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Abstract
We investigate efficient view maintenance for MSO-definable
queries over trees or, more precisely, efficient enumeration of an-
swers to MSO-definable queries over words and trees which are
subject to local updates. For words we exhibit an algorithm that
uses an O(n) preprocessing phase and enumerates answers with
O(logn) delay between them. When the word is updated, the al-
gorithm can avoid repeating expensive preprocessing and restart the
enumeration phase within O(logn) time. For trees, our algorithm
usesO(n) preprocessing time, enumerates answers withO(log2 n)
delay, and can restart enumeration within O(log2 n) time after re-
ceiving an update to the tree. This significantly improves the cost
of recomputing the answers of a query from scratch. Our algo-
rithms and complexity results in the paper are presented in terms
of node-selecting automata representing the MSO queries.

Categories and Subject Descriptors F.2.0 [Analysis of Algo-
rithms and Problem Complexity]: General; F.4.1 [Mathemati-
cal Logic and Formal Languages]: Computational Logic; H.2.8
[Database Management]: Database Applications

General Terms Algorithms, Languages, Theory

Keywords Tree Automata, Query Enumeration, XPath

1. Introduction
Efficient query evaluation is the most central problem in databases.
Given a queryQ and a databaseD, we are asked to compute the set
or multiset Q(D) of tuples of Q on D. In general, the number of
tuples in Q(D) can be extremely large: when Q has arity k and D
has size n, then Q(D) can contain nk tuples. Since D is typically
very large in database applications, it may be unfeasible to compute
Q(D) in its entirety.

This observation has triggered several lines of research that aim
at addressing this problem. For example, in top-k query answering
the goal is to find the k most relevant answers to a query (according
to some heuristic). Another interesting way to deal with this prob-
lem is known as query enumeration (see, e.g., [1, 7, 8, 12, 13, 17]).
In query enumeration, one is interested in producing the answers
of Q(D) one by one, preferably quickly, without repetition. More
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precisely, query enumeration aims at producing a small number of
answers first and then, on demand, producing further small batches
of answers as long as the user desires or until all answers are de-
pleted. Existing algorithms for query enumeration usually consist
of two phases: the preprocessing phase, which lasts until the first
answer is produced, and the enumeration phase in which next an-
swers are produced without repetition. It is natural to try to opti-
mize two kinds of time intervals in this procedure: the time of the
preprocessing phase and the delay between answers, which is the
time required between two answers in the enumeration phase. Thus,
when one can answer Q(D) with preprocessing time p and delay
d, one can compute Q(D) in time p + d · |Q(D)|, where |Q(D)|
is the number of answers.

Much attention has been given to finding algorithms that answer
queries with a linear-time preprocessing phase and constant-time
delay [17]. To the best of our knowledge, all existing solutions for
query enumeration have the drawback that they are static: When-
ever the underlying data D changes, one needs to restart the pre-
processing phase before answers can be enumerated again. Since
databases can be subjected to frequent updates and preprocessing
typically costs linear time, this can again be too costly. We want to
address this concern and investigate what can be done if one wants
to deal with such updates more efficiently than simply re-starting
the preprocessing phase.

We study the enumeration problem for MSO queries with free
node variables, over words and trees. Furthermore, the structures
can be subjected to local updates. For words we consider updates
that relabel a node, insert a node, or delete a node. For trees, updates
can relabel a node, or insert/delete a leaf. Our aim is to make the
enumeration phase insensitive to such updates: when our algorithm
is producing answers with a small delay in the enumeration phase
and the underlying data D is updated, we can re-start enumerating
on the new data within the same delay.

For MSO sentences over trees, this problem has been studied by
Balmin, Papakonstantinou, and Vianu [2]. Balmin et al. show how
one can efficiently maintain satisfaction of a finite tree automaton
(and therefore, an MSO property) on a tree t which is subject to
updates. More precisely, when an update transforms t to t′, they
want to be able to decide very quickly after the update whether
t′ is accepted by the automaton. Taking n as the size of t, they
show that, using a one-time preprocessing phase of time O(n) to
construct an auxiliary data structure, one can always decide within
time O(log2 n) after the update whether t′ is accepted. The delay
between answers is irrelevant in the setting of Balmin et al. since
their queries have a boolean answer. Our goal is to extend Balmin
et al.’s result to MSO queries of arity k while guaranteeing a small
delay between answers.

Although we do not obtain constant-delay algorithms as in the
above mentioned work on static words and trees, we can prove that,
in the dynamic setting O(logn) delay over words and O(log2 n)



delay over trees is possible. This means that, after receiving an
update, we do not need to restart the O(n) preprocessing phase
but only require O(logn) time (resp., O(log2 n) time) to produce
the first answer on the updated word (resp., tree) and continue
enumerating from there. We allow updates to arrive at any time:
If an update arrives during the enumeration phase, we immediately
start the enumeration phase for the new structure.

The complexity results in this paper are presented in terms
of the size of the word or tree; the arity k of the query; and
the number |Q| of states of a non-deterministic node-selecting fi-
nite (tree) automaton for the query. (The connection between run-
based node-selecting automata and MSO-queries is well known,
see, e.g. [15, 20].) Two remarks should be kept in mind when mea-
suring complexity in terms of query size. First, MSO queries can
be non-elementary smaller than their equivalent non-deterministic
node-selecting (tree) automata. Therefore, our enumeration algo-
rithm is non-elementary in terms of the MSO formula, which can-
not be avoided unless P = NP [9]. (For this reason, MSO is usually
not used as a query language in practice; although it is widely re-
garded as a good yardstick for expressiveness.) Second, the arity
k of the queries is usually very small in practical scenarios. (For
example, k = 2 suffices for modelling XPath queries, which are
central in XML querying.)

Related Work
To the best of our knowledge, this paper is the first to formally study
enumeration problems on dynamic trees.

Bagan [1] showed that (fixed) monadic second-order (MSO)
queries can be evaluated with linear time preprocessing and con-
stant delay over structures of bounded tree-width. Independently,
another constant delay algorithm (but with O(n logn) preprocess-
ing time) was obtained by Courcelle [7]. Recently, Kazana and
Segoufin [13] provided an alternative proof of Bagan’s result based
on a deterministic factorization forest theorem by Colcombet [6],
which is itself based on a result of Simon [18]. Such (deterministic)
factorization forests provide a good divide-and-conquer strategy for
words and trees, but it is unclear how they can be maintained under
updates. It seems that they would have to be recomputed entirely
after an update which is too expensive for our purposes.

With exception of [1], which presents an algorithm that is cubic
in terms of the tree automaton, these papers present complexities
in terms of the size of the trees only, that is, they consider the
MSO formula to be constant. To the best of our knowledge, the
data structures in these approaches cannot be updated efficiently if
the underlying tree is updated. A recent overview of enumeration
algorithms with constant delay was given in [17].

Balmin, Papakonstantinou, and Vianu provide an algorithm that
can efficiently decide if local updates on trees preserve a Boolean
MSO property in time O(log2 n · |N |3) where N is the size of
the tree automaton [2]. A main idea in Balmin et al. is a decom-
position of trees into heavy paths which allows one to decompose
the problem for trees into O(logn) similar problems on words, for
which a solution was known by Patnaik and Immerman [16]. Pat-
naik and Immerman’s divide-and-conquer approach was also used
by Björklund et al. [4] in an algorithm for maintaining whether up-
dates preserve a property specified by an XPath query. Although the
XPath dialects studied in [4] are less expressive than tree automata,
they may be exponentially more succinct. These papers essentially
consider Boolean queries and are not concerned with efficiently
enumerating answers.

Bojanczyk and Figueira [5] consider evolutions t1, . . . , tm of
trees (which they call document evolutions) and evaluate two-
dimensional logics over such sequences. Such logics can express
properties of single trees and how such properties evolve over time.
(For example, “eventually, every a-node will have a b-child”.) They

read the input as t1 followed by a sequence of m− 1 local updates
and give an O(m · logn) algorithm to decide if a formula holds
over the evolution (assuming m > n). Therefore, in the tempo-
ral dimension, the setting in [5] is more general than ours — we
cannot compare different versions of the tree. Since they are only
concerned with satisfaction of a property, they do not consider
small delay algorithms for enumerating answers.

2. Definitions
By [n] we denote the finite set {1, . . . , n}. The number of elements
of a finite set A is denoted |A|. For a finite set A, we define a
multiset m over A as a function m : A → N. Here, m(a) is the
multiplicity of a in m. We say that a ∈ m if m(a) > 0. The size
of m, denoted |m|, is the sum

∑
a∈Am(a) of all multiplicities

of elements in m. We denote multisets in brackets {| and |}. E.g.,
in m = {|1, 1, 3|} we have that m(1) = 2 and m(3) = 1. The
union m = m1 ∪ m2 (resp., intersection m = m1 ∩ m2) of
multisets is defined as usual, taking m(a) = m1(a) + m2(a)
(resp., m(a) = min{m1(a),m2(a)}) for every a ∈ A. We say
that m1 ⊆ m2 if m1(a) ≤ m2(a) for all a ∈ A.

By Σ we denote an alphabet, i.e., a finite set of labels. A word
(over alphabet Σ) is a finite sequence w = a1 · · · an of labels
from Σ. To a word w we associate a set of nodes Nodes(w) =
{v1, . . . , vn} such that each node vi bears the label lab(vi) = ai.
Since nodes in words are linearly ordered (due to the structure
of the word) we often take Nodes(w) = {1, . . . , n} to simplify
notation. However, our results do not require that Nodes(w) =
{1, . . . , n}. For vi, vj with 1 ≤ i ≤ j ≤ n we denote by w[vi..vj ]
the subword ai · · · aj .

Trees in this paper are labeled, rooted, and binary. For every tree
t, we denote the set of nodes of t by Nodes(t) and the number of
nodes (or the size) of t by |t|. Therefore, each tree t has a unique
root and every node has 0, 1, or 2 children. Nodes in trees which
have no children are called leaves. The (unique) Σ-label of node v
is denoted by lab(v).

For a finite set A and a word w ∈ A∗ or tuple s = (a1, . . . , ak)
∈ Ak, we regularly need the set of ingredients occurring in it.
We refer to this set as set(w) or set(s), respectively. It is defined
as set(w) := {a ∈ A | ∃v ∈ Nodes(w), lab(v) = a} and
set(s) = {a1, . . . , ak}.

2.1 Automata and Selecting Automata
We use (node- and tuple-) selecting finite automata (see, e.g., [10,
14]) as formalism for queries. It is well-known that these can
express MSO queries with free node variables (Section 3 of [15]).
We start by recalling notation for ordinary finite automata. A non-
deterministic finite automaton (NFA) is a tuple N = (Q,Σ, δ, q0,
F ), whereQ is the finite set of states, Σ the alphabet, q0 is the initial
state, and F ⊆ Q the set of accepting states. The transition function
δ has signature Q × Σ → 2Q. When q2 ∈ δ(q1, a), it means
that, whenever N is in state q1, reading an a ∈ Σ can bring it in
state q2. The function δ∗ extends δ to strings in the canonical way,
that is, δ∗(q, a) = δ(q, a) and δ∗(q, aw) = ∪q′∈δ(q,a)δ∗(q′, w).
Intuitively, q2 ∈ δ∗(q1, w) whenever reading w can bring N
from q1 to q2. A run of N on a word w = a1 · · · an is a word
r = q0 · · · qn ∈ Q∗ such that qi ∈ δ(qi−1, ai) for every i ∈ [n].
For each node i ∈ [n], we say that run r visits node i in state qi,
also denoted r(i) = qi. The run is accepting if qn ∈ F . A word w
is in the language ofN (denoted L(N)) if there exists an accepting
run of N on w. A partial run of N on w is defined analogously to
a run, except that we do not require the first state to be q0.

A (bottom-up) nondeterministic tree automaton or NTA is a
tuple N = (Q,Σ, δ, F ) where Q is the finite set of states, F ⊆ Q
is the set of accepting states, and a set of transition rules δ which
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Figure 1. 2-NFSA M with S = {(q1, q2), (q2, q1)}.

are either of the form (q1, q2, a) → q or a → q, for states
q1, q2, q ∈ Q and a label a ∈ Σ. A run of N on a labeled binary
tree t is an assignment of nodes to states λ : Nodes(t) → Q
such that for every v ∈ Nodes(t) the following holds: if v is
a leaf, then lab(v) → λ(v) ∈ δ; if v has children v1 and v2
then (λ(v1), λ(v2), lab(v)) → λ(v) ∈ δ. A run is accepting if
λ(r) ∈ F for the root r of t. Run λ visits v in q if λ(v) = q. A
tree t is accepted if there exists an accepting run on t. The set of all
accepted trees is denoted by L(N).

Now we are ready to define node selecting automata and
queries. For k ∈ N, a k-ary non-deterministic finite selecting au-
tomaton (k-NFSA) M is a pair (N,S), where N is an automaton
over Σ with states Q and S ⊆ Qk is a set of selecting tuples. The
size of M is defined as |Q| + |S|. When M reads a word w of
length n, it computes a set of tuples in Nodes(w)k. More precisely,
we define

M(w) = {(v1, . . . , vk) | there is an accepting run r of N
on w and a tuple (p1, . . . , pk) ∈ S such that,

for every ` ∈ [k], r visits v` in p`}.
Notice that, if w /∈ L(N), then M(w) = ∅. The corresponding
definitions for k-ary non-deterministic finite selecting tree automa-
ton (k-NFSTA) are the same as for k-NFSA, with the only dif-
ference that N should be an NTA instead of an NFA. Figure 1
illustrates a 2-NFSA M . For the input word w = abcd, we get
M(w) = {(1, 2), (2, 1), (1, 3), (3, 1), (2, 4), (4, 2)}.

2.2 Incremental Evaluation and Enumeration
Let M be a selecting automaton (k-NFSA or k-NFSTA), d the
input forM (a word or a tree), andM(d) be the answer ofM on d.
We are interested in efficiently maintainingM(d) under updates of
d. This means that we can have an update u to d, yielding another
structure d′, and we wish to efficiently compute M(d′). The latter
cost should be more efficient than computing M(d′) from scratch.
We consider the following updates on trees (cfr. [2]): (i) Replace
the current label of a specified node by another label, (ii) insert a
new leaf node after a specified node, (iii) insert a new leaf node as
first child of a specified node, and (iv) delete a specified leaf node.
On words, we consider the updates (i), (ii), and (iv), but the word
“leaf” can be omitted.

We allow a single preprocessing phase in which we can compute
an auxiliary data structure Aux(d) that we can use for efficient
query answering. When d is updated to d′, we therefore want
to efficiently compute M(d′) and efficiently update Aux(d) to
Aux(d′).

