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ABSTRACT
While the migration from DTD to XML Schema was driven
by a need for increased expressivity and flexibility, the latter
was also significantly more complex to use and understand.
Whereas DTDs are characterized by their simplicity, XML
Schema Definitions (XSDs) are notoriously difficult. In this
paper, we introduce the XML specification language BonXai
which possesses most features of XSDs, including its expres-
sivity, while retaining the simplicity of DTDs. In brief, the
latter is achieved by sacrificing the explicit use of types in fa-
vor of simple patterns expressing contexts for elements. The
goal of BonXai is by no means to replace XML Schema, but
rather to provide a simpler DTD-like alternative to schema
designers that do not need the explicit use of types. There-
fore, BonXai can be seen as a practical front-end for XML
Schema. A particular strong point of BonXai is its solid
foundation rooted in a decade of theoretical work around
pattern-based schemas. We present in detail the formal
model for BonXai and discuss translation algorithms to and
from XML Schema.

Categories and Subject Descriptors
H.2.3 [Database Management]: Languages—Data De-
scription Languages (DDL)

General Terms
Design, Languages, Algorithms

Keywords
XML; BonXai; Schema Language

1. INTRODUCTION
Through its endorsement by the W3C, XML Schema [29]

is nowadays adopted as the industry wide standard for the
specification of XML schema languages. XML Schema can be
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considered as the replacement of DTDs with added expressiv-
ity and flexibility regarding namespaces, modularization, and
datatypes. As an unfortunate side effect, the migration to
XML Schema has also a negative impact on usability. Indeed,
while DTDs are praised for their simplicity, XML Schema is
notoriously difficult. It is designed to be machine-readable
rather than human-readable and the central document of its
specification (Part 1 of the specification) already consists of
100 pages of intricate text [12]. In their book, Møller and
Schwartzbach discuss the comprehensibility of XML Schema
as follows [23] (p. 156):

XML Schema is generally too complicated and
hard to use by non-experts. This is a problem
since many non-experts need to be able to read
schemas to write valid instance documents.

The goal of BonXai is to address this point by reconciling
the expressivity and many features of XML Schema with
the simplicity of DTDs. Whereas BonXai builds upon many
ideas from existing schema languages, its most important
feature, distinguishing itself from other schema languages,
is its ability to serve as a front-end for XML Schema. Not
only can BonXai schemas be readily transformed to and from
XML Schema, but a BonXai schema itself can also be used to
inspect, analyze and provide a deeper understanding of the
corresponding XML Schema Definitions (henceforth, XSDs).

The purpose of this paper is to present a schema language
for XML, called BonXai, specifically tailored as a practical
schema design language, not to replace XML Schema but in
support of the development of XML Schemas.

One of the most significant changes in the migration from
DTDs to XML Schema is the introduction of types. The
latter addition not only allows for a development style closely
resembling object-oriented design and thereby facilitating
modularization (for instance, through derivation and substi-
tution), but types also significantly increase the structural
expressiveness of schemas by allowing element definitions
to depend on the context in which they appear. Surpris-
ingly, studies reveal that XSDs occurring in practice hardly
take advantage of the additional structural expressivity over
DTDs [3]. In fact, most real world XSDs are structurally
equivalent to a DTD. While the precise cause of the latter
restricted use is unclear (we are not aware of any studies
that tried to explain this), plausible explanations are that
users do not know how to wield the extra expressiveness
of XML Schema or that it is too cumbersome to write so-
phisticated and precise schemas when weighed against their



obvious benefits. Actually, Møller and Schwartzbach assert
that the introduction of types is a major aspect complicating
the design of XSDs (pg. 156) [23]:

One important factor of the complexity of the lan-
guage is the type mechanism. Even without type
derivations and substitution groups, this notion
of types adds an extra layer of complexity: an ele-
ment in the instance document has a name, some
element declaration in the schema then assigns
a type to this element name, and finally, some
type definition then gives us the constraints that
must be satisfied for the given element. In DTD,
an element name instead directly identifies the
associated constraints.

In other words, the use of types to express structural con-
straints could be beyond the average user. The main idea
underlying BonXai is to remove the need to use types to
express structural constraints by adding those constraints
as primitives to the language. That is, BonXai allows users
to express contexts for elements by simple patterns without
the need to explicitly specify and define complex types. Re-
gardless of why one believes that many XSDs in practice
are structurally equivalent to DTDs, BonXai should make
schema development and XSD development easier.

We stress once more that the objective of BonXai is by
no means to replace XML Schema, but rather to provide a
simple way to specify and manipulate a large class of XML
Schemas that only adds as much additional complication
beyond DTDs as needed. Therefore, BonXai can also be seen
as a practical front-end for XML Schema, i.e., “XML Schema
for human beings”. Indeed, as already mentioned above, the
automatic translation into (and from) XML Schema is an
important feature which distinguishes BonXai from other
schema languages for XML. While several good alternatives
for XML Schema exist, most notably DSD, Schematron
and Relax NG [9, 28, 27], each with their own user base,
they cannot be directly compiled into XML Schema for
the simple reason that they can define schemas that are
not representable as XSDs. We give a comparison with
contemporary schema languages in Section 3.3.

An additional strength of BonXai is its solid foundation
which is rooted in pattern-based schemas [20, 21] and which
facilitates reasoning and transformation algorithms [13, 16].
Martens et al. [21] have shown that the increase in structural
expressiveness from DTDs to XSDs lies in the ability to spec-
ify element definitions relative to a certain context. Whereas
DTDs are restricted to element definitions relative to the
name of the element, XSDs can specify element definitions
relative to the path of element names from the root leading
to that element.

We present a formal model for the core of BonXai and give
formal descriptions of algorithms that translate back and
forth between XML Schema and BonXai. These algorithms
illustrate why the two languages are expressively equivalent.
We analyze the worst-case blow-ups in these translations and
show why our algorithms are worst-case optimal. Further-
more, we discuss practically relevant fragments of XML- and
BonXai Schemas in which the conversions are particularly
efficient.

As a reality check, we implemented the BonXai system in
a tool [19] that allows, among other things, to parse BonXai
schemas, validate XML against them and highlights matching

rules, and can translate back and forth between BonXai and
XML Schema.
Outline. This paper combines a practical language’s exposi-
tion with an explanation of the underlying theory. We hope
that in this way a reader who is familiar with either the
practical or theoretical side can easily get an understanding
of the other side as well. Section 2 provides a light-weight
introduction to BonXai through a comparison with XML
Schema that avoids notions from theoretical computer sci-
ence and only requires a basic understanding of DTDs and
XML Schema. In Section 3, we discuss more features of
BonXai and its implementation, and consider its relationship
with other XML schema languages. Section 4 introduces the
formal model for BonXai and discusses the translations into
and from XML Schema. We conclude in Section 5.

2. BONXAI BY EXAMPLE
In this section, we compare the ability of DTDs and XSDs

to specify element definitions relative to a context and discuss
how the latter influenced the design of BonXai.

