
A

The Complexity of Regular Expressions and Property Paths in
SPARQL

KATJA LOSEMANN, University of Bayreuth
WIM MARTENS, University of Bayreuth

The World Wide Web Consortium (W3C) recently introduced property paths in SPARQL 1.1, a query lan-
guage for RDF data. Property paths allow SPARQL queries to evaluate regular expressions over graph-
structured data. However, they differ from standard regular expressions in several notable aspects. For ex-
ample, they have a limited form of negation, they have numerical occurrence indicators as syntactic sugar,
and their semantics on graphs is defined in a non-standard manner.

We formalize the W3C semantics of property paths and investigate various query evaluation problems
on graphs. More specifically, let x and y be two nodes in an edge-labeled graph and r be an expression. We
study the complexities of (1) deciding whether there exists a path from x to y that matches r and (2) counting
how many paths from x to y match r. Our main results show that, compared to an alternative semantics
of regular expressions on graphs, the complexity of (1) and (2) under W3C semantics is significantly higher.
Whereas the alternative semantics remains in polynomial time for large fragments of expressions, the W3C
semantics makes problems (1) and (2) intractable almost immediately.

As a side-result, we prove that the membership problem for regular expressions with numerical occur-
rence indicators and negation is in polynomial time.

Categories and Subject Descriptors: ??? [???]

General Terms: Theory

Additional Key Words and Phrases: Graph data, query evaluation, regular expression

ACM Reference Format:
Katja Losemann and Wim Martens. 2013. The Complexity of Regular Expressions and Property Paths in
SPARQL. ACM Trans. Datab. Syst. V, N, Article A (January YYYY), 39 pages.
DOI = 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

1. INTRODUCTION
The Resource Description Framework (RDF) is a data model developed by the World
Wide Web Consortium (W3C) to represent linked data on the Web. The underlying
idea is to improve the way in which data on the Web is readable by computers and to
enable new ways of querying Web data. In its core, RDF represents linked data as an
edge-labeled graph. The de facto language developed by the W3C for querying RDF
data is the SPARQL Protocol and RDF Query Language (SPARQL).

Recently, the W3C decided to boost SPARQL 1.1 with extensive navigational capabil-
ities through the introduction of property paths [Harris and Seaborne 2010]. Property
paths closely correspond to regular expressions and are a crucial tool in SPARQL if one

Author’s addresses: K. Losemann, W. Martens, Institut für Informatik, University of Bayreuth, 95440
Bayreuth, Germany. This article is the full version of [Losemann and Martens 2012], which was presented
at the 31st ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (PODS) in
Scottsdale, Arizona, USA, 2012. This work is supported by grant number MA 4938/2–1 from the Deutsche
Forschungsgemeinschaft (Emmy Noether Nachwuchsgruppe).
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© YYYY ACM 0362-5915/YYYY/01-ARTA $15.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2 K. LOSEMANN and W. MARTENS

wants to perform non-trivial navigation through RDF data. In the January 2012 work-
ing draft of SPARQL 1.1 [Harris and Seaborne 2012], property paths are not defined
as standard regular expressions, but some syntactic sugar is added. Notably, property
paths can use numerical occurrence indicators (making them exponentially more suc-
cinct than standard regular expressions) and a limited form of negation. Furthermore,
their semantics is different from usual definitions of regular expressions on graphs. In
particular, when evaluating a regular expression, the W3C semantics requires some
subexpressions to be matched onto simple walks,1 whereas other subexpressions can
be matched onto arbitrary paths.

Property paths are very fundamental in SPARQL. For example, the SPARQL query
of the form

SELECT ?x,?y WHERE {?x r ?y}
asks for pairs of nodes (x, y) such that there is a path from x to y that matches the
property path r. In fact, according to the SPARQL definition, the output of such a
query is a multiset in which each pair of nodes (x, y) of the graph occurs as often as
the number of paths from x to y that match r under W3C semantics. By only allowing
certain subexpressions to match simple walks, the W3C therefore ensures that the
number of paths that match a property path is always finite.

The amount of available RDF data on the Web has grown steadily over the last
decade [Arenas and Pérez 2011]. Since it is highly likely to become more and more
important in the future, we are convinced that investigating foundational aspects of
evaluating regular expressions and property paths over graphs is a very relevant re-
search topic. We therefore make the following contributions.

We investigate the complexity of two problems which we believe to be central for
query processing on graph data. In the EVALUATION problem, one is given a graph,
two nodes x and y, and a regular expression r, and one is asked whether there exists
a path from x to y that matches r. In the COUNTING problem, one is asked how many
paths from x to y match r. Notice that, according to the W3C definition, the answer
to the above SELECT query needs to contain the answer to the COUNTING problem in
unary notation.

Our theoretical investigation is motivated by an experimental analysis on several
popular SPARQL processors that reveals that they deal with property paths very inef-
ficiently. Already for solving the EVALUATION problem, all systems we found require
time double exponential in the size of the queries in the worst case. We show that it is,
in principle, possible to solve EVALUATION much more quickly: For a graph G and a
regular expression r with numerical occurrence indicators, we can test whether there
is a path from x to y that matches r in polynomial time combined complexity. More
precisely, we present a rather simple procedure that already gives linear time in the
size of r and a low degree polynomial in the size of the graph in the worst case.

We then investigate deeper reasons why evaluation of property paths is so ineffi-
cient in practice. In particular, we perform an in-depth study on the influence of some
W3C design decisions on the computational complexity of property path evaluation.
Our study reveals that the high processing times can be partly attributed already to
the SPARQL 1.1 definition from the W3C. We formally define two kinds of semantics
for property paths: regular path semantics and simple walk semantics. Here, simple
walk semantics is our formalization of the W3C’s semantics for property paths. Under
regular path semantics, a path (possibly containing loops) in an edge-labeled graph
matches a regular expression if the concatenation of the labels on the edges is in the
language defined by the expression.

1A simple walk is a path that does not visit the same node twice, but is allowed to return to its first node.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

The Complexity of Regular Expressions and Property Paths in SPARQL A:3

We prove that, under regular path semantics, EVALUATION remains tractable under
combined query evaluation complexity, even when numerical occurrence indicators are
added to regular expressions. Our algorithm is cubic in the size of the graph (which
means that it is not efficient enough to scale on real-life instances) but it is very naive
and we did not try to optimize it in terms of performance. In contrast, under simple
walk semantics, EVALUATION is already NP-complete for the regular expression (aa)∗

[Mendelzon and Wood 1995]. (So, it is NP-complete even under data complexity.) We
also identify a fragment of expressions for which EVALUATION under simple walk se-
mantics is in P but we prove that EVALUATION under simple walk semantics for this
fragment is the same problem than EVALUATION under regular path semantics.

The picture becomes perhaps even more striking for the COUNTING problem. Under
regular path semantics, we provide a detailed chart of the tractability frontier. When
the expressions are unambiguous, then COUNTING can be solved in polynomial time.
Intuitively, an expression is unambiguous if it can only match a word in one possible
way. Therefore, deterministic expressions (as used in Document Type Definitions [Bray
et al. 2008]) would be unambiguous, for example. However, even for expressions with
a very limited amount of non-determinism beyond unambiguity, COUNTING becomes
#P-complete. This picture changes rather drastically under simple walk semantics.
Here, COUNTING is already #P-complete for the regular expression a∗. Essentially,
this shows that, as soon as the Kleene star operator is used, COUNTING is #P-complete
under simple walk semantics. All fragments we found for which COUNTING is tractable
under simple walk semantics are tractable because, for these fragments, simple walk
semantics equals regular path semantics.

Our complexity results are summarized in Table I. One result that is not in the table
but may be of independent interest is the word membership problem for regular ex-
pressions with numerical occurrence indicators and negation. We prove this problem to
be in P in Theorem 3.7. Another result that is not in the table is that the complexity of
EVALUATION under regular path semantics remains the same if we extend our expres-
sions with a nesting operator, thereby obtaining a variant of nested regular expressions
(see, e.g. [Pérez et al. 2010]). This result is presented in Section 6.

Since the W3C’s specification for SPARQL 1.1 is still under development, this article
is intended to send a strong message to the W3C that informs it of the computational
complexity repercussions of some design decisions; and what could be possible if the se-
mantics of property paths were to be changed. Based on our observations, a semantics
for property paths that is based on regular path semantics seems to be recommendable
from a computational complexity point of view.

Related Work and Further Literature. This article studies evaluation problems of
regular expressions over graphs. Regular expressions as a language for querying
graphs have been studied in the database literature for more than a decade, sometimes
under the name of regular path queries or general path queries [Abiteboul et al. 1997;
Buneman et al. 1996; Consens and Mendelzon 1990; Cruz et al. 1987; Fernández et al.
2000; Yannakakis 1990]. Various problems for regular path queries have been inves-
tigated in the database community, such as optimization [Abiteboul and Vianu 1999],
query rewriting and query answering using views [Calvanese et al. 2002; 2000b], and
containment [Calvanese et al. 2000a; Deutsch and Tannen 2001; Florescu et al. 1998].
Recently, there has been a renewed interest in path queries on graphs, for example, on
expressions with data value comparisons [Libkin and Vrgoč 2012].

Regular path queries have also been studied in the context of program analysis [Liu
and Yu 2002]. However, the setting from [Liu and Yu 2002] is different from ours in
the sense that they are interested in a universal semantics of the queries. That is, they

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 K. LOSEMANN and W. MARTENS

are searching for pairs of nodes in the graph such that all paths between them match
the given expression.

On a technical level, the most closely related work is on regular expressions with
numerical occurrence indicators and on the complexity of SPARQL. Regular expres-
sions with numerical occurrence indicators have been investigated in the context of
XML schema languages [Colazzo et al. 2009b; 2009a; Gelade et al. 2012; Gelade et al.
2009; Kilpeläinen and Tuhkanen 2007; 2003] since they are a part of the W3C XML
Schema Language [Gao et al. 2009]. One of our polynomial time upper bounds builds
directly on Kilpeläinen and Tuhkonen’s algorithm for membership testing of a regular
expression with numerical occurrence indicators [Kilpeläinen and Tuhkanen 2003].

To the best of our knowledge, this article is the first one that studies the complexity of
full property paths (i.e., regular expressions with numerical occurrence indicators) in
SPARQL. Property paths without numerical occurrence indicators have been studied
in [Pérez et al. 2010; Alkhateeb et al. 2009; Arenas et al. 2012]. Most closely related
to us is [Arenas et al. 2012], which is conducted independently from us and which
complements our work in several respects. The semantics of property paths in [Har-
ris and Seaborne 2012] was not entirely clear and could be interpreted in different
ways. The present article studies one such interpretation (based on the definition of
ZeroOrMorePath/OneOrMorePath in Section 18.4 in [Harris and Seaborne 2012]) and
Arenas et al. study an alternative one (based on Section 18.5 in [Harris and Seaborne
2012] that gives a procedure for counting paths). The joint main message of [Arenas
et al. 2012] and this article is that both interpretations quickly lead to intractability of
query evaluation and that something should be changed. In particular, we show that,
even if one would abandon the precise counting procedure in Section 18.5 of [Harris
and Seaborne 2012] and fall back to the definition in Section 18.4, evaluation would
remain intractable very quickly. We should note that, in the meantime, this ambiguity
in the definitions has been resolved in the SPARQL 1.1 Recommendation. We discuss
these matters in more detail in Section 7. Further work on the complexity of SPARQL
query evaluation can be found in [Pérez et al. 2009; Schmidt et al. 2010]. We refer
to [Arenas and Pérez 2011] for further references on research on RDF databases and
query languages.

2. PRELIMINARIES
For the remainder of this article, ∆ always denotes a countably infinite set. We use
∆ to model the set of IRIs and prefixed names from the SPARQL specification. We
assume that we can test for equality between elements of ∆ in constant time.

A ∆-symbol (or simply symbol) is an element of ∆, and a ∆-word (or simply word) is
a finite sequence w = a1 · · · an of ∆-symbols. We define the length of w, denoted by |w|,
to be n. We denote the empty word by ε. The set of positions of w is {1, . . . , n} and the
symbol of w at position i is ai. By w1 · w2 or w1w2 we denote the concatenation of two
words w1 and w2. The set of all words is denoted by ∆∗. A word language is a subset of
∆∗. For two word languages L,L′ ⊆ ∆∗, we define their concatenation L · L′ to be the
set {ww′ | w ∈ L,w′ ∈ L′}. We abbreviate L · L · · ·L (i times) by Li. The set of regular
expressions over ∆, denoted by RE, is defined as follows: ∅, ε and every ∆-symbol is a
regular expression; and when r and s are regular expressions, then (r · s), (r + s), (r?),
(r∗), and (r+) are also regular expressions. We assume w.l.o.g. that ∅ is never used as
a subexpression of another regular expression. We consider the following additional
operators for regular expressions:
Numerical Occurrence Indicators: If k ∈ N and ` ∈ N ∪∞ with k ≤ `, then (rk,`) is
a regular expression.
Negation: If r is a regular expression, then so is (¬r).

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

The Complexity of Regular Expressions and Property Paths in SPARQL A:5

Negated label test: If {a1, . . . , an} is a non-empty, finite subset of ∆, then !(a1+· · ·+an)
is a regular expression.2

Wildcard: The symbol • is a regular expression. (We assume that • /∈ ∆.)

We often omit braces in regular expressions to improve readability. Furthermore,
we often abbreviate rk,k by rk. By RE(X) we denote the set of regular expressions
with additional features X ⊆ {#,¬, •, !} where “#” stands for numerical occurrence
indicators, “¬” for negation, “!” for the negated label test, and “•” for the single-symbol
wildcard. For example, RE(#) denotes the set of regular expressions with numerical
occurrence indicators and RE(#,¬, •) is the set of regular expressions with numerical
occurrence indicators, negation, and wildcard. We are particularly interested in the
following class of expressions, which is inspired by the definition of property paths in
the SPARQL 1.1 working draft of January 2012 [Harris and Seaborne 2012].

Definition 2.1. The set of SPARQL Regular Expressions or SPARQL Property Paths
is the set RE(#, !, •).3

We consider edge-labeled graphs as our data model. A graph G will be denoted
as G = (V,E), where V is the set of nodes of G and E ⊆ V × ∆ × V is the set of
edges. An edge e is therefore of the form (u, a, v) if it goes from node u to node v and
bears the label a. When we want to refer to an edge but do not care about its la-
bel, we sometimes also write an edge as a pair (u, v) in order to simplify notation.
We assume familiarity with basic terminology on graphs. A path from node x to node
y in G is a sequence p = v0[a1]v1[a2]v2 · · · vn−1[an]vn such that v0 = x, vn = y, and
(vi−1, ai, vi) is an edge for each i = 1, . . . , n. When we are not interested in the labels
on the edges, we sometimes also write p = v0v1 . . . vn. We say that path p has length
n. Notice that a path of length zero does not follow any edges. The labeled word in-
duced by the path p in G is a1 · · · an and is denoted by labG(p). If G is clear from the
context, we sometimes also simply write lab(p). We define the concatenation of paths
p1 = v0[a1]v1 · · · vn−1[an]vn and p2 = vn[an+1]vn1 · · · vn+m−1[an+m]vn+m to be the path
p1p2 := v0[a1]v1 · · · vn−1[an]vn[an+1]vn1 · · · vn+m−1[an+m]vn+m.

For two binary relations R1 ⊆ V × V and R2 ⊆ V × V , we denote by R1 ./ R2 the set
{(u, v) | ∃z ∈ V : (u, z) ∈ R1 ∧ (z, v) ∈ R2}. Likewise, for a binary relation R ⊆ V × V
and k ∈ N− {0}, we define Rk := R if k = 1 and Rk := R ./ Rk−1 otherwise.

