
Validity of Tree Pattern Queries With Respect
to Schema Information

Henrik Björklund1, Wim Martens2, and Thomas Schwentick3

1 Ume̊a University, Sweden
2 University of Bayreuth, Germany

3 TU Dortmund University, Germany

Abstract. We prove that various containment and validity problems for
tree pattern queries with respect to a schema are EXPTIME-complete.
When one does not require the root of a tree pattern query to match the
root of a tree, validity of a non-branching tree pattern query with respect
to a Relax NG schema or W3C XML Schema is already EXPTIME-hard
when the query does not branch and uses only child axes. These hardness
results already hold when the alphabet size is fixed. Validity with respect
to a DTD is proved to be EXPTIME-hard already when the query only
uses child axes and is allowed to branch only once.

1 Introduction

Tree pattern queries are omnipresent in query and schema languages for XML.
They form a logical core of the query languages XPath, XQuery, and XSLT,
and they are needed to define key constraints in XML Schema. Static analysis
problems such as containment, satisfiability, validity, and minimization for tree
pattern queries have been studied for over a decade [16, 10, 18, 3] since their
understanding helps us, for example, in the development of query optimization
procedures. Since queries can usually be optimized more if schema information
is taken into account, these static analysis problems are also relevant in settings
with schema information [18, 3]. This is the setting that we consider.

The literature uses the term “tree pattern query” for a variety of query lan-
guages. In this paper, we use the tree pattern queries as in [16], which can use
labels, wildcards (*), the child relation (/), the descendant relation (//), and
filtering ([·]) which allows them to branch. In the following, we us the terms
path query for tree pattern queries without [·] and child-only query for tree
pattern queries without //. Containment, satisfiability, and validity of tree pat-
tern queries are closely related to each other in the usual way, i.e., satisfiability
and validity are special cases of containment. Since tree pattern queries are not
closed under the Boolean operations, satisfiability and validity often have a lower
complexity than containment. Taking schema information into account usually
increases the computational complexity. For example, containment of tree pat-

tern queries is coNP-complete [16] but becomes EXPTIME-complete if schema
information, even in its weakest form (a DTD) is provided [18].4

We investigate the complexity of the validity problem (with schema infor-
mation) and obtain complexity lower bounds that contrast rather sharply with
known upper bounds. Hashimoto et al. [12] showed that validity of path queries
with respect to DTDs is in PTIME. We prove:

– Validity of path queries with respect to tree automata is EXPTIME-hard,
even if the tree automata are XSDs with a constant-size alphabet (Theo-
rems 10 and 11).

– Validity of child-only tree pattern queries with respect to DTDs is already
EXPTIME-hard even if the tree pattern queries branch only once and the
branch has only one node (Theorem 12).

– As a simpler application of our techniques we prove as a warm-up: inclusion
of a DFA in a regular expression of the formΣ∗aΣnbΣ∗ is PSPACE-complete
over Σ = {a, b, c} (Theorem 9). This means that validity of very simple child-
only path queries is PSPACE-hard, even if trees don’t branch.5

Each case is only a very slight extension of the above mentioned PTIME scenario
of Hashimoto et al. [12]. Our semantics of path and tree pattern queries is such
that the root of the query does not need to be matched by the root of the
tree. For our EXPTIME-hardness results to hold when using the more restricted
semantics of [12], we would need queries to have one additional descendant axis,
placed at the root. On the other hand, the PTIME upper bound of [12] also
holds in our setting.

Our lower bounds are also relevant in terms of conjunctive queries over trees.
For example, Benedikt et al. ([2], Corollary 3) proved a matching EXPTIME
upper bound for validity of UCQs (Unions of Conjunctive Queries) with respect
to a tree automaton. Here, UCQs form a class of queries that do not use the
descendant axis but are strictly more general than child-only tree pattern queries
since their syntactic structure is not required to be tree-shaped. Recently, static
analysis for such queries (with schema information) has also been investigated in
[5, 17], with complexity results ranging from tractable to 2EXPTIME-complete.

In our proofs we use restricted variants of tiling games (Section 3) that may
be interesting in their own right.

2 Preliminaries

We use standard definitions and notation for regular expressions, DFAs and
NFAs, to be found in the appendix.

4 Schemas can be given as DTDs (the weakest form), XSDs (in the middle), or tree
automata (the strongest form; defining regular tree languages), see [15].

5 This result has already been used in the context of XML key inference [1].

Trees and Tree Pattern Queries. Schema languages for XML recognize trees
which are rooted, ordered, finite, labeled, unranked, and directed from the root
downwards. For this reason, we consider finite trees in which nodes can have
arbitrarily many children, ordered from left to right. However, we note that
the results in this paper hold equally well for automata and DTDs recognizing
unordered trees, that is, trees in which the children can occur in any order.
More formally, we view a tree t as a relational structure over a finite num-
ber of unary labeling relations a(·), for a ∈ Σ, and binary relations Child(·, ·)
and NextSibling(·, ·). Here, a(u) expresses that u is a node with label a, and
Child(u, v) (respectively, NextSibling(u, v)) expresses that v is a child (respec-
tively, the right sibling) of u. We denote the set of nodes of a tree t by Nodes(t).
We assume that trees are non-empty, i.e., Nodes(t) 6= ∅. By Edges(t) we denote
the set of child edges of t. For a node u, we denote by labt(u) the unique symbol
a such that a(u) holds in t. We often omit t from this notation when t is clear
from the context. By root(t) we denote the root node of t. For a node u of t,
we denote by anc-strt(u) the string obtained by concatenating all labels on the
path from the root of t to u. That is, anc-strt(u) = labt(u1) · · · labt(uk) where
u1 = root(t), uk = u, and u1 · · ·uk is the path from u1 to uk. Similarly, ch-strt(u)
is the concatenation of the labels of all children of u, from left to right.