Document Type Definitions (DTDs) constitute the first
schema language for XML and are most well-known for their
simplicity. Basically, DTDs are a grammar-based formalism
where element declarations are entirely context insensitive.
That is, the content model for an element is solely dependent
on the name of that element.

We will now discuss a toy markup language that we will use
to discuss the main features of XML Schema and BonXai. We
first describe the markup language and an example document
informally and then we will define a DTD, XML Schema,
and BonXai schema for it.

Example 2.1 (An example document). Consider
the XML tree in Figure 1 with content formatted in a fictional
markup language. The document is divided into three parts:
template, userstyles (which contains user-defined style def-
initions), and content. The content part contains the actual
text of the document, with markup (bold, font changes, etc.).
Inside content, the text is structured by section elements,
which can be nested to form subsections, etc.

The template element should describe the default format-
ting of the text within content. One could think that tem-

plate defines ACM SIG style, for example. Within tem-

plate, the default formatting of sections is specified within
the section child of template and the default formatting of
subsections within the section grandchild. So, a difference
between template and content is that, in template, there is
at most one section element per nesting depth. For the sake
of the example, the rationale is that the default formatting
of all sections at the same level should be the same. Further-
more, template does not contain text since all the actual text
is within content.

The userstyles element contains a list of style elements.
Each such style element should be thought of as being either
some user-defined style (e.g., a fancy font for bold mathe-
matics). Each style element has a unique name, which can
be referred to from within content. Our example uses only
one user-defined style: userdefined1.

We chose our example such that it has elements within
content and within template that have the same element
names but different semantics, notably, the section element.
Similarly, style has a different semantics if it is used within



document

template

section

titlefont
@name=”SomeFont”

@size=”42”

style

font
@name=”Times”

@size=”12”

section

titlefont
@size=”23”

userstyles

style
@name=

”userdefined1”

font
@name=

”MyFancyFont”

color
@color=”red”

style
@name=”. . . ”

. . .

content

section
@title=”Introduction”

text section
@title=”Motivation”

text bold

text

italic

text

style
@name=”userdefined1”

text

section
@title=”. . . ”

. . .

Figure 1: Example XML document.

<!ELEMENT document (template, userstyles, content)>
<!ELEMENT template section>
<!ELEMENT userstyles style*>
<!ELEMENT content section*>
<!ENTITY % markup "bold|italic|font|style|color">
<!ELEMENT section (#PCDATA|titlefont|section|

%markup;)*>
<!ATTLIST section title CDATA #IMPLIED>
<!ELEMENT bold (#PCDATA|%markup;)*>
<!ELEMENT italic (#PCDATA|%markup;)*>
<!ELEMENT font (#PCDATA|%markup;)*>
<!ATTLIST font name CDATA #IMPLIED

size CDATA #IMPLIED>
<!ELEMENT style (#PCDATA|%markup;)*>
<!ATTLIST style name CDATA #IMPLIED>
<!ELEMENT titlefont EMPTY>
<!ATTLIST titlefont name CDATA #IMPLIED

size CDATA #IMPLIED>
<!ELEMENT color (#PCDATA|%markup;)*>
<!ATTLIST color color CDATA #REQUIRED>

Figure 2: A DTD describing the XML document
in Figure 1.

userstyles, within template, or within content. DTDs do
not have the expressive power to take these differences into
account and must define a common content model for all
elements with the same name. That is, a DTD can only
define one rule for section, independent of where a section

element occurs in the document.

Example 2.2 (DTD for Example 2.1). A complete
DTD for which the XML document is valid is given in Fig-
ure 2. Note the use of the entity markup that allows us to
write the schema more succinctly. We present this entire
DTD because it is instructive to compare it with the XSD
which we expose next and with the BonXai schema which we
define later and is equivalent to the XSD.

We next develop an XSD for our example markup language
which is able to differentiate the elements with the same name
but different semantics. Specifically, XSDs can take context
into account through the explicit use of types.

Example 2.3 (XSD for Example 2.1). A fragment
of an XSD for the markup language of Example 2.1 is pre-
sented in Figure 3. Figure 3 contains the definition of the

root document node. Similar to the DTD, it has a group
markup (at the end) to avoid any unnecessary verbosity. All
our type names start with a capital T so that the reader can
easily distinguish them from element names.

The XSD distinguishes between two types of sections: Tsec-
tion and TtemplateSection. The former should be used within
content and the latter one within template. The type of a
section element is determined by the type of its parent. That
is, when the parent of such an element is labeled content

or is a section element with type Tsection, the section can
contain text and markup. On the other hand, if the parent is
labeled template or is a section with type TtemplateSection,
the section element cannot contain text, it can only contain
formatting instructions. Similarly, the XSD should contain
three types that can be used for style: TtemplateStyle (for
style elements below template), TnamedStyle (for style el-
ements below userstyles, and TstyleRef (for style elements
below content).

The tree representation of XML documents is crucial for
understanding the expressiveness of XML Schema and, there-
fore, also the expressiveness of BonXai. Intuitively, XML
Schema can distinguish between elements of the same name
when they have different labels on the path to the root of the
XML tree, the so-called ancestor path.1 So, XML Schema
can distinguish the section elements within content from
those within template, for example. Indeed, the former
have labels section content document on the path to the
root, whereas the latter have section template document.
(Similarly, XML Schema can also distinguish between style

within userstyles, within template, or within content.)
In [21], it was shown that the kind of constraint which can
be put on such an ancestor path by an XSD can always be
captured by a regular expression and, in over 98% of the
XSDs in the study, even by so-called linear XPath expressions
[16], which are Core XPath expressions that do not branch.2

The latter insight influences the design of BonXai to make
such contexts explicit through the addition of patterns over
ancestor paths.

1This property of XML Schema originates from the Element
Declarations Consistent constraint, which is enforced by the
XML Schema Specification [12] (Section 3.8.6.3) prohibits
the use of the same element occurring in the same content
model with different types. A detailed discussion on the
implications of this constraint can be found in [21, 20].
2Consequently, linear XPath expressions can only reason
about paths in trees.



<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<xs:schema xmlns="http://mydomain.org/namespace"

xmlns:xs="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified"
targetNamespace="http://mydomain.org/namespace">

<xs:element name="document">
<xs:complexType>
<xs:sequence>
<xs:element name="template">
<xs:complexType>
<xs:sequence>
<xs:element name="section" minOccurs="0"

type="TtemplateSection"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="userstyles">
<xs:complexType>
<xs:sequence>
<xs:element name="style" minOccurs="0"

maxOccurs="unbounded" type="TnamedStyle"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="content">
<xs:complexType>
<xs:sequence>
<xs:element name="section" minOccurs="0"

maxOccurs="unbounded" type="Tsection"/>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:complexType name="TtemplateSection">
<xs:sequence>
<xs:element name="titlefont" type="TtemplateFont"

minOccurs="0"/>
<xs:element name="style" type="TtemplateStyle"

minOccurs="0"/>
<xs:element name="section" type="TtemplateSection"

minOccurs="0"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="Tsection" mixed="true">
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:group ref="markup"/>
<xs:element name="section" type="Tsection"/>
</xs:choice>
<xs:attribute name="title" type="xs:string"

use="required"/>
</xs:complexType>
<xs:group name="markup">
[...]
</xs:group>
[...]

