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Abstract

We study the descriptional complexity of regular languages that are definable by
deterministic regular expressions, i.e., we examine worst-case blow-ups in size
when translating between different representations for such languages. As rep-
resentations of languages, we consider regular expressions, deterministic regular
expressions, and deterministic finite automata. Our results show that exponen-
tial blow-ups between these representations cannot be avoided. Furthermore,
we study the descriptional complexity of these representations when applying
boolean operations. Here, we start by investigating the closure properties of
such languages under various language-theoretic operations such as union, in-
tersection, concatenation, Kleene star, and reversal. Our results show that
languages that are definable by deterministic regular expressions are not closed
under any of these operations. Finally, we show that for all these operations ex-
cept the Kleene star an exponential blow-up in the size of deterministic regular
expressions cannot be avoided.

Keywords: deterministic regular expressions, one-unambiguous languages,
boolean operations, automata theory, descriptional complexity

1. Introduction

Deterministic or one-unambiguous regular expressions (henceforth, DREs)
have been a topic of research since they were formally defined by Brüggemann-
Klein and Wood [2]. Their origins lie in the ISO standard for the Standard
Generalized Markup Language (SGML) where they were introduced to ensure
efficient parsing. Today, the prevalent schema languages for XML data, such as
Document Type Definition (DTD) and XML Schema, require that the regular
expressions in their specification are deterministic. From a more foundational
point of view, one-unambiguity is a natural manner in which to define deter-
minism in regular expressions. As such, several decision problems behave better

IThis article is the extended version of [25].
∗Corresponding author
1Supported by grant number MA 4938/2–1 of the Deutsche Forschungsgemeinschaft

(Emmy Noether Nachwuchsgruppe).

Preprint submitted to Elsevier March 31, 2016



for deterministic regular expressions than for general ones. For example, lan-
guage inclusion for regular expressions is PSPACE-complete but is tractable
when the expressions are deterministic. Unfortunately, not every regular lan-
guage can be expressed by a deterministic expression, i.e., not every regular
language is DRE-definable. The canonical example for such a regular language
is L((a+ b)∗a(a+ b)), see [2].

Although DRE-definable languages are rather widespread and have been
around for quite some time, they are not yet well-understood. This motivates
us to study their foundational properties. In particular, we investigate the differ-
ences in the descriptional complexity between regular expressions (REs), deter-
ministic regular expressions (DREs), and deterministic finite automata (DFAs).
Our initial motivation for this work was an unproved claim in [2] which states
that, for expressions of the form Σ∗w, where w is a word over alphabet Σ, ev-
ery equivalent DRE is at least exponentially larger than the length of w. We
proved that this claim is indeed true in the conference version of this work [25],
but the proof turned out to be rather non-trivial. The main challenge was that
languages of the form Σ∗w have polynomial-size REs and DFAs, so one has to
develop new techniques for proving lower bounds on the size of DREs. In this
article (Section 3), we give two different proofs showing the unavoidable expo-
nential blow-up when translating an RE to a DRE. The first one proves that
it cannot be avoided even for finite languages. The latter uses a more general
technique which gives more insights in the structure of DRE-definable languages
and their DREs.

Another set of contributions in this paper is a study of the effect of language-
theoretic operations on languages that are definable by a DRE. In particular, we
consider union, intersection, difference, concatenation, Kleene star, and rever-
sal, for unary and arbitrary alphabets. Several of these operations are relevant
in XML schema management [9, 29]. We provide a complete overview of the clo-
sure properties of DRE-definable languages under these operations in Section 4.
Afterwards, in Section 5, we briefly investigate the state complexity of minimal
DFAs for DRE-definable languages. Here, state complexity refers to the number
of states of the minimal DFA without the sink state. The main reason why we
briefly consider state complexity is because we want to provide results that are
directly comparable with the results on state complexity in [16, 30, 33]. That is,
the first part of Section 5 lists the increase in state complexity when performing
operations on DFAs for DRE-definable languages, if the result of the opera-
tion is also DRE-definable. In the second part of Section 5, we study a similar
question for DREs. That is, what is the descriptional complexity of DREs that
are obtained by performing the aforementioned operations on DREs? Here, we
show that for all these operations except the Kleene star an exponential blow-up
cannot be avoided when applying the operation on two DREs.

Related Work. Deterministic regular expressions have recently been investi-
gated from several perspectives [6, 12, 26, 27]. Groz and Maneth proved that
the membership problem (is a given word in the language of a given DRE?) can
be solved in time O(m+n log logm), where n is the size of the word and m the
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size of the expression [12]. The DRE-definability problem asks whether a given
regular expression or non-deterministic automaton defines a language that can
be expressed by a DRE and was recently proved to be PSPACE-complete [6, 26].

Deterministic regular expressions with counters are also a topic of investi-
gation [5, 11, 17, 20, 21], since these expressions are the ones used to define
content models in XML Schema. In fact, determinism for regular expressions
with counters can be defined in different ways (weak determinism and strong
determinism) [11]. While the expressiveness of strongly deterministic expres-
sions with counting is the same as DREs, the weakly deterministic expressions,
which are the ones used in XML Schema, are more expressive [11]. However,
weakly deterministic regular expressions with counting still cannot define all
regular languages [11]. It was recently shown that it can be decided if the
language of a given finite automaton is expressible by a weakly deterministic
regular expression with counting [23].

In this article we focus on descriptional complexity of DREs. Research on
descriptional complexity of regular languages focused mainly on REs and DFAs.
It is well-known that an exponential blow-up cannot be avoided when translating
an RE into a DFA [16]. Ehrenfeucht and Zeiger [7] proved that there also exist
DFAs which are exponentially more succinct than each equivalent RE. Gruber
and Holzer [13, 15] showed that there exist certain characteristics of automata
which make equivalent regular expressions large. However, these characteristics
cannot näıvely be transferred to DREs. For example, the languages used in the
literature for proving lower bounds on the size of REs (e.g., [7, 13, 15]) are not
definable by DREs.

The state complexity of boolean operations on DFAs is studied in [22, 28,
30, 32, 33], where in [30] the focus is on unary languages. In Section 5.1 we see
that many results in [33] directly apply for DRE-definable languages since they
concern finite languages and every finite language is DRE-definable [1].

Gelade and Neven [10] and Gruber and Holzer [14] independently examined
the descriptional complexity of complementation and intersection for REs. They
showed that the size of the smallest RE for the intersection of a fixed number of
REs can be exponential; and that the size of the smallest RE for the complement
of an RE can be double-exponential. Furthermore, these bounds are tight.
Gelade and Neven also investigate these operations on DREs and proved that
the exponential bound on intersection is also tight when the input is given
as DREs instead of REs [10]. Moreover, they proved that the complement of a
DRE can always be described by a polynomial-size RE. However, in their proofs,
the languages of the resulting REs are not DRE-definable. Concatenation and
reversal operations on regular languages are studied in [3, 18, 19, 31, 34], where
in [34] also languages over unary alphabets are examined.

2. Definitions

By Σ we always denote a finite alphabet of symbols. A (Σ-)word w over
alphabet Σ is a finite sequence of symbols a1 · · · an, where ai ∈ Σ for each
i = 1, . . . , n. The set of all Σ-words is denoted by Σ∗. The length of a word
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w = a1 · · · an is n and is denoted by |w|. The empty word is denoted by ε. A
(word) language L is a set of words. For two languages L1 and L2, we define
the concatenation L1 · L2 as the set {vw | v ∈ L1 ∧ w ∈ L2}. By Li with i ∈ N
we denote the concatenation L · · ·L of i-times the language L.

A (deterministic, finite) automaton (or DFA) A is a tuple (Q,Σ, δ, q0, F ),
where Q is a finite set of states, the transition function δ : Q × Σ 9 Q is a
partial function, q0 is the initial state, and F ⊆ Q is the set of accepting states.
We say that the aforementioned transition is q1-outgoing, q2-incoming, or a-
labeled. The run of A on word w = a1 · · · an is a sequence q0 · · · qn where, for
each i = 1, . . . , n, δ(qi−1, ai) = qi. The word w is accepted by A if the run is
accepting, i.e., if qn ∈ F . By L(A) we denote the language of A, i.e., the set of
words accepted by A. By δ∗ we denote the extension of δ to words, i.e., δ∗(q, w)
is the state which is reached from q by reading w. In this paper we assume that
all states of an automaton are useful, that is, every state can appear in some
accepting run. We define the size |A| of a DFA A as |{(q, a) | δ(q, a) is defined}|.

The set of regular expressions (RE) over Σ is defined as follows: ∅, ε and
every Σ-symbol is a regular expression; and whenever r and s are regular ex-
pressions then so are (r · s), (r + s), and (s)∗. W.l.o.g. we can assume that ∅
does not occur as a (strict) sub-expression of a regular expression. We refer to
Σ-symbols, ε, and ∅ as atomic expressions. For readability, we usually omit con-
catenation operators and parentheses in examples. For a regular expression r,
the language L(r) is inductively defined as follows: L(ε) = {ε}, L(∅) = {∅},
L(σ) = {σ} for every σ ∈ Σ, L(r · s) = L(r) · L(s), L(r + s) = L(r) ∪ L(s), and
L(r∗) = {ε} ∪ (∪i∈NL(r)i).

Whenever we say that expressions or automata are equivalent, we mean that
they define the same language. The size |r| of r is defined to be the total number
of occurrences of alphabet symbols, epsilons, and operators, i.e., the number of
nodes in its parse tree (including the leaf nodes). A regular expression r is
minimal if for every regular expression r′ with L(r′) = L(r), we have |r| ≤ |r′|.