Definition 1 [Tree Pattern Query] A tree pattern query, (TPQ), over Σ is a
tuple T = (p,Anc), where p is a tree that uses the labeling alphabet Σ] {∗}
and Anc ⊆ Edges(t) is the set of ancestor edges.

Here, we use ∗ as a wildcard label. More formally, the semantics of TPQs is
defined as follows. Let T = (p,Anc) be a TPQ and let s be a tree. Let vp ∈
Nodes(p) and vs ∈ Nodes(s). We say that vs matches vp if either lab(vp) = ∗
or lab(vs) = lab(vp). An embedding of T = (p,Anc) on a tree s is a mapping m
from Nodes(p) to Nodes(s) such that,

– for every node v ∈ Nodes(p), m(v) matches v, and
– for every two nodes v1, v2 ∈ Nodes(p),
• if (v1, v2) ∈ Edges(p) \Anc, then (m(v1),m(v2)) ∈ Edges(s);
• if (v1, v2) ∈ Anc, then m(v1) is an ancestor of m(v2) in s.

Notice that the root of p does not need to be mapped to the root of s, which
is important when comparing our results to related work. The language defined
by T is denoted L(T) and consists of all trees s for which there is an embedding
of T into s. Notice that our semantics defines tree pattern queries as Boolean
queries.

Tree pattern queries form a natural fragment of the XPath query language
[8]. We assume familiarity with the standard XPath notation of tree pattern
queries (see, e.g., [16]). Figure 1 contains an example of a tree pattern query and
its corresponding XPath notation.

Schemas. We introduce our abstractions of Document Type Definition (DTD)
[6], XML Schema [20], and Relax NG schemas [9].

Fig. 1. A tree pattern query T =
(p,Anc) depicted as a tree (on the
left) and in XPath notation (on the
right). On the left, edges in Anc are
drawn as double lines. On the right, the
bracketed part corresponds to the left
branch in the tree. Slashes (’/’) repre-
sent edges and double slashes (’//’) rep-
resent edges in Anc.

a

b

c ∗

∗ b

c

a / b [// c / ∗] / ∗ // b / c

Definition 2 A Document Type Definition (DTD) over Σ is a triple D =
(Σ, d, S) where S ⊆ Σ is the set6 of start symbols and d is a set of rules of
the form a → R, where a ∈ Σ and R is a regular expression over Σ. No two
rules have the same left-hand side.

A tree t satisfies D if (i) labt(root(t)) ∈ S and, (ii) for every u ∈ Nodes(t)
with label a and n children u1, . . . , un from left to right, there is a rule a → R
in d such that labt(u1) · · · labt(un) ∈ L(R). By L(D) we denote the set of trees
satisfying D.

We abstract XML Schema Definitions as DFA-based XSDs. DFA-based XSDs
were introduced by Martens, Neven, Schwentick, and Bex [15, 14] as formal model
for XML Schema convenient in proofs.7

Definition 3 A DFA-based XSD is a pair (A, λ), where A = (Q,Σ, δ, {qinit}, ∅)
is a DFA with initial state qinit and λ is a function mapping each state inQ\{qinit}
to a regular expression over Σ.

An tree t satisfies (A, λ) if, for every node u, A(anc-strt(u)) = {q} implies that
ch-strt(u) is in the language defined by λ(q).

We abstract from Relax NG schemas [9] by unranked tree automata.

Definition 4 A nondeterministic (unranked) tree automaton (NTA) over Σ is
a quadruple A = (Q,Σ, δ, F), where Q is a finite set of states, F ⊆ Q is the
set of accepting states, and δ is a set of transition rules of the form (q, a)→ L,
where q ∈ Q, a ∈ Σ, and L is a regular string language over Q, represented by
a regular expression.8

6 DTDs usually have a single start symbol in the literature. Our abstraction is slightly
closer to reality; it has no influence on our complexity results.

7 XML Schema Definitions are sometimes also abstracted as single-type EDTDs, but
it is well-known that DFA-based XSDs and single-type EDTDs can be converted
back and forth in polynomial time [11]. DFA-based XSDs [14] are called DFA-based
DTDs in [11] but are the same thing. Since they are a formal model for XSDs, we
choose to reflect this in their name.

8 For our complexity results, it does not matter whether the languages L are repre-
sented by regular expressions, nondeterministic string automata, deterministic string
automata, or even as a finite set of strings.

A run of A on a tree t is a labeling r : Nodes(t) → Q such that, for every
u ∈ Nodes(t) with label a and children u1, . . . , un from left to right, there exists
a rule (q, a) → L such that r(u) = q and r(u1) · · · r(un) ∈ L. Note that when
u has no children, the criterion reduces to ε ∈ L, where ε denotes the empty
string. A run on t is accepting if the root of t is labeled with an accepting state,
that is, r(root(t)) ∈ F . A tree t is accepted if there is an accepting run of A on
t. The set of all accepted trees is denoted by L(A) and is called a regular tree
language. From now on, we use the word “schema” to refer to DTDs, DFA-based
XSDs, or NTAs.