</xs:schema>

Figure 3: An XSD for the XML tree in Fig. 1.

We now discuss two BonXai schemas for the running ex-
ample’s markup language. The BonXai schema in Figure 4 is
equivalent to the DTD given in Figure 2, while the BonXai
schema in Figure 5 exploits the additional expressiveness of
BonXai to be equivalent to the (full version of the) XSD of
Figure 3.

Both examples use a compact syntax inspired by Relax
NG [27]. Like a DTD, a BonXai schema is a collection of
rules. The right-hand side of a rule denotes a content model
as usual. The left-hand side can be either a label or a regular
expression if more expressiveness is needed. We use a regular
expression syntax which resembles XPath expressions since
this allows users to also write linear XPath expression on
left-hand sides. The semantics is that for an XML document
to match the schema, the children of nodes in the document
selected by a left-hand side expression when evaluated from
the root, should match the content model denoted in the
right-hand side of the rule. For instance, the rule
template//section = { element titlefont?,

element style?, element section? }

stipulates that section elements occurring somewhere below
a template element can contain a titlefont child, a style

child, and a section child, whereas the rule
content//section = mixed { attribute title,

(element section|group markup)*}

stipulates that elements occurring somewhere below a
content element should contain a title and may contain text
(indicated by the keyword mixed) with markup. The keyword
mixed allows mixed content, i.e., it is allowed to interleave
text with XML tags. In the BonXai schema in Figure 5, /
and // stand for the XPath axes “child” and “descendant”,
respectively. We denote concatenation, disjunction, Kleene
star, and “optional” by “,”, “|”, “*”, and “?”, as in DTDs.
The operator “&” stands for unordered concatenation, which
is known as xs:all in XSD. If an expression does not start
with / or //, we implicitly assume that it starts with //.
This way, simple lables are just a special case of regular
expressions.

target namespace http://mydomain.org/namespace
namespace xs = http://www.w3.org/2001/XMLSchema
global { document }
groups {
group markup = { element bold | element italic |

element font | element style | element color }
}
grammar {
document = { element template, element userstyles,

element content }
template = { element section }
userstyles = { (element style)* }
content = { (element section)* }
section = mixed { attribute title,(element section |

element titlefont | group markup)* }
bold = mixed { (group markup)* }
italic = mixed { (group markup)* }
font = mixed { attribute name, attribute size,

(group markup)* }
style = mixed { attribute name, (group markup)* }
titlefont = { attribute name, attribute size }
color = mixed { attribute color, (group markup)* }
@name = { type xs:string }
@color = { type xs:string }
@title = { type xs:string }
@size = { type xs:integer }

}

Figure 4: A BonXai schema equivalent to the DTD
in Figure 2.



target namespace http://mydomain.org/namespace
namespace xs = http://www.w3.org/2001/XMLSchema
global { document }
groups {
attribute-group fontattr = { attribute name?, attribute size? }
group markup = { ( element bold | element italic | element font | element style | element color )* }

}
grammar {
document = { element template, element userstyles, element content }
content = { (element section)* }
template = { (element section)? }
userstyles = { (element style)* }
content//section = mixed { attribute title, (element section | group markup)* }
content//style = mixed { attribute name, group markup }
content//font = mixed { attribute-group fontattr, group markup }
content//color = mixed { attribute color, group markup }
(bold|italic) = mixed { group markup }
template//section = { element titlefont?, element style?, element section? }
template//style = { element font? & element color? }
userstyles/style = { attribute name, element font? & element color? }
(userstyles|template)//color = { attribute color }
(userstyles|template)//(font|titlefont) = { attribute-group fontattr }
(@name| @color|@title) = { type xs:string }
@size = { type xs:integer }

}

Figure 5: A BonXai schema equivalent to the (partial) XSD from Figure 3.

The main difference with the corresponding XSD is that
contexts are now defined explicitly. Another way of viewing
the difference between XSD and BonXai is top-down versus
bottom-up. XSDs carry all relevant information about the
root-path in a top-down fashion, encoded in types, while
BonXai, instead, looks upward from a node, thus separating
types from their inference. Furthermore, as XSDs employ
types, context has to be specified in terms of automata, while
BonXai can use the more user-friendly regular expressions
or linear XPath expressions.

3. BONXAI, THE PRACTICAL LANGUAGE
In Subsection 3.1, we present BonXai in more detail but

do not intend to discuss every feature of the language and
its relationship with XML Schema here. Instead, we pro-
vide a high-level overview and refer the reader to [18] for
further details. We just discuss a few BonXai-specific mat-
ters (ancestor patterns, child patterns, and priorities) and
then argue how BonXai seamlessly incorporates most of
XML Schema language features (like differentiation between
elements/attributes, simple types, element- and attribute
groups, namespaces, constraints, schema imports, mixed
types, default values, anytype/anyattribute).

Subsection 3.2 explains BonXai’s priority system. As men-
tioned in the introduction, the design of BonXai is influenced
by existing XML schema languages. We discuss these in
Subsection 3.3.

3.1 The BonXai Schema Specification Lan-
guage

BonXai schemas consist of up to five blocks. First comes
the namespace block, declaring all namespaces used in the
schema. The second block is called the global block and speci-
fies which element names can occur at the root of documents
that match the schema. Third, there is an optional group
block, which can declare the equivalent of XSD groups. The

fourth block is called the grammar block and is the actual
core of the schema. The grammar block contains the defi-
nitions of the rules that define the structure of documents.
Finally, there is an optional constraints block which defines
integrity constraints.

Global Element Names: Elements that are declared
global in a BonXai schema can occur as root elements in
XML documents that match the schema. In our running
example, there is a single such element, called document.

Ancestor Patterns: A rule within the grammar-block
of a BonXai schema is of the form

<ancestor pattern> = <child pattern>

The ancestor pattern (left of the equality sign) describes
the context of the rule and should be matched against paths
in the tree that start from the root. Ancestor patterns are
variants of regular expressions, built from element names
and attribute names (i.e. names starting with @). The regu-
lar expressions have the operators union (|), concatenation
(/), descendant (//), Kleene star (∗), one-or-more (+), and
zero-or-one (?). Sub-patterns can be grouped using round
brackets. For compatibility with XML Schema, we need that,
if attribute names appear, they occur at the end of ances-
tor patterns. For example, (/a/a)*(@c|@d) is allowed (and
specifies c- and d-attributes for even-depth nodes that are
labeled a and only have a-labeled ancestors), but /a/@b/c

is not allowed. (Indeed, in XML, attributes cannot have
children.)

