
ar
X

iv
:1

41
1.

23
51

v2
 [

cs
.D

B
]

11
 N

ov
 2

01
4

SCULPT: a Schema Language for Tabular Data on the Web

Wim Martens
Universität Bayreuth

wim.martens@uni-bayreuth.de

Frank Neven
Hasselt University and

transnational University of
Limburg

frank.neven@uhasselt.be

Stijn Vansummeren
Université Libre de Bruxelles

stijn.vansummeren@ulb.ac.be

ABSTRACT
Inspired by the recent working effort towards a recommenda-
tion by the World Wide Web Consortium (W3C) for tabular
data and metadata on the Web, we present in this paper a
concept for a schema language for tabular web data called
Sculpt. The language consists of rules constraining and
defining the structure of regions in the table. These regions
are defined through the novel formalism of region selection
expressions. We present a formal model for Sculpt and
obtain a linear time combined complexity evaluation algo-
rithm. In addition, we consider weak and strong streaming
evaluation for Sculpt and present a Sculpt fragment for
each of these streaming variants. Finally, we discuss several
extensions of Sculpt including alternative semantics, types,
complex content, and explore region selection expressions as
a basis for a transformation language.

1. INTRODUCTION
Despite the availability of numerous standardized formats

for semi-structured and semantic web data such as XML,
RDF, and JSON, a very large percentage of data and open
data published on the web, remains tabular in nature.1 Tab-
ular data is most commonly published in the form of comma
separated values (CSV) files because such files are open and
therefore processable by numerous tools, and tailored for all
sizes of files ranging from a number of KBs to several TBs.
Despite these advantages, working with CSV files is often
cumbersome because they are typically not accompanied by
a schema that describes the file’s structure (i.e., “the second
column is of integer datatype”, “columns are delimited by
tabs”, . . .) and captures its intended meaning. Such a de-
scription is nevertheless vital for any user trying to interpret
the file and execute queries or make changes to it. In other
data models, the presence of a schema is also important for
query optimization (required for scalable query execution if

1Jeni Tennison, one of the two co-chairs of the W3C CSV
on the Web working group claims that “over 90% of the data
published on data.gov.uk is tabular data” [28].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

the file is large), as well as other static analysis tasks. Fi-
nally, we strongly believe that schemas are a prerequisite
for unlocking huge amounts of tabular data to the Semantic
Web. Indeed, unless we have a satisfactory way of describing
the structure of tabular data we cannot specify how its con-
tents should be interpreted as RDF. Drawing parallels with
relational databases, observe that R2RML mappings [8] (the
W3C standard for mapping relational databases to RDF)
inherently need to refer to the schema (structure) of the re-
lational database in order to specify how database tuples
can be represented as RDF.

In recognition of this problem, the CSV on the Web Work-
ing Group of the World Wide Web Consortium [31] argues
for the introduction of a schema language for tabular data
to ensure higher interoperability when working with datasets
using the CSV or similar formats. In particular, their char-
ter states [31]:

Whether converted to other formats or not, there
is a need to describe the content of the CSV file:
its structure, datatypes used in a specific column,
language used for text fields, access rights, prove-
nance, etc. This means that metadata should be
available for the dataset, relying on standard vo-
cabulary terms, and giving the necessary infor-
mation for applications. The metadata can also
be used for the conversion of the CSV content
to other formats like RDF or JSON, it can en-
able automated loading of the data as objects, or
it can provide additional information that search
engines may use to gain a better understanding
of the content of the data.

In the present paper, we introduce Sculpt as a concept for
such a schema language for tabular data.2

The critical reader may wonder whether designing such
a schema language isn’t trivial. After all, doesn’t it suffice
to be able to specify, for each column, the column’s name
and the type of data allowed in its cells—similar to how
relational database schemas are defined using the SQL data
definition language? The answer is no. The reason is that
there is a lot of variation in the tabular data available on
the web and that there are examples abound of tabular data
whose structure cannot be described by simple rules of the

2The name Sculpt for the language is in honour of
Michelangelo, who allegedly said “Every block of stone has
a statue inside it and it is the task of the sculptor to dis-
cover it.” Readers who like acronyms can read Sculpt as
SChema for Un-Locking and Processing Tabular data.

http://arxiv.org/abs/1411.2351v2

form “column x has datatype y”. Figures 3, 5, and 7, for
example, show some tabular data sets drawn from the Use
Cases and Requirements document drafted by theW3C CSV
on the Web working group [27]. Notice how, in contrast to
“standard” CSV files, Figure 3 has a header consisting of
multiple lines. This causes the data in the first column to
be non-uniform. Further notice how the provenance data
in the Figure 5 is spread among multiple columns. Finally,
notice how the shape of the rows in Figure 7 depends on
the label in the first column of the column: TITLE rows have
different structure than AUTHOR rows, which have a different
structure than ATOM rows, and so on.

Sculpt schemas use the following idea to describe the
structure of these tables. At their core, Sculpt schemas
consist of rules of the form ϕ → ρ. Here, ϕ selects a region
in the input table (i.e., a subset of the table’s cells) and ρ
constrains the allowed structure and content of this region.
A table is valid with respect to a Sculpt schema if, for each
rule in the schema, the region selected by ϕ satisfies the
content constraints specified by ρ. It is important to note
that Sculpt’s expressive power goes well beyond that of
classical relational database schemas since Sculpt’s region
selectors are not limited to selecting columns. In particular,
the language that we propose for selecting regions is capable
of navigating through a table’s cells bears much resemblance
to the way XPath [4] navigates through the nodes of an XML
tree. For tokenizing the content of single cells, we draw
inspiration from XML Schema simple types ([9], Section
2.2). Both features combined will allow us to express the
use cases of the W3C CSV on the Web Working Group.

We note that the W3C is also working on a schema lan-
guage for tabular data [22]. At the moment, however, that
schema language focuses on orthogonal issues like describing,
for instance, datatypes and parsing cells. Also, it only pro-
vides facilities for the selection of columns, and is hence not
able to express the schema of the more advanced use cases.
Sculpt, in contrast, draws inspiration from well-established
theoretical tools from logic and formal languages, which
adds to the robustness of our approach. Due to the above
mentioned orthogonality we expect that it is not difficult to
integrate ideas from this paper in the W3C proposal.

In summary, we make the following contributions.
1. We illustrate the power of Sculpt, and its suitability

as a schema language for tabular data on the web, by
expressing several use cases drafted by the CSV on the
Web W3C working group [27]. (Section 2)

2. We provide a formal model for the core of Sculpt. A
key contribution in this respect is the introduction of the
region selector language. (Section 3)

3. We show that, despite its rather attractive expressiveness,
tables can be efficiently validated w.r.t. Sculpt schemas.
In particular, when the table is small enough to be mate-
rialized in main memory, we show that validation can be
done in linear time combined complexity (Section 4.1).
For scenarios where materialization in main memory is
not possible, we consider the scenario of streaming (i.e.,
incremental) validation. We formally introduce two ver-
sions of streaming validation: weak streamability and strong
streamability. (Their differences are described in detail in
Section 4.2.) We show in particular that the fragment of
core-Sculpt where region selectors can only look “for-
ward” and never “backward” in the CSV file is weakly
streamable. If we further restrict region selectors to be

both forward-looking and guarded (a notion formalized
in Section 4.2) validation becomes strongly streamable.
All of the W3C Working group use cases considered here
can be expressed using forward and guarded region se-
lectors, hence illustrating the practical usefulness of this
fragment.

4. While our focus in this paper is on introducing Sculpt
as a means for specifying the structure of CSV files and
related formats, we strongly believe that region selector
expressions are a fundamental component in developing
other features mentioned in the charter of the W3C CSV
on the Web Working Group, such as a CSV transfor-
mation language (for converting tabular data into other
formats such as RDF or JSON), the specification of the
language used for text fields; access rights; provenance;
etc. While a full specification of these features is out
of this paper’s scope, we illustrate by means of exam-
ple how Sculpt could be extended to incorporate them.
(Section 5)

Note. Due to space restrictions, proofs of formal statements
are only sketched. Proofs are provided in the Appendix.

Related Work. The present paper fits in the line of re-
search, historically often published in the WWW conference,
that aims to formalize and study the properties of various
W3C working group drafts and standards (including XML
Schema [5,6], SPARQL [3,18,21], and RDF [23,24]) with the
aim of providing feedback and input to the working group’s
activities.

Given the numerous benefits of schemas for data process-
ing, there is a large body of work on the development, ex-
pressiveness, and properties of schema languages for virtu-
ally all data models, including the relational data model,
XML [5,6,12,19,20], and, more recently, RDF [23,24]. Sculpt
differs from the schema languages considered for XML and
RDF in that it is specifically designed for tabular data,
not tree-structured or graph-structured data. Nevertheless,
the rule-based nature of Sculpt draws inspiration from our
prior work on rule-based and pattern-based schema languages
for XML [12,19,20].

As already mentioned, while traditional relational database
schemas (formulated in e.g., the SQL data definition lan-
guage) are specifically designed for tabular data, they are
strictly less expressive than Sculpt schemas in the sense
that relational schemas limit region selection expressions to
those that select columns only. A similar remark holds for
other recent proposals of CSV schema languages, including
the CSV Schema language proposed by the UK National
Archives [1], and Tabular Data Package [16]. The remark
also applies to the part of Google’s Dataset Publishing Lan-
guage (DSPL) [13] describing the contents of CSV files. In
contrast, DSPL also has features to relate data from multi-
ple CSV files, which Sculpt does not yet have.

The problem of streaming schema validation has been in-
vestigated in the XML context for DTDs and XML schemas
[14, 20, 25, 26]. In this work, the focus is on finding algo-
rithms that can validate an XML document in a single pass
using constant memory or, if this is not possible, a memory
that is bounded by the depth of the document. Our notion
of streaming, in contrast, is one where we can use a memory
that is not constant but at most logarithmic in the size of the
table (for strong streaming), or at most linear in the num-
ber of columns and logarithmic in the number of rows (for
weak streaming). This allows us to restrict memory when

going from one row to the next and is essential to be able to
navigate downwards in Sculpt region selection expressions.

While streaming validation is undoubtedly an important
topic for all of the CSV schema languages mentioned above [1,
13,16] (the National Archives Schema Language mentions it
as an explicit design goal), no formal streaming validation
algorithm has been proposed for them, to the best of our
knowledge.

2. SCULPT BY EXAMPLE
In this section, we introduce Sculpt through a number of

examples. The formal semantics of the examples is defined
in Section 3. The syntax we use here is tuned for making
the examples accessible to readers and is, of course, flexible.

Sculpt schemas operate on tabular documents, which are
text files describing tabular data. Sculpt schemas consist of
two parts (cf. Figure 2). The first part, parsing information,
defines the row and column delimiters and further describes
how words should be tokenized. This allows to parse the
text file and build a table-like structure consisting of rows
and columns. In this section we allow some rows to have
fewer columns than others but we require them to be aligned
to the left. That is, non-empty rows always have a first
column. The second part of the schema consists of rules that
interpret the table defined by the first part as a rectangular
grid and enforce structure. In particular, rules are of the
form ϕ → ρ, where ϕ selects a region consisting of cells
in the grid while ρ is a regular expression constraining the
content of the selected region. We utilize a so-called row-
based semantics: every row in the region selected by ϕ should
be of a form allowed by ρ. We refer to ϕ as the selector
expression and to ρ as the content expression.