2.1. Regular Path Semantics
The language defined by an expression r, denoted by L(r), is inductively defined as
follows: L(∅) = ∅; L(ε) = {ε}; L(a) = {a} for every a ∈ ∆; L(!(a1 + · · · + an)) = ∆ −
{a1, . . . , an}; L(•) = ∆; L(rs) = L(r)·L(s); L(r+s) = L(r)∪L(s); L(r∗) = {ε}∪

⋃∞
i=1 L(r)i,

L(rk,`) =
⋃`
i=k L(r)i; and, L(¬r) = ∆∗ − L(r). Furthermore, L(r?) = ε + L(r) and

L(r+) = L(r)L(r∗).4 The size of a regular expression r over ∆, denoted by |r|, is the
number of occurrences of ∆-symbols, •-symbols, and operators occurring in r, plus the
sizes of the binary representations of the numerical occurrence indicators. We say that
a path p matches a regular expression r under regular path semantics if lab(p) ∈ L(r).

2Throughout the article, we will consider !(a1 + · · ·+an) to be an atomic expression. This means that it will
often be a base case in inductive proofs.
3In this article, we mostly refer to these expressions as “SPARQL regular expressions” to avoid confusion
between expressions and paths.
4We do not define r+ as an abbreviation of the expression rr∗ since r+ and rr∗ have different semantics in
[Harris and Seaborne 2012].

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 K. LOSEMANN and W. MARTENS

2.2. Simple Walk Semantics
The simple walk semantics is our formalization of the semantics of property paths
in the SPARQL working draft of January 2012 [Harris and Seaborne 2012]. In the
SPARQL algebra (Section 18.4 of [Harris and Seaborne 2012]), the semantics of subex-
pressions of the form r∗ and r+ is defined through the operators ZeroOrMorePath and
OneOrMorePath respectively. In the definition, it is assumed that the semantics of the
subexpression5 r is already known and reads as follows:

— “ZeroOrMorePath: An arbitrary length path P = (X r∗ Y) is all solutions
from X to Y by repeated use of r such that any nodes in the graph are
traversed once only. ZeroOrMorePath includes X.”

— “OneOrMorePath: An arbitrary length path P = (X r+ Y) is all solutions
from X to Y by repeated use of r such that any nodes in the graph are
traversed once only. This does not include X, unless repeated evaluation
of the path from X returns to X.”

(Here, X and Y are variables that bind to nodes.) These definitions seem to be a bit
ambiguous. In the definition of ZeroOrMorePath, the specification seems to require
that the path from X to Y is a path that contains each node at most once. We formalize
this as a simple path.

Definition 2.2. A simple path is a path v0v1 · · · vn−1vn, where each node vi occurs
exactly once.

However, in the definition of OneOrMorePath, it seems to be allowed for a path to
return to the first node. We formalize these paths as simple walks.

Definition 2.3. A simple cycle is a path v0v1 · · · vn−1vn such that v0 = vn and every
vi for i = 1, . . . , n − 1 occurs exactly once. A simple walk is either a simple path or a
simple cycle.

We find the informal definition of the W3C to be unclear on the matter of whether it
allows simple cycles, but examples in the working draft suggest that simple cycles are
allowed. We therefore choose to consider simple walks in the presentation of our proofs
and consider the following constraint on the semantics of regular expressions:

Simple Walk Requirement. Subexpressions of the form r∗ and r+ should be matched
to simple walks in graphs.

However, our complexity results concerning simple walks also hold if we would con-
sider simple paths instead of simple walks.

We now formally define our abstraction of the semantics of property paths as defined
by the W3C in the January 2012 working draft [Harris and Seaborne 2012]. Let p =
v0[a1]v1[a2]v2 · · · vn−1[an]vn be a path in a graph and r be a SPARQL regular expression.
Then p matches r under simple walk semantics if one of the following holds:

— If r = ∅, r = ε, r = a for some a ∈ ∆, r = •, or r = !(a1 + · · ·+ an) then lab(p) ∈ L(r).
— If r = s∗ or r = s+, then lab(p) ∈ L(r) and p is a simple walk.
— If r = s?, then either p = v0 or p matches s under simple walk semantics.
— If r = s1 · s2, then there exist paths p1 and p2 such that p = p1p2 and pi matches si

under simple walk semantics for all i = 1, 2.
— If r = s1 + s2, then there exists an i = 1, 2 such that p matches si under simple walk

semantics.

5Subexpression r is called “path” in [Harris and Seaborne 2012].

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

The Complexity of Regular Expressions and Property Paths in SPARQL A:7

— If r = sk,` with ` 6= ∞, then there exist paths p1, . . . , pm with k ≤ m ≤ ` such that
p = p1 · · · pm and pi matches s under simple walk semantics for each i = 1, . . . ,m.
(Notice that, if ` = 0 then p has length zero.)

— If r = sk,∞, then there exist paths p1 and p2 such that p = p1p2, p1 matches sk,k under
simple walk semantics, and p2 matches s∗ under simple walk semantics.

We added the case r = ∅ for compatibility with regular expressions. Notice that there
does not exist a path that matches the expression ∅ under simple walk semantics.
Furthermore, under simple walk semantics, we no longer have that a∗ is equivalent
to a∗a∗, that a1,∞ is equivalent to a+, or that aa∗ is equivalent to a+. However, aa∗ is
equivalent to a1,∞. For the expression (a + b)50,60, regular path semantics and simple
walk semantics coincide.

2.3. Problems of Interest
We will often consider a graph G = (V,E) together with a source node x and a target
node y, for example, when considering paths from x to y. We say that (V,E, x, y) is the
s-t graph of G w.r.t. x and y. Sometimes we leave the facts that x and y are source and
target implicit and just refer to (V,E, x, y) as a graph.

We consider two paths p1 = v10 [a11]v11 · · · [a1n]v1n and p2 = v20 [a21]v21 · · · [a2m]v2m in a graph
to be different, when either the sequences of nodes or the sequences of labels are dif-
ferent, i.e., v10v11 · · · v1n 6= v20v

2
1 · · · v2m or lab(p1) 6= lab(p2). Notice that this implies that

we consider two paths going through the same sequence of nodes but using different
edge labels to be different.
We are mainly interested in the following problems, which we consider under regular
path semantics and under simple walk semantics:
EVALUATION: Given a graph (V,E, x, y) and a regular expression r, is there a path
from x to y that matches r?
FINITENESS: Given a graph (V,E, x, y) and a regular expression r, are there only
finitely many different paths from x to y that match r?
COUNTING: Given a graph (V,E, x, y), a regular expression r and a natural number
max in unary, how many different paths of length at most max between x and y match
r?

Throughout the article, we will sometimes talk about the query complexity or data
complexity of the above problems. When we talk about query complexity, we assume
the graph (V,E, x, y) to be fixed. Therefore, the only input for the above problems is
the regular expression r and, if relevant, the number max in unary. Under data com-
plexity, we consider the expression r and number max (if relevant) to be fixed. There-
fore, the input of the above problems under data complexity only consists of the graph
(V,E, x, y).

The COUNTING problem is closely related to two problems studied in the litera-
ture: (1) counting the number of words of a given length in the language of a regular
expression and (2) counting the number of paths in a graph that match certain con-
straints. We chose to have the number max in unary because this was also the case in
several highly relevant work on (1) and (2) (e.g., [Kannan et al. 1995; Álvarez and Jen-
ner 1993; Valiant 1979]). Furthermore, it strengthens our hardness results to consider
the number max to be encoded in unary. We note that our polynomial-time results for
COUNTING still hold when the number max is given in binary (Theorems 4.3 and 3.15).

We will often parameterize the problems with the kind of regular expressions or
automata we consider. For example, when we talk about EVALUATION for RE(#,¬),
then we mean the EVALUATION problem where the input is a graph (V,E, x, y) and an
expression r in RE(#,¬).

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 K. LOSEMANN and W. MARTENS

0 5 10 15 20 25
0

10,000

20,000

30,000

40,000

50,000

60,000

fail

k

m
s

Jena
RDF::Query

(a) Evaluation time for Jena and
RDF::Query.

0 2 4 6 8 10 12 14
0

1,000

2,000

3,000

4,000

5,000
fail

k

m
s

Sesame

(b) Evaluation time for Sesame.

Fig. 1. Time taken by Jena, Sesame and RDF::Query for evaluating the expression (a+ b)1,k for increasing
values of k on a graph with two nodes and four edges.

Finally, we note that we use Cook reductions, also known as Turing reductions, in
this article. Under these reductions, counting the number of satisfying assignments of
a DNF formula and counting the number of simple source-to-target paths in a graph
are #P-complete problems.

3. THE EVALUATION PROBLEM
We conducted a practical study on the efficiency in which SPARQL engines evaluate
property paths. We evaluated the most prevalent SPARQL query engines which sup-
port property paths, namely the Jena Semantic Web Framework, Sesame, RDF::Query,
and Corese 3.06. Our experiments were performed in November 2011. We asked the
four frameworks to answer the query

ASK WHERE { :x (a|b){1,k} :y }

for increasing values of k on the graph

x y
a

a

b

b

consisting of two nodes and four labeled edges. An ASK-query in SPARQL returns a
Boolean value, which is true if and only if there exists an answer for the query in
the graph. (More formally, if the query would return at least one tuple on the graph.)
In our formal framework, answering this query therefore corresponds to solving the
EVALUATION problem on the above graph for the expression (a+ b)1,k. Notice that the
answer is always “true”. Furthermore, notice that this query has the same semantics
under regular path semantics as under simple walk semantics.

The performance of three of the four systems is depicted in Figure 1. The results are
obtained from evaluation on a desktop PC with 2 GB of RAM. For the Jena and Sesame
framework the points in the graph depict all the points we could obtain data on. When

6These engines can be found at http://jena.apache.org/ (Jena Semantic Web Frame-
work), http://www.openrdf.org/ (Sesame), http://code.google.com/p/rdfquery/ (RDF::Query), and
http://wimmics.inria.fr/corese (Corese 3.0).

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

The Complexity of Regular Expressions and Property Paths in SPARQL A:9

we increased the number k by one more as shown on the graphic, the systems ran out
of memory. Our conclusion from our measurements is that all three systems seem to
exhibit a double exponential behavior: from a certain point, whenever we increase the
number k by one (which does not mean that one more bit is needed to represent it), the
processing time doubles. Corese 3.0 evaluated queries of the above form very quickly.
However, when we asked the query

ASK WHERE {x ((a|b)/(a|b)){1,k} y},

which asks for the existence of even length paths, its time consumption was the same
than the other three systems. In contrast to the other three systems, Corese did not
run out of memory so quickly.

In a related study by Arenas, Conca, and Pérez [Arenas et al. 2012] a double expo-
nential behavior is observed for SELECT queries that use property paths. SELECT queries
are more difficult to answer than ASK queries because SELECT queries should output all
tuples that witness the query, whereas an ASK query simply asks if there exists such a
tuple or not. However, the queries for which [Arenas et al. 2012] observed double ex-
ponential behavior did not exploit numerical occurrence indicators as we did. As such,
the experiments here and in [Arenas et al. 2012] seem to complement one another.

3.1. An Efficient Algorithm for Regular Path Semantics
We show that the double exponential behavior we observed in practice can be improved
to polynomial-time combined complexity. More precisely, we present a polynomial-time
algorithm for EVALUATION of SPARQL regular expressions under regular path seman-
tics. Later, in Section 3.3, we prove that EVALUATION under simple walk semantics is
NP-complete for very simple regular expressions.

We briefly discuss some basic results on evaluating regular expressions on graphs.
EVALUATION is in P for standard regular expressions.7 In this case, the problem basi-
cally boils down to testing intersection emptiness of two finite automata: one converts
the graph G with the given nodes x and y into a finite automaton AG by taking the
nodes of G as states, the edges as transitions, x as its initial state and y as its accept-
ing state. The expression r is converted into a finite automaton Ar by using standard
methods. Then, there is a path from x to y in G that matches r if and only if the in-
tersection of the languages of AG and Ar is not empty, which can easily be tested in
polynomial time. It is known that the product construction of automata can even be
used for a linear-time algorithm for evaluating nested regular path expressions, which
are regular expressions that have the power to branch out in the graph [Alechina and
Immerman 2000; Pérez et al. 2010]. In fact, since such nested regular expressions are
a fragment of propositional dynamic logic (PDL), linear time evaluation of such ex-
pressions already follows from linear time evaluation of PDL [Cleaveland and Steffen
1993; Alechina and Immerman 2000].

Our polynomial time algorithm for EVALUATION of RE(#, !, •)-expressions follows
a dynamic programming approach. We first discuss the main idea of the algorithm
and then discuss its complexity. Let r be a SPARQL regular expression, that is, a
RE(#, !, •)-expression, and let G = (V,E) be a graph. The algorithm traverses the syn-
tax tree of r in a bottom-up fashion. To simplify notation in the following discussion,
we identify nodes from the parse tree of r with their corresponding subexpressions.
We store, for each node in the syntax tree with associated subexpression s, a binary
relation eval(s) ⊆ V × V such that

7This has already been observed in the literature several times, e.g., as Lemma 1 in [Mendelzon and Wood
1995], on p.7 in [Abiteboul and Vianu 1999], and in [Alkhateeb et al. 2009].

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 K. LOSEMANN and W. MARTENS

·

∗

+

b c

3, 5

b

(1,2)
(3,4)
(5,6)
(4,12)
. . .

(2,3)
(4,5)

(1,2)
(2,3)
(3,4)
(4,5)
(4,12)
(5,6)
. . .

(1,1)
(1,2)
(1,3)
(1,4)
(1,5)
. . .

(3,13)
(3,5)
(3,6)
(4,5)
(4,6)
. . .

(1,13)
(1,5)
(1,6)
. . .
(1,11)
(2,8)
. . .

(a) Part of a run on the expression (b+ c)∗b3,5 and the graph in Fig. 2(b).

1 2 3 4 5 6 7 8 9 10 11

12 13

b c b c b b b b b b

b

b

b

(b) An edge-labeled graph.

Fig. 2. Illustration of the polynomial-time dynamic programming algorithm.

(u, v) ∈ eval(s) if and only if there exists a path from u to v in G that matches s.

(Of course, relations for identical subexpressions should not be computed twice.) The
manner in which we join relations while going bottom-up in the parse tree depends
on the type of the node. We discuss all possible cases next. The sets eval(s) can be
computed by structural induction on r as follows:

— eval(∅) := ∅;
— eval(ε) := {(u, u) | u ∈ V };
— eval(•) := {(u, v) | ∃a ∈ ∆ with (u, a, v) ∈ E};
— for every a ∈ ∆, eval(a) := {(u, v) | (u, a, v) ∈ E};
— eval(!(a1 + · · ·+ an)) := {(u, v) | ∃a ∈ ∆− {a1, . . . , an} with (u, a, v) ∈ E};
— eval(s1 + s2) := eval(s1) ∪ eval(s2);
— eval(s1 · s2) := eval(s1) ./ eval(s2);
— eval(s?) := eval(s) ∪ eval(ε);
— eval(s∗) is the reflexive and transitive closure of eval(s);
— eval(s+) is the transitive closure of eval(s);
— eval(sk,∞) := eval(sk) ./ eval(s∗); and
— for ` 6=∞, eval(sk,`) := eval(s)k ./ eval(s?)`.

Finally, if the input for EVALUATION is G, nodes x and y, and RE(#, !, •)-expression r,
we return the answer “true” if and only if eval(r) contains the pair (x, y).

Example 3.1. Figure 2 illustrates part of a run of the evaluation algorithm on the
graph in Figure 2(b) and the regular expression r = (b+ c)∗b3,5. Each node of the parse
tree of the expression (Fig. 2(a)) is annotated with the binary relation that we compute

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

The Complexity of Regular Expressions and Property Paths in SPARQL A:11

for it. Finally, the relation for the root node contains all pairs (x, y) such that there is
a path from x to y that matches r.

To prove that our algorithm runs in polynomial time, we use the following well-
known results.

LEMMA 3.2 (SEE, E.G., [BERGE 1973], PAGE 74). Let R be a binary relation and
k ∈ N. Then we can compute Rk by performing O(log k) join operations.

PROOF (SKETCH). Immediate from the observation that, for every k ∈ N,

Rk =

R, if k = 1

R ./
(
R

k−1
2 ./ R

k−1
2

)
, if k is odd(

R
k
2 ./ R

k
2

)
, if k is even

The next lemma states the cost of a single join.

