
The Tractability Frontier for NFA Minimization✩

Henrik Björklunda, Wim Martensb,1

aUme̊a University
Sweden

bTechnical University of Dortmund
Germany

Abstract

We prove that minimizing finite automata is NP-hard for almost all classes of automata
that extend the class of deterministic finite automata. More specifically, we show that
minimization is NP-hard for all finite automata classes that subsume the class of δNFAs
which accept strings of length at most three. Here, δNFAs are the finite automata that
are unambiguous, allow at most one state q with a non-deterministic transition for at
most one alphabet symbol a, and are allowed to visit state q at most once in a run. As
a corollary, we also obtain that the same result holds for all finite automata classes that
subsume that class of finite automata that are unambiguous, have at most two initial
states, and accept strings of length at most two.

Key words: Finite automata, optimization, state minimization, complexity.

1. Introduction

The regular languages are a cornerstone of computer science and are a very useful
tool in both theory and practice. When using regular languages, the developer is often
faced with a trade-off between the descriptive complexity and the complexity of opti-
mization. Concretely, it has been known for a long time that there are regular languages
for which non-deterministic finite automata (NFAs) can provide an exponentially more
succinct description than deterministic finite automata (DFAs) [27]. On the other hand,
many decision problems that are solvable in polynomial time for DFAs, i.e., equivalence,
inclusion, and universality, are computationally hard for NFAs.

The choice of a representation mechanism can therefore be crucial. If the set of
regular languages used in an application is relatively constant, membership tests are the
main language operations, and economy of space is an issue, NFAs are probably the
right choice. If, on the other hand, the languages change frequently, and inclusion or
equivalence tests are frequent, DFAs may be more attractive.

✩The present paper is the full version of reference [6], which appeared in the International Colloquium
on Automata, Languages and Programming 2008.

Email addresses: henrikb@cs.umu.se (Henrik Björklund), wim.martens@udo.edu (Wim Martens)
1Supported by the North-Rhine Westphalian Academy of Sciences, Humanities, and Arts, and by the

Stiftung Mercator Essen.

Preprint submitted to Elsevier April 4, 2011

Since both NFAs and DFAs have their disadvantages, a lot of effort has been spent on
trying to find intermediate models, i.e., finite automata that have some limited form of
non-determinism. The unambiguous finite automata (UFAs)2 form such an intermediate
model with rather desirable properties. While in general still being exponentially more
succinct than an equivalent DFA for the same language, static analysis questions such
as inclusion and equivalence can be solved in PTIME for UFAs [32]. However, UFAs
do not allow for tractable state minimization [25]. Therefore, the question whether
there are good intermediate models between DFAs and NFAs needs to be revisited for
state minimization. Our work is motivated by the question whether there exist useful
extensions of the class of DFAs for which minimization is tractable, which was first posed
by Jiang and Ravikumar [25]. Our answer is that the existence of such a class is quite
unlikely, since we prove that minimization is NP-hard already for a very conservative
extension of the class of DFAs.

Every undergraduate computer science curriculum teaches its students how to mini-
mize a DFA in polynomial time. In contrast, minimizing unrestricted NFAs is PSPACE-
complete [33]. The minimization problem for automata with varying degrees of non-
determinism was studied in a seminal paper by Jiang and Ravikumar in 1993 [25]. Among
other results, they thoroughly investigated the minimization problem for UFAs. In the
following discussion, we will often use the terminology: Minimization has complexity C
for automata class A, even if the input is given as an automaton from class B. Formally,
this means that the following problem has complexity C:

Given an NFA B from B and an integer k in binary, does there exist an NFA A from A
with at most k states such that L(A) = L(B)?

If the automata class B is not mentioned, we assume that it equals A. In this terminology,
Jiang and Ravikumar showed the following:

• Minimization is NP-complete for UFAs, even if the input is given as a DFA.

• Minimization is PSPACE-complete for NFAs, even if the input is given as a DFA.

Minimization problems have even been studied for automata with unary alphabets; see,
e.g., [24, 15].

Recently, Malcher [26] improved on the results of Jiang and Ravikumar in the sense
that he showed that finite automata with quite a small amount of non-determinism are
hard to minimize. More precisely, he showed the following:

(a) Minimization is NP-complete for automata that can non-deterministically choose
between a fixed number of initial states, but are otherwise deterministic.

(b) Minimization is NP-complete for non-deterministic automata with a constant number
of computations for each string.3

2An automaton is unambiguous if it has at most one accepting run for each word.
3Actually, he showed this for automata with constant branching, which is slightly different from the

number of computations; see Section 2.1.

2

Whereas Malcher made significant progress in showing that minimization is hard for
non-deterministic automata, he was not yet able to settle the entire problem. Therefore,
he poses the question of whether there are relaxations of the deterministic automata
model at all for which minimization is tractable as an important open problem. In this
context, he mentions the class of automata with at most two computations for each string
and the two classes (a) and (b) above with the added restriction of unambiguousness as
important remaining cases. We also note that Malcher used different proof techniques
for the results (a) and (b) above.

Our Contributions. We improve on Malcher’s results in two respects. We settle his
open questions and we provide a uniform NP-hardness proof for all classes of automata
mentioned above. In brief, we define a class δNFA of automata that are unambiguous,
have at most two computations per string, and have at most one state q with two outgoing
a-transitions, for at most one symbol a. Then, we show that minimization is NP-hard for
all classes of finite automata that include the δNFAs that accept strings of length three,
even if the input is a DFA. We show that these hardness results can also be adapted to
the setting of unambiguous automata that can non-deterministically choose between two
start states, but are deterministic everywhere else. This solves the open cases mentioned
by Malcher [26].

On the other hand we show that there are (non-trivial) relaxations of the deterministic
automaton model that allow tractable minimization. We show that, if we add to the
definition of δNFAs that each word should have at most one rejecting computation (i.e.,
δNFAs that are co-unambiguous), minimization becomes tractable again. However, the
minimal automata in this class are the DFAs, so it is not likely to be very useful in
practice. Therefore, if P 6= NP, the tractability frontier of the NFA minimization problem
lies between δNFAs and co-unambiguous δNFAs, which are two classes that are extremely
closely together.

Apart from the complexity results of minimizing δNFAs, we also show that δNFAs are
quadratically more succinct that DFAs and that there does not exist a unique minimal
δNFA for a regular language.

Further related work. A recent overview of finite automata minimization can be found
in [4], while transition complexity of NFAs is surveyed in [30, 18]. Known results about
the trade-off between amount of non-determinism and description complexity are sur-
veyed in [12]. In a recent paper, Okhotin presented new results on the description
complexity of UFAs over unary alphabets [28].

A detailed analysis of the complexity of Hopcroft’s minimization algorithm for DFAs
has recently been performed by Berstel et al. [3]. An interesting variant of the mini-
mization problem which has been studied recently is the hyperminimization problem for
DFAs. Here, it is allowed to construct a small DFA which is not equivalent with the
input DFA on a finite number of strings [2]. It is possible to hyperminimize a DFA in
time O(n log n) [8, 19].

Since the minimization problem for NFAs is hard, other flavors of minimization have
been studied. A very relevant flavor in practice is bisimulation minimization [1, 29].

The problems of producing small NFAs from regular expressions has been considered
in [23, 31]. This problem is challenging, since it is known that approximating minimal
NFAs is a hard problem [13, 14, 16].