It is well-known that DTDs are less expressive than DFA-based XSDs, which
in turn are less expressive than NTAs [15]. Likewise, DTDs can be polynomial-
time converted into DFA-based XSDs, which can be polynomial-time converted
into NTAs.

We are concerned with the following decision problem:

Definition 5 Validity w.r.t. a schema: Given a TPQ T and a schema S, is
L(S) ⊆ L(T)?

3 Tiling Problems and Games

We recall definitions and properties of tiling systems, corridor tilings, and their
associated games. We define a restricted form of corridor tiling games that re-
mains EXPTIME-complete and may be of interest in its own right.

A tiling system S = (T, V,H, tfin) consists of a finite set T of tiles, two sets
V,H ⊆ T × T of vertical and horizontal constraints, respectively, and a final
tile tfin ∈ T . A solution for a tiling system S is a mapping τ : {1, . . . , n} ×
{1, . . . ,m} → T for some n,m ≥ 2 such that (i) the horizontal constraints are
fulfilled, that is, for every i ∈ {1, . . . , n−1}, j ∈ {1, . . . ,m}: (τ(i, j), τ(i+1, j)) ∈
H; (ii) the vertical constraints are fulfilled, that is, for every i ∈ {1, . . . , n}, j ∈
{1, . . . ,m− 1}: (τ(i, j), τ(i, j + 1)) ∈ V ; and (iii) the final tile is correct, that is,
τ(n,m) = tfin.

In the corridor tiling problem one is given a tiling system S and a word
w = w1 · · ·wn ∈ T ∗ of tiles, called the initial row. The problem asks whether
there exists a solution to S with bottom row w, that is a mapping τ : {1, . . . , n}×
{1, . . . ,m} → T as above with n = |w| such that τ(i, 1) = wi for every i ∈
{1, . . . , n}.

It is well-known that the corridor tiling problem is PSPACE-complete [7].
However, this result even holds for some fixed tiling systems S. For a tiling
system S, we write Tiling(S) for the set of strings w such that S has a solution
with initial row w.

Theorem 6 ([7], Section 4) There is a tiling system S such that Tiling(S) is
PSPACE-hard.

This strengthening can be obtained by applying the argument of Section 4 in [7]
to some fixed PSPACE-complete language L and a TM M for L.

Tiling systems can also be used to define two-player games. The input for a
tiling game is the same as for the corridor tiling problem but the underlying idea
is different: two players, Constructor and Spoiler, alternatingly choose tiles.
Constructor’s goal is to build a solution for the tiling system and Spoiler’s
goal is to prevent that.

More formally, we associate with a tiling system S and an initial row w for
S a 2-player game as follows. The word w induces a mapping τ : {1, . . . , n} ×
{1} → T , where n = |w|. The two players alternatingly choose tiles t ∈ T ,
implicitly defining τ(1, 2), τ(2, 2), . . . , τ(n, 2), τ(1, 3), etc. A move is legal if it
satisfies the constraints. More precisely, a tile t is a legal move as τ(i, j) if
(τ(i− 1, j), τ(i, j)) ∈ H and (τ(i, j − 1), τ(i, j)) ∈ V . Players are not allowed to
play a non-legal move. Constructor loses the game if, at any point, one of the
players cannot make a legal move. On the other hand, Constructor wins if at
some point a correct corridor tiling for S is constructed (for some m).

For a tiling system S, we denote by TilingWinner(S) the set of all strings w
such that Constructor has a winning strategy for the game induced by S and
w. From [7] the following theorem immediately follows.9

Theorem 7 ([7], Theorem 5.1)
(a) For every tiling system S, TilingWinner(S) ∈ EXPTIME, and
(b) there is a tiling system S, for which TilingWinner(S) is EXPTIME-hard.

For our reductions we need to work with suitably restricted tiling systems
which we define next. Given a system S and an initial row w, a valid rectangle
for S and w is a tiling that is a solution except that the last tile need not be
tfin, i.e., it is a mapping R : {1, . . . , n} × {1, . . . ,m} → T with initial row w,
where n = |w| and m ≥ 1 that respects V and H. A tiling prefix for S and w
is a valid rectangle plus the beginning of a next row, that is, a mapping P from
{1, . . . , n} × {1, . . . ,m} ∪ {1, . . . , i} × {m+ 1} to T , for some i ∈ {1, . . . , n} and
m ≥ 1, with bottom row w that respects V and H. A tiling prefix for S and w
is valid if the partial row can be completed to form a valid rectangle. We define
the length of P to be nm+ i. In particular, every valid rectangle is also a valid
prefix. Given a tiling prefix P and a tile t, we write P.t for the extension of P
by t.

We call a tiling system S = (T, V,H, tfin) restricted if the following holds for
every initial row w.

(1) If |w| is odd, then w 6∈ Tiling(S).
(2) For every valid prefix P there are exactly two tiles t1 and t2 such that P.t1

and P.t2 are valid prefixes.
(3) For every odd length valid prefix P , there are exactly two tiles t1 and t2

such that P.t1 and P.t2 are tiling prefixes.

The restriction guarantees that, if Constructor has a winning strategy, she
has one in which Spoiler always has exactly two legal moves.

9 Similarly as for Tiling(S), it suffices to fix an ATM for some EXPTIME-complete
language in the proof to infer Theorem 7 (b) from Theorem 5.1 in [7].

Proposition 8 There is a restricted tiling system S, for which TilingWinner(S)
is EXPTIME-hard.