If M is simply an NTA or NFA (i.e., a 0-ary NFSA or NFSTA),
then this problem is known as incremental evaluation and was
studied by, e.g., Balmin et al. [2]. Here, we perform incremental
enumeration, meaning that we extend the setting of Balmin et al.
from 0-ary queries to k-ary queries. We measure the complexity
of our algorithms in terms of the following parameters: (i) size of
Aux(d), (ii) time needed to compute Aux(d), (iii) time needed to
update Aux(d) to Aux(d′), and (iv) time delay we can guarantee
between answers of M(d′). The underlying model of computation
is a random access machine (RAM) with uniform cost measure.

In the remainder of the paper we use INCEVAL and INCENUM
to refer to the incremental evaluation and enumeration problems,
respectively.

2.3 Two Remarks
In the technical part of this paper we only consider updates of the
kind (i), i.e., relabeling updates. The first remark is that this is
sufficient. Balmin et al. [2] argue why one can use self-balancing
auxiliary tree structures to generalize the techniques for updates (i)
to updates of the kind (ii)–(iv).

Second, all results we present for binary trees can be immedi-
ately generalized to unranked trees, in which nodes can have ar-
bitrarily many children. Unranked trees are particularly relevant in
the context of XML, since XML documents naturally abstract as
unranked trees. The formal argument why it is sufficient to con-
sider binary trees is that one can naturally encode unranked trees in
binary ones. For more details we refer to [2].

3. The Word Case
In this section, we show how to solve incremental enumeration for
a k-NSFA and a word efficiently. Therefore, we need to present
a well-known algorithm to solve incremental evaluation efficiently
for NFAs first. In this section we assume that Nodes(w) = [n] for
simplicity of notation.

3.1 Incremental Evaluation
The following algorithm, first described by Patnaik and Immer-
man [16], solves INCEVAL for an NFA N = (Q,Σ, δ, q0, F ) and
a word w = a1 · · · an ∈ Σ∗. For simplicity, we assume here that n
is a power of 2, say n = 2m. In preprocessing, the algorithm builds
the following auxiliary structure.

Definition 1. For a word w with Nodes(w) = {1, . . . , n}, the
auxiliary tree Naux

w is defined as follows:

• the root of Naux
w is v1n;

• each node vxy , for which y − x > 0, has children vxz and
v(z+1)y where z = x− 1 + b y−x+1

2
c; and

• nodes vxx are the leaves, for all 1 ≤ x ≤ n.

We identify the nodes x of w with leaves vxx in Naux
w . That is, the

nodes of w are leaves in Naux
w .

Every node vxy in Naux
w is associated to the subwordw[x..y] and

holds information about how N ’s state can change when reading
w[x..y]:

Definition 2. Let vxy ∈ Nodes(Naux
w ), then the transition relation

T(vxy) is defined as:

• if x = y: T(vxx) := {(q1, q2) | q2 ∈ δ(q1, ax)}
• otherwise, vxy has left child vxz , right child v(z+1)y , and

T(vxy) := {(q1, q2) | ∃q ∈ Q such that (q1, q) ∈ T(vxz)
and (q, q2) ∈ T(v(z+1)y)}

Thus, (q1, q2) ∈ T(vxy) if and only if q2 ∈ δ∗(q1, w[x..y]),
i.e., reading w[x..y] can bring N from q1 to q2. We can compute
T(vxy) from T(vvz) and T(v(z+1)y) in time O(|Q|3) (this cor-
responds to joining two binary relations). Since Naux

w has 2n − 1
nodes and O(logn) depth, Naux

w and T can be computed in time
O(|Q|3 · n). Finally, w ∈ L(N) if and only if (q0, qF ) ∈ T(v1n)
for some qF ∈ F .

We now describe how updates are maintained. Assume that we
change label ax to b, that is, the new word is w = a1 · · · ax−1b
ax+1 · · · an. The relations T that are affected by the update are
those lying on the path from the leaf vxx to the root v1n (O(logn)
many). These can each be updated in time O(|Q|3) in a bottom-up



pass through Naux
w , yielding a total time of O(|Q|3 · logn) for one

update.

Theorem 3 ([2, 16]). INCEVAL for an NFA and a word w can be
solved with a preprocessing phase of time O(|Q|3 · n), auxiliary
structure of sizeO(|Q|2 · n), and within timeO(|Q|3 · logn) after
each new update.

The above approach can easily be adapted to words whose
lengths are not a power of 2.

3.2 Auxiliary Data Structure for Enumeration
We now extend the mapping T on Naux

w such that we can use it to
enumerate answers for a k-NFSA on a word w with logarithmic
delay. This structure constitutes the auxiliary data we store for our
enumeration algorithm during updates. We can construct it in time
O(|Q|3 · 2k · n) and, whenever w receives an update, we can
update the structure in time O(|Q|3 · 2k · logn) and recommence
logarithmic-delay enumeration. We fix the following notation for
the remainder of the section. By M = ((Q,Σ, δ, q0, F ), S), we
denote a k-NSFA and by w = a1 · · · an ∈ Σ∗ the input word. By
QS we denote the set of all states that appear in some selecting
tuple, i.e., QS = ∪s∈S set(s).

The structure is based on the auxiliary tree Naux
w from Sec-

tion 3.1, but now we store tuples that contain, in addition to the pair
of states, a set of selecting states which can be reached by a run on
the subword associated to the node. We denote this new relation by
T+.

Definition 4. For each vxy ∈ Naux
w , we define T+(vxy) to be the

set of tuples (q1, q2, I) ∈ (Q2 × 2QS ) for which there exist a
selecting tuple s ∈ S and partial run r = q1 · · · q2 on w[x..y] such
that I = set(r) ∩ set(s).

Notice that all T+(vxy) can be computed efficiently:

• If x = y then T+(vxx) = {(q1, q2, I) | q2 ∈ δ(q1, ax) and
I = {q2} ∩ QS}. (The condition on I states that I = {q2} if
q2 appears in some selecting tuple s; and I = ∅ otherwise.)

• Otherwise, let v1 and v2 be the left and right child of vxy in
Naux
w , then T+(vxy) = T+(v1) ./+ T+(v2).

Here, we define T+(v1) ./+ T+(v2) := {(q1, q2, I) | ∃p ∈
Q,∃I1, I2 ⊆ QS , ∃s ∈ S such that (q1, p, I1) ∈ T+(v1),
(p, q2, I2) ∈ T+(v2), and I = (I1∪ I2)∩ set(s)}. (The proof that
this computation is correct is a straight-forward induction.) Further-
more, we can maintain T+ under updates analogously to relation
T in Section 3.1 but with extra time needed for the ./+-operation.

Lemma 5. For a k-NSFA M and a word w of length n, the tree
Naux
w and T+ have size O(|Q|2 · 2k · n), can be computed in time
O(|Q|3 · 2k · n) and updated in time O(|Q|3 · 2k · logn).

This concludes the description of the dynamic data structure.

3.3 Enumerating Query Answers
We now discuss how to enumerate query answers. In this sec-
tion, we assume that Naux

w and T+ are already computed. A high-
level description of the enumeration algorithm is outlined in Algo-
rithm 1. This procedure is similar to enumerating words in a dic-
tionary in lexicographic order, but the details are rather different.
The procedure Enum takes a k-NSFA and a word; invokes pro-
cedure “Complete” to compute the first set of answers (there can
be several smallest answers); starts the enumeration by repeatedly
calling Next (which allows us to go from one set of answers to
the next) until all answers are depleted. The algorithm could either
enumerate answers in set semantics as defined in the Definitions;
or in multiset semantics which we will discuss in the conclusions.

Algorithm 1 Enumeration of M(w)

1: Enum(M,w) {
2: Input: k-NSFA M = ((Q,Σ, δ, F ), S), word w
3: Output: Enumeration of all answers in M(w)
4: A = Complete({∅})
5: while A 6= ∅ do
6: output(A)
7: A = Next(A)

8: }
9: Next(A) {

10: Input: set A of annotated answers
11: Output: set of smallest annotated answers larger than A
12: while Nextnode(A) = ∅ do
13: A ← Back(A)
14: if A = ∅ then return ∅
15: return Complete(Nextnode(A))
16: }

Our first goal in this section is to explain the operations that
are used in Algorithm 1. We require some preliminary notions.
First we define the output ordering � in which we will output
answers to the query. For a tuple t = (i1, . . . , ik) ∈ Nk, let
sort(t) denote the word obtained by sorting i1, . . . , ik in increas-
ing order and concatenating the result (as a word in N∗). More
precisely, sort(t) = iσ(1) · · · iσ(k) where σ is a permutation on
[k] such that iσ(j) ≤ iσ(j+1) for every j ∈ [k − 1]. For ex-
ample, sort((5, 2, 2, 3, 12)) = 2 2 3 5 12. The total order � be-
tween tuples (i1, . . . , ik) is defined as the lexicographical order on
sort((i1, . . . , ik)) (taking the empty word to be the lexicographi-
cally smallest word). We define� on multisets over N analogously.
We denote the strict variant of � by ≺.

In the course of our algorithm we compute so-called annotated
answers, which are multisets of pairs in Nodes(w)×Q. Annotated
answers contain, in addition to nodes of w, also the states that
were responsible for selecting the nodes. The semantics of such
a multiset are that, for each element (i, q), there is an accepting
run on w which visits node i in state q. If (i, q) occurs j times in
the multiset, then there is a selecting tuple s ∈ S (with at least j
occurrences of q) and we decide to associate node i to j occurrences
of q in s. (Intuitively, this means that we will eventually produce an
answer to the query that has j occurrences of node i.) Formally,
an annotated answer of M = (N,S) on w is a multiset Afull over
Nodes(w)×Q of the form

{|(i1, q1), . . . , (ik, qk)|}

such that there is an accepting run r ofN onw and a (q1, . . . , qk) ∈
S such that r visits i` in q`, for every ` ∈ [k]. It holds that
|Afull| = k. We sometimes also say that Afull is an annotated
answer w.r.t. r if we want to emphasize the connection between
Afull and r. An incomplete (annotated) answer is a (not necessarily
strict) subset A of some annotated answer Afull. (Therefore, every
incomplete answer can be completed into an answer.) For a multiset
A over Nodes(w) × Q, we denote by Nodes(A) the multiset of
nodes in A. That is, for A = {|(i1, q1), . . . , (ik, qk)|} we have that
Nodes(A) = {|i1, . . . , ik|}.

We extend the order � to multisets over Nodes(w) × Q. For
two such multisets A and B, we say that A � B if Nodes(A) �
Nodes(B). We extend ≺ analogously. Furthermore, we define the
set of minima for a set A of incomplete answers:

min(A) = {A ∈ A | ∀B ∈ A : A � B}



We are now ready to define the semantics of the functions in
Algorithm 1.

Definition 6. Let A be a set of multisets over Nodes(w)×Q.

Complete(A) := min{Afull | Afull is an annotated answer

such that ∃A ∈ A : A ⊆ Afull and A � Afull}
Intuitively, Complete(A) contains the smallest annotated an-

swers of M obtained from extending elements A ∈ A on nodes
of w that are all larger or equal to the maximal node already used
inA. (So, Complete({∅}) is the set of smallest annotated answers.)

The procedure Next(A) should give us, for a set of annotated
answers, the set of immediate successors in output order. To de-
scribe how we compute Next(A), we use the following ingredi-
ents in Algorithm 1. Let A = {|(i1, q1), . . . , (ij , qj)|} be a multiset
over Nodes(w) × Q. such that, for each i` there is at most one q`
such that (i`, q`) ∈ A. Let ij ∈ max(Nodes(A)), then we define
Adel = {|(i1, q1), . . . , (ij−1, qj−1)|}.
Definition 7. Let A be a set of multisets over Nodes(w)×Q.

Back(A) := min{A | A is an incomplete answer such that

∃A′ ∈ A : Nodes(A) = Nodes(A′del)}
Back(A) performs a kind of backtracking step. It returns all

smallest incomplete answers which, compared with an element
A = {|(i1, q1), . . . , (ij , qj)|} ∈ A, annotate exactly the nodes
i1, . . . , ij−1 (if we assume ij to be maximal).

Definition 8. Let A be a set of multisets over Nodes(w)×Q.

Nextnode(A) := min{A | A is an incomplete answer such

that ∃A′ ∈ A : |A| = |A′| and A′ ≺ A and Adel ⊆ A′}
For a set of incomplete answersA, the procedure Nextnode(A)

returns the incomplete answers of the same size as incomplete
answers in A, such that only the maximal node of an answer in
A has been incremented.

Lemma 9. Let A be a set of annotated answers. Then Next(A) in
Algorithm 1 returns

min{Afull | Afull is an annotated answer

such that ∃A ∈ A : A ≺ Afull}.
Finally, the procedure output(A) takes a set of annotated an-

swersA and writes the set {(i1, . . . , ik) | {|(i1, q1), . . . , (ik, qk)|} ∈
A and (q1, . . . , qk) ∈ S} to the output, in arbitrary order. Notice
that this set can contain multiple tuples, but they are all equal with
respect to �. For example, one tuple can be (1, 2, 2, 3, 4) and an-
other could be (2, 4, 3, 2, 1). Furthermore, the output procedure
can be designed such that the delay between these tuples in the
output is constant.

The proof of the next lemma relies on the following observation
about function calls in Algorithm 1: All A in the algorithm are
such that, for allA,B ∈ A, we have Nodes(A) = Nodes(B). This
property trivially holds since all operations in Algorithm 1 return a
set of minima of incomplete annotated answers.

Lemma 10. Enum(M,w) correctly enumerates all answers in
M(w).

We use the following sections to explain how Complete(A),
Back(A), and Nextnode(A) can be implemented efficiently.

3.4 The First Answer
To compute Complete({∅}), the first answer(s) to the query w.r.t.
the output ordering, we need to find the leftmost piece of informa-
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Figure 2. Aaux
w is the part of Naux

w that is used to compute the first
answers. (Note that ij = vijij .)

tion in Naux
w that is relevant to some answer. After finding this first

ingredient to an answer, we store it in a set of so-called growing
(annotated) answers, which will evolve into the first answer of the
query. Then we navigate further to the right to search for the left-
most nodes inw that can be used to add more and more information
to the growing answers, until at least one growing answer is com-
plete. Next, we define growing (annotated) answers, which contain
the full information of some answer to M on w up to a node j.

Definition 11. Let q ∈ Q, j ∈ [n], and A be a multiset over
Nodes(w) × Q. Then (q,A) is a growing annotated answer up to
node j if there is an accepting run r of N on w such that

• r visits j in q; and
• there is an annotated answer Afull w.r.t. r such that, for every
p ∈ Q and i ∈ [n],

if i < j, then Afull((i, p)) = A((i, p)),
if i = j, then A((i, p)) ≤ Afull((i, p)), and
if i > j, then A((i, p)) = 0.

The second bullet in the above definition states that A has the
same information asAfull concerning the nodes up to j and possibly
partial information about j itself. For brevity, we often refer to
(q,A) as growing answer.