3

The descriptive complexity of regular expressions has also been studied in the litera-
ture. Here, problems of interest are the complexity of translating automata to expressions
and the complexity of performing various operations on regular expressions [11, 17]. The
descriptive complexity of regular expressions is also practically relevant in the context of
XML schema languages. The complexity and succinctness of applying interleaving and
counting operators on expressions, sometimes combined with determinism restrictions,
has been investigated [5, 10, 9, 21].

2. Preliminaries

Throughout the paper, Σ denotes a finite alphabet. A (non-deterministic) finite au-
tomaton (NFA) over Σ is a tuple A = (States(A),Alpha(A),Rules(A), Init(A),Final(A)),
where States(A) is its finite set of states, Alpha(A) = Σ, Init(A) ⊆ States(A) is its set
of initial states, Final(A) ⊆ States(A) is its set of final states, and Rules(A) is a set of

transition rules of the form q1
a
→ q2, where q1, q2 ∈ States(A) and a ∈ Σ. The size of an

automaton is |States(A)|, i.e., its number of states. For simplicity, we do not consider
NFAs to have ε-transitions. Notice that each NFA A with ε-transitions can be trans-
formed (in polynomial time) into an equivalent NFA B without ε-transitions such that
B does not have more states than A. As our results are hardness results, our results
therefore also apply for NFAs with ε-transitions.

A finite automaton is deterministic (a DFA) if Init(A) is a singleton and, for each

q1 ∈ States(A) and a ∈ Alpha(A), there is at most one q2 ∈ States(A) such that q1
a
→

q2 ∈ Rules(A). We can assume without loss of generality in this paper that each state in
a finite automaton is reachable from an initial state. Indeed, if this is not the case, an
automaton can be turned into a smaller one with this property in polynomial time.

A run or computation r of A on a word w = a1 · · · an ∈ Σ∗ is a string q0q1 · · · qm ∈

States(A)∗ with m ≤ n, such that q0 ∈ Init(A), for each i = 0, . . . ,m − 1, qi
ai+1

→ qi+1 ∈

Rules(A), and either m = n or there is no q ∈ States(A) with qm
am+1

→ q ∈ Rules(A).
The run is accepting if n = m and qn ∈ Final(A). Otherwise, the run is rejecting. Notice
that runs always have maximal length. That is, if r is a run of A on w, there does not
exist a run r′ of A on w such that r is a strict prefix of r′. The language of A, denoted
L(A), is the set of words w such that there exists an accepting run of A on w. A finite
automaton A is unambiguous if, for each string w, there exists at most one accepting
run of A on w.

Let N1 and N2 be two classes of NFAs. We say that N1 ⊆ N2 if each automaton in
N1 also belongs to N2. For example, DFA ⊆ NFA.

2.1. Notions of Non-Determinism

We recall some standard measures of non-determinism in a finite automaton. For
a state q and an alphabet symbol a, the degree of non-determinism of a pair (q, a),
denoted by degree(q, a), is the number k of different states q1, . . . , qk such that, for all

1 ≤ i ≤ k, q
a
→ qi ∈ Rules(A). We say that A has degree of non-determinism k, denoted

by degree(A) = k, if degree(q, a) ≤ k for every (q, a) ∈ States(A)×Alpha(A), and there
is at least one pair (q, a) such that degree(q, a) = k.

The branching of an automaton is intuitively defined as the maximum product of the
degrees of non-determinism over states in a possible run. Formally, the branching of A on

4

a word w = a1 · · · an is branchA(w) = max
{
∏n

i=1 degree(qi−1, ai) | q0 · · · qn is a run of A

on a1 · · · an
}

. The branching of A, denoted branch(A), is |Init(A)| ×max{branchA(w) |
w ∈ L(A)} if this quantity is defined, and otherwise ∞.

Hromkovic et al. [22] define three measures of non-determinism for a finite automaton
A: advice(A), computations(A), and ambig(A). These measures are defined as follows:
advice(A) is the maximum number of non-deterministic choices during any computation
of A (i.e., the number of advice bits that would be needed in advance to make a computa-
tion deterministic), computations(A) is the maximum number of different computations
of A on any word,4 and ambig(A) is the maximum number of different accepting compu-
tations of A on any word. For the formal definitions of these concepts, we refer to [22].

2.2. A Notion of Very Little Non-Determinism

Next we define the notion of a δNFA. The intuition is that such an automaton should
allow only a very small amount of non-determinism. Since we are interested in non-trivial
extensions of the class of DFAs, each DFA is also a δNFA. In particular, this means that
δNFAs do not have any restrictions on the alphabet they use.

Definition 1. A δNFA is an NFA A with the following properties

• A has a single initial state;

• A is unambiguous;

• branch(A) ≤ 2; and

• there is at most one pair (q, a) such that degree(q, a) = 2.

For δNFAs, we have that degree(A) ≤ 2, advice(A) ≤ 1, computations(A) ≤ 2, and
ambig(A) = 1. Notice that any one of degree(A) = 1, advice(A) = 0, or computations(A) =
1 implies that A is deterministic. Also, ambig(A) = 1 is the minimum value possible for
any automaton that accepts at least one string.

2.3. The Minimization Problem

We define the minimization problem in two flavors. Let A and B be two classes of
finite automata. The minimization problem for A is then defined as:

Given an NFA A from class A and an integer k in binary.
Does there exist an NFA B from class A with at most k states such that L(A) = L(B)?

The minimization problem for B, even if the input is given as A is defined as:

Given an NFA A from class A and an integer k in binary.
Does there exist an NFA B from class B with at most k states such that L(A) = L(B)?

4Hromkovic et al. wrote leaf(A) instead of computations(A).

5

For brevity and following Jiang and Ravikumar [25], we sometimes also refer to the
minimization problem for B, even if the input is given as A, as the A → B minimization
problem.

Let N1, N2, and N3 be classes of finite automata. Suppose that the N1 → N2

minimization problem is hard for a complexity class C, and let N3 be a class of automata
such that N1 ⊆ N3. Then the N3 → N2 minimization problem is also trivially hard for
C. However, assuming that N1 → N2 is hard for C and that N2 ⊆ N3, there is, as far
as we know, no general argument that also makes the N1 → N3 minimization problem
hard for C, as finding a small N3 automaton might be easier than finding a small N2

automaton in general.5 Therefore, we will prove directly that minimization is NP-hard
for all classes of automata between δNFAs and NFAs.

2.4. The Tractability Frontier

In this section, we discuss what we know about the tractability frontier for the NFA
minimization problem, if PTIME 6= NP. We also discuss the proximity between the class
of δNFAs and the DFAs.

We first note that there are in fact two incomparable notions of determinism for
finite automata: determinism and reverse determinism. (An automaton A is reverse
deterministic if its automaton with the inverted transitions is deterministic, i.e., if the
NFA obtained by replacing every rule q1

a
→ q2 by q2

a
→ q1 is deterministic.) Both de-

terministic and reverse deterministic finite automata can be efficiently minimized by the
same algorithm, modulo a simple pre- and post-processing step for reverse deterministic
automata. In other words, both the DFA → DFA minimization problem and the sym-
metric problem for reverse deterministic finite automata are solvable in polynomial time.
We view these two classes as the two possible “optima” in the spectrum of determinism,
as they arise very naturally from the fact that one can either read strings from left to
right or from right to left. From now on, we only consider the proximity of δNFAs to
(left-to-right deterministic) DFAs.

