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Abstract. The separability problem for word languages of a class C
by languages of a class S asks, for two given languages I and E from
C, whether there exists a language S from S that includes I and ex-
cludes E, that is, I ⊆ S and S ∩ E = ∅. It is known that separability
for context-free languages by any class containing all definite languages
(such as regular languages) is undecidable. We show that separability of
context-free languages by piecewise testable languages is decidable. This
contrasts with the fact that testing if a context-free language is piecewise
testable is undecidable. We generalize this decidability result by show-
ing that, for every full trio (a class of languages that is closed under
rather weak operations) which has decidable diagonal problem, separa-
bility with respect to piecewise testable languages is decidable. Examples
of such classes are the languages defined by labeled vector addition sys-
tems and the languages accepted by higher order pushdown automata
of order two. The proof goes through a result which is of independent
interest and shows that, for any kind of languages I and E, separability
can be decided by testing the existence of common patterns in I and E.

1 Introduction

We say that language I can be separated from E by language S if S includes I
and excludes E, that is, I ⊆ S and S∩E = ∅. In this case, we call S a separator.
We study the separability problem of classes C by classes S:

Given: Two languages I and E from a class C.
Question: Can I and E be separated by some language from S?

Separability is a classical problem in mathematics and computer science that
recently found much new interest. For example, recent work investigated the
separability problem of regular languages by piecewise testable languages [10,26],
locally testable and locally threshold testable languages [25] or by first order
definable languages [28]. Another recent example, which uses separation and goes
beyond regularity, is the proof of Leroux [19] for the decidability of reachability
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for vector addition systems or Petri nets. It greatly simplifies earlier proofs by
Mayr [21] and Kosaraju [18].

In this paper we focus on the theoretical underpinnings of separation by piece-
wise testable languages. Our interest in piecewise testable languages is mainly
because of the following two reasons. First, it was shown recently [10, 26] that
separability of regular languages (given by their non-deterministic automata)
by piecewise testable languages is in PTIME. We found the tractability of this
problem to be rather surprising.

Second, piecewise testable languages form a very natural class in the sense
that they only reason about the order of symbols. More precisely, they are finite
Boolean combinations of regular languages of the form A∗a1A

∗a2A
∗ · · ·A∗anA∗

in which ai ∈ A for every i = 1, . . . , n [30]. We are investigating to which extent
piecewise testable languages and fragments thereof can be used for computing
simple explanations for the behavior of complex systems [15].

Separation and Characterization. For classes C effectively closed under com-
plement, separation of C by S is a natural generalization of the characterization
problem of C by S, which is defined as follows. For a given language L ∈ C decide
whether L is in S. Indeed, L is in S if and only if L can be separated from its
complement by a language from S. The characterization problem is well studied.
The starting points were famous works of Schützenberger [29] and Simon [30],
who solved it for the regular languages by the first-order definable languages
and piecewise testable languages, respectively. There were many more results
showing that, for regular languages and a subclass thereof (often characterized
by a given logic), the problem is decidable, see for example [4, 22, 24, 27, 32, 34].
Similar problems have been considered for trees [3, 5, 7, 8].

Decidability. To the best of our knowledge, all the above work and in general
all the decidable characterizations were obtained in cases where C is the class of
regular languages, or a subclass of it. This could be due to several negative results
which may seem to form a barrier for any nontrivial decidability beyond regular
languages. For a context-free language (given by a grammar or a pushdown
automaton) it is undecidable to determine whether it is a regular language,
by Greibach’s theorem [14]. Furthermore, it is also undecidable to determine
whether a given context-free language is piecewise testable.

Concerning context-free languages, there is a strong connection between the
intersection emptiness problem and separability. Trivially, testing intersection
emptiness of two given context-free languages is the same as deciding if they can
be separated by some context-free language. However, in general, the negative
result is even more overwhelming. Szymanski and Williams [33] proved that
separability of context-free languages by regular languages is undecidable. This
was then generalized by Hunt [16], who proved that separability of context-free
languages by any class containing all the definite languages is undecidable. A
language L is definite if it can be written as L = F1A

∗ ∪ F2, where F1 and F2

are finite languages over alphabet A. As such, for definite languages, it can be
decided whether a given word w belongs to L by looking at the prefix of w of a
given fixed length. (The same statement holds for reverse definite languages, in



which we are looking at suffixes.) Containing all the definite, or reverse definite,
languages is a very weak condition. Note that if a logic can test what is the i-th
letter of a word and is closed under boolean combinations, it already can define
all the definite languages. In his paper, Hunt makes an explicit link between
intersection emptiness and separability. Hunt writes: “We show that separability
is undecidable in general for the same reason that the emptiness-of-intersection
problem is undecidable. Therefore, it is unlikely that separability can be used to
circumvent the undecidability of the emptiness-of-intersection problem.”