In order to improve readability, we sometimes use an abbreviated notation
for expressions. For k, ` ∈ N we write rk,` to denote rr · · · r(r+ε)(r+ε) · · · (r+ε),
the concatenation of k times r with ` − k times (r + ε). Since this is just an
abbreviated notation to denote a larger expression consisting of ` occurrences
of r, `−1 additional concatenations, (`−k) additional disjunctions, and (`−k)
additional occurrences of ε, the size of rk,` is therefore `|r|+ `− 1 + 2(`− k).

Let L be a language. By first(L) we denote the set of all symbols a ∈ Σ
for which there is a word aw ∈ L. For a regular expression r, we define first(r)
as first(L(r)). Similarly to first(L), we define last(L) as the set of all symbols
a, such that wa ∈ L. The set followlast(L) contains all symbols a, such that
there exists words v, w ∈ Σ∗ with v ∈ L and vaw ∈ L. We use the definition for
regular expressions analogously. The Brzozowski derivative w−1L of a regular
language L and a word w ∈ Σ∗ is defined as the language {v ∈ Σ∗ | wv ∈ L}.
For a regular language L and words v, w ∈ Σ∗, we say that v and w are in the
same Nerode equivalence class C if and only if, for all words z ∈ Σ∗, it holds
that

v · z ∈ L⇔ w · z ∈ L.
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Deterministic regular expressions are defined as follows. Let r be a regu-
lar expression over an alphabet Σ. The expression r̄ over the alphabet Σ̄ =
∪σ∈Σ{σ1, . . . , σ|r|} is obtained from r by replacing, for every i and a, the i-th
occurrence of alphabet symbol a in r (counting from left to right) by ai. For
example, for r = b∗a(b∗a)∗ we have r̄ = b∗1a1(b∗2a2)∗. A regular expression r is
deterministic (a DRE or one-unambiguous [2]) if there are no words waiv and
wajv

′ in L(r̄) such that i 6= j. The expression (a + b)∗a is not deterministic
since both words a2 and a1a2 are in L((a1 + b1)∗a2). The equivalent expression
b∗a(b∗a)∗ is deterministic. Brüggemann-Klein and Wood showed that not every
regular expression is equivalent to a deterministic one [2]. We call a regular
language DRE-definable if there exists a DRE that defines it. The canonical ex-
ample for a language that is not DRE-definable is L((a+b)∗a(a+b)). We define
minimal DREs similar as for REs. We note that minimal DREs are not unique
(up to reordering of disjunctions). For example, the deterministic expressions
(a+ ε)(c+ d) + b(c+ ε) + ε and a(c+ d) + (b+ ε)(c+ ε) + d are equivalent and
both minimal.

Next, we briefly review a result from Brüggemann-Klein and Wood to char-
acterize when a regular language is DRE-definable [2]. They designed a deci-
sion algorithm which outputs, given a minimal DFA A, whether L(A) is DRE-
definable. We review some of the results on which this algorithm is based and
that are useful to us in the remainder of the article. The terminology comes
from [2]. For a state q in an NFA A, the orbit of q, denoted O(q), is the (max-
imal) strongly connected component of A that contains q. We call q a gate of
O(q) if q is accepting, or q has an outgoing transition that leaves O(q). The
orbit automaton of a state q is the sub-automaton of A consisting of the orbit
of q in which the initial state is q and the accepting states are the gates of
O(q). We denote the orbit automaton of q by Aq. The orbit language of q is
L(Aq). The orbit languages of A are all orbit languages of q for all states q of A.
Automaton A with transition function δ has the orbit property if, for every pair
of gates q1, q2 in the same orbit, the following properties hold:

1. q1 is accepting if and only if q2 is accepting; and,

2. for all states q outside the orbit of q1 and q2, it holds δ(q1, a) = q if and
only if δ(q2, a) = q.

Then the following is a characterization of DRE-definable regular languages.

Theorem 1 (Brüggemann-Klein and Wood [2]). Let A be a minimal DFA.
Then, L(A) is DRE-definable if and only if A has the orbit property and all orbit
languages of A are DRE-definable.

Furthermore, we need the notion of A-consistent symbols. A symbol a ∈ Σ is
A-consistent if there is a state f(a), such that δ(q, a) = f(a) for every accepting
state q of A. A set S ⊆ Σ is A-consistent if every a ∈ S is A-consistent.
By AS we denote the S-cut of A which is constructed from A by removing
all transitions δ(q, a) = f(a) for every accepting state q and symbol a ∈ S.
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Finite Languages Infinite Languages
RE DRE DFA Case exists? Ref RE DRE DFA Case exists? Ref

Θ(n) Θ(n) Θ(n) yes Obs.3 Θ(n) Θ(n) Θ(n) yes Obs.3
Θ(n) 2Ω(n) 2Ω(n) yes [2, 28] Θ(n) 2Ω(n) 2Ω(n) yes Cor.9
2Ω(n) 2Ω(n) Θ(n) no [8] 2Ω(n) 2Ω(n) Θ(n) ?
Θ(n) 2Ω(n) Θ(n) yes Th.7 Θ(n) 2Ω(n) Θ(n) yes Cor.9, The.17

nΘ(logn) nΘ(logn) Θ(n) yes [15]

Table 1: Descriptional complexity of DRE-definable languages.

Using the definition of S-cuts, Brüggemann-Klein and Wood provide another
characterization of DRE-definable languages.

Theorem 2 (Brüggemann-Klein and Wood [2]). Let A be a minimal DFA
and S be a set of A-consistent symbols of A. Then, L(A) is DRE-definable if
and only if

1. AS has the orbit property; and

2. all orbit languages of AS are DRE-definable.

3. Descriptional Complexity of DFAs, REs, and DREs

We consider the relative descriptional complexity of REs, DREs and DFAs.
Here, the descriptional complexity of a language L w.r.t. a modelM (whereM
is either the set of DFAs, the set of REs, or the set of DREs) is the smallest ele-
ment e inM such that L(e) = L. An overview of our results is shown in Table 1.
Since every DRE is an RE, we know that every minimal RE for a language L is
smaller or equal to a minimal DRE for L. Furthermore, Brüggemann-Klein and
Wood showed that, given a DRE r, one can construct a DFA A for L(r) with
size O(|Σ||r|). Notice that, in general, it is possible that there is an exponential
blow-up when translating an RE to a DFA and another exponential blow-up
when translating the DFA into a DRE.

We start with a trivial observation that shows that there are languages that
do not cause any significant blow-up between the different representations. For
example, consider the language L(an) and the infinite language L((an)∗) for an
arbitrary natural number n.

Observation 3. There exists a class of finite languages (Ln)n∈N and a class
of infinite languages (L′n)n∈N such that, for each n ∈ N, the minimal DFAs,
minimal REs, and minimal DREs for Ln and L′n have size Θ(n).

3.1. DREs for Finite Languages

We present an overview of what is known in the case of finite languages.
First, notice that every finite language is DRE-definable (see, e.g., [1]). Mandl
showed that, for each language L((0 + 1)0,n1(0 + 1)n) with n ∈ N, every DFA
has size exponential in n. It was shown by Brüggemann-Klein and Wood that
also every DRE for the language is of size exponential in n.
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Figure 1: Minimal DFA for language Ln.

Theorem 4 ([2, 28]). For each n ∈ N, the minimal DFA (and, therefore, ev-
ery minimal DRE) for the language L((a+ b)0,na(a+ b)n) has size 2Ω(n).

Ellul et al. [8] showed that, for each DFA (or even non-deterministic automa-
ton) A of size n that defines a finite language L(A), there exists an RE for L(A)
of size nO(logn). Gruber and Johannsen [15] proved that this bound is also tight.

Theorem 5 ([8]). Let A be a DFA of size n and let L(A) be finite. Then there
exists an RE r for L(A) such that |r| ≤ nO(logn).

Theorem 6 ([15]). There exists a family of finite languages (Ln)n∈N such that
the minimal DFA for Ln has Θ(n) states but every minimal RE for Ln has size
nΘ(logn).

In the following we prove that there exists a class of finite languages (Ln)n∈N
such that every minimal RE and the minimal DFA for Ln are exponentially
more succinct than every minimal DRE for Ln.

Theorem 7. There exists a family of finite languages (Ln)n∈N such that every
minimal RE for Ln has size Θ(n), the minimal DFA for Ln has size Θ(n), and
every minimal DRE for Ln has size 2Ω(n).

Proof. To prove the assumption we consider the family (Ln)n∈N where

Ln = L((a+ b)0,n · b), for every n ∈ N.

For every n, the regular expression (a + b)0,n · b is equivalent to the regular
expression (a + b + ε) · · · (a + b + ε) · b where the subexpression (a + b + ε)
appears n times. Observe that the latter expression has size 6n+ 1. Moreover,
every regular expression equivalent to Ln has to be at least of size n + 1 since
Ln is finite and contains a word of length n + 1. The minimal DFA for Ln is
shown in Figure 1 and has size 4n.

Let rn be a minimal DRE for Ln. We show by induction on n that rn has at
least size 2n. For the base case, n = 0, the assumption holds because L0 = L(b)
and |r0| ≥ 1.

For the induction case, assume that rn−1 has at least size 2n−1. We will now
prove that

rn = a · rn−1 + b · (ε+ rn−1),
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which implies that the size of rn is at least twice the size of rn−1 and which
would conclude our proof.

Towards a contradiction, assume that rn has a concatenation operation as
topmost operation in its syntax tree, i.e., rn = s1 · s2 for some DREs s1 and s2.
Then, we distinguish two cases depending on whether ε ∈ L(s1) or not.

If ε /∈ L(s1), then first(s1) = {a, b}. Since b ∈ Ln, it follows that ε ∈ L(s2)
and, thus, that every word in L(s1) ends with b by the structure of Ln. Moreover,
we know that s2 6= ε because rn is minimal. Let ub be a longest word in L(s1)
and vb be a longest word in L(s2) such that ubvb ∈ Ln. By the structure of Ln
it follows that also uavb ∈ Ln. Since ua and vb are of maximal length for s1

and s2, respectively, we have that ua ∈ L(s1). It follows that also ua ∈ L(rn)
(because ε ∈ L(s2)), which contradicts the assumption that L(rn) = Ln.