For convenience, a pattern that does not start with either
/ or // is implicitly assumed to start with //. This allows to
just use an element name as ancestor pattern to match all
elements of this name, as in DTDs.

Child Patterns: In its simplest form, a child pattern is
a regular expression describing the content model of a set
of elements. To allow some other features (e.g. groups) and
not introducing ambiguity, all element names have to be
prefixed with the keyword element. Regular expressions in



child patterns are built using concatenation (,), union (|),
interleaving(&), Kleene closure (*), one-or-more (+), zero-or-
one (?) and counting ({n,m}). The upper bound of counters
may be * instead of a number to express that there is no
upper bound. Sub-expressions can be grouped using round
brackets. The use of the interleaving operator is restricted,
to reflect the restrictions imposed by the all-pattern of XML
Schema. (The restrictions for XML Schema are described in
Section 3.8.2 in [12].) In plain words, these restrictions say
that no content model should use an interleaving operator
and at the same time a union or a concatenation operator.
Furthermore, in content models containing an interleaving
operator, counters are only allowed directly above element
declarations in the syntax tree of the regular expression.

Priorities: It is possible to define BonXai rules such
that two or more rules match the same path. When such
a multiple match occurs, BonXai gives priority to the rule
that occurs last in the schema. To illustrate, assume that
we would change the ancestor pattern content//section to
section. Then we would have the rules

section = mixed {attribute title,

(element section|group markup)*}

template//section = { element titlefont?,

element style?, element section? }

in the schema. Both rules are matched by a section ele-
ment that is below a template element. In cases like this,
the rule that occurs last in the schema takes priority. Here,
template//section takes priority and therefore the seman-
tics of the modified schema are the same as the semantics of
the original schema. The rationale behind priorities is that a
developer can first write down rules that generally apply in
the schema and write down the special cases and exceptions
later. We introduced priorities in BonXai because they were
required for ensuring full compatibility with XML Schema’s
expressive power. We explain priorities in more detail in
Section 3.2.

Integrity Constraints, etc.: BonXai allows to express
the same integrity constraints as XML Schema (i.e., unique,
key, and keyref). The term “keyref” is taken from XML
Schema, where it denotes a foreign key constraint.

BonXai’s current implementation also models attributes,
groups, namespaces, mixed and nillable content models, refer-
ences to foreign namespaces, wildcards, and annotations.

3.2 Priorities in BonXai
In this subsection, we explain some fine points of the

priority-based semantics of rules in BonXai schemas. Priori-
ties were mainly introduced to avoid compatibility problems
with XML Schema. However, we think they can also be
convenient, as we will explain below.

In the theory of pattern-based schemas for XML (of which
BonXai is an example), two alternative semantics for multiple
matches of rules have been investigated [13, 16]: existential
semantics and universal semantics. We say that the ancestor-
pattern of rule r = {s} matches a node n in an XML tree, if
the string of element names from the root of the document
to n matches the regular expression r. The two semantics
can now informally be defined as follows:
• Universal semantics: for each node n in the XML tree

and each rule r = {s} for which the ancestor pattern
matches n, the children of n must match s.

• Existential semantics: for each node n in the XML
tree, there must be at least one rule r = {s} for which
the ancestor pattern matches n and the children of n
match s.

Thus, under universal semantics, we would require a match-
ing element to match all content model definitions of relevant
rules and under existential semantics, we would require a
matching element to match at least one content model defini-
tion of a relevant rule.Unfortunately, neither semantics can be
applied while retaining at the same time compatibility with
the Unique Particle Attribution (UPA) rule of the W3C XML
Schema specification [12, Section 3.8.6.4]. In a nutshell, UPA
requires content model definitions to be deterministic regular
expressions [4]. Furthermore, translating BonXai schemas
under the universal or existential semantics to XSDs, requires
deterministic regular expressions to be closed under finite
unions and finite intersections, respectively, which is not the
case [4, 6, 17]. As an aside we mention that deterministic
regular expressions are not closed under complement.

A “quick and dirty” solution could be to require ancestor
patterns in rules to have an empty intersection. However,
we feel that this would be very user-unfriendly. Consider
again our running example in Figure 5. The two ancestor
patterns template//section and content//section have a
non-empty intersection since both could, in theory, match
a word that has an occurrence of template, followed by
content, followed by section (even though such a word
cannot occur as a path in trees defined by the schema).
Changing the two ancestor patterns to mend this problem
would make the schema less readable and require users to
have deeper expertise in formal language theory.

We show in Section 4 that the priority-based semantics of
BonXai does not have the expressivity problems of universal
or existential semantics, by giving conversion algorithms
from the core of BonXai to XML Schema and back; and by
observing that the Unique Particle Attribution constraint is
preserved. Furthermore, we feel that priorities make sense
when designing schemas (specify general rules first, special
cases later) and lead to more readable schemas. Therefore, a
sensible way of using priorities is for cases where, for a set of
elements with the same name, most of the elements have the
same content model, but there are a few exceptions. (Notice
that, if two ancestor patterns define regular expressions that
end with different element names, the intersection of the
rules is always empty and priorities are irrelevant.)

We conclude this section with a use case for priorities:
schema evolution. In our running example, sections can be
nested arbitrarily deeply. Assume that we want to change
the schema such that the nesting depth of sections is at
most three. In the BonXai schema in Figure 5, this can be
achieved by inserting the rule

content/section/section/section =

{ attribute title, group markup }

at the end of the rules that start with content. The semantics
of this rule would be that subsubsections only have a title
attribute and markup, but no section children.

If one would want to perform the equivalent change di-
rectly in XML Schema, one would be required to make three
complex types for sections below content: one for each al-
lowed nesting depth. The change would introduce much more
clutter.



3.3 A Comparison With Other Schema Lan-
guages for XML

As already stated before, BonXai borrows concepts from
several existing schema languages for XML. The purpose of
this section is to give an overview of the most well-known of
those languages and discuss their relationship with BonXai.

Following [23], DSD2 [9] (Document Structure Description
2.0) is a language developed by the University of Aarhus and
AT&T Research Labs whose primary goal is to be simple yet
expressive. Like BonXai, DSD2 is based on rules which must
be satisfied for every element in the input document. BonXai
and DSD2 are incomparable in how context is defined. While
DSD2 is far more expressive than DTDs, its exact expres-
siveness in formal language theoretic terms is unclear. It
allows context to be defined in terms of Boolean expressions
which can refer to structural predicates like parent and an-
cestor, but, unlike BonXai, also allows to look downward
using predicates like child and descendant. BonXai on the
other hand harnesses the full power of regular languages on
the ancestor path, while DSD2 seems to remain within the
star-free regular languages (on the ancestor path). For this
reason, DSD2, on a structural level, is incomparable to XML
Schema.