4 String Languages

Theorem 9 Validity of regular expressions w.r.t. a DFA is PSPACE-complete
even for regular expressions10 of the form Σ∗aΣnbΣ∗ and DFAs over the alpha-
bet Σ = {a, b, c}.

Proof. Obviously, the problem is in PSPACE since it can be reduced in logarith-
mic space to the containment problem for NFAs, which is known to be PSPACE-
complete [19]. We show the lower bound by reduction from Tiling(S), i.e., corri-
dor tiling with a fixed tiling system. Let S = (T, V,H, tfin) with T = {t1, . . . , tk}
be a tiling system such that Tiling(S) is PSPACE-hard. Notice that S exists by
Theorem 6.

We associate with every tiling function τ : {1, . . . , n} × {1, . . . ,m} → T a
string wτ by simply concatenating all tiles in row-major order. More precisely,
wτ is the string from T ∗ of length mn that carries at position (j − 1)n + i tile
τ(i, j), for every i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}.

From S and an initial row w a DFA A(S,w) can be defined that tests whether
a word v ∈ T ∗ has the following properties: (i) v has prefix w; (ii) the length of v
is a multiple of n

def
= |w|; (iii) the tiling function τ : {1, . . . , n} × {1, . . . ,m} → T

corresponding to v fulfills the horizontal constraints; and (iv) τ(n,m) = tfin. We
show in the appendix how we can construct A(S,w) polynomial time.

However, for the actual reduction we use a more elaborate encoding of tiles
and define the DFA accordingly. We simultaneously encode tiles and their rele-
vant vertical constraints as strings of length 2k. For each i, j ∈ {1, . . . , k} we let
eij be a symbol that encodes whether (ti, tj) ∈ V as follows.

eij
def
=

{
a if (ti, tj) /∈ V
c otherwise.

Then, for each i ∈ {1, . . . , k}, we encode tile ti as the string
enc(ti)

def
= cc · · · cbc · · · cei1 · · · eik

of length 2k in which the entry labeled b is at position i. For a string v ∈
T ∗, we write enc(v) for the symbol-wise encoding of v. It is straightforward to
construct from A(S,w) an automaton A′(S,w) that accepts all encodings enc(v)
of strings v ∈ L(A(S,w)) (see Appendix). Finally, the regular expression qw is
just (a+ b+ c)∗a(a+ b+ c)(2n−1)k−1b(a+ b+ c)∗. We prove in the appendix that
the reduction is correct. ut

5 Hardness Results on Trees

In this section we are going to prove the following three results.

10 Σn abbreviates concatenations of n symbols from Σ.

Theorem 10 Validity of tree pattern queries w.r.t. an NTA is EXPTIME-
complete even for path queries of the form a/ ∗ / ∗ / · · · / ∗ /b over schemas
with three symbols.

Theorem 11 Validity of tree pattern queries w.r.t. a DFA-based XSD is EXPTIME-
complete even for path queries of the form a/ ∗ / ∗ / · · · / ∗ /b over schemas with
four symbols.

Theorem 12 Validity of tree pattern queries w.r.t. a DTD is EXPTIME-complete
even for tree pattern queries of the form ∗[/a]/ ∗ / · · · / ∗ /b over DTDs.

Notice the subtle differences between the three cases: In the NTA case it suffices
to have path queries and three alphabet symbols. For DFA-based XSDs we use
one more alphabet symbol due to their limited expressiveness when compared to
NTAs. If we limit the expressiveness even more to DTDs, then validity of path
queries is not hard anymore, as was shown by Hashimoto et al. [12].

Theorem 13 ([12], Theorem 3) Validity of path queries w.r.t. a DTD is in
PTIME.

However, even allowing the path to have one additional leaf branching off makes
the validity problem EXPTIME-hard, even w.r.t. DTDs. Thus, compared to
Theorem 13, allowing a single branching as opposed to a pure path query or
using DFA-based XSDs as opposed to DTDs results in a provably exponential
blow-up in the time complexity for Validity.

All the problems considered in this section are in EXPTIME because of the
following result.

Theorem 14 Validity of tree pattern queries query w.r.t. an NTA is in EXPTIME.

The lower bounds in Theorems 11 and 12 are shown by reductions from
the problem of identifying the winner in a 2-player corridor tiling game. For
the purpose of these reductions we use the restricted form of tiling games from
Section 3.

Strategies for Constructor for some tiling system S and initial row w can
be represented by strategy trees as usual. The nodes of such a tree carry the tiles
chosen in the game. Each node that corresponds to a tile chosen by Spoiler has
a child labelled with the symbol that is chosen according to Constructor’s
strategy. Each node v that corresponds to a tile chosen by Constructor has
one child for every possible legal move by Spoiler. Every internal node in the
tree corresponds to a tiling prefix, induced by the path from the root to that
node.

Proof (of Theorem 11). Let S = (T, V,H, tfin) be a restricted tiling system for
which TilingWinner(S) is EXPTIME-hard and w ∈ T ∗ an initial row. By defini-
tion of restricted tiling systems, the following holds for every tree s representing
a winning strategy of Constructor.

(i) Each path represents a solution for S (with initial row w), and

(ii) Each node corresponding to a tile chosen by Constructor has exactly
two children labelled by different tiles.

Thus, the following two statements are equivalent.

(a) w ∈ TilingWinner(S).

(b) There is a strategy tree s for Constructor with the properties (i) and (ii).

