
Efficient Incremental Evaluation of
Succinct Regular Expressions

Henrik Björklund
Umeå University

Wim Martens
∗

Universität Bayreuth
Thomas Timm

Universität Bayreuth

ABSTRACT
Regular expressions are omnipresent in database applica-
tions. They form the structural core of schema languages
for XML, they are a fundamental ingredient for navigational
queries in graph databases, and are being considered in lan-
guages for upcoming technologies such as schema- and trans-
formation languages for tabular data on the Web. In this
paper we study the usage and effectiveness of the counting
operator (or: limited repetition) in regular expressions. The
counting operator is a popular extension which is part of
the POSIX standard and therefore also present in regular
expressions in grep, Java, Python, Perl, and Ruby. In a
database context, expressions with counting appear in XML
Schema and languages for querying graphs such as SPARQL
1.1 and Cypher.

We first present a practical study that suggests that coun-
ters are extensively used in practice. We then investigate
evaluation methods for such expressions and develop a new
algorithm for efficient incremental evaluation. Finally, we
conduct an extensive benchmark study that shows that ex-
ploiting counting operators can lead to speed-ups of several
orders of magnitude in a wide range of settings: normal and
incremental evaluation on synthetic and real expressions.

1. INTRODUCTION
Regular expressions are omnipresent in programming lan-

guages, shell tools, and database query- and schema lan-
guages. In the context of XML, DTDs and XML Schema def-
initions use regular expressions for defining content models
and XPath uses regular-expression-like constructs for navi-
gation in trees. In the context of graph-structured data and
RDF, regular expressions have been studied under the name
regular path queries (RPQs) for decades and have recently
been integrated in popular graph query languages such as
SPARQL [16] and Cypher [24]. Currently, they are being

∗Supported by grant number MA 4938/2–1 from the
Deutsche Forschungsgemeinschaft (Emmy Noether Nach-
wuchsgruppe).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org. CIKM’15, October 19
- 23, 2015, Melbourne, VIC, Australia.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3794-6/15/10 ...$15.00.
DOI: http://dx.doi.org/10.1145/2806416.2806434 .

considered as a basic building block for processing tabular
data on the Web [22].

We investigate the usage and effectiveness of regular ex-
pressions with the counter operator, also known as the lim-
ited repetition operator. This operator makes some expres-
sions exponentially more succinct and permits a subexpres-
sion to be matched anywhere between a given minimum and
maximum number of times. For example, the expression
(ab){9,20} (in POSIX syntax) matches all words that con-
sist of at least nine and at most twenty repetitions of ab.
Expressions with counting are relevant to several authorita-
tive languages for processing XML and RDF. In particular,
they form the structural core of XML Schema Definitions,1

where they are used to define content models [10]. In the
context of RDF and graph query languages, counting op-
erators are used in Cypher’s path patterns [24] and they
have been considered in SPARQL 1.1 property paths [16].
However, the effect of counters in regular expressions is not
yet fully understood, which is why they were removed from
SPARQL 1.1. For this reason we want to contribute to the
understanding of such succinct regular expressions and show
that (1) counting operators are widely used in practice and
therefore seem desirable to practitioners and (2) can be ex-
ploited to develop highly efficient evaluation algorithms.

We start with a practical study that investigates how
counters are used in regular expressions in practice. We in-
vestigate RegExLib, the main regular expression repository
available on the Web [26]; Snort, a system for detecting net-
work intrusion [28], and a large corpus of XML Schema defi-
nitions which we harvested from the Web. The data suggests
that counters are used often and that counter values can be-
come rather large. For example, in XML Schema we found
values up to ten million. We also discovered that schemas
of companies such as Amazon, Ebay, Microsoft, Oracle, and
Paypal use expressions with counting.

We then turn to efficient evaluation of expressions. The
“standard” evaluation problem for expressions is defined as:
Given an expression e and a word w, can e be matched onto
w? However, many settings in databases call for a more re-
fined version of evaluation. For example, the word w is usu-
ally not static and is subject to updates. Examples of such
settings are (a) schema constraints and integrity constraints
that safeguard the validity of the data, and (b) trigger condi-
tions that continuously monitor whether some action needs
to be performed. In settings like these, one would like to
perform incremental evaluation. Here, we start with a word

1The counting operators are called minOccurs/maxOccurs
in XML Schema.



w and an expression e that matches w, and then the word w
is updated (see, e.g., [2, 3, 7]). We want to find out quickly
if the expression still matches the updated word u(w). In
order to do so, incremental evaluation algorithms may store
auxiliary data. Naturally, we are interested in striking a
good balance between the speed of handling the update and
the size of the auxiliary data.

We develop an incremental evaluation algorithm for regu-
lar expressions with counting and show that it is possible to
avoid the usual exponential translation of such expressions
to (standard) finite automata which is used by e.g., current
implementations of tools like grep.

We then perform an extensive experimental study that
evaluates the efficiency of our evaluation algorithms on syn-
thetic and real-world expressions. As expected, avoiding the
exponential blow-up to automata leads to significant speed-
ups. When expressions have large counter values, we see
speed-ups of several orders of magnitude in every setting
we investigate. We look into both normal and incremental
evaluation, on both synthetic and real-world expressions.

Related work. Although incremental evaluation of queries
and automata has attracted much attention, this is the first
work on incremental evaluation of regular expressions with
counters, to the best of our knowledge. In the context of
databases, the most well studied problem in this context
is incremental view maintenance. However, in contrast to
that problem, where one aims at maintaining the (possibly
large) output of a query, we only want to decide whether a
query or a pattern can be matched or not. In this sense,
the present work is much closer to incremental evaluation
of XML schemas [2, 3] and the matching of XPath patterns
[7]; a line of work going back to [25].

Efficient evaluation of regular expressions is also heavily
investigated in deep packet inspection in networking (see,
e.g., [4, 5]). In this context, fast evaluation of regular ex-
pressions with counting has been investigated by Smith et
al. [27]. While this line of work bears similarities to ours,
the focus is quite different. Most prominently, the focus is
on evaluating the expressions on a data stream. Our setting
is more general because we allow insertions and deletions in
arbitrary positions of the word, while a data stream is es-
sentially a word which only receives insertions at the back.

Ghelli et al. [13] study fast evaluation for a class of reg-
ular expression with counting and interleaving. In the ex-
pressions in their study, each alphabet symbol can appear
at most once and iteration (counters and Kleene star) can
only be applied directly to alphabet symbols. They develop
a linear-time algorithm but it does not work for all regular
languages, whereas ours does. It would be interesting to in-
vestigate if the advantages of both settings can be combined.
Another setting where regular expressions are augmented
with intervals was studied by Nakayama et al. [23], who also
provide an efficient evaluation algorithm. There, however,
the intervals do not signify repetition, but rather duration
and the strings considered are ones where each letter has an
assigned duration. Our incremental evaluation algorithm is
designed for automata with counters, see, e.g., [18, 9].

2. EXPRESSIONS WITH COUNTING
The regular expressions over a set of symbols Σ, denoted

by RE, are defined as follows: ε, ∅, and every Σ-symbol is
in RE; and whenever r and s are in RE, then so are (rs),

(r+s), and (r∗). For readability, we omit parentheses where
appropriate. The language defined by an expression r is de-
noted by L(r) and defined as usual. We denote the regular
expressions with counters as RE# and define them as fol-
lows. Every RE-expression is an RE#-expression. Further-
more, when r is an RE#-expression then so is rk,` for k ∈ N
and ` ∈ N+ ∪ {∞} with k ≤ `. Here, N+ denotes N \ {0}.
Furthermore, L(rk,`) =

⋃`
i=k(L(r))i, where (L(r))i denotes

the i-fold concatenation (or repetition) of L(r). Notice that
counters are just syntactic sugar. An expression r ∈ RE#

can always be converted to an equivalent RE by “unfolding”
the counters. The blow-up is worst-case exponential.

3. A PRACTICAL STUDY
We conducted an extensive practical study to get an idea

of how counters are used in regular expressions. We investi-
gated expressions in the RegExLib repository [26], in Snort
rules [28], and conducted a thorough search for expressions
with counters in XML Schemas on the Web.

In the remainder of this section, we say that an expression
uses non-trivial counters if it has a subexpression of the form
rk,` in which one of k or ` is at least two, i.e., in N− {0, 1}.

In a nutshell, we discovered that RegExLib and Snort
rules have a surprisingly large fraction (>50%) of expres-
sions with non-trivial counters. RegExLib and Snort have
expressions with fairly large counter values (between 1K and
10K), but the largest counters we found occurred in XML
Schemas and were up to ten million.