Relax NG [27] has been developed within the Organization
for the Advancement of Structured Information Standards
(OASIS). Like DSD2, its main goal is to combine simplicity
with expressivity. In formal language theoretic terms, the
expressiveness of Relax NG corresponds to the unranked reg-
ular tree languages which strictly includes XML Schema [24,
21]. Like XML Schema, Relax NG is grammar based and
utilizes types to define context. However, Relax NG schemas
are not restrained by the Unique Particle Attribution con-
straint or the Element Declarations Consistent constraint.
So, unlike XSDs and therefore BonXai, the context of an
element in Relax NG can depend on the complete tree. As
BonXai strives for simplicity it utilizes a readable compact
syntax which is inspired by that of Relax NG.

Schematron [28] is a rule-based language based on pat-
terns, rules and assertions. Basically, an assertion is a pair
(φ,m) where φ is an XPath expression and m an error mes-
sage. The error message is displayed when φ fails. A rule
groups various assertions together and defines by means of an
XPath expression a context in which the grouped assertions
are evaluated. Patterns then group various rules together.
Schematron is not so much intended as a stand-alone schema
language but can be used in cooperation with existing schema
languages. BonXai shares the use of XPath-expressions with
Schematron, although BonXai restricts them to a very small
subset (linear expressions) to ensure compatibility with XML
Schema.

Co-constraints is an overloaded term which generally refers
to a mechanism for verifying data interdependencies. While
DSD, Schematron, and Relax NG quite naturally allow to
express co-constraints, XSDs are rather limited in this respect.
The latter motivated the formulation of extensions of DTDs
and XSDs, named DTD++ [11] and SchemaPath [7], with
XPath expressions to express co-existence and co-absence of
element names and attributes. These extensions share with
BonXai the use of XPath to express conditions but differ
from BonXai in that they increase the expressiveness beyond
that of XML Schema.

4. THEORY: BONXAI VERSUS XSD
In this section, we explain the underlying theory behind

BonXai. In particular, we provide
• a compact and clear formal model of core BonXai

schemas, stripped of features that are unimportant
for analysing conversion algorithms;
• a formal back and forth translation procedure between

core XML Schema and core BonXai;
• an analysis of the blow-up of these conversions; and
• proof of worst-case optimality for the conversions.

Our aim is to provide a precise mathematical description
of BonXai’s core which abstracts away from unavoidable
cosmetics like namespaces and data types, and which offers
a quick understanding of the essentials of the language. The
presentation of the translations between BonXai and XML
Schema fulfills a similar purpose and, in addition, makes
the relation between BonXai and XML Schema apparent.
In particular, the translation provides insight to where one
language can be more succinct than the other.

4.1 A Formal Model for BonXai Schemas
Before we introduce the formal model for the core of

BonXai, we first establish some basic terminology and nota-
tion.

Basic Terminology.
We view an XML document as a finite, rooted, ordered,

labeled, unranked tree D. We assume a finite alphabet (that
is, a finite set) EName of element names from which the
nodes of XML trees take their labels, that is, each node v
of D carries exactly one label lab(v) ∈ EName. By a, b, c, . . .
we denote elements from EName. For a node v, we denote by
anc-strD(v) the ancestor-string of v in D which is given by
the concatenation of the labels of the nodes on the path from
the root of D to v. More formally, the ancestor-string of v
in D is the string lab(v1) · · · lab(vn), where v1 is the root of
D, vn = v, and vi+1 is a child of vi for each i = 1, . . . , n− 1.
We denote by ch-strD(v) the concatenation of the labels
of the children of v in D. More formally, if the children
of v are u1, . . . , um from left to right, then ch-strD(v) =
lab(u1) · · · lab(um). We note that ch-strD(v) is sometimes
also called the content of node v. We omit D in the notation
of ancestor- or child-strings when D is clear from the context.

Example 4.1. Consider the section child v of the ele-
ment template in the tree of Figure 1. Then

anc-str(v) = document template section

ch-str(v) = titlefont style section .

We assume familiarity with finite automata and only dis-
cuss notation here. We denote a (nondeterministic) finite
automaton or NFA as a tuple A = (Q,EName, δ, q0, F )
where Q is its finite set of states, EName is the alphabet,
δ : (Q × EName) → 2Q is the transition function, q0 ∈ Q
is the initial state and F ⊆ Q is the set of accepting states.
An NFA is deterministic if δ(q, a) contains at most one state
for each q ∈ Q and a ∈ EName. The language of A (i.e.,
the set of words accepted by A) is defined in the standard
manner. The size of A, denoted |A|, is the number of states
of A. Sometimes we use finite automata without accepting
states. We then simply write them as A = (Q,EName, δ, q0).
We sometimes use A(w) as an abbreviation the set of states
that A can reach after reading w.



We use regular expressions r with the following syntax

r ::= ε | ∅ | a | rr | r + r | (r)? | (r)+ | (r)∗,

where ε denotes the empty string and a ranges over symbols in
the alphabet EName. Sometimes we also use the symbol · for
regular expression concatenation to improve readability. For
a set S = {a1, . . . , an} ⊆ EName we sometimes abbreviate
the disjunction (a1 + · · ·+ an) by S. As usual, we write L(r)
for the language defined by regular expression r. We define
the size of regular expression r to be its total number of
alphabet symbol occurrences. For example, both expressions
aaa and a(b+ c)? have size three.

A Formal Model for BonXai’s Core.
Now we define BonXai Schema Definitions (BXSDs), which

are a formal model for the core of BonXai schemas. The
difference between the BonXai schema specification language
and BXSDs is that the former can be used in our imple-
mentation [19] and has most of the XML Schema Language
features to make it usable in practice, whereas the latter is
a stripped down version that we use here to study transla-
tions between BonXai and XML Schema. For instance, the
BonXai language supports integrity constraints, but we do
not define these in BXSDs since they are trivial to translate
from and to XSD.

Our definition of BonXai Schema Definitions requires ex-
pressions si to be deterministic [4]. This restriction is neces-
sary to make BXSDs expressively equivalent to XSDs, due
to the UPA condition mentioned in Subsection 3.2. We
note that such expressions are sometimes referred to as one-
unambiguous [4]. We do not formally introduce deterministic
regular expressions here, as BXSDs and XSDs have exactly
the same restrictions and our conversion algorithms therefore
do not alter the regular expressions of the content models.
Given the lacking closure of DRE under Boolean operations
noted in Subsection 3.2, it is however crucial, that none of the
conversion algorithms presented in Subsection 4.2 construct
unions, intersections, or complements of content models.

Definition 1. A BonXai Schema Definition (BXSD) is
a pair B = (EName, S, R) where S ⊆ EName is a set of start
elements and R is an ordered list r1 → s1, . . . , rn → sn of
rules, where
• all ri are regular expressions over EName and
• all si are deterministic regular expressions over the

alphabet EName.