Our Contribution. In this paper, we show that the above mentioned quote does
not apply for separability by piecewise testable languages (PTLs): we show that
it can be decided whether two given context-free languages are separable by a
PTL. This may come as a surprise in the light of the undecidability results we
already discussed.

In fact, we prove a stronger result that implies that separability by PTLs is
also decidable for some rather expressive classes such as Petri net languages (also
known as labeled vector addition system languages). This result is an equivalence
between decidability of separability by PTLs and decidability of a problem that
we call diagonal problem. One direction of the equivalence is proved here: First
we show that (arbitrary) languages I and E are not separable by PTL if and
only if they possess a certain common pattern. Then, we use this fact to reduce
to the diagonal problem. The other direction of the equivalence is due to Georg
Zetzsche [35].

A curiosity of this work is perhaps the absence of algebraic methods. Most
decidability results we are aware of have considered syntactic monoids of regular
languages and investigated properties thereof. The exceptions are the recent
studies of separability of regular languages by piecewise testable languages (e.g.,
[10,26]). However, since the algebraic framework for regular languages is so rich,
some may not find it clear whether [10,26] do or do not rely on algebraic methods;
perhaps simply in a rephrased way. Here, the situation is different in the sense
that for context-free languages the syntactic monoid is infinite and it is difficult
to design any algebraic framework for them. So the work shows that it is not
always necessary to use algebraic techniques to prove separability questions.

2 Preliminaries

The set of all integers and nonnegative integers are denoted by Z and N respec-
tively. A word is a concatenation w = a1 · · · an of symbols ai that come from
a finite alphabet A. The length of w is n, the number of its symbols. The al-
phabet of w is the set {a1, . . . , an} and is denoted alph(w). For a subalphabet
B ⊆ A, a word v ∈ A∗ is a B-subsequence of w, denoted v �B w, if v = b1 · · · bm
and w ∈ B∗b1B

∗ · · ·B∗bmB∗. (We do not require that {b1, . . . , bm} ⊆ B or
B ⊆ {b1, . . . , bm}.) We refer to the relation �A as the subsequence relation and
denote it by �. A regular word language over alphabet A is a piece language if
it is of the form A∗a1A

∗ · · ·A∗anA∗ for some a1, . . . , an ∈ A, that is, it is the
set of words having a1 · · · an as a subsequence. A regular language is a piecewise



testable language if it is a (finite) boolean combination of piece languages. The
class of all piecewise testable languages is denoted PTL.

Separability and Common Patterns. The first main result of the paper
proves that two (not necessarily regular) languages are not separable by PTL if
and only if they have a common subpattern. We now make this more precise.

A factorization pattern is an element of (A∗)p+1 × (2A \ ∅)p for some p ≥ 0.

In other terms, if (−→u ,
−→
B ) is such a factorization pattern, there exist words

u0, . . . , up ∈ A∗ and nonempty alphabets B1, . . . , Bp ⊆ A such that −→u =

(u0, . . . , up) and
−→
B = (B1, . . . , Bp). For B ⊆ A, we denote by B~ the set of

words with alphabet exactly B, that is, B~ = {w ∈ B∗ | alph(w) = B}. Given a

factorization pattern (−→u ,
−→
B ), with −→u = (u0, . . . , up) and

−→
B = (B1, . . . , Bp), let

L(−→u ,
−→
B,n) = u0(B~

1 )nu1 · · ·up−1(B~
p )nup.

In other terms, in a word of L(−→u ,
−→
B,n), the infix between uk−1 and uk is required

to be the concatenation of n words, each containing all letters of Bk (for each

1 ≤ k ≤ p). A sequence (wn)n is said (−→u ,
−→
B )-adequate if

∀n ∈ N, wn ∈ L(−→u ,
−→
B,n).

Finally, language L contains the pattern (−→u ,
−→
B ) if there exists an infinite se-

quence of words (wn)n in L that is (−→u ,
−→
B )-adequate. We prove the following

Theorem in Section 3:

Theorem 1. Two word languages I and E are not separable by PTL if and

only if they contain a common pattern (−→u ,
−→
B ).