In the following we define an encoding function enc that maps strategy trees
fulfilling property (ii) to trees over alphabet {a, b, c, c′}. Furthermore, we con-
struct from S and w a DFA-based XSD (B, λ), and a path query P such that
the following are equivalent.

(c) There is a tree s′ of the form s′ = enc(s) for some strategy tree s for
Constructor with properties (i) and (ii).

(d) P is not valid w.r.t. (B, λ).

By combining the two above equivalences with the obvious equivalence be-
tween (b) and (c) we get that w ∈ TilingWinner(S) if and only if P is not
valid w.r.t. (B, λ). The theorem then follows because we have a reduction from
the complement of TilingWinner(S) to the validity problem and the former is
EXPTIME-complete because EXPTIME is closed under complementation.

The encoding of strategy trees is similar to the encoding of strings in the
proof of Theorem 9. We basically replace nodes of the tree by paths of length
2k, where k = |T |.

Let s be a strategy tree. We describe how the encoded tree enc(s) is obtained
from s. We use the definitions of eij and enc(ti) from Section 4.

For technical reasons that will become apparent below, we use the alphabet
Σ′ = {a, b, c, c′} and allow additional encodings of tiles as follows. For every
i, j ∈ {1, . . . , k} with i < j we let

enci(tj)
def
= cc · · · cc′c · · · cbc · · · cei1 · · · eik,

be the string obtained from enc(tj) by replacing the symbol c at position i by c′.
In the following, we identify strings enc(ti) and enci(tj) with paths consisting of
2k nodes that are labelled according to enc(ti) and enci(tj), respectively.

We associate with each strategy tree s for Constructor an encoded tree
enc(s) in two stages. The first stage proceeds in a top-down fashion. We replace
the root with tile t by the path enc(t). We replace every node u that is the only
child of its parent and is labelled with some ti by enc(ti). For all siblings u and
v in s labelled by tiles ti and tj , respectively, with i < j, we replace u by enc(ti)
and v by enci(tj).

In the second stage we combine the two paths enc(ti) and enci(tj) of a pair
of siblings u, v by a prefix tree that is obtained by identifying their prefixes of
length i−1 and put the resulting tree (or forest of two paths, if i = 1) below the
lowest node of the encoding of the parent of u and v. After this, we no longer
have siblings that carry the same label. The resulting tree is enc(s). We illustrate
the encoding with an example.

· · · ccbcacca bcccaaca c

bcccaaa cbcccaaa

c′bcacca cbcccaaa

· · · t3 t1

t3 t2
· · ·

· · ·

t2 t2
· · ·

· · ·

Fig. 2. At the top we see part of a strategy tree for Constructor in a game with
four tile types. Below is the encoding of the same part of the tree.

Example 15 Figure 2 shows an example of how the encoding in the proof of
Theorem 11 works. The example is meant to illustrate the idea of the encoding
and does not represent a restricted tiling system. Assume that we have T =
{t1, t2, t3, t4}, {(t1, t2), (t1, t3), (t2, t2), (t3, t1), (t3, t2)} ⊆ H, and V = {(t1, t3),
(t2, t1), (t3, t2), (t3, t3), (t4, t1)}. On the top, we see a possible part of a strategy
tree for Constructor, where the tile t1 corresponds to a move of Construc-
tor and t2 and t3 are the two possible next legal moves of Spoiler.

So, for example, enc(t1) = bcccaaca, enc(t2) = cbcccaaa, enc(t3) = ccbcacca,
and enc(t4) = cccbcaaa. In Figure 2 we show part of a strategy tree for Con-
structor in a game. We use strings to represent unary tree fragments to sim-
plify the picture. Groups of eight letters encode one tile (plus its vertical con-
straints). The encoding of the siblings t2 and t3 share a node because they have
the same prefix c.

The DFA-based XSD (B, λ) is constructed from S and w as follows. The
DFA B is a slight extension of the DFA A′(S,w) constructed in the proof of
Theorem 9. It tests, for a path in the given tree whether its label sequence is an
encoding of a string x ∈ T ∗ such that

– x has prefix w;
– the length of x is a multiple of n

def
= |w|;

– the tiling function τ : {1, . . . , n}×{1, . . . ,m} → T corresponding to x fulfills
the horizontal constraints; and

– τ(n,m) = tfin.

Here, the encoding is over Σ′ and allows substrings of the form enci(tj) beyond
enc(ti) in even columns (chosen by Spoiler). We recall that the state set Q of
A′(S,w) basically11 has states of the form (t, t′, i), where t is the previous tile,
t′ the current tile and i a counter modulo 2kn, and a rejecting sink state. In B,
t′ can also take the value “?” if the current tile is not yet determined but the
DFA has already seen a c′ in the encoding of the current tile (and thus the prefix

11 As mentioned before, A′(S,w) has further states for the prefix w.

tree has already branched). For the sake of clarity later in the proof, we briefly
assume that B has accepting states (that, by definition, can only be reached after
reading tfin). These states are only important to define below where λ allows a
node to be a leaf. We do not require accepting states in B in our DFA-based
XSD.

The function λ is defined as follows.

– For states of the form q = (t,#, i) with (i mod 2k) < k, for which (t, ti mod 2k) 6∈
H, λ(q) = c.

– For states of the form q = (t,#, i) with (i mod 2k) < k, for which i indicates
an odd column (where Constructor is about to move) and (t, ti mod 2k) ∈
H, λ(q) = c+ b.