We compute growing answers as follows. Assume that (i1, . . . ,
ik) (see Figure 2) is a smallest answer in M(w) w.r.t. the output
order. (Notice that some of the ij can be equal.) Let Aaux

w be the
tree induced by all ancestors of nodes ij in Naux

w . Hence, Aaux
w has

at most k leaves, its root is the root of Naux
w , and each of its leaves

corresponds to a node ij . For obtaining (i1, . . . , ik), we perform
a depth-first left-to-right traversal of Aaux

w . Since the depth of Naux
w

is logarithmic in n, such a traversal costs about O(k logn) steps
(if one would magically know where to go). In particular, one can
travel from one leaf in Aaux

w to the next within O(logn) steps. Our
goal is to show that this is possible when one stores the right kind
of information along the paths of Aaux

w .
We first explain how to compute and traverse the leftmost path

of Aaux
w . We start at the root of Naux

w and need to decide which
child to choose. To this end, we compute relevant tuples, which
are defined in the following.

Definition 12. For each v ∈ Naux
w the set of relevant tuples of v,

denoted R(v), is inductively defined as follows:

• R(v1n) = {(q0, qF , set(s)) ∈ T+(v1n) | qF ∈ F, s ∈ S};
•Otherwise, if (q1, q2, I) ∈ R(v) and v1 and v2 are left and

right child of v, then we want to “split” I between v1 and
v2. More precisely, let Rv1,v2 = {(q1, q2, J1, q2, q3, J2) |
∃(q1, q3, I)∈R(v),(q1, q2, I1)∈T+(v1),(q2, q3, I2)∈T+(v2)
such that J1 ∪ J2 = I , J1 ⊆ I1, and J2 ⊆ I2}. Then,
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Figure 3. The relation R for the 2-NSFA M from Figure 1 and
w = abcd.

R(v1) = {(q1, q2, J1) | (q1, q2, J1, q2, q3, J2) ∈ Rv1,v2} and
R(v2)={(q2, q3, J2) | (q1, q2, J1, q2, q3, J2) ∈ Rv1,v2}.

The relevant tuples of the root v1n of Naux
w are the tuples for

which I is exactly a set of states appearing in some selecting tuple.
Therefore, if we can match every state in I , we can produce an
answer. By definition of T+, this means thatM returns at least one
answer if and only if R(v1n) 6= ∅. Further down in the tree, if
(q1, q2, I) ∈ R(v), we split I among the children v1 and v2 of v in
all possible ways. This is to ensure that, if we find a partial result
for v1, we are certain that we can find sufficient information below
v2 to annotate every state in I .
Therefore, the sets R contain exactly the information from T+ that
is relevant for producing answers, i.e., tuples in R are associated to
accepting runs that produce at least one answer. This is captured
in the following lemma. Here, for an annotated answer Afull =
{|(i1, q1), . . . , (ik, qk)|} and two nodes `, r of w, the projection
of Afull onto [`, r], denoted Afull

[`,r], is defined to be the multiset
{|(i, qi) | ` ≤ i ≤ r|}.

Lemma 13. For every node vxy ∈ Naux
w , we have that R(vxy)

is the set of all (q1, q2, I) such that there is an annotated answer
Afull w.r.t. some run r with r(x) ∈ δ(q1, w[x]), r(y) = q2, and
I = Nodes(Afull

[x,y]).

For the 2-NSFA in Figure 1, the relationR is shown in Figure 3.
Finally, computing R can be done by straightforward implementa-
tion of the definition in a top-down way.

Lemma 14. Given Naux
w and T+, we can compute R(v1n) in time

O(|Q|2 ·2k) and, for every other v ∈ Naux
w with parent vp, compute

R(v) in time O(|Q|3 · 2k) if R(vp) is known.

We state Lemma 14 as it is because our algorithm will not
compute R(v) for every node v of Naux

w but only among paths of
Aaux
w .

3.4.1 The First Part of the First Answer
In order to find the leftmost path of Aaux

w , we start at the root of
Naux
w and iteratively perform the following: Whenever we are in a

node v, we compute the sets of relevant tuples of its two children.
We proceed to the leftmost child for which the set of relevant tuples
contains a tuple (q1, q2, I) with I 6= ∅ and stop when we reach a
leaf. We claim that this leaf is the leftmost node i1 in Naux

w that can
be used in some smallest answer of M(w) (see Figure 2). Notice
that we only know that i1 is used in such a smallest answer but not
necessarily as the leftmost element. (For example, answers of the
form (i2, i1, . . .) with i2 > i1 are possible too.)

Lemma 15. Let u be the leftmost leaf of Naux
w such that R(u) has

a tuple (q1, q2, I) with I 6= ∅. Then u is the node i1 in w.

This allows us to define our first set G of growing answers:

G(i1) := {(q2, {|(i1, q2)|}) | (q1, q2, {q2}) ∈ R(i1)}

By Lemma 13 and 15, every element in G(i1) is a growing answer
up to node i1. By Lemma 14, i1 and, therefore, the set G(i1) can
be computed in time O(|Q|3 · 2k · logn) by traversing the path
from the root of Naux

w to i1. For the running example in Figure 1,
we have G(1) = {(q1, {|(1, q1)|}), (q2, {|(1, q2)|})}. In this way, we
know how to compute i1, if it exists.

3.4.2 Growing Until the First Answer is Complete
We assume that from now on we know some j for which the set
G(ij) is defined and not empty. We will explain how to compute
the set G(ij+1) containing similar information for the node ij+1.
To this end, we first have to find the node ij+1 itself (recall that
not necessarily ij+1 6= ij) and then all the information which is
needed to calculate the correct set of growing answers. We will
navigate from ij to the right and only keep track of the relevant
tuples that are compatible with our growing answer(s). Our next
aim is to define this compatibility. In the following, the projection
of a multiset A = {|(i1, q1), . . . , (ik, qk)|} of tuples over N × Q
onto Q, denoted πQ(A), is defined as {|q1, . . . , qk|}.

Definition 16 (Compatibility). Let vxy be a node of Naux
w . For an

annotated answer Afull w.r.t. run r, we say that a tuple

• (q1, q2, I) ∈ R(vxy) is compatible with Afull and r if r(x) ∈
δ(q1, w[x]), r(y) = q2, and I = set(πQ(Afull

[x,y])).

(Here, I = set(πQ(Afull
[x,y])) ensures that I is the set of selecting

states in Afull used between nodes x and y in w.) Furthermore, for
(q,A) a growing answer up to node i,

• (q,A) is compatible with Afull and r if r(i) = q, A[1,i−1] =

Afull
[1,i−1] and A[i,i] ⊆ Afull

[i,i].

Finally, (q1, q2, I) ∈ R(vxy) is compatible with (q,A) if there
exists an annotated answer Afull w.r.t. some run r such that both
(q1, q2, I) and (q,A) are compatible with Afull and r.

Now, we can define the node ij+1 in terms of compatibility.

Proposition 17. The node ij+1 ≥ ij is the smallest node in w for
which there exists a tuple (q1, q2, I) ∈ R(ij+1) with I 6= ∅ which
is compatible with some (q,A) ∈ G(ij).

Once we have ij+1 we can also define the set G(ij+1):

G(ij+1) = {(q2, A ∪ {|(ij+1, q2)|}) |
there exists some (q1, q2, {q2}) ∈ R(ij+1)

compatible with some (q,A) ∈ G(ij)}

In this way, our algorithm will successively compute sets G(ij) for
increasing values of j. The next lemma states that the last such set,
G(ik), contains indeed the answer(s) we want.

Lemma 18. Let Afirst be the set of smallest annotated answers.
Then, it holds that G(ik) = {(q,A) | A ∈ Afirst and (q,A) is
compatible with A}.

Regarding the example from Figure 1, we have k = 2 and,
thus, G(2) = {(q1, {|(1, q2), (2, q1)|}), (q2, {|(1, q1), (2, q2)|})}. It
remains to show how to compute ij+1 and G(ij+1) efficiently.
From the last section, we know that we can compute G(i1) in time
O(|Q|3 · 2k · logn). Next, we prove that we can compute ij+1

in time O(|Q|3 · 2k · logn) when G(ij) is given. Afterwards, we
examine the computation of the set G(ij+1).

To begin with, we extend the notion of the relevant relation.
Intuitively, this relation stores which tuples fromR remain relevant
for constructing the smallest possible answer, given the knowledge
we have at node ij . We call such tuples j-relevant.



Definition 19. For vxy ∈ Naux
w and j ∈ {0, . . . , k}, we define the

set of j-relevant tuples of vxy , denoted Rj(vxy), as follows:

• R0(vxy) := R(vxy) and,
• for each j ≥ 1,

if y < ij , then Rj(vxy) := Rj−1(vxy),
otherwise, Rj(vxy) := {(q1, q2, I) ∈ R(vxy) | (q1, q2, I)
compatible with some (q,A) ∈ G(ij)}.

In Figure 3, we have that, if i1 = 1 then every tuple is in
the relation R1 except (q0, q1, {}) ∈ R(v11). Furthermore by
Definition 19, we can reformulate Proposition 17 such that ij+1

is the smallest node in w for which there is a tuple (q1, q2, I) ∈
Rj(ij+1) with I 6= ∅. Notice that if Rj(ij) itself contains such
a tuple, then ij+1 = ij . Otherwise, we can compute ij+1 by
traversing the tree Naux

w using the following lemma.

Lemma 20. For a node vxy of Naux
w , we can compute Rj(vxy) in

time O(|Q|3 · 2k) in each of the following cases:

(1) vxy is a leaf, vxy = ij , and we know G(ij) and Rj−1(ij);
(2) vxy has parent v, x > ij , and we already know Rj(v); and
(3) vxy has child v, y ≥ ij , and we know Rj(v) and Rj−1(vxy).

In the following we argue that we need at most logn operations
of the kind (1) to (3) to find ij+1 from ij . We start at node ij where
G(ij) and Rj−1(ij) are known. We compute Rj(ij) using (1) and
test whether ij+1 = ij . If this is not the case we follow the path p
from ij to the root of Naux

w and calculate Rj on the way. Since we
always calculate the new relation Rj for every node on p we can
always apply case (3). Because p is of length logn this needs logn
operations. Afterwards, we do a second bottom-up traversal of p
and, at each node, compute Rj for every right child (applying case
(2)). We stop when we find such a right child vr which is not on p
and where Rj(vr) contains a tuple (q1, q2, I) with I 6= ∅. Again,
this can be done with at most logn operations. By definition ofRj ,
we know that the subtree rooted at vr has at least one leaf node
u such that Rj(u) contains a tuple (q1, q2, I) with I 6= ∅. The
leftmost such leaf u will be ij+1. To arrive at ij+1, we go down
from vr . On this path, we always compute Rj for both children
(applying case (2)) and choose the leftmost child for which Rj has
a tuple (q1, q2, I) with I 6= ∅. We are done when we reach a leaf.
Altogether, we navigated through O(logn) nodes in the tree.

The following characterization demonstrates how we can obtain
G(ij+1) from G(ij) using j-relevant tuples:

G(ij+1) = {(q2, A ∪ {|(ij+1, q2)|}) | ∃(q1, q2, {q2}) ∈ Rj(ij+1)

∃(q,A) ∈ G(ij), and q1 ∈ δ∗(q, w[ij + 1..ij+1])}

By maintaining reachable states in δ∗ when going from ij to ij+1,
we can compute ij+1 from G(ij) within timeO(|Q|3 · 2k · logn).
This leads to the following.

Lemma 21. Given Naux
w , T+, and ` ∈ [k], we can compute G(i`)

in time O(|S| · k! + |Q|3 · 2k · ` logn).

The additional term |S| · k! comes from the size of the G(i`)
which is naı̈vely O(|Q|k) but can be shown to be O(|S| · k!).
Combining Lemma 18 and 21 we then have the following.

Theorem 22. Given Naux
w and T+, we can compute the first answer

of M on w in time O(|S| · k! + |Q|3 · 2k · k logn).

In particular, we have that Complete({∅}) returns the
set {A | (q,A) ∈ G(ik)}.

3.5 From One Answer to the Next
The previous section showed how to compute Complete({∅}), i.e.,
the first answer(s) of the query on w. We now show how to go from

one answer to the next, i.e., the details of the procedure Next(A)
in Algorithm 1.

Lemma 23. Complete, Back, and Nextnode can be implemented
such that Algorithm 1 correctly computes Next(A). Furthermore,
Next(A) runs in O(|S| · k! + |Q|3 · 2k · k logn) time.

Proof sketch. To this end, recall from Section 3.3 that every A at
each call of Complete, Back, or Nextnode has the property that all
A ∈ A use the same multiset of nodes {|i1, . . . , i`|}. We denote this
multiset by Nodes(A) and assume that the following information
is available at the time we call Complete, Back, Nextnode, or
Next(A): the tree Naux

w with T+ (entirely), the relations Rj , and
sets G as described in the invariants (I1) and (I2) below.

(I1) Let Aaux
w be the tree induced by all ancestors in Naux

w of nodes
in Nodes(A). For every vxy ∈ Aaux

w , we know the relation
Rj−1(vxy) or Rj(vxy) where ij ∈ Nodes(A) is the maximal
node with x ≤ ij ≤ y.

(I2) For every ij ∈ Nodes(A), we know G(ij). Here, G(ij) =
{(q,A) | Nodes(A) ⊆ Nodes(A), |A| = j, and there
is an annotated answer Afull such that Nodes(A[1,ij−1]) =

Nodes(Afull
[1,ij−1]), Nodes(A[ij ,ij ]) ⊆ Nodes(Afull

[ij ,ij ]
), and

(q,A) is compatible with Afull}.

From Section 3.4 we can infer that (I1) and (I2) hold after call-
ing Complete({∅}). Furthermore, we can generalize the descrip-
tion in Section 3.4 to compute Complete(A) for an arbitrary A
occurring in Algorithm 1. To this end, we have to change the
definition of the tuple (i1, . . . , ik) in Section 3.4. In particular,
(i1, . . . , ik) should be the smallest answer of the query such that
{i1, . . . , ij} = Nodes(A) and, for every ` > j, i` is at least
the largest number ij in Nodes(A). (Notice that we only have that
Nodes(A) = ∅ in the very first call of Complete, at line 4 of Al-
gorithm 1.) Therefore, we can leave all the G(i1), . . . , G(ij) un-
touched and only recompute the sets G(i`) for ` > j. This con-
cludes the description of Complete(A). If (I1) and (I2) hold before
calling Complete(A), they also hold after the call is completed.
The procedure Back(A) is implemented as follows:

Back(A) =

{
{(A | (q,A) ∈ G(ij−1)} if j ≥ 2,

∅ otherwise.
If (I1) and (I2) are satisfied before calling Back(A), they are also
satisfied afterwards since we do not touch any R and G. Correct-
ness holds using (I2).
Finally, for the implementation of Nextnode(A), let ij be maximal
in Nodes(A). Then, Nextnode(A) checks whether there is an anno-
tated answerAfull with Nodes(Afull)={|i1, . . . , ij−1, ij+1, . . . , ik|}
for nodes ij+1, . . . , ik larger ij . It returns the following set of in-
complete answers, if it exists:

Nextnode(A) =

{
{(A | (q,A) ∈ G(ij+1)} if Afull exists,
∅ otherwise.