We will prove in Section 3 that, for every class A of finite automata that includes the
δNFAs, the minimization problem is NP-hard, even if the input is given as a DFA and
even if the number k in the input is given in unary encoding. (That is, we will show that
minimization is strongly NP-hard.) What does this result tell us about the tractability
frontier of minimization?

Of course, the class of δNFAs is not the smallest class of automata that include the
DFAs and allow non-determinism. One could, for instance, take the class of DFAs and
add a finite set N of NFAs. For each such class, minimization would be in PTIME.
Indeed, for each of the constantly many possible NFAs in N as input, the minimization
algorithm can decide the minimization question in constant time, after having read the
input. For each of the DFAs, the algorithm can test, in a first phase, whether the input
DFA accepts one of the constantly many languages represented by an NFA. If so, it can,
in the second phase, solve the minimization question analogously as for this NFA, and if
not, it can, in the second phase, solve the minimization question using standard methods
for DFA minimization.

5This is also why, e.g., Malcher explicitly proves NP-hardness for minimizing various classes of au-
tomata that are included in one another (Lemmas 3 and 11 in [26]).

6

Classes obtained by adding constantly many NFAs are, of course, not very interesting.
Let’s consider a class that adds infinitely many NFAs. Define the class cu-δNFA to be the
class of δNFAs with the additional condition that they are also co-unambiguous. That is,
for each word w, there can be at most one rejecting computation of A on w. Recall that
we defined runs to have a maximal possible length. This means that, if r is a rejecting
run of A on w, then the strict prefixes of r are not runs of A on w. In particular, this
means that there are non-trivial co-unambiguous δNFAs. Combined with the conditions
on δNFAs this implies that for each w, there can still be two runs, but if so, one must
be accepting and the other one must be rejecting. This notion of non-determinism lies
strictly between DFAs and δNFAs (that is, DFA (cu-δNFA (δNFA).

Consider the minimization problem for cu-δNFA and let A be an arbitrary cu-δNFA.
We will argue that the minimal cu-δNFA for L(A) is a DFA. Suppose that A is not a
DFA. Let q and a be the unique state and label such that degree(q, a) = 2. Let q1 and

q2 be the two states such that q
a
→ q1 and q

a
→ q2 are in Rules(A). Let w be an arbitrary

string that leads A to state q and let w′ be an arbitrary string over alphabet Alpha(A).
Then there are two different runs of A on the string waw′, one which reaches q1 after
reading the prefix wa and one which reaches q2 after reading the prefix wa. By definition
of cu-δNFA, one of these runs has to be rejecting and one has to be accepting. Since
w′ was arbitrary, this implies that A must accept every string of the form waw′. This
means that we can make A strictly smaller by merging the two states q1, q2 into one
state q3, removing all outgoing transitions from q3, making q3 a final state, and adding
loop transitions from q3 to itself for each alphabet symbol. Moreover, by this operation,
A becomes deterministic. Hence, every automaton A in cu-δNFA that is not a DFA
can be rewritten as a smaller DFA. This means that, in the class cu-δNFA, the minimal
automata are DFAs. In particular, this also puts the minimization problem for cu-δNFA
into PTIME.

From the above it is clear that δNFAs are certainly not the closest possible to deter-
minism that one can get. Rather, it is the closest class to DFAs we were able to find
that takes advantage of the succinctness of nondeterminism in a nontrivial way.

Our NP-hardness result for the minimization of δNFAs therefore puts the tractability
frontier precisely between δNFAs and the above mentioned class cu-δNFA; two classes
that are very close to one another.

3. Minimizing Non-Deterministic Automata is Hard

The main result of this section is the following.

Theorem 2. Let N be a class of finite automata such that δNFA ⊆ N . Then the
minimization problem for N is strongly NP-hard, even if the input is given as a DFA.

Corollary 3. Let N be a class of finite automata such that δNFA ⊆ N . Then the
minimization problem for N is strongly NP-hard.

We start by formally defining the decision problems that are of interest to us, and
then sketch an intuitive overview of our proof. Given an undirected graph G = (V,E)
such that V is its set of vertices and E ⊆ V × V is its set of edges, we say that a set of
vertices V C ⊆ V is a vertex cover of G if, for every edge (v1, v2) ∈ E, V C contains v1,
v2, or both.

7

If B and C are finite collections of finite sets, we say that B is a set basis for C if, for
each c ∈ C, there is a subcollection Bc of B whose union is c. We say that B is a normal
set basis for C if, for each c ∈ C, there is a pairwise disjoint subcollection Bc of B whose
union is c. We say that B is a separable normal set basis for C if B is a normal set basis
for C and B can be written as a disjoint union B1 ⊎ B2 such that, for each c ∈ C, the
subcollection Bc of B contains at most one element from B1 and at most one from B2.

The following decision problems are considered in this paper. Vertex Cover asks,
given a pair (G, k) where G is a graph and k is an integer given in binary, whether there
exists a vertex cover of G of size at most k. It is well-known that Vertex Cover is strongly
NP-complete, that is, Vertex Cover remains NP-hard even if k is given as a unary number
[7]. Set Basis, Normal Set Basis, and Separable Normal Set Basis ask, given a pair (C, s)
where C is a finite collection of finite sets and s is an integer, whether there exists a set
basis, resp., normal set basis, resp., separable normal set basis for C containing at most
s sets.

The proof of Theorem 2 proceeds in several steps. First, we provide a slightly modified
version of a known reduction from Vertex Cover to Normal Set Basis (Lemma 4 in [25]),
showing that the latter problem is NP-hard. Second, we proceed to show that the set
I of instances of Normal Set Basis obtained through this reduction has a number of
interesting properties (Lemma 5). In particular, we show that if such an instance has a
set basis of a certain size s, then it also has a normal set basis of size s. Third, we show
that the the Normal Set Basis problem, for instances in I reduces to minimization for
δNFAs (Lemma 6).

The statement of Theorem 2 says that given a DFA, finding the minimal equivalent
automaton in class N is NP-hard, for any class of finite automata that contains the
δNFAs. As argued in Section 2.3, using a DFA instead of a δNFA as input of the
problem strengthens the statement. Also, showing that DFA→ δNFA is NP-hard doesn’t
immediately imply that DFA → N is hard for every N that contains all δNFAs. To show
that this is actually the case, we prove that for the languages obtained in our reduction,
the minimal NFAs are precisely one state smaller than the minimal δNFAs (Lemma 6).
For these languages, the minimization problem for δNFAs and for NFAs is essentially the
same problem.

We revisit a slightly modified reduction which is due to Jiang and Ravikumar [25],
as our further results rely on a construction in their proof. We also add the observation
of strong NP-completeness.

Lemma 4 (Jiang and Ravikumar [25]). Normal Set Basis is strongly NP-complete.

Proof. Obviously, Normal Set Basis is in NP. Indeed, given an input (C, s) for Normal
Set Basis, if s is at least the number of elements in the union of all sets from C, then
the algorithm can return true. Otherwise, the NP algorithm simply guesses a collection
B containing at most s sets, guesses the subcollections Bc for each c ∈ C, and verifies
whether the sets Bc satisfy the necessary conditions.

