial time if k is fixed.

Finally, we note that it is easy to decide if a given XSD can be translated efficiently into
a BXSD, i.e., whether it corresponds to a k-suffix DFA-based XSD (where k can either
be fixed in advance or not). Questions of this kind were investigated in [Czerwiński et al.
2013b; Hofman and Martens 2015; Place et al. 2013].

6. CONCLUSIONS

We introduced BonXai with the goal of defining a schema language that approximates the
expressiveness of XML Schema and reconciles this with the simplicity of DTDs. Thereby,
BonXai is a language in which we can express many features of XML Schema in a more
readable format, and automatically convert to actual XML Schema schemas. BonXai is
a full-fledged schema language with many features and a formal specification [Martens
et al. 2015a]. The language can be employed in various scenarios (c.f., Section 3.7) ranging
from the creation of novel XML Schemas to debugging of existing XML Schemas. Further-
more, BonXai is built on a solid theoretical foundation which is rooted in pattern-based
schemas [Martens et al. 2007; Martens et al. 2006] and which facilitates transformation
algorithms and their analysis. While transforming between BonXai and XML Schema can
have high complexity in the worst case, we believe that for a very large and practically
relevant class this is never the case (c.f., Section 5.4).

Acknowledgment

We are grateful to Thomas Timm for his significant help in performing the practical study
that we discussed in the Introduction. We are grateful to Christian Wolf for collecting the
data sets (which included a significant amount of manual labour).

REFERENCES

Bex, G. J., Gelade, W., Martens, W., and Neven, F. 2009. Simplifying XML Schema: effortless handling
of nondeterministic regular expressions. In ACM International Conference on Management of Data
(SIGMOD). ACM, New York, NY, USA, 731–744.

Bex, G. J., Martens, W., Neven, F., and Schwentick, T. 2005. Expressiveness of XSDs: from practice
to theory, there and back again. In International Conference on World Wide Web (WWW). 712–721.

Bex, G. J., Neven, F., and den Bussche, J. V. 2004. DTDs versus XML Schema: A practical study. In
International Workshop on the Web and Databases (WebDB). 79–84.

Bex, G. J., Neven, F., Schwentick, T., and Vansummeren, S. 2010. Inference of concise regular expres-
sions and DTDs. ACM Trans. Database Syst. 35, 2, 11:1–11:47.

Björklund, H., Martens, W., and Timm, T. 2015. Efficient incremental evaluation of succinct regular
expressions. In International on Conference on Information and Knowledge Management (CIKM).
1541–1550.

Brüggemann-Klein, A. and Wood, D. 1998. One-unambiguous regular languages. Information and Com-
putation 142, 2, 182–206.

Brzozowski, J. A. 1964. Derivatives of regular expressions. J. ACM 11, 4, 481–494.

Butek, R. and Kendrick, S. 2011. Web services hints and tips: avoid anonymous types.
http://www.ibm.com/developerworks/webservices/library/ws-avoid-anonymous-types/
ws-avoid-anonymous-types-pdf.pdf. IBM developerWorks Technical Library.

Caron, P., Han, Y., and Mignot, L. 2011. Generalized one-unambiguity. In International Conference on
Developments in Language Theory (DLT). 129–140.

Coen, C. S., Marinelli, P., and Vitali, F. 2004. Schemapath, a minimal extension to xml schema for
conditional constraints. In WWW, S. I. Feldman, M. Uretsky, M. Najork, and C. E. Wills, Eds. ACM,
164–174.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:39

Czerwiński, W., David, C., Losemann, K., and Martens, W. 2013a. Deciding definability by deterministic
regular expressions. In International Conference on Foundations of Software Science and Computation
(FOSSACS). 289–304.

Czerwiński, W., Martens, W., and Masopust, T. 2013b. Efficient separability of regular languages by
subsequences and suffixes. In International Colloquium on Automata, Languages, and Programming
(ICALP).

DSD. 2002. Document structure description (DSD). http://www.brics.dk/DSD/.