3.1 RegExLib
The RegExLib.com library describes itself as the Inter-

net’s first Regular Expression Library [26]. It has a corpus
of expressions for recognising URIs, markup code, pieces of
Java code, SQL queries, spam, etc. We crawled the expres-
sions of the library and obtained a set of 3024 expressions
after removing duplicates and expressions that could not be
parsed by Bart Kiers’ PCREParser available at Github.2

Of these 3024 expressions, 1705 (about 56.3%) use non-
trivial counters. This seems to indicate that counters are
widely used in practice. We investigated the size of the
counters and the nesting of non-trivial counters so that we
could get an idea of how large equivalent expressions without
counters would become. This estimates the internal blow-up
that happens in tools like grep. For subexpressions of the
form rk,` in the library, we found values of k ranging from
0 to 255 and values of ` ranging from 1 to 1500.

However, some expressions use nesting of counters, which
lead to even larger minimal equivalent REs. We discovered
that 86 expressions in the corpus use nesting of non-trivial
counters. Several expressions in the corpus contain nested
counters of the form (r3(r2(rk1,`11 ))k2,`2)k3,`3 where `1 = 12,
`2 = 255, and `3 = 255. The smallest equivalent RE would
require at least 780,000 symbols. Another example uses a
four-fold nesting of a counter 9, leading to equivalent REs
of at least 10,000 symbols.

In this corpus, we see that expressions with non-trivial
counters are used quite often, but often the values of the
counters are also rather small. It is unclear whether this is
because users do not need large counters or because there
are no adequate tools for dealing with expressions involving

2https://github.com/bkiers/PCREParser



large counters. (On our own computers, tools such as grep
complain quickly when counters grow beyond 1000.)

The majority of the expressions in the corpus have simple
parse trees. Most expressions are of the form α1 · · ·αm,
where each αi is of the form (a1 + · · · + an)k,` — possibly
with n = 1, (k, `) = (1, 1) or (k, `) = (0,∞). We refer to
such expressions as CHAINs. Therefore, abc is a CHAIN
and so is (A + B + C)3,4(0 + 1)∗. However, (abc)1,2 is not,
because it has a concatenation nested within the counter.3

We classify 2217 expressions (73.3%) from this corpus as
CHAINs. Notice that the remaining expressions also contain
those that use regex-specific features (e.g., lookahead) or
tests beyond regular languages (e.g., backreferences), etc.

3.2 Snort
Snort [28] is an open source system for preventing network

intrusion and, according to its web site, the most widely de-
ployed IDS/IPS technology worldwide. It has a set of freely
available community rules, some of which contain regular ex-
pressions. After distilling the expressions from the rules and
removing duplicates, we obtained a set of 458 expressions,
of which 270 (about 58.9%) use non-trivial counters. For
subexpressions of the form rk,` we found values for k rang-
ing from 0 to 1024 and values for ` ranging from 1 to 1075.
We found only two expressions with nesting of non-trivial
counters.

Equivalent REs for freely available Snort rules therefore
do not become as large as for RegExLib expressions, but
Snort has a larger fraction of expressions with non-trivial
counters. For example, we found 100 expressions with a
three-digit number and 4 with a four-digit number for k.
For `, 102 expressions have a three-digit value and 62 have
a four-digit number. From a structural point of view, the
expressions for Snort seemed to be similar to the ones from
RegExLib. A quick analysis showed that at least 85.1%
are CHAINs. Those that weren’t CHAINs typically used a
feature that we don’t consider here (lookahead in regexes,
for example) or a disjunction of words such as (http+ftp).

3.3 XML Schemas
We conducted a deep and labour-intense search for XML

Schema Definitions (XSDs) on the Web. There have been
studies of regular expressions in schema definitions in the
past [6] but, as far as we know, this is the first study that
looks at counters. We harvested XSDs from the Web by
crawling the maven.org Central Repository and by using the
API of Google’s Custom Search Engine (CSE) [15]. We
chose the Maven Central Repository because it contains
high-quality source code and meta-data for many open source
projects4 and because it showed up very often when we
were manually googling for XSDs. We obtained XSDs from
Maven by recursively crawling its entire directory, down-
loading all .jar files from projects, and extracting the XSDs
from those.

We used Google’s CSE to find results on the entire Web.
We experimented with several search engines (Bing and Ya-
hoo) but Google returned a superset of the results we found
using the alternatives and allowed us to search more pre-
cisely. We used queries of the form

filetype:xsd "maxoccurs=X" (1)

3Chain regular expressions were also studied in [13, 21].
4See http://search.maven.org/#browse

val #exp val #exp val #exp val #exp
2 2893 26 26 80 3 363 3
3 1609 27 5 85 3 365 4
4 433 29 3 87 4 500 9
5 3709 30 65 90 19 768 1
6 115 31 14 96 5 990 9
7 99 32 25 98 5 999 214
8 171 35 21 99 2020 1000 39
9 844 36 3 100 192 1024 1

10 995 38 1 120 6 1536 3
11 27 39 6 127 14 2000 10
12 79 40 16 128 23 3000 1
13 31 45 5 136 2 5000 16
14 15 48 2 146 1 9999 87
15 162 50 101 150 1 20000 3
16 83 51 2 176 1 65025 5
17 9 52 3 192 1 65535 25
18 15 54 3 198 2 65536 17
19 17 59 1 200 26 99999 14
20 303 60 20 250 2 200000 6
21 7 62 6 255 3 999999 24
22 4 63 2 256 19 9999999 2
23 4 64 13 299 15
24 11 66 1 300 4
25 125 67 1 350 6

(a) Non-trivial maxoccurs values in our corpus. Column “val”
states the maxoccurs value; column “#exp” the number of
expressions in which we found the value.

val #exp val #exp val #exp val #exp
2 1099 9 3 19 1 54 3
3 284 10 4 20 24 60 4
4 73 11 9 22 1 85 3
5 24 12 10 23 2 93 1
6 11 13 1 24 3 127 1
7 11 15 8 31 2 365 4
8 9 16 8 51 1

(b) Non-trivial minoccurs values in our corpus. Column “val”
states the minoccurs value; column “#exp” the number of
expressions in which we found the value.

Figure 1: Non-trivial counter values occurring in our corpus.

(and variations thereof) to explicitly search for schemas with
a maxoccurs value of X and

filetype:xsd "maxoccurs=X..Y" (2)
to search for schemas with a maxoccurs value Z such that
X ≤ Z ≤ Y . (Similarly for minoccurs.) Since Google CSE
only allows to process around 100 queries per day, it was
infeasible within our time constraints to conduct a query
of type (1) for each possible counter value. Furthermore, a
single query to Google’s CSE only returns at most 100 links.
We therefore used queries of type (2) mainly for discovering
new values of X that return non-empty results and then use
type (1) to find all results with this new value.

Data Cleaning. We extracted 4808 XSDs from the Maven
Central Repository. Among them, 285 (about 6%) use a
non-trivial counter value. Additionally, through Google we
found 12,211 unique URLs outside Maven Central that match
at least one of the queries of type (1) or (2) above. About
1400 of these URLs did not directly point to an XSD but to
an HTML file that, somewhere, contains a link or path of



links to an XSD. By resolving these links recursively and by
also downloading XSDs that are referenced in other XSDs,
we found 8944 more URLs claiming to point to a file with
.xsd extension. From this data set, we removed everything
that is not a valid XSD. This operation resulted in a total of
3259 unique URLs containing XSDs with non-trivial counter
values that we obtained through Google.

We then removed duplicate files. More precisely, we parsed
all XSDs we found, normalized the whitespace, and removed
files that occurred more than once after this operation. In
total, we obtained 1191 unique, well formed XSD files that
contain non-trivial counter values; 906 through Google and
285 from the Maven Central Repository. This set of XSDs
forms the input of the study that follows.

Description of the Corpus. The 1191 schemas from our
repository contain 9389 regular expressions with non-trivial
counter values. Our repository (raw data and the clean cor-
pus) can be found at http://regx.github.io/.