In order to prove strong NP-hardness, we give a reduction from Vertex Cover to
Normal Set Basis. It is known that Vertex Cover is strongly NP-hard [7]. Given an input
(G, k) of Vertex Cover, where G = (V,E) is a graph and k is an integer, we construct in
LOGSPACE an input (C, s) of Normal Set Basis, where C is a finite collection of finite
sets and s is an integer. In particular, (C, s) is constructed such that G has a vertex
cover of size at most k if and only if C has a normal set basis containing at most s sets.

8

c4ij
xi

yi

yj xjci cj

c5ij

c2ij

c1ij

c3ij

aij

bij

dij

eij

Figure 1: The constructed sets ci, cj , c
1

ij , . . . , c
5

ij in the proof of Lemma 4.

For a technical reason which will become clear in later proofs, we assume without
loss of generality that k < |E| − 3. Notice that, under this restriction, Vertex Cover is
still NP-complete under LOGSPACE reductions. This can be seen by combining two
observations. First of all, we can assume that |V | ≤ |E|. This is so because Vertex Cover
is still NP-complete under LOGSPACE reductions if the input graph is connected and
contains at least one cycle. In fact, the proof from Garey and Johnson ([7], Theorem 3.3)
showing that Vertex Cover is NP-hard by reduction from 3-SAT produces graphs with
this property. Second, if k ≥ |V | − 3, then Vertex Cover can be solved in LOGSPACE
by testing all possibilities of the at most 3 vertices which are not in the vertex cover,
and verifying that there does not exist an edge between 2 of these 3 vertices. Combined,
these two observations show that we can assume that k < |E| − 3.

Formally, let V = {v1, . . . , vn}. For each i = 1, . . . , n, define ci to be the set {xi, yi}
which intuitively corresponds to the node vi. Let (vi, vj) be in E with i < j. To each
such edge we associate five sets as follows:

c1ij := {xi, aij , bij}, c4ij := {xj , aij , eij}, and
c2ij := {yj , bij , dij}, c5ij := {aij , bij , dij , eij}.
c3ij := {yi, dij , eij},

Figure 1 contains a graphical representation of the constructed sets ci, cj , c
1
ij , . . . , c

5
ij for

some (vi, vj) ∈ E. Then, define

C := {ci | 1 ≤ i ≤ n} ∪ {ctij | (vi, vj) ∈ E, i < j, and 1 ≤ t ≤ 5}

and s := n + 4|E| + k. Notice that the collection C contains n + 5|E| sets. Obviously,
C and s can be constructed from G and k in LOGSPACE. For strong NP-hardness,
observe that, if k is given as a unary number, then a unary representation of s can also
be constructed in LOGSPACE.

We show that the reduction is correct, that is, that G has a vertex cover of size at
most k if and only if C has a (separable) normal set basis containing at most s sets.

(⇒): Let G have a vertex cover V C of size k. We need to show that C has a normal
set basis B containing at most s = n+ 4|E|+ k sets.

To this end, we define a collection B of sets as follows. For every vi ∈ V ,

• if vi ∈ V C, we include both {xi} and {yi} in B;

9

• otherwise, we include ci = {xi, yi} in B.

The number of sets included in B so far is 2k + (n− k) = k + n. Let e = (vi, vj) (where
i < j) be an arbitrary edge in G. Since V C is a vertex cover, either vi or vj (or both) is
in V C. When vi is in V C, we additionally include the sets

r1ij := {aij , bij}, r2ij := {dij , eij},
r3ij := {yj , bij , dij}, and r4ij := {xj , aij , eij}

in B. When vi is not in V C, we additionally include the sets

r5ij := {aij , eij}, r6ij := {bij , dij},
r7ij := {xi, aij , bij}, and r8ij := {yi, dij , eij}

in B. This completes the definition of B. Notice that, when vi ∈ V C, c1ij , c
3
ij , and c5ij

can be expressed as a disjoint union of members of B as

c1ij = {xi} ⊎ r1ij , c3ij = {yi} ⊎ r2ij , c5ij = r1ij ⊎ r2ij

and that c2ij = r3ij and c4ij = r4ij are members of B. Analogously, when vi 6∈ V C, c2ij , c
4
ij ,

and c5ij can be expressed as a disjoint union of members of B as

c2ij = {yj} ⊎ r6ij , c4ij = {xj} ⊎ r5ij , c5ij = r5ij ⊎ r6ij

and c1ij = r7ij and c3ij = r8ij are members of B. Since the total number of sets included in
B for each edge is four, B contains (k+ n) + 4|E| = s sets. From the above argument it
is also obvious that B is a normal set basis for C.

Notice that B is in fact a separable normal set basis for C. Indeed, we can partition
B into the sets

B1 = {{xi}, {xj , yj} | vi ∈ V C, vj 6∈ V C}

∪ {r2ij , r
3
ij | (vi, vj) ∈ E, i < j, vi ∈ V C}

∪ {r6ij , r
7
ij | (vi, vj) ∈ E, i < j, vi 6∈ V C}

and

B2 = {{yi} | vi ∈ V C}

∪ {r1ij , r
4
ij | (vi, vj) ∈ E, i < j, vi ∈ V C}

∪ {r5ij , r
8
ij | (vi, vj) ∈ E, i < j, vi 6∈ V C},

which satisfy the necessary condition.
(⇐): Suppose that C has a normal set basis B containing at most s = n+ 4|E|+ k

sets. We can assume without loss of generality that no proper subcollection of B is a
normal set basis. We show that G has a vertex cover V C of size at most k. Define
V C = {vi | both {xi} and {yi} are in B}. Let k′ be the number of elements in V C. The
number of sets in B consisting of only xi and/or yi is at least n + k′. This can be seen
from the fact that B must have the subset ci for all i such that vi 6∈ V C. Thus, there are
n− k′ such sets in addition to 2k′ singleton sets corresponding to i’s such that vi ∈ V C.

10

Let E′ ⊆ E be the set of edges covered by V C, that is, E′ = {(vi, vj) | vi or vj is in
V C}. The following observation can easily be shown (by checking all possibilities):

Observation: For any e ∈ E′ at least four sets of B (excluding sets ci, cj , {xi},
{yi}, {xj}, or {xj}) are necessary to be a normal set basis for the five sets ctij , t = 1, . . . , 5.
Further, at least five sets (excluding sets ci, cj , {xi}, {yi}, {xj}, or {xj}) are required to
be a normal set basis for them if e 6∈ E′. Notice that if e 6∈ E′, then either {xi} 6∈ B or
{yi} 6∈ B and, furthermore, either {xj} 6∈ B or {yj} 6∈ B.

Now the total number of sets needed to cover C is at least n+k′+4|E′|+5(|E|−|E′|),
which we know is at most s = n+4|E|+ k. Hence, we obtain that n+ k′ +5|E| − |E′| ≤
n+ 4|E|+ k, which implies that k′ + |E| − |E′| ≤ k. We conclude the proof by showing
that there is a vertex cover V C ′ of size |E| − |E′| + k′. Add one of the end vertices of
each edge e ∈ E − E′ to V C. This vertex cover is of size |E| − |E′|+ k′ ≤ k. �

The next lemma now follows from the proof of Lemma 4. It defines a set of inputs I
for which Normal Set Basis remains strongly NP-complete and further shows that for any
(C, s) ∈ I, the collection C has a set basis of size s if and only if C also has a separable
normal set basis of size s. Of course, the latter property does not hold for the set of all
possible inputs for the normal set basis problem.