– For states of the form q = (t,#, i) with (i mod 2k) < k, for which i indicates
an even column (where Spoiler is about to move) and (t, ti mod 2k) ∈ H,
λ(q) = c+ bc′.

– For states of the form q = (t, t′, i) with (i mod 2k) < k and t′ ∈ T , λ(q) = c.
– For states of the form q = (t, ?, i) with (i mod 2k) < k, λ(q) = c+ b.
– For states of the form q = (t, t′, i) with (i mod 2k) ≥ k and t′ ∈ T , λ(q) =
e`j where t` = t′ and j = i mod 2k.

– For states q corresponding to the first row, λ(q) is just the next symbol from
the encoding of w.

– For every “accepting state” q of B, λ(q) = ε+ b+ c.

Finally, the path query P has the form

a/ ∗ / ∗ / · · · / ∗ / ∗ /b︸ ︷︷ ︸
2nk−k+1 labels

.

To complete the proof it only remains to show that (c) and (d) are indeed
equivalent.

To this end, let us first assume that (c) holds, that is, there is a tree s′ of
the form s′ = enc(s) for some strategy tree s for Constructor with properties
(i) and (ii). Since s is a strategy tree, each of its paths represents a solution
for S with initial row w. As such, each path from root to leaf satisfies the
horizontal and vertical constraints. Since it has the correct length and satisfies
the horizontal constraints, B has a run over each path that ends in a state q
such that λ(q) = ε + b + c. Since each node that corresponds to a Spoiler
tile has exactly two children labelled by different tiles, we also have that, by
construction, the conditions on λ are fulfilled. Thus, enc(s) is satisfied by (B, λ).
Finally, since s does not have any violations against the vertical constraints, we
also have that P does not match s′ by construction. Therefore s′ is a witness for
the fact that P is not valid w.r.t. (B, λ).

For the other direction, let us assume that P is not valid w.r.t. (B, λ). Let s′

be a tree that conforms to (B, λ) and in which P does not match. By construction
s′ = enc(s), for some tree s such that (ii) holds. Furthermore, as s′ conforms to
(B, λ) it follows that every path fulfills the horizontal constraints of S and ends
with the final tile tfin. Finally, as P does not match in s′ there is no violation of
any vertical constraint in s. Therefore, s also fulfills (i) and thus (c) holds. ut

In the appendix, we further show how Theorems 10 and 12 can be obtained by
adapting the above proof.

References

1. M. Arenas, J. Daenen, F. Neven, J. Van den Bussche, M. Ugarte, and S. Vansum-
meren. Discovering XSD keys from XML data. In SIGMOD, 2013. To appear.

2. M. Benedikt, P. Bourhis, and P. Senellart. Monadic datalog containment. In
ICALP, p.79–91, 2012.

3. M. Benedikt, W. Fan, and F. Geerts. XPath satisfiability in the presence of DTDs.
J. ACM, 55(2), 2007.

4. H. Björklund, W. Gelade, and W. Martens. Incremental XPath evaluation. ACM
Trans. Database Syst., 35(4):29, 2010.

5. H. Björklund, W. Martens, and T. Schwentick. Optimizing conjunctive queries
over trees using schema information. In MFCS, p.132–143, 2008.

6. T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F. Yergeau. Extensible
Markup Language XML 1.0 (fifth edition). World Wide Web Consortium, 2008.

7. B. S. Chlebus. Domino-tiling games. JCSS, 32(3):374–392, 1986.
8. J. Clark and S. DeRose. XML Path Language (XPath) version 1.0. Technical

report, World Wide Web Consortium, 1999. http://www.w3.org/TR/xpath/.
9. J. Clark and M. Murata. Relax NG specification. http://www.relaxng.org, 2001.

10. S. Flesca, F. Furfaro, and E. Masciari. On the minimization of XPath queries. J.
ACM, 55(1), 2008.

11. W. Gelade, T. Idziaszek, W. Martens, and F. Neven. Simplifying XML Schema:
Single-type approximations of regular tree languages. In PODS, 2010.

12. K. Hashimoto, Y. Kusunoki, Y. Ishihara, and T. Fujiwara. Validity of positive
XPath queries with wildcard in the presence of DTDs. In DBPL, 2011.

13. P. Kilpeläinen. Checking determinism of XML Schema content models in optimal
time. Inf. Syst., 36(3):596–617, 2011.

14. W. Martens, F. Neven, and T. Schwentick. Simple off the shelf abstractions for
XML Schema. SIGMOD Record, 36(3):15–22, 2007.

15. W. Martens, F. Neven, T. Schwentick, and G. J. Bex. Expressiveness and com-
plexity of XML Schema. ACM Trans. Database Syst., 31(3):770–813, 2006.

16. G. Miklau and D. Suciu. Containment and equivalence for a fragment of XPath.
J. ACM, 51(1):2–45, 2004.

17. F. Murlak, M. Oginski, and M. Przybylko. Between tree patterns and conjunctive
queries: Is there tractability beyond acyclicity? In MFCS, p.705–717, 2012.

18. F. Neven and T. Schwentick. On the complexity of XPath containment in the
presence of disjunction, DTDs, and variables. LMCS, 2(3), 2006.

19. L. Stockmeyer and A. Meyer. Word problems requiring exponential time: Prelim-
inary report. In STOC, pages 1–9, 1973.