A Characterization for Decidable Separability. The second main result is
an algorithm that decides separability for full trios that have a decidable diagonal
problem. Full trios, also called cones, are language classes that are closed under
rather weak operations [6, 12].

Fix a language L over alphabet A. For an alphabet B, the B-projection of a
word is its longest subsequence consisting of symbols from B. The B-projection
of a language L is the set of all B-projections of words belonging to L. Therefore,
the B-projection of L is a language over alphabet A∩B. The B-upward closure
of a language L is the set of all words that have a B-subsequence in L, i.e.,{

w ∈ (A ∪B)∗ | ∃v ∈ L such that v �B w
}
.

In other words, the B-upward closure of L consists of all words that can be
obtained from taking a word in L and padding it with symbols from B.

A class of languages C is closed under an operation op if L ∈ C implies that
op(L) ∈ C. We use term effectively closed if, furthermore, the representation of
op(L) can be effectively computed from the representation of L.

A nonempty class C of languages is a full trio if it is effectively closed under:
1. B-projection for every finite alphabet B,



2. B-upward closure for every finite alphabet B, and
3. intersection with regular languages.

We note that full trios are usually defined differently (through closures under ho-
momorphisms or rational transductions [6,12]) but we use the above mentioned
properties in the proofs and they are easily seen to be equivalent.

The problem that we will require to be decidable is the diagonal problem,
which we explain next. Let A = {a1, . . . , an}. For a symbol a ∈ A and a word
w ∈ A∗, let #a(w) denote the number of occurrences of a in w. The Parikh image
of a word w is the n-tuple (#a1

(w), . . . ,#an
(w)). The Parikh image of a language

L is the set of all Parikh images of words from L. A tuple (m1, . . . ,mn) ∈ Nn

is dominated by a tuple (d1, . . . , dn) ∈ Nn if di ≥ mi for every i = 1, . . . , n. The
diagonal problem for language L asks whether there exist infinitely many m ∈ N
such that the tuple (m, . . . ,m) is dominated by some tuple in the Parikh image
of L. We are now ready to state the second main result:

Theorem 2. For each full trio C, the diagonal problem for C is decidable if and
only if separability of C by PTL is decidable.

In Section 4 we present an algorithm to decide separability for full trios that
have a decidable diagonal problem, showing one direction of the equivalence.
The algorithm does not rely on semilinearity of Parikh images. For example, in
Section 5 we apply the lemma to Vector Addition System languages, which do
not have a semilinear Parikh image. Very recently, we were informed by Georg
Zetzsche [35] that the other implication also holds and that, therefore, there
actually is an equivalence.

3 Common Patterns

In this section we prove Theorem 1. We say that a sequence is adequate if it

is (−→u ,
−→
B )-adequate for some factorization pattern. The following statement can

be shown using Simon’s Factorization Forest Theorem [31].

Lemma 3. Every sequence (wn)n of words admits an adequate subsequence.

For a word w, denote its first (resp., last) letter by first(w), (resp., last(w)).

We call a factorization pattern (−→u ,
−→
B ) = ((u0, . . . , up), (B1, . . . , Bp)) proper if

(i) for all i, last(ui) /∈ Bi+1 and first(ui) /∈ Bi, and (ii) for all i, ui = ε⇒
(
Bi *

Bi+1 and Bi+1 * Bi

)
.

Note that if a sequence (wn)n is adequate, then there exists a proper factor-

ization pattern (−→u ,
−→
B ) such that (wn)n is (−→u ,

−→
B )-adequate. This is easily seen

from the following observations and their symmetric counterparts:

u = a1 · · · ak and ak ∈ B ⇒ a1 · · · ak(B~)n ⊆ a1 · · · ak−1(B~)n,
Bi−1 ⊆ Bi ⇒ (Bi−1

~)n(Bi
~)n ⊆ (Bi

~)n.

The following lemma gives a condition under which two sequences share a
factorization pattern and is very similar to [2, Theorem 8.2.6]. In its statement,
we write v ∼n w for two words v and w if they have the same subsequences up
to length n, that is, for every word u of length at most n, u � v iff u � w.



Lemma 4. Let (−→u ,
−→
B ) and (

−→
t ,
−→
C ) be proper factorization patterns. Let (vn)n

and (wn)n be two sequences of words such that

– (vn)n is (−→u ,
−→
B )-adequate

– (wn)n is (
−→
t ,
−→
C )-adequate

– vn ∼n wn for every n ≥ 0.