Lemma 5. There exists a set of inputs I for Normal Set Basis, such that

(1) Normal Set Basis is strongly NP-complete for inputs in I;

(2) for each (C, s) in I, C contains every set at most once and s < |C| − 3;

(3) for each (C, s) ∈ I, the following are equivalent:

(a) C has a set basis containing at most s sets.

(b) C has a separable normal set basis containing at most s sets.

(4) for each (C, s) in I, each solution B for (C, s) writes at least two sets of C as a
union of at least two sets in B.

Proof. The set I is obtained by applying the reduction in Lemma 4 to inputs (G, k) of
Vertex Cover such that k < |E| − 3. This immediately shows (1) and (2). We continue
by proving the other parts of the claim.
(3) The direction from (b) to (a) is trivial. For the other direction, notice that we showed
in the proof of Lemma 4 that, if C has a normal set basis containing at most s sets, then
G has a vertex cover of size at most k. We also showed that, if G has a vertex cover
of size at most k, then C has a separable normal set basis containing at most s sets.
Together, this implies that, if C has a normal set basis containing at most s sets, it also
has a separable normal set basis containing at most s sets.

Hence, we only need to prove that, if C has a set basis of at most s sets, then C

also has a normal set basis containing at most s sets. To this end, let (C, s) be an
instance in I, i.e., there is an n ∈ N and E ⊆ {(i, j) | 1 ≤ i < j ≤ n} such that
C = {ci | 1 ≤ i ≤ n} ∪ {crij | (i, j) ∈ E ∧ 1 ≤ r ≤ 5}, and suppose C has a set basis
B = {b1, . . . , bs} of size s. We construct a normal set basis for C of size s.

To this end, we will show a sequence of assumptions that we can make about B

without loss of generality. Put together, these assumptions will imply that B is a normal
11

set basis for C. Therefore, they thus show that if there is a set basis of size s, there is
also a normal set basis of size s. Throughout the proof, it will be helpful for the reader
to keep an eye on Figure 1.

Suppose that there is an i such that B contains both {xi} and {xi, yi}. Then we can
replace {xi, yi} with {yi} and still have a set basis for C of size s, since ci is the only set
in C of which {xi, yi} is a subset. This gives us our first assumption.

Assumption 1. For every i ∈ {1, . . . , n}, set basis B does not contain both {xi, yi} and
{xi} or, symmetrically, B does not contain both {xi, yi} and {yi}.

Suppose there are 1 ≤ i < j ≤ n and 1 ≤ r ≤ 4 such that crij cannot be formed as a
disjoint union of sets from B. We now show how to change B such that it can form crij
as a disjoint union. We will give the argument for r = 1, i.e., crij = c1ij = {xi, aij , bij}.
The three other cases are completely analogous. Since there are no disjoint sets from B

whose union is c1ij , there must be two different sets b1 and b2 in B that are subsets of

c1ij and contain precisely two elements each. At least one of these subsets must contain

xi. Assume w.l.o.g. that this set is b1. No subset of size two of c1ij that contains xi is a

subset of any set of C other than c1ij . This means that we can replace b1 with b1 \ b2 in
B and still have a set basis of C of size at most s. This gives us our second assumption.

Assumption 2. For any i, j and any r ∈ {1, . . . , 4}, the set crij can be formed as a union
of disjoint sets from B.

If B satisfies Assumptions 1 and 2, but is not a normal set basis, then there are
1 ≤ i < j ≤ n such that c5ij cannot be formed as a disjoint union of sets from B. In

particular, this means that c5ij 6∈ B. Let B5
ij be a subset of B such that the union of the

sets in B5
ij is c5ij . We can assume that B5

ij is inclusion free, i.e., there are no two sets in

B5
ij such that one is a subset of the other, since if there are b1, b2 ∈ B5

ij with b1 ⊆ b2, we

can replace b2 with b2 \ b1.

Assumption 3. All collections B5
ij are inclusion free.

If B5
ij has four members, then we can replace B5

ij with the collection containing the
four singletons {aij}, {bij}, {dij}, and {eij} without increasing the size of B and we
would be able to write c5ij as a disjoint union. Therefore, the only case in which we still

cannot write c5ij as a disjoint union is the case where the collection B5
ij has at most three

members.

Assumption 4. All collections B5
ij have at most three members.

Suppose there is a set b in B5
ij such that b is not a subset of any set in C other than

c5ij . Then we can replace b with b \ (
⋃

b′∈B5
ij
\{b} b

′) in B and still have a set basis of size

at most s.

Assumption 5. Each member of B5
ij is a subset of some set from C other that c5ij . In

particular, since no set in C, other than c5ij itself, has an intersection with c5ij of size

larger than two, this means that each member of B5
ij has at most two elements.

12

If we take three different subsets of c5ij with at most two elements, that are also

subsets of other sets from C than c5ij , then at least two of them are disjoint; see Figure 1.

Let these two disjoint sets be b1 and b2. If b1 and b2 both contain two elements, we can
replace B5

ij with {b1, b2} and we would be able to write c5ij as a disjoint union. Therefore,

the only case in which we still cannot write c5ij as a disjoint union is the case summarized
in Assumption 6.

Assumption 6. There are at most two sets in B5
ij with two elements. Furthermore,

these two sets have a non-empty intersection. This means that B5
ij must have exactly

three members, two with two elements and one singleton. Without loss of generality, we
may assume that B5

ij = {{aij , bij}, {bij , dij}, {eij}}. (All other cases are symmetrical.)
We may also assume that neither {aij} nor {bij} belong to B. (If {aij} belongs to B

then we can replace {aij , bij} by {bij} in B5
ij , and if {bij} belongs to B we can replace

{bij , dij} by {dij} in B5
ij .)

In order to form c1ij either {xi}, {xi, aij}, {xi, bij}, or {xi, aij , bij} must be a member

of B. Since B5
ij satisfies Assumption 6, we can replace this member of B with {xi}, since

none of the other sets is a subset of any other set in C than c1ij . But if {xi} ∈ B we can,

analogously to Assumption 1, also assume that {yi} ∈ B. To form c3ij , B must, apart

from {yi} and {eij}, contain some subset of c3ij that contains dij . Since we have both

{yi} and {eij} in B, we may replace this subset with {dij}, since all other subsets of c3ij
are no subsets of other elements of C. Once we have {dij} in B, we can replace {bij , dij}
by {dij} in B5

ij and we can write c5ij as a disjoint union.

Assumption 7. There are disjoint members of B whose union is c5ij .

Together, Assumptions 1, 2, and 7 imply that B is in fact a normal set basis for C.
Since each assumption was made without loss of generality, we have shown that from
any set basis for C of size s we can form a normal set basis for C of size at most s.

(4) We simply observe that a normal set basis writing at most one set of C as a union of
at least two sets must contain at least |C| sets, and hence cannot be a solution for (C, s),
since s < |C|. �

The proof of the following lemma is partly inspired by the proof of Theorem 3.1
of [25], but we significantly strengthen it for our purposes.