If ε ∈ L(s1), then it holds that ε /∈ L(s2). Since b ∈ L(rn) and rn is a DRE it
follows that first(s1) = {a} and first(s2) = {b}. (Indeed, first(s1)∩ first(s2) = ∅
because rn is a DRE.) Let bw be a longest word in L(rn), then we know that
bw ∈ L(s2). Since s1 6= ε (because rn is minimal) bw is not a longest word in Ln,
which contradicts our assumption. This proves that rn is not a concatenation.

Furthermore, rn cannot be a Kleene star because ε /∈ Ln. Therefore, we
know that rn has to be a disjunction.

Since rn is a DRE and ε /∈ Ln, the expression rn has to be of the form
a · s1 + b · s2 for some DREs s1 and s2. Moreover, we have that a−1Ln = Ln−1,
which means that L(s1) = L(rn−1). Since s1 and rn−1 are defined as minimal
DREs, we also know that |s1| = |rn−1|. Therefore, we assume that s1 = rn−1

for the sake of readability in the following. This proves that rn = a ·rn−1 +b ·s2.
It remains to show that every minimal DRE for the language L(s2) =

b−1Ln = L(rn−1 + ε) = Ln−1 ∪ {ε} is of the form rεn−1 = rn−1 + ε with
L(rn−1) = Ln−1.

Let rεm be a minimal DRE for Lεm = Lm−1 ∪ {ε} and m ∈ N. We show by
induction on m that rεm is of the form rm + ε where L(rm) = Lm. For the base
case, m = 0, the assumption holds because Lε0 = L(b+ ε), the minimal DRE for
Lε0 is b+ ε, and L0 = L(b).

For the induction case, assume that every minimal DRE for L(rεm−1) is of
the form rm−1 + ε where L(rm−1) = Lm−1.

The expression rεm cannot have a Kleene star as topmost operation in its
syntax tree because Lm ∪ {ε} is finite and Lm 6= {ε}.

Now, assume that rεm has a concatenation operation as topmost operation in
its syntax tree, i.e., rεm = s′1 · s′2 for some DREs s′1 and s′2. Then, we know that
ε ∈ L(s′1) and ε ∈ L(s′2). By definition of the language, every word (6= ε) in
L(s′1) and every word (6= ε) in L(s′2) has to end with b. Let ub be a longest word
in L(s′1) and vb be a longest word in L(s′2) such that ubvb ∈ L(rεm). By definition
of the language Lεm it follows that also uavb ∈ L(rεm) such that ua ∈ L(s′1) and
ua ∈ L(rεm). This contradicts that L(rεm) = Lm ∪ {ε} and, therefore, rεm is not
a concatenation.

Therefore, rεm has to be a disjunction s′1 + s′2 for some DREs s′1 and s′2.
It remains to prove that s′1 or s′2 equals ε. Without loss of generality, assume
that first(s′1) = {a} and first(s′2) = {b}. We know that ε ∈ L(s′1) or ε ∈ L(s′2).
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Without loss of generality, assume that ε ∈ L(s′1). Since first(s′1) = {a} we have
that L(s′1) 6= {ε} and, therefore, s′1 cannot be a deterministic expression. Thus,
it holds that first(s′1) = {a, b} and first(s′2) = {ε} without loss of generality
which concludes the proof. �

3.2. DREs for Infinite Languages

In the case of infinite languages it is well known that it is possible to have
an unavoidable exponential blow-up when translating between REs and DFAs.

Theorem 8 ([7, 16]).

• The minimal DFA for the language L((a+ b)∗a(a+ b)n) has size 2Θ(n).

• There exists a family of infinite regular languages (Ln)n∈N such that the
minimal DFA for Ln has size Θ(n2) and every minimal RE for Ln has
size 2Ω(n).

To the best of our knowledge, all languages that are used in the literature to
prove such blow-ups are not DRE-definable. Here, we prove that such a blow-up
also cannot be avoided for DRE-definable languages. To prove an exponential
blow-up when translating an RE for a DRE-definable language to a DFA, we
can easily extend the language of Theorem 4 to an infinite language. For the
exponential blow-up when translating a DFA for an infinite language to a DRE
we can extend Theorem 7 accordingly.

Corollary 9. Let Σ = {a, b,#}.
• For each n ∈ N, the minimal DFA and every minimal DRE for the DRE-

definable language L((a+ b)0,na(a+ b)n#∗) have size 2Ω(n).

• Let Ln = L((a + b)0,nb#∗) for some n ≥ 1. Every minimal RE for Ln
has size Θ(n), the minimal DFA for Ln has size Θ(n), and every minimal
DRE for the language has size 2Ω(n).

We now present another, more general technique to show lower bounds on the
descriptional complexity of DREs. The main idea of the technique is to identify
positions in the minimal DFA where a minimal DRE can have a concatenation.
To this end, we search for bottleneck states that are states which every accepting
run needs to visit. Using bottlenecks, we show an exponential blow-up when
translating a DFA into a DRE by a different and much more complex technique
than in Section 3.1. The reason why we show both techniques is that, in this
way, we show that there exist two independent sources of exponential behaviour
which we can identify by the different techniques (see, e.g., Theorem 7 and 17).
Moreover, we show in both scenarios that there exist infinitely many languages
for which an exponential blow-up cannot be avoided.

Definition 10. Let A = (Q,Σ, δ, q0, Qf ) be a DFA. A state q ∈ Q \ {q0} is a
bottleneck state of A if,
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• for every word w ∈ L(A), there are words v, z ∈ Σ∗ such that w = v · z
and δ∗(q0, v) = q, and

• if q ∈ Qf then Qf = {q} and there exist a ∈ Σ, p ∈ Q such that δ(q, a) = p.

That is, bottleneck states are states that are visited by every word in the lan-
guage and, if they are accepting, then they have an outgoing transition and the
automaton does not have any other accepting states. Notice that we explicitly
define initial states not to be bottleneck states.

Lemma 11. Let A = (Q,Σ, δ, q0, Qf ) be a DFA with a bottleneck state q. Then
A has no equivalent DRE that is atomic or of the form s∗.

Proof. Let r be a DRE for L(A). By the definition of a bottleneck state it
holds that q 6= q0 and therefore ε /∈ L(A). Thus, r cannot be of the form ε or
s∗. Since q has to have at least one outgoing transition, r is neither an atomic
expression a nor ∅. �

Next, we show that accepting bottleneck states in a DFA identify concate-
nations in at least one equivalent minimal DRE. Let A = (Q,Σ, δ, q0, Qf ) be
a DFA. We say that a DRE r is a q-concatenation for A if (1) L(r) = L(A),
(2) r = r1 · r2, and (3) δ∗(q0, v) = q in A for every v ∈ L(r1). We call r a partial
q-concatenation for A if L(r) ( L(A) and r fulfills conditions (2) and (3) of a
q-concatenation.

Lemma 12. Let A = (Q,Σ, δ, q0, {qf}) be a DFA for a DRE-definable lan-
guage L such that qf is a bottleneck state of A. Then every minimal DRE r for
L is a qf -concatenation r1 · r2 with first(r2) = {a ∈ Σ | δ(qf , a) is defined}.

Proof. By Lemma 11, it holds that r is neither atomic nor of the form s∗. It
remains to show that r is neither a disjunction nor a concatenation which is not
a qf -concatenation. To this end, we prove the following claim:

Claim 13. Let A = (Q,Σ, δ, q0, {qf}) be a DFA for a DRE-definable language L
such that qf is a bottleneck state of A. Let ∅ 6= S ⊆ first(L) and r = r1r2 · · · rn
(with n > 1) be a minimal DRE for L∩SΣ∗. Then there exists an i ∈ {1, . . . , n−
1} such that,

• for every word w ∈ L(r1 · · · ri), it holds that δ∗(q0, w) = qf , and

• first(ri+1 · · · rn) = {a ∈ Σ | δ(qf , a) is defined}.

In particular, this means that r is a partial qf -concatenation for A.

Before proving the claim we show how we use Claim 13 to prove the lemma.
From the discussion above, we know that r is either a disjunction or a concate-
nation.

If r is a disjunction (s1 + · · ·+ sk) (where the si themselves are not disjunc-
tions) then we use Claim 13 to prove that r is not minimal, which is a contra-
diction. In particular, we do this by applying Claim 13 to every si. However,
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first we have to show that we can apply Claim 13. We show that, for every i,
(a) L(si) = L ∩ SiΣ∗ with ∅ ( Si ⊆ first(L) and (b) si is a concatenation.

Since r is a DRE it holds that first(si)∩first(sj) = ∅ for all i 6= j. Moreover,
we know that ε /∈ L and, thus, ε /∈ L(si) for every i. It follows that L(si) =
L ∩ SiΣ∗ with Si = first(si) ⊆ first(r) for every i, which proves (a). Next we
prove (b), i.e., every si is a concatenation. Towards a contradiction, assume
that there exists an si that is not a concatenation. By the structure of r =
(s1 + · · ·+ sk), we know that si is not a disjunction. Since ε /∈ L(si), expression
si cannot be a Kleene star either. We now show that si is not atomic. Take an
arbitrary a ∈ Si. Then there exists a word aw ∈ L(r) where w 6= ε because qf
has at least one outgoing transition. Since r is a DRE we know that aw ∈ L(si).
As |aw| > 1, si cannot be atomic. The only remaining possibility is that si is a
concatenation, which proves (b).