The distribution of counter values in our corpus is sum-
marized in Fig. 1. Here we present, per possible finite max-
occurs value (Fig. 1a) and minoccurs value (Fig. 1b), the
number of regular expressions in which it was found. The
largest value we found was 9,999,999 and occurred in two
different versions of an XSD from IBM, related to electronic
data interchange for administration, commerce, and trans-
port (EDIFACT).5

Notice that the total sum of count values in Fig. 1 is larger
than 9389, because a single expression can contain multi-
ple occurrences of counters. One example is the expression
(ab2,12)0,65535, which we found in a schema that seems to
be related to the MPEG-7 standard. A brief inspection of
our corpus exposes that several major companies use regu-
lar expressions with non-trivial counters, for example: the
Amazon Simple Storage Service (S3) schema6 (maxoccurs
100), FedEx’s web services7 (maxoccurs 12, 99, 999), Pay-
pal’s WSDL interface8 (maxoccurs 100, 1000), and several
schemas for the MPEG-7 standard9 use maxoccurs values
up to 65636. We note that our corpus by no means contains
all available XSDs on the Web with non-trivial counter val-
ues. Some prominent examples that we did not find auto-
matically can be found in Microsoft’s MSDN library, which
contains schemas with maxoccurs values of, e.g., 50, 100,
256, 1000, and 100,000.10

Structural Analysis. We analyzed the structure of regular
expressions in our corpus, in the same spirit as was done by
Bex et al. [6]. This allows us to compare results with [6],
which was performed a decade ago. Bex et al. observed
that a very large percentage of expressions in practice only
use each alphabet symbol at most once. This observation
still holds: in our corpus, 98% of all regular expressions use

5https://github.com/DFDLSchemas/EDIFACT/raw/master/
EDIFACT-SupplyChain-D03B/EDIFACT-SupplyChain-
Messages-D.03B.xsd. This schema contains other large
values too.
6http://doc.s3.amazonaws.com/2006-03-01/AmazonS3.xsd
7http://www.fedex.com/templates/components/apps/wpor/
secure/downloads/xml/Aug09/Advanced/ShipService v7.xsd
8http://www.paypalobjects.com/wsdl/eBLBaseComponents.xsd
9http://standards.iso.org/ittf/PubliclyAvailableStandards/
MPEG-7 schema files/mpeg7-v2.xsd

10http://msdn.microsoft.com/en-us/library/cc233001.aspx,
http://msdn.microsoft.com/en-us/library/jj583348.aspx,
http://msdn.microsoft.com/en-us/library/gg309601.aspx

depth star counter iteration

0 7333
1 2036 9361 9313
2 19 27 73
3 1 1 3

Figure 2: Star-, counter-, and iteration depth for expressions
in our corpus.

alphabet symbols at most once. A little bit of care is needed
when comparing this number to [6]: In the latter study, non-
trivial counter values in expressions were first rewritten to
trivial ones, e.g., b4,5 was rewritten to bbbbb?. As such, the
expression b4,5 would not be counted as having a single b.
The highest numbers of occurrences for the same symbol in
one expression we found was 200.

When looking at the structural complexity of the expres-
sions in our corpus, we see that they have shallow parse
trees. For computing parse tree depth, we first normalize
expressions by exploiting associativity of disjunction and
concatenation. That is, when we see an expression of the
form ((a+b)+c)+d, we normalize it to a+b+c+d and say
that its parse tree has depth two, rather than four. After
this preprocessing step, 8132 expressions have depth 3; 620
have depth 4; 542 have depth 5; 36 have depth 6; and 59
have depth ranging from 7 to 9.

Next, we looked at the nesting of repetition operators.
Fig. 2 contains the star depth of the expressions in our cor-
pus, i.e., the number of nestings of operators that allow an
unbounded number of repetitions of their associated subex-
pression, i.e., operators of the form k,∞ for some k ∈ N. (So,
both expressions (a0,∞)2,100 and a2,∞ have star depth one.)
Not surprisingly, most expressions do not use any nesting of
such expressions at all. Only nine expressions in our entire
corpus use nesting depth 2 or 3.

Also contained in Fig. 2 is the counter depth of regular
expressions, which is the nesting depth of counters of the
form (k, `) where at least one of k or ` is a natural number
larger than 1. (So, both expressions (a0,∞)2,100 and a2,∞

have counter depth one.)
Finally, we define the iteration depth to be the nesting

depth of any form of iteration, that is stars and counters.
The former of the two aforementioned expressions has it-
eration depth two and the latter has one. Fig. 2 suggests
that expressions with non-trivial counters in XSDs are struc-
turally rather simple. We suspect that this is because highly
complex regular expression in an XSD may indicate that the
design of the underlying XML database is not very elegant.
A closer look at the expressions showed that 8330 expres-
sions from our corpus with non-trivial counter values are
CHAINs, which is about 88.7%. (Within the pool of all
regular expressions we found in schemas, about 86% were
CHAINs.)

4. MEMORY-EFFICIENT AUTOMATA
Most algorithms that process regular expressions with count-

ing (notably, grep and all XML Schema validation tools that
we are aware of) first convert them to ordinary regular ex-
pressions by expanding the counters. Subsequently, these
(already exponentially large) expressions are converted to
finite automata. This exponential blow-up can be avoided
by directly converting the expressions into a much more



q0 qa

qb

a; {cb = 1, cab = 1}; ∅

b; ∅; ∅

b; {cb < 12}; {cb++}

a; {2
≤ cb ≤

12, cab
< 65535};

{reset
(cb),

cab+
+}

Acceptance condition: cab ≤ 65535.

Figure 3: A Counter Automaton for (ab2,12)0,65535.

memory-efficient representation: finite automata with coun-
ters. Such automata have been used and implemented be-
fore, for example in the context of deep packet inspection in
networks [27], where significant improvements in speed and
memory consumption were reported.

We provide a gentle introduction to such automata here
and we compare them to other evaluation algorithms in Sec-
tion 6.1. The performance gain is clear: compared to the
above mentioned naive method for evaluation, we see im-
provements of several orders of magnitude. The differences
for incremental evaluation become even more drastic.

Counter Automata by Example. Counter automata
are a natural representation of expressions with counters
that is easier to deal with in algorithms. We first discuss a
counter automaton by example and explain them more for-
mally next. Figure 3 depicts a counter automaton for the
expression (ab2,12)0,65535, which we found in our practical
study in a schema related to the MPEG-7 standard. An
ordinary non-deterministic finite state automaton for this
expression would require 851955 states. The counter au-
tomaton only has three: a start state q0 and states for each
occurrence of a symbol in the expression – qa for a and qb for
b. (Given a regular expression with counters that has n oc-
currences of symbols, we can always construct an equivalent
counter automaton with n+ 1 states.)

The automaton has two counters: cb, for counting the
number of b’s and cab for counting how many times it has
seen a word that matches ab2,12. Initially, all counters are
set to 1.

The state transitions in the automaton consist of three
ingredients: a symbol, a set of guards, and a set of counter
updates. For example, the transition from q0 to qa reads
symbol a, has guards cb = 1 and cab = 1, and an empty
set of counter updates. So, the transition reads an a-symbol
and can be made when cb = cab = 1. The next interesting
transition is the b-loop on qb. It allows to read a b when
cb < 12, and it increases cb by one. Finally, the transition
from qb to qa reads an a, can be performed if cb is between
2 and 12 and cab < 65535. It increases cab by one and
overwrites cb with 1.

The automaton accepts if it is in an accepting state (dou-
ble circles) and if the acceptance condition holds, that is,
cab is at most 65535. It is easy to see that the automaton
accepts precisely the words that match (ab2,12)0,65535.

Formal Definition. We now define counter automata for-
mally. Their definition is rather technical but essentially
follow the lines of the example above. Readers who already
understand the main idea can safely skip this definition.

Formally, counter automata are an extension of non-de-
terministic finite automata, which we briefly recall here for
the sake of clarifying notation. A non-deterministic finite
automaton (NFA) is a tuple N = (Q,Σ, δ, I, F ), where Q
denotes its set of states, Σ its alphabet, I its set of initial
states, and F its set of final or accepting states. The transi-
tion rules δ are of the form q1

a→ q2, indicating that reading
an a ∈ Σ in state q1 can bring the automaton to state q2.
Acceptance is defined in the standard manner. We denote
by L(N) the set of words accepted by N .

Counter automata extend NFAs with counter variables or
counters. We follow [11] in their definition. Let C be a finite
set of counter variables and α : C → N be a function assign-
ing a value to each counter variable. A guard over C is a
function φ : C → (N×N∞), where N∞ denotes N∪{∞}. Fur-
thermore, we will require that, if φ(c) = (k, `), then k ≤ `.
The semantics of a guard is defined as follows. We say that
a counter assignment α satisfies guard φ if, for every c ∈ C,
whenever φ(c) = (k, `), then k ≤ α(c) ≤ `. Intuitively, this
means that a guard defines, for each counter c, a minimum
allowed value k and a maximum allowed value `. As such,
guards are used in counter automata to model the upper and
lower bounds of counters in regular expressions. By α |= φ
we denote that the counter assignment α satisfies guard φ.
By Guards(C) we denote the set of guards over C.

A basic update over C is a partial function π : C → {reset,
increment }. When π(c) = reset, this means that c should
be reset to one and when π(c) = increment it means that c
should be incremented by one. (If π is undefined on c, we
leave c unchanged.) By Basic-Up(C) we denote the set of
all basic updates over C.