LEMMA 3.3. For some n ∈ N, let R,S ⊆ {1, . . . , n}2 be binary relations. Then we can
compute R ./ S in time O(n3).

PROOF. When one represents R and S as boolean n × n matrices MR and MS (i.e.,
the connectivity matrices of R and S), the matrix representation for R ./ S can be
obtained by multiplying MR with MS , costing time O(n3).

We are now ready to show that EVALUATION is correct and can be implemented to
run in polynomial time.

THEOREM 3.4. EVALUATION for SPARQL regular expressions under regular path
semantics is in time O(|r| · |V |3), where |r| is the size of the expression and |V | is the
number of nodes in the graph.

PROOF. We prove that the algorithm that computes the sets eval(s) in the beginning
of Section 3.1 can be implemented to decide EVALUATION for RE(#, !, •) in polynomial
time. That is, given a graph G = (V,E, x, y) and RE(#, !, •)-expression r, it decides in
polynomial time whether there is a path in G from x to y that matches r (under regular
path semantics).

The correctness proof is a straightforward induction on the structure of the expres-
sion r. More precisely, the following invariant (I) holds for every relation eval(s) that
is calculated:

For each subexpression s of r, we have
(u, v) ∈ eval(s)⇔ ∃ path p in G from u to v such that lab(p) ∈ L(s). (I)

Notice that the correctness of the invariant implies the correctness of the algorithm.
We now prove that the invariant is correct. The base cases, i.e., the cases where

s = ∅, s = ε, s = a for some a ∈ ∆, s = •, or s = !(a1 + · · ·+ an), are immediate.
We now prove the induction cases. To this end, let s be a node in the syntax tree of

r such that (I) is already known to be true for all of its children. We make the case
distinction based on the type of subexpression that s represents.

If s = s1 + s2 then we compute eval(s) = eval(s1) ∪ eval(s2). Take an arbitrary
(u, v) ∈ V ×V . First we show that, if (u, v) in eval(s), then there exists a path p from u to
v in G such that lab(p) ∈ L(s). By construction of eval(s), we know that (u, v) ∈ eval(s1)
or (u, v) ∈ eval(s2). By induction, we know that eval(s1) and eval(s2) are calculated
correctly. Therefore, there exists a path p from u to v that matches s1 or s2. By definition

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 K. LOSEMANN and W. MARTENS

of s, this implies that p also matches s. Second we show that, if there exists a path p
from u to v in G with lab(p) ∈ L(s) then (u, v) in eval(s). To this end, let p be a path
from u to v in G with lab(p) ∈ L(s). By definition of s, we have that p matches s1 or s2.
Since s1 and s2 are calculated correctly by induction, we have that (u, v) is in eval(s1)
or in eval(s2). Since eval(s) = eval(s1) ∪ eval(s2), it follows that (u, v) ∈ eval(s) and
eval(s) fulfills (I).

If s = s1 · s2, then we compute eval(s) := eval(s1) ./ eval(s2), where eval(s1) ./
eval(s2) := {(u, v) | ∃z ∈ V : (u, z) ∈ eval(s1) ∧ (z, v) ∈ eval(s2)} is the composition of
the relation eval(s1) and eval(s2). Take an arbitrary (u, v) ∈ V ×V . First we show that,
if (u, v) in eval(s), then there exists a path p from u to v in G such that lab(p) ∈ L(s).
By the definition of the join operator, we know that for every tuple (u, v) ∈ eval(s)
there exist tuples (u, z) and (z, v), such that (u, z) ∈ eval(s1) and (z, v) ∈ eval(s2).
Because eval(s1) and eval(s2) are calculated correctly by induction, there exists a path
p1 from u to z in G with lab(p1) ∈ L(s1) and a path p2 from z to v with lab(p2) ∈ L(s2).
Thus the concatenation of these two paths p = p1.p2, is a path from u to v in G with
lab(p) ∈ L(s1 · s2). Second, we show that, if there exists a path p from u to v in G
with lab(p) ∈ L(s1 · s2), then (u, v) in eval(s). Therefore, let p be such a path. Since
lab(p) ∈ L(s1 · s2), we know that there exist paths p1 and p2, such that p = p1.p2 and p1
is a path from u to some node z with lab(p1) ∈ L(s1) and p2 is a path from z to v with
lab(p2) ∈ L(s2). Because eval(s1) and eval(s2) are calculated correctly by induction, we
know that (u, z) ∈ eval(s1) and (z, v) ∈ eval(s2). Thus the tuple (u, v) is in eval(s) by
the definition of the join and eval(s) fulfills (I). Note that if L(s1) or L(s2) contain ε,
then the relations of s1 or s2 are reflexive.

The cases s = s1?, s = s∗1, s = s+1 , and s = sk,`1 can be proved similarly to the previous
cases. This concludes our proof of correctness.

Next, we argue that the algorithm can be implemented to run in polynomial time.
Notice that the parse tree of the input expression s has linear size. Since the algorithm
processes the parse tree in a bottom-up fashion we therefore only need to prove that
we can implement each separate case in time O(|V |3) or in time O(|V |3 log k) if there is
a numerical occurrence operator k. Notice that each relation eval(s) has size O(|V |2).

The cases where s ∈ ∆, s = ε, s = •, s =!(a1 + · · ·+ an), s = s1 · s2, s = s∗1, s = s+1 , and
s = s1? are either trivial or immediate from Lemma 3.3. The cases s = sk1 and s = sk,∞1 ,
can be computed in time O(|V |3 log k) by applying Lemmas 3.2 and 3.3. Similarly, we
obtain that the case s = sk,`1 is in time O(|V |3 log `). This concludes our proof.

Although Theorem 3.4 presents a polynomial-time result, the algorithm in the proof
is not very practical. The biggest bottleneck is in Lemma 3.3 which joins two relations
in time O(n3). If we represent the relations as matrices, this procedure has a best-case
complexity of Ω(n2), even if the relations to be joined are much smaller than n.

We therefore look at an alternative algorithm that uses sort-merge join instead of
matrix multiplications. For analysing the complexity of joining two relations R and
S, we need the following notion. For two finite binary relations R and S, the number
of tuples of R ./ S under multiset semantics is the number of elements in the set
{(u, z, v) | (u, z) ∈ R and (z, v) ∈ S}.

LEMMA 3.5. Let R and S be finite binary relations. Let tR, tS and tRS denote the
number of tuples in R, S, and R ./ S, respectively. Let m denote the number of tuples
of R ./ S under multiset semantics. Then we can compute R ./ S in time and space
O(tR log tR + tS log tS +m log tRS).

PROOF. The bound is achieved by a variant of the merge join algorithm. Sorting the
tuples of R and S on their respective join attributes costs time O(tR log tR + tS log tS).

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

The Complexity of Regular Expressions and Property Paths in SPARQL A:13

Once the relations are sorted, we can join the relations similar to merge join (see, e.g.,
[Ramakrishnan and Gehrke 2003], page 458), but we need the output to be a set of
pairs, rather than a multiset of pairs, so we have to eliminate duplicates. In order to
do this, we can iterate through the sorted R and S as in the merge join algorithm and
maintain the set of pairs we already discovered to be in R ./ S in a self-balancing
binary search tree (e.g., an AVL tree). When we find a new candidate pair for R ./ S
we can thus discover in time O(log tRS) if we already found it or not. Since there are m
such candidate pairs, this last step costs time O(tR + tS +m log tRS).

In the worst case, the number m in Lemma 3.5 could be Θ(n4) in terms of the number n
of Lemma 3.3. However, it is expected that m is usually small in practice and that the
literature emphasizes that the worst case is very unlikely [Ramakrishnan and Gehrke
2003].

In the following corollary, let Rmax denote the maximal number of pairs in any rela-
tion eval(s) in the algorithm of Theorem 3.4 (including in the intermediate results
for fast squaring in Lemma 3.2). Let m be at least Rmax and an upper bound for
the largest number of tuples in eval(s1) ./ eval(s2) under multiset semantics, where
eval(s1) ./ eval(s2) ranges over all joins we perform in the algorithm (again, including
the intermediate results for fast squaring). The following corollary is then obtained by
taking the algorithm of Theorem 3.4 and replacing the join procedure of Lemma 3.3
with the procedure in Lemma 3.5.

COROLLARY 3.6. EVALUATION for SPARQL regular expressions under regular
path semantics is in time O(|r| ·m logRmax).

Since our evaluation algorithm is still rather naive, we feel that further improvements
towards better data complexity are very likely to be possible.

Our evaluation algorithm is based on dynamic programming. We are not the first to
think of dynamic programming in the context of regular expressions. The connection
between dynamic programming and regular expressions goes back at least to Kleene’s
recursive formulas for extracting a regular expression from a DFA [Kleene 1956]. Dy-
namic programming for testing whether a word belongs to a language of a regular ex-
pression has been demonstrated in [Hopcroft and Ullman 1979] (p.75–76). Kilpeläinen
and Tuhkonen adapted this approach for evaluating RE(#) on words [Kilpeläinen and
Tuhkanen 2003]. However, the algorithm from Kilpeläinen and Tuhkonen does not
naively extend to graphs: it would need time exponential in the expression. It uses the
fact that the length of the longest match of the expression on the word cannot exceed
the length of the word. For example, the regular expression a42 can only match a word
if the word contains 42 a’s. This assumption no longer holds in graphs.

We conclude this section with one more observation on the dynamic programming
algorithm, which we will need for later proofs in the article. If we want to evaluate
expressions on words instead of graphs, we can also incorporate negation into the al-
gorithm. By MEMBERSHIP we denote the following decision problem: Given a word w
and a regular expression r, is w ∈ L(r)?

THEOREM 3.7. MEMBERSHIP for RE(#, !,¬, •) is in time O(|r| · |w|3), where |r| is
the size of the expression and |w| the length of the word.

PROOF. To simplify the technical presentation in this proof, we abstract a word as
an acyclic, connected, edge-labeled graph in which every node has at most one incom-
ing or outgoing edge. As such, we can re-use the algorithm from Theorem 3.4. We al-
ready showed in the proof of Theorem 3.4 that EVALUATION (and therefore also MEM-
BERSHIP) for RE(#, !, •) is in polynomial time by means of a dynamic programming
algorithm. Here, we show how the algorithm can be extended to also take negation

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 K. LOSEMANN and W. MARTENS

into account, if we evaluate over words instead of graphs. The change in our algorithm
consists of considering one extra case:

— eval(¬s) := {(u, v) | (u, v) /∈ eval(s)}.
Clearly, this case can also be implemented to run in time O(|r| · |w|3).

We prove that the algorithm is correct. To this end, let r be an expression from
RE(#, !,¬, •). We prove the same invariant (I) than in the proof of Theorem 3.4, that is:

For each subexpression s of r, we have
(u, v) ∈ eval(s)⇔ ∃ path p in G from u to v such that lab(p) ∈ L(s). (I)

Since we are considering only words now, a tuple (u, v) represents two positions in the
word, such that (u, v) ∈ eval(s) if and only if the subword from u to v of the considered
word is in L(s).

The induction base cases and all operators, except for ¬, are exactly the same as in
the proof of Theorem 3.4. So, it only remains to consider the case eval(¬s) = {(u, v) |
(u, v) /∈ eval(s)}. By definition of the negation operator and since we are dealing with a
word, the (unique) path from u to v matches ¬s if and only if it does not match s. Since,
by induction, eval(s) is calculated correctly, a tuple (u, v) is in eval(s) if and only if the
subword from u to v in the considered word matches L(s). Then (u, v) ∈ eval(s) if and
only if (u, v) /∈ eval(¬s). Therefore eval(¬s) fulfills (I).

However, as we illustrate in the next section, allowing unrestricted negation in ex-
pressions does not allow for an efficient algorithm for EVALUATION on graphs.

3.2. Negation Makes Evaluation Hard over Graphs
The negated label test seems to be harmless for the efficiency of evaluating SPARQL
regular expressions. On words, even the full-fledged negation operator “¬” can be
evaluated efficiently. However, allowing full-fledged negation for evaluation on graphs
makes the complexity of EVALUATION non-elementary. The reason is that EVALUA-
TION is at least as hard as satisfiability of the given regular expression.

LEMMA 3.8. Let C be a class of regular expressions over a finite alphabet Σ. Then
there exists a LOGSPACE (and therefore polynomial time) reduction from the non-
emptiness problem for C-expressions to the EVALUATION problem with C-expressions.

PROOF. The proof is immediate from the observation that non-emptiness of an ex-
pression r over an alphabet Σ is the same decision problem as EVALUATION for r and
the graph G = (V,E) with V = {x} and E = {(x, a, x) | a ∈ Σ}.

A star-free generalized regular expression is a regular expression that uses the con-
catenation (·), disjunction (+), and negation (¬) operators. The language emptiness
problem of star-free generalized regular expressions takes such an expression r as in-
put and asks whether L(r) = ∅. It is well known that this problem is non-elementary
[Stockmeyer 1974] and we therefore also immediately have that EVALUATION is non-
elementary for RE(¬)-expressions, by Lemma 3.8.

THEOREM 3.9. EVALUATION for RE(¬) under regular path semantics is non-
elementary.

For completeness, since RE(#, !,¬, •)-expressions can be converted into RE(#, !, •)-
expressions with a non-elementary blow-up, we also mention a general upper bound
for EVALUATION.

THEOREM 3.10. EVALUATION for RE(#, !,¬, •) under regular path semantics is de-
cidable.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

The Complexity of Regular Expressions and Property Paths in SPARQL A:15

3.3. Complexity under Simple Walk Semantics
Section 3.1 showed how SPARQL regular expressions, which have numerical occur-
rence indicators, can be efficiently evaluated under regular path semantics with a
rather simple algorithm. In this section, we will see how the complexity of EVALU-
ATION changes when SPARQL’s simple walk semantics rather than regular path se-
mantics is applied.

3.3.1. NP-Complete Fragments. It follows from classical results that EVALUATION un-
der simple walk semantics is NP-complete rather quickly. As Lapaugh and Papadim-
itriou showed in 1984, given a directed graph and two nodes x and y, it is NP-hard to
decide whether there exists a simple path of even length from x to y. The NP upper
bound is trivial.

THEOREM 3.11 (MENDELZON, WOOD 1995; LAPAUGH, PAPADIMITRIOU 1984).
EVALUATION under simple walk semantics is NP-complete for the expression (aa)∗

and for the expression (aa)+.

Notice that, since the expressions in Theorem 3.11 are fixed, the theorem already
shows that the data complexity of EVALUATION under simple walk semantics is NP-
hard.

On the other hand, EVALUATION remains in NP even when numerical occurrence
indicators are allowed.

THEOREM 3.12. EVALUATION for RE(#, !, •)-expressions under simple walk se-
mantics is NP-complete.

PROOF. The NP lower bound is immediate from Theorem 3.11.
The NP upper bound follows from an adaptation of the algorithm of Section 3.1

where, in the cases for s = s∗1 and s = s+1 , simple walks are guessed between nodes
to see if they belong to eval(s). Let G = (V,E, x, y) be the s-t graph and let r be the
regular expression. The NP algorithm guesses a (polynomial size representation of a)
path from x to y and tests whether the path matches the expression under simple walk
semantics in polynomial time.

For a subexpression s of r and nodes u, v ∈ V , let

evalsw(s) = {(u, v) | there is a path from u to v
that matches s under simple walk semantics }

The NP algorithm computes evalsw for all subexpressions s of r.
By eval we denote the function for evaluating expressions under regular path se-

mantics, as defined in Section 3.1. The sets evalsw(s) can be computed by structural
induction on r as follows:

— evalsw(∅) := ∅;
— evalsw(ε) := {(u, u) | u ∈ V };
— evalsw(•) := eval(•);
— for every a ∈ ∆, evalsw(a) := eval(a);
— evalsw(!(a1 + · · ·+ an)) := eval(!(a1 + · · ·+ an));
— evalsw(s1 + s2) := evalsw(s1) ∪ evalsw(s2);
— evalsw(s1 · s2) := evalsw(s1) ./ evalsw(s2);
— evalsw(s?) := evalsw(s) ∪ evalsw(ε);
— evalsw(s+) := {(u, v) | there is a simple walk from u to v that matches s+};
— evalsw(s∗) := evalsw(s+) ∪ evalsw(ε);
— evalsw(sk,`) := evalsw(s)k,`; and
— evalsw(sk,∞) := evalsw(s)k ./ evalsw(s∗).