Notice that, Nextnode(A) does recompute only the single node
ij+1 and the set G(ij+1). The computation is analogous to the one
in Section 3.4.2 with only one difference: One has to ensure that
ij+1 is strictly larger than ij ; if it exists. This can be done by skip-
ping the step where we check whether ij+1 = ij in the beginning
of the computation. Again, if (I1) and (I2) are satisfied before call-
ing Nextnode(A), they are also satisfied afterwards. By Lemma 9,
it directly follows that the computation of Next(A) in Algorithm 1
is correct. Again, the term |S| · k! in the runtime is due to the size
of the sets G of growing answers.

We therefore obtain the following main result.



Theorem 24. INCENUM for a k-NSFA M and a word w with
|w| = n can be solved with auxiliary data of size O(|Q|2 · 2k · n)
which can be computed in timeO(|Q|3 · 2k ·n), maintained within
time O(|Q|3 · 2k · logn) per update, and which guarantees delay
O(|S| · k! + |Q|3 · 2k · k logn) between answers.

Here, Q is the state set of M and S is the set of selecting tuples
of M . If M is constant, then the delay is O(logn).

4. Incremental Enumeration for Trees
We extend the algorithm from Section 3 to trees. More precisely we
show that, for a k-NSTA M (with states Q and selecting tuples S)
and a tree t we can enumerate answers withO(|S| · k! + |Q|3 · 2k ·
k log2 |t|) delay, using an auxiliary data structure of size O(|Q|2 ·
2k · |t|) that can be updated within timeO(|Q|3 ·2k · log2 |t|). This
generalizes a result by Balmin et al. [2] who showed the following:

Theorem 25. [2] INCEVAL for an NTAN and tree t can be solved
with auxiliary data of size O(|Q|2 · |t|) which can be updated in
time O(|Q|3 · log2 ·|t|) per update.

We generalize Theorem 25 in two directions: from boolean
queries to k-ary queries and we show that answers can be enumer-
ated with small delay. The main observation in this section is that
the techniques of Balmin et al. can be used together with the meth-
ods we developed in Section 3. Roughly, Balmin et al. maintain a
set of NFAs over heavy paths in the tree t. Denote by tv the subtree
of t rooted at node v. For a node v, the heavy path hp(v) of v is
defined as follows [11, 19]:

• v belongs to hp(v);
• if v′ ∈ hp(v) has children v1 and v2,

then v1 belongs to hp(v) if |tv1 | ≥ |tv2 |.

A heavy path of v is maximal if it is not included in another heavy
path (i.e., in the heavy path of v’s parent). The (maximal) heavy
path of t, denoted hp(t), is the path hp(r) where r is the root of t.
The set HPaths(t) is the set of all maximal heavy paths of nodes
in t. For a binary tree t, the set HPaths(t) can be calculated in
time and space linear in t. In Figure 4 (left), we illustrate the set
HPaths(t) = {p1, p2, p3, p4} for the tree t: each heavy path is
encircled and depicted by a separate shape of nodes.

Balmin et al. evaluate an NTA N = (Q,Σ, δ, F ) on a tree t
by encoding it into NFAs on maximal heavy paths of t (Sec. 5 in
[2]). The NFAs operate on an enhanced alphabet that, for every
v ∈ t, stores the label of v and all states of the NTA reachable at
v by reading the subtree tv rooted at v in a bottom-up way. These
new labels can be calculated during one bottom-up pass through
the tree in time O(|Q| · |δ| · |t|). Then, every NFA simulates a
part of the tree automaton by only allowing transitions compatible
with the tree automaton on its path. If a node v changes its label,
then the auxiliary structure for the NFA responsible for the heavy
path containing v receives an update similar to Section 3.1. The
change to this structure can in turn trigger changes in all auxiliary
structures for NFAs on heavy paths closer to the root. However, the
number of these heavy paths is at most logarithmic in |t|.

Lemma 26 (Lemma 1 in [19]). Let t be a binary tree. The maxi-
mum number of distinct maximal heavy paths crossed by any path
from the root of t to some leaf is at most log |t|.

In short, processing an update for incremental NTA evaluation
essentially boils down to processing log |t| updates on words for
NFAs, which explains the complexity upper bound in Theorem 25.
We fix the following notation for the remainder of the section. We
denote by M = ((Q,Σ, δ, F ), S) a k-NSTA, by t the binary input
tree, and by QS the set ∪s∈S set(s).

. . . . . .
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Figure 4. An input tree t with HPaths(t) = {p1, p2, p3, p4}. In
our algorithm we traverse the transition relation trees Naux

pi for paths
pi ∈ HPaths(t) which are linked according to the alignment of all
maximal heavy paths in t.

4.1 Preprocessing: The Dynamic Auxiliary Structure
The first step in preprocessing is that we store, for each node v of
t, a set of pairs Reach(v) ⊆ (Q× 2Q) defined as follows:

• if v is a leaf:
Reach(v) = {(q, I) | (lab(v)→ q) ∈ δ, I = {q} ∩QS}

• if v has children v1 (left) and v2 (right):
Reach(v) = {(q, I) | ((q1, q2, lab(v))→ q) ∈ δ,

(q1, I1) ∈ Reach(v1), (q2, I2) ∈ Reach(v2)
and I = I1 ∪ I2 ∪

(
{q} ∩QS

)
}

In other words, if we denote by Mq the NTA (Q,Σ, δ, {q}), then
Reach(v) contains all pairs (q, I) such that tv ∈ L(Mq), I ⊆ QS ,
and there is a run ofMq on tv that uses all states in I . By following
the above definition, one can compute the sets Reach(v) for all
v ∈ t in time O(|Q| log |Q| · |δ| · 2k · |t|).

Analogously to Balmin et al., we define a new labeling function
lab′(t) for all nodes v ∈ t which constitutes the alphabet on which
the NFAs will operate. Let vn · · · v1 be a heavy path in HPaths(t)
such that v1 is a leaf and vn is closest to the root. Then lab′ is
inductively defined as follows:

• for i = 1, lab′(v1) := lab(v1),
• for i > 1, let v′i−1 be the child of vi not on hp(vi),

if v′i−1 is the right child of vi, then
lab′(vi) := (lab(vi),Reach(v′i−1)), and

if v′i−1 is the left child of vi, then
lab′(vi) := (Reach(v′i−1), lab(vi)).

We define an NFA Np for every path p ∈ HPaths(t). The NFAs
Np read the word lab′(v1) · · · lab′(vn) (where p = vn · · · v1), use
a common state set Q] {q0} (where q0 is a fresh initial state), and
use a common transition function δN :

• δN (q0, a) := Q0 where Q0 = {q | (a→ q) ∈ δ},
• δN (q, (a,R)) := ∪(q′,I)∈Rδ(q, q

′, a) for all a ∈ Σ,

• δN (q, (R, a)) := ∪(q′,I)∈Rδ(q
′, q, a) for all a ∈ Σ.

So, each NFA Np simulates the tree automaton on path p by only
allowing transitions compatible with the tree automaton. Note that
our definition of δN is analogous to the one used by Balmin et al.



except that we consider an even more extended labeling function.
Its alphabet is of sizeO(|Σ| · 2|Q| · 2k). However, we will not store
the entire alphabet or the transition function of the NFAs explicitly.
Instead, we store the sets Reach(v) for every node v ∈ t and
compute δN on-the-fly from the tree automaton.

Let ∆ be the alphabet of the labeling function lab′. Then we
define Nhp(t) = (Q ∪ {q0},∆, δN , q0, F ). The NFA Nhp(t) ac-
cepts the word lab′(v1) · · · lab′(vn) if and only if the k-NSTA M
accepts t. For all other paths p ∈ HPaths(t) we define Np =
(Q∪ {q0},∆, δN , q0, Q). For these paths the automata are needed
for propagating the correct updates to the new labeling function
lab′(t).

This concludes our description of the NFAs that we will main-
tain in the auxiliary structure. Next we discuss how we do this.
For every NFA Np and path p, we build an auxiliary tree Naux

p as
in Definition 1. Then we compute the accompanying relations T+

p

(Def. 4) using the ./+-operation (Sec. 3.2) as before. The only dif-
ference with Section 3.2 is how we initialize the relations in the leaf
nodes, because leaf nodes in Naux

p are no longer nodes in a word but
nodes in t which can have subtrees below them. (We again use the
convention that leaves vxx ∈ Naux

p are the nodes on p in tree t). We
define

T+
p (vxx)={(q1, q2, I) | q2 ∈ δN (q1, lab′(vxx)) and

I = (∪(a,J)∈lab′(vxx)J) ∪ ({q2} ∩QS)}.

The sets T+
p for all other nodes vxy of Naux

p are defined exactly as
in Section 3.2. This finishes the preprocessing step. The auxiliary
structure therefore includes t, the set HPaths(t), and the auxiliary
trees Naux

p with relations T+
p for each NFA Np.

Figure 4 (right) depicts the auxiliary data structure for the tree in
Figure 4 (left). Heavy paths in the left tree correspond to nodes of
the same shape on the right. The auxiliary data structure can there-
fore be seen as a “tree of trees” in which, e.g., the root of Naux

p4 pro-
vides information for a leaf node of Naux

p3 , etc. The auxiliary data can
be maintained under updates by propagating changes in a bottom-
up fashion through all these trees. Assume that the highest node
of p4 is relabeled. This corresponds to a relabeling of the rightmost
leaf of Naux

p4 . This change is then propagated on all nodes on the path
to the root of Naux

p1 , going through the auxiliary structures Naux
p3 and

Naux
p1 . In principle, this procedure is very similar to the incremen-

tal evaluation algorithm of tree automata as described by Balmin et
al. [2]. The only difference is that we maintain more involved sets
Reach(v) (which explain the extra 2k factor in complexity). Notice
that k = 0 in [2].

Lemma 27. Given a k-NSTA M and a binary tree t, the auxiliary
structure has size O(|Q|2 · 2k · |t|), can be computed in time
O(|Q|3 · 2k · |t|) and updated in time O(|Q|3 · 2k · log2 |t|).

4.2 Enumerating Answers
The construction of the auxiliary structure is such that we can
enumerate the answers of M(t) in a similar way as it is done on
words in Section 3. The main differences are that (1) we now have
to maintain several auxiliary trees Naux

p and their T+
p (see Sec. 4.1);

(2) our enumeration procedure has to check, for a leaf of some Naux
p ,

whether to stop or go to the next tree Naux
p′ .

Note that similar to the word case, the relation T+
hp(t) of Naux

hp(t)

contains a tuple (q0, qF , set(s)) if and only if there exists an ac-
cepting run of the k-NSTA M which produces an answer for se-
lecting tuple s on t. To enumerate all these answers we traverse
the auxiliary trees. Therefore, we construct Algorithm 1 from Sec-
tion 3 such, that we can use it for an auxiliary tree which we will
build from the trees Naux

p (see Fig. 4 (right)). However, we have
to redefine the relevant relation R in this case such that it fits to

the tree automaton and the input tree. The new definition differs
from Definition 12 only at the root nodes of the trees Naux

p for every
p ∈ HPaths(t).

Definition 28. Let p = vn · · · v1 ∈ HPaths(t) (v1 is a leaf). Then,
we define for the root node r of Naux

p

• if p = hp(t):
R(r) = {(q0, qF , set(s)) ∈ T+

p (r) | qF ∈ F, s ∈ S}
• if p 6= hp(t): consider the parent vp of vn in t, then

if vn is a left child: R(r) = {(q0, q1, I ′) |
∃(q0, q1, I) ∈ T+

p (r) with I ′ ⊆ I, ∃(q2, q, J) ∈ R(vp),
q ∈ δ(q1, q2, lab(vp)), and J ⊆ I ′ ∪ {q}}
if vn is a right child: R(r) = {(q0, q2, I ′) |
∃(q0, q2, I) ∈ T+

p (r) with I ′ ⊆ I, ∃(q1, q, J) ∈ R(vp),
q ∈ δ(q1, q2, lab(vp)), and J ⊆ I ′ ∪ {q}}

Notice that the above definition admits that q ∈ I ′. Intuitively,
the tuples in the above relation are associated with partial runs of
the tree automaton that are relevant for constructing an answer to
the query M(t).

When we want to enumerate answers of M on t, we consider
a tree as depicted in the right of Figure 4 (which is composed of
all trees Naux

p ) and perform an enumeration procedure similar to the
one on words. We refer to this tree as Naux

t . However, nodes that
can be selected by M no longer correspond to leaves of Naux

t as
in the word case. Now, also internal nodes of Naux

t (but leaves of
individual Naux

p ) can be selected. Therefore we extend the output
order by comparing individual nodes in Naux

t in terms of their
postfix order. Then, for every visited tree in this traversal, we
run Algorithm 1 where we interpret the relation R as given in
Definition 28. The postfix-order on the nodes ensures that the
Definition of j-relevant tuples and sets G can be used as defined
in Section 3.4. In this way, we can compute ij+1 when G(ij) is
given in time O(|Q|3 · 2k · log2 |t|) according to the size of the
auxiliary structure for trees. A set of complete answers, e.g.,G(ik),
is computed in time O(|S| · k! + |Q|3 · 2k · k log2 |t|). This gives
us the following result.

Theorem 29. INCENUM for a k-NSTA M and a tree t can be
solved with auxiliary data of size O(|Q|2 · 2k · |t|) which can
be computed in time O(|Q|3 · 2k · |t|) and maintained in time
O(|Q|3 · 2k · log2 |t|) per update, and which guarantees at most
O(|S| · k! + |Q|3 · 2k · k log2 |t|) delay between answers.

Notice that, for practically important query languages such as
core XPath queries or variants of regular XPath (see [3] for a
survey), we have that k = 2, for which the theorem gives an
O(|Q|2 ·|t|) upper bound on the auxiliary data and at mostO(|Q|3 ·
log2 |t|) delay between answers.

5. Concluding Remarks and Further Directions
All our algorithms work equally well when we would consider
query evaluation under multiset semantics. The result of M on w
under multiset semantics is denoted Mms(w) and is a function that
maps tuples (i1, . . . , ik) ∈ [n]k to N. More precisely, for each
(i1, . . . , ik) ∈ [n]k, we define

Mms(w)((i1, . . . , ik)) = |{(p1, . . . , pk) ∈ S | there is an
an accepting run r of N on w such that,

for every ` ∈ [k], r visits i` in p`}|

(and similarly for trees). Intuitively, the multiset contains a tuple
(i1, . . . , ik) as often as there are selecting tuples and runs that
select it. For example, for the 2-NSFA M in Figure 1 and the word



w = abcd, we have that

Mms(w) =

{|(1, 2), (1, 2), (2, 1), (2, 1), (1, 3), (3, 1), (2, 4), (4, 2)|} .