Next, we illustrate the features of the language by means
of examples. All examples are inspired by the use cases and
requirements drafted by the CSV on the Web W3C working
group [27].

Example 2.1. Figure 1 contains a slightly altered frag-
ment (we use a comma as a column separator) of a CSV file
mentioned in Use Case 3, “Creation of consolidated global
land surface temperature climate databank” [27]. The Sculpt
schema, displayed as Figure 2, starts by describing parsing
information indicating that the column delimiter is a comma
while the row delimiter is a newline. Lines starting with a
%-sign are comments. Tokens are defined based on regular
expressions (regex for short).3 For instance, anything that
matches the regex [0-9]{4}"."[0-9]{2} follows the format
four digits, dot, two digits, and is interpreted by the token
Timestamp in the rules of the schema (similar for Tempera-
ture). Notice that we keep the regexes short (and sometimes
imprecise) for readability, but they can of course be made
arbitrarily precise if desired.

All the XML Schema primitive types like xs:integer, xs:string,
xs:date, etc are pre-defined as tokens in a Sculpt schema.
There is also a special pre-defined token Empty to denote
that a certain cell is empty.

Notice that the schema in Figure 2 has three token def-
initions in which the regex defines only one character se-
quence (namely: AURA, BOMBO, ENTEBBE AIR). In the sequel,
we will omit such rules for reasons of parsimony. For the

3For ease of exposition, we adopt the concise regex syntax
popularized by scripting languages such as Perl, Python, and
Ruby [11] in all of our examples.

, ARUA, BOMBO, ENTEBBE AIR

1935.04, -99.00, -99.00, 27.83

1935.12, -99.00, -99.00, 25.72

1935.21, -99.00, -99.00, 26.44

1935.29, -99.00, -99.00, 25.72

1935.37, -99.00, -99.00, 24.61

1935.46, -99.00, -99.00, 24.33

1935.54, -99.00, -99.00, 24.89

Figure 1: Example tabular data inspired by Use
Case 3 in [27].

% Parsing information

%% Delimiters

Col Delim = ,

Row Delim = \n

%% Tokens

%% left: token name

%% right: regex

Timestamp = [0-9]{4}"."[0-9]{2}

Temperature = (-)?[0-9]{2}"."[0-9]{2}

ARUA = ARUA

BOMBO = BOMBO

ENTEBBE AIR = ENTEBBE AIR

% Rules

row(1) -> Empty, ARUA, BOMBO, ENTEBBE AIR

col(1) -> Empty | Timestamp

col(ARUA) -> Temperature

col(BOMBO) -> Temperature

col(ENTEBBE AIR) -> Temperature

Figure 2: Schema for tabular data of the type in
Figure 1.

same reason, we omit the explicit definition of column and
row delimiters when they are a comma and newline charac-
ter, respectively.

The rule
row(1) -> Empty, ARUA, BOMBO, ENTEBBE AIR

selects all cells in the first row and requires that the first is
empty, the second contains ARUA, the third BOMBO, and the
fourth ENTEBBE AIR. Next, col(1) selects the region con-
sisting of all cells in the first column. As Sculpt assumes a
row-based semantics per default,4 the rule

col(1) -> Empty | Timestamp

requires that every row in the selected region (notice that
each such row consists of a single cell) is either empty (Empty)
or contains data that matches the Timestamp token. The ex-
pression col(AURA) selects all cells in the column below the
cell containing ARUA. The rule

col(ARUA) -> Temperature

therefore requires that every row in the selected region matches
the Temperature token. The two remaining rules are anal-
ogous. The fragment in Figure 1 satisfies the schema of

4We discuss an extension in Section 5.

QS601EW

Economic activity

27/03/2011

, , Count , Count

, , Person , Person

, , Activity, Activity

GeoID , GeoArea, All , Part-time

E92000001, England, 38881374, 27183134

W92000004, Wales , 2245166 , 1476735

Figure 3: Fragment of a CSV-like-file, inspired by
Use Case 2 in [27].

%% Tokens

%% left: token name

%% right: regex

name = QS[0-9]*EW

ctype = Economic Activity

geo_id = E[0-9]*

% Rules

row(1) -> name

row(2) -> ctype

row(3) -> Date

row(4) -> Empty

row(5) -> Empty, Empty, Count*

row(6) -> Empty, Empty, Person*

row(7) -> Empty, Empty, Activity*

row(8) -> GeoID, GeoArea, String*

col(GeoID) -> geo_id

col(GeoArea) -> String

down+(right+(GeoArea)) -> Number*

Figure 4: “Schema” for files of the type in Figure 3.

Figure 2. �

Before moving on to some more advanced examples, we
discuss in more detail the semantics of selector and con-
tent expressions. Each cell in a table is identified by its
coordinate, which is a pair (k, ℓ) where k indicates the row
number (k ≥ 1) and ℓ the column number (ℓ ≥ 1). In each
rule ϕ → ρ, the selector expression ϕ returns a set of co-
ordinates (a region) and ρ is a regular expression defining
the allowed structure of each row in the region selected by
ϕ. It is important to note that in each such row only the
cells which are selected by ϕ are considered. Another way
to interpret the row-based semantics is that of a ‘group by’
on the selected region per row.

The last rule we discussed in Example 2.1 uses a sym-
bolic coordinate ARUA in its selector expression. Its seman-
tics is as follows: a token τ returns the set of all coordinates
(k, ℓ) whose cell contents matches τ . The operator row ap-
plied to a coordinate (k, ℓ) returns the set of coordinates
{(k, ℓ′) | ℓ′ > ℓ}. This corresponds to the row consisting
of all elements to the right of (k, ℓ). Note that coordinate
(k, ℓ) itself is not included. Applying row to a set S of coor-

dinates amounts to taking the union of all row((k, ℓ)) where
(k, ℓ) ∈ S. Similarly, the operator col applied to S returns
the union of the regions {(k′, ℓ) | k′ > k} for each (k, ℓ) in
S, corresponding to columns below elements in S. The se-
lector expressions row(1) and col(1) that select the “first
row” and “first column”, respectively, use syntactic sugar
to improve readability. Formally, the notation row(k) and
col(l) abbreviate row({(k, 0)}) and col({(0, ℓ)}), respec-
tively. Using the same principle as above, this means that
row(k) selects the cells {(k, ℓ) | ℓ > 0} and col(l) selects
{(k, ℓ) | k > 0}. Notice that we use the convention that
the top left coordinate in tabular data bears the coordinate
(1, 1) — for first row, first column. While the value 0 does
not refer to any cell in the table, it is used to define the
semantics of expressions.

The next example illustrates the use of slightly more com-
plex expressions for navigation and content.

Example 2.2. Figure 3 displays a (slightly altered) frag-
ment of a CSV-like-file inspired by Use Case 2 (“Publication
of National Statistics”) in [27]. This fragment originates
from the Office for National Statistics (UK) and refers to
the dataset “QS601EW Economic activity” derived from the
2011 Census. The file starts with three lines of metadata, re-
ferring to the name of the file and the census date, continues
with a blank line, before listing the actual data separated
by commas. Notice that this file is, strictly speaking, not
a comma-separated-value file because not all rows have an
equal number of columns.5 Indeed, the first four rows have
only (at most) one column and the later rows have four
columns. Figure 4 depicts the Sculpt schema describing
the structure of such tables.

The schema starts by describing parsing information, anal-
ogous to Example 2.1. The first four rules are very basic and
are similar to those of Example 2.1. We first describe the
fifth rule of the schema:

row(5) -> Empty, Empty, Count*

selects all cells in the fifth row, requiring the first two to be
Empty and the remaining non-empty cells to contain Count.
We note that the original data fragment from [27] contains
16 such columns. The remaining rules constraining rows are
similar.

The rule col(GeoID) -> geo_id selects all cells below
cells containing the word GeoID. The content expression says
that this column contains values that match the geo_id to-
ken. The last rule is the most interesting one:

down+(right+(GeoArea)) -> Number*.
This rule selects all cells appearing strictly downward and to
the right of GeoArea and requires them to be of type Number.
More precisely, GeoArea is a symbolic coordinate selecting all
cells containing the word GeoArea. The navigational opera-
tors right and down select cells one step to the right and one
step down, respectively, from a given coordinate. The oper-
ator + indicates an arbitrary strictly positive number of ap-
plications of the navigational operator to which it is applied.
In particular, as on the table given in Figure 3, GeoArea is
the singleton cell with coordinate (8, 2), right(GeoArea) re-
turns {(8, 3)}, while right+(GeoArea) is the region {(8, ℓ) |
ℓ > 2}. Likewise, down(right+(GeoArea)) is the region
{(9, ℓ) | ℓ > 2} and, finally, down+(right+(GeoArea)) is the

5Actually CSV does not have a standard, but the infor-
mative memo RFC4180 (http://tools.ietf.org/html/rfc4180)
states rectangularity in paragraph 2.4.

subject predicate object provenance

:e4 type PER

:e4 mention "Bart" D00124 283-286

:e4 mention "JoJo" D00124 145-149 0.9

:e4 per:siblings :e7 D00124 283-286 173-179 274-281

:e4 per:age "10" D00124 180-181 173-179 182-191 0.9

:e4 per:parent :e9 D00124 180-181 381-380 399-406 D00101 220-225 230-233 201-210

Figure 5: Fragment of a CSV-like file, inspired by Use Case 13 in [27].

region downward and to the right of the GeoArea coordinate,
that is, {(k, ℓ) | k > 8 and ℓ > 2}. �

Example 2.2 uses more refined navigation than just se-
lecting a row or a column. Sculpt has four navigational
axes: up, down, left, right which navigate one cell up-
ward, downward, leftward, or rightward. These axes can
be applied to a set S of coordinates and add a vector v to
it. More formally, an axis A, when applied to a set S of
coordinates, returns A(S) := {c+ vA | c ∈ S}. Here,

• vA = (−1, 0) when A = up,
• vA = (1, 0) when A = down.
• vA = (0, 1) when A = right, and
• vA = (0,−1) when A = left.

Furthermore, there is also an axis cell that does not navi-
gate away from the current cells, i.e., cell(S) = S. When
applying an axis to a set of coordinates, we always return
only the coordinates that are valid coordinates in the table.
For example, left({1,1}) returns the empty set because
(1, 0) is not a cell in the table.

While the just discussed features of Sculpt are sufficient
to describe the structure of almost all CSV-like data on the
Web Working group use cases [27], we extend in Section 3
Sculpt to include XPath-like navigation. These features
will be useful for annotations and transformations, see Sec-
tion 5. We now showcase Sculpt by illustrating it on the
most challenging of the W3C use cases.