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 K. LOSEMANN and W. MARTENS

Table 3.3.2. Possible factors in extended chain regular expressions and how they are
denoted. We denote by a and ai arbitrary symbols in ∆ and by w, wi non-empty words
in ∆+.

Factor Abbr.
a a
a∗ a∗

a+ a+

a? a?
w∗ w∗

w+ w+

w? w?

Factor Abbr.
(a1 + · · ·+ an) (+a)
(a1 + · · ·+ an)∗ (+a)∗

(a1 + · · ·+ an)+ (+a)+

(a1 + · · ·+ an)? (+a)?
(a∗1 + · · ·+ a∗n) (+a∗)
(a+1 + · · ·+ a+n) (+a+)

Factor Abbr.
(w1 + · · ·+ wn) (+w)
(w1 + · · ·+ wn)∗ (+w)∗

(w1 + · · ·+ wn)+ (+w)+

(w1 + · · ·+ wn)? (+w)?
(w∗1 + · · ·+ w∗n) (+w∗)
(w+

1 + · · ·+ w+
n) (+w+)

Finally, we accept if and only if evalsw(r) contains the pair (x, y).
It is easy to see that, in all cases above, evalsw(s) can be computed in polynomial

time using non-determinism. The only place where non-determinism is needed, is in
the case evalsw(s+). Here, to decide if a pair (u, v) should be in the result, the algorithm
can simply guess a simple path p from u to v, which trivially has polynomial length,
and test whether lab(p) ∈ L(s+).

Correctness of the algorithm is proved similarly as in the proof of Theorem 3.4. The
only extra thing that should be taken into account in the induction hypothesis is the
non-determinism and the simple walk semantics. Formally, the induction hypothesis
states:

There is a run of the algorithm such that, for every subexpression s of r
evalsw(s) = {(u, v) | there is a path from u to v that matches s

under simple walk semantics}

The proof of the induction is rather straightforward and follows the same lines as the
proof of Theorem 3.4.

It follows that EVALUATION under simple walk semantics is also NP-complete for
standard regular expressions.

COROLLARY 3.13. EVALUATION under simple walk semantics is NP-complete for
RE.

3.3.2. Polynomial Time Fragments. Theorem 3.11 restrains the possibilities for finding
polynomial time fragments rather severely. In order to find such fragments and in
order to trace a tractability frontier, we will look at syntactically constrained classes
of regular expressions that have been used to trace the tractability frontier for the
regular expression containment problem [Martens et al. 2004; 2009]. We will also use
these expressions in Section 4.

Definition 3.14 (Chain Regular Expression [Martens et al. 2009]). A base symbol is
a regular expression w, w∗, w+, or w?, where w is a non-empty word; a factor is of the
form e, e∗, e+, or e? where e is a disjunction of base symbols of the same kind. That is, e
is of the form (w1 + · · ·+wn), (w∗1 + · · ·+w∗n), (w+

1 + · · ·+w+
n), or (w1?+ · · ·+wn?), where

n ≥ 0 and w1, . . . , wn are non-empty words. An (extended) chain regular expression
(CHARE) is ∅, ε, or a concatenation of factors.

We use the same shorthand notation for CHAREs as in [Martens et al. 2009]. The
shorthands we use for the different kind of factors are illustrated in Table 3.3.2. For
example, the regular expression ((abc)∗+ b∗)(a+ b)?(ab)+(ac+ b)∗ is an extended chain

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

The Complexity of Regular Expressions and Property Paths in SPARQL A:17

regular expression with factors of the form (+w∗), (+a)?, w+, and (+w)∗, from left
to right. The expression (a + b) + (a∗b∗), however, is not even a CHARE, due to the
nested disjunction. Notice that each kind of factor that is not listed in Table 3.3.2
can be simulated through one of the other ones. For example, a factor of the form
(a+1 + · · · + a+n)? is equivalent to (a∗1 + · · · + a∗n). For a similar reason, no factor of
the form w is listed. Our interest in these expressions is that CHAREs often occur in
practical settings [Bex et al. 2010] and that they are convenient to model classes that
allow only a limited amount of non-determinism, which becomes pivotal in Section 4.
We denote fragments of the class of CHAREs by enumerating the kinds of factors that
are allowed. For example, the above mentioned expression is a CHARE((+w∗), (+a)?,
w+, (+w)∗).

In the next theorem, we will show that it is possible to use the ∗- and +-operators
and have a fragment for which evaluation is in polynomial time. However, below these
operators, one is only allowed to use a disjunction of single symbols.

THEOREM 3.15. EVALUATION for CHARE((+a)∗, (+a)+, (+w), (+w)?) under sim-
ple walk semantics is in P.

PROOF. The theorem immediately follows from the observation that, for every ex-
pression r ∈ CHARE((+a)∗, (+a)+, (+w), (+w)?) it holds that evalsw(r) = eval(r),
where evalsw(r) is the evaluation for r under simple walk semantics as defined in Sec-
tion 3.3 and eval(r) is the evaluation for r under regular path semantics as defined in
Section 3.1. Therefore, r can be evaluated in P by Theorem 3.4.

In Section 2.2 we wrote that our complexity results also hold if we would only al-
low simple paths instead of simple walks in the formalization of ZeroOrMorePath
and OneOrMorePath. The choice between the two makes a minor difference in the
proof of the above theorem, but the result holds for both variants. Indeed, EVALU-
ATION for CHARE((+a)∗, (+a)+, (+w), (+w)?) remains in P, even if we would not al-
low simple cycles to match expressions of the form (+a)∗ or (+a)+. Denote by Id the
identity relation and by eval′(r) the set of pairs that match an expression r under
this semantics. It now suffices to observe that, for every subexpression s of the form
(a1+· · ·+ak)∗ or (a1+· · ·+ak)+, we have eval′(s) = eval(s)−Id, for every subexpression
s of the form (w1 + · · · + wk) or (w1 + · · · + wk)?, we have eval′(s) = eval(s), and that
eval′(s1 · s2) = eval′(s1) ./ eval′(s2).

Notice the (perhaps striking) relationship between Theorem 3.15 and Theorem 1
in [Mendelzon and Wood 1995], which states that testing the existence of a simple
path that matches the expression a∗ba∗ is NP-complete. However, according to The-
orem 3.15, testing the existence of a path that matches the expression a∗ba∗ under
simple walk semantics is in P. The difference, of course, is that under simple walk
semantics, we do not require the entire path to be simple.

When we would search for more polynomial-time cases, we see that the range of
possible fragments between the expressions in CHARE((+a)∗, (+a)+, (+w), (+w)?) and
the expressions in Theorem 3.11 is quite limited. For example, a limitation of The-
orem 3.15 is that CHAREs do not allow arbitrary nesting of disjunctions. However,
since simple walk semantics and regular path semantics are equal for RE-expressions
that do not use the Kleene star or the +-operator, EVALUATION for those expressions
under simple walk semantics is tractable as well.

OBSERVATION 3.16. EVALUATION under simple walk semantics is in P for star-free
regular expressions, i.e., RE-expressions that do not use the ∗- or +-operators.

We conclude this section by noting that Bagan et al. [Bagan et al. 2013] recently
studied a variation of the simple walk semantics (in which the whole regular expres-

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 K. LOSEMANN and W. MARTENS

sion should be matched against a simple path). They study the data complexity of the
problem and, under the assumption that P 6= NP, they characterize precisely for which
kinds of regular expressions evaluation on graphs can be done efficiently.

4. THE COUNTING PROBLEM
In this section we study the complexity of COUNTING. Our motivation for COUNTING
comes from the W3C SPARQL working draft [Harris and Seaborne 2012] that requires
that, for simple SPARQL queries of the form SELECT ?x, ?y WHERE {?x r ?y} where
r is a property path, the result is a multiset that has n copies of a pair (x, y) ∈ V × V ,
when n is the number of paths between x and y that match r. We informally refer to
this requirement as the path counting requirement.

Path Counting Requirement.
The number of paths from x to y that match r needs to be counted.

First, we investigate COUNTING under regular path semantics and then under sim-
ple walk semantics. Notice that the number of paths that match an expression is al-
ways finite under simple walk semantics. Therefore, to complete the picture for the
comparison between regular path semantics and simple walk semantics, we discuss
the complexity of FINITENESS in Section 5.

4.1. Regular Path Semantics
We show that it is possible to efficiently solve the COUNTING problem for expres-
sions that are unambiguous. Intuitively, an expression is unambiguous when words
can only match the expression in one possible manner. Every regular expression can
be rewritten into an unambiguous one.8 A well-known class of unambiguous regu-
lar expressions is the class of deterministic regular expressions (sometimes also called
one-unambiguous regular expressions [Brüggemann-Klein and Wood 1998]), which are
used to define content models in Document Type Definitions [Bray et al. 2008] or XML
Schema Definitions [Fallside and Walmsley 2004] in the context of XML. So, COUNT-
ING can also be solved efficiently for deterministic regular expressions.

Our formal route goes through automata: We will encode expressions as finite au-
tomata through a slight adaptation of standard methods. For these automata, we will
have natural notions of non-determinism, determinism, and unambiguity. It is pre-
cisely this class of unambiguous finite automata for which we can efficiently solve
COUNTING.

We then turn to intractability results and show that COUNTING becomes intractable
if we allow more non-determinism. We will consider various classes of expressions
that allow only slightly more non-determinism and show that COUNTING becomes #P-
complete for all these classes.

4.1.1. Counting for Unambiguous Patterns. We consider finite automata that read ∆-
words. The automata behave very similarly to standard finite automata (see, e.g.,
[Hopcroft and Ullman 1979]), but they can make use of a wildcard symbol “◦” to deal
with the infinite set of labels. We will therefore define finite automata with a transi-
tion function that is defined over a finite subset Σ of ∆ and over the symbol ◦, which
we assume not to be a member of Σ. More formally, a non-deterministic finite au-
tomaton with wildcard NFAw A over ∆ is a tuple (Q,Σ,∆, δ, q0, Qf), where Q is a fi-
nite set of states, Σ ⊆ ∆ is a finite alphabet, ∆ is the (infinite) set of input symbols,

8For example, by converting the expression to a deterministic finite automaton and converting this automa-
ton back into an expression by the “standard” algorithm in [Hopcroft and Ullman 1979], page 33–34.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

The Complexity of Regular Expressions and Property Paths in SPARQL A:19

δ ⊆ Q× (Σ] {◦})×Q is the transition relation, q0 is the initial state, and Qf is the set
of final states. The size of an NFAw is |Q|, i.e., its number of states.

When the NFAw is in a state q and reads a symbol a ∈ ∆, we may be able to follow
several transitions. The transitions labeled with Σ-symbols can be followed if a ∈ Σ.
The ◦-label in outgoing transitions is used to deal with everything else, i.e., the ◦-
transitions can be followed when reading a /∈ Σ. Notice that the semantics of the •-
symbol in regular expressions is therefore different from ◦ in automata. The reason
for the difference is twofold: first, we want to define a natural notion of determinism
for automata and second, our definition of ◦ makes it easy to represent subexpres-
sions of the form !(a1 + · · · + an) in automata.9 Nevertheless, the expressions from
RE(•) that we defined in Section 2 can still be translated into an equivalent NFAw in
polynomial time. The semantics of NFAws is defined as follows. A run r of an NFAw
A = (Q,Σ,∆, δ, q0, Qf) on a ∆-word w = a1 · · · an is a word q0q1 · · · qn in Q∗ such that,
for every i = 1, . . . , n, if ai ∈ Σ, then (qi−1, ai, qi) ∈ δ and, if ai /∈ Σ, then (qi−1, ◦, qi) ∈ δ.
Notice that, when i = 1, the condition states that we can follow a transition from the
initial state q0 to q1. A run is accepting when qn ∈ Qf . A word w is accepted by A if
there exists an accepting run of A on w. The language L(A) of A is the set of words
accepted by A. A path p matches A if lab(p) ∈ L(A).

We say that an NFAw is deterministic, or a DFAw, when the relation δ is a function
from Q× (Σ] {◦}) to Q. That is, for every q1 ∈ Q and a ∈ Σ] {◦}, there is at most one
q2 such that (q1, a, q2) ∈ δ. An NFAw is unambiguous, or a UFAw, when, for each word
w in L(A), there exists exactly one accepting run of A on w.

In the following, we slightly generalize the definition of s-t graphs and overload their
notation. For an edge-labeled graph G = (V,E), x ∈ V , and Y ⊆ V , the s-t graph of
G w.r.t. x and Y is the quadruple (V,E, x, Y). As before, we refer to x as the source
node and to Y as the (set of) target nodes. Let G = (V,E, x, y) be an s-t graph and
A = (Q,Σ,∆, δ, q0, QF) be an NFAw. We define a product of (V,E, x, y) and A, denoted
by Gx,y×A, similar to the standard product of finite automata. More formally, Gx,y×A
is an s-t graph (VG,A, EG,A, xG,A, YG,A), where all of the following hold.

— The set of nodes VG,A is V ×Q.
— The source node xG,A is (x, q0).
— The set of target nodes YG,A is {(y, qf) | qf ∈ Qf}.
— For each a ∈ ∆, there is an edge

(
(v1, q1), a, (v2, q2)

)
∈ EG,A if and only if there is an

edge (v1, a, v2) in G and either
— a ∈ Σ and there is a transition (q1, a, q2) ∈ δ or
— a /∈ Σ and there is a transition (q1, ◦, q2) ∈ δ in A.

If A is a UFAw, then there is a strong correspondence between paths from x to y
in G and paths from xG,A to YG,A in Gx,y × A. We formalize this correspondence by a
mapping ϕPATHS. Therefore let p = x[a1]v1[a2]v2 · · · vn−1[an]y be a path in G. Then

ϕPATHS(p) = (x, q0)[a1](v1, q1)[a2](v2, q2) · · · (vn−1, qn−1)[an](y, qn),

where q0q1 . . . qn is the unique accepting run of A on the word a1 . . . an. Notice that,
since A is unambiguous, there exists only one accepting run for a1 . . . an and therefore
ϕPATHS is well-defined.

9One could also achieve these goals by defining the semantics of ◦ to be “all symbols for which the current
state has no other outgoing transition”. We thought that the current definition would be clearer since it
defines the semantics of every ◦-transition the same across the whole automaton.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 K. LOSEMANN and W. MARTENS

LEMMA 4.1. If A is a UFAw, then ϕPATHS is a bijection between paths from x to y in
G that match A and paths from xG,A to some node in YG,A in Gx,y × A. Furthermore,
ϕPATHS preserves the length of paths.

PROOF. Observe that the mapping ϕPATHS preserves the length and label of a path
by definition. We show that ϕPATHS is a bijection from

— the set P (G) of paths from x to y in G that match A; to
— the set P (G×A) of paths from xG,A to some node in YG,A in Gx,y ×A

by proving that ϕPATHS is surjective and injective. To this end, let A = (Q,Σ,∆, δ, q0, Qf)
be a UFAw.

First, we show that ϕPATHS is surjective. Let p = (x, q0)[a1](v1, q1)[a2](v2, q2) · · ·
(vn−1, qn−1)[an](y, qn) be an arbitrary path in P (Gx,y ×A) with (y, qn) ∈ YG,A. We prove
that p = ϕPATHS(pG), where pG = x[a1]v1[a2]v2 · · · vn−1[an]y. By definition of Gx,y×A, we
have that there is an edge ((vi, qi), a, (vj , qj)) if and only if there is a transition in δ that
takes qi to qj by reading a. As such, the existence of p in Gx,y ×A implies that there is
an accepting run q0 · · · qn of A on the word a1 · · · an. By the unambiguity of A, the run
q0 · · · qn is unique. Therefore, by definition of ϕPATHS, we have that

ϕPATHS(pG) = ϕPATHS(x[a1]v1[a2]v2 · · · vn−1[an]y)

= (x, q0)[a1](v1, q1)[a2](v2, q2) · · · (vn−1, qn−1)[an](y, qn) = p

We now show that ϕPATHS is injective. Let p = x[a1]v1 · · · vn−1[an]y and p′ =
x[a′1]v′1 · · · v′n−1[a′n]y be two paths in P (G) such that ϕPATHS(p) = ϕPATHS(p′). We prove
that p = p′. Let ϕPATHS(p) = (x, q0)[a1](v1, q1)[a2](v2, q2) · · · (vn−1, qn−1)[an](y, qn). Since
ϕPATHS preserves the labels on edges and the nodes in V , it follows that p = x[a1]v1
[a2]v2 · · · vn−1[an]y = p′.