Thereby, the difference between the enumeration procedure for
set semantics or multiset semantics only lies in the procedure
output(A) in Algorithm 1. Either we output every tuple once (set
semantics) or we output every tuple as often as we have an anno-
tated answer for it (multiset semantics).

Towards future work, we want to investigate if our techniques
can be generalized towards graphs with bounded treewidth, using
the generalization in Bagan [1]. A straightforward generalization
of our algorithm will only be able to deal with relabelings since
node insertions and deletions can have drastic impact on tree de-
compositions. Furthermore, a single node relabel in the graph can
induce m > 1 relabels in the tree decomposition which will influ-
ence complexity. Other future work for which our method seems
promising is efficiently computing the difference between answers.
That is, after an update occurred on the tree, we could say which
tuples no longer satisfy the query and which ones are new.

Finally we want to investigate whether we can efficiently main-
tain the number of answers to a query (under set or multiset seman-
tics). Notice that the number of times that a tuple (i1, . . . , ik) is in
the answer under multiset semantics is simply the number of tuples
in G(ik). Computing the number of answers efficiently can be in-
teresting if we want to decide whether a constant-delay algorithm
with linear time preprocessing would be able to output the whole
output faster than our logarithmic-delay algorithm which would not
require preprocessing after an update. Roughly, when the output
of a query contains at most O(n/ logn) outputs, the logarithmic-
delay algorithm will finish more quickly than a constant-delay pro-
cedure with linear preprocessing. Moreover, the logarithmic-delay
algorithm produces the first answers more quickly. Estimating the
number of answers to a query can therefore help to decide which
kind of procedure is desirable.
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In this appendix we provide proofs and details for which there was no space in the body of the paper.

Proofs of Section 3 (Words)
Proofs of Section 3.2
Lemma 30. For every vxy ∈ Naux

w , the relation T+(vxy) is the set of tuples (q1, q2, I) ∈ (Q2 × 2Q) for which there exist a selecting tuple
s ∈ S and partial run r = q1 · · · q2 on w[x..y] such that I = set(r) ∩ set(s).

Proof. Let, for a node v of Naux
w , the depth d(v) of v, be the length of the path from the root of Naux

w to v. The proof is by induction on
decreasing values of the depth, d(vxy), of nodes vxy in the auxiliary tree Naux

w .
For the base case, that is, a leaf node of Naux

w , we have that

T+(vxx) = {(q1, q2, I) | q2 ∈ δ(q1, ax) and I = {q2} ∩ (∪s∈S set(s))}.
Thus, the partial run r = q1q2 on w[x] proves the assumption.
For the induction case, we have to show that the assumption holds for T+(vxy) = T+(vxz) ./

+ T+(v(z+1)y) where z = x− 1 + b y−x+1
2
c,

and T+(vxz) and T+(v(z+1)y) are computed correctly. We show “⇒” and “⇐” separately.
“⇒”: Let (q1, q2, I) be a tuple in T+(vxy). Then, we know that there exist tuples (q1, p, I1) ∈ T+(vxz) and (p, q2, I2) ∈ T+(v(z+1)y)
such that (I1 ∪ I2) ∩ set(s) = I for some s ∈ S. By induction hypothesis, we know that there exist

• a partial run r1 = q1 · · · p on w[x..z] such that I1 = set(r1) ∩ set(s), and
• a partial run r2 = p · · · q2 on w[z + 1..y] such that I2 = set(r2) ∩ set(s).

Since (I1 ∪ I2) ∩ set(s) = I , we can join r1 and r2 to a partial run r = q1 · · · q2 on w[x..y] such that I = set(r) ∩ set(s).
“⇐”: Let s be a selecting tuple and r = q1 · · · q2 be a partial run on w[x..y] such that I = set(r) ∩ set(s). Then, we can decompose r in
two partial runs r1 and r2 such that

• r1 = q1 · · · p on w[x..z] such that I1 = set(r1) ∩ set(s),
• r2 = p · · · q2 on w[z + 1..y] such that I2 = set(r2) ∩ set(s),
• and (I1 ∪ I2) ∩ set(s) = I .

By applying the induction hypothesis on vxz and v(z+1)y , there exist tuples (q1, p, I1) ∈ T+(vxz) and (p, q2, I2) ∈ T+(v(z+1)y). Therefore,
by definition of ./+, there exists a tuple (q1, q2, I) ∈ T+(vxy). This concludes the proof.

PROOF OF LEMMA 5: For a k-NSFA M and a word w of length n, the tree Naux
w and T+ have sizeO(|Q|2 · 2k ·n), can be computed in time

O(|Q|3 · 2k · n) and updated in time O(|Q|3 · 2k · logn).

Proof. The tree Naux
w has O(n) nodes by construction. For every node v ∈ Naux

w , the transition relation T+(v) is of size O(|Q|2 · 2k).
Therefore, our auxiliary data has size O(|Q|2 · 2k · n) in total. The relation T+ can be computed in a bottom-up pass through Naux

w . For leaf
nodes, T+ can be calculated in time and space O(|Q|2). Afterwards, we need to compute n ./+-joins where each join can be done in time
O(|Q|3 · 2k). All together, Naux

w and T+ can be built in time O(|Q|3 · 2k · n).
We now discuss an update. Therefore, consider an update at node v. Then, we update every relation on the path from v to the root of Naux

w ,
i.e., we update logn many relations. This can be done by logn times a ./+-operation yielding a total time of O(|Q|3 · 2k · logn) for one
update. Analogously to the proof of Lemma 30, it follows that the relation T+ is still correct after the update.

Proofs of Section 3.3
PROOF OF LEMMA 9: Let A be a set of annotated answers. Then Next(A) in Algorithm 1 returns

min{Afull | Afull is an annotated answer such that ∃A ∈ A : A ≺ Afull}.

Proof. By Definition 6 (the definition of Complete), we know that Next(A) will always return a minima of a set of annotated answers.
Therefore, it remains to show that for every annotated answer Afull in Next(A), there exists an A ∈ A such that A ≺ Afull.

Observe that in Algorithm 1 Next(A) returns the set Complete(B) where B = Nextnode(Backb(A)) and b ∈ N is the minimal b with
Nextnode(Backb(A)) 6= ∅. (The superscript b denotes that we apply the function b times.)

Let Afull = {|(i1, q1), . . . , (ik, qk)|} ∈ Next(A). Then, we know that there exists an A = {|(`1, p1), . . . , (`k, pk)|} ∈ A such that,

{|(`1, p1), . . . , (`k−b, pk−b)|} = {|(i1, q1), . . . , (ik−b, qk−b)|} ∈ Backb(A).

By definition of Nextnode (see Definition 8), we get that `k−b+1 < ik−b+1. Finally, we know that, for every j > k − b + 1, the node ij is
larger or equal to the node ik−b+1 by the definition of Complete. Therefore, A ≺ Afull which concludes the proof.

PROOF OF LEMMA 10: Enum(M,w) correctly enumerates all answers in M(w).



Proof. By definition of annotated answers, we know that there exists an annotated answer for every answer in M(w). Therefore, it remains
to show that Enum(M,w) computes all annotated answers for M and w and does not output an answer twice.

Let A1, . . . ,Am be the sequence of sets of annotated answers that are given to the output during Enum(M,w). It holds that A1 =
Complete({∅}). By Definition of Complete (see Definition 6), A1 contains the set of smallest annotated answers to M(w). In the output we
will delete duplicate answers of the set A1. For every set Ai with i > 1, we show that it is the complete set of minimal annotated answers
that are larger than an answer in Ai−1. Therefore, observe that every set Ai with i ∈ [m] is a set Complete(B) for some set of annotated
answers B. Thus, we know that, for all A,B ∈ Ai, we have Nodes(A) = Nodes(B). It follows that all answers in set Ai are strictly larger
than all answers in Ai−1. Since the output will delete duplicate answers of the set Ai we will never output an answer twice. Finally, by
Lemma 23, we know that the answers inAi are minimal and larger which means there is no annotated answer C ∈M(w) such that C /∈ Ai
for all i ∈ [m]. This concludes the proof.

Proofs of Section 3.4

PROOF OF LEMMA 13: For every node vxy ∈ Naux
w , we have that R(vxy) is the set of all (q1, q2, I) such that there is an annotated answer

Afull w.r.t. some run r with r(x) ∈ δ(q1, w[x]), r(y) = q2, and I = Nodes(Afull
[x,y]).

Proof. The proof is by induction on increasing values of the depth, d(vxy), of vxy in the auxiliary tree Naux
w . Here, the depth d(vxy) of a node

in Naux
w is the length of the path from the root to vxy .

For the base case, that is, the root v1n ∈ Naux
w , we have that

R(v1n) = {(q0, qF , set(s)) ∈ T+(v1n) | qF ∈ F, s ∈ S}.

The assumption holds by correctness of the relation T+ (see Lemma 30).
For the induction case, we have to show that the assumption holds for a left-child-node and for a right-child-node vxy . However, both

cases are analogous and we only show the case where vxy is a left child in the following. Let vxy be a left child of a node vxz and let v(y+1)z

be the right child of vxz . Remember that, by Definition 12,

R(vxy) = ∪(q1,q3,I)∈R(vxz){(q1, q2, J1) | ∃(q1, q2, I1) ∈ T+(vxy) such that J1 ⊆ I1,
∃(q2, q3, I2) ∈ T+(v(y+1)z) such that J2 ⊆ I2, and J1 ∪ J2 = I}.

We show the assumption by proving “⇒” and “⇐” separately.
“⇒”: Let (q1, q2, J1) be a tuple in R(vxy). Then there are, according to Definition 12, tuples (q1, q3, I) ∈ R(vxz), (q1, q2, I1) ∈ T+(vxy)
and (q2, q3, I2) ∈ T+(v(y+1)z) such that J1 ⊆ I1, and there exists a set J2 ⊆ I2 where J1 ∪ J2 = I . By correctness of T+, we know that
there exists

• a partial run r1 = q1 · · · q2 on w[x..y] such that J1 ⊆ set(r1), and
• a partial run r2 = q2 · · · q3 on w[y + 1..z] such that J2 ⊆ set(r2).

By applying the induction hypothesis on the parent node vxz , we know that for the tuple (q1, q3, I) ∈ R(vxz) there is an annotated answer
A w.r.t. some run r such that r(x) ∈ δ(q1, w[x]), r(z) = q3, and I = Nodes(A[x+1,z]). Therefore, it holds that r = r`rmrr ,

• r` is a partial run q0 · · · q1 on w[1..x− 1], and
• rr is a partial run q3 · · · qF on w[z + 1..n].

Observe that set(r`) ∪ set(rr) ∪ I = set(s) for some s ∈ S. Altogether, the run r`r1r2rr is an accepting run that produces an annotated
answer Afull which proves the assumption for vxy .
“⇐”: Towards contradiction, assume that (q1, q2, J1) is a tuple not in R(vxy) such that there is an annotated answer Afull w.r.t. some run
r with r(x) ∈ δ(q1, w[x]), r(y) = q2, and J1 = Nodes(Afull

[x+1,y]). Applying the induction hypothesis on the parent node vxz , we know
that there exists a tuple (q1, q3, I) ∈ R(vxz) which is compatible with Afull and r. But then it directly follows, by correctness of T+ (see
Lemma 30), that there are tuples (q1, q2, I1) ∈ T+(vxy) such that J1 ⊆ I1, and (q2, q3, I2) ∈ T+(v(y+1)z) such that, there is a set J2 ⊆ I2
with J1 ∪ J2 = I . This directly contradicts the assumption that (q1, q2, J1) /∈ R(vxy).

PROOF OF LEMMA 14: Given Naux
w and T+, we can compute R(v1n) in time O(|Q|2 · 2k) and, for every other v ∈ Naux

w with parent vp,
compute R(v) in time O(|Q|3 · 2k) if R(vp) is known.

Proof. For the root node v1n, we have that R(v1n) = {(q0, qF , set(s)) ∈ T+(v1n) | qF ∈ F, s ∈ S}. Thus, we only need to traverse the
relation T+(v1n) which is of sizeO(|Q|2 ·2k). For all other nodes, we have to distinguish whether they are a left or a right child of its parent
vp. Let v1 be the left and v2 be the right child of vp. To calculate R(v1) and R(v2) we traverse the relation R(vp) and check for a tuple
(q1, q3, I) ∈ R(vp) whether there exist tuples (q1, q2, I1) ∈ T+(v1) and (q2, q3, I2) ∈ T+(v2) such that there are subsets J1 ⊆ I1 and
J2 ⊆ I2 with J1 ∪ J2 = I . If J1 and J2 exist, we add to R(v1) a tuple (q1, q2, J1) for every such set J1, and a tuple (q2, q3, J2) for every
such set J2 to R(v2). Because relations R and T+ contain at most O(|Q|2 · 2k) different tuples for every node, it needs time O(|Q|3 · 2k)
to calculate R(v1) and R(v2).



Proofs of Section 3.4.1

PROOF OF LEMMA 15: Let u be the leftmost leaf of Naux
w such that R(u) has a tuple (q1, q2, I) with I 6= ∅. Then u is the node i1 in w.

Proof. Assume that u is the node in Naux
w that is given by the above lemma. Towards contradiction, assume that i1 6= u, i.e., there exists a

leaf node v < u such that there is an annotated answer Afull with v ∈ Nodes(Afull). By Lemma 13, there exists a tuple (p, q, J) ∈ R(v) with
J 6= ∅. This directly contradicts the assumption.

Lemma 31. The node i1 can be computed within time O(|Q|3 · 2k · logn).

Proof. The node i1 can be computed by one top-down pass of the path from the root of Naux
w to i1. Therefore, we start at the root and,

whenever we are in a node v, we compute the sets of relevant tuples of its two children v1 and v2 (if these exist; if not, we are done) and
proceed to the leftmost child for which the set of relevant tuples contains a tuple (p, q, I) with I 6= ∅. We are done when we reach a leaf. At
every node on this path we have to calculate two sets of relevant tuples. By Lemma 14, this can be done in time O(|Q|3 · 2k) for each node.
Since a path from the root to a leaf in Naux

w is of length logn we need time O(|Q|3 · 2k · logn) in total. This concludes the proof.

Proofs of Section 3.4.2

PROOF OF LEMMA 18: Let Afirst be the set of smallest annotated answers. Then G(ik) = {(q,A) | A ∈ Afirst and
(q, A) is compatible with A}.

Proof. We prove the lemma by showing the following claim.