This means that we can apply Claim 13 to every si, which implies that we
can write every si as s′i · s′′i such that (i) δ(q0, w) = qf for every w ∈ L(s′i)
and (ii) first(s′′i ) = {a ∈ Σ | δ(qf , a) is defined}. Here, s′i and s′′i can also be
concatenations themselves.

Let Aqf = (Σ, Q, δ, qf , {qf}) be the automaton A where we changed the
initial state to qf . From (i) and (ii), we can conclude that L(s′′i ) = L(Aqf ) for
every i. Thus, all expressions s′′i are equivalent. Therefore, r can equivalently
be written as (s′1 + · · · + s′k) · s′′1 , which is strictly smaller than r. Since this
contradicts the assumption that r is minimal, we know that r cannot be a
disjunction.

Hence, r is a concatenation and applying Claim 13 directly on r implies
the lemma statement. Notice that Claim 13 can indeed be applied because if
S = first(r), then L ∩ SΣ∗ = L. The latter equality holds because ε /∈ L (by
definition of bottleneck states). So it remains to prove Claim 13.

Proof of Claim 13.
In the following, let A = (Q,Σ, δ, q0, {qf}) be a DFA for a DRE-definable

language L such that qf is a bottleneck state of A. Furthermore, for a set S 6= ∅
and S ⊆ first(L), let r be a minimal DRE for L ∩ SΣ∗.

The proof is by induction on m = |r|. We first argue that |r| ≥ 4. By
assumption, r is a concatenation which describes an infinite language. There-
fore, r is a concatenation of at least two alphabet symbols and it also contains
a Kleene star operation. This means that |r| ≥ 4 and we use |r| = 4 as the
induction base case.

If |r| = 4 then, using the same arguments as above, r can only be of the form
a∗ · b or a · b∗ for some a, b ∈ Σ. If r = a∗ · b then we know that a 6= b because r
is deterministic. It follows that ab ∈ L(r) but ab ·z /∈ L(r) for every word z 6= ε.
Since this contradicts that qf has at least one outgoing transition, r has to be
of the form a · b∗. This implies that δ(q0, a) = qf in A, which makes r a partial
qf -concatenation for A. Since L(r) = L ∩ SΣ∗ and A has only one accepting
state, it holds that followlast(L(r)) = followlast(L) = {b}, which proves that
Claim 13 holds for |r| = 4.

For the induction step, we assume that Claim 13 holds for all minimal DREs
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s = s1 · · · s` for a language L ∩ SΣ∗ with ` ≥ 2, S ⊆ first(L), and |s| < m. We
now prove that Claim 13 also holds for r = r1 · · · rn with |r| = m. To this end,
let i be maximal such that ε /∈ L(ri · · · rn). Since ε /∈ L(r), i is well-defined.
Let T := {a | δ(qf , a) = q} \ first(ri+1 · · · rn). We note that, in the case i = n,
T equals {a | δ(qf , a) = q}.

We first look at the case i < n and T = ∅. In this case, ε ∈ L(ri+1 · · · rn)
and, therefore, for every word w ∈ L(r1 · · · ri), we also have that w ∈ L. Thus,
δ∗(q0, w) = qf , which implies that r is a partial qf -concatenation for A. Fur-
thermore, T = ∅ implies that first(ri+1 · · · rn) = {a ∈ Σ | δ(qf , a) = q}, which
implies that Claim 13 holds in this case.

The remaining case is that either i = n or i < n and T 6= ∅. We show that
this case contradicts the assumption that r is minimal.

Due to the maximality of i, we know that ε /∈ L(ri). It follows that ri cannot
be of the form s∗ or ε. Let u, v, and w be words such that δ∗(q0, uv) = qf ,
δ∗(qf , w) = qf , first(w) ∈ T , u ∈ L(r1 · · · ri−1), and v ∈ L(ri). By assumption,
u, v, and w exist. It easy to see that L(vw∗) ⊆ L(ri) by definition of T and the
determinism of r. This implies that L(ri) is infinite and, therefore, ri cannot
be an atomic expression.

The only remaining possibility is that ri is of the form (s1 + · · · + sk) with
k ≥ 2. Moreover, using the same arguments than above, none of the sj ’s are
atomic expressions or of the form s∗. Finally, it follows that all sj have to be
concatenations and, since ri is a DRE it holds that, for every sj ,

L(sj) = L(ri) ∩ SjΣ∗, with Sj ⊆ first(L(ri)) for all j ∈ {1, . . . , k}.

To apply the induction hypothesis on ri, we first prove that the minimal
DFA A′ for L(ri) fulfils the following conditions:

(a) A′ has exactly one accepting state pf ;

(b) A′ has a pf -outgoing transition; and

(c) pf is not initial in A′.

Notice that conditions (a) to (c) imply that the minimal DFA A′ for L(ri) has
an accepting bottleneck state.

Condition (c) obviously holds because ε /∈ L(ri). It remains to show (a)
and (b). Remember that L(r) = L(A) ∩ SΣ∗ and A has only one accepting
state.

Let u be some word from L(r1 · · · ri−1). As r is a DRE, we can conclude that
L(ri · · · rn) = u−1L(r)∩first(L(ri))Σ

∗. It follows that, for all words v, w ∈ L(ri),

v−1L(ri · · · rn) = w−1L(ri · · · rn) = v−1u−1L(A).

As r is a DRE, we can furthermore conclude that

v−1L(ri) = w−1L(ri) for all words v, w ∈ L(ri),
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because, for each word z in L(r), the decomposition into z1 ∈ L(r1 · · · ri) and
z2 ∈ L(ri+1) is unique. (Notice that if i = n, then z2 = ε.)

Thus, the minimal DFA A′ for L(ri) has only one accepting state pf . Fur-
thermore, pf has an outgoing transition, since qf has an outgoing transition
labeled with a letter that is not in T . This shows (a) and (b).

We can now apply the induction hypothesis to every expression sj . We
obtain that every sj is a partial pf -concatenation for A′ of the form s1

j · s2
j

where first(s2
j ) = T . Hence, all s2

j are equivalent and (s1
1 + · · ·+s1

k) ·s2
1 is a DRE

for L(ri) which is strictly smaller than ri. This contradicts that r is minimal. �

Notice that, if A = (Q,Σ, δ, q0, {qf}) is a DFA with a bottleneck state qf
then L(A) is infinite. In this case, Lemma 12 gives us a rather precise structure
of a minimal DRE of the form r1 ·r2. By the following lemma we can now clarify
the languages L(r1) and L(r2).

Lemma 14. For a DFA A = (Q,Σ, δ, q0, {qf}) with a bottleneck state qf , let
the qf -concatenation r1 · r2 be an equivalent minimal DRE with first(r2) = {a ∈
Σ | δ(qf , a) is defined}. Then

(1) L(r1) = L(AS) where S = {a ∈ Σ | (δ(qf , a) = q) ∧ q ∈ Q}; and

(2) L(r2) is infinite where L(r2) = L(Aqf ) with Aqf = (Q,Σ, δ, qf , {qf}).

Proof. (1) We prove L(AS) ⊆ L(r1) first. Let w = a1 · · · an be a word in
L(AS). By definition of AS , there is an accepting run q1 · · · qn of AS on w such
that the smallest i with qi = qf is n. Since w ∈ L(A) = L(r1 · r2), we have
that w = w1 · w2 with w1 ∈ L(r1) and w2 ∈ L(r2). However, since r1 · r2 is
a qf -concatenation, we have that δ∗(q0, w1) = qf . It follows that w1 = w and,
therefore, w ∈ L(r1).

Next, we prove that L(r1) ⊆ L(AS). Towards a contradiction, assume that
w is a word in L(r1) such that w /∈ L(AS). Since r1 · r2 is a qf -concatenation,
we have that δ∗(q0, w) = qf and w ∈ L(A). Let w = a1 · · · an and q1 · · · qn
be the accepting run of w in A. Since w /∈ AS by assumption, we have that
q1 · · · qn is not an accepting run of AS on w. By definition of AS , this means
that there is an i < n such that qi = qf and that δ(qf , ai+1) = qi+1 in A. Take
the minimal such i. We now have that a1 · · · ai ∈ L(AS). Since we already
proved that L(AS) ⊆ L(r1), we also have that a1 · · · ai ∈ L(r1). Moreover, we
have that ai+1 ∈ first(r2) by the lemma statement. But this contradicts that
w ∈ L(r1), since r1 · r2 is a DRE. Therefore, it holds that L(r1) ⊆ L(AS).

(2) By definition of a qf -concatenation, we know that δ∗(qf , w) = qf , for
every w ∈ L(r2) in A. This directly implies that L(r2) is infinite and L(r2) ⊆
L(Aqf ). It remains to prove that L(Aqf ) ⊆ L(r2). Let w be a word in L(Aqf ). If
w = ε, then w ∈ L(r2). Now, assume that w = aw′ with a ∈ Σ. Then, we know
that δ∗(qf , aw

′) = qf in Aqf and in A. It follows, for every word v ∈ L(AS),
that δ∗(q0, vaw

′) = qf in A and vaw′ ∈ L(r1 · r2). By the lemma statement,
a ∈ first(r2) and r1 · r2 is a DRE such that aw′ = w ∈ L(r2). �
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Algorithm 1 Delete-Epsilon(r)

Require: DRE r = r1 + · · ·+ rk with k ≥ 1 and r 6= ε
Ensure: DRE r− with L((r−)∗) = L(r∗) and ε /∈ L(r−)

1: r− := r
2: while ε ∈ L(r−) do
3: for all ri = s1 · · · s` with ε ∈ L(ri) do
4: ri := s1 + · · ·+ s`
5: for all ri = s∗ do
6: ri := s

7: r− :=
∑
ri 6=ε ri

8: return r−

Before we can finally apply bottleneck states to prove the exponential blow-
up from DFAs to DREs, we need a minor general result on minimal DREs.
This result is a very straightforward property of a state and a concatenation in
a DRE. As is well-known, we say that a regular language L is prefix-free if and
only if, for every word v ∈ L, there exists no z ∈ Σ+ such that v · z ∈ L.