Ehrenfeucht, A. and Zeiger, H. P. 1976. Complexity measures for regular expressions. J. Comput. Syst.
Sci. 12, 2, 134–146.

Fiorello, D., Gessa, N., Marinelli, P., and Vitali, F. 2004. Dtd++ 2.0: Adding support for co-
constraints. In Extreme Markup Languages.

Gao, S., Sperberg-McQueen, C., Thompson, H., Mendelsohn, N., Beech, D., and Maloney, M. 2012.
W3C XML Schema definition language (XSD) 1.1 part 1: Structures. http://www.w3.org/TR/2012/
REC-xmlschema11-1-20120405/.

Gelade, W. and Neven, F. 2011. Succinctness of pattern-based schema languages for XML. Journal of
Computer and System Sciences 77, 3, 505–519.

Hofman, P. and Martens, W. 2015. Separability by short subsequences and subwords. In International
Conference on Database Theory (ICDT).

JEdit. jEdit programmer’s text editor. www.jedit.org.

Kasneci, G. and Schwentick, T. 2007. The complexity of reasoning about pattern-based XML schemas.
In ACM Symposium on Principles of Database Systems (PODS). 155–164.

Losemann, K., Martens, W., and Niewerth, M. 2012. Descriptional complexity of deterministic regular
expressions. In International Symposium on Mathematical Foundations of Computer Science (MFCS).
643–654.

Martens, W., Mattick, V., Niewerth, M., Agarwal, S., Douib, N., Garbe, O., Günther, D., Oliana,
D., Kroniger, J., Lücke, F., Melikoglu, T., Nordmann, K., Özen, G., Schlitt, T., Schmidt,
L., Westhoff, J., and Wolff, D. 2015a. Design of the BonXai schema language. Available at
http://www.bonxai.org/downloads/bonxai-design.pdf.

Martens, W., Neven, F., Niewerth, M., and Schwentick, T. 2012. Developing and analyzing XSDs
through bonXai. PVLDB 5, 12, 1994–1997.

Martens, W., Neven, F., Niewerth, M., and Schwentick, T. 2015b. BonXai: Combining the simplicity
of DTD with the expressiveness of XML Schema. In Symposium on Principles of Database Systems
(PODS). 145–156.

Martens, W., Neven, F., Niewerth, M., and Schwentick, T. 2017. Bonxai: Combining the simplicity
of DTD with the expressiveness of XML Schema (data set). http://bonxai.org/downloads.html.

Martens, W., Neven, F., and Schwentick, T. 2007. Simple off the shelf abstractions of XML Schema.
SIGMOD Record 36, 3, 15–22.

Martens, W., Neven, F., Schwentick, T., and Bex, G. J. 2006. Expressiveness and complexity of XML
Schema. ACM Trans. Database Syst. 31, 3, 770–813.

Martens, W. and Niehren, J. 2007. On the minimization of XML Schemas and tree automata for unranked
trees. J. Comput. Syst. Sci. 73, 4, 550–583.

Møller, A. and Schwartzbach, M. 2006. An introduction to XML and web technologies. Addison-Wesley.

Murata, M., Lee, D., Mani, M., and Kawaguchi, K. 2005. Taxonomy of xml schema languages using
formal language theory. ACM Trans. Internet Techn. 5, 4, 660–704.

Peterson, D., Gao, S., Malhotra, A., Sperberg-McQueen, C., Thompson, H., and Biron, P. 2012.
W3C XML Schema definition language (XSD) 1.1 part 2: Datatypes. http://www.w3.org/TR/2012/
REC-xmlschema11-2-20120405/.

Place, T., van Rooijen, L., and Zeitoun, M. 2013. Separating regular languages by piecewise testable
and unambiguous languages. In International Symposium on Mathematical Foundations of Computer
Science (MFCS). 729–740.

RelaxNG. 2001. Relax NG specification. http://www.relaxng.org/spec-20011203.html.