We recall the following graph-theoretical result that states that the number of arbi-
trary paths between two nodes in a graph can be counted efficiently (see, e.g., [Berge
1973], page 74):

THEOREM 4.2. Let G be a graph, let x and y be two nodes of G, and let max be a
number given in binary. Then, the number of paths from x to y of length at most max
can be computed in time polynomial in G and the number of bits of max .

The reason why the number of paths can be counted so efficiently is due to fast squar-
ing, of which we summarized a variant in the proof of Lemma 3.2. With fast squaring
we can compute, for a square matrix M , the matrix Mk by performing O(log k) matrix
multiplications. Furthermore, if M is the connectivity matrix of G = (V,E) in which
M [u, v] = 1 if (u, v) ∈ E and M [u, v] = 0 otherwise, then Mk[x, y] is the number of paths
from x to y of length at most k.

THEOREM 4.3. COUNTING for UFAws is in polynomial time, even if the number
max in the input is given in binary.

PROOF. We reduce COUNTING for UFAws to the problem of counting the number
of paths in a graph, which is in polynomial time even when max is in binary, due to
Theorem 4.2.

Let G = (V,E, x, y) be a graph and A = (Q,Σ,∆, δ, q0, Qf) be a UFAw. The algorithm
works as follows:

— Let Gx,y ×A be the product of (V,E, x, y) and A.
— Return

∑
qf∈Qf

PATHS
(
(x, q0), (y, qf)

)
in Gx,y ×A.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

The Complexity of Regular Expressions and Property Paths in SPARQL A:21

0

1

2

3

4

5

6

a

b

c

d

e

f

g

h

Fig. 3. An edge-labeled graph (V,E, 0, 6).

q0start
q1

q2

q3

a

Σ− {a} h

Σ

Σ

Fig. 4. A UFAw A for the regular expression (aΣ∗ + Σ+h), where Σ is an abbreviation for the expression
(a + b + c + d + e + f + g + h).

0, q0

1, q2

2, q1

3, q2

3, q1

4, q2

5, q2

4, q1

6, q2

6, q2

6, q1

5, q1 6, q3

a

b

c

d

e

f

f

e

g

h

h

g

Fig. 5. Fragment of the product G0,6×A of (V,E, 0, 6) from Figure 3 and UFAw A from Figure 4. The nodes
in YG,A are in double circles.

Here, PATHS
(
(x, q0), (y, qf)

)
denotes the number of paths of length at most max in

Gx,y × A from node (x, q0) to (y, qf). By Lemma 4.1, this algorithm is correct. Indeed,
the lemma shows that the number of paths of length at most max in G between x and
y and that are matched by A equals the number of paths of length at most max from
(x, q0) to some node in {y} ×Qf in Gx,y ×A.

Since the class of DFAws is a strict subset of the UFAws, the following corollary is
immediate.

COROLLARY 4.4. COUNTING for DFAws is in polynomial time, even if the number
max in the input is given in binary.

We illustrate the algorithm of Theorem 4.3 on an example. Consider the UFAw A
in Figure 4. The product of A and the s-t graph (V,E, 0, 6) from Figure 3 is depicted
in Figure 5. We see that the number of paths in G from node 0 to 6 that match A is
precisely the number of paths from the source node to a target node in the product.

From Automata to Expressions. From the automata classes in Theorem 4.3 and
Corollary 4.4 we can now infer classes of SPARQL regular expressions for which
COUNTING can be solved in polynomial time. In general, one can say that COUNT-
ING can be solved in polynomial time for each class of SPARQL regular expressions
that can be converted in polynomial time into UFAws.

We will present a concrete such class of SPARQL regular expressions by revisiting
the Glushkov-automaton of a regular expression (see also [Book et al. 1971; Glushkov
1961]). Let r be a SPARQL regular expression in RE(!, •) and let Σr be the set of ∆-

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 K. LOSEMANN and W. MARTENS

symbols occurring in r. By num(r) we denote the numbered regular expression obtained
from r by replacing each subexpression of the form !(a1 + · · ·+ an), •, or a ∈ Σr (that is
not in the scope of an !-operator) with a unique number, increasing from left to right.
For example, for r = a !(a) • (a + bc)∗• !(a + b) we have num(r) = 1 2 3 (4 + 5 6)∗7 8.
Formally, num(r) can be obtained by traversing the parse tree of r depth-first left-to-
right and replacing each atomic expression by a unique number. By denumr we denote
the mapping that maps each number i to the subexpression it replaced in r. In the
above example, denumr(1) = a, denumr(2) =!(a), denumr(3) = •, and so on.

Fix an expression r and its numbered expression rm. Notice that rm can be seen as a
regular expression over a finite alphabet Σ′ ⊆ N where |Σ′| is the number of leaves in
the parse tree of r. Let first(rm) be the set of all symbols i ∈ Σ′ such that L(rm) contains
a word iz, where z ∈ (Σ′)∗. Furthermore, for i ∈ Σ′, let follow(rm, i) be the set of symbols
j ∈ Σ′ such that there exist Σ′-words v, w with vijw ∈ L(rm), and let last(rm) be the set
of symbols i ∈ Σ′ such that there exists a word vi in L(rm). The Glushkov-automaton
Gr of r is the tuple (Qr,Σr,∆, δr, q0, Qf) where Qr = {q0}] Σ′ is its finite set of states.
That is, Qr contains an initial state and one state for each Σ′-symbol i in the numbered
expression rm. If ε ∈ L(r), then the set of accepting states is Qf = last(rm)] {q0};
otherwise, Qf = last(rm). For each a ∈ Σr and i ∈ Qr, the transition function δr is
defined as follows: (1) δr(q0, a) = {i ∈ first(rm) | denum(i) = a, denum(i) = •, or
denum(i) = !(a1 + · · · + a`) with a /∈ {a1, . . . , a`}} and (2) δr(i, a) = {j ∈ follow(rm, i) |
denum(j) = a, denum(j) = •, or denum(j) = !(a1 + · · · + a`) with a /∈ {a1, . . . , a`}}.
Furthermore, (3) δr(q0, ◦) = {i ∈ first(rm) | denum(i) = • or denum(i) = !(a1 + · · ·+ a`)
for some a1, . . . , a`}, and (4) δr(i, ◦) = {j ∈ follow(rm, i) | denum(j) = • or denum(j) =
!(a1 + · · · + a`) for some a1, . . . , a`}. The following proposition can be proved similarly
as the corresponding one for Glushkov automata for ordinary regular expressions.

PROPOSITION 4.5. For each SPARQL regular expression r in RE(!, •), the Glushkov-
automaton of r can be constructed in polynomial time. Furthermore, L(r) = L(Gr).

We say that a regular expression r ∈ RE(!, •) is deterministic, or a Det-RE, if Gr is a
DFAw. It is unambiguous, if Gr is a UFAw.

COROLLARY 4.6. COUNTING for unambiguous (or deterministic) regular expres-
sions under regular path semantics is in polynomial time, even if the number max in
the input is given in binary.

4.1.2. Counting for Ambiguous Patterns. In this section, we investigate the complexity
of COUNTING for more general patterns than in the previous section and prove that
COUNTING already becomes intractable for very slight extensions. We start by observ-
ing that COUNTING is in #P for standard regular expressions.

THEOREM 4.7. COUNTING is in #P for all REs.

PROOF. Let G = (V,E, x, y) be a graph, r be an RE, and max ∈ N be a number given
in unary notation. The non-deterministic Turing machine for the #P procedure simply
guesses a path of length at most max and tests whether it matches L(r).

We now prove that COUNTING becomes #P-hard for a wide array of restricted REs
that allow for a very limited amount of non-determinism. We consider the chain reg-
ular expressions introduced in Section 3.3.2. For example, the class of CHARE(a,a?)
seems, at first sight, to be very limited. However, such expressions cannot be trans-
lated to polynomial-size UFAws in general. We show that COUNTING is #P-complete
for all classes of CHAREs that allow a single label (i.e., “a”) as a factor and cannot be
trivially converted to polynomial-size DFAws or UFAws.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

The Complexity of Regular Expressions and Property Paths in SPARQL A:23

. .
x xA yA y

a a # # a a # # ab

ba

$ $ ab

ba

a a # # a a

B B

(k times B)
A B B

(k times B)

Fig. 6. The graph G from the proof of Theorem 4.8.

THEOREM 4.8. COUNTING is #P-complete for all of the following classes:
(1) CHARE(a, a∗), (2) CHARE(a, a?), (3) CHARE(a,w+), (4) CHARE(a, (+a+)), (5)
CHARE(a, (+a)+), and (6) CHARE((+a), a+). Moreover, #P -hardness already holds if
the graph G is acyclic.

PROOF SKETCH. The upper bound for all cases is immediate from Theorem 4.7.
The lower bounds can be proved by reductions from #DNF. We show the reduction
for case (1) and refer to the Appendix for a more general proof that deals with all
cases and shows that the reduction is correct. Our technique is inspired by a proof in
[Martens et al. 2009], where it is shown that language inclusion for various classes of
CHAREs is coNP-hard. Let Φ = C1∨· · ·∨Ck be a propositional formula in 3DNF using
variables {x1, . . . , xn}. We encode truth assignments for Φ by paths in the graph. In
particular, we construct a graph (V,E, x, y), an expression r, and a number max such
that each path of length at most max in G from x to y that matches r corresponds to a
unique satisfying truth assignment for Φ and vice versa. Formally, we will have that
the number of paths of length at most max in G from x to y that match r is equal to
the number of truth assignments that satisfy Φ.

The graph G has the structure as depicted in Figure 6, where (i) B is a path labeled
#aa · · · $a# (with n copies of a) and (ii) A is a subgraph as depicted in Figure 6,
with n copies of the gadget labeled ab/ba. Notice that all paths from x to y will enter A
through the node xA and leave A through yA. Notice that G is acyclic.

Each path from xA to yA in A corresponds to exactly one truth assignment for the
variables {x1, . . . , xn}: if the path chooses the i-th subpath labeled ab, this means that
xi is “true”. If it chooses ba, it means that xi is “false”. This concludes the description
of the graph.

The expression r has the form

r = (#∗a∗$∗ · · · $∗a∗#∗)kF (C1) · · ·F (Ck)(#∗a∗$∗ · · · $∗a∗#∗)k,

where, for each i = 1, . . . , k, we define F (Ci) as #e1$ · · · $en# with, for each j = 1, . . . , n,

ej :=

b∗a∗, if xj occurs negated in Ci,
a∗b∗, if xj occurs positively in Ci, and
a∗b∗a∗, otherwise.

This concludes the reduction for case (1).

We conclude this section by stating the general #P upper bound on the counting
problem.

THEOREM 4.9. COUNTING for RE(#, !,¬, •) is #P-complete.

PROOF. The lower bound follows from Theorem 4.8. Since MEMBERSHIP for
RE(#, !,¬, •) is in polynomial time by Theorem 3.7 and since the number max is given
in unary, the upper bound follows analogously to the proof of Theorem 4.7.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24 K. LOSEMANN and W. MARTENS

4.2. Simple Walk Semantics
We investigate how the complexity of COUNTING changes when we apply simple walk
semantics. The picture is even more drastic than in Section 3.3. COUNTING already
turns #P-complete as soon as the Kleene star or plus are used. We start by mentioning
a polynomial-time result.

THEOREM 4.10. COUNTING under simple walk semantics for CHARE(a, (+a)) is in
P.

This result trivially holds since, for this fragment, simple walk semantics is the same
as regular path semantics and expressions from this fragment can be translated into
DFAws in polynomial time.

THEOREM 4.11. COUNTING under simple walk semantics is #P-complete for the
expressions a∗ and a+.

PROOF. This is a straightforward reduction from the problem of counting the num-
ber of simple s-t paths in a graph, which was shown to be #P-complete by Valiant
[Valiant 1979]. Since we can assume that the source node and target node are differ-
ent, the hardness result holds for simple walks as well.

Given an s-t graph G = (V,E, x, y) so that x 6= y and a number max in unary, we
construct an edge-labeled s-t graph G′ = (V,E′, x, y) by labeling each edge with a. The
number of simple walks from x to y in G of length at most max is equal to the number
of paths from x to y in G′ of length at most max that match the regular expression a∗.
The reduction for the expression a+ is similar.

Theorem 4.11 immediately implies that COUNTING under simple walk semantics is
#P-complete for CHARE(a, a∗), CHARE(a, w+), CHARE(a, (+a+)), CHARE(a, (+a)+),
and CHARE(a+, (+a)) as well. The result for CHARE(a,a?) is not immediate from The-
orem 4.11, but it is immediate from the observation that the reduction for regular path
semantics applies here as well.

THEOREM 4.12. COUNTING under simple walk semantics for CHARE(a, a?) is #P-
complete.

Finally, we mention that COUNTING is in #P for the full fragment of SPARQL regular
expressions, i.e., expressions in RE(#, !, •).

THEOREM 4.13. COUNTING under simple walk semantics for RE(#, !, •) is #P-
complete.

PROOF. The #P algorithm guesses a path from x to y in the graph of length at most
max and then tests whether it matches the expression under simple walk semantics.
Since the number max is given in unary, the algorithm can guess the entire path. (We
need to guess the nodes, as well as the labels.) We then run the dynamic programming
algorithm on words (i.e., the one from Theorem 3.7) on the path, but we remove all
pairs in all relations that do not correspond to a match under simple walk semantics.
In particular, all pairs (x, y) in a relation eval(s∗) such that the subpath from x to y
is not a simple walk, are removed from the relation. (Notice that, since we already
guessed the path, there is a unique subpath from x to y on this path.) Otherwise,
the algorithm is unchanged. Since the only nondeterminism in the algorithm comes
from guessing the path, the number of accepting computations of the #P algorithm
corresponds to the number of paths of length at most max matching the expression.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

The Complexity of Regular Expressions and Property Paths in SPARQL A:25

5. THE FINITENESS PROBLEM
Under simple walk semantics, there can never be an infinite number of paths that
match a certain regular expression. Under regular path semantics, however, this can
be the case. So, in order to be able to make a fair comparison of the complexity of
counting paths for regular path semantics versus simple walk semantics, we also need
to consider the FINITENESS problem. In this section, we only consider regular path
semantics.

Using the product construction (Section 4.1.1), we can test in polynomial time
whether there is a path from x to y that is labelled uvw, such that v labels a loop
and such that uvkw matches r for every k ∈ N. If there is such a loop, then we return
that there are infinitely many paths.

OBSERVATION 5.1. FINITENESS is in P for RE. More precisely, it can be decided in
time O(|r| · |G|).
By adapting the polynomial time algorithm of Section 3.1 to also annotate the length of
the longest paths associated to a pair in each relation, we can even decide FINITENESS
for RE(#, !, •) in P.

THEOREM 5.2. FINITENESS for RE(#, !, •) is in P.

PROOF. The underlying idea of the proof is a pumping argument: the number of
paths from x to y that match r is infinite if and only if there is a very long path from x
to y that matches r. Furthermore, it suffices to consider paths of exponential length in
|r|. This can be seen as follows: if we translate the RE(#, !, •) expression r to an RE(!, •)
expression r0 (by unfolding the counters, i.e., replace subexpressions of the form sk,k

with k concatenation of s), then the size of r0 is exponential in the size of r. Let A be an
NFAw for L(r). Again, A can be constructed in time exponential in the size of r. If we
consider the product Gx,y × A = (VG,A, EG,A, xG,A, YG,A) defined in Section 4.1.1, then
there are infinitely many paths from x to y in G that match r if and only if there are
infinitely many paths from xG,A to some node in YG,A. The latter holds if and only if
there exists a path from xG,A to some node in YG,A of length at least |G| · |A| + 1, due
to a pumping argument. Since the size |A| is exponential in |r|, we therefore only need
to consider lengths of paths that are exponential in |r|.