Then, −→u =
−→
t and

−→
B =

−→
C .

Now we are equipped to prove Theorem 1. We only show the “only if” direc-
tion here, due to space restrictions.

Proof (of Theorem 1, “only-if”). It is not difficult to see that I and E are
not PTL-separable iff for every n ∈ N, there exist vn ∈ I and wn ∈ E such
that vn ∼n wn. This defines an infinite sequence of pairs (vn, wn)n, from which
we will iteratively extract infinite subsequences to obtain additional properties,
while keeping ∼n-equivalence.

By Lemma 3, one can extract from (vn, wn)n a subsequence whose first
component forms an adequate sequence. From this subsequence of pairs, us-
ing Lemma 3 again, we extract a subsequence whose second component is also
adequate (note that the first component remains adequate). Therefore, one can
assume that both (vn)n and (wn)n are themselves adequate. This means there
exist proper factorization patterns for which (vn)n resp. (wn)n are adequate.
Lemma 4 shows that one can choose the same proper factorization pattern

(−→u ,
−→
B ) such that both (vn)n and (wn)n are (−→u ,

−→
B )-adequate. This means that

I and E contain a common pattern (−→u ,
−→
B ). �

4 The Algorithm for Separability

We prove one direction of Theorem 2 by showing that, for full trios with decidable
diagonal problem, we can decide separability by PTL. Fix two languages I and
E from a full trio C which has decidable diagonal problem.

To test whether I is separable from E by a piecewise testable language S,
we run two semi-procedures in parallel. The positive one looks for a witness that
I and E are separable by PTL, whereas the negative one looks for a witness
that they are not separable by a PTL. Since one of the semi-procedures always
terminates, we have an effective algorithm that decides separability. It remains
to describe the two semi-procedures.

Positive semi-procedure. We first note that, when a full trio has decidable
diagonal problem, it also has decidable emptiness.4 The positive semi-procedure
enumerates all PTLs over the union of the alphabets of I and E. For every
PTL S it checks whether S is a separator, so if I ⊆ S and E ∩ S = ∅. The first

4 Emptiness of L over alphabet A can be decided by taking the {x}-upward closure
of L, where x /∈ A, intersecting the resulting language with the regular language
(A∪{x})∗A(A∪{x})∗, and then taking the {x}-projection. In the resulting language,
the diagonal problem returns true iff L is nonempty [36].



test is equivalent to I ∩ (A∗ \ S) = ∅. Thus both tests boil down to checking
whether the intersection of a language from the class C (I or E, respectively)
and a regular language (S and A∗ \ S, respectively) is empty. This is decidable,
as C is effectively closed under taking intersections with regular languages and
has decidable emptiness problem.

Negative semi-procedure. Theorem 1 shows that there is always a finite wit-

ness for inseparability: a pattern (−→u ,
−→
B ). The negative semi-procedure enumer-

ates all possible patterns and for each one, checks the condition of Theorem 1.

We now show how to test this condition, i.e., for a pattern (−→u ,
−→
B ) test whether

for all n ∈ N the intersection of L(−→u ,
−→
B,n) with both I and E is nonempty.

Checking the condition. Here we show for an arbitrary language from C how

to check whether for all n ∈ N its intersection with the language L(−→u ,
−→
B,n)

is nonempty. Fix L ∈ C over an alphabet A and a pattern (−→u ,
−→
B ), where

−→u = (u0, . . . , uk) and
−→
B = (B1, . . . , Bk). Intuitively, we just consider a di-

agonal problem with some artifacts: we are counting the number of occurrences
of alphabets Bi and checking whether those numbers can simultaneously become
arbitrarily big.

We show decidability of the non-separability problem by a formal reduction
to the diagonal problem. We perform a sequence of steps. In every step we
will slightly modify the considered language L and appropriately customize the
condition to be checked. Using the closure properties of the class C we will assure
that the investigated language still belongs to C.