20. H. S. Thompson, N. Mendelsohn, D. Beech, and M. Maloney. XML Schema Defi-
nition Language (XSD) 1.1. http://www.w3.org/TR/xmlschema11-1/.

Appendix

ByΣ we always denote a finite alphabet. By a, b, c, . . . we always denote elements
from Σ. We use regular expressions r of the form

r ::= ε | a | (r · r) | (r + r) | (r)∗,

where ε denotes the empty string and a ranges over symbols in the alphabet
Σ. Sometimes we also use the symbol · for regular expression concatenation to
improve readability. We sometimes abbreviate by Σ the disjunction a1 + · · ·+an
where Σ = {a1, . . . , an}. As usual, we write L(r) for the language defined by
regular expression r. We define the size of regular expression r to be its total
number of occurrences of alphabet symbols and operators. (In other words, the
size of a regular expression is the number of nodes of its parse tree.) For example,
both expressions ((a · a) · a) and (a · (b + c)) have size five.For readability of
expressions, we usually omit some brackets and abbreviate r1 · r2 to r1r2.

A non-deterministic finite automaton (NFA) A is a tuple (Σ,Q, δ, I, F), such
that Q is a finite set of states, I ⊆ Q is the set of initial states, F is the set of
accepting states, and δ is the transition function of the automaton, defined as
δ : Q × Σ → 2Q, mapping each pair of a state and symbol to a set of states.
A run ρ of A on some string w = a1 · · · an is a sequence of states q0, . . . , qn,
such that q0 ∈ I and for each i ∈ [1, n], qi ∈ δ(qi−1, ai). Furthermore, when
qn ∈ F , we say that a run is accepting. We define A(w) to be the set of all states
q such that there exists a run of A on w in which the last state is q. The string
language accepted by A is denoted by L(A) and is defined as the set of strings
w for which there exists an accepting run of A on w (or, alternatively, A(w)
contains a state from F). A non-deterministic finite automaton A is said to be
deterministic (or A is a DFA) if I is a singleton and the transition function maps
each state/symbol-pair to a singleton set.

Proposition 8. There is a restricted tiling system S, for which TilingWinner(S)
is EXPTIME-hard.

Proof (sketch). Again, EXPTIME-hardness for a fixed system S can be achieved
by starting the proof of Theorem 5.1 in [7] from some fixed ATM M for which
L(M) is EXPTIME-complete. Property (1) is already guaranteed by the proof
in [7]. It can be further required that M has exactly two transitions for every
state-letter pair, existential states of M only occur at odd positions, and uni-
versal states only occur at even positions.12 By enforcing these conditions and
duplicating some of the tiles, we can guarantee property (2). Finally, as long as
M has exactly two transitions for every state, property (3) is already enforced in
[7], as Spoiler only has a real choice in the game when he chooses between two
transitions. As already indicated above, we simply duplicate the only possible
tile for Spoiler in cases where he has no choice,. ut

12 These requirements are already mentioned in [7] and they can be easily enforced.

Theorem 9. Validity of regular expressions w.r.t. a DFA is PSPACE-complete
even for regular expressions of the form Σ∗aΣnbΣ∗ and DFAs over the alphabet
Σ = {a, b, c}.

Proof. Obviously, the problem is in PSPACE since it can be reduced in logarith-
mic space to the containment problem for NFAs, which is known to be PSPACE-
complete [19]. We show the lower bound by reduction from Tiling(S), i.e., corri-
dor tiling with a fixed tiling system. Let S = (T, V,H, tfin) with T = {t1, . . . , tk}
be a tiling system such that Tiling(S) is PSPACE-hard. Notice that S exists by
Theorem 6.

We first associate with every tiling function τ : {1, . . . , n} × {1, . . . ,m} → T
a string wτ by simply concatenating all tiles in row-major order. More precisely,
wτ is the string from T ∗ of length mn that carries at position (j − 1)n + i tile
τ(i, j), for every i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}.

From S and an initial row w a DFA A(S,w) can be defined that tests whether
a word v ∈ T ∗ has the following properties:

– v has prefix w;
– the length of v is a multiple of n

def
= |w|;

– the tiling function τ : {1, . . . , n}×{1, . . . ,m} → T corresponding to v fulfills
the horizontal constraints; and

– τ(n,m) = tfin.

· · · To this end, A(S,w) uses states of the form (t, i) where

– t ∈ T] {#} either represents the previous tile or, if t = #, the fact that the
first row of τ is being read, and

– i ∈ {0, . . . , n − 1} is the column number of the previous symbol (and i = 0
at the beginning of each row).13

The definition of the transition function, the initial state and the set of final
states of A(S,w) is straightforward. We note that A(S,w) has O(n · |T |) states.

However, for the actual reduction we use a more elaborate encoding of tiles
and define the DFA accordingly. We simultaneously encode tiles and their rele-
vant vertical constraints as strings of length 2k. For each i, j ∈ {1, . . . , k} we let
eij be a symbol that encodes whether (ti, tj) ∈ V as follows.

eij
def
=

{
a if (ti, tj) /∈ V
c otherwise.

Then, for each i ∈ {1, . . . , k}, we encode tile ti as the string

enc(ti)
def
= cc · · · cbc · · · cei1 · · · eik

of length 2k in which the entry labeled b is at position i. For a string v ∈ T ∗, we
write enc(v) for the symbol-wise encoding of v.