Claim 32. Let Afirst be the set of smallest annotated answers. Let Acand be the set of annotated answers Ac for which there exists an
Af ∈ Afirst with

Nodes(Ac[1,ij−1]) = Nodes(Af[1,ij−1]) and Nodes(Ac[ij ,ij ]) ⊆ Nodes(Af[ij ,ij ]).

Then G(ij) = {(q,A) | |A| = j and ∃Ac ∈ Acand such that (q,A) is compatible with Ac}.

The statement of Lemma 18 holds directly by Claim 32 for j = k. It remains to prove Claim 32.

Proof of Claim 32: The proof is by induction on increasing values j.
For j = 1, we have that

G(i1) := {(q, {|(i1, q)|}) | (p, q, {q}) ∈ R(i1)}.
Obviously, it holds that | {|(i1, q)|} | = 1. By Definition of R and Lemma 13, there is an annotated answer Afull w.r.t. some run r such that
Afull

[i1,i1]
= {|(i1, q), . . . , (i1, q)|}. By Lemma 15, we know that i1 is the smallest position that can be assigned in any annotated answer.

Therefore, it holds that Afull
[1,i1]

= Afull
[i1,i1]

which means that (q, {|(i1, q)|}) is compatible with Afull. It remains to show that Afull ∈ Acand.
Therefore, let Af be an annotated answer in Afirst. By correctness of i1 (see Lemma 15), it holds that

Nodes(Afull
[1,ij−1]) = ∅ = Nodes(Af[1,ij−1]) and Nodes(Afull

[ij ,ij ]
) ⊆ Nodes(Af[ij ,ij ]).

Thus, Afull ∈ Acand which proves the assumption for i1.
Assume that the statement holds for j. Then, we have that

G(ij+1) = {(q,A ∪ {|(ij+1, q)|}) | there exists some (p, q, {q}) ∈ R(ij+1) compatible with some (q′, A) ∈ G(ij)}.

Since the statement holds for j, we have that |A| = j. Therefore, |A ∪ {|(ij+1, q)|} | = j + 1. By the definition of compatibility (see
Definition 16), there is an annotated answer Afull w.r.t some run r such that (p, q, {q}) and (q′, A) are compatible with Afull and r. It directly
follows that, (q,A ∪ {|(ij+1, q)|}) is compatible with Afull and r. Therefore, it remains to show that Afull ∈ Acand. By applying the induction
hypothesis on (q′, A) ∈ G(ij), we know that there exists annotated answer Af ∈ Afirst with

Nodes(Afull
[1,ij−1]) = Nodes(Af[1,ij−1]) and Nodes(Afull

[ij ,ij ]
) ⊆ Nodes(Af[ij ,ij ]).

By correctness of ij+1 (see Lemma 23), it follows that Afull and Af have the same node ij+1, i.e., it follows that also

Nodes(Afull
[ij ,ij ]

) = Nodes(Af[ij ,ij ]) and Nodes(Afull
[ij+1,ij+1]

) ⊆ Nodes(Af[ij+1,ij+1]
).

Altogether, it holds that Afull ∈ Acand which proves the assumption.



PROOF OF LEMMA 20: For a node vxy of Naux
w , we can compute Rj(vxy) in time O(|Q|3 · 2k) in each of the following cases:

(1) vxy is a leaf, vxy = ij , and we know G(ij) and Rj−1(ij);

(2) vxy has parent v, x > ij , and we already know Rj(v); and

(3) vxy has child v, y ≥ ij , and we know Rj(v) and Rj−1(vxy).

Proof. We prove cases (1) to (3) separately. However, notice that, by Definition 19, we have to show that Rj(vxy) for each case (1) to (3) is
the set of all tuples (q1, q2, I) such that

• (q1, q2, I) ∈ R(vxy), and
• (q1, q2, I) is compatible with some (q,A) ∈ G(ij).

(1) We define Rj(ij) = {(p, q, {q}) ∈ Rj−1(ij) | ∃(q,A) ∈ G(ij)} which needs time O(|Q|3 · 2k). Every tuple (p, q, {q}) belongs
to Rj(ij) because it is compatible with (q,A) ∈ G(ij) and, therefore, also relevant. Since every tuple (p, q, {q}) ∈ R(ij) that is
compatible with some (q,A) ∈ G(ij) is as well compatible with some (q′, A′) ∈ G(ij−1), it follows that (p, q, {q}) ∈ Rj−1(ij). That
is, the set Rj(ij) is also complete.

(2) To prove (2), we distinguish two subcases (a) and (b) whether vxy is a left or a right child.
(a) If vxy is a left child and v is the parent of vxy , then let v′ be the right child of v. We define

Rj(vxy) = {(q1, p, J) | ∃(q1, p, I1) ∈ T+(vxy),∃(p, q2, I2) ∈ T+(v′), ∃(q1, q2, I) ∈ Rj(v),

such that J ⊆ I1 and J ∪ I2 = I}.

(b) If vxy is a right child and v is the parent of vxy , then let v′ be the left child of v. We define

Rj(vxy) = {(p, q2, J) | ∃(p, q2, I2) ∈ T+(vxy),∃(q1, p, I1) ∈ T+(v′), ∃(q1, q2, I) ∈ Rj(v)

such that J ⊆ I2 and J ∪ I1 = I}.

We prove that the above definition for Rj(vxy) is correct for the case (2)(a). The proof for the case (2)(b) is analogous.
We first prove that every tuple (q1, p, J) belongs to Rj(vxy). Since (q1, q2, I) ∈ Rj(v), we know that (q1, q2, I) is compatible with
some (q,A) ∈ G(ij). Because x > ij , it holds that Nodes(A[x,y]) = ∅. Thus, (q1, p, J) is also compatible with (q,A) and, therefore,
also relevant. This proves that (q1, p, J) belongs to Rj(vxy). Towards contradiction, assume that the above definition is not complete for
Rj(vxy). Then, there is a tuple (q1, p, J) ∈ R(vxy) which is compatible with some (q,A) ∈ G(ij) but which is not captured by the
right side in the above definition. However, we know that (q1, p, J) ∈ R(vxy). By Definition 12, it directly follows that there is a tuple
(q1, p, I1) ∈ T+(vxy) with J ⊆ I1, and there are tuples (p, q2, I2) ∈ T+(v′) and (q1, q2, I) ∈ Rj(v) such that J ∪ I2 = I . Therefore,
(q1, p, J) ∈ Rj(vxy) which directly contradicts the assumption. We can compute Rj(vxy) in time O(|Q|3 · 2k).

(3) To prove (3), we distinguish two subcases (a) and (b) whether vxy has a left or a right child.
(a) If vxy has a left child v, then let v′ be the right child of vxy . We define

Rj(vxy) = {(q1, q2, I) | ∃(q1, q2, I) ∈ Rj−1(vxy), ∃(q1, p, I1) ∈ Rj(v),∃(p, q2, I2) ∈ T+(v′) such that I1 ∪ I2 = I}.

(b) If vxy has a right child v, then let v′ be the left child of vxy . We define

Rj(vxy) = {(q1, q2, I) | ∃(q1, q2, I) ∈ Rj−1(vxy), ∃(q1, p, I1) ∈ T+(v′), ∃(p, q2, I2) ∈ Rj(v) such that I1 ∪ I2 = I}.

We prove that the above definition for Rj(vxy) is correct for the case (3)(a). The proof for the case (3)(b) is analogous.
We first prove that every tuple (q1, q2, I) belongs to Rj(vxy). Because (q1, q2, I) ∈ Rj−1(vxy), it directly holds that (q1, q2, I) ∈
R(vxy). It remains to show that there is an annotated answer Afull w.r.t. some run rA such that (q1, q2, I) and some (q,A) ∈ G(ij) are
compatible with Afull and rA. In the following, we construct such annotated answer Afull and run rA from the given information about
(q1, q2, I). First, because (q1, q2, I) ∈ Rj−1(vxy) we know that (q1, q2, I) is compatible with some (p,B) ∈ G(ij−1). That is, there is
an annotated answer Bfull w.r.t some run rB such that (q1, q2, I) and (p,B) are compatible with Bfull and rB . Observe it already holds
that Nodes(B) = Nodes(A[1,ij−1]). Furthermore, by definition of compatibility, we know that Nodes(Bfull

[x,y]) = I and rB = r1r2r3
such that r2 is a partial run q1 · · · q2 on w[x..y] and I ⊆ set(r2). However, this is not enough to show that Bfull is compatible with
(q,A) ∈ G(ij) because Bfull does not have to agree with A on the node ij . If this is the case, then we can construct a new run rA from
rB such that rA produces the desired Afull. Therefore, we define rA = r1 · rv · rv′ · r3 where
• rv = q1 · · · p is a partial run on w[x..z] such that I1 ⊆ set(rv) and r[ij ] = q for (ij , q) ∈ A, and
• rv′ = p′ · · · q2 with p′ ∈ δ(p, w[z + 1]) is a partial run on w[z + 2..y] where I2 ⊆ set(rv′).

Using Definition 19 and that (q1, p, I1) ∈ Rj(v), it follows that rv is well-defined. Applying Lemma 30 for the tuple (p, q2, I2) ∈
T+(v′), it follows that rv′ is well-defined. Because I1 ∪ I2 = I , the run rA produces the annotated answer Afull which proves the
assumption. Towards contradiction, assume that the above definition is not complete for Rj(vxy). Then, there is a tuple (q1, q2, I) ∈
R(vxy) which is compatible with some (q,A) ∈ G(ij) but which is not captured by the right side in the above definition. Let the
annotated answerAfull w.r.t. some run r be such, that (q1, q2, I) and (q,A) are compatible withAfull and r. By definition of compatibility,
we have that Nodes(Afull

xy) = I . Then there exist I1 and I2 such that, for z = x − 1 + b y−x+1
2
c, it holds that Nodes(Afull

xz) = I1,
Nodes(Afull

(z+1)y) = I2 and I = I1 ∪ I2. It follows that there exist a tuple (q1, p, I1) ∈ Rj(vxz) for the left child vxz of v, and a tuple
(p, q2, I2) ∈ T+(v(z+1)y) for the right child v(z+1)y of v. Therefore, (q1, q2, I) ∈ Rj(vxy) which directly contradicts the assumption.
We can compute Rj(vxy) in time O(|Q|3 · 2k).



Proposition 33. All sets G(ij) (for j ∈ [k]) can be stored together in one data structure of sizeO(|S| · k!). Furthermore, this data structure
can, given j, generate G(ij) within time O(|S| · k!).

Proof. We first show that O(|S| · k!) records suffice for storing a single G(ij) and then show how we can store them all together.
For a given j, we defined G(ij) as a set of tuples (q,A) where A is a multiset over Nodes(w) × Q. Furthermore, by construction of

G(ij), every annotated answer A for which (q,A) in G(ij) uses the same multiset of j nodes {|i1, . . . , ij |}. Since k is an upper bound for j,
a naı̈ve upper bound for the size of G(ij) would therefore be O(k + |Q| × |Q|k). (That is, size at most k for storing the tuple (i1, . . . , ij)
and at most |Q| × |Q|k for all possibilities of (q, (q1, . . . , qj) for which (q, {|(i1, q1), . . . , (ij , qj)|}) is in G(ij).

However, for every (q,A) ∈ G(ij), it holds that all tuples of the form (ij , qj) ∈ A have qj = q, by construction of G(ij). Therefore,
instead of storing all possibilities (q, (q1, . . . , qj)) it suffices to store (q1, . . . , qj).

But we can optimize even more. Observe that each element in G(ij) does not contain arbitrary states but rather states in some set set(s)
for some s ∈ S. Therefore, since we already have (i1, . . . , ij), we could alternatively store, for every tuple (q1, . . . , qk) ∈ S, all injections
σ : [j] → [k] such that (qσ(j),

{∣∣(i1, qσ(1)), . . . , (ij , qσ(j))∣∣} ∈ G(ij). Hence, for j = k we store the tuple (i1, . . . , ik) once and, for
every (q1, . . . , qk) ∈ S, the set of permutations σ : [k] → [k] such that (qσ(k),

{∣∣(i1, qσ(1)), . . . , (ik, qσ(k))∣∣}) ∈ G(ik). The total size is
O(k + k! · |S|), which is in O(k! · |S|). (The representation size for j < k is smaller.)

In fact, we can even store all G(ij) together in a single data structure of size O(k! · |S|). To see this, consider a (q1, . . . , qk) and all
injections mentioned above. If σ : [j] → [k] is an injection such that (qσ(j),

{∣∣(i1, qσ(1)), . . . , (ij , qσ(j))∣∣} ∈ G(ij) then there are two
options for (qσ(j),

{∣∣(i1, qσ(1)), . . . , (ij , qσ(j))∣∣}. Either we can extend it in G(ij+1) or not. In the former case, there is also a non-empty set
of injections of the form σ′ : [j + 1]→ [k] such that

• σ′ extend σ, that is, σ′(`) = σ(`) for every ` ∈ [j] and
• (qσ′(j+1),

{∣∣(i1, qσ′(1)), . . . , (ij+1, qσ′(j+1))
∣∣} ∈ G(ij+1).

In the latter case, there exists no such non-empty set of injections extending σ.
Notice that, in the former case, σ can be immediately inferred from σ′, so σ does not need to be stored separately. For every j, we

therefore only store the σ : [j] → [k] that cannot be extended to some σ′ : [j] → [k + 1] for G(ij+1). In particular, for j = k, we store all
permutations that encode answers.

We claim that the total number of injections we store is O(k! · |S|). This is now easy to see: for every tuple s ∈ S, each injection σ that
we store cannot be extended to a permutation with the correct properties. That is, there exist permutations that extend σ, but these do not
have the property that they produce the answer (i1, . . . , ik). Therefore, the total number of injections that we store is O(k!). The size of a
single such injection is not larger than the size of a tuple in S, which means that O(|S| · k!) records suffice in total.

Finally, producing G(ij) for a given j can be done by returning all (qσ(j),
{∣∣(i1, qσ(1)), . . . , (ij , qσ(j))∣∣} for which we stored a σ that is

defined on j.

PROOF OF LEMMA 21: Given Naux
w , T+, and ` ∈ [k], we can compute G(i`) in time O(|S| · k! + |Q|3 · 2k · ` logn).

Proof. In the following, we show first how much time we need to compute the node i`. Afterwards, we will examine the time that was spend
to calculate the set G(i`) during the computation.

For ` = 1, we know that i1 can be computed in time O(|Q|3 · 2k · logn) by Lemma 31. Next, we show how to calculate i`+1 in time
O(|Q|3 · 2k · logn) when i` is given. Therefore, we use that the following information is available. Besides the auxiliary structure Naux

w with
T+ and all nodes in the multiset N = {|i1, . . . , i`|}, we assume that we know

(a) G(i`) and R(ui`),
(b) the tree Aaux

w induced by all ancestors of nodes in N , and,
(c) for every node vxy ∈ Aaux

w , we know the relation Rj−1(vxy) or Rj(vxy), where ij ∈ N is the highest position with x ≤ ij ≤ y.