Lemma 15. Let La = L · {a} be a prefix-free DRE-definable language. Then
there exists a minimal DRE for La which is either a or of the form r · a.

Proof. The proof is by structural induction on a minimal DRE r for La. For
the induction base case, r = a, the assumption holds. (Notice that La cannot
be L(∅) or L(ε) by definition.)

For the induction case, assume that r has r1 and r2 as immediate subexpres-
sions. Notice that r cannot be a Kleene star expression due to the fact that La
never contains ε. Furthermore, let the assumption hold for DREs r1 and r2.

Now, assume that r is a disjunction, i.e., r = r1 + r2. Then we have that
L(r1) = L1 · {a} and L(r2) = L2 · {a} for some DRE-definable languages L1

and L2. By the induction hypothesis, it follows that, for every i = {1, 2}, there
exists a minimal DRE for ri of the form a or si · a. This implies that r is of the
form (a + a), (s1 · a + s2 · a), or (si · a + a) for some i ∈ {1, 2}. In each case,
there exists an expression for L(r) that is of the same size or smaller, namely
a, (si + ε) · a, or (s1 + s2) · a, respectively.

Now, let r be a concatenation of the form r = r1 · r2. Because La is prefix-
free it follows that ε /∈ L(r2). Thus, L(r2) is of the form L′ · {a} for some
DRE-definable language L′. By induction hypothesis, there is a minimal DRE
for L(r2) which is of the form a or r3 · a. Since r is a DRE, we know that
followlast(L(r1)) ∩ first(L(r2)) = ∅. Thus, there exists a minimal DRE for La
which is of the form r1a or r1r3a. �

Finally, we are ready to prove an exponential blow-up when translating DFAs
to DREs using bottleneck states. In particular, we prove that every minimal
DRE for the DFA in Figure 2(a) is exponential in n. We denote the language
of this DFA with L[n].
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q0 q1 q2 · · · qn−1 qn
a a a a

b

b
b b b

(a) Class of DFAs where the minimal DREs
are exponentially large in n.

q0 q1 q2 · · · qn−1 qn
a a a a

b

b
b b

(b) Minimal DFA AS for L(r1).

q0 q1 q2 · · · qn−1 qn
a a a a

b

b
b b b

(c) Minimal DFA Aqn for L(r2).

o q0 q1 q2 · · · qn−1 qn
ab a a a

b

b
b

b

(d) Minimal DFA for L(s2).

Figure 2: Minimal DFAs for subexpressions from the proof of Lemma 16.

Lemma 16. For every n > 0, there exists a minimal DRE for the language
L[n] that contains at least 2n concatenations.

Proof. Let A be the minimal DFA for L[n] (see Figure 2(a)). The proof is
by induction on n. For the induction base, n = 1, we observe that A has an
accepting bottleneck state. By Lemma 12, we know that r is a concatenation
r1 · r2 with first(r2) = {b}. By Lemma 14, it follows that L(r1) = L(b∗a). Thus,
there is a minimal DRE for L[1] = L(b∗ ·a · r2) with at least two concatenations.

For the induction step, assume that there exists a minimal DRE for L[n−1]

containing at least 2n−1 concatenations.
Let rn be a minimal DRE for L[n]. By Lemma 12, rn is a qn-concatenation r1 ·r2

with first(r2) = {b}. Lemma 14 implies that the automaton in Figure 2(b) is a
DFA for L(r1) and the automaton in Figure 2(c) is a DFA for L(r2).

Next, we show that r1 and r2 each contain a subexpression for the language
L[n−1]. For r1, observe that L(r1) (see Figure 2(b)) is prefix-free and its language
is of the form L′ ·{a}. By Lemma 15, there exists a minimal DRE r1 of the form
s1 ·a such that L(s1) is defined by the DFA in Figure 2(b) without the transition
δ(qn−1, a) = qn and with qn−1 as accepting state. Hence, L(s1) = L[n−1] such
that, by applying the induction hypothesis, there exists a DRE r1 = s1 · a
containing at least 2n−1 concatenations.

For r2 observe that L(r2) is infinite (see Aqn in Figure 2(c)), which implies
that r2 is not an atomic expression. Moreover, it holds that |first(r2)| = 1 and
ε ∈ L(r2), which means that r2 cannot be a concatenation and deterministic.
Next, we show by contradiction that r2 cannot be a disjunction. Since first(r2) =
{b}, the only possible disjunction for the DRE r2 is of the form r2 = b · r3 + ε
for some DRE r3. As δ(qn, b) = q0 in Aqn , it follows that L(r3) = L[n], which
directly contradicts that r is a minimal DRE for L[n].

Hence, r2 has to be an expression of the form s∗2. We investigate the structure
of a DFA for L(s2) in the following. For every word v ∈ L(s2), it holds that
δ∗(qn, v) = qn in Aqn . Since r2 = s∗2 is a DRE and first(r2) = {b}, we have
that L(s2) cannot contain a word v such that v = wz with w, z 6= ε and
δ∗(qn, w) = qn. These properties uniquely characterize L(s2), for which the
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minimal DFA is shown in Figure 2(d). Because the DFA has a bottleneck
state, s2 cannot be atomic or an expression of the form t∗ by Lemma 11. The
expression s2 is not a disjunction because |first(s2)| = 1, ε /∈ L(s2), and s2

is a DRE. Thus, s2 is a concatenation b · t, where L(t) is defined by the DFA
from Figure 2(d) without the transition δ(o, b) = q0 and with q0 as initial state.
By Lemma 15, it follows that s2 = b · t · a, where L(t) = L[n−1]. Thus, by
the induction hypothesis, there exists a minimal DRE for r2 containing at least
2n−1 concatenations. This concludes the proof. �

Since we can describe each language L[n] with n ∈ N using the regular
expression

(b+ ab+ · · ·+ anb)∗an = (b(a+ b(· · · (ab+ b) · · · )))∗an,

we obtain the following theorem.

Theorem 17. For each n ∈ N, every minimal RE for L[n] has size Θ(n), the
minimal DFA for L[n] has size Θ(n), and every minimal DRE has size 2Ω(n).

To demonstrate the utility of the technique, we give the proof for an unproved
claim in [2] using bottlenecks. Brüggemann-Klein and Wood claimed that every
minimal DRE for languages L(Σ∗a1 · · · an) where a1 · · · an is a fixed Σ-word is
exponential in n [2]. However, to the best of our knowledge, no proof for this
result exists in the literature. We can now prove this claim by using bottleneck
states. Therefore, we will generalize the special structure of the automata of
languages L[n] (see Figure 2(a)) to provide a formal proof.

Definition 18. Let A = (Q,Σ, δ, o, {qn}) be a DFA, {a1, . . . , an} ⊆ Σ, and
{q0, . . . , qn} ⊆ Q. Then A contains a bottleneck tail of length n if A fulfills the
following properties:

1. qi is a bottleneck state for every i ∈ {0, . . . , n};

2. δ(qi−1, ai) = qi for every i ∈ {1, . . . , n};

3. for all i ∈ {0, . . . , n}, it holds that δ(qi, a) = o for some a ∈ Σ; and

4. for all i ∈ {1, . . . , n}, if δ(q, a) = qi then q = qi−1 and a = ai.

For instance, the DFA in Figure 2(a) and the minimal DFA for L(Σ∗a1 · · · an)
both contain a bottleneck tail of length n − 1. In the following, we prove that
a bottleneck tail of length n causes a blow-up in an equivalent DRE that is
exponential in n.

Theorem 19. Let A = (Q,Σ, δ, o, {qn}) be a DFA for a DRE-definable lan-
guage L with a bottleneck tail of length n. Then there exists a minimal DRE r
for L which contains at least 2n concatenations.
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q0 q1 q2 . . . qn−1 qn

Σ− {a1}

a1

a1

Σ− {a1, a2} a2

Σ− {a1, a3}

a1

a3 an−1

a1

a1

Σ− {a1, an}

Σ− {a1}

an

Figure 3: A minimal DFA A for L(Σ∗a1 · · · an).

Proof. The proof is by induction on the length n of the bottleneck tail.
For the induction base case, let n = 0. By definition, A has at least one

accepting bottleneck state q0. (Recall that q0 is not the initial state here.)
By Lemma 12, we have that r is a q0-concatenation r1 · r2, which proves the
assumption.

As induction hypothesis, we assume that every minimal DRE rn−1 for a
DFA with a bottleneck tail of length n−1 contains at least 2n−1 concatenations.
Moreover, let S be the set {a ∈ Σ | δ(qn, a) = q} in the following.

Now, let A be a DFA for a DRE-definable language with a bottleneck tail
of length n. We know that r is a qn-concatenation of the form r1 · r2 with
first(r2) = S by Lemma 12. We prove that r1 and r2 each contain a subexpres-
sion rn−1.

For r1 we have that L(r1) = L(AS) by Lemma 14. By definition of bottleneck
tails, qn has only one incoming transition labeled an. Therefore, L(r1) = L′ ·
{an}. Since L(r1) is prefix-free we know by Lemma 15 that there is a minimal
DRE for r1 which is of the form r′1 · an. Moreover,

L(r′1) = L(A′S), where A′S = (Q\{qn},Σ, δ′, o, {qn−1}),

where δ′ is the transition function of AS without the transition δ(qn−1, an) = qn.
Observe that A′S is a DFA with a bottleneck tail of length n− 1. Applying the
induction hypothesis, r′1 contains at least 2n−1 concatenations.