Example 2.3. Figure 5 contains a fragment of a CSV-
like file, inspired by Use Case 13 in [27] (“Representing En-
tities and Facts Extracted From Text”). Figure 6 depicts the
Sculpt schema. Compared to the previous examples, the
most interesting rule is

down+(right*(provenance))

-> (prov-book, prov-pos*, prov-node?)*

which states that every row that starts with a coordinate of
the form (k, 4) (as provenance only occurs in column 4) with
k > 1 should match (prov-book, prov-pos*, prov-node?)*.
Notice that the empty row starting at (2, 4) also matches this
expression. Here, * denotes an arbitrary number (including
zero) of applications of the navigational operator. �

3. FORMAL MODEL
In this section, we present a formal model for the logical

core of Sculpt. We refer to this core as core-Sculpt and
discuss extensions in Section 5. We first define the data
model.

Tables. For a number n ∈ N, we denote the set {1, . . . , n}
by [n]. By ⊥ we denote a special distinguished null value.
For any set V, we denote the set V ∪ {⊥} by V⊥. The W3C
formalizes tabular documents through tables, which can be
defined as follows.

% Tokens

%% left: token name

%% right: regex

rdf-id = [a-zA-Z0-9]*:[a-zA-Z0-9]*

rdf-lit = "[a-zA-Z0-9]*"

prov-book = D[0-9]{5}

prov-pos = [0-9]{3}-[0-9]{3}

prov-node = [0-9].[0.9]

word = [a-z]*

% Rules

row(1) -> subject,predicate,object, provenance

col(subject) -> rdf-id

col(predicate) -> word | rdf-id

col(object) -> rdf-lit | rdf-id

down+(right*(provenance))

-> (prov-book, prov-pos*, prov-node?)*

Figure 6: Schema for files of the type in Figure 5.

Definition 3.1 (Core Tabular Data Model, [29]).
Let V be a set. A table over V is an n × m matrix T (for
some m,n ∈ N) in which each cell carries a value from V⊥.
We say that T has n rows and m columns. A (table) co-
ordinate is an element of [n] × [m]. A cell is determined
by coordinate (k, ℓ) ∈ [n] × [m] and its content is the value
Tk,ℓ ∈ V⊥ at the intersection of row k and column ℓ. We
denote the coordinates of T by coords(T).

Tabular documents. Notice that tables are always rect-
angular6 whereas, in Section 2, this was not the case for
some of the use cases. We model this by padding shorter
rows by ⊥. More precisely, we see the correspondence be-
tween tabular documents, i.e., text files that describe tabular
data (like CSV files), and tables as follows. Let Σ be a finite
alphabet and let D be a set of delimiters, disjoint from Σ.
We assume that D contains two designated elements which
we call row delimiter and column delimiter, which, as the
name indicates, separate cells vertically or horizontally.(We
discuss other delimiters in Section 5.) Therefore, a sequence
of symbols in (D∪Σ)∗ can be seen as a table over Σ∗: every
row delimiter induces a new row in the table, every column
delimiter a new column, and the Σ-strings between delim-
iters define the cell contents. In the case that some rows have
fewer columns than others, missing columns are expanded
to the right and filled with ⊥. Conversely, a table over Σ∗

6Tables are required to be rectangular by Section 2.1 of
[29]; as by paragraph 2.4 of the memo RFC4180 on CSV
(http://tools.ietf.org/html/rfc4180).

can also be seen as a string over (D ∪Σ)∗ by concatenating
all its cell values in top-down left-to-right order and insert-
ing cell delimiters and row delimiters in the correct places;
we do not insert column delimiters next to ⊥-cells. As such,
when we convert a tabular document into a table and back;
we obtain the original tabular document.

We consider both representations in the remainder of the
paper. In particular we view the table representation as
a structure that allows efficient navigation in all directions
and the string representation as structure for streaming val-
idation. core-Sculpt schemas. Abstractly speaking, a

core-Sculpt schema S is a 4-tuple (D,∆,Θ, R) where D
is the set of delimiters; ∆ is a finite set of tokens; Θ is a
mapping that associates a regular expression over Σ to each
token τ ∈ ∆; and R is a tabular schema, a set of rules that
constrain the admissible table contents (further defined be-
low).

Checking whether a tabular document σ in (D ∪Σ)∗ sat-
isfies S proceeds conceptually in three phases. In the first
phase, the delimiters are used to parse σ into a table T raw

over Σ∗, as described above. In the second phase, the token
definitions Θ are used to transform T raw into a tokenized
table T , which is a table where each cell contains a set of
tokens (i.e., each cell contains a subset of ∆, namely those
tokens that match the cell). Formally, T is the table of the
same dimension as T raw such that

Tk,ℓ = {τ ∈ ∆ | T raw
k,ℓ ∈ L(Θ(τ))}.

Here L(·) denotes the language of a regular expression. Fi-
nally, the rules in R check validity of the tokenized table T
(and not of the raw table T raw), as explained next.

Tabular schema. The tabular schema R describes the
structure of the tokenized table. Intuitively, a tabular schema
is a set of rules s → c in which s selects a region in the ta-
ble and c describes what the content of the selected region
should be. More formally, a region z of an n×m table T is a
subset of [n]× [m]. A region selection language S is a set of
expressions such that every s ∈ S defines a region in every
table T . More precisely, s[T] is always a (possibly empty)
region of T . A content language C is a set of expressions
such that every c ∈ C maps each region z of T to true or
false. We denote by T, z |= c that c maps z to true in T and
say that z satisfies c in T .

Definition 3.2 (Tabular Schema). A (tabular) sche-
ma (over S and C) is a set R of rules s→ c for which s ∈ S
and c ∈ C. A table T satisfies R, denoted T |= R, when for
every rule s→ c ∈ R we have that T, s[T] |= c.

The above definition is very general as it allows arbitrary
languages for selecting regions and defining content. We now
propose concrete languages for these purposes.

Region selection expressions. Our region selection lan-
guage is divided into two sorts of expressions: coordinate
expressions (ranged over by ϕ,ψ) and navigational expres-
sions (ranged over by α, β), defined by the following syntax:

ϕ, ψ := a | root | true | ϕ ∨ ψ | ϕ ∧ ψ | ¬ϕ | 〈α〉 | α(ϕ)

α, β := ε | up | down | left | right | [ϕ] | (α · β) | (α|β) | (α∗)

Here, a ranges over tokens in ∆ and root is a constant re-
ferring to coordinate (1, 1). When evaluated over an n×m

table T over 2∆, a coordinate expression ϕ defines a region

JϕKT ⊆ coords(T), whereas a navigational expression α de-

fines a function JαK : 2coords(T) → 2coords(T), as follows.

JaKT := {(i, j) ∈ [n]× [m] | a ∈ Ti,j}

JrootKT := {(1, 1)}

JtrueKT := [n]× [m]

J(ϕ ∨ ψ)KT := JϕKT ∪ JψKT

J(ϕ ∧ ψ)KT := JϕKT ∩ JψKT

J(¬ϕ)KT := ([n]× [m]) \ JϕKT

J〈α〉KT := {c ∈ coords(T) | Jα({c})KT 6= ∅}

Jα(ϕ)KT := Jα(JϕKT)KT

Furthermore, for every set of coordinates C ⊆ coords(T),

Jε(C)KT := C

Jup(C)KT := {(i− 1, j) | (i, j) ∈ C, i > 1}

Jdown(C)KT := {(i+ 1, j) | (i, j) ∈ C, i < m}

Jleft(C)KT := {(i, j − 1) | (i, j) ∈ C, j > 1}

Jright(C)KT := {(i, j + 1) | (i, j) ∈ C, j < n}

J[ϕ](C)KT := C ∩ JϕKT

J(α · β)(C)KT := Jβ(Jα(C)KT)KT

J(α|β)(C)KT := Jα(C)KT ∪ Jβ(C)KT

J(α∗)(C)KT :=
⋃

i≥0

Jαi(C)KT

Here, αi(C) abbreviates the i-fold composition α · · ·α(C).
We also use this abbreviation in the remainder. Notice that
every coordinate (k, ℓ) of T can be expressed as downk−1 ·
rightl−1(root). For navigational expressions α, we abbreviate
α ·α∗ by α+ and α|ε by α?. One can read α(ϕ) as “apply the
regular expression α to ϕ”. The definition of the semantics
of α · β is conform with this view.

Example 3.3. Region selection expressions navigate in
tables, similar to how XPath expressions navigate on trees.
For example, assuming dummy to be a token for -99.00 in
Figure 1, the expression

(right+(root) ∧ ¬(up∗(dummy)))

selects the top cells of columns that do not contain a dummy
value anywhere. In the excerpt of Figure 1, this expression
hence selects the cell containing ENTEBBE AIR.

Assuming the token literal for cells with quotation marks
(regex \"[a-zA-Z0-9]\") in Figure 5, the expression

down
+ · [literal] · right+(object)

selects all provenance information for rows in which the
object is between quotes, like "Bart", "JoJo", and "10".
Notice in particular that the semantics of the operator “[]”
in navigational expressions is the same as filter-expressions
in XPath. �

Readers familiar with propositional dynamic logic [10] (PDL
for short) will recognize that the above language is nothing
more than propositional dynamic logic, tweaked to navigate
in tables.

There are some differences between the syntax of core-
Sculpt and the region selection expressions used in the ex-
amples of Section 2. In particular, the latter examples use
the following abbreviations.

Remark 3.4. (i) As already observed, absolute coordi-
nates in Section 2 are syntactic sugar for navigations that
start at the root. For example, the coordinate (2, 2) would
be unfolded to down · right(root) in core-Sculpt.

(ii) The keywords row and col in Section 2 are syntactic
sugar for right+ and down+ in core-Sculpt, respectively. So,
col((2,2)), which denotes the column below the cell (2, 2)
in Section 2, is syntactic sugar for down+(down · right(root)).

(iii) The only exception to rule (ii) above are row and
column expressions of the form row(k) and col(ℓ). These
abbreviate right∗(k, 1) and down∗(1, ℓ), respectively. (Where
(k, 1) and (1, ℓ) need to be further unfolded themselves.)

As an example, the selection expression row(1) of Figure
6 can be written as right∗(root) or, equivalently, right∗ and
the expression col(subject) as down+(subject). �

Content expressions. A content expression is simply a
regular expression ρ over the set of tokens ∆. To define
when a region in a tokenized table T is valid with respect
to content expression ρ, let us first introduce the following
order on coordinates. We say that coordinate (k, ℓ) precedes
coordinate (k′, ℓ′) if we visit (k, ℓ) earlier than (k′, ℓ′) in a
left-to-right top-down traversal of the cells of T , i.e., it pre-
cedes it in lexicographic order. Formally, (k, ℓ) < (k′, ℓ′) if
k < k′ or if k = k′ but ℓ < ℓ′.

Now, let T be a tokenized table, let z be a region of T ,
and let ρ be a content expression. Then (T, z) satisfies the
content expression ρ under the region-based semantics, de-
noted T, z |=region ρ if there exist tokens a1, . . . , an ∈ ∆ such
that a1 . . . an ∈ L(ρ) and ai ∈ Tci , where c1, . . . , cn is the
enumeration in table order of all coordinates in z.