The main idea is to remember the lengths of paths in the algorithm of Section 3.1
for EVALUATION for RE(#, !, •) while trying to find paths that are as long as possible.
Once a path becomes longer than M := |G| · |A|+ 1, we simply remember that the path
is long enough.

The algorithm works as follows. Let r be an RE(#, !, •)-expression and let G = (V,E)
be a graph. We compute, for all subexpressions s of r the ternary relation

evalc(s) ⊆ V × V × {0, . . . , |G| · |A|+ 1}
such that, intuitively, if (u, v, i) ∈ evalc(s), it means that we have found a path from u
to v that matches s and has length at least i. More formally, all of the following hold:

— for each (u, v) ∈ V × V , there is at most one triple of the form (u, v, i) ∈ evalc(s);
— for each (u, v, i) ∈ evalc(s) with i ∈ {0, . . . , |G| · |A|}, there exists a path from u to v of

length i in G that matches s;
— if there is a path from u to v in G that matches s, there exists a triple (u, v, i) ∈

evalc(s); and
— there is a path from u to v in G of length at least |G| · |A| + 1 that matches s if and

only if (u, v, |G| · |A|+ 1) ∈ evalc(s).

We now discuss how evalc(s) can be defined inductively on the structure of RE(#, !, •)
expressions:

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:26 K. LOSEMANN and W. MARTENS

— evalc(∅) := ∅;
— evalc(ε) := {(u, u, 0) | u ∈ V };
— evalc(•) := {(u, v, 1) | ∃a ∈ ∆ s.t. (u, a, v) ∈ E};
— for every a ∈ ∆, we define evalc(a) := {(u, v, 1) | (u, a, v) ∈ E};
— evalc(!(a1 + · · ·+ an)) := {(u, v, 1) | ∃a ∈ ∆− {a1, . . . , an} s.t. (u, a, v) ∈ E};
— evalc(s1 + s2) is the set of all (u, v, i) such that

— (u, v, k) ∈ evalc(s1) and (u, v, `) ∈ evalc(s2) and i = min(max(k, `), |G| · |N |+ 1), or
— (u, v, i) ∈ evalc(s1) and there is no j such that (u, v, j) ∈ evalc(s2), or
— (u, v, i) ∈ evalc(s2) and there is no j such that (u, v, j) ∈ evalc(s1);

— evalc(s1 · s2) is the set of all triples (u, v, i) such that there is a node z such that
(u, z, k) ∈ evalc(s1), (z, v, `) ∈ evalc(s2), and i = min(k + `, |G| · |N |+ 1);

— evalc(s?) := evalc(s+ ε);
— evalc(s

∗) := evalc((s+ ε)|G|·|N |+1);
— evalc(s

+) := evalc(s · s∗);
— for k ∈ N, evalc(s

k) is inductively defined as
— If k = 1, then evalc(s

k) = evalc(s).
— Otherwise, if k is even, then evalc(s

k) := evalc(s
k/2 · sk/2).

— Otherwise, if k is odd, then evalc(s
k) := evalc(s · sk/2 · sk/2).

— evalc(s
k,∞) := evalc(s

k · s∗); and
— if ` 6=∞, then evalc(s

k,`) := evalc(s
k · (s?)`−k).

Computing evalc(r) in polynomial time can be done by following the above inductive
definition and storing all intermediate results for avoiding recomputations. Finally, if
the input for GRAPHEVAL is G, nodes x and y, and RE(#, !, •)-expression r, we return
the answer “true” if and only if evalc(r) contains the triple (x, y, |G| · |N |+ 1).

The proof of correctness is a straightforward induction that follows the same lines
as the proof of Theorem 3.4.

Similar to EVALUATION, the complexity of FINITENESS becomes non-elementary
once unrestricted negation is allowed in regular expressions. Analogously to EVALUA-
TION we show that FINITENESS is at least as hard as satisfiability of a given regular
expression.

LEMMA 5.3. Let C be a class of regular expressions r over a finite alphabet Σ such
that testing whether ε ∈ L(r) is in polynomial time. Then there exists a polynomial
reduction from the emptiness problem for C-expressions to the FINITENESS problem
with C-expressions.

PROOF. Let r be a C-expression over Σ. We construct a graph (V,E, x, y) and a C-
expression s such that L(r) = ∅ if and only if FINITENESS is “true” for s and (V,E, x, y).

First we test whether ε ∈ L(r) or not. Notice that we can test this for the expression
r in polynomial time. If ε ∈ L(r), then we know that L(r) 6= ∅. Therefore we return
the expression a∗ and the graph G = (V,E, x, x) with V = {x} and E = {(x, a, x)}. If
ε /∈ L(r), then we return the expression r∗ and the graph G = (V,E, x, x) with V = {x}
and E = {(x, a, x) | a ∈ Σ}. This concludes the reduction.

We now prove that the reduction is correct. In the case where ε ∈ L(r), we have that
L(r) 6= ∅ and we constructed an instance for which FINITENESS is always “false”, so
the reduction is correct.

In the case where ε /∈ L(r) we know that either L(r) = ∅ or L(r) contains at least
one word w with |w| > 0. If L(r) = ∅, then L(r∗) = {ε} and there exists only one path
with length 0 in G that matches r∗, i.e., FINITENESS returns “true”. If L(r) 6= ∅, then
it follows that wi ∈ L(r∗) for all i ≥ 1. Thus, for every i ≥ 1, there is a path pi with
lab(pi) = wi in G. Since all paths pi and pj are different when i 6= j, this means that

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

The Complexity of Regular Expressions and Property Paths in SPARQL A:27

JεKG = {(u, u) | u ∈ V }
J•KG = {(u, v) | (u, a, v) ∈ E for some a ∈ ∆}
JaKG = {(u, v) | (u, a, v) ∈ E}

Ja−KG = {(u, v) | (v, a, u) ∈ E}
J!(a1 + · · ·+ an)KG = {(u, v) | ∃a ∈ ∆− {a1, . . . , an} with (u, a, v) ∈ E}

Jr + sKG = JrKG ∪ JsKG
Jr · sKG = JrKG ./ JsKG
Jrk,`KG = (JrKG)k ./ (Jr + εKG)`

J〈r〉KG = {(u, u) | ∃z : (u, z) ∈ JrKG}
Fig. 7. Regular paths semantics of NREs with respect to a graph G = (V,E).

there exist infinitely many paths p in G that match r∗, i.e. FINITENESS returns “false”.
Therefore, FINITENESS returns “true” if and only if L(r) = ∅.

For r ∈ RE(¬), one can test whether ε ∈ L(r) in linear time traversing the syntax
tree of r. Therefore, by [Stockmeyer 1974] and Lemma 5.3 we have the following.

THEOREM 5.4. FINITENESS is decidable but non-elementary for RE(¬).

6. NESTED REGULAR EXPRESSIONS
Until now, we have only considered decision problems for single regular expressions
in this article. In this section we want to show that our complexity upper bound for
EVALUATION also holds for more complex queries. We will consider a variant of nested
regular expressions (NREs), which we equip with the numerical occurrence operators,
wildcard, and negated label test of Section 2. Nested regular expressions were studied
by Pérez et al. who showed that their evaluation problem is in linear time [Pérez et al.
2010]. This shows that NREs are an interesting class of queries because the complexity
of evaluating them is essentially not worse than for ordinary regular expressions. In
this section we see that the same holds when we build NREs from SPARQL regular
expressions.

We now formally define a variant of nested regular expressions which is equipped
with the operators from the SPARQL recommendation [Harris and Seaborne 2012].
The syntax of SPARQL nested regular expressions (or SPARQL NREs) r, s is defined as
follows:

r, s := ε | • | a | a− | !(a1 + · · ·+ an) | r + s | r · s | rk,` | 〈r〉,

where a, a1, . . . , an ∈ ∆, k ∈ N, and ` ∈ {k, k + 1, . . . ,∞}.
The regular path semantics of SPARQL NREs is defined in Figure 7. We note that we

have added one more operator to SPARQL regular expressions which is a− for a ∈ ∆.
This expression allows to navigate through an a-edge in the reverse direction and is
also inspired by a corresponding operator in [Harris and Seaborne 2012]. SPARQL
NREs strictly generalize SPARQL regular expressions by extending them with the
nesting operator 〈·〉. As such, all the lower bounds from this article immediately trans-
fer to SPARQL NREs. Therefore, we will only consider upper bounds in this section.
Furthermore, we only define the regular path semantics for SPARQL NREs since most
of our results on simple walk semantics are lower bounds.

We illustrate the semantics of SPARQL NREs by means of an example for the EVAL-
UATION problem.

Example 6.1. Consider the SPARQL NRE r = a〈(b2,2)∗c〉d and the graph G from
Figure 8. For r and a tuple (x, y) of nodes in G, it holds that, (x, y) ∈ EVALUATION if
and only if there exists a path from x to y over some node z labeled with ad and there

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:28 K. LOSEMANN and W. MARTENS

1 2 3 4
a b, d

b

b, c

Fig. 8. An edge-labeled graph G

exists a path from z to some node inGwhich is labeled with a word in L((b2,2)∗c). Notice
that none of these nodes has to be distinct to another under regular path semantics.
For example, for the graph from Figure 8, it holds that EVALUATION is true for (1, 3),
since there is a path from 1 to 3 labeled with ad and a path from 2 to 4 labeled with
bbbbc ∈ L((b2,2)∗c). (The path from 2 to 4 is not a simple walk.)

In the following we generalize the upper bound of Theorem 3.4 to SPARQL NREs.

THEOREM 6.2. EVALUATION for SPARQL NREs under regular path semantics is
in time O(|r| · |V |3), where |r| is the size of the NRE and |V | is the number of nodes in
the graph.

PROOF. We prove that we can extend the dynamic programming algorithm from
Section 3.1 to decide EVALUATION for NREs in polynomial time. That is, given a graph
G = (V,E, x, y) and an NRE r, it decides in polynomial time whether (x, y) is selected
by r, that is, whether (x, y) ∈ JrKG.

We extend our previous algorithm that computes the relation eval(s) = JsKG with
two cases:

— for every a ∈ ∆, eval(a−) := {(v, u) | (u, a, v) ∈ E}; and
— eval(〈s〉) := {(u, u) | ∃z : (u, z) ∈ eval(s)}.
Clearly, these additional cases can be added to the algorithm without changing the
worst-case time complexity (both steps can be computed in linear time).

We argue correctness similar to the proof of Theorem 3.4. We claim that the following
invariants hold:

For each subexpression s 6= 〈s1〉 of r, we have
(u, v) ∈ eval(s)⇔ ∃ path p in G from u to v sucht that lab(p) ∈ L(s). (I)

and

For each subexpression s = 〈s1〉 of r, we have
(u, v) ∈ eval(s)⇔ (u = v)

∧ (∃ node z, path p from u to z in G such that lab(p) ∈ L(s1)). (I’)

If (I) and (I’) are correct, then EVALUATION for (V,E, x, y) and r is true if and only if
(x, y) ∈ eval(r). The proof of invariant (I) is analogous to the proofs of the cases in
Theorem 3.4 and the proof of (I’) is immediate from the definition of eval(〈s〉).

Thus, the complexity of the EVALUATION problem does not suffer from considering
NREs instead of ordinary regular expressions. In [Libkin et al. 2013] it is shown that
this can even be extended to variants of SPARQL NREs that use more powerful nega-
tion.

7. DISCUSSION
An overview of our results is presented in Table I. CHAREs are defined in Section 3.3.2.
By star-free RE, we denote regular expressions that only use “+” (disjunction) and “·”

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

The Complexity of Regular Expressions and Property Paths in SPARQL A:29

Table I. An overview of most of our combined complexity results.

Problem Fragment Regular path Simple walk
semantics semantics

EVALUATION CHARE((+a)∗,(+a)+, in P in P (3.15)
(+w),(+w)?)

star-free RE in P in P (3.16)
(aa)∗ in P NP [LP84, MW95]
RE, RE(#, !, •) in P (3.4) NP (3.12)
RE(¬) non-elem. (3.9,3.10) —
RE(#, !,¬, •) non-elem. (3.9,3.10) —

COUNTING DFAw, UFAw in FP (4.3,4.4) —
CHARE(a, (+a)) in FP in FP (4.10)
a+, a∗ in FP #P (4.11, [V79])
Det-RE in FP #P
CHARE(a, a?) #P (4.7,4.8) #P(4.12)
CHARE(a, a∗), #P (4.7,4.8) #P

CHARE(a, (+a+)),
CHARE(a, (+a)+),
CHARE(a,w+),
CHARE((+a), a+),
RE

RE(#, !, •) #P (4.9) #P (4.13)
RE(#, !,¬, •) #P (4.9) —

FINITENESS RE, RE(#, !, •) in P (5.1,5.2) —
RE(¬), RE(#, !,¬, •) non-elem. (5.4) —

Note: The results printed in bold are new, to the best of our knowledge. All complexities
are completeness results, unless stated otherwise. The entries marked by “—” signify that
the question is either trivial or not defined. We annotated new results with the relevant
theorem numbers. If no such number is provided, it means that the result directly follows
from other entries in the table.

Table II. Summary of our results when interpreted under data complexity.

Problem Fragment Regular path simple walk
semantics semantics

EVALUATION CHARE((+a)∗,(+a)+, in P in P
(+w),(+w)?)

star-free RE in P in P
(aa)∗ in P NP [LP84, MW95]
RE, RE(#, !,¬, •) in P NP

COUNTING DFAw, UFAw, NFAw in FP —
CHARE(a, (+a)), in FP in FP

CHARE(a, a?)
a+, a∗ in FP #P [V79]
RE, RE(#, !,¬, •) in FP #P

FINITENESS RE, RE(#, !,¬, •) in P —

(concatenation). The SPARQL-negation operator “!” is defined in Section 3.3. Det-RE
stands for the class of deterministic SPARQL expressions that we defined in Section 4.

The table presents complexity results under combined query evaluation complexity.
However, for simple walk semantics, all the NP-hardness or #P-hardness results hold
under data complexity as well (see Table II), except for the result on CHARE(a, a?).
Indeed, if the CHARE(a, a?) expression is fixed, we can translate it to a DFAw and per-
form the algorithm for COUNTING under regular path semantics. (For this fragment,
simple walk semantics equals regular path semantics.) For regular path semantics,
all #P-hardness results become tractable under data complexity: when the query is
fixed, we can always translate it to a DFAw and perform the algorithm for DFAws.
When considering data complexity, the difference between regular path semantics and
simple walk semantics is therefore rather severe.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:30 K. LOSEMANN and W. MARTENS

Influence in SPARQL 1.1. The NP-complete and #P-complete data complexities
make the semantics of W3C property paths in [Harris and Seaborne 2012] highly prob-
lematic from a computational complexity perspective, especially on a Web scale. There
are two orthogonal requirements that render the evaluation of simple queries of the
form SELECT ?x, ?y WHERE {?x r ?y} computationally difficult:

Simple Walk Requirement.
Subexpressions of the form r∗ and r+ should be matched to simple walks.
Path Counting Requirement.
The number of paths from x to y that match r need to be counted.

Two studies [Arenas et al. 2012; Losemann and Martens 2012] propose that the W3C
should use a semantics for property paths without the simple walk requirement or
path counting requirement. These proposals were seriously taken into consideration
by the W3C, who made the following changes to the definition of property paths:

(1) The ambiguity between the definitions of ZeroOrMorePath/OneOrMorePath in Sec-
tions 18.4 and 18.5 in [Harris and Seaborne 2012] has been removed and the simple
walk requirement has been dropped.

(2) The path counting requirement has been dropped for subexpressions of the form r∗

and r+.
(3) Subexpressions of the form rk,` with k, ` ∈ N are no longer part of the property path

syntax.