For r2 we know by Lemma 14 that Aqn is a DFA for L(r2). By the structure
of Aqn , we know that r2 is not atomic or ε. However, r2 can be of the form
s1 · · · sk, (s1 + · · ·+ sk), or s∗. In the following, we prove that in each case we
can find a subexpression s of r2 such that there is a DFA for L(s) which has a
bottleneck tail of length n− 1.

For the remainder of the proof, we denote by last positions of an expression r
all symbols b of r such that b can be matched to a last symbol in a word of L(r).
Let b be the rightmost last position of r2, i.e., the rightmost leaf of the parse
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tree of r2. Let w ∈ L(r2) be such that the last symbol of w is matched at b.
(Observe that w is well-defined.) Moreover, we know that wv ∈ L(r2) for every
word v ∈ L(r2), due to the structure of Aqn . Hence, b has to be the last position
of a subexpression s∗ in r2. Fix the minimal subexpression s∗ of r that contains
b. (In the parse tree of r2, the expression s∗ would correspond to the closest
ancestor of b bearing the label ∗.) Notice that s∗ could be included in some other
starred subexpressions, i.e., there is a subexpression (s1(s2 . . . (sk · s∗)∗ . . .)∗)∗
in r. However, by definition of b, there are no more alphabet symbols occurring
to the right of s∗ in r2. Because w−1L(r2) = L(r2) we have that

first(s1) ] first(s2) ] · · · ] first(sk) ] first(s) = first(r2).

By the structure of Aqn , we know that followlast(s) ⊆ first(r2) and, since r2 is
deterministic, we know that

followlast(s) ∩ (first(s1) ∪ · · · ∪ first(sk) ∪ first(s)) = ∅.

But then also followlast(s) ∩ first(r2) = ∅ and, therefore, followlast(s) = ∅.
Hence, no reachable accepting state of any DFA for L(s) has an outgoing tran-
sition. We show that s defines the following language in particular:

L(s) = L(A′) where A′ = (Q ] {onew},Σ, δ′, onew, {qn}) and

δ′ is the transition function of AS with the additional transition

δ′(onew, a) = q where a ∈ first(s) and δ(qn, a) = q.

We prove L(A′) ⊆ L(s) first. Let z ∈ L(A′), then we have that z 6= ε, first(z) ∈
first(s), and z ∈ L(Aqn) = L(r2), by definition. Let w ∈ L(r2) be such that,
when reading w in r2, the last symbol of w is matched to the last symbol in s.
By definition of s and due to the structure of r2, we have that wz ∈ L(r2). But
this implies that z should be matched by s, i.e., z ∈ L(s).

Next, we prove L(s) ⊆ L(A′). Let z ∈ L(s) and take w ∈ L(r2) such that,
when reading w in r2, the last symbol in w is matched to the last symbol in
s. By definition of s and due to the structure of r2, we have that wz ∈ L(r2).
But this implies that z ∈ L(Aqn) and, therefore, L(s) ⊆ L(Aqn). Moreover, we
already proved that followlast(s) = ∅ such that L(s) has to be prefix-free. It
follows that L(s) contains exactly the words from L(Aqn) which start with a
symbol from first(s) and do not have a non-empty prefix in L(Aqn). Since this
is exactly the language accepted by A′, we have L(s) ⊆ L(A′).

Now we know that L(s) = L(A′), it remains to show that A′ contains a
bottleneck tail of length n − 1. Notice that the states q0, . . . , qn−1 remain un-
changed in A′. By Definition 18 and Lemma 15, we get that s is of the form
s′ · an. Moreover, by deleting the state qn and making qn−1 accepting in A′ we
get a DFA for s′ that contains a bottleneck tail of length n − 1. By applying
the induction hypothesis, we get that r2 contains at least 2n−1 concatenations.

Finally we have shown that r1 and r2 contain 2n−1 concatenations each. It
follows that r has at least 2n concatenations which concludes the proof. �
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Op. |Σ| = 1 |Σ| ≥ 1 Op. |Σ| = 1 |Σ| ≥ 1 Op. |Σ| = 1 |Σ| ≥ 1

\ no no ∪ no no · no no
Rev yes no ∩ yes no ∗ yes no

Table 2: Closure Properties of DRE-definable languages.

Theorem 20. Every minimal DRE for L(Σ∗a1 · · · an) has size 2Ω(n).

Proof. The minimal DFA A for L(Σ∗a1 · · · an) is shown in Figure 3. As we can
see, A contains a bottleneck tail of length n− 1. By Theorem 19, we know that
there is a minimal DRE for L(A) which contains 2Ω(n) concatenations. Thus,
every minimal DRE for L(A) has at least size 2Ω(n). �

4. Closure Properties of DRE-Definable Languages

To investigate the descriptional complexity of several language-theoretic op-
erations on DREs and their DFAs in Section 5, we present an overview of the
closure properties of DRE-definable languages first.

It has been observed that DRE-definable languages are not closed under
union [2], intersection [4, 24] or complement [10]. DRE-definable languages are
also not closed under concatenation [2], reversal2 (take L((a + b)∗a(a + b))) or
Kleene star [2]. These results hold for alphabets with at least two symbols.
For unary alphabets, the same results hold, except for reversal, intersection and
Kleene star. In these three cases, we prove that DRE-definable languages are
closed. All results are summarized in Table 2. It is easy to see that DRE-
definable languages over unary alphabets are closed under reversal, since for
unary alphabets the language and its reversal are equal. In the following we
show the remaining two cases.

DFAs over a unary alphabet have a very restricted form. The following
notions come from, e.g., Shallit [30], but we repeat them here for completeness.
(Notice that, Shallit used tail to refer to what we call a chain.) A DFA with
initial state q0 and state set Q = {q0, . . . , qn+m} is a chain followed by a cycle
if its transition function is of the form δ(q0, a) = q1, . . . , δ(qn−1, a) = qn,
δ(qn, a) = qn+1, . . . , δ(qn+m−1, a) = qn+m, δ(qn+m, a) = qn, where qi 6= qj if
i 6= j. Furthermore, we have that at least one of the states in {qn, . . . , qn+m}
is an accepting state. We refer to the states q0, . . . , qn−1 as chain states and to
qn, . . . , qn+m as the cycle states of this DFA.

Lemma 21 ([30]). Every minimal DFA for an infinite regular language over
a unary alphabet is a chain followed by a cycle.

Then, the next result follows directly from the characterization of DRE-definable
languages in [2] (see, e.g., Theorem 1).

2The reversal of a language L is the set of words {an · · · a1 | a1 · · · an ∈ L}.
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Corollary 22. An infinite regular language L over a unary alphabet is DRE-
definable if and only if it has exactly one accepting cycle state.

Notice that, the languages L from the corollary above may have additional
accepting chain states. Furthermore, we say that a regular language L over a
unary alphabet {a} is (n0, n1, x)-periodic if

(i) L ⊆ L(an1(ax)∗), and

(ii) for every n ∈ N such that nx ≥ n0, L contains the word an1anx, i.e., the
word of a’s of length nx+ n1.

We say that L is ultimately periodic if it is (n0, n1, x)-periodic for some (n0, n1, x).
Notice that, these properties imply that L is infinite. In an ultimately periodic
language all sufficiently long words must have the same length y (modulo x),
for a fixed y. This length modulo x can be different from 0.

It follows that a language L over a unary alphabet is ultimately periodic if
and only if the minimal DFA for L has exactly one accepting cycle state; hence
it holds the following.

Corollary 23. An infinite regular language L over a unary alphabet is DRE-
definable if and only if it is ultimately periodic.

We show that DRE-definable languages over unary alphabets are closed un-
der Kleene star by proving the assumption for ultimately periodic languages.
Therefore, we use the following proposition by Bézout.

Proposition 24 (Bézout’s Identity). For any numbers k1, . . . , kn ∈ N there
exist integers x1, . . . , xn ∈ Z such that

k1x1 + · · · knxn = gcd(k1, . . . , kn)

Lemma 25. Let L be any language over a unary alphabet. Then L∗ is ulti-
mately periodic.

Proof. Let K = {k|ak ∈ L} be the lengths of the words in L. Let d = gcd(K).
Obviously, we have that L∗ ⊆ (ad)∗. We prove that there exists an n0 such that,
for every natural number x ≥ n0

d , we have that adx ∈ L∗, thereby obtaining that
L∗ is ultimately periodic.

Let {k1, . . . , kn} ⊆ K, be a finite subset of K, such that gcd(k1, . . . , kn) = d.
Such a set exists, as the gcd decreases by adding more numbers and cannot be
smaller than 1.

According to Bézout’s Identity, there exist integers x1, . . . , xk such that
k1x1 + · · · + knxn = d. Thus any multiple of d can be written as a linear
combination of k1, . . . , kn. It remains to show that there exists an n0, such that
the all multiples of d, which are greater than n0 can be written as a positive
linear combination of k1, . . . , kn.

Let be X = max{|x1|, . . . , |xn|} and K = max{k1, . . . , kn} and take n0 =
n2XK(k1 · k2 · · · kn).
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Let x ∈ N be arbitrary such that dx ≥ n0. We choose y, z ∈ N0, such that
dx = n0 + zn(k1 · · · kn) + dy and y < n · k1 · · · kn.

Now we can write dx as follows:

dx = n0 + zn(k1 · · · kn) + dy
= n2XK(k1 · · · kn) + zn(k1 · · · kn) + dy

=
n∑
i=1

ki((nXK + z) · k1···knki
) +

n∑
i=1

kixiy

=
n∑
i=1

ki((nXK + z) · k1···knki
+ xiy)

Note that every coefficient ci = (nXK + z) · k1···knki
+ xiy is positive, as

|xi| < X and y < nK · k1···knki
. Note that ki ≤ K. Thus adx can be written as

(ak1)c1 · · · (akn)cn . �

We are now able to obtain the following.

Theorem 26. DRE-definable regular languages over a unary alphabet are closed
under intersection and Kleene star.