Definition 4.1. A (non-deterministic) automaton with
counters (NFA#) is a 6-tuple A = (Q, q0, C, δ, F, τ) where

• Q is the finite set of states;

• q0 ∈ Q is the initial state;

• C is the finite set of counter variables;

• δ ⊆ Q × Σ × Guards(C) × Basic-Up(C) × Q is the
transition relation;

• F : Q→ Guards(C) is the acceptance function; and

• τ : C → N assigns a maximum value to every counter
variable.

Intuitively, an NFA# A can make a transition (q, a, φ, π, q′) ∈
δ whenever it is in state q, reads label a, and the guard φ
is satisfied by the current values of the counter variables. It
then updates the counter variables according to the update
π (in a way which we explain next) and moves into state
q′. To explain the update mechanism formally, we use con-
figurations. A configuration is a pair (q, α) where q ∈ Q
is the current state and α : C → N is the function map-
ping counter variables to their current value. An update π
transforms α into α′ by setting α′(c) := 1 whenever π(c) =
reset and α′(c) := α(c) + 1 whenever π(c) = increment. We
sometimes abuse notation and denote α′ by π(α).

Let αinit be the function mapping every counter vari-
able to 1. The initial configuration γ0 is (q0, αinit). A
configuration (q, α) is final if α |= F (q). A configuration
γ′ = (q′, α′) immediately follows a configuration γ = (q, α)
by reading a ∈ Σ, denoted γ →a γ

′, if there exists (q, a, φ, π,
q′) ∈ δ with α |= φ and α′ = π(α).

For a word w = a1 · · · an and two configurations γ and
γ′, we denote by γ ⇒w γ′ that γ →a1 · · · →an γ′. A



configuration γ is reachable if there exists a word w such
that γ0 ⇒w γ. A word w is accepted by A if γ0 ⇒w γf
where γf is a final configuration. We denote by L(A) the
set of words accepted by A.

The size of a transition θ or acceptance condition F (q) is
the total number of occurrences of alphabet symbols, states,
counter variables, and Boolean connectives which occur in
it, plus the size of the binary representation of each integer
occcurring in it. In the same spirit, the size of A, denoted
by |A|, is |Q|+

∑
q∈Q log τ(q) + |F (q)|+

∑
θ∈δ |θ|.

It is known that RE# expressions can be efficiently trans-
lated into equivalent NFA#s by applying a natural extension
of the known Glushkov construction [11, 29].

5. INCREMENTAL EVALUATION
We present a new incremental evaluation algorithm for

regular expressions with counters. To the best of our knowl-
edge, this is the first such algorithm that avoids an exponen-
tial translation of the expressions. In Section 6 we see that
incremental evaluation outperforms evaluation from scratch
by factors up to three orders of magnitude and, shifting to
automata with counters improves up to another three or-
ders of magnitude. In fact, such speed-ups can be expected:
incremental evaluation is an exponential improvement over
evaluation from scratch; and doing it with counter automata
is an yet another exponential improvement over doing it with
ordinary automata.

As a warm-up, we recall how to incrementally evaluate or-
dinary regular expressions on words. The technique was first
described by Patnaik and Immerman [25] and was studied
in more detail and implemented by Balmin et al. [2].

Incremental Evaluation of REs and NFAs. Assume
that we have a word w = a1 · · · an ∈ Σ∗ and a regular ex-
pression r and we want to incrementally maintain whether
w ∈ L(r). The incremental evaluation problem consists of
two phases: a one-time preprocessing phase in which we con-
struct an auxiliary data structure that we will maintain dur-
ing updates; and an evaluation phase in which updates of
the form relabel(i, a), delete(i), or insert(i, a) arrive, where
i ∈ {1, . . . , n} is a position in the word and a ∈ Σ is a sym-
bol. The updates do the obvious: relabel changes ai to a,
delete deletes the symbol ai and results in a word of length
n−1, and insert(i, a) inserts an a before position i, resulting
in a word of length n + 1. We denote the newly obtained
word by w′. In the evaluation phase, the task is to be able
to say whether w′ ∈ L(N) quickly after the update arrives.
So, after a one-time preprocessing phase, we want to be able
to deal with (multiple) updates quickly. Here, we describe a
method for incremental evaluation that uses O(n · |r|2) time
for preprocessing and then, in the update phase, can answer
in time O(|r|3 · logn) per update whether the new word w′

is still in L(r) or not. Therefore, when n is large, the proce-
dure is much faster than re-evaluating the expression from
scratch, which would require at least linear time in n.

The incremental update algorithm works on the NFA for
r, which can be constructed in linear time and which we
denote by N = (Q,Σ, δ, I, F ). We first describe the auxiliary
data structure we will maintain during the updates. For
each i, j, 1 ≤ i < j ≤ n, let Tij be the transition relation

{(p, q) | p, q ∈ Q, p
ai···aj−−−−→ q}, where p

ai···aj−−−−→ q denotes
that N can reach state q when it starts in state p and reads
ai · · · aj . Note that Tij = Tik ./ T(k+1)j , (with i < k < j),

where ./ denotes the natural join on binary relations, that is,
Tij contains all (x, z) such that there is a y with (x, y) ∈ Tik
and (y, z) ∈ T(k+1)j .

For simplicity, assume first that n is a power of 2, say n =
2k. The main idea is to keep as auxiliary information just
the Tij for intervals [i, j] obtained by recursively splitting
[1, n] into halves, until i = j. More precisely, consider the
transition relation tree Tn whose nodes are sets Tij , defined
inductively as follows:
• the root is T1n;

• each node Tij for which j − i > 0 has children Tik and
T(k+1)j where k = i− 1 + j−i+1

2
; and

• the Tii are the leaves, for all 1 ≤ i ≤ n.
Note that Tn has n+ (n/2) + · · ·+ 2 + 1 = 2n− 1 nodes and
has depth logn. Thus, the size of the auxiliary structure is
O(n · |Q|2).

The preprocessing phase consists of building this auxiliary
data structure. Notice that, once we have Tn, it is easy to
decide whether w ∈ L(N). Indeed, w ∈ L(N) if and only
if (q, f) ∈ T1n for some q ∈ I and f ∈ F . Therefore, we
only have to show that this auxiliary data structure can be
updated efficiently.

We now describe the evaluation phase. For simplicity,
consider the case when one update occurs, changing the label
of the symbol in w at position k to b. That is, the new word
is w′ = a1 · · · ak−1bak+1 · · · an. The relations Tij ∈ Tn that
are affected by the updates are those lying on the path from
the leaf Tkk to the root of Tn. Denote this set of relations
by I and notice that it contains at most logn relations. The
tree Tn is updated by recomputing the relations in I bottom-
up as follows: First, the leaf relation Tkk is set according to
δ and b. Then each Tij ∈ I with children T ′ and T ′′, of
which one has been recomputed, is replaced by T ′ ./ T ′′.
Thus, at most logn relations have been recomputed, each
in time O(|Q|3), yielding a total time of O(|Q|3 · logn).11 If
we arrive at the root, we know that w′ ∈ L(N) if and only
if (q, f) ∈ T1n for some q ∈ I and f ∈ F .

The above approach can easily be adapted to words whose
length is not a power of 2. Further, the auxiliary data struc-
ture has size O(n · |Q|2). Finally, handling updates in which
elements are inserted or deleted is also done in [2], but then
some precautions have to be taken in order to make sure
that the tree Tn remains properly balanced.

Theorem 5.1 ([25]). Incremental evaluation of an RE
r on a word w is possible with preprocessing time O(n ·
|r|3), an auxiliary data structure of size O(n · |r|2), and time
O(logn · |r|3) per update.

The Incremental Evaluation Algorithm for RE#s.
The incremental evaluation algorithm for RE#s extends the
one for REs. It is based on NFA#s rather than NFAs and it
does not translate RE#s to exponentially larger automata.

Intuitively, the algorithm for RE#s follows the same lines
as the algoritm for REs, but it (1) stores different informa-
tion at the nodes of the auxiliary tree and, subsequently also
(2) uses a different algorithm for joining the information in
neighboring nodes. We now describe these two changes.

New information in the auxiliary tree. In the algorithm for
REs, a tuple (p, q) is in Tij if and only if the automaton

11Using fast matrix multiplication algorithms, this time can
be improved to O(|Q|ω · logn) (where ω denotes the best
known bound for matrix multiplication).