We feel that change (1) is very welcome. Change (2) will undeniably make the eval-
uation of SPARQL property paths more efficient. However, we feel that, even after
this change, the semantics of property paths may be rather counter-intuitive, since the
change does not completely remove multiset semantics for property paths. Instead,
change (2) means that, for a given regular expression r, its subexpressions of the form
s∗ and s+ are evaluated under set semantics and the others under multiset semantics.
As such, it may become difficult to understand the number of occurrences of tuples
in the output of a query. For example, the combination of set semantics and multiset
semantics has as a result that a+ is not equivalent to aa∗, since the former always
returns tuples with multiplicity one (set semantics) and the latter can return tuples
with higher multiplicity due to the partial multiset semantics.

On the other hand, if one would use a set semantics for property paths (and, as such,
completely remove the path counting requirement), then the evaluation of property
paths becomes rather efficient from a theoretical perspective. Indeed, Theorem 3.4 ex-
hibits a polynomial time upper bound in combined complexity which is further refined
in Corollary 3.6.

If set semantics would be used for property paths, then it could even be imaginable
to extend property paths to something more expressive such as nested regular expres-
sions or XPath dialects. We studied the extension to nested regular expressions (with
wildcards, limited negation, and numerical occurrence indicators) in Section 6 and it
turns out that, under set semantics, these expressions can be evaluated equally effi-
cient as RE(#, !, •), i.e., SPARQL regular expressions. This result can be strengthened
even more by also allowing XPath-like operators, as shown in [Libkin et al. 2013].

Finally, we feel that change (3) is a pity. We showed that property paths with this fea-
ture can in principle be evaluated efficiently (Theorem 3.4, Corollary 3.6), even though
they can be exponentially more succinct than standard regular expressions. This seems
to be a win-win situation and we therefore feel that such expressions should have their
place in SPARQL property paths. Expressions with numerical occurrence indicators

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

The Complexity of Regular Expressions and Property Paths in SPARQL A:31

also seem to have their use: for example, in the regexlib regular expression library,10

more than half of the expressions numerical occurrence indicators.

APPENDIX
A. PROOF FOR THEOREM 4.8.
To prove the theorem, we need the notion of a match.

Definition A.1. A match m between a path p = v0[a1]v1 · · · [an]vn and a regular
expression r is a total mapping from pairs (i, j) of nodes of p (with 0 ≤ i ≤ j ≤ n)
to a non-empty set of subexpression of r. This mapping has to be consistent with the
semantics of regular expressions, that is,

(1) if ε ∈ m(i, j), then i = j;
(2) if a ∈ m(i, j) for a ∈ ∆, then j = i+ 1 and aj = a;
(3) if r1? ∈ m(i, j), then r1 ∈ m(i, j) or i = j;
(4) if (r1 + r2) ∈ m(i, j), then r1 ∈ m(i, j) or r2 ∈ m(i, j);
(5) if r1r2 ∈ m(i, j), then there is a k such that r1 ∈ m(i, k) and r2 ∈ m(k, j);
(6) if r∗1 ∈ m(i, j), then i = j or there exist numbers k1, . . . , kt such that k1 = i, kt = j,

and r1 ∈ m(k`, k`+1) for all ` = 1, . . . , t− 1; and
(7) if r+1 ∈ m(i, j), then there exist numbers k1, . . . , kt such that k1 = i, kt = j, and

r1 ∈ m(k`, k`+1) for all ` = 1, . . . , t− 1.

Furthermore, m has to be minimal with these properties. That is, if m′ fulfills (1)–(7)
and m′(i, j) ⊆ m(i, j) for each i, j, then m′ = m. The minimality requirement on m is for
convenience in proofs and ensures that, in case of r1 + r2, mapping m either matches
onto r1 or on r2, but not both. We say that m matches a subpath vi[ai+1] · · · [aj]vj of p
onto a subexpression r′ of r when r′ ∈ m(i, j). We sometimes also leave the matching
m implicit and simply say that vi[ai+1] · · · [aj]vj matches r′.

THEOREM 4.8: COUNTING is #P-complete for all of the following classes:

(1) CHARE(a, a∗)
(2) CHARE(a, a?)
(3) CHARE(a, w+)
(4) CHARE(a, (+a+))
(5) CHARE(a, (+a)+)
(6) CHARE(a+, (+a))

Moreover, #P -hardness already holds if the graph G is acyclic.

PROOF. The upper bound for all cases is immediate from Theorem 4.7. We prove
the lower bounds by reductions from #DNF. The technique is inspired by a proof in
[Martens et al. 2009], where it is shown that language inclusion for various classes
of CHAREs is coNP-hard. We first perform a meta-reduction for the cases (1)–(3) and
then instantiate it with slightly different subgraphs and expressions to deal with the
different cases. For the cases (4)–(6) we follow a similar approach.

Let Φ = C1∨· · ·∨Ck be a propositional formula in 3DNF using variables {x1, . . . , xn}.
We encode truth assignments for Φ by paths in the graph. In particular, we construct
a graph G = (V,E, x, y), an expression r, and a number max such that each path of
length at most max in G from x to y that matches r corresponds to a unique satisfying
truth assignment for Φ and vice versa. Formally, we will prove that

10RegExLib.com (Regular Expression Library)

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:32 K. LOSEMANN and W. MARTENS

The number of paths of length at most max in G from x to y that match r is
equal to the number of truth assignments that satisfy Φ. (*)

The graph G has the structure as depicted in Figure 6 (and which can be written as
“BkABk”), where

—B is a path labeled #α$α$ · · · $α# (containing n copies of α) and
—A is a subgraph with a dedicated source node xA and target node yA, i.e., all paths

from x to y will enter A through the node xA and leave A through yA.

Here, the subgraph α of B is itself also a path which we will instantiate differently in
each of the cases (1)–(3).

Each path from xA to yA in A corresponds to exactly one truth assignment for the
variables {x1, . . . , xn}. That is, for each truth assignment ψ, there is a path pψ in A
from xA to yA and, for each path p in A from xA to yA, there is a corresponding truth
assignment ψp. More precisely, consider the structure of A as depicted in Figure 6, with
n occurrences of ptrue and pfalse. Here, ptrue and pfalse are paths in A whose labels depend
on the CHARE fragment we are considering. The paths ptrue and pfalse do not use any
of the special labels in {$,#}. A path through A from xA to yA therefore has n choices
of going through ptrue or pfalse. If the i-th choice goes through ptrue, this corresponds to
a truth assignment that sets xi to “true”. Similarly for pfalse.

The expressions r will have the form

r = NF (C1) · · ·F (Ck)N,

such that

— each path labeled lab(B)i, for i = 1, . . . , k, matches N and
— each F (Ci) is a subexpression associated with clause Ci with i ∈ {1, . . . , k}.

Furthermore, the path B can be matched by each F (Ci) and, for each clause Ci and
every path p in A, it will hold that p matches F (Ci) if and only if the truth assignment
ψp associated with p satisfies Ci. We use subexpressions rtrue, rfalse, and rall in the
definition of the F (Ci). These expressions intuitively correspond to a variable occurring
positively, negatively, or not at all in clause Ci. Again, these subexpressions will be
instantiated differently in the different fragments. Formally, for each clause C, we
define F (C) as

#e1$ · · · $en#

where, for each j = 1, . . . , n,

ej :=

rfalse, if xj occurs negated in C,
rtrue, if xj occurs positively in C, and
rall, otherwise.

The subexpression N will be defined differently for each of the fragments.
We prove some properties of the meta-reduction and some assumptions that we will

need to make for the properties to hold. Later, in the proofs of the cases (1)–(3), we will
prove that the assumptions are met. Our assumptions on the paths and expressions
are the following:

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

The Complexity of Regular Expressions and Property Paths in SPARQL A:33

lab(α) ∈ L(rfalse) ∩ L(rtrue) (P1)

lab(ptrue) ∈ L(rtrue)− L(rfalse) (P2)

lab(pfalse) ∈ L(rfalse)− L(rtrue) (P3)

{lab(ptrue), lab(pfalse), lab(α)} ⊆ L(rall) (P4)

Notice that conditions (P2) and (P3) imply that lab(ptrue) 6= lab(pfalse). Due to the
structure of G and since ptrue and pfalse do not use the symbols $ or #, we therefore have
that paths p1 and p2 from x to y are different if and only lab(p1) 6= lab(p2). Furthermore,
since B is a path, the only parts where paths from x to y can differ is in the subgraph
A. Therefore, to simplify notation, we identify a path p from x to y in G with the label
of the subpath p′ of p that goes from xA to yA. Now, we associate a truth assighment to
each such path:

— For a path labeled w = #w1$ · · · $wn# in A, let the truth assignment Vw be defined
as follows:

Vw(xj) :=

{
true, if wj = lab(ptrue),

false, otherwise.

— For a truth assignment V , let wV = #w1$ · · · $wn#, where, for each j = 1, . . . , n,

wj =

{
lab(ptrue) if V (xj) = true,
lab(pfalse) otherwise.

Due to the structure ofG, it is immediate that the encoding between truth assignments
and paths is unique.

CLAIM A.2. Let C be a clause from Φ. If Vw |= C then w ∈ L(F (C)). If wV ∈ L(F (C))
then V |= C.

PROOF OF CLAIM A.2. Let w = #w1$ · · · $wn# be the label of a path from xA to yA
in A such that Vw |= C and let F (C) = #e1$ · · · $en# be as defined above. We show that
w ∈ L(F (C)). To this end, let j ≤ n. There are three cases to consider:

1. If xj does not occur in C then ej = rall. Hence, as wj ∈ {lab(ptrue), lab(pfalse)} and by
condition (P4), we have that wj ∈ L(ej).

2. If xj occurs positively in C, then ej = rtrue. As Vw |= C, we have Vw(xj) = true
and, by definition of Vw, we get wj = lab(ptrue). By condition (P2), we have that
wj ∈ L(rtrue) = L(ej).

3. If xj occurs negatively in C, then ej = rfalse. As Vw |= C, Vw(xj) = false. Thus,
wj = lab(pfalse) by definition of Vw and since wj ∈ {lab(pfalse), lab(ptrue)}. Therefore,
by condition (P3), wj ∈ L(rfalse) = L(ej).

Therefore, for each j = 1, . . . , n, wj ∈ L(ej) and thus w ∈ L(F (C)).
We show the other statement by contraposition. Thereto, let V be a truth assignment

such that it does not make clause C true. We show that wV 6∈ L(F (C)). There are two
cases:

1. Suppose there exists an xj which occurs positively in C and V (xj) is false. By defi-
nition, the ej component of F (C) is rtrue and, by definition of wV , the wj component
of wV is lab(pfalse). By condition (P3), wj 6∈ L(rtrue). Hence, wV 6∈ L(F (C)).

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:34 K. LOSEMANN and W. MARTENS

2. Otherwise, there exists an xj which occurs negatively in C and V (xj) is true. By def-
inition, the ej component of F (C) is rfalse and, by definition of wV , the wj component
of wV is lab(ptrue). By condition (P2), wj 6∈ L(rfalse). Hence, wV 6∈ L(F (C)).

This concludes the proof of Claim A.2.

We now fill in some details to complete the reductions for the cases (1)–(3).
(1) We instantiate the paths and subexpressions as follows:

— lab(α) = a
— lab(ptrue) = ab
— lab(pfalse) = ba
—N is k concatenations of (#∗a∗$∗ · · · $∗a∗#∗)
— rtrue = a∗b∗

— rfalse = b∗a∗

— rall = a∗b∗a∗

Notice that, in this case, r is a CHARE(a, a∗).
(2) The reduction is analogous to the one in case (1), with the differences that

— lab(α) = aa
— lab(ptrue) = aaa
— lab(pfalse) = a
—N is k concatenations of (#?a?a?$? · · · $?a?a?#?)
— rtrue = aaa?
— rfalse = aa?
— rall = aa?a?

Notice that, in this case, r is a CHARE(a, a?).
(3) The reduction is analogous to the one in case (1), with the differences that

— lab(α) = aaaa
— lab(ptrue) = aaa
— lab(pfalse) = aa
—N = (#aaaa$ · · · $aaaa#)+

— rtrue = a+(aa)+

— rfalse = (aa)+

— rall = a+

Notice that, in this case, r is a CHARE(a,w+).
It is straightforward to verify that the conditions (P1)–(P4) are fulfilled for each of

the fragments. Note that the expressions use the fixed alphabet {a, b, $,#}.
Before we prove (*) for fragments (1)–(3), we need to prove some properties that will

be helpful.

CLAIM A.3. Let w be a label of a path from xA to yA in A. Then all of the following
hold:

(a) lab(B)i ∈ L(N) for every i = 1, . . . , k.
(b) lab(B) ∈ L(F (Ci)) for every i = 1, . . . , k.
(c) If p is a path in G from x to y with lab(p) = lab(B)k · w · lab(B)k ∈ L(r), then w

matches some Ci.

PROOF OF CLAIM A.3. Part (a) can be easily checked for all fragments (1)–(3) and
(b) follows immediately from conditions (P1), (P4), and the definition of all expressions
F (C).

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

The Complexity of Regular Expressions and Property Paths in SPARQL A:35

We now prove (c). In the following, we abbreviate F (Ci) by Fi. Let u = lab(B). Sup-
pose that ukwuk ∈ L(r) and is the label of some path from x to y in G. We need to show
that w matches some Fi. Observe that the words u, w, and every word in every L(Fi)
is of the form #y# where y is a non-empty word over the alphabet {a, b, $}. Also, L(N)
only contains words of the form #y1##y2# · · ·#y`#, where y1, . . . , y` are non-empty
words over {a, $} (and, possibly, subsequences thereof). Hence, as ukwuk ∈ L(r) and as
none of the words y, y1, . . . , y` contain the symbol “#”, w either matches some Fi or w
matches a sub-expression of N .

We now distinguish between fragments (1–2) and fragment (3), because we need to
talk about how the word ukwuk matches r. Therefore, we use the notion of a match
(Definition A.1). For a path p0 and regular expression r, we also say that the word
lab(p0) matches r if p0 matches r.

Let m be a match between p and r. Notice that lab(p) = ukwuk.

— In fragments (1–2) we have that ` ≤ k. Towards a contradiction, assume that m
matches a superword of ukw to the left occurrence of N in r. Note that ukw is a word
of the form #y′1##y′2# · · ·#y′k+1#, where y′1, . . . , y

′
k+1 are words over {a, b, $}. But,

since ` ≤ k, no superword of ukw can match N , which is a contradiction. Analogously,
no superword of wuk matches the right occurrence of the expression N in r. So, m
must match w onto some Fi.

— In fragment (3), we have that ` ≥ 1. Again, towards a contradiction, assume that
m matches a superword of ukw onto the left occurrence of the expression N in r.
Observe that every word that matches F1 · · ·FkN is of the form #y′′1##y′′2# · · ·#y′′`′#,
where `′ > k. As uk is not of this form, m cannot match uk onto F1 · · ·FkN , which
is a contradiction. Analogously, m cannot match a superword of wuk onto the right
occurrence of the expression N in r. So, m must match w onto some Fi.

This concludes the proof of Claim A.3.

We are now ready to prove (∗) for fragments (1)–(3).

CLAIM A.4. For each of the fragments (1)–(3), the number of paths of length at most
max in G from x to y that match r is equal to the number of truth assignments that
satisfy Φ.

PROOF. We show that every path of length at most max in G from x to y that
matches r corresponds to exactly one truth assignment that satisfy Φ and vice versa.

Formally, we define a bijection ϕ between paths of length at most max in G from x to
y and truth assignments for Φ. Let p be an arbitrary path from x to y in G. Since max
is the number of nodes in G and every path in G can visit every node at most once (G
is acyclic), every such path p has length at most max . Let lab(p) = lab(B)k ·w · lab(B)k.
We define ϕ(p) := Vw, where Vw is the truth assignment we defined above. Notice that
there are exactly 2n paths from x to y and the same amount of truth assignments for
Φ. From the definition of Vw and the structure if G, it is immediate that ϕ is a bijection.
Notice that ϕ−1 maps each truth assignment V onto the path labeled wV , where wV is
as defined above.