For each i = 1, . . . , n, we say that the rule ri → si has index
i. Let D be an XML document and u a node of D. A
rule ri → si is relevant for u if i is the largest index such
that anc-strD(u) ∈ L(ri). Notice that a node u has at most
one relevant rule in B. An XML document D conforms
to the BXSD B if the label of root(D) is in S and, for
each node u ∈ Nodes(D), if ri → si is relevant for u, then
ch-strD(u) ∈ L(si). The definition of relevant rules reflects
the priority system in BonXai: rules with a higher index
have higher priority.

Example 4.2. The formal abstraction of the BonXai
schema in Figure 5 is the BXSD B = (EName, S,R) where
• EName = {document, template, userstyles, content,

section, style, title}
• S = {document}

• R is the ordered list containing rules (parts omitted):
//document → template userstyles content
//content → section∗

//template → section
//userstyles → style∗

//content //section → (bold + · · ·+ section)∗

...
//template //section → titlefont? style? section?

...
Here, we wrote the left-hand-sides of BonXai rules as
in Section 2. Formally, in this section, // abbreviates
the regular expression EName∗.

4.2 Translations Between Schemas
Before we discuss how to translate back and forth between

XML Schema and BonXai, we give our abstraction of an
XML Schema, closely following the definition from [24, 21,
20].

A Formal Model for Core XSDs.
An XML Schema uses a finite set of element names and

complex type names. We therefore fix finite sets EName and
Types of element names and complex type names, respectively.
The set TEname of typed element names is then defined as
{a[t] | a ∈ EName, t ∈ Types}. In an XML Schema, a
typed element name a[t] could, for example, be written as
<xs:element name="a" type="t"/>.

Definition 2. An XSchema Definition (XSD) is a tuple
X = (EName,Types, ρ, T0) where EName and Types are finite
sets of elements and types, respectively, ρ is mapping from
Types to regular expressions over alphabet TEname, and
T0 ⊆ TEname is a set of typed start elements. Furthermore,
the following two conditions hold:

Element Declarations Consistent (EDC) There are no
typed elements a[t1] and a[t2] in a regular expression
ρ(t) with t1 6= t2. Furthermore, there are no typed
elements a[t1] and a[t2] in T0 with t1 6= t2.

Unique Particle Attribution (UPA) Each regular ex-
pression ρ(t) is deterministic.

We sometimes also refer to ρ(t) as the content model associ-
ated to t. The EDC constraint can be found in [12, Section
3.8.6.3] and the UPA constraint in [12, Section 3.8.6.4].

A typing of an XML document D w.r.t. X associates, to
each node u of D, a type of the schema. Formally, a typing
of D w.r.t. X is a mapping µ from Nodes(D) to TEname. A
typing µ is correct if it satisfies the following three conditions:
• µ(root(D)) ∈ T0.
• For each node u ∈ Nodes(D), we have µ(u) ∈ {lab(u)[t] |
t ∈ Types}.
• For each node u ∈ Nodes(D) with children u1, . . . , un

from left to right, we have µ(u1) · · ·µ(un) ∈ L(µ(u)).
An XML document D conforms to an XSD X if there exists
a correct typing µ of D w.r.t. X. Notice that typings are
unique due to the EDC condition, that is, there can be at
most one correct typing for a given document D w.r.t. a
given XSD X.

4.2.1 Translation from XML Schema to BonXai
We present a translation algorithm from XSDs to BXSDs.

This algorithm is the core of a procedure that we implemented



to translate XML Schema into BonXai [19]. The algorithm
consists of two phases. The first phase converts an XSD into
an intermediate data structure, which is called a DFA-based
XSD. We will define such a DFA-based XSD formally, because
it is a representation of schemas that is very convenient in
proofs. In the second phase, the DFA-based XSD is translated
to the BXSD.

DFA-based XSDs were introduced in [20] (Definition 6) as
an alternative characterization of XML Schema Definitions.
We now define DFA-based XSDs as in [20], with a minor
difference: due to the UPA condition, we require their content
models to be deterministic regular expressions.

Definition 3. A DFA-based XSD (with deterministic con-
tent models) is a tuple (A, S, λ), where A = (Q,EName, δ, q0)
is a DFA with initial state q0 and without final states such
that q0 has no incoming transitions, S ⊆ EName is the set
of allowed root element names and λ is a function mapping
each state in Q \ {q0} to a deterministic regular expression
over EName. Furthermore, for every state q ∈ Q and every
element name a occurring in λ(q), we have that δ(q, a) is
non-empty.

In the remainder of the paper, S usually equals {a | δ(q0, a)
6= ∅}. (The intuition is that, for each element a ∈ S, the
automaton A can read a string that starts with a. Since S
is simply the set of root elements, λ does not map q0 to a
regular expression.) However, we sometimes use fully defined
DFAs (which are DFAs in which |δ(q, a)| = 1 for every state
q and label a) and therefore we need to explicitly mention
S in general. Since we only consider DFA-based XSDs with
deterministic content models in this paper, we henceforth
simply refer to them as DFA-based XSDs.

An XML document D satisfies (A,S, λ) if the root node
is labelled with an element name from S and, for every node
u, A(anc-strt(u)) = {q} implies that ch-strD(u) is in the
language defined by λ(q).

We now explain how to translate a given XSD X =
(EName,Types, ρ, T0) into an equivalent DFA-based XSD A
in linear time. The procedure is outlined in Algorithm 1 and
resembles procedures in [21, 13], which were developed for
different models of XSDs.3 It has the following property.

Lemma 4 (Adapted from Lemma 7 in [13]). Each
XSD can be translated into an equivalent DFA-based XSD in
linear time.

We now show how to translate DFA-based XSDs into
equivalent BXSDs. The translation is in Algorithm 2 and is
similar to the proof of Theorem 7.1 ((a) ⇒ (d)) in [21].

Lemma 5. Each DFA-based XSD (A,S, λ) can be trans-
lated into an equivalent BXSD B with linearly many rules in
|A|.

Notice that the ordering of the rules in R in Algorithm 2
is arbitrary. The reason why the ordering is not important
is that the priorities in BonXai are irrelevant in the schema.
Indeed, for each pair of states q1 6= q2 from A, we have that
L(rq1) ∩ L(rq2) = ∅, because A is a DFA. Furthermore, the
BXSD B can have regular expressions that are exponentially

3One consequence of the slightly different models of XSDs is
that the translation in [13] is quadratic, whereas it is linear
in our case.