Schematron. 1999. Schematron. http://www.schematron.com/.

Sperberg-McQueen, C. and Thompson, H. 2005. XML Schema. http://www.w3.org/XML/Schema.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:40

A. COMPLETE XML SCHEMA DOCUMENT

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<xs:schema xmlns="http://example.org"

xmlns:xs="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified"
targetNamespace="http://example.org">

<xs:element name="document" type="Tdocument"/>

<xs:complexType name="Tdocument">
<xs:sequence>
<xs:element name="template" type="Ttemplate"/>
<xs:element name="userstyles" type="TuserStyles"/>
<xs:element name="content" type="Tcontent"/>

</xs:sequence>
</xs:complexType>

<xs:complexType name="Ttemplate">
<xs:sequence>
<xs:element name="section" type="TtemplateSection" minOccurs="0"/>

</xs:sequence>
</xs:complexType>

<xs:complexType name="TuserStyles>
<xs:sequence>
<xs:element name="style" type="TnamedStyle"

minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>

</xs:complexType>

<xs:complexType name="Tcontent">
<xs:sequence>
<xs:element name="section" type="Tsection"

minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>

</xs:complexType>

<xs:complexType name="TtemplateSection">
<xs:sequence>
<xs:element name="titlefont" type="TtemplateFont" minOccurs="0"/>
<xs:element name="style" type="TtemplateStyle" minOccurs="0"/>
<xs:element name="section" type="TtemplateSection" minOccurs="0"/>

</xs:sequence>
</xs:complexType>

<xs:complexType name="TtemplateStyle">
<xs:all>
<xs:element name="font" type="TtemplateFont" minOccurs="0"/>
<xs:element name="color" type="TtemplateColor" minOccurs="0"/>

</xs:all>
</xs:complexType>

Fig. 10. An XML Schema document equivalent to the BonXai schema in Figure 6, describing the XML
document in Figure 2 — part 1.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:41

<xs:complexType name="TtemplateFont">
<xs:attribute name="name" type="xs:string" use="optional"/>
<xs:attribute name="size" type="xs:integer" use="optional"/>

</xs:complexType>

<xs:complexType name="TtemplateColor">
<xs:attribute name="color" type="xs:string"/>

</xs:complexType>

<xs:complexType name="TnamedStyle">
<xs:all>
<xs:element name="font" type="TtemplateFont" minOccurs="0"/>
<xs:element name="color" type="TtemplateColor" minOccurs="0"/>

</xs:all>
<xs:attribute name="name" type="xs:string" use="required"/>

</xs:complexType>

<xs:complexType name="Tsection" mixed="true">
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:group ref="markup"/>
<xs:element name="section" type="Tsection"/>

</xs:choice>
<xs:attribute name="title" type="xs:string" use="required"/>

</xs:complexType>

<xs:group name="markup">
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element name="bold" type="Tmarkup"/>
<xs:element name="italic" type="Tmarkup"/>
<xs:element name="style" type="TstyleRef"/>
<xs:element name="font" type="Tfont"/>
<xs:element name="color" type="Tcolor"/>

</xs:choice>
</xs:group>

<xs:complexType name="Tmarkup" mixed="true">
<xs:group ref="markup"/>

</xs:complexType>
<xs:complexType name="TstyleRef" mixed="true">
<xs:group ref="markup"/>
<xs:attribute name="name" type="xs:string" use="required"/>

</xs:complexType>
<xs:complexType name="Tcolor" mixed="true">
<xs:group ref="markup"/>
<xs:attribute name="Tcolor" type="xs:string" use="required"/>

</xs:complexType>
<xs:complexType name="Tfont" mixed="true">
<xs:group ref="markup"/>
<xs:attribute name="name" type="xs:string" use="optional"/>
<xs:attribute name="size" type="xs:integer" use="optional"/>

</xs:complexType>
</xs:schema>

Fig. 11. An XML Schema document equivalent to the BonXai schema in Figure 6, describing the XML
document in Figure 2 — part 2.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