N can read ai · · · aj when going from state p to state q.
When we want to do something similar for NFA#s, we need
to take the counters in account. To this end, a (general)
update over C is a function π : C → ({inc, assign} ×N). For
readability we often consider π as a set of statements of the
form inc(c, k) or assign(c, k). (Hence, π only contains one of
inc(c, k) or assign(c, k) for each counter c.) Intuitively, when
π contains inc(c, k), then counter c should be incremented
with k. If it contains assign(c, k), then c is assigned the
value k, so it is overwritten. We need assign because if we
perform some sequence of transitions in which a counter c
is reset, then c should be assigned a value k, which will be
the number of increments that were done to c after the last
reset plus 1.12 To this end, we use a rule assign(c, k). If we
model a sequence of updates without a reset, then we use a
rule inc(c, k), where k is the number of increments to c in
the sequence. We write Updates(C) for the set of all general
updates over C.

Formally, an update π ∈ Updates(C) transforms counter
assignment α into α′ by setting α′(c) = k if π contains
assign(c, k) and setting α′(c) = α(c)+k if π contains inc(c, k).
We sometimes denote α′ by π(α). Thus, if α is transformed
into α′ by π, then π(α)(c) = α′(c). For the remaining defi-
nitions of this section, we fix a NFA# A = (Q, q0, C, δ, F, τ).

In the incremental evaluation algorithm for RE#s, the sets
Tij contain transformation tuples:

Definition 5.2. A transformation tuple of A is a quadru-
ple t ∈ Q × Guards(C) × Updates(C) × Q. Tuple t =
(p, φ, π, q) is consistent with a string w if, for every config-
uration γ = (p, α) such that α |= φ, there is a configuration
γ′ = (q, α′) such that γ ⇒w γ

′ in A and α′ = π(α).

That is, a transformation tuple is consistent with w if it
captures the effect of w on the NFA#, i.e., if it describes
how configurations that match it change by reading w.

Example 5.3. Consider the NFA# (Q, q0, C, δ, F, τ) from
Figure 3. The tuple t1 = (q0, φ1, π1, qb) where φ1 expresses

cb = 1 and cab = 1
and π1 contains inc(cb, 2) and inc(cab, 0) is consistent with
w = abbb. (Intuitively, if the NFA# starts in q0 and reads w,
it ends up in state qb and increases cb by two.) If φ1 would
only require 1 ≤ cb ≤ 2, the tuple would not be consistent
with w, because we can only read a in q0 if cb = 1.

The tuple t2 = (qb, φ2, π2, qb) where φ2 expresses
1 ≤ cb ≤ 9 and 1 ≤ cab ≤ 65534

and π2 contains assign(cb, 3) and inc(cab, 1) is consis-
tent with babbb and also with bbbabbb. It is not consistent
with abbb (because we cannot go from qb to qa if cb = 1) or
with bbbbabbb (because we cannot read b in qb if cb = 12). 2

So, the auxiliary data structure for incremental evaluation of
RE#s is a binary tree Tn whose nodes are sets Tij that con-
tain precisely the transformation tuples that are consistent
with ai · · · aj .
Joining of transformation tuples. It remains to explain how
the transformation tuples can be computed and updated.
To this end, we merely have to redefine the join operation
./ we used in the algorithm for REs. In other words, we
must define when transformation tuples t1 = (p1, φ1, π1, q1)
and t2 = (p2, φ2, π2, q2) can be joined. To this end, we

12The plus one term comes from the fact that the counters
are reset to 1.

say that t1 is compatible with t2 if q1 = p2 and there is a
counter assignment α such that α |= φ1 and π1(α) |= φ2.
Intuitively, if t1 is consistent with word w1, t2 is consistent
with word w2, and t1 is compatible with t2, then there is a
counter assignment α such that (p1, α)⇒w1w2 (q2, α

′) with
α′ = π2(π1(α)).

Example 5.4. For the NFA# of Figure 3, the tuple t1
from Example 5.3 is compatible with t2. For example, for
the assignment α0 with cb = 1 and cab = 1 we have that
α1 := π1(α0) maps cb to 3 and cab to 1. Therefore, α1 |= φ2.
As such, when in configuration (q0, α0) the NFA# can read
strings abbbbabbb or abbbbbbabbb.

We now define how transformation tuples are joined.

Definition 5.5. Let t1 = (p, φ1, π1, r) be compatible to
t2 = (r, φ2, π2, q). Then the join of t1 with t2, denoted
t1 ./c t2, is the tuple (p, φ, π, q) such that, for every counter
assignment α, we have (i) α |= φ⇔ (α |= φ1 ∧ π1(α) |= φ2),
and (ii) π(α) = π2(π1(α)).

Example 5.6. The join of t1 with t2 from Example 5.3
is (q0, φ, π, qb), where φ expresses

cb = 1 and cab = 1
and π contains assign(cb, 3) and inc(cab, 1). Consider tu-
ple t′1 = (qb, φ

′
1, π
′
1, qb) where φ′1 expresses

3 ≤ cb ≤ 9 and 1 ≤ cab ≤ 65535
and π′1 contains inc(cb, 2) and inc(cab, 0), then t′1 is com-
patible with t2 and t′1 ./c t2 is (qb, φ

′, π′, qb), where φ′ ex-
presses

3 ≤ cb ≤ 7 and 1 ≤ cab ≤ 65534
and π′ contains assign(cb, 3) and inc(cab, 1). Intuitively,
we have 3 ≤ cb ≤ 7 in the result because φ′1 requires 3 ≤ cb
and φ2 requires π′1(cb) ≤ 9. 2

When regular expressions contain few alphabet symbols
and large counter values, as is typically the case in the
CHAINs we found in the practical study (Section 3), the
new algorithm performs much better. This is seen most
clearly when considering RE#s of the form r = ak,k. As-
suming unit cost for basic arithmetic on numbers up to k,
incremental evaluation for their NFA#s on a word of length
n costs preprocessing time O(n) and update time O(logn),
whereas the algorithm of Section 5 would cost preprocessing
time O(n · 23|r|) and update time O(23|r| · logn). The large
speed-ups we obtain in Section 6 are therefore due to the
fact that expressions with large counters we found in prac-
tice seem to have a rather simple structure, which exploits
the potential of NFA#s close to optimal.

6. EXPERIMENTS
We performed an extensive experimental study on reg-

ular expression evaluation algorithms; incremental or oth-
erwise. We implemented all algorithms and benchmarks in
Java, mainly because it is very portable and wide-spread. To
ensure comparability between measurements, we also reim-
plemented all other algorithms in Java (and on the same
underlying data structures). Since Java uses garbage collec-
tion, there are several caveats (which we’ll discuss later) for
measuring memory consumption as well as execution time.
All our experiments are conducted on a machine with an In-
tel Core i7-2600K. We allocated a heap of at least 3 GiB for



all JVM instances during our tests. All tests were executed
on a 64-bit JVM.

We perform two kinds of experiments: evaluation from
scratch (i.e., not dealing with updates) and incremental eval-
uation (dealing with updates). In both settings, we compare
algorithms based on NFAs to algorithms based on NFA#s.
The NFA# variants are several orders of magnitude faster
than the algorithms based on NFAs, scale much better, and
consume much less memory.

6.1 Evaluation from Scratch
The experimental task in this section is the following:

Problem : Evaluation
Input : A regular expression with count-

ing r and a word w.
Question : Is w ∈ L(r)?

We compare the following algorithms:

(RE#): Fast squaring algoritm for RE#

(NFAsim): Building and simulating an NFA

(NFA#sim): Building and simulating a NFA#

(NFApre): Preprocessing for incremental NFA evaluation

(NFA#pre): Preprocessing for incremental NFA# eval

We discuss the five algorithms next. The benchmark (RE#)
is an optimization of an algorithm by Kilpeläinen and Tuhka-
nen [18] which is the only polynomial time algorithm for
evaluating RE# we are aware of that does not translate to
automata.13 It considers the parse tree of the expression r
and computes bottom-up, for each node u in the parse tree,
all pairs (i, j) of positions in w = a1 · · · an such that the sub-
expression rooted at u matches the subword ai · · · aj . For
example, when node u is labeled by a disjunction, its cor-
responding relation can be obtained by taking the union of
the relations of u’s children. If u is a concatenation, its rela-
tion is the composition (or natural join) of the relation of its
children. If u is a ∗, we need to take the transitive-reflexive
closure of the relation of its child. Lastly, if u is a count-
ing operator (say, a k-fold iteration), its relation is the k-fold
composition of the relation of its child. In this latter case lies
the optimization. Instead of performing O(k) compositions
as in [18], we comput the k-fold composition by fast squar-
ing, which only costs O(log k) compositions. This algorithm
is known to have worst-case complexity O(|w|m · |r|), where
m is the best bound for multiplying two |w| × |w| zero-one
matrices. We refer the reader to [18, 20] for further details
of the algorithms and their complexity.

The (NFAsim) algorithm translates r into an NFA, which
is then evaluated on w. The bottleneck of this approach lies
at dealing with the counters of r. A counter value of k typ-
ically results in Ω(k) states in the NFA. Since the counter
value is represented by log k bits in r, this constitutes expo-
nential cost in |r|.