First we add special symbols $i, for i ∈ {1, . . . , k}, which do not occur in
A. These symbols are meant to count how many times alphabet Bi is “fully
occurring” in the word. Then we will assure that words are of the form

u0 (B1 ∪ {$1})∗ u1 · · ·uk−1 (Bk ∪ {$k})∗ uk,

which already is close to what we need for the pattern. Then we will check
that between every two symbols $i (with the same i), every symbol from Bi

occurs, so that the $i are indeed counting the number of iterations through
the entire alphabet Bi. Finally we will remove all the symbols except those
from {$1, . . . , $k}. The resulting language will contain only words of the form
$∗1$∗2 · · · $∗k and the condition to be checked will be exactly the diagonal problem.

More formally, let L0 := L. We modify iteratively L0, resulting in L1, L2, L3,
and L4. Each of them will be in C and we describe them next.

Language L1 is the {$1, . . . , $k}-upward closure of L0. Thus, L1 contains, in
particular, all words where the $i are placed “correctly”, i.e., in between two
$i-symbols the whole alphabet Bi should occur. However at this moment we do
not check it. By closure under B-upward closures, language L1 belongs to C.

Note that L1 also contains words in which the $i-symbols are placed totally
arbitrary. In particular, they can occur in the wrong order. The idea behind L2

is to consider only those words in which the $i-symbols were guessed at least in
the good areas. Concretely, L2 is an intersection of L1 with the language

u0 (B1 ∪ {$1})∗ u1 · · ·uk−1 (Bk ∪ {$k})∗ uk.



By the closure under intersection with regular languages, L2 belongs to C.
Language L2 still may contain words, such that in between two $i-symbols

not all the symbols from Bi occur. We get rid of these by intersecting L2 with

u0($1B
~
1 )∗$1u1 · · ·uk−1($kB

~
k )∗$kuk.

As such, we obtain L3 which, again by closure under intersection with regular
languages, belongs to C.5

Note that intersection of L = L0 with the language L(−→u ,
−→
B,n) is nonempty

if and only if L3 contains a word with precisely n + 1 symbols $i for every i ∈
{1, . . . , k}. Indeed, L3 just contains the (slightly modified versions of) words from
L0 which fit into the pattern and in which the symbols $i “count” occurrences
of B~

i . Furthermore, for every word in L3, the word obtained by removing some
occurrences of some $i is in L3 as well. It is thus enough to focus on the $i-
symbols. Language L4 is therefore the {$1, . . . , $k}-projection of L3. By the
closure under projections, language L4 belongs to C. The words contained in L4

are therefore of the form
$a1
1 · · · $ak

k ,

such that there exists w ∈ L with at least ai − 1 occurrences of B~
i . Therefore

intersection of L with L(−→u ,
−→
B,n) is nonempty for all n ≥ 0 if and only if the

tuple (n, . . . , n) belongs to the Parikh image of L4 for infinitely many n ≥ 0.
This is precisely the diagonal problem, which we know to be decidable for C.

5 Decidable Classes

In this section we show that separability by piecewise testable languages is de-
cidable for a wide range of classes, by proving that they meet the conditions
of Theorem 2. In particular, we show this for context-free languages, languages
of labeled vector addition systems (which are the same as languages of labeled
Petri nets). We comment also on other natural classes of languages containing
all the regular languages.

Theorem 5. Separability by piecewise testable languages is decidable for
1. context-free languages; and for
2. languages of labeled vector addition systems.

Our approach also allows to mix the above scenarios. That is, separability of a
context-free language from the language of a labeled vector addition system is
also decidable. In the remainder of this section, we prove the theorem.

Context-Free Languages. Context-free languages are well-known to be a full
trio. The only nontrivial condition is deciding the diagonal problem. A set S ⊆
Nk is linear if it is of the form

S = {v + n1v1 + . . .+ nmvm | n1, . . . , nm ∈ N}
5 Of course, one could also immediately obtain L3 from L1 by performing a single

intersection with a regular language.



for some base vector v ∈ Nk and period vectors v1, . . . , vm ∈ Nk. A semilinear
set is a finite union of linear sets. Parikh’s theorem [23] states that the Parikh
image of a context-free language is semilinear, moreover the computation of its
description as a (finite) union of linear sets if effective.6 It is enough to check
whether for infinitely many n ≥ 0 the mentioned semilinear set contains a tuple
that dominates (n, . . . , n).