Lemma 6. There exists a set of regular languages L such that

(1) the minimization problem for δNFAs accepting a language from L is strongly NP-
complete, even if the input is given as a DFA and

(2) for each L ∈ L, the size of the minimal NFA for L is equal to the size of the minimal
δNFA for L, minus 1.

Proof. The NP upper bound is immediate, as equivalence testing for unambiguous finite
automata is in PTIME [32]. An NP algorithm can therefore guess a δNFA of sufficiently
small size and test in PTIME whether it is equivalent to the given DFA.

13

For the lower bound, we reduce from Separable Normal Set Basis. To this end, let
(C, s) be an input of Separable Normal Set Basis. Hence, C is a collection of n sets and
s is an integer. According to Lemma 5, we can assume without loss of generality that
(C, s) ∈ I, that is, C has a separable normal set basis containing s sets if and only if C
has a normal set basis of size s. Moreover, we can assume that s < n − 3 and that s is
given in unary.

We construct in LOGSPACE a DFA A and an integer ℓ such that the following are
equivalent:

• C has a separable normal set basis of size at most s.

• There exists a δNFA Nδ for L(A) of size at most ℓ.

• There exists an NFA N for L(A) of size at most ℓ− 1.

The DFA A accepts the language {acb | c ∈ C and b ∈ c}, which is a finite language of
strings of length three.

Formally, let C = {c1, . . . , cn} and ci = {bi,1, . . . , bi,ni
} for every i = 1, . . . , n. Then,

A is defined over Alpha(A) = {a} ∪
⋃

1≤i≤n{ci, bi,1, . . . , bi,ni
}. The state set of A is

States(A) = {q0, q
′
0, q1, . . . , qn, qf}, and the initial and final state sets of A are {q0} and

{qf}, respectively. The transitions Rules(A) are formally defined as follows:

• q0
a
→ q′0 ∈ Rules(A);

• for every i = 1, . . . , n, q′0
ci→ qi ∈ Rules(A); and

• for every i = 1, . . . , n and j = 1, . . . , ni, qi
bi,j
→ qf ∈ Rules(A).

Finally, define ℓ := s+ 4. Notice that |A| = n+ 3.
Obviously, A and ℓ can be constructed from C and s using logarithmic space, even if

s and ℓ are in unary. Observe that due to Lemma 5, C contains every set at most once,
and hence does not contain two different sets ci and cj with different name (i.e., i 6= j)
but with the same elements. Therefore, A is a minimal DFA for L(A).

Recall that, in this paper, the size of an NFA is defined to be its number of states.
In this terminology, we now show that,

(a) if C has a separable normal set basis containing at most s sets, then there exists a
δNFA Nδ for L(A) of size at most ℓ and an NFA N for L(A) of size at most ℓ− 1;

(b) if there exists a δNFA Nδ for L(A) of size at most ℓ then C has a separable normal
set basis containing at most s sets; and

(c) if there exists an NFA N for L(A) of size at most ℓ−1 then C has a separable normal
set basis containing at most s sets.

(a) Assume that C has a separable normal set basis containing s sets. We construct a
δNFA Nδ for L(A) of size at most ℓ = s+ 4.

Let B = {r1, . . . , rs} be the separable normal set basis for C containing at most s

sets. Without loss of generality, we can assume that B does not contain duplicate sets.
Also, let B1 and B2 be disjoint subcollections of B such that each element of C is either

14

an element of B1, an element of B2, or a disjoint union of an element of B1 and an
element of B2.

To describe Nδ, we first fix the representation of each set c in C as a disjoint union
of at most one set in B1 and at most one set in B2. Say that each basic member of B in
this representation belongs to c.

We define the state set of Nδ as States(Nδ) = {q0, q1, q2, qf} ∪ {ri ∈ B1} ∪ {ri ∈ B2}.
The transition rules of Nδ are defined as follows. First, Rules(Nδ) contains the non-

deterministic transitions q0
a
→ q1 and q0

a
→ q2. Furthermore, for every i = 1, . . . , n,

j = 1, . . . , s, and m = 1, 2, Rules(Nδ) contains the rule

• qm
ci→ rj , if rj ∈ Bm and rj belongs to ci; and

• rj
b
→ qf , if b ∈ rj .

Notice that the size of Nδ is |B| + 4 = s + 4 = ℓ. By construction, we have that
L(Nδ) = L(A).

We argue that Nδ is a δNFA. First, we argue that the only non-determinism in Nδ is
in the transitions q0

a
→ q1 and q0

a
→ q2. By construction, all transitions going to qf are

deterministic. It is also easy to see that all outgoing transitions from q1 are deterministic
because, if we assume that Nδ contains transitions of the form q1

ci→ rj and q1
ci→ rj′

with j 6= j′, this would mean that both rj and rj′ belong to ci, which contradicts the
separable normal basis property for B1. The argument for q2 is analogous.

Next, we show that Nδ is unambiguous. Towards a contradiction, assume that there
is an i = 1, . . . , n and a b ∈ ci such that the string acib has two accepting runs. Since the
only non-deterministic transitions of A are from q0 to q1 and q2, the only way in which
this can happen is that one run visits state q1 and the other run visits state q2. Let rj1
(respectively, rj2) be the state such that q1

ci→ rj1 (respectively, q2
ci→ rj2) are transitions

in Nδ. By construction of Nδ and since B does not contain duplicate sets, we have that
j1 6= j2. But this means that both rj1 and rj2 belong to ci, and their intersection contains
the element b, which contradicts the disjointness condition of the normal set basis B.

Finally, the NFA N for L(A) is obtained by merging the two states q1 and q2 from
Nδ. Since the size of Nδ is ℓ, the size of N is ℓ− 1.

(b) Assume that L(A) can be accepted by a δNFA Nδ of size at most ℓ. We can assume
that Nδ is minimal. We need to show that there exists a separable normal set basis for
C containing at most s = ℓ− 4 sets.

Recall that we assumed that s < n − 3 in our reduction. Hence, we have that
ℓ = s+ 4 < n+ 1 < |A|. As we observed that A is a minimal DFA for L(A), it must be
the case that Nδ has at least one non-deterministic transition.

Notice that, as Nδ is minimal and accepts only strings of length three, we can assume
that Nδ has a unique final state. Furthermore, since N is a δNFA, it also has a unique
initial state. Let q0 and qf be the initial and final state of Nδ, respectively. We can
partition Nδ’s states into four sets Q0, Q1, Q2, and Q3 such that, for each 0 ≤ i ≤ 3,
Qi is precisely the set of states that Nδ can be in after having read a string of length i.
We already know that Q0 = {q0} and Q3 = {qf}. For each state q ∈ Q2, define a set

Bq = {b | q
b
→ qf ∈ Rules(Nδ)}.

15

Next, we show that the collection B = {Bq | q ∈ Q2} is a normal set basis for C. By

definition of L(A), we have that every c ∈ C is the union of Bc := {Bq | ∃p ∈ Q1 : p
c
→

q ∈ Rules(Mi)}. It remains to show that Bc is also a disjoint subcollection of B. When
Bc contains only one set, there is nothing to prove. Towards a contradiction, assume
that Bc contains two different sets Bq1 and Bq2 such that b ∈ Bq1 ∩ Bq2 . By definition
of B, this would mean that the string acb has two accepting runs: q0qq1qf and q0q

′q2qf
with q1 6= q2. But as Nδ is unambiguous, this is impossible. Hence, Bc is a disjoint
subcollection of B.