In (NFA#sim), we avoid this blow-up by compiling r into
a NFA# of size only O(|r|), which we then evaluate on w.

The algorithms (NFApre) and (NFA#pre) are the prepro-
cessing phases of the incremental evaluation algorithms of
Section 5. Once these preprocessing phases are finished, one
can decide in constant time whether w ∈ L(r) by inspecting
the root of the auxiliary data structure. By comparing the

13Notice that rewriting an RE# into an equivalent RE al-
ready costs exponential time.

cost of the (—pre) with the (—sim) variants we can there-
fore gauge the cost of the one-time overhead for building an
auxiliary data structure that allows incremental evaluation
for future updates.

We present three benchmarks: a sanity check, a worst-
case synthetic benchmark with much non-determinism in
expressions, and a benchmark that shows how large counter
values behave in real-world and synthetic expressions. The
benchmarks use expressions that are structurally very sim-
ple, because (1) simplicity in the setup allows for a better
understanding of the results and (2) we did not see differ-
ent results on more complex setups; all behaviour we saw
in more complex (real-world or synthetic) settings could be
explained by these three experiments.

In order to get reliable measurements in Java we repeated
each experiment about five hundred times, discarded the
best and worst 10% to get rid of garbage cleaning artefacts,
and took the average of the remaining ones. (We observed
that this way we consistently obtained the same measure-
ments when experiments were repeated.) Since this proce-
dure makes experiments lengthy, we only measured up to 30
seconds. The charts we present are optimized for readability
and drastically summarise the data points we measured.
Sanity Check Benchmark. First we compared the five
candidates for r = a∗ and w being words containing only a’s
(Fig. 4, left). The rationale behind this test is to see how
the five methods compare if the NFA# has no advantage
over the other methods and to gauge the overhead of NFA#s
versus NFAs in our implementation. Since a∗ can be con-
verted to an NFA or NFA# within microseconds, we only see
the time required to process the word. Here, fast squaring
(RE#) is by far the slowest of all. The reason is its high com-
plexity in terms of |w|. The incremental variants are about
an order of magnitude slower than the non-incremental vari-
ants. This factor can be explained by the extra cost of
building the external data structure for the incremental al-
gorithms. In this setting where the NFA#-based algorithms
do not have any advantage over the NFA-based algorithms,
the NFA#-based algorithms are marginally slower.
Real-world and large counters. Next we compared the
candidates on real-world and synthetic expressions that use
very large counter values. The underlying idea of this test is
to see how the candidates compare if the NFA#s can exploit
counters to their maximum advantage. In this experiment
we noticed that the behavior for real-world expressions was
the exactly same than on synthetic ones. In Fig. 4, middle,
we present for increasing values of n, the expression r =
a(n−n/4),(n+n/4), so the range of allowed lengths is about
n/2. We then perform membership tests of words of length
n, n−n/4, n−n/4−1, n+n/4, and n+n/4+1 and take the
average of the evaluation times we measured. It is striking
that, throughout this experiment, the preprocessing phase
for incremental NFA# evaluation is faster than conversion
to an NFA and evaluating it.
Synthetic worst-case. Finally we investigated synthetic
expressions with counting, but with a high amount of non-
determinism (Fig. 4, right). We consider expressions r for
which the minimal deterministic finite automaton is dou-
ble exponentially larger than r. We perform this test be-
cause the two previous experiments concerned very sim-
ple deterministic expressions and it is well-known that non-
determinism complicates fast evaluation.



101 102 103 104 105 106

10−1

100

101

102

103

104

n

m
il
li
se
co

n
d
s

Sanity check

101 102 103 104 105 106
10−2
10−1

100
101
102
103
104

n

Real-world, large counters

101 102 103 104
10−1

100

101

102

103

104

n

Synthetic worst-case

NFA#sim

NFASim

NFA#pre

NFApre

RE#

Figure 4: Evaluation from scratch (log-log scale).

The most striking and perhaps counter-intuitive fact about
this experiment is that (NFA#pre) is the fastest evaluation
algorithm in this case. We believe that this is so because the
evaluation algorithms for NFAs (resp., NFA#s) need to store
and maintain a large number of possible states (resp., con-
figurations) while reading the word. Since (NFA#pre) works
completely differently and can summarize configurations, it
even outperforms the standard evaluation algorithms.

A second striking fact is that non-determinism combined
with large counter values can bring most evaluation algo-
rithms to their knees quickly. This may be the reason why
the XML Schema specification only allows very limited non-
determinism in regular expressions (cfr. [11]).

6.2 Incremental evaluation
We compare the two variants of incremental evaluation:

(incNFA) Incremental NFA evaluation

(incNFA#) Incremental NFA# evaluation

For the other evaluation algorithms of Section 6.1, the cost
of incremental evaluation will be the same as for evaluation
from scratch so we don’t include them again here. Our im-
plementations of (incNFA) and (incNFA#) closely follows
Section 5. Auxiliary data is stored as AA trees [1].

We use the following methodology to produce our mea-
surements (and to compensate for the side-effects of garbage
collection). Given a regular expression and a word, we first
construct the auxiliary data structures to prepare for incre-
mental evaluation. We then perform a large (and equal)
number of insertions and deletions in the word; equally dis-
tributed at the beginning, middle, and end of the word. We
then discard the 10% largest and 10% smallest measure-
ments and take the average of the remaining ones.

We perform experiments of two kinds for increasing values
of n: one lets the expression and the word grow simultane-
ously with n and the other keeps the expression constant
and only lets the word grow. As such we obtain a detailed
insight in how the scalability depends on the word and on
the expression.
Expressions with Large Counter Values. The leftmost
graph in Fig. 5 contains our measurements for (incNFA) and
(incNFA#) for expressions with large counter values as al-
ready described in Section 6.1: For a given value of n, we
consider the expression r = a(n−n/4),(n+n/4) and we start
with the word w = an. We then perform a large number
of insertions and deletions and measure the average time of
such an operation (as described before). Throughout the
experiment, (incNFA#) outperforms (incNFA) and scales
much better. Even for n = 1, 000, 000, (incNFA#) is faster
than (incNFA) for n = 50; so, here, (incNFA#) is deal-
ing with a word about five orders of magnitude larger than

(incNFA). Lastly, recall that we do not have time measure-
ments for (incNFA) for n > 1000 since preprocessing timed
out. We also measured memory consumption (not in a sep-
arate chart for reasons of space) and noticed that, even for
n = 100K, (incNFA#) consumes less memory than (incNFA)
with n = 1K.
Synthetic worst-case. The second graph in Fig 5 de-
picts the incremental version of the corresponding experi-
ment in Section 6.1. This test is designed to be hard on
(incNFA#) even though expressions have large counter val-
ues. In this experiment the transformation tuples cannot
summarize large sets of configurations of NFA#s as well as
in the previous experiment, due to the non-determinism in
the expressions. In terms of time, (incNFA#) consistently
outperforms (incNFA) about one order of magnitude. In
terms of space, (incNFA#) still scales much better than (in-
cNFA); about two orders of magnitude.
Real-world, MPEG7 Expression. In this experiment
and the next we consider a (fixed) expression that we found
in our practical study and only let the length of the word
grow as n increases. This gives a clearer picture of the scal-
ability of both evaluation methods when only the size of
the data becomes very large. Here, we consider the expres-
sion (ab2,12)0,65535 that we found in XML Schemas related
to the MPEG-7 standard14 and refer to as MPEG7 expres-
sion. From all the expressions we found in practice, this one
seemed to be among the more challenging ones for state-
of-the-art evaluation algorithms because it contains both
nested counters and large counter values.

The MPEG7 expression is extremely challenging for (inc-
NFA) because it translates into an NFA with about 850K
states. As we can see from the third graph in Fig 5, incre-
mental NFA evaluation for very short words (10 symbols) is
already extremely slow. This is strongly contrasted by incre-
mental NFA# evaluation, which still evaluates incrementally
in 0.08 milliseconds for words of length one million. We also
say a huge difference in memory consumption: 5 orders of
magnitude already for words of length 50.
Real-world, CHAIN Expressions. This final experi-
ment is designed to capture the behavior of CHAIN-like ex-
pressions which we abundantly found in our practical study
(Section 3). The experiment is extremely simple: we con-
sider a fixed regular expression a0,1000 (which we also found
in our practical study) and incrementally evaluate with re-
spect to words of increasing length n. We experimented with
various and more complex forms of CHAIN expressions from
our corpus, containing more disjunctions, more concatena-
tions of disjunctions, larger alphabets, but we observed the

14http://standards.iso.org/ittf/PubliclyAvailableStandards/
MPEG-7 schema files/mpeg7-v2.xsd



101102103104105106
10−2

10−1

100

101

n

m
il
li
se
co

n
d
s

Large Counter

101 102 103 104

10−1

100

101

102

n

Synthetic Worst Case

101102103104105106

10−2
10−1

100
101
102
103
104

n

Real-world, MPEG7

101102103104105106

10−2

10−1

100

101

n

Real-world, CHAIN

NFA#

NFA

Figure 5: Incremental evaluation (Log-log scale).

same behavior in all cases. All experiments for CHAIN-like
expressions boil down to this case. Again, as we can see the
rightmost graph in Fig. 5, the evaluation algorithms based
on NFA#s scale much better than those based on NFAs.