Proof. Closure under Kleene star is immediate from Lemma 25. It remains
to prove that DRE-definable languages over a unary alphabet are closed under
intersection.

Since every finite language is DRE-definable (see, e.g., [1]), the intersection
of two languages in which one is finite is always DRE-definable.

It remains to consider intersections of two infinite DRE-definable regular
languages over an alphabet {a}. The result is obtained by Lemma 21, Corol-
lary 22 and by observing that the minimal DFA for the intersection of two DFAs
in which one cycle state is accepting, also has exactly one accepting cycle state.
This proves that DRE-definable languages are closed under intersection. �

5. Descriptional Complexity of Operations on DRE-Definable Lan-
guages

In Section 5.1 we give a short overview of the state complexity of boolean
operations on DFAs for DRE-definable languages. Afterwards, we investigate
the descriptional complexity of boolean operations on DREs in Section 5.2. In
both cases, we take a look on unary and arbitrary alphabets as well as finite
and infinite languages separately.

5.1. Boolean Operations on DFAs

We summarize results on the state complexity of minimal DFAs for DRE-
definable languages in Tables 3 and 4. In each case we consider a single use
of a boolean operation and a k-times application. Notice that, we study DFAs
without a sink state here. However, in most of the related work on the state
complexity of minimal DFAs the authors considered complete DFAs. We chose
to study DFAs without a sink state here to avoid confusion with the definition of
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|Σ| = 1 |Σ| ≥ 1
1 k 1 k

\ Θ(m) [16] — Θ(m) [16] —
∩ Θ(min{m1,m2}) [33] Θ(min{m1, ...,mk}) [33] Θ(m1m2) [33] 2Ω(k) (Cor. 27)
∪ Θ(max{m1,m2}) [33] Θ(max{m1, ...,mk}) [33] Θ(m1m2) [33] 2Ω(k) (Cor. 27)

Table 3: State complexity of minimal DFAs for finite languages.

|Σ| = 1 |Σ| ≥ 1
1 k 1 k

\ Θ(m) [16] — Θ(m) [16] —
∩ Θ(m1m2) (Th. 28) kΩ(k) (Th. 28) Θ(m1m2) (Th. 28) kΩ(k) (Th. 28)
∪ Θ(max{m1m2}) (Th. 29) Θ(max{m1, ...,mk})(Th. 29) Θ(m1m2) (Cor. 27) 2Ω(k) (Cor. 27)

Table 4: State complexity of minimal DFAs for infinite DRE-definable languages

DRE-definable languages. Since the results on the state complexity of minimal
complete DFAs always differs only by a constant from our results (that is, the
missing sink state), we can still compare the results.

In general, we can transfer all existing results on state complexity of DFAs
for finite languages to our setting. (Every finite language is DRE-definable.) As
far as we know, there does not exist any previous work on the state complexity
of DFAs for infinite DRE-definable languages.

It is well-known that for the complement on DFAs (for every regular lan-
guage) there is no blow-up [16]. Since all finite languages are DRE-definable,
we provide the known results of Yu [33] on DFAs for finite languages in Table 3.
However, regarding these results notice the following. For the union and inter-
section of two finite languages, Yu proved an m1m2 upper and lower bound.
Nevertheless, they only stated the result for the upper bound in the paper since
they were searching for the exact state complexity. Concerning this matter, it
is easy to see that using the product construction the resulting automaton can
never have exactly m1m2 states. For example, the state (s, q) where s is the
initial state of the first automaton and q is a non-initial state of the second
automaton can neither be part of an automaton for the union nor for the in-
tersection of two finite languages. As far as we know, this question regarding
the exact state complexity of the union or intersection of two finite languages
is still open.

From results in [16, 30, 33] we get that the descriptional complexity of union
or intersection on k finite languages over an arbitrary alphabet is exponential in
the worst case. For the union operation the result can be transferred to infinite
DRE-definable languages over arbitrary alphabets.

Corollary 27 ([16, 30, 33]).

• For every k ∈ N, there exist finite languages L1, . . . , Lk such that the
minimal DFA for every Li has Θ(k) states and the minimal DFA for
L1 ∩ · · · ∩ Lk or L1 ∪ · · · ∪ Lk has at least 2Ω(k) states.

• For each k ∈ N, there exist infinite DRE-definable languages L1, . . . , Lk
such that, for every i ∈ {1, . . . , k}, the minimal DFA for Li has k states,
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the language L∪ = L1 ∪ · · · ∪ Lk is DRE-definable, and the minimal DFA
for L∪ has size 2Ω(k).

These results can be obtained when computing the intersection or union of
the k distinct languages I(`,k) = {x1 · · ·xkyk · · · y1|xi, yi ∈ Σ ∧ x` = y`} where
` ∈ {1, . . . , k} for example. To prove the result for the union of infinite DRE-
definable languages over arbitrary alphabets we extend the above languages to
languages of the form I inf

(`,k) = {x1 · · ·xkyk · · · y1#∗|xi, yi ∈ Σ\{#} ∧ x` = y`}
where # is a new alphabet symbol.

For the intersection of infinite DRE-definable languages (over unary alpha-
bets) we can obtain the worst case complexity by using k languages Li =
L((ami)∗) with 1 ≤ i ≤ k and k different mi such that gcd(mi,mj) = 1 for
each pair (mi,mj).

Theorem 28.

• There exist infinitely many infinite DRE-definable languages L1 and L2

such that the minimal DFAs for L1 and L2 have m1 and m2 states, re-
spectively, the language L1 ∩ L2 is DRE-definable, and the minimal DFA
for L1 ∩ L2 has at least Θ(m1m2) states.

• For each k ∈ N, there exist infinite DRE-definable languages L1, . . . , Lk
such that, for every i ∈ {1, . . . , k}, the minimal DFA for Li has O(k log k)
states, the language L∩ = L1 ∩ · · · ∩ Lk is DRE-definable, and the DFA
for L∩ has kΩ(k) states.

Both results hold even when the alphabet is unary.

Finally, we prove that for the union of DFAs for DRE-definable languages
over unary alphabets the descriptional complexity is linear; hence, strictly lower
than for arbitrary regular languages.

Theorem 29. For each k ∈ N, let L1, . . . , Lk be infinite DRE-definable lan-
guages over a unary alphabet such that, for every i ∈ {1, . . . , k}, the minimal
DFA for Li has mi states and the language L∪ = L1∪· · ·∪Lk is DRE-definable.
Then the minimal DFA for L∪ has Θ(max{m1, . . . ,mk}) states.

Proof. We prove the assumption for the union of two languages which directly
implies the assumption for the union of k languages.

By Lemma 21 and Corollary 22, we know that DFAs for DRE-definable
languages over a unary alphabet consist of a chain and a cycle where exactly
one cycle state is accepting. Let A1 and A2 be the minimal DFAs for L1 and L2

and A3 be the minimal DFA for L1∪L2. Let for the DFA Ai with i ∈ {1, . . . , 3}
be Chaini and Cyclei the number of states in the chain and cycle of Ai. To
prove the assumption it is sufficient to show that the following holds

1) Chain3 = max{Chain1,Chain2}, and

2) Cycle1 = Cycle2.
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\ ∩ ∪ Rev ·

two DREs of size Θ(n)
2Ω(n)

(Th. 31)
2Ω(n)

(Th. 32)
2Ω(n)

(Th. 33)
2Ω(n)

(Th. 34)
2Ω(n)

(Th. 35)

Table 5: Descriptional complexity of boolean operations on DREs over arbitrary alphabets.

Note that 2) implies that Cycle3 = Cycle1. As 1) was proven in [30] it remains
to show 2). Towards contradiction, assume that Cycle1 6= Cycle2. Then it
directly follows that Cycle3 > Cycle1. This implies, that the cycle of A3 must
have more than one accepting state which directly contradicts that L1 ∪ L2 is
DRE-definable. �

5.2. Boolean Operations on DREs

In this section we investigate the descriptional complexity of DREs that are
itself the result of applying a boolean operation on some DREs. For regular
languages, almost every operation causes an unavoidable exponential blow-up
when representing the languages as regular expressions. Since DRE-definable
languages are a strict subclass of all regular languages one could hope for a
better complexity for the class of DRE-definable languages. In this section we
show that this is not the case. Furthermore, remember that DRE-definable
languages are not closed under any boolean operation which is summarized in
Section 4. An overview of the results for DREs over arbitrary alphabets is shown
in Table 5. However, for languages over a unary alphabet, one can always find
a small DRE compared to the minimal DFA for the language which we prove
in the following.

5.2.1. Boolean Operations on DREs over unary alphabets

For unary alphabets, the descriptional complexity of DREs is the same as
for their DFAs (see, e.g., Tables 3 and 4). In more detail, we observe that, for
DRE-definable languages over unary alphabets, minimal DREs are only linearly
larger than the equivalent minimal DFA for the language.

Observation 30. Let L be a DRE-definable language over a unary alphabet
and A be a minimal DFA for L with m states. Then, there exists a minimal
DRE r for L such that r is of size O(m).

5.2.2. Boolean Operations on DREs for arbitrary alphabets

We show first that complementing a DRE can cause an unavoidable expo-
nential blow-up when representing the complement language as a DRE.

Theorem 31. There exist DRE-definable languages (Ln)n∈N such that, for each
n ∈ N, a minimal DRE for Ln has size Θ(n) and a minimal DRE for Ln =
Σ∗ \ Ln has size 2Ω(n).

Proof. We prove the assumption by showing that the language LCn for every
n ≥ 1 (see Figure 4) has a minimal DRE of size Θ(n) and that every minimal

DRE for the language LCn = Σ∗\LCn is at least exponential in n.
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q0 q1 q2 · · · qn−1 qn
a a a a a

b

b
b b b

Figure 4: Minimal DFAs for languages LC
n from Theorem 31.