To define the row-based semantics we used in Section 2,
we require the following notions. Let z be a region of T . We
say that subregion z′ ⊆ z is a row of z if there exists some k
such that z′ = {(k, ℓ) | (k, ℓ) ∈ z}. Now, (T, z) satisfies the
content expression ρ under the row-based semantics, denoted
T, z |= ρ, if for every row z′ of z, we have T, z′ |=region ρ.

Remark 3.5. Recall that, for ease of exposition, we al-
lowed tables to be non-rectangular in Section 2 whereas in
our formal model, tables are always rectangular. In partic-
ular, shorter rows are padded with ⊥ to obtain rectangular-
ity. This implies that, some content expressions of Section 2
need to be adapted in our formal model. For example, the
rule row(1) -> name of Figure 4 needs to be adapted to
row(1) → name,⊥,⊥,⊥ to take the padding into account. �

4. EFFICIENT VALIDATION
In this section we consider the validation (or evaluation)

problem for tabular schemas. This problem asks, given a
tokenized table or tabular document T and a tabular schema
R, whether T satisfies R. We consider the problem in a
main-memory and streaming variant. Intuitively, T is given
as a table in the former and as a tabular document in the
latter setting.

4.1 Validation in Linear Time
When T is given as a tokenized table, we can essentially

assume that we can navigate from a cell (i, j) to any of
its four neighbours up({(i, j)}), down({(i, j)}), left({(i, j)}),
and right({(i, j)}) in constant time. Under these assump-
tions we show that T can be validated against a tabular

schema in linear time combined complexity.7 The proof
strongly relies on the linear time combined complexity for
PDL model checking.

Theorem 4.1. The valuation problem for a tabular doc-
ument T and a schema R is in linear time combined com-
plexity, that is, time O(|T ||R|).

4.2 Streaming Validation
Even though Theorem 4.1 implies that Sculpt schemas

can be efficiently validated, the later claim only holds true
when the tabular document can be fully loaded in memory
and multiple passes can be made through the document.
However, when the input data is large it is sometimes de-
sirable to have a streaming validation algorithm that makes
only a single pass over the input tabular document and uses
only limited memory. In this section we identify several frag-
ments of core-Sculpt that admits such streaming validation
algorithms.

Streaming model. Let us begin by defining when an algo-
rithm validates in a streaming fashion. In this respect, we
draw inspiration from the SAX Streaming API for XML: we
can view a tokenized table T as a sequence of events gener-
ated by visiting the cells of T in table order. Here, whenever
we visit a new cell, an event 〈cell Γ〉 is emitted, with Γ the
set of tokens in the visited cell. Whenever we move to a new
row, an event of type 〈new row〉 is emitted.

Note that the tokenized event stream can easily be gener-
ated “on the fly”when parsing a tabular document: we start
reading the tabular document, one character at a time, until
we reach a delimiter. All non-delimiter characters are used
as input to, e.g., a finite state automaton that allows us to
check which tokens match the current cell’s content. When
we reach a delimiter, a 〈cell Γ〉 event is emitted with the
corresponding set of matching tokens. If the delimiter is a
row delimiter, then also a 〈new row〉 is emitted. We repeat
this until the end of the file.

Example 4.2. Consider the tabular document from Fig-
ure 1 together with the corresponding Sculpt schema S in
Figure 2. The tokenized table of this document according
to S yields the event stream

〈cell ∅〉〈cell {ARUA}〉〈cell {BOMBO}〉〈cell {ENTEBBE AIR}〉

〈new row〉〈cell {Timestamp}〉〈cell {Temperature}〉

〈cell {Temperature}〉〈cell {Temperature}〉〈new row〉 . . .

Definition 4.3 (Streamability). A tabular schema
R is said to be weakly streamable, if there exists a Turing
Machine M that
- can only read its input tape once, from left to right;
- for every tokenized table T , when started with the event
stream of T on its input tape, accepts iff T |= R; and

- has an auxiliary work tape that can be used during pro-
cessing, but it cannot use more than O(m log(n)) of space
on this work tape, where n is the total number of cells in
T , and m the number of columns.

We say that R is strongly streamable if the Turing Machine
M only requires O(log(n)) space on its work tape.

Here, strong streamability corresponds to the commonly
studied notions of streaming evaluation. We consider weak
7Combined complexity is a standard complexity measure
introduced by Vardi; see [30].

streamability to be very relevant as well because, based on
the W3C use cases, tabular data often seems to be similar in
spirit to relational tables and, in these cases, is very narrow
and deep. In particular, m = O(log n) in these cases.

Weak streamability. To enable streaming validation, we
restrict our attention to so-called forward coordinate and
navigational expressions which are expressions where 〈α〉 is
not allowed, and we never look up or left. That is, a coordi-
nate or navigational expression is forward if it is generated
by the following syntax.

ϕ,ψ := a | root | true | ϕ ∨ ψ | ϕ ∧ ψ | ¬ϕ | α(ϕ)

α, β := ε | down | right | [ϕ] | (α · β) | (α+ β) | (α∗)

We do not consider the operator 〈α〉 in the forward fragment
because it can be seen as a backward operator: 〈right · [a]〉
is equivalent to left(a).

A core-Sculpt schema is forward if it mentions only for-
ward coordinate expressions.

Theorem 4.4. Forward core-Sculpt is weakly stream-
able.

Proof sketch. Consider a rule ϕ→ ρ with ϕ a forward
coordinate expression and ρ a content expression. We will
show that coordinate expressions ϕ can be evaluated in a
streaming fashion by constructing a special kind of finite
state automaton (called coordinate automaton) that allows
us to decide, at each position in the event stream, if the cur-
rently visited cell is in JϕKT . Whenever we find that this is
the case, we apply the current cell contents to ρ (which we
also evaluate by means of a finite state automaton). Now
observe that T |= ϕ → ρ iff (1) under the row based seman-
tics, whenever we see 〈new row〉, the automaton for ρ is in a
final state and (2) under the region-based semantics, when
we reach the end of the event stream, the automaton for ρ
is in a final state. We then obtain weak streamability by
showing that coordinate automata for ϕ can be simulated in
space O(m log(n)), whereas it is known that the finite state
automaton for ρ can be simulated in constant space.

Strong streamability. Forward core-Sculpt is not strongly
streamable as no schema with a rule that contains subex-
pressions of the form col(a) (which are prevalent in Sec-
tion 2) can be strongly streamable. This can be seen using
a simple argument from communication complexity. Indeed,
assume that the first row has k cells, some of which have the
token a and some of which do not. If we want to evaluate
col(a) in a streaming fashion, we need to identify the cells in
the second row that are in the same columns as the a-tokens
in the first row. But, this is precisely the equality of two k-
bit strings problem, which requires Ω(k) bits in deterministic
communication complexity (Example 1.21 in [15]). These
Ω(k) bits are what we need to store when going from the
first to the second row. Since k can be Θ(n), this amount of
space is more than we allow for strongly streamable tabular
schemas, and hence no schema containing col(a) is strongly
streamable.

The underlying reason why col(a) is not strongly stream-
able is because, in general, the token a can occur arbitrarily
often. However, in all such cases in Section 2 and in the
W3C use cases, the occurrences of a are very restricted. We
could therefore obtain strong streamability for such expres-
sions by adding constructs in the language that restrict how
certain tokens can appear:

unique(a) unique-per-row(a)

The former asserts that token a should occur only once in the
whole table and the latter that a occurs at most once in each
row. More formally, the former predicate holds in a table
T if JaKT contains at most one element and the latter holds
in table T if JaKT contains at most one element of the form
(r, c) for each row number r. Notice that a strong streaming
algorithm can easily check whether these predicates hold.

We use the above predicates to define two notions of guard-
edness for region selection expressions. Guarded formulas
will be strongly streamable. We say that token a is row-
guarded if unique-per-row(a) appears in the schema. If
unique(a) appears in the schema it is, in addition, also
guarded. The two notions of guardedness capture the follow-
ing intuition: if ϕ is row-guarded, then down(ϕ) is strongly
streamable and if it is guarded, then down∗(ϕ) is strongly
streamable. The main idea is that, in both cases, the number
of cells we need to remember when going from one row to the
next does not depend on the width of the table. We now de-
fine (row)-guardedness inductively on the forward language:

• root and true are guarded and row-guarded;
• right∗(ϕ) is guarded and row-guarded for every ϕ that

does not contain a navigational subexpression;
• if ϕ, ψ, α(ϕ), β(ϕ) are guarded (resp., row-guarded),

then
– ϕ ∧ ψ, ϕ ∨ ψ, ε(ϕ), down(ϕ), right(ϕ),
– (α · down)(ϕ), (α · right)(ϕ), and (α+ β)(ϕ)

are guarded (resp., row-guarded);
• if ϕ and α(ψ) are guarded then down∗(ϕ) and (α ·

down∗)(ψ) are guarded; and
• if ϕ and α(ψ) are row-guarded then right∗(ϕ) and (α ·

right∗)(ψ) are guarded.

Definition 4.5. A forward core-Sculpt schema is guarded,
if all region selection expressions that use the down-operator
are row-guarded and all region selection expressions that use
down∗ are guarded.

Notice that guardedness of a Sculpt schema can be tested in
linear time. Furthermore notice that every Sculpt schemas
in this paper becomes strongly streamable if we add the
predicates unique(a) for tokens a that we use in expressions
using col, down, or down∗.

Theorem 4.6. Guarded forward core-Sculpt is strongly
streamable.

5. SCULPT EXTENSIONS
Next, we describe a number of extensions to Sculpt.

These include alternative grouping semantics, types, com-
plex content cells, and a concept for a transformation lan-
guage.

5.1 Region semantics
The examples in Section 2 all use a row-based semantics of

Sculpt where the content expression is matched over every
row in the selected region. That is, the cells in the selected
region are ‘grouped by’ the row they occur in. There are of
course other ways to group cells, by column, for instance,
or by not grouping them at all. The latter case is already
defined in Section 3 as region-based semantics. In Sculpt,
we indicate rules using this semantics with a double arrow
=> rather than a single arrow. Notice the difference between

the rules col(2) -> Null | Number and col(2) => (Null

| Number)*. Both require each cell in the second column
to be empty or a number but express this differently. (The
former way is closer to how one defines the schema of a table
in SQL, which is why we chose it as a default.) Example 5.1
describes a more realistic application of =>-rules. This ex-
ample corresponds to use case 12 in [27], is called “Chemical
Structures” and aims to interpret Protein Data Bank (PDB)
files as tabular data. This particular use case is interest-
ing because it illustrates that the view of W3C on tabular
data is not restricted to traditional comma-separated val-
ues files. We note that Theorems 4.1, 4.4, and 4.6 still hold
if Sculpt schemas contain both rules under row-based and
region-based semantics.