Finally, we want to prove that B contains at most ℓ−4 sets. Since the number of sets
in B equals the number of states in Q2, we know that B contains at most ℓ − 4 sets if
and only if Q1 contains at least two states. Towards a contradiction, assume that Q1 is
a singleton q. By Lemma 5(4), we know that there are at least two sets c1, c2 in C such
that Bc1 and Bc2 contain two sets. By definition of B, this would mean that there are
at least two alphabet symbols c1 and c2 that have non-deterministic outgoing transitions
from q, which contradicts that Nδ is a δNFA. Hence, B is a normal set basis for C of
size at most ℓ − 4. As (C, s) ∈ I, we also have that C has a separable normal set basis
of size at most s = ℓ− 4 by Lemma 5(3).

(c) Let N be an NFA for L(A) of size at most ℓ− 1. We can assume that N is minimal.
We will first show that there exists a set basis for C containing at most s = ℓ− 4 sets.

Recall that we assumed that s < n − 3 in our reduction. Hence, we have that
ℓ = s+ 4 < n+ 1 < |A|. As we observed that A is a minimal DFA for L(A), it must be
the case that N has at least one non-deterministic transition.

Notice that, as N is minimal and accepts only strings of length three, we can assume
that N has a unique final state. We can partition N ’s states into four sets Q0, Q1, Q2,
and Q3 such that, for each 0 ≤ i ≤ 3, Qi is precisely the set of states that N can be in
after having read a string of length i. We already know that Q3 = {qf}. For each state

q ∈ Q2, define a set Bq = {b | q
b
→ qf ∈ Rules(N)}. Next, we show that the collection

B = {Bq | q ∈ Q2} is a set basis for C. By definition of L(A), we have that every c ∈ C

is the union of Bc := {Bq | ∃p ∈ Q1 : p
c
→ q ∈ Rules(N)}. As Q0, Q1, and Q3 contain at

least one state, we also have that B contains at most ℓ− 1− 3 = s sets.
From Lemma 5(3), it now follows that C also has a separable normal set basis con-

taining at most s sets. �

We are now ready to finish the proof of Theorem 2.

Proof of Theorem 2. Let N be a class of finite automata such that δNFA ⊆ N .
Then the minimization problem for N is strongly NP-hard, even if the input is given as
a DFA.

Proof. In this Section we provided a reduction from Vertex Cover to DFA → δNFA
minimization, and showed that, for the regular languages we consider, the minimal NFA
is 1 state smaller than the minimal δNFA.

Let N be a class of finite automata such that δNFA ⊆ N ⊆ NFA. As was shown in the
proof of Lemma 6, any decision algorithm for DFA → N minimization can approximate
the DFA → δNFA minimization problem within a term 1 (as the minimal NFA is only
one state smaller than the minimal δNFA).

16

As can be seen from the other proofs in Section 3, this approximation algorithm for
DFA → δNFA minimization can easily be adapted to an approximation algorithm for
Vertex Cover within a term 1. As we know that it is strongly NP-hard to approximate
Vertex Cover within a constant term, we can conclude that DFA → N minimization is
also strongly NP-hard. �

Until now, our results focused on classes of finite automata that can accept all regular
languages. Our proof shows that this is not even necessary, as the NP-hard instances
we construct only accept strings of length tree. Therefore, we also have the following
Corollary.

Corollary 7. Let δNFA3 be the class of δNFAs that accept only strings of length three.
Let N be a class of finite automata such that δNFA3 ⊆ N . Then the minimization
problem for N is strongly NP-hard, even if the input is given as a DFA.

4. Automata with Multiple Initial States

As we mentioned in the Introduction, the minimization problem for finite automata
that can non-deterministically choose between multiple initial states, but are otherwise
deterministic, has also been studied [20, 26]. We now define a variant of the δNFAs
which are geared towards automata with multiple initial states, but in which the only
non-determinism is in the choice of initial state (MDFAs in [26]).

Definition 8. A δMDFA is an NFA A with the following properties

• A has at most two initial states;

• A is unambiguous; and

• for each pair (q, a), degree(q, a) = 1.

From our main proof, we can also infer the following result, strengthening the results
from [26] in a uniform manner:

Theorem 9. Let δMDFA2 be the class of δMDFA that accept only strings of length two.
Let N be a class of finite automata such that δMDFA2 ⊆ N . Then the minimization
problem for N is strongly NP-hard, even if the input is given as a DFA.

Proof. We simply have to reconsider the proof of Lemma 6, change L(A) so that it
accepts the cb suffixes of its current language, consider the δNFA we construct without its
start state, and make the two successors of the start state initial states (and analogously
for the NFA considered in the proof). The rest of the proof carries through analogously.
�

Together with Theorem 2 this answers all the open questions mentioned by Malcher [26].

17

5. Succinctness and Uniqueness

As mentioned in the Introduction, when a developer selects a description mechanism
for regular languages, she faces a trade-off between succinctness and complexity of min-
imization. The following proposition shows that in the case of δNFAs, the succinctness
bought at the price of NP-completeness is limited.

Proposition 10. For every δNFA of size n, there is an equivalent DFA of size O(n2).

Proof. For every finite automaton that can choose non-deterministically between two
different start states but is otherwise deterministic (a 2-MDFA), there is an equivalent
DFA with at most quadratically many states [20].

Let A be a δNFA, and let (q, a) be the only pair in States(A) × Alpha(A) such that
degree(q, a) = 2. Let q1 and q2 be the two states reachable from q when reading an a. If
we remove all states from A that are reachable neither from q1 nor from q2, and make
q1 and q2 initial states, we obtain a 2-MDFA A′. We can compute the smallest DFA
A′′ equivalent to A′ in quadratic time. Now, all we need to do is to add A′′ to A and
replace the two rules going from q to q1 and q2, respectively, by a single rule that reads
an a and goes to the initial state of A′′. The size of the new, deterministic, automaton
is |States(A)|+ |States(A′′)| = O(|States(A)|2). �

On the other hand, if we were to remove the branch(A) ≤ 2 condition in the definition
of δNFAs, then there would be an exponential gain in succinctness. This is witnessed by
the standard family of languages (a + b)∗a(a + b)n for n ≥ 0 that shows that NFAs are
exponentially more succinct than DFAs in general. The canonical NFA for this language
is unambiguous and has only one pair (q, a) for which degree(q, a) = 2.

Proposition 11. The minimal δNFA for a regular language is not unique.

Proof. Consider the language L defined by the regular expression

r = (a+ b)aaa+ b(a+ b)(a+ b)b.

Figure 2 depicts two δNFAs, A and B, that both accept L. We argue that eight is the
minimal number of states for any δNFA that accepts L. First, it is clear that any such
automaton has to remember how many letters it has read so far. Second, the automaton
has to have at least two states that can be reached after reading one letter, one that
accepts the string bbb and one that does not. Third, there must also be at least two
states reachable after reading two letters, one that accepts the string bb and one that
doesn’t. Fourth, there must be at least two states that can be reached after reading three
letters, one that accepts the string b and one that does not. Together with the fact that
there has to be one initial state and at least one final state, this shows that any δNFA
for L needs at least eight states. �

18

A

B

b

a

a, b

a

a

a, b

a

b

a

b

a, b

a, b

a

a, b

a

b

a

Figure 2: Two minimal δNFAs, that both accept the language L from the proof of Proposition 11.