7. CONCLUSION
This paper shows that large counter values in regular ex-

pressions do not necessarily imply slow processing. Indeed,
while regular expressions with counting often imply high
complexity for static analysis problems due to their suc-
cinctness [12], it seems that the same succinctness can be ex-
ploited for designing highly efficient evaluation algorithms.

In the future, we want to extend the algorithm so that it
works for full-fledged XML Schemas, make a more extensive
study of regular expressions in Schemas and perhaps even
in more general contexts, and look more closely at how to
adapt the algorithms towards path expressions on graphs.

8. REFERENCES
[1] A. Andersson. Balanced search trees made simple. In

WADS, pages 60–71, 1993.
[2] A. Balmin, Y. Papakonstantinou, and V. Vianu.

Incremental validation of XML documents. ACM
TODS, 29(4):710–751, 2004.

[3] D. Barbosa, A.O. Mendelzon, L. Libkin, L. Mignet,
and M. Arenas. Efficient incremental validation of
XML documents. In ICDE, pages 671–682, 2004.

[4] M. Becchi and P. Crowley. Efficient regular expression
evaluation: theory to practice. In ANCS, pages 50–59,
2008.

[5] M. Becchi and P. Crowley. A-DFA: A time- and
space-efficient DFA compression algorithm for fast
regular expression evaluation. ACM TACO, 10(1),
2013.

[6] G.J. Bex, F. Neven, and J. Van den Bussche. DTDs
versus XML schema: a practical study. In WebDB,
pages 79–84, 2004.

[7] H. Björklund, W. Gelade, and W. Martens.
Incremental XPath evaluation. ACM TODS, 35(4):29,
2010.

[8] R. Book, S. Even, S. Greibach, and G. Ott. Ambiguity
in graphs and expressions. IEEE Trans. Comput,
C-20(2):149–153, 1971.

[9] S. Dal-Zilio and D. Lugiez. XML schema, tree logic
and sheaves automata. In RTA, pages 246–263, 2003.

[10] S. Gao, C.M. Sperberg-McQueen, and H. S.
Thompson. W3C XML schema definition language
(XSD) 1.1 part 1: Structures. Technical report, World
Wide Web Consortium, April 2012.

[11] W. Gelade, M. Gyssens, and W. Martens. Regular
expressions with counting: Weak versus strong
determinism. SIAM J. Comput., 41(1):160–190, 2012.

[12] W. Gelade, W. Martens, and F. Neven. Optimizing
schema languages for XML: Numerical constraints and
interleaving. In ICDT, pages 269–283, 2007.

[13] G. Ghelli, D. Colazzo, and C. Sartiani. Linear Time
Membership in a Class of Regular Expressions with
Interleaving and Counting. In CIKM, 2008.

[14] V.M. Glushkov. The abstract theory of automata.
Russian Math. Surveys, 16:1–53, 1961.

[15] Google custom search. www.google.com/cse.
[16] S. Harris and A. Seaborne. SPARQL 1.1 query

language. Technical report, World Wide Web
Consortium, January 2012.
http://www.w3.org/TR/2012/WD-sparql11-query-
20120105.

[17] D. Hovland. Regular expressions with numerical
constraints and automata with counters. In ICTAC,
pages 231–245, 2009.

[18] P. Kilpeläinen and R. Tuhkanen. Regular expressions
with numerical occurrence indicators — preliminary
results. In SPLST, pages 163–173, 2003.

[19] P. Kilpeläinen and R. Tuhkanen. Towards efficient
implementation of XML schema content models. In
ACM DOCENG, pages 239–241, 2004.

[20] K. Losemann and W. Martens. The complexity of
regular expressions and property paths in SPARQL.
ACM TODS, 2013.

[21] W. Martens, F. Neven, and T. Schwentick.
Complexity of decision problems for XML schemas
and chain regular expressions. Siam J. Comp.,
39(4):1486–1530, 2009.

[22] W. Martens, F. Neven, and S. Vansummeren.
SCULPT: A schema language for tabular data on the
Web. In WWW Conference, 2015. To appear.

[23] K. Nakayama, K. Yamaguchi, and S. Kawai. I-regular
Expression: Regular Expressions with continuous
interval constraints. In CIKM, 1997.

[24] Neo4J. Cypher patterns.
http://docs.neo4j.org/chunked/stable/introduction-
pattern.html, 2014. Cypher Query Language, Section
8.8.

[25] S. Patnaik and N. Immerman. Dyn-FO: A parallel,
dynamic complexity class. JCSS, 55(2):199–209, 1997.

[26] Regexlib. www.regexlib.com.
[27] R. Smith, C. Estan, S. Jha, and S. Kong. Deflating

the big bang: Fast and scalable deep packet inspection
with extended finite automata. In SIGCOMM, pages
207–218, 2008.

[28] Snort. www.snort.org.

[29] C.M. Sperberg-McQueen. Notes on finite state
automata with counters.
http://www.w3.org/XML/2004/05/msm-cfa.html,
2004.



APPENDIX
This appendix is not part of the submission and can be ex-
amined at the discretion of the reviewer. It provides further
details for which there was no space in the body of the paper.

A. PROOFS OF SECTION 5
We next argue that compositions of transformation tu-

ples corresponds to our intended meaning and that they can
be computed efficiently. The following lemma clarifies the
semantics of tuple joins.

Lemma A.1. Let t1 be a transformation tuple compatible
with t2 such that t1 is consistent with the word u and t2 is
consistent with v. Then t1 ./c t2 is consistent with uv.

Proof. Let (p, α) be a configuration such that α |= φ.
We need to show that there is a configuration (q, α′′) such
that (p, α)⇒uv (q, α′′), with α′′ = π(α).

From α |= φ and Definition 5.5, we get α |= φ1. Since t1
is consistent with u, this means that there is a configuration
(r, α′), with α′ = π1(α) such that (p, α) ⇒u (r, α′). Again,
from α |= φ and Definition 5.5, we get α′ = π1(α) |= φ2.
Since t2 is consistent with v, this means that there is a
configuration (q, α′′) with α′′ = π2(α′) = π2(π1(α)) such
that (r, α′) ⇒v (q, α′′). Since, by Definition 5.5, we have
π(α) = π2(π1(α)), this gives us the desired result.

The following lemma shows that the join of two transfor-
mation tuples can be computed very efficiently.

Lemma A.2. Given two transformation tuples t1 and t2,
we can compute t1 ./c t2 in time linear in the number of
counters of t1 and t2.

Proof. For the purposes of this proof, we use the fol-
lowing notation. If t = (p, φ, π, q) is a transformation tuple,
c ∈ C and φ(c) = (k, `), then we write low(φ(c)) for k and
up(φ(c)) for `. Also, if π(c) = (action, k), then we write
val(π(c)) for k and type(π(c)) for action.

Let t1 = (p1, φ1, π1, q1) and t2 = (p2, φ2, π2, q2). We first
need to check that t1 and t2 are compatible. Otherwise
the join is undefined. Recall that t1 and t2 are compatible if
q1 = p2 and there is a counter assignment α with α |= φ1 and
π1(α) |= φ2. The first condition is easy to check in constant
time. For the second condition, we need to do one check per
counter c ∈ C. If π1 contains assign(c, k), for some k, then we
only need to check that low(φ2(c)) ≤ k ≤ up(φ2(c)). If, on
the other hand, π1 contains inc(c, k) for some k, then we need
to check that there exists a value α(c) such that low(φ1(c)) ≤
α(c) ≤ up(φ1(c)) and low(φ2(c)) ≤ α(c) + k ≤ low(φ2(c)).
This holds if and only if low(φ1(c)) + k ≤ up(φ2(c)) and
up(φ1(c)) + k ≥ low(φ2(c)). These checks can be performed
in constant time.

For the remainder of this proof, let t1 = (p, φ1, π1, r)
and t2 = (r, φ2, π2, q) be compaitble transformation tuples.
Then t1 ◦c t2 = (p, φ, π, r) is computed by, for every c ∈ C,
determining the values of low(φ(c)), up(φ(c)), val(π(c)), and
type(π(c)).