Example 5.1. Figure 7 displays a slightly shortened ver-
sion of the PDB file mentioned in use case 12 in [27]. The
corresponding Sculpt schema could contain the following
rules:

row(1) -> HEADER, Type, Date, ID

col(1) => HEADER, TITLE*, dots, EXPDATA, AUTHOR*,

dots, REMARK*, dots, SEQRES*, dots, ATOM*

The last rule employs the region semantics and specifies the
order in which tokens in the first column should appear. �

5.2 Token types
The PDB fragment in Figure 7 contains cells that have the

same content but seem to have a different meaning. It can
be convenient to differentiate between cells by using token
types as follows:

%% Token types

%% left: name of the token type

%% right: region selection expression for token type

REMARK-Header <= down*[dots].down[REMARK]

REMARK-Comment <= down*[dots].down[REMARK].down

REMARK-Rest <=

down*[dots].down[REMARK].down.(down[REMARK])*

Note that we abbreviated rules of the form α(root) by α. We
denoted the concatenation operator of navigational expres-
sions by “.”. REMARK-Header is the topmost cell containing
REMARK in Figure 7, REMARK-Comment is the one immediately
below, and REMARK-Rest is the rest. We can now use token
types to write rules such as

row(REMARK-Header) -> ...

row(REMARK-Comment) -> ...

row(REMARK-Rest) -> ...

Token types do not add additional expressiveness to the
language since one can simply replace REMARK-HEADER by
down*[dots].down[REMARK](root) in the rule. But the abil-
ity to use different names for fields with the same content
may be useful for writing more readable schemas. In this
case, the names suggest that the block of remarks is divided
into a header, some comment, and the rest.

5.3 Transformations and Annotations
While it is beyond the scope of this document to develop a

transformation language for tables, we argue that region se-
lection expressions can be easily employed as basic building
blocks for a transformation language aimed at transform-
ing tables into a variety of formats like, for instance, RDF,
JSON, or XML (one of the scopes expressed in [31]). Region

selection expressions are then used to identify relevant parts
of a table.
Basic Transformations. Consider Figure 1 (of Exam-
ple 2.1) again, where we see that several columns have the
value −99.00. Since winter does not get this extreme in
Uganda, this value is simply a dummy which should not be
considered when computing, e.g., the average temperature
in Uganda in 1935. Instead, for the fragment of Figure 1,
it would be desirable to only select the columns that do not
contain −99.00. To do this, we can simply define a new to-
ken and a new token type for the region of the table we are
interested in.

Useless-Temp = -99.00

%% Token type

Useful <= col(1) or

(Temperature and not Useless-Temp) or

(row(1) and not up*(Useless-Temp))

The region defined by Useful contains

, ENTEBBE AIR

1935.04, 27.83

1935.12, 25.72

1935.21, 26.44

[...]

which could then be exported. Using simple for-loops we can
iterate over rows, columns, or cells, and compute aggregates.
For example,

Useful-values <= (Temperature and not Useless-Temp)

For each column c in Useful-values {

print Average(c)

}

would output 25.65, the average of the values below ENTEBBE

AIR in Figure 1. The region defined by Useful-values is a
set of table cells, with coordinates. These coordinates can be
used to handle information column-wise in the for-loop: It
simply iterates over all column coordinates that are present
in the region. Iteration over rows or single cells would work
analogously.
Namespaces, Annotations and RDF. Assume that we
want to say that certain cells in Figure 3 are geographical
regions. To this end, the Sculpt schema could contain a
definition of a default namespace:
namespace default = http://foo.org/nationalstats.csv

namespace x = [...]

Region selection expressions can then be used to specify
which cells should be treated as objects in which namespace.
For example, the code fragment

For each cell c in col(GeoArea) {

c.namespace = default

}

could express that each cell below GeoArea is an entity in
namespace http://foo.org/nationalstats.csv. So, the
cell containing England represents the entity

http://foo.org/nationalstats.csv:England,

similar for the cell containing Wales, etc. (Here we assume
that .namespace is a predefined operation on cells.)

We can also annotate cells with meta-information (as is
currently being considered in Section 2.2 of [29]). The code
fragment

HEADER EXTRACELLULAR MATRIX 22-JAN-98 1A3I

TITLE X-RAY CRYSTALLOGRAPHIC DETERMINATION OF A COLLAGEN-LIKE

TITLE 2 PEPTIDE WITH THE REPEATING SEQUENCE (PRO-PRO-GLY)

...

EXPDTA X-RAY DIFFRACTION

AUTHOR R.Z.KRAMER,L.VITAGLIANO,J.BELLA,R.BERISIO,L.MAZZARELLA,

AUTHOR 2 B.BRODSKY,A.ZAGARI,H.M.BERMAN

...

REMARK 350 BIOMOLECULE: 1

REMARK 350 APPLY THE FOLLOWING TO CHAINS: A, B, C

REMARK 350 BIOMT1 1 1.000000 0.000000 0.000000 0.00000

REMARK 350 BIOMT2 1 0.000000 1.000000 0.000000 0.00000

...

SEQRES 1 A 9 PRO PRO GLY PRO PRO GLY PRO PRO GLY

SEQRES 1 B 6 PRO PRO GLY PRO PRO GLY

SEQRES 1 C 6 PRO PRO GLY PRO PRO GLY

...

ATOM 1 N PRO A 1 8.316 21.206 21.530 1.00 17.44 N

ATOM 2 CA PRO A 1 7.608 20.729 20.336 1.00 17.44 C

ATOM 3 C PRO A 1 8.487 20.707 19.092 1.00 17.44 C

ATOM 4 O PRO A 1 9.466 21.457 19.005 1.00 17.44 O

ATOM 5 CB PRO A 1 6.460 21.723 20.211 1.00 22.26 C

Figure 7: Fragment of a PDB file.

For each cell c in col(GeoArea) {

annotate c with "rdf:type dbpedia-owl:Place"

annotate c with "owl:sameAs fbase:" + c.content

}

(assuming appropriate namespace definitions for rdf, owl,
etc.) could express that each cell below GeoArea should be
annotated with rdf:type dbpedia-owl:Place and, in addi-
tion, the England cell with owl:sameAs fbase:England, the
Wales cell with owl:sameAs fbase:Wales, etc. We assume
that annotate, with, and .content are reserved words or
operators in the language.

These ingredients also seem useful for exporting to RDF.
We could write, e.g.,
print "@prefix : <http://foo.org/nationalstats.csv>"

For each cell c in col(GeoArea) {

print ":"+c.content+"owl:sameAs fbase:"+c.content

}

to produce an RDF file that says that :England in the de-
fault namespace is the same as fbase:England. Looking at
Figure 5, one can also imagine constructs like

RDF <= col(subject) or col(predicate) or col(object)

For each row r in RDF {

print r.cells[1] +" "+ r.cells[2] +" "+ r.cells[3]

}

to facilitate the construction of RDF triples taking content
from several cells.

5.4 Complex content
The CSV on the Web WG is considering allowing complex

content (such as lists) in cells (Section 3.8 in [22]). Sculpt
can be easily extended to reason about complex content.
Our formal definition of tabular documents already consid-
ers (Section 3) a finite set of delimiters, which goes beyond

the two delimiters (row- and column-) that we used until
now.

In a spirit similar to region-based semantics, one can also
imagine a subcell-based semantics, for example, a rule of the
form

col(1) .> (String)*

could express that each cell in the first column contains a
list of Strings. Notice the use of .> instead of -> to denote
that we specify the contents of each individual cell in the
region, instead of each row. The statement List Delim = ;

in the beginning of the schema could say that the semicolon
is the delimiter for lists within a cell.

6. CONCLUSIONS
We presented the schema language Sculpt for tabular

data on the Web and showcased its flexibility and usability
through a wide range of examples and use cases. While
region selection expressions are at the very center of Sculpt,
we think they can be more broadly applied. Region selection
expressions can be used, for instance, as a cornerstone for
annotation- and transformation languages for tabular data
and thus for a principled approach for integrating such data
into the Semantic Web. The whole approach of Sculpt is
strongly rooted in theoretical foundations and, at the same
time, in well established technology such as XPath. For
these reasons, we expect the language to be very robust and,
at the same time, highly accessible for users. Two prominent
directions for future work are the following: (1) expand the
usefulness of Sculpt by further exploring the extensions in
Section 5; and, (2) study static analysis problems related
to Sculpt and region selector expressions leveraging on the
diverse box of tools from formal language theory and logic.

Acknowledgments
We thank Marcelo Arenas for bringing [29] to our attention.

7. REFERENCES
[1] R. W. Adam Retter, David Underdown. Csv schema

1.0: A language for defining and validating csv data.
http://digital-preservation.github.io/csv-schema/csv-
schema-1.0.html.

[2] N. Alechina and N. Immerman. Reachability logic: An
efficient fragment of transitive closure logic. Logic
Journal of the IGPL, 8(3):325–337, 2000.

[3] M. Arenas, S. Conca, and J. Pérez. Counting beyond a
yottabyte, or how SPARQL 1.1 property paths will
prevent adoption of the standard. In International
World Wide Web Conference (WWW), pages
629–638, 2012.

[4] A. Berglund, S. Boag, D. Chamberlin, M. F.
Fernández, M. Kay, J. Robie, and J. Siméon. XML
Path Language (XPath) 2.0. Technical report, World
Wide Web Consortium, January 2007. W3C
Recommendation,
http://www.w3.org/TR/2007/REC-xpath20-
20070123/.

[5] G. J. Bex, W. Gelade, F. Neven, and
S. Vansummeren. Learning deterministic regular
expressions for the inference of schemas from XML
data. In International World Wide Web Conference
(WWW), pages 825–834, 2008.

[6] G. J. Bex, W. Martens, F. Neven, and T. Schwentick.
Expressiveness of XSDs: from practice to theory, there
and back again. In International World Wide Web
Conference (WWW), pages 712–721, 2005.

[7] R. Cleaveland and B. Steffen. A linear-time
model-checking algorithm for the alternation-free
modal mu-calculus. Formal Methods in System Design,
2(2):121–147, 1993.

[8] S. Das, S. Sundara, and R. Cyganiak. R2RML: RDB
to RDF mapping language.
http://www.w3.org/TR/r2rml/. W3C
Recommendation 27 September 2012.

[9] D. Fallside and P. Walmsley. XML Schema Part 0:
Primer (second edition). Technical report, World Wide
Web Consortium, October 2004.
http://www.w3.org/TR/2004/REC-xmlschema-0-
20041028/.

[10] M. J. Fischer and R. E. Ladner. Propositional
dynamic logic of regular programs. J. Comput. Syst.
Sci., 18(2):194–211, 1979.

[11] J. E. F. Friedl. Mastering Regular Expressions.
O’Reilly Media, 3rd edition edition, 2006.

[12] W. Gelade and F. Neven. Succinctness of
pattern-based schema languages for XML. J. Comput.
Syst. Sci., 77(3):505–519, 2011.

[13] Google. DSPL: Dataset publishing language.
https://developers.google.com/public-data/.
Last accessed 04/11/2014.

[14] V. Kumar, P. Madhusudan, and M. Viswanathan.
Visibly pushdown automata for streaming XML. In
International World Wide Web Conference (WWW),
pages 1053–1062, 2007.

[15] E. Kushilevitz and N. Nisan. Communication
Complexity. Cambridge University Press, 1997.