After the computation of G(i1), Aaux
w consists only of the path from the root of Naux

w to i1. Since, R0(vxy) = R(vxy), we calculate R0(vxy)
for every node on this path during the computation of i1. Therefore, information (a) to (c) is available after we have computed G(i1).
Now, assume that we have all necessary information up to node i`. By Proposition 17, we know that

• i`+1 ≥ i` is the leftmost node in w for which
there exists a tuple (q1, q2, I) ∈ R(i`+1) with I 6= ∅ which is compatible with some (q,A) ∈ G(i`).

By Definition 19, this is equivalent to

• i`+1 ≥ i` is the leftmost node in w for which there exists a tuple (q1, q2, I) ∈ R`(i`+1) with I 6= ∅.

In the following, we show how we can compute i`+1 in timeO(|Q|3 · 2k · logn) providing that information (a) to (c) is available afterwards.
Therefore, we argue that we need at most logn operations of the kind (1) to (3) in Lemma 20 to find i`+1 from i`. We start at node i` where
we assume that G(i`) and R`−1(i`) are known. We compute R`(i`) applying (1) in Lemma 20 and test whether i`+1 = i`. If this is not
the case we follow the path p from i` to the root of Naux

w and calculate R` on the way. (Notice that, all necessary information (a) to (c) is
still available afterwards.) Since we always calculate the new relation R` for every node on p we can always apply case (3) in Lemma 20.
Because p is of length logn this needs logn operations. Afterwards, we do a second bottom-up traversal of p and, at each node, compute
R` for every right child (applying case (2) in Lemma 20). Again, all necessary information (a) to (c) is still available afterwards. We stop
when we find such a right child vr which is not on p and where R`(vr) contains a tuple (q1, q2, I) with I 6= ∅. Again, this can be done with
at most logn operations. By definition of R`, we know that the subtree rooted at vr has at least one leaf node u such that R`(u) contains a



tuple (q1, q2, I) with I 6= ∅. The leftmost such leaf u will be i`+1. To arrive at i`+1, we go down from vr . On this path, we always compute
R` for both children (applying case (2) in Lemma 20) and choose the leftmost child for which R` contains a tuple (q1, q2, I) with I 6= ∅. We
are done when we reach a leaf. Altogether, we navigated through O(logn) nodes in the tree Naux

w using time O(|Q|3 · 2k · ` logn) in total.
Furthermore, we computed R` for every node on the path from the root of Naux

w to i`+1 therefore obtaining the necessary information for (b)
and (c).
Finally, the following characterization shows how we can obtain G(i`+1) from G(i`) using j-relevant tuples (see Definition 19):

G(i`+1) = {(q2, A ∪ {|(i`+1, q2)|}) | ∃(q1, q2, {q2}) ∈ R`(ui`+1)∃(q,A) ∈ G(i`), and q1 ∈ δ∗(q, w[i` + 1..i`+1])}

Afterwards, information (a) is available as well. When going from i` to i`+1, we can maintain reachable states in δ∗ within time
O(|Q|3 · 2k · logn). By Proposition 33, we have shown that the computation of all G(ij) for j ∈ [`] together need in time O(|S| · k!).
Therefore, we used time O(|S| · k! + |Q|3 · 2k · logn) to compute G(i`) in total.

PROOF OF THEOREM 22: Given Naux
w and T+, we can compute the first answer of M on w in time O(|S| · k! + |Q|3 · 2k · k logn).

Proof. Let (v1, . . . , vk) be the first answer of M on w such that there is an accepting run r of N on w and a tuple (p1, . . . , pk) ∈ S where,
for every ` ∈ [k], r visits v` in p`. By Lemma 18, the set G(ik) contains the set of smallest annotated answers. Therefore, G(ik) contains an
annotated answers Afull = {|(v1, p1), . . . , (vk, pk)|}. By Lemma 21, G(ik) can be computed within timeO(|S| ·k! + |Q|3 · 2k ·k logn).

Proofs of Section 3.5

PROOF OF LEMMA 23: Complete, Back, and Nextnode can be implemented such that Algorithm 1 correctly computes Next(A). Furthermore,
Next(A) runs in O(|S| · k! + |Q|3 · 2k · k logn) time.

Proof. Recall from Section 3.3 that every set of annotated answers A at each call of Complete, Back, or Nextnode has the property that
all A ∈ A use the same multiset of nodes {|i1, . . . , i`|}. We denote this multiset by Nodes(A). Furthermore, we assume that the following
information is available when we call Complete, Back, Nextnode, or Next(A): the tree Naux

w with T+ and the relations Rj and sets G as
described in invariants (I1) and (I2) below.

(I1) Let Aaux
w be the tree induced by all ancestors in Naux

w of nodes in Nodes(A). For every vxy ∈ Aaux
w , we know the relation Rj−1(vxy) or

Rj(vxy) where ij ∈ Nodes(A) is the maximal node with x ≤ ij ≤ y.
(I2) For every ij ∈ Nodes(A), we know G(ij). Here, G(ij) = {(q,A) | Nodes(A) ⊆ Nodes(A), |A| = j and there is an annotated answer

Afull s.t. Nodes(A[1,ij−1]) = Nodes(Afull
[1,ij−1]), Nodes(A[ij ,ij ]) ⊆ Nodes(Afull

[ij ,ij ]
), and (q,A) is compatible with Afull}.

In the following we show that we can implement the aforementioned procedure correctly and such that (I1) and (I2) hold afterwards.

Complete(A): Remember that, in Algorithm 1, we always call Complete({∅}) in the beginning. In Section 3.4, we proved that the call will
return the smallest set of annotated answers in M(w) if they exist; otherwise M(w) 6= ∅ and we are done. Furthermore, we know that
(I1) holds by the computation done in the proof of Lemma 21 and that (I2) holds by Claim 32 (which we proved for Lemma 18). We now
generalize the description in Section 3.4 to compute Complete(A) for an arbitrary occurrence of A in Algorithm 1. To this end, we have
to change the definition of tuple (i1, . . . , ik) in Section 3.4. In particular, (i1, . . . , ik) should be the smallest answer of the query such that
{|i1, . . . , ij |} = Nodes(A) and, for every ` > j, i` is at least the largest number ij in Nodes(A). That is, we only recompute G(i`) for ` > j
and leave all G(i1), . . . , G(ij) untouched. Because we have the relation Rj available as it is given in (I1), we can compute ij+1 and the
new set G(ij+1) analogous to the case for Complete({∅}) applying Lemma 20. Again, this computation satisfies that (I1) holds for the set
Nodes(Complete(A)). At the newly computed node ij+1, we compute the set G(ij+1) equally to the case for Complete({∅}), i.e.,

G(ij+1) = {(q2, A ∪ {|(ij+1, q2)|}) | ∃(q1, q2, {q2}) ∈ Rj(ij+1)∃(q,A) ∈ G(ij), and q1 ∈ δ∗(q, w[ij + 1..ij+1])}.
However, notice that by (I2) the semantics of the sets G(ij) differ from Section 3.4. At the end, we define

Complete(A) = {A | (q,A) ∈ G(ik)}.

Analogously to Lemma 21, the computation of Complete(A) needs time O(|S| · k! + |Q|3 · 2k · k logn). It remains to show that (I2)
holds after the computation. Observe that, when Complete(A) is finished, we have that Nodes(Complete(A)) = {|i1, . . . , ij , ij+1, . . . , ik|}
where ij+1, . . . , ik were recomputed by the procedure. Then, for all sets G(i`) with ` ≤ j, (I2) holds by assumption. Next, we show that
(I2) holds for all all sets G(i`) where ` > j. Therefore we prove that, if G(ij) fulfills (I2) then G(ij+1) given by the above computation
fulfills (I2) as well. First, it holds that Nodes(A) ⊆ Nodes(A) by definition. By applying (I2) for G(ij), we know that |A| = j, i.e.,
|A ∪ {|(ij+1, q2)|} | = j + 1. By the same argument, we also know that there exists an annotated answer Afull

1 w.r.t. some run r1 such that
(q,A) ∈ G(ij) is compatible withAfull

1 and r2. Then, by the definition ofR, we know that there is another annotated answerAfull
2 w.r.t. some

run r2 such that (q1, q2, {q2}) ∈ Rj(ij+1) is compatible with Afull
2 and r2. Since we know that q1 is reachable from q according to the right

subword of w, it is straightforward to obtain an annotated answer Afull w.r.t. some run r such that (q1, q2, {q2}) and (q,A) are compatible
with Afull and r. It directly follows that (I2) holds for G(ij+1) which concludes the description of Complete(A).

Back(A): The procedure Back(A) is implemented as follows:

Back(A) =

{
{(A | (q,A) ∈ G(ij−1)} if j ≥ 2,

∅ otherwise.



Because (I1) and (I2) hold before the call of Back(A) they are satisfied afterwards since we do not touch any R and G. Since G(ij−1) is
already computed, each call Back(A) needs time linear in the size of G(ij−1), i.e., O(|S| · k!) by Proposition 33. It remains to prove that
our definition is correct. Therefore, observe that all A ∈ Back(A) are incomplete answers of size j − 1 when applying (I2) on G(ij−1).
Furthermore and by the same argument, these A are all possible incomplete answers A of M on w where Nodes(A) = {|i1, . . . , ij−1|}. This
concludes the description of Back(A).

Nextnode(A): Finally, to compute Nextnode(A) let ij be a maximal node in Nodes(A). Then, Nextnode(A) has to do two steps in particular:
(1) check whether there is an annotated answer Afull with Nodes(Afull) = {|i1, . . . , ij−1, ij+1, . . . ik|} for new nodes ij+1, . . . , ik strictly
larger than ij , and (2) compute the set G(ij+1) for a single new position strictly larger than ij . We define

Nextnode(A) =

{
{(A | (q,A) ∈ G(ij+1)} if Afull exists,
∅ otherwise.

In Section 3.4.2, we have already showed how to implement (1) and (2) to find a new node ij+1 for the case Complete(A). In the case of
Nextnode(A), the proof is analogous with only one difference: one has to ensure that ij+1 is strictly larger than ij ; if it exists. But this can
be done by skipping the step where we check whether ij+1 = ij in the beginning of the computation. The definition of G(ij+1) is equal to
the aforementioned case of Complete(A). Analogously to the case of Complete(A) the computation satisfies (I1) and (I2) afterwards. Alto-
gether, the call of Nextnode(A) needs timeO(|S|·k!+|Q|3·2k ·logn). (Remember that, it recomputes at most one node ij and one setG(ij).)

Next(A): In Lemma 9, we have already proved that Next(A) is correct when Complete(A),Back(A), and Nextnode(A) can be implemented
correctly. Therefore, it directly follows that Next(A) can be implemented correctly as given in Algorithm 1. Afore, we proved that Nextnode
needs timeO(|S|·k!+|Q|3 ·2k ·logn), Back can be implemented in timeO(|S|·k!), and Complete runs in timeO(|S|·k!+|Q|3 ·2k ·k logn).
During a call of Next(A) there are at most O(k) calls of Nextnode and Back and there is only one call of Complete. Altogether, Next(A)
needs time O(|S| · k! + |Q|3 · 2k · k logn) in total.

PROOF OF THEOREM 24: INCENUM for a k-NSFA M and a word w with |w| = n can be solved with auxiliary data of sizeO(|Q|2 · 2k ·n)
which can be computed in time O(|Q|3 · 2k · n), maintained within time O(|Q|3 · 2k · logn) per update, and which guarantees delay
O(|S| · k! + |Q|3 · 2k · k logn) between answers.

Proof. In the preprocessing phase, we build the tree Naux
w and relation T+ which serve as our auxiliary data. By Lemma 5, the data has size

O(|Q|2 · 2k · n) and can be computed within time O(|Q|3 · 2k · n). By the same lemma, it follows that updates can be maintained in time
O(|Q|3 · 2k · logn). By Lemma 10, we know that we can use Algorithm 1 to correctly enumerate all answers in M(w) if Complete(A),
Back(A), and Nextnode(A) can be computed correctly within the required running time. In Theorem 22, we showed that Complete({∅})
can be implemented correctly such that it runs in timeO(|S| · k! + |Q|3 · 2k · k logn). Finally we showed, in Lemma 23, that Next(A) (and
thereby Complete(A), Back(A), and Nextnode(A)) can be computed correctly within time O(|S| · k! + |Q|3 · 2k · k logn).



Proofs of Section 4 (Trees)
Proofs of Section 4.1
PROOF OF LEMMA 27: Given a k-NSTA M and a binary tree t, the auxiliary structure has size O(|Q|2 · 2k · |t|), can be computed in time
O(|Q|3 · 2k · |t|) and updated in time O(|Q|3 · 2k · log2 |t|).

Proof. Observe that, all trees Naux
p for every p ∈ HPaths(t) together have |t| leaf nodes with at most log |t| depth, i.e., they have O(|t|)

nodes altogether. For every node v in some Naux
p , the transition relation T+

p is of size O(|Q|2 · 2k). Therefore, our auxiliary structure has
sizeO(|Q|2 · 2k · |t|) in total. The transition relation T+

p is build bottom-up for every tree Naux
p analogously to the word case. For leaf nodes,

T+
p can be calculated in time and space O(|Q|2). Afterwards, we need to compute |t| ./+-operations where each join can be done in time
O(|Q|3 · 2k). Altogether, the auxiliary structure can be build in time O(|Q|3 · 2k · |t|).

Now, consider an update at node v ∈ t and let v be a node of path p ∈ HPaths(t). Then, we update every relation on the path from
v to the root of Naux

p , i.e., we update log |t| many relations. This can be done by log |t| ./+-operations yielding time O(|Q|3 · 2k · log |t|)
for one tree Naux

p . Analogously, to the proof of Lemma 30, it follows that the update is processed correctly for the relation T+
p . Afterwards,

this update of the tree Naux
p triggers an update in every tree Naux

p′ for every path p′ ∈ HPaths(t) that is crossed by the path from v to the
root in t. By Lemma 26, there exist at most log |t| such paths p′. Therefore, we have to update at most log |t| trees Naux

p′ each with costs
O(|Q|3 · 2k · log |t|). Thus, we need time O(|Q|3 · 2k · log2 |t|) to update all trees Naux

p on the path from v to the root of t which means an
update costs O(|Q|3 · 2k · log2 |t|) in total.

Details for Section 4.2
The algorithms for INCENUM on words are similar to INCENUM on trees but we must update a few definitions. Here we discuss how the
techniques of enumeration on words (Section 3) should be changed so that we can use them for enumeration on trees. We provide further
details for which there was no space in the body of the paper.

In the following, we denote by M = ((Q,Σ, δ, F ), S) a k-NSTA and by t a binary input tree with |t| = n.