Semilinear sets are exactly these, which can be defined by Presburger logic.
Moreover, the translation can be done effectively. Assume that |A| = k, so the
Parikh image P of the considered language is a subset of Nk and φ is a Presburger
formula describing P having exactly k free variables. Then

ψ = ∀n∈N ∃x1,x2,...,xk

( ∧
i∈{1,...,k}

(xi ≥ n)
)
∧ φ(x1, x2, . . . , xk)

is true if and only if the diagonal problem for the considered language is answered
positively. Decidability of the Presburger logic finishes the proof of decidability
of the diagonal problem for context-free languages. We refer for the details of
semilinear sets and Presburger logic to [13]. Finally, by Theorem 2, separability
for context-free languages by piecewise testable languages is decidable.

Languages of Labeled Vector Addition Systems and Petri Nets. A k-
dimensional labeled vector addition system, or labeled VAS M = (A, T, `, s, t) over
alphabet A consists of a set of transitions T ⊆ Zk, a labeling ` : T → A ∪ {ε},
where ε stands for the empty word and source and target vectors s, t ∈ Nk. A
labeled VAS defines a transition relation on the set Nk of markings. For two
markings u, v ∈ Nk we write u

a−→ v if there is r ∈ T such that u + r = v
and `(r) = a, where the addition of vectors is defined as an addition on every
coordinate. For two markings u, v ∈ Nk we say that u reaches v via a word
w if there is a sequence of markings u0 = u, u1, . . . , un−1, un = v such that

ui
ai−→ ui+1 for all i ∈ {0, . . . , n − 1} and w = a0 · · · an−1. For a given labeled

VAS M the language of M , denoted L(M), is the set of all words w ∈ A∗ such
that source reaches target via w. We note that languages of labeled VASs are
the same as languages of labeled Petri nets.

Since labeled VAS languages are known to be a full trio [17], we only need to
prove decidability of the diagonal problem. First we will show that it is enough
to consider VASs in which the target marking equals (0, . . . , 0). To this end,
let M be a k-dimensional labeled VAS with source vector s = (s1, . . . , sk) and
target vector t = (t1, . . . , tk). We transform M to a new VAS M ′ in which we
add two auxiliary coordinates, called life coordinates. The source coordinate is
enriched by 0 on one life coordinate and by 1 on the other one, so it is s′ =
(s1, . . . , sk, 0, 1) ∈ Nk+2. Every original transition has two copies. One of these
transitions subtracts one from the first life coordinate and adds one to the second
life coordinate, the second transition does the opposite. Note that nonemptiness
of life coordinates serve just as a necessary condition for firing any transition,
as every transition subtracts one from one of these coordinates. Therefore, the

6 A simple proof of this fact can be found in [11].



original source marking s reaches the original target marking t via the same set
of words by which the new source marking s′ reaches either (t1, . . . , tk, 0, 1) or
(t1, . . . , tk, 1, 0). We add also two final transitions, which subtract the original
target vector, subtract one from one of the life coordinates and are labeled ε.
Therefore, s can reach t by a word w in M if and only if s′ can reach 0k+2 by
w in M ′. Indeed, the implication from left to right is immediate. On the other
hand, in order to reach the marking 0k+2 in M ′, the last transition has to be the
final transition, so implication from right to left also holds. Thus it is enough to
solve the diagonal problem for VASs in which the target marking is (0, . . . , 0).

We will show that this diagonal problem is decidable by a reduction to the
place-boundedness problem for VASs with one zero test, which is decidable due to
Bonnet et al. [9]. We modify the considered VAS in the following way. For every
letter a ∈ A we add a new letter-coordinate, which is counting how many times
we read the letter a, that is, for every transition which is labeled by a ∈ A, we
add 1 in the letter-coordinate corresponding to a and 0 in the letter-coordinates
corresponding to other letters. The set of letter-coordinates computes the Parikh
image of a word. We also add one new minimum-coordinate and a new transi-
tion, labeled by ε, which subtracts one from all the letter-coordinates and adds
one to the minimum-coordinate. It is easy to see that minimum-coordinate can
maximally reach the minimum number from the Parikh image tuple. Addition-
ally, for every letter-coordinate we add a transition, labeled by ε, which can
decrease this coordinate by one. The diagonal problem for the original VAS is
equivalent to the question whether for infinitely many n ≥ 0 the source marking,
enriched by zeros in the new coordinates, reaches a marking (0, . . . , 0, n), with
zeros everywhere beside the minimum-coordinate with number n. This can be
easily reduced to the place-boundedness for a VAS with one zero test. We do
not show the details. Intuitively, the zero test checks whether there are zeros
everywhere else than the minimum-coordinate and we check whether under this
condition the minimum-coordinate can get unbounded. This finishes the proof
of decidability of the diagonal problem for labeled VASs.