[16] O. K. F. Labs. Tabular data package.
http://dataprotocols.org/tabular-data-package/.
Version 1.0-beta-2. Last accessed 04/11/2014.

[17] L. Libkin, W. Martens, and D. Vrgoc. Querying graph
databases with XPath. In International Conference on
Database Theory (ICDT), pages 129–140, 2013.

[18] K. Losemann and W. Martens. The complexity of
evaluating path expressions in SPARQL. In
International Symposium on Principles of Database
Systems (PODS), pages 101–112, 2012.

[19] W. Martens, F. Neven, M. Niewerth, and
T. Schwentick. Developing and analyzing xsds through
bonxai. PVLDB, 5(12):1994–1997, 2012.

[20] W. Martens, F. Neven, T. Schwentick, and G. Bex.
Expressiveness and complexity of XML Schema. ACM
Transactions on Database Systems, 31(3):770–813,
2006.

[21] J. Pérez, M. Arenas, and C. Gutierrez. Semantics and
complexity of SPARQL. ACM Trans. Database Syst.,
34(3), 2009.

[22] R. Pollock and J. Tennison. Metadata vocabulary for
tabular data. Technical report, World Wide Web
Consortium (W3C), July 2014.
www.w3.org/TR/2014/WD-tabular-metadata-
20140710/.

[23] E. Prud’hommeaux, J. E. L. Gayo, and H. Solbrig.
Shape expressions: An RDF validation and
transformation language. In International Conference
on Semantic Systems, 2014.

[24] A. G. Ryman, A. L. Hors, and S. Speicher. OSLC
resource shape: A language for defining constraints on
linked data. In WWW Workshop on Linked Data on
the Web, 2013.

[25] L. Segoufin and C. Sirangelo. Constant-memory
validation of streaming XML documents against
DTDs. In International Conference on Database
Theory (ICDT), pages 299–313, 2007.

[26] L. Segoufin and V. Vianu. Validating streaming XML
documents. In International Symposium on Principles
of Database Systems (PODS), pages 53–64, 2002.

[27] J. Tandy, D. Ceolin, and E. Stephan. CSV on the
Web: Use cases and requirements. Technical report,
World Wide Web Consortium (W3C), October 2014.
http://w3c.github.io/csvw/use-cases-and-
requirements/.

[28] J. Tennison. 2014: The year of CSV.
http://theodi.org/blog/2014-the-year-of-csv.
last accessed 04/11/2014.

[29] J. Tennison and G. Kellogg. Model for tabular data
and metadata on the web. Technical report, World
Wide Web Consortium (W3C), July 2014.
www.w3.org/TR/2014/WD-tabular-data-model-
20140710/.

[30] M. Y. Vardi. The complexity of relational query
languages (extended abstract). In ACM Symposium on
Theory of Computing (STOC), pages 137–146, 1982.

[31] W3C. CSV on the web working group charter.
http://www.w3.org/2013/05/lcsv-charter.html.

APPENDIX

A. PROOF OF THEOREM 4.1

Lemma A.1 (See Fact 5.1, [17]). For every coordinate
expression ϕ, we can compute JϕKT in time O(|T ||ϕ|). For
every set C of coordinates in T and every navigational ex-
pression α, we can compute Jα(C)KT in time O(|T ||α|).

Proof of Theorem 4.1 (sketch). As we have already
mentioned, our region expressions are essentially a variant
of Propositional Dynamic Logic (PDL), tweaked to navigate
in tables. It is known that PDL has linear time combined
complexity for global model checking [2,7]. That is, given a
PDL formula ϕ and a Kripke structure (essentially, a graph)
G, one can decide in time O(|ϕ||G|) whether G |= ϕ. One
can simply view our tables as Kripke structures that are
shaped like a grid. The result follows by a straightforward
adaptation of the algorithm in [2].

B. PROOF OF THEOREM 4.4
The crux behind Theorem 4.4 is the following. Consider

a rule ϕ → ρ with ϕ a forward coordinate expression and
ρ a content expression. We will show that we are able to
evaluate coordinate expressions ϕ in a streaming fashion by
constructing a special kind of finite state automaton (called
coordinate automaton) that allows us to decide, at each po-
sition in the event stream, if the currently visited cell is in
JϕKT . Whenever we find that this is the case, we apply the
current cell contents to ρ (which we also evaluate by means
of a finite state automaton). Now observe that T |= ϕ → ρ

iff

1. Under the row based semantics, the automaton for ρ is
in a final state whenever we see 〈new row〉.

2. Under the region-based semantics, when we reach the
end of the event stream, the automaton for ρ is in a
final state.

B.1 Coordinate automata
Let us first introduce the kinds of finite state automata

that we will use to evaluate coordinate expressions. A co-
ordinate automaton (CA for short) A over Λ is a tuple
(Q, q0, F, δ) where:

• Q is a finite set of states;

• q0 ∈ Q is an initial state;

• F ⊆ Q is a set of final states;

• δ is a finite transition relation consisting of triples, each
having one of the forms (q, ε, q′), (q, [ϕ], q′), (q, right, q′),
(q, down, q′), (q, 〈new row〉, q′), with ϕ a forward coor-
dinate expression.

A CA processes event streams of tokenized tables. It largely
behaves like a normal non-deterministice finite state au-
tomaton, but has a number of special features. First, it
is equipped with a register that stores the coordinate of the
current cell being processed. Second, in each step during
execution, the automaton can either be in an active state,
or in a suspended state. Only active states can fire new
transitions; suspended states remain dormant until they be-
come active again. Syntactically, a suspended state is sim-
ply a pair of the form q : ℓ with q ∈ Q and ℓ ∈ N, ℓ ≥ 1.

The semantics of a suspended state q : ℓ is that the au-
tomaton keeps reading events from the input stream (updat-
ing the coordinate register, but remaining in the suspended
state) until the next time that we visit a cell in column ℓ,
when the state becomes active again. This way, the coor-
dinate automaton can simulate moving downwards in the
table. In particular, when following a transition of the form
(q, down, q′) from state q, the automaton records the column
number of the current position (say, ℓ); moves to state q′;
but immediately suspends q′ until the following cell in col-
umn ℓ is visited. Third and finally, a CA can check whether
the current cell is selected by a forward coordinate expres-
sion ϕ by means of a transition of the form (q, [ϕ], q′). The
CA moves from q to q′ if the corresponding cell in the table
is selected by ϕ. (Note that the CA can hence use coordinate
expressions as oracles.) In contrast to standard automata,
these transitions do not cause the CA to move to the next
event, however. Moving to the next event is done by either
transitions of the form (q, right, q′) or (q, 〈new row〉, q′).

Note. Coordinate automata, as defined above, are very
general and powerful. Obviously, the fact that a coordinate
automaton can use coordinate expressions as oracles makes
them very powerful. Indeed, as we will see below, they are
almost trivially able to express the semantics of coordinate
expressions. In order to obtain Theorem 4.4, however, we
will compile coordinate expressions into CA whose oracles
are restricted.

Semantics. Formally, a configuration of A is a tuple (i, k, ℓ, ς)
where i is a pointer to the current event being read from the
input tape; (k, ℓ) is a coordinate; and ς is either an element
of Q (an active state), or a pair of the form q : j with q ∈ Q
and j ∈ N, j ≥ 1 (a suspended state).

Let T be a table and let s = σ1 · · ·σn be an event stream
for T , each σi being either 〈cell Γ〉 with Γ a set of tokens,
or 〈new row〉. Let c0 = (i, k, ℓ, ς) be a configuration, with
1 ≤ i ≤ n and (k, ℓ) the coordinate of the cell visited in T
when σi is emitted. A run ρ of A on s starting at c0 is a
sequence c0, . . . , cm of configurations such that, for all j with
1 ≤ j < m one of the following holds for cj = (ij , kj , ℓj , ςj)
and cj+1 = (ij+1, kj+1, ℓj+1, ςj+1):

• Transition from active state: ςj ∈ Q

1. (ςj , ε, ςj+1) ∈ δ, ij+1 = ij , kj+1 = kj , and ℓj+1 = ℓj
(epsilon transition)

2. (ςj , [ϕ], ςj+1) ∈ δ, (kj , ℓj) ∈ JϕKT , ij+1 = ij , kj+1 =
kj , and ℓj+1 = ℓj (ordinary transition)

3. (ςj , right, ςj+1) ∈ δ, σij+1 6= 〈new row〉, ij+1 =
ij + 1, kj+1 = kj , and ℓj+1 = ℓj + 1 (move right
transition)

4. (ςj , 〈new row〉, ςj+1) ∈ δ, σij+1 = 〈new row〉, ij+1 =
ij + 2, kj+1 = kj + 1, and ℓj+1 = 1 (new row
transition)

5. (ςj , down, q) ∈ ∆, ij+1 = ij , kj+1 = kj , ℓj+1 = ℓj ,
and ςj+1 = q : ℓj , (down transition)

• Transition from suspended state: ςj = q : ℓ for some
q ∈ Q and ℓ ∈ N with ℓ ≥ 1.

1. σij+1 6= 〈new row〉, ij+1 = ij + 1, kj+1 = kj ,
ℓj+1 = ℓj+1, and either (a) ℓ 6= ℓj+1 and ςj+1 = ςj
(suspended right transition) or (b) ℓ = ℓj+1 and
ςj+1 = q (wake up).

2. σij+1 = 〈new row〉, ij+1 = ij + 2, kj+1 = kj +
1, ℓj+1 = 1, and either (a) ℓ 6= 1 and ςj+1 = ςj

(suspended new row transition) or (b) ℓ = 1 and
ςj+1 = q (wake up).

Definition B.1. Let T be a tokenized table. A CA A
over Λ is said to select coordinate (k, ℓ) ∈ coords(T), de-
noted T, (k, ℓ) |= A, if, there exists a run ρ of A on the event
stream for T starting from configuration (1, 1, 1, q0) with q0
the initial state of A such that there is a configuration c in
ρ with c = (i, k, ℓ, ς) for some i and ς such that ς ∈ F . (In
particular, ς is not suspended.)

We write JAKT for the set of all coordinates selected by A
on T .

Example B.2. The following CA selects the same coor-
dinates as region expression down∗right+(ARUBA)

start
[ARUBA] right

〈new row〉

[true]

down right

�

Note that, in the definition above, a CA always selects
coordinates when started from the root coordinate (1,1) of
the table (i.e., the beginning of the event stream). In what
follows, it will be convenient for technical reasons to say
that a CA A selects coordinate (k, ℓ) in T when started at
coordinate (k′, ℓ′). This is formally defined as follows.

Definition B.3. Let s = σ1 · · ·σn be the event stream
of T . Let σi with 1 ≤ i ≤ n be the symbol in this stream
that corresponds to the cell in T with coordinate (k′, ℓ′).8

Then A selects (k, ℓ) when started from (k′, ℓ′) in T if there
exists a run ρ of A on σ1 · · ·σn starting with configuration
(i, k′, ℓ′, q0) such that there is a configuration c in ρ with
c = (j, k, ℓ, ς) for some j and some ς ∈ F . (In particular, ς
is not suspended.)

We write JAKT,c for the set of all coordinates selected by A
on T when started from coordinate c.