It now follows from Claims A.3 and A.2 that ϕ is a bijection between the paths of
length at most max from x to y that match r and the truth assignments that satisfy Φ
as well.

Thus the reduction used in the proof of Theorem 4.8 is correct for fragments (1)–(3).
For the last three cases we have to slightly modify the reduction. The main differ-

ence of these last fragments with the first ones, is that we will not use a fixed size
alphabet. Instead, we use the symbols bj and cj , for j = 1, . . . , n. Instead of the paths

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:36 K. LOSEMANN and W. MARTENS

. .
x xA yA y

α α α α
ptrue
1

pfalse
1

ptrue
n

pfalse
n

α α α α

B B

(k times B)
A B B

(k times B)

Fig. 9. The graph G from the proof of Theorem 4.8 for the cases (4)–(6).

ptrue and pfalse we will have ptrue
j and pfalse

j and instead of the regular expressions rtrue,
rfalse, and rall, we will now have expressions rtrue

j , rfalse
j , and rall

j , for every j = 1, . . . , n.
We will require that these expressions fulfill the properties (P1)–(P4) for each j, where
ptrue, pfalse, rtrue, rfalse, and rall are replaced by ptrue

j , pfalse
j , rtrue

j , rfalse
j , and rall

j , respec-
tively.

Furthermore, we need different subgraphs A, B and different expressions F (C) for
clauses C:

—A is of the form as described in Figure 9 containing the paths,
ptrue
1 , pfalse

1 , . . . , ptrue
n , pfalse

n ;
—B is a path, consisting of n concatenations of the subpath α; and
— F (C) is defined as

e1 · · · en,
where for each j = 1, . . . , n,

ej :=

rfalse
j , if xj occurs negated in C,
rtrue
j , if xj occurs positively in C, and
rall
j , otherwise.

Furthermore The new structure of graph G is also shown in Figure 9.
(4) For the fourth case the reduction is instantiated by the following expressions.

— lab(α) = a
— lab(ptrue

j) = bj
— lab(pfalse

j) = cj
—N = a+

— rtrue
j = (a+ + b+j)

— rfalse
j = (a+ + c+j)

— rall
j = (a+ + b+j + c+j)

Notice that, in this case, r is a CHARE(a, (+a+)).
(5) The reduction is analogous to the one in case (4), with the differences that

— lab(α) = a
— lab(ptrue

j) = bj
— lab(pfalse

j) = cj
—N = a+

— rtrue
j = (a+ bj)

+

— rfalse
j = (a+ cj)

+

— rall
j = (a+ bj + cj)

+

Notice that, in this case, r is a CHARE(a, (+a)+).

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

The Complexity of Regular Expressions and Property Paths in SPARQL A:37

(6) The reduction is analogous to the one in case (4), with the differences that

— lab(α) = a
— lab(ptrue

j) = bj
— lab(pfalse

j) = cj
—N = a+

— rtrue
j = (a+ bj)

— rfalse
j = (a+ cj)

— rall
j = (a+ bj + cj)

Notice that, in this case, r is a CHARE((+a), a+).
We now prove that the reduction is correct for the fragments (4)–(6). It is straight-

forward to verify that the conditions (P1)–(P4) are fulfilled for each of the fragments.
The association between words and truth assignments is now defined as follows.

— For each path labeled w = w1 · · ·wn in A where, for every j = 1, . . . , n, wj ∈
{ptrue
j , pfalse

j }, let Vw be defined as follows:

Vw(xj) :=

{
true, if wj ∈ L(rtrue

j),

false, otherwise.

— For a truth assignment V , let wV = w1 · · ·wn, where, for each j = 1, . . . , n,

wj =

{
ptrue
j if V (xj) = true, and
pfalse
j otherwise.

In order to prove (∗) for fragments (4)–(6), we have to show that Claims A.2 and A.3
hold. For Claim A.2 this can be done similarly as before, and for Claim A.3 (a) and (b)
it is again easy to see. We complete the proof of Theorem 4.8 by showing Claim A.3 (c).

To this end, again denote lab(B) by u. Assume that ukwuk ∈ L(r) and is the label of
a path from x to y in G. We need to show that w matches some Fi. Let m be a match
between ukwuk and r. For every j = 1, . . . , n, let Σj denote the set {bj , cj}. Observe that
the word w is of the form y1 · · · yn, where, for every j = 1, . . . , n, yj is a word in Σ+

j .
Moreover, no words in L(N) contain symbols from Σj for any j = 1, . . . , n. Hence, m
cannot match any symbol of the word w onto N . Consequently, m matches the entire
word w onto a subexpression of F1 · · ·Fk in r.

Further, observe that every word in every Fi, i = 1, . . . , k, is of the form y′1 . . . y
′
n,

where each y′j is a word in (Σj ∪{a})+. As m can only match symbols in Σj onto subex-
pressions with symbols in Σj , m matches w onto some Fi.

Now that we know that Claim A.2 and A.3 hold for the fragments (4)–(6), the proof
of (∗) is analogous to the proof of Claim A.4.

Notice that, in all our cases, we have constructed an acyclic graph G. This means
that, in all cases, #P-hardness even holds if G is acyclic.

This concludes the proof of Theorem 4.8. 2

ACKNOWLEDGMENTS

Many people contributed to this work through inspiring discussions. We thank Marcelo Arenas for sending
us a draft of [Arenas et al. 2012] and for his comments on a draft of [Losemann and Martens 2012]; Thomas
Schwentick for pointing out that emptiness testing of star-free regular expressions with negation is non-
elementary (i.e, Theorem 3.9); Pekka Kilpeläinen for giving us the 1979 reference for dynamic programming
for evaluating regular expressions on words; and Christian Cöster for many useful remarks. We thank
the anonymous reviewers of PODS 2012 and ACM Transactions on Database Systems for their insightful
comments that helped to improve the presentation of the article.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:38 K. LOSEMANN and W. MARTENS

REFERENCES
S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. L. Wiener. 1997. The Lorel Query Language for

Semistructured Data. International Journal on Digital Libraries 1, 1 (1997), 68–88.
S. Abiteboul and V. Vianu. 1999. Regular Path Queries with Constraints. Journal of Computer and System

Sciences (JCSS) 58, 3 (1999), 428–452.
N. Alechina and N. Immerman. 2000. Reachability logic: An efficient fragment of transitive closure logic.

Logic Journal of the IGPL 8, 3 (2000), 325–337.
F. Alkhateeb, J.-F. Baget, and J. Euzenat. 2009. Extending SPARQL with regular expression patterns (for

querying RDF). Journal of Web Semantics 7, 2 (2009), 57–73.
Carme Álvarez and Birgit Jenner. 1993. A very hard log-space counting class. Theoretical Computer Science

107, 1 (1993), 3–30. Issue 1.
M. Arenas, S. Conca, and J. Pérez. 2012. Counting beyond a Yottabyte, or how SPARQL 1.1 property paths

will prevent adoption of the standard. In International World Wide Web Conference (WWW). ACM, New
York, NY, USA, 629–638.

M. Arenas and J. Pérez. 2011. Querying semantic web data with SPARQL. In Symposium on Principles of
Database Systems (PODS). ACM, New York, NY, USA, 305–316.

G. Bagan, A. Bonifati, and B. Groz. 2013. A Trichotomy for Regular Simple Path Queries on Graphs. In
Symposium on Principles of Database Systems (PODS). ACM, New York, NY, USA.

Claude Berge. 1973. Graphs and Hypergraphs. North-Holland Publishing Company, New York, NY, USA.
G. J. Bex, F. Neven, T. Schwentick, and S. Vansummeren. 2010. Inference of Concise Regular Expressions

and DTDs. ACM Transactions on Database Systems (TODS) 35, 2 (2010), 11:1–11:47.
R. Book, S. Even, S. Greibach, and G. Ott. 1971. Ambiguity in Graphs and Expressions. IEEE Trans. Comput.

20 (February 1971), 149–153. Issue 2.
T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F. Yergeau. 2008. Extensible Markup Language

XML 1.0 (Fifth Edition) (5 ed.). Technical Report. World Wide Web Consortium (W3C). W3C Recommen-
dation, http://www.w3.org/TR/2008/REC-xml-20081126/.

A. Brüggemann-Klein and D. Wood. 1998. One-Unambiguous Regular Languages. Information and Compu-
tation 142, 2 (1998), 182–206.

P. Buneman, S. B. Davidson, G. G. Hillebrand, and D. Suciu. 1996. A Query Language and Optimization
Techniques for Unstructured Data. In ACM SIGMOD International Conference on Management of Data.
ACM, New York, NY, USA, 505–516.

D. Calvanese, G. De Giacomo, M. Lenzerini, and M.Y. Vardi. 2002. Rewriting of Regular Expressions and
Regular Path Queries. Journal of Computer and System Sciences (JCSS) 64, 3 (2002), 443–465.

D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Y. Vardi. 2000a. Containment of Conjunctive Regular
Path Queries with Inverse. In Principles of Knowledge Representation and Reasoning (KR). Morgan
Kaufmann, San Fransisco, CA, USA, 176–185.

D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Y. Vardi. 2000b. View-Based Query Processing for Reg-
ular Path Queries with Inverse. In Symposium on Principles of Database Systems (PODS). ACM, New
York, NY, USA, 58–66.

R. Cleaveland and B. Steffen. 1993. A Linear-time model-checking algorithm for the alternation-free modal
mu-calculus. Formal Methods in System Design 2, 2 (1993), 121–147.

D. Colazzo, G. Ghelli, and C. Sartiani. 2009a. Efficient asymmetric inclusion between regular expression
types. In International Conference Database Theory (ICDT). ACM, New York, NY, USA, 174–182.

D. Colazzo, G. Ghelli, and C. Sartiani. 2009b. Efficient inclusion for a class of XML types with interleaving
and counting. Information Systems 34, 7 (2009), 643–656.

M. P. Consens and A. O. Mendelzon. 1990. GraphLog: a Visual Formalism for Real Life Recursion. In Sym-
posium on Principles of Database Systems (PODS). ACM, New York, NY, USA, 404–416.

I. F. Cruz, A. O. Mendelzon, and P. T. Wood. 1987. A Graphical Query Language Supporting Recursion. In
ACM SIGMOD International Conference on Management of Data. ACM, New York, NY, USA, 323–330.

A. Deutsch and V. Tannen. 2001. Optimization Properties for Classes of Conjunctive Regular Path Queries.
In International Workshop on Database Programming Languages (DBPL). Springer-Verlag, London,
UK, UK, 21–39.

D. Fallside and P. Walmsley. 2004. XML Schema Part 0: Primer (Second Edition). Technical Report. World
Wide Web Consortium. http://www.w3.org/TR/2004/REC-xmlschema-0-20041028/.

M. F. Fernández, D. Florescu, A. Y. Levy, and D. Suciu. 2000. Declarative Specification of Web Sites with
STRUDEL. The VLDB Journal 9, 1 (2000), 38–55.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

The Complexity of Regular Expressions and Property Paths in SPARQL A:39

D. Florescu, A. Y. Levy, and D. Suciu. 1998. Query Containment for Conjunctive Queries with Regular
Expressions. In Symposium on Principles of Database Systems (PODS). ACM, New York, NY, USA,
139–148.

S. Gao, C. M. Sperberg-McQueen, H.S. Thompson, N. Mendelsohn, D. Beech, and M. Maloney. 2009. W3C
XML Schema Definition Language (XSD) 1.1 Part 1: Structures. Technical Report. World Wide Web
Consortium. W3C Recommendation, http://www.w3.org/TR/2009/CR-xmlschema11-1-20090430/.

W. Gelade, M. Gyssens, and W. Martens. 2012. Regular Expressions with Counting: Weak versus Strong
Determinism. SIAM J. Comput. 41, 1 (2012), 160–190.

W. Gelade, W. Martens, and F. Neven. 2009. Optimizing Schema Languages for XML: Numerical Constraints
and Interleaving. SIAM J. Comput. 38, 5 (2009), 2021–2043.

V. M. Glushkov. 1961. The abstract theory of automata. Russian Mathematical Surveys 16, 5(101) (1961),
1–53.

S. Harris and A. Seaborne. 2010. SPARQL 1.1 Query Language. Technical Report. World Wide Web Consor-
tium (W3C). http://www.w3.org/TR/2010/WD-sparql11-query-20100601/

S. Harris and A. Seaborne. 2012. SPARQL 1.1 Query Language. Technical Report. World Wide Web Consor-
tium (W3C). http://www.w3.org/TR/2012/WD-sparql11-query-20120105/

J.E. Hopcroft and J.D. Ullman. 1979. Introduction to Automata Theory, Languages, and Computation.
Addison-Wesley, Boston, MA, USA.

Sampath Kannan, Z. Sweedyk, and Stephen R. Mahaney. 1995. Counting and Random Generation of Strings
in Regular Languages. In Symposium on Discrete Algorithms (SODA). Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA, 551–557.

P. Kilpeläinen and R. Tuhkanen. 2003. Regular Expressions with Numerical Occurrence Indicators — pre-
liminary results.. In Symposium on Programming Languages and Software Tools (SPLST). University
of Kuopio, Department of Computer Science, Kuopio, Finland, 163–173.

P. Kilpeläinen and R. Tuhkanen. 2007. One-unambiguity of regular expressions with numeric occurrence
indicators. Information and Computation 205, 6 (2007), 890–916.

S. C. Kleene. 1956. Automata Studies. Princeton Univ. Press, Princeton, NJ, USA, Chapter Representations
of events in nerve sets and finite automata, 3–42.

L. Libkin, W. Martens, and D. Vrgoč. 2013. Querying graph databases with XPath. In International Confer-
ence on Database Theory (ICDT). ACM, New York, NY, USA, 129–140.

L. Libkin and D. Vrgoč. 2012. Regular Path Queries on Graphs with Data. In International Conference on
Database Theory (ICDT). ACM, New York, NY, USA, 74–85.

Yanhong A. Liu and Fuxiang Yu. 2002. Solving Regular Path Queries. In Mathematics of Program Construc-
tion (MPC). Springer-Verlag, London, UK, UK, 195–208.

Katja Losemann and Wim Martens. 2012. The complexity of evaluating path expressions in SPARQL. In
Symposium on Principles of Database Systems (PODS). ACM, New York, NY, USA, 101–112.

W. Martens, F. Neven, and T. Schwentick. 2004. Complexity of Decision Problems for Simple Regular Ex-
pressions. In Mathematical Foundations of Computer Science (MFCS). Springer, Heidelberg, Germany,
889–900.

W. Martens, F. Neven, and T. Schwentick. 2009. Complexity of Decision Problems for XML Schemas and
Chain Regular Expressions. SIAM J. Comput. 39, 4 (2009), 1486–1530.

A. O. Mendelzon and P. T. Wood. 1995. Finding Regular Simple Paths in Graph Databases. SIAM J. Comput.
24, 6 (1995), 1235–1258.

J. Pérez, M. Arenas, and C. Gutierrez. 2009. Semantics and complexity of SPARQL. ACM Transactions on
Database Systems (TODS) 34, 3 (2009), 16:1–16:45.

J. Pérez, M. Arenas, and C. Gutierrez. 2010. nSPARQL: A navigational language for RDF. Journal of Web
Semantics 8, 4 (2010), 255–270.

Raghu Ramakrishnan and Johannes Gehrke. 2003. Database management systems (3. ed.). McGraw-Hill,
New York, NY, USA.

M. Schmidt, M. Meier, and G. Lausen. 2010. Foundations of SPARQL query optimization. In International
Conference on Database Theory (ICDT). ACM, New York, NY, USA, 4–33.

L. Stockmeyer. 1974. The complexity of decision problems in automata theory and logic. Ph.D. Dissertation.
Massachusetts Institute of Technology.

L. G. Valiant. 1979. The Complexity of Enumeration and Reliability Problems. SIAM J. Comput. 8, 3 (1979),
410–421.

M. Yannakakis. 1990. Graph-Theoretic Methods in Database Theory. In Symposium on Principles of
Database Systems (PODS). ACM, New York, NY, USA, 230–242.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:40 K. LOSEMANN and W. MARTENS

Received October 2012; revised MM/YYYY; accepted MM/YYYY

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