Algorithm 1 Translating an XSD to an equivalent DFA-
based XSD.
Input: XSD X = (EName,Types, ρ, T0)
Output: DFA-based XSD (A = (Q,EName, δ, q0), S, λ)

equivalent to X
1: S := {a | ∃t ∈ Types such that a[t] ∈ T0}
2: Q := {q0} ] Types
3: For each a[t] ∈ T0, δ(q0, a) := t
4: For each t1 ∈ Types and a ∈ EName such that

a[t2] occurs in ρ(t1), δ(t1, a) := t2
5: For each t ∈ Types, λ(t) := µ(ρ(t))

. µ(ρ(t)) is obtained from ρ(t) by
replacing every a[t′] with a

Algorithm 2 Translating a DFA-based XSD into an equiv-
alent BXSD.
Input: DFA-based XSD (A = (Q,EName, δ, q0), S, λ)
Output: BXSD B = (EName, S,R) equivalent to X
1: for every state q ∈ Q do
2: rq := a reg. expression for (Q,EName, δ, q0, {q})
3: sq := λ(q)

4: R := rq1→ sq1 , . . . , rqn→ sqn , where {q1, . . . , qn} = Q

larger than |A| in general. This cannot be avoided4 because
A is a DFA and the worst-case conversion from a DFA to a
regular expression is well-known to be exponential [10]. In
Section 4.4 we discuss classes of schemas that capture most
cases in practice and that do not lead to such a blow-up.

4.2.2 Translation from BonXai to XML Schema
The translation from BonXai to XML Schema follows a sim-

ilar overall outline as the reverse translation of Section 4.2.1.
Again, we use DFA-based XSDs as an intermediate represen-
tation in the translation. That is, we first translate BXSDs
into DFA-based XSDs and translate the latter to XSDs. How-
ever, the present translation is more technical than the one
before.

Algorithm 3 describes the translation of BXSDs into DFA-
based XSDs.

Lemma 6. Each BXSD B can be translated into an equiv-
alent DFA-based XSD (A,S, λ) for which |A| is at most
exponential in |B|.

It should be noted that Algorithm 3 is optimized for read-
ability and not for efficiency. It is straightforward to change
it such that it only computes reachable states of A. Note
that whether a state is reachable also depends on the right-
hand sides of the rules, because a transition δ(p, a), for which
the label a does not occur in λ(p), can never be taken in a
conforming document.

The final translation we need is the one from DFA-based
XSDs into XSDs. It is summarized in Algorithm 4 and has
linear running time.

Lemma 7 (Adapted from Lemma 7 in [13]). Each
DFA-based XSD can be translated into an equivalent XSD in
linear time.

We note that the XSD that results from Algorithm 4 can
be “minimized” efficiently using a minor adaptation of the

4Proving that an exponential blow-up cannot be avoided is
more technical than just this observation, see Section 4.3.



Algorithm 3 Translating a BXSD to an equivalent DFA-
based XSD.
Input: BXSD B = (EName, S,R = r1→ s1, . . . , rn→ sn)
Output: DFA-based XSD (A,S, λ) equivalent to B
1: for each i = 1, . . . , n do
2: Ai := minimal complete DFA

(Qi,EName, δi, q
i
0, Fi) for L(ri)

3: A := A1 × · · · ×An . A has state set Q1 × · · · ×Qn

4: for each (q1, . . . , qn) ∈ Q1 × · · · ×Qn do
5: if ∃i ∈ {1, . . . , n} such that qi ∈ Fi then
6: i := largest number such that qi ∈ Fi

7: λ((q1, . . . , qn)) := si
8: else
9: λ((q1, . . . , qn)) := (EName)∗

Algorithm 4 Translating a DFA-based XSD to an equivalent
XSD.
Input: DFA-based XSD (A = (Q,EName, δ, q0), S, λ)
Output: XSD X = (EName,Types, ρ, T0)

equivalent to (A,S, λ)
1: Types := Q
2: T0 := {a[δ(q0, a)] | a ∈ S, δ(q0, a) 6= ∅}
3: for each state q ∈ Q do
4: rq := expression obtained from λ(q) by replacing

each symbol a with a[δ(q, a)]
5: ρ(q) = rq

minimization algorithm for XSDs from [22]. (More formally,
it is possible to efficiently produce an XSD such that the
set Types is minimal among all equivalent XSDs. Also, the
expressions rq do not become larger.) The difference with
the minimization algorithm from [22] would be that the de-
terministic regular expressions rq should not be minimized.
(In fact, it is not clear how to efficiently minimize a deter-
ministic regular expression — if it would be possible to do
this efficiently, the whole resulting XSD could be minimized
in polynomial time by the algorithm from [22].)

4.3 Worst-Case Optimality of the Translation
Algorithms

We now prove that both translation algorithms are worst-
case optimal. In particular, we show that both conversions
from the previous section can lead to exponential size blow-
ups in general. In Section 4.4 we exhibit fragments that are
prevalent in practice for which the conversions are efficient.

4.3.1 From XML Schema to BonXai
When converting an XML Schema (XSD) to a BonXai

Schema Definition (BXSD) using the procedures in Lemmas 4
and 5 it is possible that the BXSD is exponentially larger
than the XSD. The source of this exponential blow-up lies
in Algorithm 2 which is used in Lemma 5. More precisely,
line 1 constructs a regular expression equivalent to a DFA,
which is well known to be exponential in the worst case [10].

We will now show that this blow-up cannot be avoided
in general, which means that, in this sense, our conversion
algorithm is worst-case optimal. Recall, however, that our
conversion which we showed in Lemma 5 does not produce a
large number of rules in the BXSD. Indeed, if the DFAs that
Algorithm 2 encounters on line 2 only produce polynomially
large regular expressions, then the whole conversion is poly-

nomial as well. We discuss a particularly relevant such case
in Section 4.4.

The following theorem is the most technical result in the
paper. Its proof leverages a technique from [10]. The hard
part of our proof is to show that the exponential blowup
cannot be avoided by a clever use of the priorities in BonXai.

Theorem 8. There exists a family (Xn)n∈N of XSDs such
that, for each n, Xn has size O(n2) but the smallest BXSD

equivalent to Xn has size at least 2Ω(n).

Proof sketch. Essentially, one needs to show that there
exists a family of DFA-based XSDs (Xn)n∈N such that every
BXSD in which the left-hand-sides of rules reflect the DFA-
types of the Xn requires exponential-size regular expressions.
This means that we need to exhibit the existence of a family
of DFAs such that the smallest equivalent regular expressions
are necessarily exponential, even when they can exploit the
limited negation of BonXai’s priority system. To achieve
this, we significantly extend and strengthen a technique of
Ehrenfeucht and Zeiger [10] who showed that there is a class
of languages (Zn)n∈N, such that Zn can be accepted by a DFA
of size O(n2) but cannot be defined by a regular expression
of size smaller than 2n−1.

For every n ∈ N we let Σn = {aij | i, j ∈ {1, . . . , n}}. We
call i the source and j the target of a symbol aij . We define
Zn as

Zn =
{
w1 · · ·wm ∈ Σ∗n | ∀i ∈ {1, . . . ,m− 1},

∃j, k, l such that wiwi+1 = ajkakl
}
.

That is, in every word in Zn, the target of a symbol and the
source of the following symbol must be equal. Every word
w ∈ Σ∗n \ Zn has a first symbol ai` whose target ` does not
coincide with the source of the following symbol. We call `
the error index of w.