Definition B.4. Coordinate automaton A expresses co-
ordinate expression ϕ if JϕKT = JAKT , for every tokenized
table T . We say that ϕ is definable by means of a CA if
there exists a CA that expresses ϕ. Similarly, if α is a navi-
gational expression, then A expresses α if α({c}) = JAKT,c,
for every tokenized table T and every c ∈ coords(T).

It should be noted that the fact that a coordinate au-
tomaton can use coordinate expressions as oracles makes
them very powerful. Indeed, they are almost trivially able
to express any coordinate or navigational expression. In
order to obtain Theorem 4.4, however, we will compile co-
ordinate expressions into CA whose oracles are restricted.
By restricted here we mean that the oracles are of a differ-
ent level than coordinate or navigational expressions that

8Here, we tacitly make the convention that 〈new row〉events
do not corresponds to any cell, so σi is an event of the form
〈cell Γ〉.

are being expressed. The level intuitively corresponds to
the maximum nesting level of coordinate and navigational
expressions. The formal definition is as follows.

lvl(a) = 0

lvl(root) = 0

lvl(true) = 0

lvl(ϕ ∧ ψ) = max(lvl(ϕ), lvl(ψ))

lvl(ϕ ∨ ψ) = max(lvl(ϕ), lvl(ψ))

lvl(¬ϕ) = lvl(ϕ)

lvl(α(ϕ)) = 1 + max(lvl(α), lvl(ϕ))

lvl(ε) = 0

lvl(down) = 0

lvl(right) = 0

lvl([ϕ]) = 1 + lvl(ϕ)

lvl(α · β) = max(lvl(α), lvl(β))

lvl(α+ β) = max(lvl(α), lvl(β))

lvl(α∗) = lvl(α)

To illustrate, lvl(down · right∗) = 0, lvl([a] · right) = 1, and
lvl(right(a ∧ b)) = 1.

Define the level of a CA to be the maximum level of any
coordinate expression occurring in it. We now establish a
number of technical lemmas that relate CA to coordinate
and navigational expressions.

Lemma B.5. Every forward navigational expression α is
definable by means of a CA of level max(0, lvl(α)− 1).

Proof. We construct, by induction on α, a CA A that
expresses α and is of level at most lvl(α)− 1. The construc-
tion is essentially the same as the Thompson construction for
transforming regular expressions into finite state automata.

• If α = ε, then A is the CA with one state, which is
both initial and final, and which does not have any
transitions.

• If α = down, then A is the CA with states q and q′,
where q is initial and q′ is final, with the single transi-
tion (q, down, q′).

• If α = right, then A is the CA with states q and q′,
where q is initial and q′ is final, with the single transi-
tion (q, right, q′).

• If α = [ϕ], then A is the CA with states q and q′ where
q is initial and q′ is final, with the single transition
(q, [ϕ], q′).

• If α = α1 · α2, then let A1 be the CA constructed
by induction for α1, and A2 the CA constructed by
induction for α2. Take A = A1 · A2, the CA obtained
by the usual concatenation construction on A1 with
A2. (That is, we take the disjoint union of A1 and
A2, renaming states where necessary, and link the final
states of A1 to the initial state of A2 by means of an
ε-transition. The initial state is the initial state of A1;
the final states are the final states of A2.)

• If α = α1 + α2, then let A1 be the automaton con-
structed by induction for α1 and A2 the automaton

constructed for α2. Then take A to A1 + A2, the au-
tomaton obtained by performing the usual union con-
struction on automata. (Take their disjoin union, re-
naming states where necessary, add a new initial state
and add epsilon transition from this state to the ini-
tial states of B1 and B2, respectively. The final states
consists of the final states of B1 and B2.)

• If α = β∗, then let B be the automaton created for β.
Let A be the automaton we obtain by adding an ε-loop
from the final states of B to its initial state.

In all cases, it is now routine to check that A defines α and
that lvl(A) ≤ max(0, lvl(α)− 1).

Lemma B.6. Every forward coordinate expression of the
form α(ϕ) is definable by means of a CA of level at most
lvl(α(ϕ))− 1.

Proof. Observe that α(ϕ) is equivalent to β(root) where
β is (right+down)∗ · [ϕ] ·α. By Lemma B.5, there exist a CA
A defining β of level lvl(β) − 1 = max(lvl(ϕ) + 1, lvl(α)) −
1 = max(lvl(ϕ), lvl(α) − 1) ≤ lvl(α(ϕ)) − 1. Now observe
that, since α(ϕ) ≡ β(root), it immediately follows that A
defines α(ϕ). (Recall that a CA expresses a CA if it gives
the same result when evaluation starts from root coordinate
(1,1).)

Lemma B.7. Every forward coordinate expression is de-
finable by a CA of the same level.

Proof. Note that every forward coordinate expression ϕ
is equivalent to β(root) where β = (right + down)∗ · [ϕ]).
By Lemma B.5, there exists a CA A defining β of level
lvl(β) − 1 = lvl(ϕ). Now observe that, since ϕ ≡ β(root),
it immediately follows that A defines ϕ. (Recall that a CA
expresses a CA if it gives the same result when evaluation
starts from root coordinate (1,1).)

Convention. In what follows, by Turing Machine we
understand a Turing Machine with a read-only input tape,
a read-write work tape, and a write-only output tape where
the cursor on the input tape can only advance to the right
(never go left). We say that Turing machine M implements
CA A if, for every tokenized table T of dimension n×m and
event stream s = σ1 · · ·σk of T it is the case thatM outputs
on its output tape the coordinates of the cells selected by A
on σ.

Proposition B.8. For every CA A there exists a Tur-
ing Machine M that implements A and that uses at most
O(m log(m)+ log(n)) space on its work tape, where m is the
number of columns and n is the number of rows in the input
table event stream.

Proof. Let A = (Q, q0, F, δ). Let Ω be the set of all
oracles used in transitions of A, i.e., Ω = {ϕ | (q, [ϕ], q′) ∈
∆, q, q′ ∈ Q}. We construct M by induction on the level λ
of A.

Base case. If the level λ of A is 0, then M operates
as follows. It processes the event stream on its input tape
from left to right, one event at a time, starting at the first
event. During the processing it maintains on its work tape a
tuple (k, ℓ,Act ,Susp,Φ), where (k, ℓ) is the coordinate cor-
responding to the current event being processed, Act is the
set of all active states that A can be in any run of A af-
ter having processed the events so far, Susp is the set of all

suspended states that A can be in in any run after having
processed the events so far, and Φ is the set of all oracles
in Ω that select the current coordinate (k, ℓ). As such, M
simulates all possible runs of A on the input, similarly to
how one normally simulates a non-deterministic finite state
automaton by tracking all possible runs at once.

In particular, M starts with the tuple (1, 0, {q0}, ∅, ∅) on
its work tape before processing any event. When processing
the next event,M checks whether this is of the form 〈cell Γ〉
or 〈new row〉. If it is of the form 〈cell Γ〉 then it:
1) Increments ℓ;
2) Computes Φ for the new coordinate (k, ℓ). Note that this

can be done using only the information in Γ (the tokens
of the current event) and the coordinate (k, ℓ). Indeed:
since all oracles ϕ ∈ Ω are forward and level 0, they
cannot contain subexpressions of the form 〈α〉 or α(ψ).
Therefore, each such ϕ is a boolean combinations of lit-
erals, where each literal is either (1) a token a, (2) the
constant true, or (3) the root coordinate root. Checking
(2) is trivial, whereas checking (1) amounts to checking
whether a ∈ Γ and (3) amounts to comparing the coor-
dinate (k, ℓ) with (1,1).

3) It replaces Act by {q′ | q ∈ Act , (q, right, q′) ∈ δ} ∪ {q |
q : ℓ ∈ Susp}. It then adds to Act all states p that can be
reached from a state in this new Act by traversing only
ε-transitions or [ϕ]-transitions, with ϕ ∈ Φ.

4) Finally, it updates Susp to

{q′ : ℓ ∈ Q | q ∈ Act , (q, down, q′) ∈ ∆}.

If the current event is 〈new row〉 then it :
1) increments k and resets ℓ to 1;
2) moves to the next event on the input tape, which must

be of the form 〈cell Γ〉;9

3) Computes Φ for the new coordinate (k, ℓ).
4) Replaces Act by {q′ | q ∈ Act , (q, 〈new row〉, q′) ∈ δ} ∪

{q′ | q′ : 1 ∈ Susp}. It then adds to Act all states p that
can be reached from a state in this new Act by traversing
only ε-transitions or [ϕ]-transitions, with ϕ ∈ Φ.

5) Finally, it updates Susp to

{q′ : ℓ ∈ Q | q ∈ Act , (q, down, q′) ∈ ∆}.

After updating (k, ℓ,Act , susp,Φ), M checks if Act ∩F 6=
∅. If so, it outputs (k, ℓ).

Observe that the space required by M is:

• log(n) + log(m) bits to store the coordinate (k, ℓ);

• at most |Q| bits for storing Act ;

• at most |Q|m log(m) bits for storing Susp;

• at most |Ω| bits for storing Φ

Hence, since |Q| and |Ω| are constant, M runs in space
O(m log(m) + log(n)), as desired.

Induction step. If the level λ of A is > 0, then let N be
the set of all coordinate expressions of the form α(ϕ) that
occur as a subexpression of some oracle in Ω. By definition,
each of these α(ϕ) is of level at most λ. By Lemma B.6,
there hence exists for each such α(ϕ) a CA Aα(ϕ) of level at
most λ−1 that expresses it. By induction hypothesis, there
hence exists, for each α(ϕ) ∈ N , a Turing Machine Mα(ϕ)

that implements α(ϕ) in space O(m log(m) + log(n)).
We then construct the Turing MachineM for A as follows.

For ease of exposition, M will have multiple (but a fixed

9since we assume that all tables have at least one column.

number of) work tapes. Since each of these will use only
O(m log(m)+log(n)) cells, it is standard to transformM in a
single-tape Turing Machine that runs in space O(m log(m)+
log(n)).

In particular,M has a |N |+1 work tapes: a principal work
tape and an auxiliary work tape for each α(ϕ) ∈ N . During
processing, M simulates A on its principal work tape, and,
in parallel, the Turing Machine for Mα(ϕ) on the auxiliary
tape for α(ϕ). During the simulation of Mα(ϕ) we take care
to never construct any output, but merely checks whether
the current cell on the input tape should be output according
to Mα(ϕ).

The simulation of A on its principal work tape happens
in the exact same way as for the case where λ = 0. That is,
we maintains a tuple (k, ℓ,Act ,Susp,Φ) for A that simulates
all possible runs of A. The only difference is that when we
update this tuple in response to reading a new event from
the input, we first update all the auxiliary work tapes, and
then compute the set Φ ⊆ Ω of all of A’s oracles that select
the current cell (k, ℓ) as follows.