13 A(S,w) has further states used to check that the string starts with w but we do not
name them explicitly.

· · · It is straightforward to construct from A(S,w) an automaton A′(S,w)
that accepts all encodings enc(v) of strings v ∈ L(A(S,w)). The number of states
is still polynomial in |T |+ |w|. Basically, A′(S,w) has states of the form (t, t′, i)
where i is a counter modulo 2kn and t and t′ are the previous and current tile,
respectively. 14 Again, t = # in positions corresponding to the first column and
furthermore t′ = # when the current tile has not yet been determined (because
the b-position has not yet occurred).

· · · We claim that S has no solution with initial row w if and only if qw
matches all strings that are accepted by A′(S,w).

For the “if”-claim, let us assume towards a contradiction that qw matches
all strings that are accepted by A′(S,w) and there is a solution τ of S with
initial row w. By construction, enc(wτ) is accepted by A′(S,w) and thus, by
assumption, enc(wτ) matches qw. Let (i, j) be the position of the tile which
is matched by the a of qw (in the first match of qw in enc(wτ)). Thus, the
singleton a-symbol matches in the second half of the encoding enc(τ(i, j)). As
the intermediate (a+b+c)-block has length (2n−1)k−1, the singleton b-symbol
of qw matches in the first half of enc(τ(i, j + 1)). However, by definition of enc,
this just means that (τ(i, j), τ(i, j + 1)) 6∈ V , contradicting our assumption that
τ is a solution. Thus, the “if”-claim holds.

For the “only if”-claim, let us assume that S has no solution with initial row
w and that u

def
= enc(v) is accepted by A′(S,w). By construction of A(S,w) and

A′(S,w), v encodes a tiling function τ that has w as initial row, respects all
horizontal constraints and has τ(n,m) = tfin. As S has no solution, τ thus needs
to violate some vertical constraint. Let i and j be such that (τ(i, j), τ(i, j+1)) 6∈
V . It is not hard to see that, by definition of enc and construction of qw, enc(v)
indeed matches qw.

Altogether, we have established a reduction from the complement of Tiling(S)
to Validity of regular expressions of the stated form w.r.t. a DFA. As PSPACE
is closed under complementation this yields the theorem. ut

Theorem 14. Validity of tree pattern queries query w.r.t. an NTA is in EXPTIME.

Proof (sketch). By Theorem 3.1 in [4], it is possible to compute in exponential
time from the tree pattern query an exponential size NTA that accepts all trees
that do not match the pattern.15 By testing emptiness of the intersection of
this NTA with the given NTA (in polynomial time in the size of the NTAs) we
achieve the EXPTIME upper bound. ut

Theorem 10. Validity of tree pattern queries w.r.t. an NTA is EXPTIME-
complete even for path queries of the form a/ ∗ / ∗ / · · · / ∗ /b over schemas with
three symbols.

14 Again, A′(S,w) has further states for the prefix w.
15 This theorem actually shows that this is possible for much more general queries that

correspond to Core XPath 1.0 queries and, in particular, allow negation.

Proof. Since a DFA-based XSD can be translated in polynomial time into an
equivalent NTA we immediately have from Theorem 11 that Theorem 10 holds
for schemas that use four symbols. However, in NTAs we can easily avoid the
use of the symbol c′. More precisely, from the DFA-based XSD in the proof of
Theorem 11 an NTA can be constructed in polynomial time that accepts the
same tree language except that c′ is relabelled to c. The rest of the proof is
analogous and we therefore also obtain Theorem 10.

By a slightly different encoding of strategy trees we are now also able to give
the proof for Theorem 12.

Theorem 12. Validity of tree pattern queries w.r.t. a DTD is EXPTIME-
complete even for tree pattern queries of the form ∗[/a]/∗/ · · · /∗/b over DTDs.

Proof. This proof follows a similar argument as the proof of Theorem 11, but we
need to use a slightly different encoding. In particular, our alphabet is no longer
constant.

The DTD D accepts trees which are obtained from the language of the DFA-
based XSD in the proof of Theorem 11 as follows. Let s′ be a tree that is in the
language of (B, λ). For each node u of s′, we replace its label x ∈ {a, b, c, c′} by
the pair (x, q), where q = B(anc-strs

′
(u)). It is well-known that this language

can be defined by a DTD.16 Let D′ be such a DTD.
We now do one more change to the tree language: Each node that is labelled

(a, q) (resp. (b, q)) for some state q of B, has an additional child labelled a
(resp., b). This newly obtained language can also easily be defined by a DTD: If
D′ = (Σ, d′, S) with d′((a, q)) = Ra,q then D = (Σ, d, S) with d((a, q)) = Ra,q ·a
(similarly, d((b, q)) = Rb,q ·b for Rb,q = d′((b, q))). Furthermore, we define d(a) =
d(b) = ε. As such, in L(D) we have that s′ has a b-labelled node 2nk − k levels
below an a-labelled node if and only if the newly obtained tree has a b-labelled
node that is 2nk − k levels below a node that has an a-labelled child.

The query Q is then of the form

∗[/a]/ ∗ / ∗ / · · · / ∗ / ∗ /b︸ ︷︷ ︸
2nk−k+2 labels

.

This query has one more label than the path query P in the proof of Theorem 11
because its root node has an extra child (labelled a).

Due to the same argument as in the proof of Theorem 11, we have that q is
valid w.r.t. D if and only if Constructor does not have a winning strategy in
the corridor tiling game. ut

16 This is due to the definition of extended DTDs (EDTDs), which are equivalent to
NTAs.