Intuitively, the language LCn contains all words over the alphabet Σ = {a, b}
that do not contain the subword an. To see that LCn is DRE-definable, observe
that

rn = (ε+ a(ε+ a(· · · )))︸ ︷︷ ︸
n times

·(b · (ε+ a(ε+ a(· · · )))︸ ︷︷ ︸
n times

)∗

is a DRE for LCn of size Θ(n).

It remains to show that, for the language LCn = Σ∗\LCn , every minimal DRE

has at least size 2Ω(n). Therefore, observe that LCn = L[n] ·L(a · (a+ b)∗). In the

following we show that every minimal DRE for LCn is of the form rn · a(a+ b)∗

where L(rn) = L[n] (see Lemma 16). Then, the assumption directly holds by
applying Lemma 16.

Let r be a minimal DRE for LCn . We show first that r is a concatenation.
Notice that r cannot be atomic, ∅ or a star expression. (For the latter, observe

that ε /∈ LCn .) Towards contradiction, assume that r is a disjunction s1 + s2.

Because ε /∈ LCn , it holds that first(s1) = {a} and first(s2) = {b} w.l.o.g.. Notice
that s1 and s2 cannot be atomic, ∅, star expressions, or disjunctions. Therefore,
they have to be concatenations. Moreover, s1 and s2 end with a star expression
because every word in L(r) is the prefix of another word in L(r). Hence, they
are of the form s′1 · (s′′1)∗ and s′2 · (s′′2)∗, respectively. Towards contradiction,
assume w.l.o.g. that (s′′1)∗ is not equal to (a + b)∗. Then we can choose words

w ∈ L(s1) and v /∈ L((s′′1)∗). Observe that wv ∈ LCn but wv /∈ L(r) because r is

deterministic. This contradicts the assumption that r is a DRE for LCn .
Therefore, r = s′1 · (a+ b)∗ + s′2 · (a+ b)∗, which directly contradicts that r

is minimal. We proved that r is a concatenation.
Finally, it remains to prove that one cannot write r more succinctly than in

rn · a(a+ b)∗. Analogously as above, we get that every minimal DRE for r is of
the form r′ · (a + b)∗. It holds that L(r′) = L(rn · a) = L[n] · {a}. Thus, L(r′)
contains all words over the alphabet {a, b} that end with an+1 but do not have
other occurrences of the subword an+1 (except that the suffix). Therefore, L(r′)
is prefix-free such that we can apply Lemma 15 on the language. By Lemma 15,
we get that every minimal DRE is of the form rn · a(a + b)∗, which concludes
the proof. �

Next, we prove an exponential blow-up for intersection and union.
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a, b

Figure 5: DFA for the language Linf
n

Theorem 32. There exist DRE-definable languages (L1
n)n∈N and (L2

n)n∈N such
that, for each n ∈ N, minimal DREs for L1

n and L2
n have size Θ(n) and a

minimal DRE for L1
n ∩ L2

n has size 2Ω(n).

Proof. We prove the assumption by showing that the languages

Ln = L((a+ b)0,nb) for n ∈ N,

can be written as the intersection of two DRE-definable languages with small
DREs of size n. By Theorem 7, we know that a minimal DRE for Ln is expo-
nentially large in n. Now, take the languages

L1
n = L((a∗b)∗) and L2

n = L((a+ b)1,n+1).

It easy to see that L1
n is a DRE-definable language with a small DRE. For L2

n,
notice that the language is finite and, therefore, DRE-definable. Furthermore,
L2
n has a minimal DRE of size Θ(n). Since Ln = L1

n ∩ L2
n this concludes the

proof. �

Theorem 33. There exist DRE-definable languages (L1
n)n∈N and (L2

n)n∈N such
that, for each n ∈ N, minimal DREs for L1

n and L2
n have size Θ(n) and a

minimal DRE for L1
n ∪ L2

n has size 2Ω(n).

Proof. We prove the assumption by showing that the language Linf
n from Figure 5

can be written as the union of two DRE-definable languages with a small DRE
of size n and that every minimal DRE for Linf

n is of size 2Ω(n).
First, notice that, Linf

n can be written as the union of the languages

L1
n = L((a∗b)∗) and L2

n = L((a+ b)n+2(a+ b)∗).

It easy to see that L1
n is a DRE-definable language with a small DRE. Since L2

n

is finite it is DRE-definable. Furthermore, L2
n has a minimal DRE of size Θ(n)

and Linf
n = L1

n ∪ L2
n.

It remains to prove that every minimal DRE for the language Linf
n is at least

of size 2Ω(n). Therefore, we show that every minimal DRE for Linf
n is of the form

r · (a + b)∗ where L(r) = Ln (see Theorem 7). Then, the assumption holds by
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applying Theorem 7. The proof to show that every minimal DRE for Linf
n is of

the form r · (a+ b)∗ follows the same lines as the proof of Theorem 31. �

Additionally, we get the following result for the reversal operation by taking
the language L((a+ b)0,na(a+ b)n) with n ∈ N (see e.g. Theorem 4).

Theorem 34. There exist DRE-definable languages (Ln)n∈N such that, for each
n ∈ N, the minimal DREs for Ln have size Θ(n), whereas the minimal DREs
for the reversal of Ln have size 2Ω(n).

For the concatenation operation, one cannot avoid an exponential blow-up
either. To obtain the following theorem take the languages L1

n = L((a + b)0,n)
and L2

n = L(a(a+ b)n) with n ∈ N (see, e.g., Theorem 4).

Theorem 35. There exist DRE-definable languages (L1
n)n∈N and (L2

n)n∈N such
that, for each n ∈ N, the minimal DREs for L1

n and L2
n have size Θ(n) and the

minimal DREs for L1
n · L2

n have size 2Ω(n).

6. Conclusions

We were motivated by the aim to come to a better understanding of DRE-
definable languages. To this end, we investigated the descriptional complexity
of representations for DRE-definable languages and proved that in the most
cases the complexity is not better than for general regular expressions. In this
paper we summarized old and new results on the descriptional complexity of
DRE-definable languages in general and of boolean operations on DRE-definable
languages.

We now know that, when translating an RE into a DFA and when translat-
ing a DFA into a DRE, an exponential blow-up cannot be avoided even for finite
languages. For infinite languages, we developed a new technique to prove lower
bounds on the size of DREs by using bottleneck states and tails in a DFA. It
remains open whether there is a DRE-definable language that has an exponen-
tially larger RE than its DFA and whether there is a DRE-definable languages
for which a translation from an RE to a DRE causes a double exponential
blow-up.

Moreover, we examined several operations on DRE-definable languages. We
obtained an overview of the closure properties of these languages and showed
that they are not closed under several language-theoretic operations. Since
most of these operations are also relevant in XML schema management, this
diminishes hope to have easy algorithms when processing DREs in schemas.

We continued examining the descriptional complexity of DFAs and DREs for
DRE-definable languages that are itself the result of applying one of the consid-
ered operations on two DRE-definable languages. Since DFAs for DREs are of
a very restricted form, one could hope that representations for such languages
may be more succinct in general such that algorithms processing boolean oper-
ations on DREs could be simplified. Unfortunately, when applying any of the
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considered operations only once on two DREs an exponential blow-up cannot
be avoided in general.
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[6] W. Czerwiński, C. David, K. Losemann, and W. Martens. Deciding Defin-
ability by Deterministic Regular Expressions. In Proceedings of the Inter-
national Conference on Foundations of Software Science and Computation
Structures (FOSSACS), pages 289–304, 2013.

[7] A. Ehrenfeucht and H. Zeiger. Complexity measures for regular expressions.
Journal of Computer and System Sciences (JCSS), 12(2):134–146, 1976.

[8] K. Ellul, B. Krawetz, J. Shallit, and M. Wang. Regular expressions: new
results and open problems. Journal of Automata, Languages and Combi-
natorics (JALC), 9(2-3):233–256, 2004.

[9] W. Gelade, T. Idziaszek, W. Martens, F. Neven, and J. Paredaens. Simpli-
fying XML Schema: Single-type approximations of regular tree languages.
Journal of Computer and System Sciences (JCSS), 79(6):910–936, 2013.

[10] W. Gelade and F. Neven. Succinctness of the complement and intersec-
tion of regular expressions. ACM Transactions on Computational Logic
(TOCL), 13(1):4, 2012.

28



[11] W. Gelade, M. Gyssens, and W. Martens. Regular Expressions with Count-
ing: Weak versus Strong Determinism. SIAM Journal on Computing
(SICOMP), 41(1): 160–190, 2012.

[12] B. Groz, S. Maneth, and S. Staworko. Deterministic regular expressions
in linear time. In Proceedings of the Symposium on Principles of Database
Systems (PODS), pages 49–60, 2012.

[13] H. Gruber and M. Holzer. Finite automata, digraph connectivity, and
regular expression size. In Proceedings of the International Colloquium on
Automata, Languages and Programming (ICALP), pages 39–50. Springer,
2008.

[14] H. Gruber and M. Holzer. Tight bounds on the descriptional complexity
of regular expressions. In Proceedings of the International Conference on
Developments in Language Theory (DLT), pages 276–287. Springer, 2009.

[15] H. Gruber and J. Johannsen. Optimal lower bounds on regular expression
size using communication complexity. In Proceedings of the International
Conference on Foundations of Software Science and Computational Struc-
tures (FOSSACS), pages 273–286. Springer, 2008.

[16] J.E. Hopcroft, R. Motwani, and J.D. Ullman. Introduction to Automata
Theory, Languages, and Computation. Pearson Education, 2007.

[17] D. Hovland. Regular Expressions with Numerical Constraints and Au-
tomata with Counters. In International Colloquium on Theoretical Aspects
of Computing (ICTAC), pages 231–245. Springer, 2009.
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