We now construct a family (Xn)n∈N of XSDs, such that
Xn is of size O(n2) and the smallest BXSD equivalent to

Xn has size 2Ω(n). We define Xn by its DFA-based XSD
(An, Sn, λn). To this end, we let Sn = Σn and choose the
components of An = (Q ∪Q′,Σn, δ, q1) as follows.
• Q = {qi|1 ≤ i ≤ n} and Q′ = {q′i|1 ≤ i ≤ n};

• for every qi ∈ Q and aj` ∈ Σ, δ(qi, aj`) =

{
q` if i = j

q′i if i 6= j

• and, for every q′i ∈ Q′ and aj` ∈ Σ, δ(q′i, aj`) = q′i,
• for every qi ∈ Q, λ(qi) = ε ∪ Σ,
• for every q′` ∈ Q, λ(q′`) = ε ∪ Σ ∪ {a``a``}.

In other words, An is a DFA that tests whether a word is in
Zn and remembers, for words not in Zn, their error index.

The documents valid with respect to Xn are thus charac-
terized by the following two properties.
• All label sequences over Σn are allowed in paths.
• The only allowed kind of branching is binary branching

of the form aij → a``a`` below nodes whose ancestor
path contains a Zn-error with error index `.

We note that, as branching can only take place below an error,
and the first error of a path is unique, in every document
there can be binary branching a``a`` with at most one kind
of symbols.

It is straightforward that Xn is of size O(n2). It can be

shown that every equivalent BXSD B is of size 2Ω(n).

4.3.2 From BonXai to XML Schema
We prove that the translation from BXSDs to XSDs is

worst-case optimal.



Theorem 9. There exists a family of BXSDs (Bn)n∈N
such that, for each n, the BXSD Bn has size O(n) but the
smallest XSD equivalent to Bn has size at least 2n.

Proof sketch. Let n ∈ N be arbitrary. Let Bn =
(ENamen, Sn, Rn) be the BXSD with

ENamen = {a, a1, . . . , an, b1, . . . , bn},

Sn = {a1, . . . , an}, and Rn consisting of the following rules:
//a → ε

//(b1 + · · ·+ bn) → ε
//(a1 + · · ·+ an) → (a+ a1 + · · ·+ an)

//a1//a1//a → b1
//a2//a2//a → b2

...
...

...
//an//an//a → bn

Here we wrote the regular expressions on the left-hand-side
of rules as in Section 2 with // as an abbreviation for EName∗.
This schema defines a set of unary (i.e., non-branching) trees
and its semantics is the following. If the ancestor path of
an a-element contains, for each 1 ≤ i ≤ n, at most one ai
element, its content model is ε. Otherwise, if j is the largest
number such that aj occurs at least two times on the path
to the a element, then this a element has bj as a child.

It can be proved with techniques from [22] that the smallest
XSD equivalent to the above BXSD is exponentially large in
n. Intuitively, in order to decide which bi is the child under
an a, the types of the XSD needs to keep track of the largest
j, for which aj has already occurred twice, and, worse, the
set of i > j, for which ai has already occurred once.

4.4 Efficient Translations for Fragments
Even though the translations between XSD and BonXai

in Sections 4.2.1 and 4.2.2 are provably optimal, they can
be exponential in the worst case. In this section, we argue
why we do not expect this to be a problem in practice. In
particular, we prove that the translation is polynomial for
a restriction of XSDs that accounts for the overwhelming
majority of schemas in practice. An examination of 225
XSDs from the Web revealed that in more than 98% the
content model of an element only depends on the label of
the element itself, the label of its parent, and the label of its
grandparent [21]. This motivates the study of the following
class of DFA-based XSDs.

Definition 10. A DFA-based XSD is k-suffix, if the type
of an element only depends of the last k symbols of its ances-
tor string. More precisely, a DFA-based XSD (A,S, λ) with
A = (Q,EName, δ, q0) is k-suffix based if A(w1a1 · · · ak) =
A(w2a1 · · · ak) for all strings w1, w2 over EName and symbols
a1, . . . , ak ∈ EName.

Hence, 98% of the XSDs in the aforementioned study have a
corresponding 3-suffix DFA-based XSD. Actually, this DFA-
based XSD can be obtained simply by applying the construc-
tion of Lemma 4 to the given XSD. Furthermore, according
to Lemmas 4 and 7, the translations between XSDs and
DFA-based XSDs are straightforward and very efficient. We
therefore do not revisit these constructions and focus on
translations between (k-suffix) DFA-based XSDs and BXSDs.
The BXSDs corresponding to this class of schemas can be
defined as follows.

Definition 11. A regular language L is a suffix language
if L = {w} or L = L(EName∗w) for some word w. It

is a k-suffix language if, additionally, |w| ≤ k. A BXSD
(EName, S,R) is k-suffix based if, for every rule r → s in R,
the left-hand side r is a k-suffix language.

The following theorem considers the translation from k-
suffix based BXSDs and k-suffix DFA-based XSDs. It is
similar in flavor to Proposition 5.2 in [16], but considers
rules with a priority system as in BonXai. Kasneci and
Schwentick avoided this issue by assuming that rules have
pairwise disjoint left-hand-side languages.

Theorem 12. Each k-suffix based BXSD can be translated
in polynomial time into an equivalent k-suffix DFA-based XSD
of linear size.

We now consider the reverse direction. An important dif-
ference with Theorem 12 is that this direction is exponential
in k, that is, it needs k to be constant in order to be polyno-
mial. However, as we noted before, in 98% of the schemas
occurring in the practical study of [21], we see that k ≤ 3.

Theorem 13. Let k be a constant. Each k-suffix DFA-
based XSD can be translated in polynomial time into an
equivalent k-suffix based BXSD.

Finally, we note that it is easy to decide if a given XSD
can be translated efficiently into a BXSD, i.e., whether it
corresponds to a k-suffix DFA-based XSD (where k can
either be fixed in advance or not). Questions of this kind
were investigated in [8, 14, 26].

5. CONCLUSIONS
We introduced BonXai with the explicit goal of reconcil-

ing the expressivity of XML Schema with the simplicity of
DTDs, thereby creating a de facto human-readable front-end
for XSDs and providing a means to simplify XSD develop-
ment. BonXai is a full-fledged schema language with many
features and a formal specification [18]. The language can
be employed in various scenarios (c.f., [19]) ranging from
the creation of novel XSDs to debugging of existing XSDs.
Furthermore, BonXai is built on a solid theoretical founda-
tion which is rooted in pattern-based schemas [20, 21] and
which facilitates transformation algorithms and their analysis.
While transforming between BonXai and XML Schema can
have high complexity in the worst case, our investigations
show that for a very large and practically relevant class this
is never the case. At the moment, BonXai cannot yet specify
simple types natively. This means that in order to use simple
types in BonXai one has to define them in an XSD which is
then to be imported in the BonXai schema. Adding native
support for simple type would probably be one of the most
desirable extensions of the current language.
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