If type(π1(c)) = inc, then φ(c) is determined by Equa-
tions 1 and 2.

low(φ(c)) =

= max(low(φ1(c)), low(φ2(c))− val(π1(c))) (1)

up(φ(c)) =

= min(up(φ1(c)), up(φ2(c))− val(π1(c))) (2)

If, on the other hand, type(π1(c)) = assign, then φ(c) =
φ1(c).

If type(π2(c)) = inc, then val(π(c)) = val(π1(c))+val(π2(c)).
If, on the other hand, type(π2(c)) = assign, then val(π(c)) =
val(π2(c)).

Finally, if both type(π1(c)) = inc and type(π2(c)) = inc,
then type(π(c)) = inc. Otherwise, type(π(c)) = assign.

Assuming unit cost arithmetic, these values can obviously
be computed in constant time.

It remains to show that t1 ./c t2, thus computed, satis-
fies the two conditions from Definition 5.5. We first argue
that the second condition holds, i.e., that π(α) = π2(π1(α)),
for every assingment α. We consider a counter c ∈ C.
If type(π2(c)) = assign, then the effect of π2(π1(α)) on c
will be to set c to val(π2(c)). In this case, type(π(c)) =
assign and val(π(c)) = val(π2(c)), so the effect of π on c
will be the same. If type(π2(c)) = inc, then val(π(c)) =
val(π1(c)) + val(π2(c)). If type(π1(c)) = assign, then the
effect of π2(π1(α)) on c will be to set c to val(π1(c)) and
then incrementing it by val(π2(c)), effectively in total set-
ting c to val(π(c)), which is the effect π will have on c. If
type(π1(c)) = inc, then π2(π1(α)) will increase c by val(π(c)),
again the same effect that π will have on c.

We now turn to the first condition of Definition 5.5. Con-
sider a counter assignmen α and assume that α |= φ. The
definition of φ immediately gives us α |= φ1, since for every
c ∈ C, either φ(c) = φ1(c) or φ(c) is defined by Equations 1
and 2. In the latter case, the lower bound φ gives for c is
at least as high as the lower bound φ1 gives, and the upper
bound φ gives for c is at least as low as the upper bound φ1

gives.
If type(π1(c)) = inc, then π1(α)(c) = α(c) + val(π1(c)).

The lower bound low(φ(c)) that φ gives for c is, by Equa-
tion 1, at least low(π2(c)) − val(π1(c)). By assumption, we
have low(φ(c)) ≤ α(c). Thus we get

π1(α)(c) = α(c) + val(π1(c)) ≥
≥ low(φ(c)) + val(π1(c)) ≥ low(π2(c)).

A symmetrical argument shows that π1(α)(c) ≤ up(π2(c))
and we can conclude that π1(α) |= φ2.

If, on the other hand, type(π1(c)) = assign, then π1(α)(c) =
val(π1(c)). In this case, low(φ2(c)) ≤ π1(α)(c) ≤ up(φ2(c))
follows from the fact that t1 is compatible with t2. Indeed,
if val(π1(c)) was not an allowed value for c according to φ2,
there would be no assignment witnessing compatibility, as
required by the definition.

For the other direction, assume that α 6|= φ. In par-
ticular, there must be a c ∈ C such that α(c) violates φ.
Assume, without loss of generality, that α(c) < low(φ(c)).
If type(π1(c)) = assign, then we immediately have φ(c) =
φ1(c) and thus α(c) < low(φ1(c)). If, on the other hand,
type(π1(c)) = inc, then, according to Equation 1, we either
have low(φ(c)) = low(φ1(c)) or low(φ(c)) = low(φ2(c)) −
val(π1(c)). In the first case, we again immediately have
α(c) < low(φ1(c)). In the second case, we use the fact that
π1(α)(c) = α(c) + val(π1(c)) to get the inequality

π1(α)(c) = α(c) + val(π1(c)) <

< low(φ(c)) + val(π1(c)) = low(φ2(c)).



Thus we conclude that if α 6|= φ, then either α 6|= φ1 or
π1(α) 6|= φ2. This concludes the proof.

Notice that the number of counters is bounded from above
by the nesting depth of counters in expressions which is, in
practice, very small, say, at most three (Section 3).

Our next step is to enable the use of transformation tu-
ples in tables, just as pairs of states were used in tables in
Section 5. We call such tables transformation tables.

Definition A.3. A transformation table is a set of trans-
formation tuples. A transformation table is consistent with
respect to a string w if every transformation tuple in the
table is consistent with w. It is complete with respect to a
string w if, for every pair γ = (p, α) and γ′ = (p′, α′) such
that γ ⇒w γ

′, there is a transformation tuple t = (p, φ, π, p′)
in the table with α |= φ and α′ = π(α).

Definition A.4. Let T1 and T2 be transformation tables.
Then Join(T1, T2) is the set

{t1 ./c t2 | t1 ∈ T1, t2 ∈ T2, and t1 is compatible with t2}.

Since we can join two single tuples in time linear in the
number of counters according to Lemma A.2, we have that
Join(T1, T2) can be computed in time O(|T1| × |T2| × |C|),
where |Ti| is the number of tuples in table Ti for each i =
1, 2. (This bound can be obtained by a simple nested loop
join. In our implementation, however, we use a faster join
algorithm.) The following lemma states that our procedure
for joining transformation tables is correct.

Lemma A.5. If transformation tables Tu and Tv are com-
plete and consistent with respect to the strings u and v, re-
spectively, then Tuv = Join(Tu, Tv) is complete and consis-
tent with respect to uv.

Proof. Consistency follows immediately from the defini-
tion of the table join and Lemma A.1.

To show compelteness, let γ = (p, α) and γ′ = (q, α′)
be such that γ ⇒uv γ

′. We need to show that there is a
tuple t = (p, φ, π, q) in Join(Tu, Tv) such that α |= φ and
α′ = π(α).

Let γ′′ = (r, α′′) be the configuration A takes after read-
ing u in the unique run on uv startin from γ. Since T1

is complete with respect to u, there must be a tuple t1 =
(p, φ1, π1, r) in T1 such that α |= φ1 and α′′ = π1(α). Also,
since T2 is complete with respect to v, there must be a
t2 = (r, φ2, π2, q) in T2 such that α′′ |= φ2 and α′ = π2(α′′).
This means that t1 and t2 are compatible, and thus t1◦c t2 is
a tuple in Tuv. Let this be the tuple (p, φ, π, q). From Def-
inition 5.5 we get that π(α) = π2(π1(α)) = α′. Also, from
the same definition and since α |= φ1 and α′′ = π1(α) |= φ2,
we have α |= φ.

function JoinEntries(Entry t1, Entry t2)
2: if t1.endState 6= t2.startState then

return NULL
4: end if

t← new Entry
6: for Counter c ∈ C do

t.isIncrement(c) ← t1.isIncrement(c) ∧
t2.isIncrement(c)

8: if t1.isIncrement(c) then
t.low(c) ← max(t1.low(c), t2.low(c)− t1.incVal(c))

10: t.upp(c) ← min(t1.upp(c), t2.upp(c)− t1.incVal(c))
if t.low(c) > t.upp(c) then

12: return NULL
end if

14: if t2.isIncrement(c) then
t.incVal(c)← t1.incVal(c) + t2.incVal(c)

16: else
t.writeVal(c)← t2.writeVal(c)

18: end if
else

20: if t2.low(c) > t1.writeVal(c)
or t2.upp(c) < t1.writeVal(c) then

22: return NULL
end if

24: t.low(c)← t1.low(c)
t.upp(c)← t1upp(c)

26: if t2.isIncrement(c) then
t.writeVal(c)← t1.writeVal(c) + t2.incVal(c)

28: else
t.writeVal(c)← t2.writeVal(c)

30: end if
end if

32: end for
t.startState ← t1.startState

34: t.endState ← t2.endState
return t

36: end function

Figure 6: Computing t1 ◦c t2 for given t1 and t2. The al-
gorithm uses a more object-oriented notation than, e.g., the
proof of Lemma A.2. For example, if t1 = (p, φ1, π1, r), then
in the algoirthm, we use t1.endState for r, t1.isIncrement(c)
to check if type(π(c)) is inc, t1.low for low(φ1(c)), incVal for
a value with which a counter should be increased, writeVal
for a value which a counter should be assigned, etc.

function Join(Table T1, Table T2)
2: Table T ← ∅

for t1 ∈ T1 do
4: for t2 ∈ T2 do

t← JoinEntries(t1, t2)
6: if t 6= NULL then

T.addEntry(t)
8: end if

end for
10: end for

return T
12: end function

Figure 7: Joining two transformation tables T1 and T2.