The Auxiliary Structure and the Order of Nodes
First, we formally define our auxiliary structure for trees. Let HPaths(t) be the set of maximal heavy paths for the tree t. For every
p ∈ HPaths(t), let Naux

p be the auxiliary tree for every NFA Np on p. We now define a new auxiliary tree Naux
t which is built from all Naux

p .
Intuitively, Naux

t refers to the tree depicted on the right side of Figure 4.

Definition 34. The auxiliary tree Naux
t is defined as follows:

• the root of Naux
t is the root of Naux

hp(t), where hp(t) is the heavy path that contains t’s root;
• for every maximal heavy path p and leaf node v ∈ Naux

p , if v has a child in t that is root of another heavy path p′, then the child of v in
Naux
t is the root of the tree Naux

p′ ; otherwise v is a leaf in Naux
t .

Therefore, Naux
t can be seen as the union of all trees Naux

p with extra edges that connect the different Naux
p . A node in Naux

t is always also a
node in some Naux

p and, if it is a leaf in Naux
p , then it is also a node in t.

On words, the order � in which we compare nodes is inherently given by the word. On trees we compare single nodes in Naux
t by saying

that u �t v if u = v or u comes before v in the (left-to-right) post-order traversal of Naux
t . Again, we define≺t as the strict version of�t and

we extend �t to tuples analogously as we did for words.
Observe that, since all nodes of t also appear in Naux

t , �t (resp. ≺t) is also well-defined for every node v ∈ t.

Enumerating Query Answers for Trees
In the following, we prove that we can use Algorithm 1 interpreted for a k-NSTAM and a tree t (instead of a word w) to correctly enumerate
all answers to the queryM(t). We adopt the definition of an (incomplete) annotated answer (see Section 3.3) for trees. Formally, an annotated
answer of a k-NSTA M = (N,S) on t is a multiset Afull over Nodes(t)×Q of the form

{|(i1, q1), . . . , (ik, qk)|}
such that there is an accepting run λ ofN on t and a tuple (q1, . . . , qk) ∈ S such that λ visits i` in q`, for every ` ∈ [k]. For a node v ∈ Naux

t ,
let tv be the subtree of Naux

t rooted at v. For an annotated answer A = {|(i1, q1), . . . , (ik, qk)|} and a set of nodes V ⊆ Nodes(Naux
t ),

the projection of A onto [V ], denoted A[V ], is defined to be the multiset {|(i, qi) | ∃v ∈ V : such that i ∈ tv|}. All remaining notions for
annotated answers are used as well but are defined equally to the word case. Now the proof of the following lemma is analogous to the proof
of Lemma 10, when using the tree definitions for annotated answers.

Lemma 35. Let M be a k-NSTA and t a binary tree. Then, Enum(M, t) correctly enumerates all answers in M(t).

The First Answer for Trees
Following the lines of the word case, we explain next how to compute the first set of answers to the query M(t). Therefore, we show how
to implement Complete({∅}) for trees. First, we have to adapt the notion of a growing annotated answer up to position j to trees. Again, we
take the definition for words (see Definition 11) but interpret it over Nodes(t)×Q:



Definition 36. Let q ∈ Q and A be a multiset over Nodes(t)×Q. Then (q,A) is a growing annotated answer up to position j if there is an
accepting run λ of N on t and some node j ∈ Nodes(t) such that

• λ visits j in q; and
• there is an annotated answer Afull w.r.t. λ such that, for every p ∈ Q and i ∈ Nodes(t),

i ≺t j, we have Afull((i, p)) = A((i, p)),
i = j, A((i, p)) ≤ Afull((i, p)), and
i �t j, we have A((i, p)) = 0.

The definition of the relevant relation has to be changed a bit more drastically to adapt it to the tree case (see Definition 28). In the
following, we prove that Definition 28 is correct for our purpose. That is, we prove a statement similar to the one of Lemma 13 for trees. For
a node vxy in a tree Naux

p where p = vn · · · v1 (v1 is a leaf), we define the projected path pp(vxy) as vx · · · vy . Notice that in pp(vxy) we
reverse the order on nodes vi ∈ p since we always have that x ≤ y. Therefore, the definition of projected paths fits to the input words for the
automata Np because their read the labels of the path p bottom-up by definition.

Lemma 37. Let vxy ∈ Naux
p , pp(vxy) = vx · · · vy and V = {vx, . . . , vy}. Then, R(vxy) is the set of all tuples (q1, q2, I) such that, there is

an annotated answer Afull w.r.t. some run λ on t with λ(vy) = q2, I = Nodes(Afull
[V ]), and, for q1 6= q0, λ(vx) = q1.

Proof. Let vxy ∈ Naux
p , pp(vxy) = vx · · · vy and V = {vx, . . . , vy}. Balmin et al. [2] showed that one can maintain an NTA on a tree

by decomposing the tree into maximal heavy paths and maintaining an NFA for every such path. The NFAs in their approach use almost
the same transition relations as we do. More precisely, they use only the first two items in the triples from T+

p . Since, for every tuple
(q1, q2, I) ∈ R(vxy) there is a tuple (q1, q2, J) ∈ T+

p for some sets I and J , it follows analogously to the result of Balmin et al. that there
is a run λ on t such that λ(vy) = q2, and, for q1 6= q0, λ(vx) = q1. The proof that the set I is correct is a straightforward induction on the
position of a path in HPaths(t) compared to t.

Furthermore, we adopt the definition of compatibility (see Definition 16) to trees.

Definition 38 (Compatibility). Let vxy ∈ Naux
t , pp(vxy) = vx · · · vy and V = {vx, . . . , vy}. For an annotated answer Afull w.r.t. some run

λ, we say that a tuple

• (q1, q2, I) ∈ R(vxy) is compatible with Afull and λ if λ(vy) = q2, I = Nodes(Afull
[V ]), and, for q1 6= q0, λ(vx) = q1.

Furthermore, for (q,A) a growing answer up to position i,

• (q,A) is compatible with Afull and λ if λ(i) = q, A[1,i−1] = Afull
[1,i−1] and A[i,i] ⊆ Afull

[i,i].

Finally, (q1, q2, I) ∈ R(vxy) is compatible with (q,A) if there exists an annotated answer Afull w.r.t. some run λ such that both (q1, q2, I)
and (q,A) are compatible with Afull and λ.

Observe that we only changed the notion of compatibility for a tuple inR and an annotated answer accordingly to the semantics ofR (see
Lemma 37). The rest of the definition is exactly the same as for words. We can now give a Definition of the nodes i1 (see Lemma 15) and
ij+1 (see Proposition 17) for trees.

For Lemmas 39, Proposition 40, Definition 41, and Lemma 42, let (i1, . . . , ik) again be the smallest answer of M on t.

Lemma 39. Let u be the smallest node in t (w.r.t. �t) such that R(u) has a tuple (q1, q2, I) with q2 ∈ I . Then u is the node i1 in t.

Next, we define the sets G of growing answers for trees:

G(i1) := {(q2, {|(i1, q2)|}) | (q1, q2, I) ∈ R(i1) and q2 ∈ I},
Proposition 40. The node ij+1 �t ij is the smallest node (regarding�t) in t for which there exists a tuple (q1, q2, I) ∈ R(ij+1) with q2 ∈ I
which is compatible with some (q,A) ∈ G(ij).

Once we have ij+1 we can also define the set G(ij+1):

G(ij+1) := {(q2, A ∪ {|(ij+1, q2)|}) |
there exists some (q1, q2, I) ∈ R(ij+1) with q2 ∈ I which is compatible with some (q,A) ∈ G(ij)}.

The proof of correctness for the tree case is analogous to the proof of Lemma 18, but using the above definitions for trees. For the computation
of the positions {|i1, . . . , ik|}, we do a very similar traversal of the auxiliary structure as for the word case but this time in the tree Naux

t . During
this traversal the notion of j-relevance (see Definition 19) was central for the word case. The definition of j-relevance on trees is essentially
the same one as for words, but we use the definition of relation R on trees and the tree notion of compatibility:

Definition 41. For v ∈ Naux
t and j ∈ {0, . . . , k}, we define the set of j-relevant tuples of v, denoted Rj(v), as follows:

• R0(v) := R(v) and,
• for each j ≥ 1,

if v ≺t ij , then Rj(v) := Rj−1(v),
otherwise, Rj(v) := {(q1, q2, I) ∈ R(v) | (q1, q2, I) compatible with some (q,A) ∈ G(ij)}.

As we said before, we traverse the tree Naux
t in the same way as the tree Naux

w for words. However, the tree Naux
t has O(log2 |t|) depth,

whereas Naux
w hadO(log |w|) depth. Therefore, we need timeO(log2 |t|) to go from a node ij to ij+1. Furthermore, we do not collect output

of the query only at the leaves of Naux
t because nodes of t appear as internal nodes of Naux

t (but as leaf nodes of subtrees Naux
p ). However



maintaining the j-relevant tuple relation along the path from ij to ij+1 is essentially the same than for words. We provide a version of
Lemma 20 for trees.

Lemma 42. For a node v ∈ Naux
t , we can compute Rj(v) in time O(|Q|3 · 2k) in each of the following cases:

(1) v is a leaf in Naux
t , v = ij , and we know G(ij) and Rj−1(ij);

(2) v has a parent vp, ij �t vp, and we already know Rj(vp); and
(3) v has a child vc, ij ≺t v, and we know Rj(vc) and Rj−1(v).

Proof. We prove cases (1) to (3) separately. However, notice that, by Definition 41, we have to show that Rj(v) for each case (1) to (3) is the
set of all tuples (q1, q2, I) such that

• (q1, q2, I) ∈ R(v), and
• (q1, q2, I) is compatible with some (q,A) ∈ G(ij).

(1) For case (1), the proof is analogous to the proof of case (1) of Lemma 20.
(2) To prove (2), we distinguish two subcases (a) and (b).

(a) If v and vp are nodes in the same tree Naux
p , then the proof is analogous to case (2) in Lemma 20.

(b) Otherwise, we know that v is the root node of some Naux
p . (Notice that this is the point where Definition 28 differs from Definition 12.)

Let p = vn · · · v1 such that v1 is a leaf in t. Then, we distinguish two subcases whether vn is a left of a right child in t. However,
both cases are analogous to each other and we show only the case where vn is a left child in the following. In this case, we define

Rj(v) = {(q0, q1, I ′) | ∃(q0, q1, I) ∈ T+
p (v) with I ′ ⊆ I, ∃(q2, q, I) ∈ Rj(vp), q ∈ δ(q1, q2, lab(vp)) and I ′ ∪ {q} = J}.

Since (q2, q, I) ∈ R(vp), we know that (q2, q, I) is compatible with some (q,A) ∈ G(ij). Because ij �t vp, it holds that
Nodes(A[{v}]) = ∅. But then it directly follows that (q0, q1, I

′) is also compatible with (q,A) and, therefore, that the tuple is
also relevant. Now, assume there is a tuple (q0, q, I

′) ∈ R(v) which is compatible with some (q,A) ∈ G(ij) but is not in Rj(v).
Since (q0, q, I

′) ∈ R(v) it holds, by Definition 28, that there is a tuple (q0, q, I) ∈ T+
p (v) with I ′ ⊆ I . Furthermore by the Definition

of compatibility, we know that there also has to exist a tuple (q2, q, I) ∈ Rj(vp) which is compatible with (q,A) ∈ G(ij) and that
q ∈ δ(q1, q2, lab(vp)) such that I ′ ∪ {q} = J . Altogether, this contradicts the assumption that (q0, q, I

′) /∈ Rj(v). We can compute
Rj(v) in time O(|Q|3 · 2k).

(3) To prove (3), we distinguish two subcases (a) and (b).
(a) If v and vc are nodes in the same tree Naux

p , then the proof is analogous to case (3) in Lemma 20.
(b) Otherwise, we know that v is a leaf node of some Naux

p . (Notice that this is the point where Definition 28 differs from Definition 12.)
Let p = vn · · · v1 such that v1 is a leaf in t. Then, we distinguish two subcases whether vn in t is a left child or not. However, both
cases are analogous to each other and we show only the case where vn is a left child in the following. In this case, we define

Rj(v) = {(q2, q, I) | (q2, q, I) ∈ Rj−1(v), (q0, q1, J) ∈ Rj(vc),
q ∈ δ(q1, q2, lab(v)) and I = ({q} ∪ J) ∩ set(s) for some s ∈ S}.

Because (q2, q, I) ∈ Rj−1(v), it directly holds that (q2, q, I) ∈ R(v). It remains to show that (q2, q, I) is compatible with some
(q,A) ∈ G(ij). That is, we need to find an annotated answer Afull w.r.t some run rA such that (q2, q, I) and (q,A) ∈ G(ij) are
compatible with Afull and rA. However, the construction of such Afull and rA is completely analogous to case (3)(b) in Lemma 20.
We can compute Rj(v) in time O(|Q|3 · 2k).

The following results can be proved analogous to Lemma 21 and Theorem 22.

Lemma 43. Given Naux
t , T+

p , and ` ∈ [k], we can compute G(i`) in time O(|S| · k! + |Q|3 · 2k · ` log2 |t|).

Theorem 44. Given Naux
t and T+

p , we can compute the first answer of M on t in time O(|S| · k! + |Q|3 · 2k · k log2 |t|).

From One Answer to the Next for Trees
We can also obtain a similar lemma as given by Lemma 23 for trees.

Lemma 45. Complete, Back, and Nextnode can be implemented such that Algorithm 1 for trees correctly computes Next(A). Furthermore,
Next(A) runs in O(|S| · k! + |Q|3 · 2k · k log2 |t|) time.

Finally, we are able to obtain the main result for the tree case.

PROOF OF THEOREM 29: INCENUM for a k-NSTA M and a tree t can be solved with auxiliary data of size O(|Q|2 · 2k · |t|) which
can be computed in time O(|Q|3 · 2k · |t|) and maintained in time O(|Q|3 · 2k · log2 |t|) per update, and which guarantees at most
O(|S| · k! + |Q|3 · 2k · k log2 |t|) delay between answers.



Proof. In the preprocessing phase, we build the tree Naux
t and relation T+

p . By Lemma 27, the data has size O(|Q|2 · 2k · |t|) and can be
computed in timeO(|Q|3 ·2k ·|t|). By the same lemma, it follows that updates can be maintained in timeO(|Q|3 ·2k ·log2 |t|). By Lemma 35,
we know that we can use Algorithm 1 for trees to correctly enumerate all answers in M(w) if Complete(A), Back(A), and Nextnode(A)
can be implemented correctly within the required running time. By Theorem 44, Complete({∅}) can be implemented correctly such that it
runs in time O(|S| · k! + |Q|3 · 2k · k log2 |t|). Finally, by Lemma 45, it holds that Next(A) can be implemented correctly such that it runs
in time O(|S| · k! + |Q|3 · 2k · k log2 |t|).