Other classes. Among another natural language classes extending regular lan-
guages one can think about context-sensitive languages. Unfortunately context-
sensitive languages do not meet the conditions of Theorem 2, as they are no full
trio, nor is their emptiness problem decidable.

Very recently, Zetzsche [36] showed that indexed languages [1] or, equiva-
lently, languages accepted by higher-order pushdown automata of order two [20]
fulfill the conditions of Theorem 2 and therefore have decidable separability by
PTL. His proof showing that indexed languages have a decidable diagonal prob-
lem is much more involved than the one for context-free languages we presented
here. This shows that separability of languages definable by pushdown automata
of order two by PTL is decidable as well. It would be interesting to know if it
is decidable for pushdown automata for even higher order as well.



6 Concluding Remarks

Since the decidability results we presented seem to be in strong contrast with the
remark of Hunt in the introduction, we briefly comment on this. What we essen-
tially do is show that undecidable emptiness-of-intersection for a class C does not
always imply undecidability for separability of C with respect to some nontrivial
class of languages. In the case of separability with respect to piecewise testable
languages, the main reason is basically that we only need to construct inter-
sections of languages from C with languages that are regular (or even piecewise
testable). Here, the fact that such intersections can be effectively constructed,
together with decidable emptiness and diagonal problems seem to be sufficient
for decidability.

Regarding future work, we see many interesting directions and new ques-
tions. Which language classes have a decidable diagonal problem? Which other
characterizations are there for decidable separability by PTL? Can Theorem 2
be extended to also give complexity guarantees? Can we find similar character-
izations for separability by subclasses of PTL, as considered in [15]?
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Théorique, 13(1):19–30, 1979.

18. S. R. Kosaraju. Decidability of reachability in vector addition systems (preliminary
version). In STOC, pages 267–281, 1982.

19. J. Leroux. The general vector addition system reachability problem by Presburger
inductive invariants. LMCS, 6(3), 2010.

20. A. N. Maslov. Multilevel stack automata. Problems of Information Transmission,
12(1):38–42, 1976.

21. E. W. Mayr. An algorithm for the general Petri net reachability problem. SIAM
J. Comput., 13(3):441–460, 1984.

22. R. McNaughton. Algebraic decision procedures for local testability. Math. Syst.
Theory, 8(1):60–76, 1974.

23. R. Parikh. On context-free languages. J. ACM, 13(4):570–581, 1966.
24. J.-E. Pin and P. Weil. Polynomial closure and unambiguous product. Theory

Comput. Syst., 30(4):383–422, 1997.
25. T. Place, L. van Rooijen, and M. Zeitoun. Separating regular languages by locally

testable and locally threshold testable languages. In FSTTCS, pages 363–375,
2013.

26. T. Place, L. van Rooijen, and M. Zeitoun. Separating regular languages by piece-
wise testable and unambiguous languages. In MFCS, pages 729–740, 2013.

27. T. Place and M. Zeitoun. Going higher in the first-order quantifier alternation
hierarchy on words. In ICALP, pages 342–353, 2014.

28. T. Place and M. Zeitoun. Separating regular languages with first-order logic. In
CSL-LICS, pages 75:1–75:10. ACM, 2014.

29. M. P. Schützenberger. On finite monoids having only trivial subgroups. Inform.
Control, 8(2):190–194, 1965.

30. I. Simon. Piecewise testable events. In ICALP, pages 214–222. Springer, 1975.
31. I. Simon. Factorization forests of finite height. Theor. Comput. Sci., 72(1):65–94,

1990.
32. H. Straubing. Semigroups and languages of dot-depth two. Theor. Comput. Sci.,

58:361–378, 1988.
33. T. Szymanski and J. Williams. Noncanonical extensions of bottom-up parsing

techniques. SIAM J. Comput., 5(2), 1976.
34. Y. Zalcstein. Locally testable languages. J. Comput. Syst. Sci., 6(2):151–167, 1972.
35. G. Zetzsche. Personal communication.
36. G. Zetzsche. An approach to computing downward closures. In ICALP, 2015. To

appear, full version available at http://arxiv.org/abs/1503.01068.

http://arxiv.org/abs/1503.01068

	A Note on Decidable Separability by Piecewise Testable Languages
	Introduction
	Preliminaries
	Common Patterns
	The Algorithm for Separability
	Decidable Classes
	Concluding Remarks