6. Concluding Remarks

In this paper, we have investigated the following question: Can we loosen the deter-
minism constraint on finite automata, while still admitting PTIME minimization? In
other words, do there exist significant extensions of the class of DFAs that still allow
for polynomial time minimization? We have shown that no such significant extensions
exist, under the assumption that PTIME 6= NP. Formally, we proved that minimization
is NP-hard for all finite automata classes that contain the δNFAs that accept strings of
length three. Here, the class of δNFAs is an extension of the class of DFAs that allows
for very little non-determinism.

A natural and important next direction is to look for classes that may not contain
the class of all DFAs. While there may be no general relaxation of the determinism
constraint that admits PTIME minimization, one could, e.g., additionally restrict the
alphabet size of automata. It remains open whether results in the spirit of Theorems 2
and 9 would also hold if δNFAs are required to have fixed-size alphabets.

References

[1] P. Abdulla, J. Deneux, L. Kaati, and M. Nilsson. Minimization of non-deterministic automata with
large alphabets. In International Conference on Implementation and Application of Automata
(CIAA), pages 31–42, 2005.

[2] A. Badr, V. Geffert, and I. Shipman. Hyper-minimizing minimized deterministic finite state au-
tomata. Informatique Théorique et Applications, 43(1):69–94, 2009.

[3] J. Berstel, L. Boasson, and O. Carton. Continuant polynomials and worst-case behavior of hopcroft’s
minimization algorithm. Theoretical Computer Science, 410(30–32):2811–2822, 2009.

[4] J. Berstel, L. Boasson, O. Carton, and I. Fagnot. Minimization of automata. Technical Report
1010.5318, CoRR abs, 2010.

[5] G. J. Bex, W. Gelade, W. Martens, and F. Neven. Simplifying XML Schema: effortless handling
of nondeterministic regular expressions. In International Symposium on Management of Data
(SIGMOD), pages 731–744, 2009.

[6] H. Björklund and W. Martens. The tractability frontier for NFA minimization. In International
Colloquium on Automata, Languages and Programming (ICALP), pages 27–38, 2008.

[7] M. R. Garey and D. S. Johnson. Computers and Intractability — A Guide to the theory of NP-
completeness. W. H. Freeman, 1979.

[8] P. Gawrychowski and A. Jez. Hyper-minimisation made efficient. In International Symposium on
Mathematical Foundations of Computer Science (MFCS), pages 356–368, 2009.

19

[9] W. Gelade. Succinctness of regular expressions with interleaving, intersection and counting. Theo-
retical Computer Science, 411(31–33):2987–2998, 2010.

[10] W. Gelade, M. Gyssens, and W. Martens. Regular expressions with counting: Weak versus strong
determinism. In International Symposium on Mathematical Foundations of Computer Science
(MFCS), pages 369–381, 2009.

[11] W. Gelade and F. Neven. Succinctness of the complement and intersection of regular expressions.
In Annual Symposium on Theoretical Aspects of Computer Science (STACS), pages 325–336, 2008.

[12] J. Goldstine, M. Kappes, C Kintala, H. Leung, A. Malcher, and D. Wotschke. Descriptional com-
plexity of machines with limited resources. Journal of Universal Computer Science, 8(2):193–234,
2002.

[13] G. Gramlich and G. Schnitger. Minimizing NFAs and regular expressions. Journal of Computer
and System Sciences, 73(6):908–923, 2007.

[14] H. Gruber and M. Holzer. Finding lower bounds for nondeterministic state complexity is hard. In
International Conference on Developments in Language Theory (DLT), pages 363–374, 2006.

[15] H. Gruber and M. Holzer. Computational complexity of NFA minimization for finite and unary lan-
guages. In International Conference on Language and Automata Theory and Applications (LATA),
pages 261–272, 2007.

[16] H. Gruber and M. Holzer. Inapproximability of nondeterministic state and transition complexity
assuming P 6= NP. In International Conference on Developments in Language Theory (DLT),
pages 205–216, 2007.

[17] H. Gruber and M. Holzer. Tight bounds on the descriptional complexity of regular expressions. In
International Conference on Developments in Language Theory (DLT), pages 276–287, 2009.

[18] M. Holzer and M. Kutrib. Nondeterministic finite automata — recent results on the descriptional
and computational complexity. In International Conference on Implementation and Application of
Automata (CIAA), pages 1–16, 2008.

[19] M. Holzer and A. Maletti. An n logn algorithm for hyper-minimizing states in a (minimized)
deterministic automaton. Theoretical Computer Science, 411(38–39):3404–3413, 2010.

[20] M. Holzer, K. Salomaa, and S. Yu. On the state complexity of k-entry deterministic finite automata.
Journal of Automata, Languages, and Combinatorics, 6(4):453–466, 2001.

[21] D. Hovland. Regular expressions with numerical constraints and automata with counters. In
International Colloquium on Theoretical Aspects of Computing (ICTAC), pages 231–245, 2009.

[22] J. Hromkovic, J. Karhumäki, H. Klauck, G. Schnitger, and S. Seibert. Measures of nondetermin-
ism in finite automata. In International Colloquium on Automata, Languages and Programming
(ICALP), pages 199–210, 2000.

[23] J. Hromkovic and G. Schnitger. Comparing the size of NFAs with and without epsilon-transitions.
Theoretical Computer Science, 380(2):100–114, 2007.

[24] T. Jiang, E. McDowell, and B. Ravikumar. The structure and complexity of minimal NFAs over
unary alphabet. International Journal of Foundations of Computer Science, 2:163–182, 1991.

[25] T. Jiang and B. Ravikumar. Minimal NFA problems are hard. Siam Journal on Computing,
22(6):1117–1141, 1993.

[26] A. Malcher. Minimizing finite automata is computationally hard. Theoretical Computer Science,
327(3):375–390, 2004.

[27] A. Meyer and M.J. Fischer. Economy of descriptions by automata, grammars, and formal systems.
In Annual Symposium on Foundations of Computer Science (FOCS), pages 188–191. IEEE, 1971.

[28] A. Okhotin. Unambiguous finite automata over a unary alphabet. In International Symposium on
Mathematical Foundations of Computer Science (MFCS), pages 556–567, 2010.

[29] R Paige and R. Tarjan. Three parition refinement algorithms. Siam Journal on Computing, 16:973–
989, 1987.

[30] K. Salomaa. Descriptional complexity of nondeterministic finite automata. In International Con-
ference on Developments in Language Theory (DLT), pages 31–35, 2007.

[31] G. Schnitger. Regular expressions and NFAs without epsilon-transitions. In Annual Symposium on
Theoretical Aspects of Computer Science (STACS), pages 432–443, 2006.

[32] R. E. Stearns and H. B. Hunt III. On the equivalence and containment problems for unambiguous
regular expressions, regular grammars and finite automata. Siam Journal on Computing, 14(3):598–
611, 1985.

[33] L. Stockmeyer and A. Meyer. Word problems requiring exponential time: Preliminary report. In
Annual ACM Symposium on Theory of Computing (STOC), pages 1–9, 1973.

20