Since each ψ ∈ Ω is forward, each ψ is a boolean com-
bination of literals, where each literal is either (1) a with
a ∈ ∆; (2) true; (3) root; or (4) α(ϕ). Cases (1)–(3) can be
checked as before. We can check whether current coordinate
(k, ℓ) is selected by α(ϕ) simply by looking at the simula-
tion of Mα(ϕ) on the work tape for α(ϕ) and verify whether
Mα(ϕ) would output the current coordinate. As such, we
can easily compute at any given instant whether the current
coordinate is selected by ψ.

As before, after the update of (k, ℓ,Act ,Susp, φ),M checks
whether Act ∩ F 6= ∅ and, if so, writes (k, ℓ) on its output
tape.

Now note that, as before, M uses O(m log(m) + log(n))
space on its principal work tape, and (by induction hypothe-
sis) O(m log(m)+log(n)) on each of its auxiliary work tapes.
It hence uses O(m log(m) + log(n)) space in total, as de-
sired.

From this, we derive Theorem 4.4 as follows.

Proof of Theorem 4.4. Let R be a tabular schema, i.e.
a set of rules of the form ϕ→ e with ϕ a coordinate expres-
sion and e a content expression.

By Lemma B.7 every forward coordinate expression can
be expressed by means of a CA which, by Proposition B.8,
can be evaluated by a Turing Machine in space O(m log(m)+
log(n)), where m is the number of columns in the input, and
n the number of rows.

From this, we construct a Turing Machine M that vali-
dates its input event stream w.r.t. R as follows. M has a
fixed number of work tapes. In particular, for each coordi-
nate expression ϕ serving as the left-hand side of a rule in R,
M has one tape on which it simulates the Turing Machine
that evaluates ϕ. Here, M prevents any output that may be
generated by the Turing Machine for ϕ; but records when
this machine would be doing so.

All of these left-hand-sides are simulated in parallel upon
reading the event stream. In addition, for each right-hand
side c, M has an auxiliary tape on which it simulates a finite
state automaton for c. For each rule ϕ → c, and in each
position in the event stream of the form 〈cell Γ〉, whenever
it finds that ϕ would select the current cell, M simulates
reading Γ in the NFA for c: it proceeds from the current
state set for c according to all τ ∈ Γ.

Under the row-based semantics, whenever we encounter
a 〈new row〉, each c must be in a finite state, otherwise the
input is invalid w.r.t. R. Whenever we see 〈new row〉, we
move each of the NFAs for c back to their initial state.

Under the region-base semantics, each c has to be in a
final state at the end of the input (and we never need to
move c back to its initial state upon 〈new row〉).

C. PROOF OF THEOREM 4.6
Theorem 4.6. Guarded forward core-Sculpt schemas

are strongly streamable.

Proof sketch. We can use the algorithm of Theorem 4.4
for weak streamability with the additional observation that,
for guarded schemas, the columns that need to be remem-
bered when going from one row to the next are independent
of the width of the table T . More precisely, when going from
one row to the next, we can store for each subexpression ϕ
of a region selection expression a set of pairs Pϕ of the form
(c, e) where c is a column number and e ∈ {=,≥}. The se-
mantics is that, on the next row r, we need to continue the
evaluation of this subexpression in the cells {(r, c) | (c,=) ∈
Pϕ} ∪ {(r, i) | (c,≥) ∈ Pϕ and i ≥ c}. The size of each such

set Pϕ can be bounded by 2O(|ϕ|), which is formalized in
Lemma C.1.

For a coordinate expression ϕ, table T , and a row number
r we denote by JϕKT,r the cells of JϕKT in row r. That is,
JϕKT,r = JϕKT ∩ {(r, k) | k ∈ N}.

In the next lemma, a right-open interval (on a row r) is
a set of cells S for which there exists a k ∈ N such that
S = {(r, i) | i ≥ k}.

Lemma C.1. (a) If a coordinate expression ϕ is row-guarded
then, for each table T and row coordinate r, the set
JϕKT,r consists of 2O(|ϕ|) cells plus, optionally, a right-
open interval on r.

(b) If a coordinate expression ϕ is guarded then, for each
table T and row coordinate r, the set Jdown∗(ϕ)KT,r con-

sists of 2O(|ϕ|) cells plus, optionally, a right-open inter-
val on r.

Proof. The lemma is proved by a straightforward induc-
tion on forward coordinate and navigational expressions. We
provide it in full detail for the sake of completeness.

For a coordinate expression ϕ and a row r, we denote by
|JϕKr| the number of coordinates of JϕK in row r, that is, the
number of elements in {(r, k) ∈ JϕK | k ∈ N} if it is finite,
and ∞ otherwise.
(a) We prove this case by induction on the definition of
guardedness in forward coordinate expressions. The induc-
tion base cases for coordinate expressions ϕ are ϕ = a,
ϕ = root, ϕ = true, and ϕ = right∗(ψ).

In the first case, if ϕ = a is row-guarded then it only
appears at most once per row by definition of the predicate
unique-per-row. Therefore, for each row r, |JϕKr| ≤ 1 and
(a) is fulfilled.

In the second case, if ϕ = root, then JϕK only contains
a single cell. Again, for each row r, |JϕKr| ≤ 1 and (a) is
fulfilled.

In the third case, if ϕ = true, then, for each row r, |JϕKr| =
∞. Moreover, JϕKr = {(r, k) | k ≥ 1}, which is a right-open
interval. Again, (a) is fulfilled.

Fourth, when ϕ = right∗(ψ), we have that ψ is a boolean
combination of root, true, and tokens. Therefore, it can be
decided whether a cell c is in JψK by looking at the predicates
of c and by testing whether it is cell (1, 1) or not. Such
tests can be made by inspecting c alone. For each row r,
we either have that JψKr is empty or not. If it is empty,
then JϕKr is also empty and (a) follows. If it is non-empty,
then JϕKr = {(r, j) | j ≥ i}, where i is minimal such that
(r, i) ∈ JψKr. Since this is a right-open interval, (a) follows.

For the inductive step, we consider the cases ϕ = ψ1 ∨ψ2,
ϕ = ψ1 ∧ ψ2, ϕ = ε(ψ), ϕ = down(ψ), ϕ = right(ψ), ϕ =
down(α(ψ)), ϕ = right(α(ψ)), and ϕ = (α+ β)(ψ).

In the first case, for each row r, we have that JϕKr =
Jψ1Kr ∪ Jψ2Kr. Here (a) follows immediately from the induc-
tive hypothesis and the observation that the union of two
right-open intervals is again a right-open interval.

The second case is analogous to the first, but we observe
that also the intersection of two right-open intervals is again
a right-open interval.

Third, when ϕ = ε(ψ) case (a) follows immediately by
induction and the observation that Jε(ψ)Kr = JψKr for each
r.

Cases four to seven are similar to case three. For example,
when ϕ = down(ψ), then, for r = 1 we have JϕKr = ∅ and
for r > 1 we have JϕKr = {(i, r) | (i, r−1) ∈ JψKr−1}. Again
(a) follows by induction.

In the last case we have ϕ = (α + β)(ψ) and we already
know that α(ψ) and β(ψ) are row-guarded. Here, we again
have that JϕKr = Jα(ψ)Kr ∪ Jβ(ψ)Kr. Here, (a) follows by
induction in a similar way as the first inductive case. How-
ever, we need to take a little bit more care about the finite
part of JϕKr. Assume w.l.o.g. that |α| ≥ |β| (if not, the roles
of α and β can be interchanged in the following). Then, the

finite part of JϕKr consists of 2O(|α|+|ψ|) + 2O(|β|+|ψ|) cells,

which is at most 2 · 2O(|α|+|ψ|) cells and which, in turn, is
bounded from above by 2O(|ϕ|) cells, which also proves (a)
in this case.

This concludes the proof of Lemma C.1(a).
(b) We again proceed by induction on the definition of guard-
edness in forward coordinate expressions. The induction
base cases for coordinate expressions ϕ are ϕ = a, ϕ = root,
ϕ = true, and ϕ = right∗(ψ).

In the first case, if ϕ = a is guarded then it only appears at
most once in the table by definition of the predicate unique.
If JϕK is empty, then down∗(ϕ) is empty in which case (b) is
fulfilled. If not, we have that JϕK = {(i, j)} for some i and
j. Here, we have that Jdown∗(ϕ)K = {(k, j) | k ≥ i}, which
fulfils the conditions of case (b).

In the second case, if ϕ = root, then JϕK only contains a
single cell. Here, we have that Jdown∗(ϕ)K = {(k, 1) | k ≥ 1},
which fulfils (b).

In the third case, if ϕ = true, then, Jdown∗(ϕ)K contains
every cell in the table. Clearly, this is a right-open interval
for each row and (b) is fulfilled.

In the fourth case, if ϕ = right∗(ψ) we can decide for
each individual cell c whether c ∈ JϕK by only inspecting
c, analogously as in (a). Also analogously, For each row r,
we either have that JϕKr is empty or a right-open interval
of the form JϕKr = {(r, j) | j ≥ i}, where i is minimal such
that (r, i) ∈ JψKr. Therefore, Jdown∗(ϕ)Kr is also empty or
a right-open interval on each row r.

For the inductive step, we consider the cases ϕ = ψ1 ∨ψ2,
ϕ = ψ1 ∧ ψ2, ϕ = ε(ψ), ϕ = down(ψ), ϕ = right(ψ), ϕ =

down(α(ψ)), ϕ = right(α(ψ)), ϕ = (α+ β)(ψ), ϕ = down∗ ·
α(ψ), and ϕ = right∗ · α(ψ).

In the first case, we have that down∗(ψ1) and down∗(ψ2)
are guarded by induction, so they fulfil condition (b). Fur-
thermore, we have that Jdown∗(ψ1 ∨ ψ2)K = Jdown∗(ψ1)K ∪
Jdown∗(ψ2)K. This means that, for each row r, we also have
that JϕKr = Jψ1Kr ∪ Jψ2Kr. Here (b) follows immediately
from the inductive hypothesis and the observation that the
union of two right-open intervals is again a right-open inter-
val.

The second case is analogous to the first, but takes inter-
sections of right-open intervals instead of unions.

Case three, where ϕ = ε(ψ), (b) follows immediately from
the guardedness of ψ and the observation that Jε(ψ)Kr =
JψKr for each r.

Cases four to eight are similar to case three. In case eight,
where ϕ = (α + β)(ψ), we can bound the number of cells
per row of Jdown∗(α+β)(ψ)K that are not in the right-open
interval in exactly the same way as for the analogous case
in (a).

In case nine, we have that ϕ = down∗ · α(ψ) and α(ψ) is
guarded. This case immediately follows from the induction
hypothesis since Jdown∗ϕK = Jdown∗down∗α(ψ)K = Jdown∗α(ψ)K.

Finally, in the last case, we have ϕ = right∗ · α(ψ), where
α(ψ) is row-guarded. Due to the row-guardedness of α(ψ),

we know by (a) that Jα(ψ)K for each row r consists of 2O(|ϕ|)

cells in r plus, optionally, a right-open interval on r. There-
fore, right∗ · α(ψ) on a row r is either empty, or a right-
open interval. From this, we immediately have that also
down∗right∗α(ψ), on each row r, is either empty or a right-
open interval. This concludes the proof of Lemma C.1 (b).

